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ABSTRACT
This study develops and tests a version of the Python-driven, non-hydrostatic Model for Prediction Across
Scales –Atmosphere (MPAS-A) dynamic model, as well as its tangent linear and adjoint models. The non-linear,
non-hydrostatic dynamic core of the MPAS-A is restructured to have a Python driver for the convenience of
parsing namelists, manipulating matrices, controlling simulation time flows, reading model inputs, and writing
outputs, while the heavy-duty mediation and model layers are retained in Fortran for computational efficiency.
Under the same Python-driving structure, developed are the tangent linear and adjoint models for the dynamic
core of the MPAS-A model with verified correctness. The case of Jablonowski and Williamson’s baroclinic wave
is used for demonstrating the approximation accuracy of theMPAS-A tangent linear model and the applicability
of the MPAS-A adjoint model to relative sensitivity studies. Numerical experimental results show that the
tangent linear model can well approximate the temporal evolutions of non-linear model perturbations for all
model variables over a four-day forecast period. Employing the MPAS-A adjoint model, it is shown that the
most sensitive regions of the 24-h forecast of surface pressure are weather dependent. An interesting westward
vertical tilting is also found in the relative sensitivity results of a 24-h forecast of surface pressure at a point
located within a trough to model initial conditions. This functionality of the MPAS-A adjoint model is highly
essential in understanding dynamics and variational data assimilation.

PLAIN LANGUAGE SUMMARY
The MPAS-A is an advanced global numerical weather prediction model with a hexagonal mesh that can be
compressed for higher resolutions in some targeted regions of interest and smoothly transitioned to coarse
resolutions in others. In this study, a Python-driven MPAS-A model is first developed, combining a flexible
Python driver and Fortran’s fast computation, making the MPAS-A model exceedingly user- and platform-
friendly. The tangent linear and adjoint models of the MPAS-A dynamical core are then developed, both of
which are required for various sensitivity studies. They are also indispensable components of a future MPAS-
based global four-dimensional variational (4D-Var) data assimilation system. Finally, the relative sensitivity
of a baroclinic instability wave development is obtained and shown using the MPAS-A adjoint model.
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Key Points

� A Python-driven MPAS-A dynamic-core-only is tested
� The tangent linear and adjoint models of the MPAS-

A are developed and their correctness is verified
� The relative sensitivities obtained by using the

MPAS adjoint model shows interesting results for a

baroclinic instability test case

1. Introduction

Numerically solving atmospheric dynamical and physical
equations has been the primary approach for making
weather forecasts. The increasing computational capabil-
ities allow for resolving atmospheric motions at finer and
finer scales. Nonetheless, simulations permitting non-
hydrostatic scales everywhere on the globe are still chal-
lenging and highly expensive (Satoh et al., 2008). An
alternative solution is offered by the Model for Prediction�Corresponding author. e-mail: xzou@nuist.edu.cn
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Across Scales – Atmosphere (MPAS-A), which employs
finite-volume irregular centroidal Voronoi meshes on a
C-grid with an option of smoothly varying resolutions
(Ringler et al., 2008; Skamarock et al., 2012; Park et al.,
2013). Under the framework of MPAS-A, regions of
interest may be covered with grids of the highest possible
resolution and the remaining part of the globe with
coarser grids and smooth transitions from high to coarse
resolutions. Hagos et al. (2013) examined and compared
the error characteristics of such smoothly varying, vari-
able-resolution meshes in MPAS-A to those from a two-
way nesting approach in the Weather Research and
Forecasting (WRF) model. It was found that errors
appeared near the edges of high-resolution nesting regions
in WRF simulations but were avoided by the variable-
resolution meshes in MPAS-A. Rauscher and Ringler
(2014) showed that the regionally refined mesh of MPAS-
A helps to resolve mid-latitude eddy activities that are
often induced by orography, land–sea contrasts and sea
surface temperature anomalies.

In addition to an advanced numerical forecast model, a
complete and modern numerical weather prediction system
also encompasses a data assimilation procedure to produce
the optimal initial conditions for making forecasts.
Atmospheric data assimilation problems, in general,
involve large dimensions. The introduction of adjoint tech-
niques into data assimilation has drastically reduced com-
putational costs as well as opened new opportunities in
meteorological research areas (Le Dimet and Talagrand,
1986; Courtier and Talagrand, 1990; Rabier et al., 1992,
1996; Courtier et al., 1993, 1994). Based on the Penn State –
NCAR Mesoscale Model (MM5), Zou et al. (1995) devel-
oped the adjoint model of MM5 to formulate the four-
dimensional variational (4D-Var) assimilation system and
found significant positive impacts on short-range forecasts
after assimilating rainfall observations (Zou and Kuo,
1996). Similarly, aimed at building a WRF-based 4D-Var
assimilation system, Xiao et al. (2008) developed the tan-
gent linear (TL) and adjoint (AD) models of the WRF
model, with the aid of an automatic differentiation tool
(Giering and Kaminski, 2003), and showed that adjusting
initial conditions using the WRF adjoint model could sig-
nificantly improve the Antarctic windstorm forecast. In
addition to its essential role in variational data assimilation,
adjoint models also have remarkable and versatile poten-
tials in other meteorological applications. Many questions
posed in the field of atmospheric science involve sensitiv-
ities. An example is how some weather features of interest
may change if certain small perturbations are added to the
initial conditions. Traditionally, answering these questions
would involve multiple model runs with sequentially per-
turbed components in an initial condition vector. By con-
trast, with the aid of adjoint models, a comprehensive

sensitivity field at the model starting time can be obtained
with a single adjoint model run. Errico (1997) and Zou
et al. (1997) comprehensively described the applicability of
adjoint models in various topics, including parameter esti-
mation, model stability analysis and synoptic studies.

During the last few years, the programming language
Python has become increasingly popular among atmos-
pheric science researchers as well as those from other
Earth science disciplines (Lin, 2012). Due to its concise
and natural syntax, programmes written in Python are
clear and easy to read. Well-developed packages are read-
ily available to handle input/output (IO) tasks in various
encoding formats commonly seen in the field of Earth sci-
ence, such as Gridded Binary, Network Common Data
Form, Hierarchical Data Format (HDF) 4 and HDF5. In
tasks involving modelling, the handling of date and time
is also frequently dealt with, which is also made exceed-
ingly simple in Python (Lutz, 2013). Nonetheless, Python
comes with disadvantages, including much slower compu-
tational speeds than compiled programming languages
like Fortran. In this study, the driver layer of the non-lin-
ear MPAS-A is redeveloped in Python to control the
simulation workflow, including IO, date and time in
model simulations to reconcile the advantages and disad-
vantages of both Python and Fortran. The heavy-duty
dynamical calculations are retained in Fortran so that the
model’s computational speed is hardly compromised.
Such a structural arrangement makes the installation,
compilation and modification of the model even more
user- and platform-friendly than without using the
Python driver. As this research involves only the dynam-
ical core of the MPAS-A without moist physics for the
moment, conducted are numerical experiments with the
baroclinic wave case of Jablonowski and Williamson
(JW), a case commonly adopted for testing the perform-
ance and stability of numerical weather prediction (NWP)
models’ dynamical cores in numerous previous studies
(Jablonowski and Williamson, 2006a, 2006b; Park et al.,
2013). Section 2 briefly introduces some technical features
of the non-hydrostatic MPAS-A model and the redevel-
oped Python driver layer. Section 3 presents the develop-
ment of the TL model using the same combined
Python–Fortran structure and tests its correctness.
Section 4 involves the development of correctness checks
of the MPAS-A adjoint model, and Section 5 presents
some results from two adjoint relative sensitivity studies.
Section 6 gives a summary and conclusions.

2. A brief description of the MPAS atmospheric
solver and case selection

The MPAS is a global modelling system that uses spherical
centroidal Voronoi tessellations discretization, allowing for
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both quasi-uniform and smoothly variable horizontal reso-
lution meshes. The MPAS framework houses multiple geo-
physical dynamical solvers, including the atmosphere,
ocean, sea ice and land ice. MPAS-A is a compressible,
non-hydrostatic atmospheric model. The variable-
resolution-permitting centroidal mesh is suitable for
regional NWPs and regional climatological studies over

high-resolution regions (Skamarock et al., 2012; Hagos
et al., 2013; Park et al., 2013). Figure 1 is an example of a
refined circular area centred at [50� N, 170� W] with a hori-
zontal resolution of about 25 km between neighbouring cell
centres, which progressively becomes coarser and coarser
to 92 km in remote parts of the globe. Figure 1b demon-
strates the actual distributions of centroidal grid cells

Fig. 1. (a) Global distribution of distances between neighbouring cells (shaded in colour) of a variable resolution grid with horizontal
resolutions ranging from 25km to 92km. The centre of refined resolution is at [50� N, 170� W]. (b) Cell distribution of variable
resolution grid cells within a zoomed region indicated by the white box in (a). The area in (a) is shown using the equidistant conic
projection, and the area in (b) is shown using the equidistant cylindrical projection.
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within the transitional region indicated by a white box in
Fig. 1a. The mesh with gradually varying resolutions is to
be contrasted with the traditionally two-way nested grids
(Skamarock and Klemp, 2008). In the settings of nested
grids, horizontal resolutions change abruptly over the
boundaries of the refined areas, possibly generating add-
itional systematic errors in the simulation results (Hagos
et al., 2013).

The MPAS-A inherited the approach of the Advanced
Research WRF (ARW) for solving the non-hydrostatic
dynamical and physical equations, including the staggered
C-grid spatial discretization and the third-order
Runge–Kutta temporal integration scheme. In addition to
the Runge–Kutta scheme, also adopted is a time-splitting
technique to integrate gravity and acoustic waves.
Spatially, the vertical coordinate in the MPAS-A model is
terrain-following and height-based, different from the
ARW. The MPAS-A model has five prognostic state vari-
ables, i.e. horizontal momentum (u) perpendicular to the
cell edges; coupled potential temperature (h), coupled
density (q) and specific humidity (q) residing at the cell
centres; and vertical momentum (w) located at the cell
centres horizontally but between layers vertically. Ringler
et al. (2008) and Skamarock et al. (2012) provided more
details about the unstructured centroidal mesh and
MPAS-A dynamics solver, respectively.

In this study, the MPAS-A is restructured so that the
driver layer is written in Python, and the mediation and
model layers are retained in Fortran, in which the model
layer is where the actual dynamical computations take
place and the mediation layer is an intermediate layer of
the software placed between the driver and model layers.
Under this framework, the functionalities in the driver
layer, including installation, compilation, controlling of
the simulation time flow and IO, are made exceedingly
user- and platform-friendly (see Appendix A), which will
also be the case for a prospective 4D-Var assimilation
system. The fast computation efficiency of Fortran is
maintained under the Python-driving framework since the
heavy-duty mediation and model layers are still written in
Fortran. The Python intrinsic utility F2Py, i.e. Fortran to
Python interface generator, builds the interfaces between
the Python driver layer and Fortran mediation/model
layers, which compiles Fortran codes with common
Fortran compilers (e.g. gfortran, ifort and pgfortran),
providing a connection between the two programming
languages (Peterson, 2009). In this study, the TL/AD
Fortran programmes are developed line-by-line manually
following the guidance detailed in the work by Zou et al.
(1997), without using any automatic differentiation tool.
Under this Python-driving structure, the non-linear for-
ward, TL, and adjoint models of the MPAS-A performs
simulations exactly like the original MPAS-A, regardless

of the types of meshes chosen in different numerical
experiments.

The JW test case is adopted in this research to test the
simulation performances of the MPAS-A non-hydrostatic
dynamical core with both quasi-uniform and variable-
resolution meshes as well as those of the accuracy of
both the TL and adjoint models. For a demonstration of
the benefits from the smooth variable-resolution mesh,
conducted are three separate numerical experiments with
the same Python-driving MPAS-A dynamical core and
the same initial conditions but with three different
meshes: (1) uniform resolution (UR) at 120 km with
40,962 cells, (2) UR at 30 km with 655,362 cells and (3)
variable resolution (VR) ranging from 25 to 92 km with
163,842 cells (Fig. 1a). Starting with the initial conditions
of the baroclinic instability test case, the model integrates
for a period of nine days. Figure 2 shows the surface
pressure features of an evolving baroclinic wave on day 9
from the UR-120-km and UR-30-km experiments and
their differences. While the patterns in Fig. 2a,b are simi-
lar, differences in the magnitude of surface pressure
exceed 15 hPa in places. Figure 3a shows the wave fea-
tures on day 9 from the VR experiment. As described
earlier, the area with the finest resolution is centred at
[50� N, 170� W], where most of the wave patterns may be
well confined in finer resolutions, guided by the black
contours. Comparing results from the VR experiment
(Fig. 3a) and from the UR-30-km experiment (Fig. 2b),
differences (Fig. 3b) are noticeably smaller than those
between the UR-120-km and UR-30-km experiments
(Fig. 2c). As indicated by the number of grid cells, the
MPAS-A loops through the VR mesh consists of only
25% of the number of cells in the UR-30-km mesh, which
is a direct indicator of a significant saving in the compu-
tational cost. In reality, for 24-h forecasts with the same
integration time step (150 sec), the VR experiment took
only 16% of the computational time of the UR-30-km
experiment (Table 1). This implies that for a given region
of interest, the smoothly variable resolution offered in the
MPAS-A may help to achieve high-resolution simulation
performances for only a fraction of the computational
cost of an experiment with a high-resolution uni-
form mesh.

3. Development of the MPAS-A TL model

The non-hydrostatic MPAS-A can be symbolically
written as

x trð Þ ¼ Mr x0ð Þ, (1)

where tr denotes the forecast time and t0 the initial time,
vector x represents all five model prognostic variables,
Mr is the non-linear forward model operator, and x0
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represents the initial conditions for the forecast model.
The TL model can be obtained by linearizing Mr with
respect to all model prognostic and diagnostic variables,
expressed as

Dx trð Þ ¼ Mr x0ð ÞDx0 ¼
oMr x0ð Þ

ox
Dx0, (2)

where the prefix D denotes perturbations to the corre-
sponding non-linear state variables x, and Mr is the TL

model operator. Table 1 lists the time it takes to complete
a 24-h simulation with the TL model. The TL model
requires slightly less than three times the cost of the non-
linear forward model, the reason being that after each
calculation of a linearized equation, the original non-lin-
ear equation will also be calculated to update the non-lin-
ear trajectory that the TL model is linearized on.

The correctness of the MPAS-A TL model can be veri-
fied by checking whether the following equation is satisfied:

Fig. 2. Surface pressure distributions (unit: hPa) after nine-day integrations with uniform resolutions of (a) 120 km and (b) 30 km. (c)
Differences in surface pressure between the 120 and 30km resolutions.
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UðaÞ ¼ kMr x0 þ ahð Þ�Mr x0ð Þk
kMrahk ¼ 1þOðaÞ: (3)

Conducted was a set of five experiments with a 24-h inte-
gration period for the TL correctness check. In the first
four tests, each model prognostic variable, i.e. u, w, q and

h, in vector h in Equation (3) was separately assigned
non-zero values. In the fifth experiment, all four prognos-
tic variables in vector h were simultaneously assigned
non-zero values. As the scale factor a becomes smaller
and smaller, the function U(a) is expected to approach
unity in an approximately linear way. Figure 4 shows the
results of the correctness tests. As anticipated, the values
of U(a) progressively become closer and closer to unity as
the scale factor a gets smaller and smaller for certain
ranges of a values in each of the testing experiments.
When a is too small, the accuracies of the U(a) values
start to be affected by the machine round-off errors and
drift away from unity. Figure 5 shows the temporal evo-
lutions of U(a) with an integration period of 72 h when a
equals to 10�3, 10�4 and 10�5. In all three cases, the val-
ues of jU(a) – 1j gradually increase as time moves on.
However, the approximations of perturbation evolutions
by the TL model are noticeably better when the initial
perturbation sizes are small (a¼ 10�5, Fig. 5c) than when
perturbation sizes are relatively big (a¼ 10�3, Fig. 5a).

Fig. 3. (a) Surface pressure distribution (unit: hPa) after a nine-day integration with a variable resolution. (b) Differences in surface
pressure between the variable-resolution and 30-km uniform resolutions. Point A is at [61� N, 153� W], and point B is at [80� N, 153�

W]. The black contours are the distances (unit: km) between neighbouring cells shown in Fig. 1a.

Table 1. Computational costs for 24-h integrations of a global
MPAS-A non-linear model at 120-km and 30-km quasi-uniform
resolutions and a variable resolution varying from 25km to
92 km, as well as the costs for tangent linear and adjoint models
at the variable resolution.

Model Resolution
(km)

Cost
(h)

Time step
(sec)

Non-linear
120 0.24 450
30 17.5

15025–92 2.8
Tangent linear 25–92 5.39
Adjoint 25–92 12.5
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A separate set of experiments is included following
Equation (3), in which both x and h in Equation (3) were
given the values of the simulation results on day 5 of the
JW baroclinic wave case, and a is set as 10�3 (Fig. 6). After
a four-day integration, the simulation results reach the
same time as the results shown in Figs. 2 and 3, i.e. day 9.
Figure 7a shows the differences between the two non-linear
model simulations calculated with the MPAS dynamic core
only, i.e. kMrðxþ ahÞ �MrðxÞk in Equation (3), and Fig.
7b shows the results from the TL model taking ah as input,
i.e. MrðxÞah in Equation (3). Both results appear almost
identical, indicating a close approximation of the TL model
forecast to the evolution of perturbations as the non-linear
model differences. Figure 7c shows pixel-by-pixel compari-
sons of the results in Fig. 7a,b, suggesting a high correlation
between the two, with a root-mean-square error of
0.00454 hPa in the linear regression fit.

4. Development of the MPAS-A adjoint model

The MPAS-A adjoint model is essentially the transpose
of the MPAS-A TL model, expressed as

Dx̂0 ¼MT
r ðxÞDx̂ trð Þ, (4)

where Dx̂ denotes the adjoint variable, and tr is the final
time of interest. Table 1 shows the time it takes for the

MPAS-A adjoint model to generate a 24-h simulation.
Because the adjoint model performs calculations back-
ward in time, the non-linear prognostic and intermediate
diagnostic variables still need to be updated forward in
time. Thus, the scheme adopted in the MPAS-A adjoint
model is that the prognostic variables at every time step
are stored while the diagnostic variables within each indi-
vidual time step are recalculated during the process of
adjoint calculations, which is the reason why the adjoint
model takes more time than the TL model.

The correctness of the MPAS-A adjoint model can be
verified based on the following equation:

hDx2,MrDx1i ¼ hMT
r Dx2,Dx1i: (5)

The left-hand side (LHS) of Equation (5) is the inner
product of the TL model forecast at time tr from an

Fig. 4. Variations in the function jU(a) – 1j for the correctness
check of the MPAS-A tangent linear model for the 24-h forecast
length when the initial conditions for variables u, w, q and h are
separately perturbed, where a is the scale factor of initial
perturbations.

Fig. 5. Temporal evolutions of the global mean jU(t) – 1j with
respect to the forecast length when a¼ 10–3, 10–4 and 10–5.
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Fig. 6. (a) q, (b) h, (c) u and (d) w and surface pressure (black contours, unit: hPa) at 0000 UTC of day 5 with the variable
resolution mesh.
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Fig. 7. (a) Differences in surface pressure (unit: hPa) after four-day integrations of the non-linear forward model with and without
perturbations [i.e.Mr(xþ ah) –Mr(x)], and (b) the four-day perturbation forecast of the tangent linear model [M(x)ah], where a perturbation
of a¼ 10–3 is given to all state variables (u, w, q, h, and qv) on day 5, as shown in Fig. 6. Surface pressures from the non-linear forward model
on day 9 are shown in (a) and (b) as black contours. (c) Scatter plot of M(x)ah as a function of [Mr(xþ ah) – Mr(x)]. The linear fit is
y¼ 0.983xþ 0.0179, with a root-mean-square error of 0.00454hPa.
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initial condition Dx1 at time t0, i.e. DxðtrÞ ¼ MrDx1, with
a vector Dx2, and the right-hand side (RHS) is the inner
product of Dx1 with the output of the adjoint model inte-
gration from the time tr to t0, i.e. Dx̂0 ¼MT

r Dx2: If the
adjoint model is developed correctly, the LHS and RHS
of Equation (5) is expected to agree with the machine
accuracy of the data type declared in the program, which
is double precision in the MPAS-A, for any vectors of
Dx1 and Dx2: Following Equation (5), the first set of five
experiments is included with the integration time tr equal
to 1, 3, 6, 9 and 12 h with Dx1 ¼ 10�3x0 and Dx2 ¼
MrDx1: The second set of testing experiments is the same
as the first set except for changing Dx2 to the 48-h non-
linear model forecasts Mr48h(x0). The resulting LHS and
RHS from the five tests of both sets agree with the preci-
sion of machine accuracies, indicating the correctness of
the MPAS-A adjoint model (Table 2).

A brief example of the coding in the restructured
Python–Fortran MPAS-A, as well as how divergence is cal-
culated under the Voronoi mesh in MPAS with its corre-
sponding TL/AD can be found in Appendices A and B,
respectively. The naming convention for a given prognostic
or diagnostic variables in the MPAS-A model, such as
‘divergence’, is ‘divergence_tl’ and ‘divergence_ad’ in the TL
and adjoint models, respectively. The divergence at a cell
centre can be found with a summation of wind vectors at all
edges of the cell. All other quantities in the atmospheric
dynamical equations have also been converted similarly in
the TL/AD Fortran codes. Following the MPAS-A Fortran
code, the TL and adjoint models are finally developed.

5. MPAS-A adjoint sensitivity analysis

An advantageous application of the adjoint model is sen-
sitivity analysis (Errico and Vukicevic, 1992; Errico, 1997;
Zou et al., 1997). A given quantity of interest (J) at the

model forecast time, such as mean squared error (MSE),
vorticity, surface pressure etc., can be denoted as

J ¼ J xtrð Þ, (6)

where xtr is the prognostic variables at the forecast time, or
MPAS-A model output, and J is a scalar. J is also called the
response function and can be the value of a variable at a sin-
gle point, over a specific region, or over the entire globe. As
in the case of variational data assimilation, the response
function J is the MSEs between observations and model sim-
ulations. Studies are often interested in the sensitivities of a
response function at the forecast time to the initial condi-
tions, i.e. model input. Most previous research has attempted
to obtain information about sensitivities by comparing the
resulting response function with a slightly perturbed initial
condition,Jðx0 þ Dx0Þ, to the response function from a con-
trol experiment, Jðx0Þ: The sensitivity of J to the initial con-
dition may then be expressed as

DJ�
X
k

oJ
oxtr, k

Dxtr, k, Dxtr, j�
X
k

oxtr, j
ox0, k

Dx0, k: (7)

The limitations of this method are: (1) the magnitudes of
the perturbation in the initial conditions have to be suffi-
ciently small to ensure a good approximation of the gra-
dients of J with respect to the perturbed variableDx0, k,
and (2) many model runs are required to find a compre-
hensive profile of J’s sensitivities to all of the variables at
various geographical locations. By contrast, the sensitiv-
ities of the response functions with respect to the model
variables may be expressed as (Errico, 1997)

oJ
ox0, j

¼
X
k

oxtr, k
ox0, j

oJ
oxtr , k

: (8)

Compared with the term
oxtr, j
ox0, k

in Equation (7), the term

oxtr, k
ox0, j

in Equation (8) is the transpose representing the

Table 2. Correctness check results of the newly developed MPAS-A adjoint model when it is integrated for 1, 3, 6, 9
and 12 h.

Time (h) LHS RHS (LHS – RHS)/LHS

Dx1 ¼ 10–3x0 and Dx2 ¼ MrDx1
1 97.20768296905979 97.20768296905982 2.9238130734430064� 10–16

3 84.96752467420752 84.96752467420744 1.003502557219898� 10–15

6 48.355553249923005 48.35555324992303 4.4082386903177345� 10–16

9 76.02678600397633 76.02678600397634 1.8691905132565715� 10–16

12 111.59107980162807 111.59107980162807 0.0
Dx1 ¼ 10–3x0 and Dx2 ¼ Mr48h(x0)

1 15099708.797756858 15099708.79775685 4.934254492398325� 10–16

3 15693692.520537037 15693692.5205371 4.0353750394292416� 10–15

6 16099500.125983704 16099500.125983633 4.396441822224065� 10–15

9 15902734.410095675 15902734.41009571 2.2254196619746773� 10–16

12 15704266.188497595 15704266.18849758 9.488607117957435� 10–16

LHS: left-hand side of Equation (5); RHS: right-hand side of Equation (5).
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adjoint model. Note that the sensitivities of J, calculated
using a single adjoint model run, are (1) independent
from the perturbation sizes and (2) with respect to all
model variables over the entire model domain in the ini-
tial conditions.

In the experiments of this study, the response function
in the adjoint sensitivity analysis is defined as the surface
pressure at two individual points, A and B, on day 9, as
marked in Fig. 3a:

J xtrð Þ ¼ Psurf, m, m ¼ A or B, (9)

where point A has the minimum surface pressure, and
point B experiences calm weather throughout the simula-
tion period. Calculated with the MPAS-A adjoint model
were the sensitivities of the response function to model
input variables for up to 24 h prior to day 9. The magni-
tudes of different model variables, as well as those of the
sensitivities of J to different model variables, can vary
dramatically. The concept of non-dimensional relative

sensitivities is thus adopted, following the equation below
(Zou et al., 1993; Carrier et al., 2008):

Srel ¼ x� x̂

J
¼ 1

J

x1x̂1

x2x̂2

..

.

xNx̂N

0
BBB@

1
CCCA: (10)

where x denotes non-linear state variables, x̂ represents
MPAS-A adjoint model results, J is the value of the
response function and x̂: � represents the Hadamard
product, which is defined as a vector of the same dimen-
sion as the vectors x and x̂ consisting of the product of
the ith element of x and the ith element in x̂: The magni-
tudes of the relative sensitivities found following
Equation (10) are direct indicators of the significance of
each model variable on the response function. Thus, the
sensitivity results generated from the MPAS-A adjoint
model may be compared across different model variables.
Figure 8 shows the 12- and 24-h relative sensitivities of

Fig. 8. Relative sensitivities of the surface pressure at point A at 0000 UTC of day 9 (see Fig. 3a) to the q field at the surface level at
(a) 1200 UTC and (b) 0000 UTC of day 8 (shaded in colour, �10–3). Black contours show the surface pressures at 1200 UTC and 0000
UTC of day 8 in (a) and (b), respectively.
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the surface pressure at point A in Fig. 3a with respect to
q at the surface. Twelve or twenty-four hours prior to
0000 UTC on day 9, low-pressure centres were still to the
southwest of point A. The response function is most sen-
sitive in upstream regions following the isobars, with 24-h
sensitivity results further away along and across the iso-
bars. In comparison, Fig. 9 shows the 12- and 24-h rela-
tive sensitivities of the surface pressure at point B to q at
the surface. At point B, no significant weather took place
during the 24-h period prior to day 9. Thus, regions of
sensitivity are confined to near point B. The magnitudes
of the relative sensitivities in Fig. 9 are also smaller than
those in Fig. 8. Figure 10 presents vertical cross-sections
of the relative sensitivities with respect to q and zonal
winds along the magenta lines in Figs. 8b and 9b. For
the case of point A, shown in the left panels, the relative
sensitivities in both the q and wind fields display a west-
ward vertical tilting. The relative sensitivities to density
(�10�3) are two orders of magnitude greater than those
to the winds (�10�5), implying that the changes in sur-
face pressure at point A on day 9 are significantly more
sensitive to q than to winds in the model input 24 h prior.
Similar results are seen for the relative sensitivities of the
surface pressure at point B to both q and wind variables

12–24 h earlier. As seen in Fig. 9, the vertical distribu-
tions of q and wind are stably stratified.

The adjoint sensitivity results in the experiments dis-
cussed above serve as a preliminary example for the
strength of the MPAS-A adjoint model, which can effi-
ciently help to find the areas and fields in the initial con-
ditions that have the greatest impacts on a given scalar of
interest in the forecasts. The sensitivity field shows a
strong dependence on the state flow near the point of
interest, which also implies the reason that flow-depend-
ent perturbations are implicitly accounted for in 4D-Var
assimilation systems. Similar applications can readily be
inferred such as finding the sensitivity field of the vorti-
city or central surface pressure at a preceding time in a
tropical cyclone case.

6. Summary and conclusions

The weather forecast capabilities over the advanced
irregular centroidal mesh offered by the MPAS-A is
unique for weather and climate research. In this study,
the MPAS-A is restructured in such a way that the driver
layer is developed in Python for its versatility and con-
venience when controlling the workflow of the model and

Fig. 9. Relative sensitivities of the surface pressure at point B at 0000 UTC of day 9 (see Fig. 3a) to the q field at the surface level at
(a) 1200 UTC and (b) 0000 UTC of day 8 (shaded in colour, �10–3). Black contours show the surface pressures at 1200 UTC and 0000
UTC of day 8 in (a) and (b), respectively.
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that the mediation and model layers are retained in
Fortran for its efficient computational speed. In the case
of the Jablonowski and Williamson baroclinic wave, com-
pared are the simulation results from the experiments
using the Python-driving MPAS-A with both quasi-uni-
form and variable-resolution meshes. High-resolution
simulation performances over regions of interest can be
achieved using the variable-resolution mesh for a small
fraction of the computational cost compared to using the
global uniformly high-resolution mesh.

An adjoint model is a remarkably versatile tool for
various sensitivity-involved meteorological research topics
and serves a vital role in a four-dimensional variational
assimilation system. The tangent linear (TL) and adjoint

models of the MPAS-A dynamical core are developed
under the same Python-driving framework in this
research. Necessary correctness verification procedures
are carried out and passed to ensure that both the TL
and adjoint models generate accurate results. The TL
model closely approximates the evolutions of perturba-
tions after a four-day forecast when compared with the
simulation differences between the perturbed and original
non-linear MPAS-A model. Additional experiments are
included to demonstrate the applicability of the MPAS-A
adjoint model in efficiently calculating sensitivities of a
given quantity of interest at forecast time, or the so-called
response function, to the initial conditions or forecast
model inputs. Specifically, the relative sensitivities of the

Fig. 10. Cross-sections of relative sensitivities of the surface pressure at point A (left panels) and point B (right panels) at 0000 UTC
of day 9 (see Fig. 3a) to (a, b) the q field (�10–3) and (c, d) the u field (�10–5) at 0000 UTC of day 8 (shaded in colour). The q field at
0000 UTC of day 8 is shown in (a, b) (black curves), and the u field at 0000 UTC of day 8 is shown in (c, d) (black curves).
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surface pressure on day 9 at two separate locations, one
at the centre of a low-pressure system (point A) and the
other in a fair-weather region (point B), to the model var-
iables 12 and 24 h earlier than day 9 are calculated with
the adjoint model. The surface pressure at point A is pri-
marily sensitive to areas upstream of the isobars near the
centre of the low-pressure system horizontally and
exhibits a westward vertical tilting. By comparison, with
calm weather at point B, areas showing significant sensi-
tivities are located near point B, regardless of the simula-
tion time.

The physical options currently available in the MPAS-
A model can readily be inserted into the Python–Fortran
structure proposed in this study. Future research efforts
will focus on first developing an MPAS TL/AD system
with moist physics and planetary boundary layer physics
parameterization schemes and then building a compre-
hensive global 4D-Var assimilation system.
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Appendix A

An (incomplete) example of the Python driver layer for
the non-linear forward MPAS-A model is given here:
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Operations involving date and time that are commonly
encountered in controlling simulation flows are as simple
as an arithmetic addition/subtraction and can be directly
compared with each other. Parsing the namelist that
specifies various parameters in the simulations can be
easily achieved by the pre-existing package called
F90Nml. The entire MPAS-A dynamical core written in
Fortran can be compiled with the generic F2Py utility
and become accessible in the Python code shown above.

Appendix B

Divergence under the Voronoi mesh

Under the mesh of Voronoi grids, the divergence at the
centre of any given cell is calculated as follows:

r 	 V ¼ 1
A

X
nei

deiV 	 nei ,

where V is the wind vector, A is the area of the
Voronoi cell, dei is the length of the ith edge of a cell
and nei is the unit vector in the normal direction of the

ith edge. When written in Fortran 90, the above
divergence calculation in the MPAS-A dynamic core is
as follows:
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where dvEdge is the distance of a cell edge. As the
divergence is a linear function of the wind variable, the
corresponding calculation of divergence in the TL model
is the same as that in the MPAS-A model:

The corresponding calculation of this part in the
adjoint model is as follows:
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