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ABSTRACT
Hybrid systems have become the state of the art among data assimilation methods. These systems combine
the benefits of two other systems that are traditionally used in operational weather forecasting: an ensemble-
based system and a variational system. One of the most recently proposed hybrid approaches is called hybrid
gain (HG). It obtains the final analysis as a linear combination of two analyses, assuming that the
innovations (i.e. the forecast and the set of observations used) between the two data assimilation methods are
identical. A perfect model experiment was performed using the HG in the SPEEDY model to show a new
methodology to assign different weights to the two analyses, LETKF and 3D-Var in the generation of the
final analysis. Our new approach uses, in the assignment of the weights, the ensemble spread, considered to
be a measure of uncertainty in the LETKF. Thus, it is possible to use the estimation of the uncertainty of
the analysis that the LETKF provides, to determine where the system should give more weight to the
LETKF or the 3D-Var analysis. For this purpose, we define a geographically varying weighting factor alpha,
which multiplies the 3D-Var analysis, as the normalised spread for each variable at each level. Then,
(1-alpha), which decreases with increasing spread, becomes the factor that multiplies the LETKF analysis.
The underlying mechanism of the spread–error relationship is explained using a toy model experiment. The
results are very encouraging: the original HG and the new weighted HG analyses have similar high quality
and are better than both 3D-Var and LETKF. However, the dynamically weighted HG analyses are
significantly more balanced than the original HG analyses are, which has probably contributed to the
consistently improved performance observed in the weighted HG, which increases with time throughout the
5-day forecasts.
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1. Introduction

As the data assimilation (DA) systems become more com-
plex because of the increase in observing datasets and
model resolution, more effort has been focused on reduc-
ing the associated computational costs. Over the past
15 years, hybrid DA methodologies have become more
popular, particularly for use in many operational weather
forecast centres worldwide. Despite its general success,
hybrid DA, from a practical (and mostly operational)
perspective, can become computationally expensive. The
main goal of hybrid DA is to combine two successful DA
approaches: variational and ensemble-based. Hybrid DA
was first proposed in 2000 (Hamill and Snyder 2000) to

create a new covariance matrix based on the two other
matrices: one from the EnKF (ensemble Kalman filter)
and another from 3D-Var. After Hamill and Snyder
(2000) demonstrated that the hybrid analysis was more
accurate than either of the two original analyses, the
same result was seen by other authors using different DA
systems, as Etherton and Bishop (2004), who used the
ETKF (ensemble transform Kalman filter) and 3D-Var
to implement the hybrid DA system. In 2007, Wang et al.
proposed a hybrid DA system through the combination
of the ETKF and optimal interpolation. Zhang et al.
(2009) perform what they called E4D-Var by the combin-
ation of the covariance matrix from EnKF and 4D-Var.
All of these works, with their own details, found that the
hybrid approach presents better results than the�Corresponding author. e-mail: helenabdeazevedo@gmail.com
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variational DA system or the ensemble DA system alone.
Penny (2014) proposed a different approach for the
hybrid system, aiming to reduce the computational load
during the composition of the final analysis, and also
reducing the human load by allowing the hybridisation to
be applied to output files rather than modifying existing
software systems. He called this algorithm hybrid/mean-
LETKF, which belongs to a new class of hybrid DA
methods: the hybrid gain (HG). From now, we will call
the system as HG.

The HG aims to improve an ensemble-based system
through the stability of the variational approach and to
resolve rank deficiency in the ensemble forecast error
covariance matrix that arises when the ensemble size is
insufficient to resolve the growing error modes. Penny
(2014) noted that traditional hybrids begin with a vari-
ational approach and incorporate the ensemble informa-
tion through the ensemble-derived covariance matrix.
Penny (2014) proposed instead an approach that begins
with an EnKF and uses a variational approach to apply
a correction in the model space to stabilise the EnKF.
The specific algorithm proposed by Penny (2014) com-
bines two analyses: one from the ensemble-based system
and the other from the variational approach, which uses
the ensemble analysis mean as the background. Thus, the
final analysis is the result of this linear combination
between two analyses, where the weight (alpha) given to
the 3D-Var is a number between 0 and 1. The results sug-
gest that alpha should be determined empirically, and
that the optimal value depends on the number of ensem-
ble members, observation coverage and localisation
radius. In his study, Penny (2014) used the LETKF (local
ensemble transform Kalman filter) and 3D-Var to imple-
ment the new HG with the Lorenz-96 model
(Lorenz 1996).

The approach of Penny (2014) was tested with an oper-
ational model by Bonavita et al. (2015). The authors used
the ECMWF (European Centre for Medium-Range
Weather Forecasts) operational model combining the
LETKF and the 4D-Var. They notice that that system
was clearly more accurate than either 4D-Var or LETKF,
and comparable to the operational ensemble data assimi-
lation system (EDAS), also a hybrid system. According
to the authors, the HG should be functionally equivalent
to the hybrid B matrix, and they demonstrated some sig-
nificant advantages of this method, such as its easy imple-
mentation. For the ocean, good results were also
obtained by Penny et al. (2015), combining the LETKF
with the NOAA’s operational global ocean data assimila-
tion system (GODAS) (a 3D-Var analysis). The hybrid-
GODAS was implemented at NCEP and reduced the
root mean squared error (RMSE) and biases in the salin-
ity and temperature compared to the 3D-Var and the

LETKF. Most recently, Wespetal (2019) also used the
HG and implemented this DA system in the SPEEDY
model. Wespetal (2019) focused on finding better statis-
tics for the construction of the climatological error
covariance matrix in 3D-Var. Penny (2017) described
how DA can be interpreted as a type of synchronisation
problem. Wespetal (2019) compared the ‘NMC’ method
to a method that used the perturbations of an ensemble
forecast around the ensemble mean as a proxy of the
model forecast error. In the same year, Houtekamer et al.
(2019) implemented this approach in the Canadian
Meteorological Centre (CMC). The authors modified the
HG algorithm to leave half of the members unchanged
and to recentre the other half on the EnVar analysis.
Despite their differences, all these previous studies have
something in common: in addition to using the HG, they
used a fixed parameter as the alpha value. These studies
tested some alpha values: a ¼ 0:0,a ¼ 0:2, a ¼ 0:5 and
a¼ 1.0. When the HG uses a¼ 0.5, it performs the final
analysis using a half of LETKF and the other half of
3D-Var. On the other hand, when it uses a ¼ 0:2, it is
using 80% from LETKF analysis mean and 20% from the
3D-Var. Most of the authors compare their results with
the LETKF and 3D-Var, so, when a¼ 1.0 reflects the
3D-Var and a ¼ 0:0 reflects the pure LETKF. Most
recently, Chang et al. (2020) modified the HG algorithm
to limit the variational correction to the subspace orthog-
onal to the ensemble perturbation subspace without the
use of a hybrid weighting parameter, as the optimisation
of such a parameter is non-trivial.

It is known that the errors in the LETKF are different
from those in 3D-Var. Moreover, they present different
spatial and temporal variabilities. The degree of uncer-
tainty in an EnKF is related to its spread. However, this
information has not yet been explored in the HG system,
as proposed by Penny (2014). The goal of this work is to
test the hypothesis that in any given DA cycle, LETKF
and 3D-Var perform differently in different regions and
that assigning a weight to each DA scheme based on the
ensemble spread (as a proxy of the LETKF uncertainty)
may benefit the hybrid system. We incorporate the
ensemble spread information into the linear combination
through a dynamic fit coefficient, weighing more the
LETKF when it presents a small spread and the opposite
when it presents a large spread. To support this proposed
approach, we first performed a set of experiments using
the Lorenz-96 as a toy model in a LETKF set up. The
error–spread relationship is then assessed in order to
demonstrate that there is a positive correlation between
analysis and forecasts increase/decrease of ensemble
spread and increase/decrease in analysis and forecast
errors, respectively. A set of experiments to test the sensi-
tivity of the alpha parameters are performed (including
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fixed values and the evolving dynamic value). Because
this is a new methodology, a test is also performed to
verify whether the geostrophic balance of the resulting
analysis is within an acceptable range. Furthermore, the
analysis of the HG using fixed optimal weights is com-
pared to the proposed dynamic alpha for 5-day forecasts.
This paper is structured as follows: Section 2 outlines the
methods, including the details of the numerical model
and DA system, the methodology by which the dynamic
parameter is designed and the experimental setup; Section
3 presents the results and their discussion; and the con-
clusions are presented in Section 4.

2. Methodology

2.1. The model

The atmospheric general circulation model used here is the
SPEEDY model (Simplified Parameterisations, primitivE
Equation DYnamics), developed by Molteni (2003). It has
simplified sub-grid scale physics parameterisations that are
computationally efficient. Although it is simplified, it retains
the realistic basic characteristics of state-of-the-art models

with more complex physics. The configuration of the
SPEEDY model used here is the T30L7, which has seven
vertical levels and a horizontal resolution of T30 that corre-
sponds to approximately 200km. This model solves the
primitive equations for five prognostic variables: zonal wind
(u), meridional wind (v), temperature (T), humidity (q) and
sea level pressure (ps). Our perfect model experiment uses
the SPEEDY model to perform the nature run. The nature
run is also used as the ‘truth’ in the evaluation of the differ-
ent experiments. The observations are extracted from the
nature run, and random errors are added to them. Their
spatial distribution is shown in Fig. 1. The observations are
not evenly distributed across the globe, being compatible
with the real distribution of these observations. The dots in
the figure represent profiles of observations at each model
level, not just single observation. They have surface pressure
data, temperature, humidity and wind profiles. The radio-
sonde observations are only from 00Z and 12Z. The AIRS
observations simulate AIRS satellite profiles of temperature
and humidity for each time (00Z, 06Z, 12Z and 18Z).

2.2. The data assimilation system

The HG algorithm used here is the hybrid/mean-LETKF
proposed by Penny (2014) and implemented by Wespetal
(2019) in the SPEEDY model, which under certain condi-
tions is equivalent to forming the combination of gain
matrices. This system solves Equation (1), where xaHG is
the HG final analysis, �xa

LETKF is the analysis mean from
the LETKF, x3D�Var

a is the analysis from the 3D-Var,
which uses the ensemble analysis mean as the back-
ground, a is the coefficient that determines the weight
that each system will have in the final analysis
(0 � a � 1) and is a scalar. Then, the final HG analysis is

xaHG ¼ ð1�aÞ�xa
LETKFþaxa3D�Var (1)

For the variational approach, we use the 3D-Var from
Barker et al. (2004), with a tuned background error climat-
ology for SPEEDY computed from forecast ensemble pertur-
bations, as described in Descombes et al. (2015). A time-series
of 6-h forecast ensembles for training the climatology was
obtained for SPEEDY from independent LETKF assimila-
tions of the synthetic observations, and the climatology vari-
ance for each assimilated model variable was tuned to best
match the SPEEDY nature run. This system aims to solve the
cost function in Equation (2).

JðxaÞ ¼ ðxa��xaÞTB�1ðxa��xaÞ
þ ðy�HðxaÞÞTR�1ðy�HðxaÞÞ (2)

where B is the background error covariance, R is the
observation error covariance, xa is the analysis state that
minimises the cost function, �xa is the state estimate

Fig. 1. Spatial distribution of synthetic observations.
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determined from the ensemble, and y is the observation
vector. The ensemble approach is the LETKF developed
by Hunt et al. (2007), and it has been used with 16 mem-
bers (K¼ 16). The LETKF analysis is calculated accord-
ing to the following equations. ~P

a
is the analysis error

covariance in the ensemble space, and Wa is the weight
for the analysis ensemble that we transform from the
ensemble space back to the model space in Equation (5);
then, the analysis mean is computed as �xa:

~P
a ¼ ðK�1Þ

q
Iþ ðYbÞTR�1ðYbÞ

� ��1

(3)

Wa ¼ ðK�1Þ~Pa
h i1=2

(4)

Xa ¼ XbWa (5)

�wa ¼ ~P
aðYbÞTR�1ðyo��ybÞ (6)

�xa ¼ Xb �wa þ �xb (7)

2.3. Spread–error relationship

In order to demonstrate the underlying hypothesis that
the quality of the analysis and resulting forecasts are dir-
ectly proportional to the respective ensemble spread, we

employ a test model namely Lorenz-96 model (Lorenz
1996) which is a very useful tool to test hypotheses. One
of the advantages is that it is a simple model which we
can be executed multiple times, for many experiments
with relatively minimum computational cost. Penny
(2014) used this model to test the Hybrid/Mean-LETKF
methodology, as well as Ying and Zhang (2015) used the
Lorenz-96 model and the EnSRF to demonstrate that the
adaptive covariance relaxation method can to improve fil-
ter performance with the presence of sampling errors over
a range of severity. Chen and Kalnay (2019) used the
ETKF in the Lorenz-96 model, in order to test the vari-
ous configurations for the proactive quality control.

The numerical codes for the experiments performed in
this study were obtained from the RIKEN International
School on Data Assimilation, on Kobe Japan, during
2018 (http://www.data-assimilation.riken.jp/risda2018).
The Lorenz-96 is described by the following equation

dXi

dt
¼ Xiþ1 � Xi�2ð ÞXiþ1�Xi þ F ,Xi6þ1 ¼ Xi (8)

that simulates the advection, damping and forcing of a
weather variable over a latitude circle where F represents
a constant forcing. In this model, the first term represents

Fig. 2. Time-series (assimilation cycles) of root mean square error (RMSE), in red, and ensemble spread (SPRD), in blue, of Lorenz-
96 analysis (top panel) and forecasts (bottom panel).
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‘advection’ constructed to conserve kinetic energy, the
second is damping, and the third is forcing. The bounda-
ries are cyclic.

A perfect model experiment is conducted as follows:
firstly a ‘truth’ or ‘nature’ run (i.e. the true evolution of the
system) is performed using the Lorenz-96 model with n¼ 40
grids, from where a set of observations is selected randomly.
Secondly, we assimilate the observations using a 30 mem-
bers LETKF starting from an arbitrary state of the system
and finally, the set of initial conditions produced in the pre-
vious step are used to run the ensemble forecasts.

Figure 2 shows the temporal series of the RMSE and
ensemble spread (SPRD) of the analysis (top panel) and
forecasts (bottom panel) after spin-up time of approxi-
mately 50 time cycles.

In order to determine whether the hypothesis that the
larger the ensemble spread the higher the resulting errors
in the analysis and therefore lower confidence in the
EnKF performance, the following steps were taken:

i. the first 200 steps were removed to account for mode
spin-up;

ii. the remaining 600 RMSE values of analysis/forecasts
were rearranged in ascending order;

iii. a new series of SPRD of analysis/forecasts values
was created, indexed based on the corresponding
RMSE values.

Hence, for each of the 40 points from the Lorenz-
96DA experiments, pairs of RMSE/SPRD were created,
indexed by the increasing ordering of the SPRD values
for both analysis and forecasts. Figure 3 shows the reor-
dered values of SPRD and RMSE from a single point
from the DA experiments. There is a small ascend in the
RMSE before around 400 points followed by a steep
ascend afterwards. The SPRD curve follows the growth
of RMSE but at a lower rate with a positive correlation
coefficient of around 0.53 for both analysis and forecasts.
Two separate linear fit lines (blue dashes) were included
to better illustrate the small and steep parts in the curve
growth. The same procedure was applied to all 40 points
with very similar behaviour of the spread–error relation-
ship, resulting in an averaged 0.51 correlation coefficient.
The positive correlation coefficients for both analysis and
forecasts implied that both the analysis and the forecasts
are worse when the spread is larger. So, the more accur-
ate, the more confidence in the LETKF. The less accur-
ate, the larger the spread, which makes the LETKF less

Fig. 3. Lorenz-96 LETKF analysis spread (SPRD) indexed by analysis error (RMSE) sorted from low to high values. Linear
regression lines (dashed lines) show the small and steep growth rate of analysis spread as a function of analysis error growth (top panel).
The spread–error relationship in the forecasts (bottom panel) shows similar results compared to the analysis error–spread relationship.
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reliable, and the 3D-Var more robust. Similar logic as
also being stated in previous studies such as Houtekamer
and Zhang (2016).

2.4. Dynamic alpha

The main purpose of a hybrid system is to combine two
different systems, typically a variational system and an
ensemble-based system. Thus, the dynamic fit coefficient
(dynamic alpha) proposed here aims to use the extra
information from the LETKF to assign different weights
to each system in the HG linear combination. The
LETKF spread was selected because it contains informa-
tion associated with the degree of uncertainty in the
mean state estimate. The proposal here is to better utilise
spatially and temporally dependent information provided
by LETKF via the ensemble spread. Thus, this work pro-
poses replacing the fixed alpha (a scalar) from Equation
(1) with a dynamic alpha (an evolving three-dimensional
field), which is adjusted at each analysis step. This adjust-
ment results in horizontally and vertically distributed

weighting coefficient for each state variable, at each ana-
lysis time, instead of a single constant value for all varia-
bles in time and space. The dynamic alpha is obtained by
normalising the ensemble spread fields from each variable
(u, v, T, q and ps), at each model level (i.e. alpha values
ranging from 0 to 1) and applying those normalised fields
in Equation (1). To obtain the alpha parameter we first
calculate the standard deviation rxijl of the ensemble
members element-by-element (Equation 9). Next, the min-
imum and maximum values of the standard deviation are
calculated over all i, j grid points. Then the alpha param-
eter is computed by normalising rxijl at each grid point i,
j and level l (Equation 10).

rxijl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
K

XK
k¼1

ðXa
ijlÞk�ð�xa

ijlÞ
h i2

vuut (9)

axijl ¼
rxijl�minðrxij Þl

maxðrxij Þl �minðrxij Þl
(10)

Unlike the weight in the traditional hybrid approach
expressed as a constant scalar, the proposed dynamic
alpha weight becomes now a time-varying three-dimen-
sional tensor as shown in Equations (9) and (10).

Figure 4 shows the dynamic alpha field (top) and the
ensemble spread field (bottom) for the sea level pressure
(ps), which was normalised to become the dynamic alpha,
for the last day of the experiments (February 28, at 18Z).
This figure shows an example of how the dynamic alpha
works for one analyses step and for one model variable.
This process is performed for the five model variables (u,
v, T, q and ps) using their own spread, across the seven
levels, which is exemplified in Fig. 5. In Fig. 5, we can
see the vertical structure of the dynamic alpha (top) and
ensemble spread (bottom), similar to the last figure, but
for temperature (T). The cross-section was obtained at
45�S latitude. This latitude was chosen because we have
the highest values of spread there and, consequently, the
largest alpha values. The dynamic alpha follows the same
pattern as the ensemble spread. When the spread is large
more of the information from the 3D-Var is used,
whereas when the spread is small more information from
the LETKF is used.

According to Houtekamer and Zhang (2016), when a
small ensemble size is used and it has the largest spread,
the analysis quality will be low. Thus, the dynamic alpha
is smaller the spread. If the spread is small, the dynamic
alpha favours the LETKF analysis rather than the 3D-
Var solution, which is less accurate.

In Fig. 6, we have an example of the mean (top) and
standard deviation (bottom) of the alpha throughout the
period of this study for the sea level pressure. The mean
shows the regions that use more LETKF or more 3D-
Var. A bluer colour indicates that more LETKF was

Fig. 4. Horizontal structure of the dynamic alpha (top) and
spread (bottom) of the sea level pressure (ps) on February 28
at 18Z.
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used in the analysis (alpha is close to zero), and a redder
colour indicates more 3D-Var was used (alpha is close to
one). In the regions where we have frequent transient sys-
tems, a large spread is common, and the HG with the
alpha parameter gives more weight to 3D-Var.
Comparing Fig. 1 and Fig. 6, it is clear that regions with
a lack of observations, such as the oceans and the
Southern Hemisphere, have a larger uncertainty than
regions with better observational coverage. The standard
deviation (bottom) shows how the alpha changed over
these 3months. This variation is very small; in this
example, the maximum change in alpha compared to the
mean was approximately 0.2.

2.5. Experimental setup

The experiments were performed during the boreal win-
ter, simulated from 1 November 1982 to the end of
February 1983. It should be noted that these are model
simulated years and do not correspond to real years. To

reduce the spin-up problems, only the trimester of
December, January and February was evaluated. Eight
experiments were performed using the SPEEDY model.
First, five experiments using fixed alpha were run to esti-
mate the best performing value of alpha. The tested alpha
values were 0.1, 0.3, 0.5, 0.7 and 0.9. Then, two additional
experiments using only the LETKF and only 3D-Var were
performed for comparison. Finally, an experiment using the
dynamic alpha (DYN) was performed. We evaluated the
analyses and forecasts (120h) computing their RMSE
against the nature run, taken as truth.

3. Results

3.1. Assessment of 3D-Var and LETKF
performances

In this section, we evaluate the performance of LETKF and
3D-Var separately. Table 1 shows the RMSE values of
these two experiments for seven levels and four variables:
pressure, temperature and wind components (u and v) over
the globe. Table 1 shows the performance of both systems
in the analysis. One can see that the LETKF is always bet-
ter than 3D-Var, having the smallest errors at all levels and
for all variables. These results are repeated when the regions
are separated as hemispheres (we defined the Southern
Hemisphere as the area between 80�S and 20�S and the
Northern Hemisphere as the area between 20�N and 80�N)
and tropics (defined as the area between 20�S and 20�N)
(tables not shown). These results corroborate the results of
Yang et al. (2009), who compared the LETKF and 3D-Var
in a perfect model experiment. We believe that LETKF per-
forms better than 3D-Var because of the combination of
two effects: flow-dependent perturbation structures related
to the errors of the day and ensemble averaging.

3.2. Analyses

This section aims to approximate the best case perform-
ance for a fixed value of alpha and compare it with the
dynamic alpha. Thus, five experiments were performed
with fixed alphas of 0.1, 0.3, 0.5, 0.7 and 0.9. The mean
RMSE of the analysis for the vertical temperature profile,
vertical humidity profile over the globe (on the top), and
vertical u and v wind component profiles over the tropics
(on the bottom) are shown in Fig. 7.

One can clearly see that a¼ 0.1 often showed the best
results, whereas a ¼ 0:9 showed the worst. Based on this
result, when we use the HG, the error increases the more
3D-Var is used, and the error decreases the more LETKF
is used. However, compared with the experiment using
only the LETKF, the combination with the 3D-Var led
to improved results. a¼ 0.1 (green dashed line) and a¼ 0.3

Fig. 5. Vertical structure of the dynamic alpha (top) and
spread (bottom) of temperature (T) at the latitude 45�S on
February 28 at 18Z.
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(blue dashed line) yielded better results than LETKF alone.
It is noticeable that these results generally agree with the
experiments conducted by Penny (2014) for the Lorenz-96
system, where the sensitivity of the system to the number of
observations and ensemble members was tested and the
accuracy decreased as alpha values increased. It implies
(also supported by Fig. 1) that the current study is using a
regime with sufficient observation coverage as well as
ensemble size. Since for the cases we tested, larger weighting
towards LETKF produced improved results except for the
case of using only LETKF (a¼ 0), we further tested cases
with alpha neighbouring 0.1. Both cases (a¼ 0.05 and
a¼ 0.15) produced larger errors, thus indicating that the
optimal value of alpha is likely in the interval between
a¼ 0.05 and a¼ 0.15.

3.3. Balance of the system

The DA process is known to introduce some imbalance
into the numerical forecasts, and the success of the initial

conditions depends on how well balanced the control var-
iables are with respect to the applied dynamics and phys-
ics parameterisation. Greybush et al. (2011) used a series
of metrics to assess the imbalance of their experiments in
the SPEEDY model. Thus, this section shows the results
following Greybush et al. (2011).

Figure 8 shows the mean absolute wind error at
500 hPa. The x-axis indicates the experiments: dynamic
alpha (DYN), a ¼ 0:1, a ¼ 0:3,a ¼ 0:5, a ¼ 0:7, a ¼ 0:9,
LETKF, and 3D-Var. The DYN has the lowest error for
both hemispheres.

Figure 9 is the mean ageostrophic wind at 500 hPa for
the Northern Hemisphere (top) and Southern Hemisphere
(bottom). The x-axis shows the same experiments as in
Fig. 8. The y-axis shows the values of the ageostrophic
wind in m/s. The red line is the value of the nature run,
which was used as the ‘truth’ state. Because the ageo-
strophic wind is a residual wind, we expected values close
to zero. According to Greybush et al. (2011), when the
imbalance of the analyses is larger than that in the true
state, the DA is introducing an imbalance into the sys-
tem. Thus, when the dynamic alpha is used, less imbal-
ance is introduced in both hemispheres.

3.4. Forecasts

Five-day forecasts were performed to compare the experi-
ments using a¼ 0.1 and dynamic alpha. The results show
that in most cases, the experiment using a dynamic alpha
had better performance. Figure 10 shows the RMSE of
the temperature, humidity, wind components (u and v) at
level 4 (approximately 500 hPa) and sea level pressure
over the globe during 120 h of forecast. These experi-
ments were compared against the nature run. The
dynamic alpha had better performance than even a¼ 0.1,
as observed for most of the variables and levels.

The wind component does not follow a constant pat-
tern. The dynamic alpha begins worse than a¼ 0.1 but
this pattern changes during the forecast. This case occurs

Fig. 6. Mean (top) and standard deviation (bottom) of alpha of
the sea level pressure for the entire period of this study
(December, January and February).

Table 1. Mean RMSE of pressure (ps), temperature (T) and
wind components (u and v) over the globe in seven levels of
the model.

ps T u v

EKF VAR EKF VAR EKF VAR EKF VAR

1 28.5 45.8 0.13 0.20 0.40 0.67 0.40 0.71
2 0.15 0.24 0.42 0.73 0.40 0.74
3 0.17 0.28 0.46 0.80 0.44 0.82
4 0.23 0.36 0.61 1.08 0.60 1.13
5 0.24 0.38 0.80 1.46 0.83 1.54
6 0.26 0.42 0.81 1.66 0.83 1.66
7 0.27 0.47 0.36 0.78 0.36 0.83
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in the first and last levels of the model (not shown). In
levels 2 and 3, the same occurred for the v component, as
observed in level 5 for the u component. In level 6, the
dynamic alpha is always better than a¼ 0.1.

For the sea level pressure, we can see that in the analy-
ses the a¼ 0.1 is better. During the first forecast hours,
both experiments had very close errors and, after 24 h,
the dynamic alpha presented the smallest errors. These
figures also suggest that the dynamic alpha has better
skill beyond 5 days (for a perfect model).

4. Summary and conclusions

In this study, a three-dimensional parameter (‘alpha’ par-
ameter) based on the LETKF ensemble spread was pro-
posed as the weighting factor for the HG DA system
(Penny 2014). The new suggested alpha was calculated
based on the LETKF spread, in contrast to other hybrid
methodologies that use a constant single value.
Therefore, the dynamic alpha enables the combination of
two hybrid components (LETKF and 3D-Var) to follow
a spatial and vertical structure according to the uncertain-
ties in the model ensemble, which is adjusted at each ana-
lysis step.

To test this new Weighting Factor HG methodology,
the SPEEDY model was tested in LETKF and 3D-Var
frameworks. The analyses and forecasts (up to 120 h)
were evaluated for 3-month experiments (December,
January and February), as was the effect that the
dynamic alpha has on the system’s stability.

In order to support the computation of the HG based
on the positive correlation between the analysis error and
ensemble spread, we performed an experiment to assess
the spread–error relationship in the LETKF using a sim-
ple toy model (Lorenz-96). The results showed that there
is on average more than 0.5 correlation coefficient
between analysis and forecast errors and respective
ensemble spreads.

A set of experiments was conducted to find the optimal
value of alpha to compare the results with the dynamic
alpha. The optimal value was estimated to be in the inter-
val between a¼ 0.05 and a¼ 0.15, in agreement with the
experience that 3D-Var being less accurate than the
LETKF. In the analyses (Fig. 7), we can see that for glo-
bal temperature and for humidity, a¼ 0.1 shows the
smallest error, whereas for the wind components in the
tropics, the dynamic alpha was competitive with a¼ 0.1.
However, comparing the results in the 120-h forecasts
using these alpha values, we can see that using the a¼ 0.1
was worse. One of the hypotheses for the good results in
the forecast is that the dynamic alpha has better-balanced
analyses than do the constant alphas (as shown in Figs. 8
and 9). In other words, the use of the information

obtained from the ensemble spread helps to reduce the
imbalance between the EnKF and 3D-Var systems. The
reason for the stability of the analyses using the dynamic
alpha compared to that using the constant alpha is that
we are essentially smoothing the analysis. This smoothing
effect results in preventing large analysis increments from
occurring next to much smaller increments. Such an end
effect requires further investigation. Additionally, this
study presents a methodology that permits to identify
geospatially varying values of alpha that give near-opti-
mal results without any necessary tuning.

In this particular study, the results show that the
ensemble size of 16 is sufficient for the degrees of free-
dom in the present SPEEDY model configuration.
Nevertheless, a proper sensitivity analysis based on test-
ing different ensemble sizes to explore specific situations

Fig. 7. Mean absolute wind error (500hPa) in m/s for the eight
experiments: dynamic alpha, a¼0:1,a¼0:3,a¼0:5,a¼0:7,a¼0:9,
LETKF and 3D-Var for the (red) Southern Hemisphere and (blue)
Northern Hemisphere.
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where the ensemble spread may not represent the system
uncertainty is recommended for future studies.

The success of this perfect model experiment does not
guarantee success with all atmospheric global models.
Thus, we plan to test this hypothesis in more complex
global models.
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