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ABSTRACT
A variety of drought monitoring tools are being used for early warning systems and formulating drought
mitigation policies. Standardized Drought Indices (SDI) are the most commonly used. However, the use of
SDI at multiple stations located in a homogenous climatic region with internally similar characteristics and
contagious in space arises several problems due to spatial and temporal behaviour in data preliminaries.
Therefore, a comprehensive procedure is required to accumulate information coming from multiple stations.
In this paper, we proposed a new procedure for regional drought monitoring: the Spatially Weighted
Accumulated Drought Index (SWADI). The potential of the proposed procedure is based on steady-state
probabilities, which were used as a weighting scheme for the prospective of accumulating information from
different stations. We employed the proposed procedure on six meteorological stations of the Northern areas
of Pakistan. The performance of the proposed procedure is observed based on three commonly used drought
indices at a one-month time scale. This research provides a basis for the development and enhancement of
drought hazards’ characterization, motivates researchers and policymakers to use the accurate and more
representative temporal characterization of drought hazard in a specific homogenous climatic region.

Keywords: meteorological stations, Standardized Drought Indices (SDI), Markov chain, steady-state
probabilities

1. Introduction

Drought is the most ambiguous and least understood of
all-natural hazards, affecting more people than any other
hazard (Hagman et al., 1984). It is one of the most per-
tinent natural disasters and becomes a severe threat to
policymakers and mitigation management (G€uneralp
et al. 2015). Due to being a complex, challenging to
monitor and its recurrence for the past several decades,
various studies focused on the consequences of drought
and incompetence of the many societies to efficiently
mitigate impacts in the short-run and minimize suscepti-
bility in the longer-term (McCarthy et al., 2001).

Vulnerability to drought is growing, and it is affecting
most parts of the world in several ways, such as signifi-
cant effect on the economy (Wang et al., 2020), influences
in hydrological energy (Conway et al., 2017), reduce agri-
culture production due to scarcity in rainfall (Agnoletti
et al., 2019).

The accurate monitoring of drought at the regional
level makes a positive impact on the countries’ stability
and economy (Parsons et al., 2019). However, accurate
estimation of drought indices requires long-term records
of regionally representative gauge stations for regional
drought forecasting and early warning about future
drought. It has been attempted to improve the level of
preparation for drought by building better early warning
systems and adopting drought policies, response and
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mitigation plans for the regional and national level
(Gerber & Mirzabaev, 2017). For these policies and
drought monitoring, the characterization of drought is
often measured by standardized procedures that are
developed for improving the classification accuracy
(Bezdan et al., 2019). Several studies provide various
Standardized Drought Indices (SDI) (Erhardt and Czado,
2018), such as the Standardized Precipitation Index (SPI)
(McKee et al., 1993), Reconnaissance Drought Index
(RDI) (Tsakiris et al., 2007), Standardized Precipitation
Evapotranspiration Index (SPEI) (Vicente-Serrano et al.,
2010a, 2010b) and Standardized Precipitation
Temperature Index (SPTI) (Ali et al., 2017).

Moreover, Svoboda and Fuchs (2016) provide a com-
prehensive list of corresponding parameters for the above
indices. The uncertainty about accurate drought charac-
terization under different procedures always exists
because of the subjective approach of selecting the prob-
ability distribution, error in distribution, geographical
characteristics and parameter used in each index (Stagge
et al., 2015). Therefore, for a better understanding and
mitigation policies for drought, specifically at a regional
level, it is essential to discover such strategies that help
researchers, data analysts and policymakers to use the
precise and more representative temporal characterization
of drought hazard in a specific region.

The regional identification of drought can be made for a
specific region by using drought monitoring tools at mul-
tiple gauge stations. The various gauge stations located in
a homogenous climatic area cause several problems in data
analysis and re-analysis. Usually, the unsuitable presence
of gauge stations distributed over the region without any
complete drought monitoring framework can be complied
with misleading conclusions. Furthermore, the spatial pat-
tern in drought is quite complicated. It is widespread that
one area has a wet condition, while nearby is a dry condi-
tion; thus, complexity in spatiotemporal characteristics of
drought data gives inaccurate information for drought
monitoring and analysis.

Further, such kind of problems are discussed in the lit-
erature for several countries as Nigeria (Oladipo, 1995),
Turkey (Umran Komuscu, 1999), Canada (Nkemdirim &
Weber, 1999), England (Fowler & Kilsby, 2002) and
Spain (Rozas et al., 2015). Recently, several authors
worked to define and assess the homogenous climatic
region (Santos et al., 2011). An analysis at the regional
level becomes chaotic due to multiple factors involved in
it (Vicente-Serrano et al., 2010a, 2010b). The existence of
these factors depends on the climatic parameters, choice
of the stations and historical accessibility of data on the
environment. Thus, capturing spatial and temporal
behaviour in drought phenomenon and trends of the
region positively effects on efficient drought monitoring

(Livada & Assimakopoulos, 2007). Therefore, a compre-
hensive procedure is required to accumulate information
coming from multiple sources.

In this study, we aimed to develop a new drought
assessment procedure for regional drought monitoring:
the Spatially Weighted Accumulated Drought Index
(SWADI). We applied the proposed procedure on six
meteorological stations considered as a cluster in the
Northern areas of Pakistan at a one-month time scale
(scale-1). We also applied it with commonly used regional
classification and categorization drought indices, the SPI,
SPEI and SPTI.

2. Methods

2.1. Standardized Drought Index (SDI)

SDI is the most frequently used tool for drought moni-
toring. Characterization of droughts depending upon the
type of drought based on SDI requires time-series data
for a particular variable or group of variables. This study
incorporates three SDI, namely, SPI, SPEI and SPTI. A
brief explanation for each index is as follows:

A drought index is called SPI, developed by McKee et al.
(1993), based on over a long period precipitation records to
compute the precipitation scarcity for different time scales
of the single monitoring station. In SPI, monthly cumula-
tive precipitation time-series data is used to normalize the
suitable probability distributions to estimate the quantita-
tive values. Positive and negative SPI values indicate greater
than or less than median precipitation, respectively. The
main criticism of SPI is that it is based on one variable data
and does not consider the effect of another variable such as
temperature, evapotranspiration, wind speed, etc. Parallel
to this (McKee et al., 1993; Vicente-Serrano et al., 2010a,
2010b), a new drought index was proposed, called SPEI,
based on climatic data such as precipitation and tempera-
ture. In this index, calculation and mathematical formula-
tion are quite the same as for SPI, also called the water
balance model. One significant advantage observed in SPEI
over SPI is that it comprises the influence of the evapor-
ation in the domain. The mathematical structure of repre-
senting the water balance equation on which SPEI is based
can be written as (see Equation (1)):

Di ¼ Pi � PETi (1)

where in Di is the moisture deficit at the month i, denot-
ing the difference between the Pi and PETi and the total
monthly amount of precipitation is denoted by Pi while
the estimated amount of Potential Evapotranspiration
(PET) is denoted by PETi: In SPEI, the estimated value
of PET is used for calculation instead of actual evapor-
ation, which leads to one of the drawbacks of this
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drought index. Like SPI and SPEI, Ali et al. (2017) pro-
posed the multiscalar drought index, SPTI, to character-
ize drought in both cold and hot climate regions. There is
no mathematical contention in the SPTI mechanism. The
procedure for SPTI estimation can be described in two
steps as follows. In step one, for each selected station, a
De Marton Aridity Index (DAI) is evaluated by utilizing
total precipitation of the month and monthly average
temperature by the following equation:

DAIi ¼ Pi

10þ Ti
(2)

Where De Marton Aridity Index is denoted by DAIi
and Pi is the total monthly precipitation and Ti denotes
the mean monthly temperature. In the second step, we
use appropriate probability distributions for its standard-
ization; for a detailed description see Ali et al. (2017).

2.2. Markov chain and steady-states probabilities

A stochastic process is a collection of random variables
indexed by time (Keizer, 1987). The functional accessibility
for the stochastic process in discrete-time and continuous-
time is described in Chattopadhyay et al. (2012). When the
state space is continuous, it is called a Markov process
regardless of whether the parameter (or time) is discrete or
continuous, and when the Markov process is discrete-valued
(i.e. discrete state space) it will be called a Markov chain.
The availability of Markov chains is reasonably common
and relatively simple (Aggoun and Elliott, 1995; Srikanthan
and McMahon, 2001). Further, the detailed information
about the Markov chain is given in H€aggstr€om (2002).

The Markov process primarily consists of a group of
transitions measured by some probability distributions
that satisfy the interesting mathematical properties, for
example, the subsequent event is independent of each
other (Klein et al., 1984). The results are calculated and
interpreted under these properties accordingly. One of the
essential properties of the Markov models is ‘memoryless’,
which just means that the dependence of the next state
only on the current state (where the experiment is being
performed), not on the sequence of states before that
(Andersen and Goodman, 1957).

Moreover, the system does not need to remain in one
condition; it will keep moving from one state to another
state in future periods. However, the average probability
of moving from one state to another state for all periods
will remain constant in the long run. The average proba-
bilities that the system will be in a particular state after
many transition periods are called steady-state probabil-
ities. In a Markov process, the probabilities will approach
a steady-state after several periods have been passed. The
steady-state probabilities can be formalized as:

pi ¼ lim
t!1 piðtÞ (3)

where in Equation (3) pi indicates the steady-state prob-
abilities, and t denotes the time of the process.

Further, a detailed mathematical description of the
steady-state probabilities of the Markov chain is available
in Stewart (2009). In this research, we collected informa-
tion from various stations by using the long-term behav-
iour of the drought classes from different stations of the
region on the one-month time scale. In the proposed pro-
cedure, steady-state probabilities are used as weights to
accumulate information from varying stations.

3. The proposed procedure for categorization
of drought

Before discussing the four phases of our procedure, we
need to define the region and meteorological stations (see
Figure 1). Details are as follows:

1. Identifying region: This step decides a specific region
that is being assimilated for regional drought
monitoring. The suitable selection of region for
drought monitoring is a crucial step that will
strengthen province or country-level strategies for
drought mitigation. It will also be helpful for
competent and proficient drought monitoring.

2. Identifying meteorological stations: Once we have
selected any significant region for study, then in the
second step, it requires an appropriate choice for
meteorological stations/monitoring stations existing in
the specific region. We know that comprehensive
climatic information has a significant role in
statistical inferences and drought analysis. Along
these lines, the meteorological stations, which have
influences for statistical inference and observed as
rich drought monitoring history (Jamro et al., 2019),
are chosen for the study. After describing the above
two points, the proposed framework’s structure will
be executed in four phases. The following subsections
have an inclusive description.

Here, we will discuss the four phases of our proposed
procedure that is based on the accumulative information
coming from multiple sources to use the accurate and
more representative temporal characterization of drought
hazard in a specific region (see Figure 2).

3.1. Phase 1: the choice of drought indices

This phase involves in choice of drought indicator from
the list of all available drought indicators of the SDI pro-
cedure. The various drought indicators are described in
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the standardized procedure (see Svoboda and Fuchs,
2016). In Section 2, we have briefly discussed a summary
of various SDI indicators and their applications. The
selection of climatic parameters and the time scale to esti-
mate multiscalar drought indices are the primary concern
in this phase. Subject to nature, depending on climatic,
tropical status and soil type, several climatic parameters
such as temperature, precipitation, solar radiation,
humidity, etc., are required for various drought indices.
Hence, to precise and reliable drought monitoring, the
optimized choice of drought indices and their estimation
procedure can be meaningful. Specifically, this step
includes in-depth information about the following issues:

� The recognition of the accessibility of the time-series
data on the climatic parameters and nature of the
gauging station.

� The suitable choice of multiscalar drought indicator
(i.e. SPI, SPEI, SPTI) can be made with the avail-
able data.

� Selection of specific time scale. In this step, the
appropriate time scale is being selected for multisca-
lar drought indices. For instance, short time scales
are proposed for meteorological (Guttman, 1998). In
contrast, monitoring agricultural and hydrological
drought is specified with a longer time scale (Gidey
et al., 2018).

Fig. 1. Flow chart of the proposed procedure.
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3.2. Phase 2: standardization of indices

This phase is related to the standardization of indices
after the selection of drought indicators. The next step is
to standardize values using suitable methods of estima-
tion. Let DAIi 2 (Pi , Di, DAIi ) be a time-series data
of each station, then the candidacy of appropriate prob-
ability distribution will be considered for standardization.
In this work, more specifically, 32 most frequently used
probability distributions were applied to perceive the
most suitable probability distribution. The list of these
distributions is available in propagate (Spiess, 2014) pack-
age of R. The well-fitted distribution is selected for each
station’s time series based on minimum values of Akaike
Information Criteria (AIC) and Bayesian Information
Criteria (BIC). Further, the mathematical description for
standardization by Cumulative Distribution Function
(CDF) of well-fitted distribution is described in Thom
(1966) and Naresh Kumar et al. (2009).

3.3. Phase 3: steady-state probabilities for
considering drought classes

Markov chain details about steady states and their appli-
cation are given in Section 2.2. For our proposed proced-
ure, this phase considers the classification of drought
classes using steady-state probabilities as a weighting
scheme. This weighting scheme is applied on varying
scales of SPI, SPEI and SPTI index for six stations that
were selected for the study. Consider, in general, S1, S2,
S3, … . Sn be the drought classification states of SDI
type processes (in our cases, we have considered seven
drought classes, see Table 2). Further, we have contem-
plated qualitative time-series data of drought classes as a
discrete Markov process for SDI (i.e. SPI, SPEI and
SPTI). The time-series data of various drought classes are
given in Table 2, weighted by steady-state probabilities.
The steady-state probability vector of the process for SDI
can be defined for classes of Extremely Dry (ED),

Fig. 2. Geographical locations of the six selected stations of the Northern area of Pakistan.
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Severely Dry (SD), Median Dry (MD), Normal Dry
(ND), Median Wet (MW), Severely Wet (SW) and
Extremely Wet (EW) with their probabilities in the long
run xij, yij, zij as follows:

ED SD MD ND MW SW EW

Steady� state probabilities for SPI ¼ x11 x21 x31 x41 x51 x61 x71
� �

ED SD MD ND MW SW EW

Steady� state probabilities for SPEI ¼ y11 y21 y31 y41 y51 y61 y71
� �

ED SD MD ND MW SW EW

Steady� state probabilities for SPTI ¼ z11 z21 z31 z41 z51 z61 z71
� �

We have proposed steady-state probabilities as weights
in accumulation criterion. The theory and application of
steady-state probabilities are described in Section 2.2
accordingly; hence, the limiting probability of each state
in each index is 1 � 7-row vector denoted by the follow-
ing expressions:

Y
i

SPIð Þ ¼
Y
1

EDSPIð Þ
Y
2

ðSDSPIÞ
Y
3

ðMDSPIÞ
�

Y
4

NDSPIð Þ
Y
5

ðMWSPIÞ
Y
6

SWSPIð Þ
Y
7

ðEWSPIÞ
�

(4)Y
i

ðSPEIÞ ¼
Y
1

EDSPEIð Þ
Y
2

ðSDSPEIÞ
Y
3

ðMDSPEIÞ
�

Y
4

NDSPEIð Þ
Y
5

ðMWSPEIÞ
Y
6

SWSPEIð Þ
Y
7

ðEWSPEIÞ
�

(5)Y
i

ðSPTIÞ ¼
Y
1

EDSPTIð Þ
Y
2

ðSDSPTIÞ
Y
3

ðMDSPTIÞ
�

Y
4

NDSPTIð Þ
Y
5

ðMWSPTIÞ
Y
6

SWSPTIð Þ
Y
7

ðEWSPTIÞ�

(6)

These vectors (steady-state probabilities) are the long-
term behaviour of drought classes (states), and these proba-
bilities are used as weights for each drought class. Further,
the steady-state probabilities corresponding to the drought
classes define the visit of the drought class in the long run.
For example, the visits of the particular classes in the long
run in the SPI index can be observed from Equation (4).

3.4. Phase 4: the SWADI by using a weighting
scheme for accumulating information

The vector of the stationary spreading of drought classes
can be signified by

Q
iðSPIÞ,

Q
iðSPEIÞ,

Q
iðSPTIÞ: These

vectors designate the proportion or averaged long-term
probabilities of drought classes in each index for all selected
stations. It means that the visit of a particular drought class
in the long term can be identified by the steady-state prob-
ability of drought class corresponding to the drought index.
Hence, to accumulate the decisions and to adjust the
inaccurate determination of drought classes, this study pro-
poses a procedure that considers only those drought classes
which take a more considerable value of the corresponding
probabilities. The mathematical form for the proposed pro-
cedure is presented for SPI index at scale-1 for selected sta-
tions named as Astore, Bunji, Gupis, Chilas, Gilgit, and
Skardu as follows:

SWADI ¼

SPI Astore if
Q

i Astoreð Þ> Q
i Bunjið Þ >

Q
i Gupisð Þ >

Q
i Chilasð Þ> Q

i ðGilgitÞ>
Q

i Skarduð Þ
SPI Bunji if

Q
i Bunjið Þ> Q

i Gupisð Þ >
Q

i Chilasð Þ> Q
i Gilgitð Þ >

Q
i Skarduð Þ

SPI Gupis if
Q

i Gupisð Þ> Q
i Chilasð Þ >

Q
i ðGilgitÞ >

Q
i Skarduð Þ

SPI Chilas if
Q

i ðChilasÞ >
Q

i Gilgitð Þ >
Q

i Skarduð Þ
SPI Gilgit if

Q
i Gilgitð Þ >

Q
i Skarduð Þ

SPI Skardu , otherwise ð7Þ

8>>>>>>>>><
>>>>>>>>>:

Table 1. The climatology characteristics during the period
1971–2017 of six selected stations.

Variable Station Mean
1st

Quartile Median
3rd

Quartile Kurtosis St.Dev

Precipitation Astore 40.91 10.80 25.70 52.63 3.01 41.93
Bunji 14.34 1.30 7.10 17.10 7.67 18.90
Gupis 16.85 0.00 5.70 19.38 14.05 30.21
Chilas 16.76 0.95 7.00 19.33 9.02 23.53
Gilgit 12.42 1.10 6.05 14.73 10.08 16.57
Skardu 20.63 2.30 9.10 26.75 5.70 25.90

Maximum
temperature

Astore 16.66 7.38 16.70 23.86 �1.36 8.65
Bunji 25.19 15.78 24.95 32.03 �1.32 8.98
Gupis 19.95 10.33 19.70 27.40 �1.30 9.46
Chilas 27.92 17.68 27.35 35.63 �1.38 9.66
Gilgit 25.46 15.60 25.15 32.80 �1.33 9.21
Skardu 19.92 9.95 20.05 27.90 �1.24 9.82

Minimum
temperature

Astore 4.34 �2.43 4.30 10.70 �1.22 7.48
Bunji 11.86 3.78 11.50 17.70 �1.24 7.80
Gupis 6.74 �1.10 6.90 13.33 �1.26 8.06
Chilas 15.14 5.68 14.30 23.20 �1.41 9.08
Gilgit 8.07 0.60 7.75 13.53 �1.24 7.30
Skardu 5.06 �2.73 5.55 11.80 �1.17 8.36
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The interpretation of the proposed procedure is
straightforward; to avoid complexity in mathematical
equations, we presented it only for SPI for selected sta-
tions at scale-1. Equation (7) comprises six stations of an
index SPI at scale-1. In this situation, at a time scale-1 in
SPI, probably every station may have different drought
classes. For example, Astore station has a SW condition,
Bunji has ND, Gupis has SW while Chilas, Gilgit and
Skardu have SD, ED and ND, respectively. For this scen-
ario, the classes in each index (SPI, SPEI and SPTI) at
different time scales were weighted by transient probabil-
ities and steady-state probabilities (Ali et al., 2019, 2020).

Table 2. An initial classification of drought categories based on
the values of the SDI.

SDI Major drought classes

SDI <¼ �2 Extremely Dry (ED)
SDI > �2 & SDI <¼ �1.5 Severely Dry (SD)
SDI > �1.5 & SDI <¼ �1 Median Dry (MD)
SDI > �1 & SDI <¼ 1 Normal Dry (ND)
SDI > 1 & SDI <¼ 1.5 Median Wet (MW)
SDI > 1.5 & SDI <¼ 2 Severely Wet (SW)
SDI > 2 Extremely Wet (EW)

Table 3. BIC of selected probability distributions for SPI, SPEI and SPTI on six stations at scale-1.

Astore Bunji Gupis

Distribution SPI SPEI SPTI SPI SPEI SPTI SPI SPEI SPTI

3P Weibull �1036.51 �700.54 �483.52 �1030.98 �1178.06 �188.45 �735.14 �910.74 �370.40
Trapezoidal �940.42 �710.05 �354.12 �712.78 �1224.00 �151.71 �531.57 �946.94 �318.90
4P Beta �1031.38 �700.28 �473.37 �1020.69 �1210.97 �74.24 �788.07 �823.15 �374.23
Johnson SB �945.13 �685.96 �358.76 �664.59 �1248.43 �148.56 �535.96 �977.69 �273.65

Chilas Gilgit Skardu

Distribution SPI SPEI SPTI SPI SPEI SPTI SPI SPEI SPTI

Johnson SU �399.83 �489.81 �217.79 �720.24 �1015.98 �107.79 �499.83 �528.99 �590.05
3P Weibull �800.23 �488.05 �275.42 �1097.48 �1016.34 �164.62 �735.12 �640.78 �516.57
4P Beta �805.61 �574.97 213.41 �1085.12 �1162.23 �73.37 �700.23 �523.68 �506.86
Trapezoidal �720.38 �579.72 �72.94 �922.26 �1185.66 �150.09 �720.38 �644.67 �418.48
Johnson SB �761.68 �594.79 �103.55 �971.01 �1213.27 �75.88 �711.68 �656.24 �399.98

Table 4. Steady-state probabilities for seven drought classes at scale-1 on varying indices (SPI, SPEI and SPTI) for selected stations.

ED EW MD MW ND SD SW SUM

SPI NA 0.0231 0.0925 0.0958 0.6765 0.0695 0.0425 1
Astore Scale-1 SPEI NA 0.0301 0.1672 0.0866 0.6611 0.0214 0.0336 1

SPTI NA 0.0195 0.0800 0.1187 0.6789 0.0534 0.0495 1
SPI NA 0.0142 0.2012 0.0870 0.6480 NA 0.0496 1

Bunji Scale-1 SPEI NA 0.0071 0.1853 0.1713 0.5937 0.0267 0.0160 1
SPTI NA 0.0142 0.2047 0.0727 0.6604 NA 0.0479 1
SPI NA 0.0213 0.2842 0.0746 0.5755 NA 0.0444 1

Gupis Scale-1 SPEI NA 0.0053 0.1620 0.0885 0.6836 0.0463 0.0142 1
SPTI NA 0.0124 0.2842 0.0941 0.5577 NA 0.0515 1

Chilas SPI NA 0.0248 0.1940 0.0994 0.6426 NA 0.0391 1
Scale-1 SPEI NA 0.0159 0.1852 0.1079 0.6413 0.0249 0.0248 1

SPTI NA 0.0266 0.1705 0.0924 0.6590 NA 0.0515 1
SPI NA 0.0124 0.2030 0.0798 0.6569 NA 0.0479 1

Gilgit Scale-1 SPEI NA 0.0018 0.1926 0.1800 0.5760 0.0250 0.0247 1
SPTI NA 0.0106 0.1994 0.0745 0.6587 NA 0.0568 1
SPI NA 0.0231 0.1566 0.0870 0.6836 NA 0.0497 1

Skardu Scale-1 SPEI NA 0.0159 0.1887 0.0989 0.6378 0.0267 0.0320 1
SPTI NA 0.0018 0.0320 0.0746 0.8401 NA 0.0515 1
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Where the classes which received maximum weights
among the indices concerning time scale and station had
to select for their indices. However, in the proposed pro-
cedure, with respect to time scale and index, the classes
which receive maximum weights among the stations
would be selected for SWADI. It is based on the more
considerable value of the corresponding steady-state
probabilities. More specifically, one can say that the
drought classes which would be selected among stations,
have larger values of average long-run probabilities (pro-
portions) in a particular month for a particular station
and scale. For example, using SPI at scale-1, weights are
given for all drought classes of six stations using a
steady-state probabilities scheme, among these stations, a
class says ‘ND’ in Skardu for January 1971 receives max-
imum average long-run probability (0.6836, see Table 4)
would be selected as a suitable class for analysis. The
same selection criteria are used to find the suitable vector
of drought classes of SPI at scale-1 among six stations
for every month of each year from long time-series data
range from January 1971 to December 2017. We called it
the new spatially accumulative vector of drought classes,
and this will be quantified as a SWADI (see Equation
(7)). Similarly, weights are assigned in the SPEI and SPTI
index for selected stations at scale-1.

4. Application

In this study, the initial application of the proposed pro-
cedure is made on six meteorological stations of
Northern regions in Pakistan (see Figure 2). The more
substantial part of the country falls in the highest tem-
perature (Jilani et al., 2007). However, due to the high
altitude and the structural impact on the country’s
boundary, the role of Northern regions has significant
importance in the overall climatology of the country
(Awan, 2002). Particularly climate change of Northern
areas influences the irrigation of the agriculture sector in
Pakistan. So, the dependency of other regions of the
country is positively linked with the selected region.

Moreover, the country has four seasons’ onset and
duration of these seasons vary significantly from region
to region. In recent years, several parts of the country are
shockingly influenced by drought due to the
growing consequences of climate change and global
warming (Malik et al., 2012). Like other parts of the
world, Pakistan is facing many challenges related to water
deficiency and water contamination. Due to the recurrent
occurrence of drought, the overall economy of the coun-
try has severely disturbed. Especially in Tharpakar
(Sindh, Province of Pakistan), several human deaths have
been reported from the last three decades. Hence, it is the
need of the hour to strengthen drought monitoring mod-
ule and drought mitigation policies by developing a com-
prehensive and well-managed collection of drought
monitoring tools and frameworks. To evaluate the poten-
tial of the proposed procedure, the required long time-
series data of precipitation and temperature of various
meteorological stations of Northern regions are manipu-
lated. For this research, the secondary data ranging from
January 1971 to December 2017 are collected from the
Pakistan Meteorological Department through the
Karachi Data Processing centre (KDPC). The dataset ful-
fills the requirement of the World Meteorological
Organization (WMO) and has been cited in our recent
publication (see Ali et al., 2019).

4.1. Results and discussion

In Table 1, some brief statistics are given for precipita-
tion, maximum and minimum temperature of six selected
stations; and classification of drought’s classes (Li et al.,
2015) is given in Table 2. Where the value of the SDI
measures the severity of the drought, for example, if the
computed drought index less than or equals to �2, then
it can be considered the ED, and other severity of the
drought also can be observed from the given criteria for
the classification. However, this classification can be
modified based on socio-economic analysis or geographic
considerations and experience. The varying probability
distributions are used to consider at one time scales for
all indices. This process is done by using R package
named as propagate. Here, the smallest value of BIC for
the distribution is the criteria that is used for further
standardization for all time scales of SPI, SPEI and SPTI
indicators according to the approximation (as described
in Section 2.1).

The BIC values of selected probability distributions for
SPI, SPEI and SPTI at scale-1 for six stations are given
in Table 3, where we can observe that for SPI three
parameters (3P) Weibull distribution has a minimum
value of BIC (�1036.51) for Astore station, (3P) Weibull
with a minimum value of BIC (�1030.98) for Bunji

Table 5. Correlation coefficients among different stations at
scale-1.

SPI SPEI SPTI

Stations r p Value r p Value r p Value

Astore 0.5083 .0000 0.6272 .0000 0.5400 .0000
Bunji 0.5020 .0000 0.5822 .0000 0.4959 .0000
Gupis 0.3914 .0000 0.7170 .0000 0.4309 .0000
Chilas 0.7689 .0000 0.6091 .0000 0.5299 .0000
Gilgit 0.5221 .0000 0.5734 .0000 0.5210 .0000
Skardu 0.7524 .0000 0.6028 .0000 0.5229 .0000
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station, 4P Beta Weibull with a minimum value of BIC
(�788.07) for Gupis station, 4P Beta with a minimum
value of BIC (�805.61) in Chilas station, 3P Weibull with
a minimum value of BIC (�1097.48) for Gilgit station
and 3P Weibull with a minimum value of BIC (�735.12)
for Skardu station. Moreover, for SPEI at scale-1, the
Johnson SB distribution was selected for Bunji, Gupis
and Gilgit and the Trapezoidal distribution for Astore
and Skardu. Further, we can see that for SPTI at scale-1,
the Johnson distribution for the Skardu station and 4P
Beta for the Gupis station have minimum BIC values
�590.05 and 374.23, respectively, and the (3P) Weibull

has a minimum value of BIC �483.52, 188.45, 275.42
and 164.62 for Astore, Bunji, Chilas and Gilgit, respect-
ively. These are the distributions that CDFs are being
used to obtain standardized values. However, in the field
of hydrology and related discipline, the Weibull distribu-
tion has some applications (Nielsen et al., 1996), and it
has a better-quality of candidacy for standardization.

The construction of SWADI is based on steady-state
probabilities matrices using Markochain (Spedicato et al.,
2016) R package. Long-term behaviour of each drought
category is quantified using steady-state probabilities by
using temporal qualitative values categorized by severity

Fig. 3. Theoretical vs. empirical histograms of selected distributions for six stations.
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level of drought. The steady-state probabilities of each
drought category are used as weights. These weights are
assigned for all stations with a particular index and scale
(i.e. scale-1). The drought class, which has maximum val-
ues of corresponding steady-states probabilities, is consid-
ered for the separate vector among six stations at scale-1
for a particular index; the resultant vector is called the
SWADI index. Table 4 shows all results of steady-state
probabilities of SPI, SPEI and SPTI indices for the
selected stations at scale-1. Here, NA values indicate the
nonappearance of drought categories in the temporal vec-
tor of drought classification state. The estimates of correl-
ation coefficients among different stations at scale-1
(Table 5) show that stations are significantly correlated,
among others, for three indices called SPI, SPEI and

SPTI. That means from the homogeneous characteristics
of the selected station’s information can be accumulated.

The theoretical versus empirical histograms for SPI at
scale-1 (SPI-1) for six stations are presented in Figure 3.
In this figure, the bins on the horizontal axis represent
ranges of data, and the ratio of the relative frequency of
any specified bins’ interval to its width size is denoted by
density on the vertical axis. It can be observed from
Figure 3 that Gilgit and Gupis stations have more close-
ness between theoretical and empirical. At the same time,
discrepancy still arises in other stations. This discrepancy
is due to the natural behaviour of data and cannot be
simply controlled. To address this deviation issue, some
authors have suggested nonparametric function based
standardization (Farahmand and Aghakouchak, 2015),

Fig. 4. Temporal plots of SPI index for six stations and SWADI at scale-1.
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while some are working with mixture distribution func-
tions (Mallya et al., 2015). However, yet the issue is not
appropriately addressed. In this paper, the creation of
varying distribution concepts to estimate drought indices
is straightforward adopted (Stagge et al., 2015). Besides,
by rationale of our criterion, the use of long-term behav-
iour can overcome the effect of extreme values in report-
ing a particular drought class. In Figure 4, the temporal
behaviour of the SPI index and proposed index SWADI
are graphically presented at scale-1 for six stations.

Furthermore, on the same rationale and procedure of
SPI at scale-1, the SPEI and SPTI drought indices are
estimated for selected stations at scale-1. In Figure 5, the
count-plot for drought categories versus steady-state
probabilities weights are shown for Astore station, and
for station Bunji at scale-1, the count-plot for drought
categories versus steady-state probabilities weights are
shown in Figure 6, which show that how much weights
are assigned for the drought classes. The intensity in the
colour of the dot shows the more weight assigned for the

particular class; for example, in Astore station, the ND
takes more weights as compared to other drought classes.

5. Conclusion

The use of accurate and more representative temporal
characterization of drought hazard in a specific region
will efficiently work for analysts and policymakers in
building their plans to improve and strengthen the skill of
drought prediction. The use of drought monitoring tools
at multiple gauge stations placed in a homogenous cli-
matic region sets specific problems in data analysis. The
study suggested a new procedure for regional drought
monitoring: the SWADI. In this procedure, accumulative
information is obtained from multiple gauge stations of
the homogenous climatic region to characterize drought
classes of scale-1 on three indices using steady-state prob-
abilities as a weighting scheme. The initial configuration
of the SWADI procedure comprised of SDI at scale-1.

Fig. 5. Count-plot for drought categories vs steady-state probabilities weights for Astore at scale-1.

Fig. 6. Count-plot for drought categories vs steady-state weights for Bunji at scale-1.
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SDI drought indices, including SPI, SPEI and SPTI, are
used for drought characterization of six meteorological
stations of the Northern area of Pakistan. From the con-
clusions of the literature, outcomes and analysis of this
paper, we have been finishing with the following points:

1. It is usually a time-consuming practice to collect
similar information from multiple sources.

2. In a homogenous environment a specific the index
will produce similar results on varying stations.

3. These above two problems can be resolved by using
this proposed index SWADI.

4. Moreover, the SWADI assimilates for various
stations in the spatiotemporal structure of time series.
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