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ABSTRACT
Drought monitoring and forecasting play a vital role in making drought mitigation policies. In previous
research, several drought monitoring tools based on the probabilistic models have been developed for precise
and accurate inferences of drought severity and its effects. However, the risk of inaccurate determination of
drought classes always exists in probabilistic models. The aim of this paper is to reconnaissance the
advantage of the weighted Markov chain (WMC) model to accommodate the erroneous drought classes in
the monthly classifications of drought. It was assumed that to increase the precision in drought prediction,
the role of standardised self-correlation coefficients as weight may incorporate to establish and restructure
the accurate probabilities of risk for incoming expected drought classes in the WMC framework.
Consequently, the current research is based on the experimental findings of seventeen meteorological stations
located in the Northern Areas of Pakistan. In this study, the standardised precipitation evapotranspiration
index (SPEI) at a 1-month time scale based drought monitoring approach is applied to quantify the historical
classification of drought conditions. The exploratory analysis shows that the proportion of each drought
class varies from zone to zone. However, a high proportion of near-normal drought classes has been
observed in all the stations. For the prediction of future drought classes, transition probability matrices have
been computed using R statistical software. Our findings show that the probability of occurrences of near-
normal is very high. Overall, the results associated with this study show that the WMC method for drought
forecasting is sufficiently flexible to incorporate the change of drought conditions; it may change both the
transition probability matrix and the autocorrelation structure.

Keywords: Drought, Markov chain, standardised precipitation evapotranspiration index (SPEI),
autocorrelation

1. Introduction

Drought, the highest-ranked natural hazard, is the pri-
mary source of severe destructive effects on the planet

(White, 1974). Its sustained consequences lead to the ster-

ilisation of agricultural land and the initiation of diseases.

Factors associated with a higher risk of drought are the

long duration of rainfall, high rate of evapotranspiration,

low relative humidity, high temperature, and high wind�Correspnding author. email:ijaz@qau.edu.pk
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speed (Edwards et al., 2009). Moreover, many other
environmental and ecological factors are also responsible
for the recurrent occurrences of drought hazard. However,
drought intensity, duration, and severity may vary from
region to region. In recent decades, almost all the develop-
ing countries are facing water shortage due to continued
expansion in agriculture, industrial, and energy sectors.
Consequently, a perpetual increase in the difference between
water demand and renewable freshwater resources will lead
to significant social and economic issues.

However, to overcome the severe effect of the frequent
occurrence of drought, forecasting plays a significant role
in drought mitigation policies. In previous research, sev-
eral forecasting and assessment tools for the characterisa-
tion of drought regions and the quantification of drought
risk have been established. Several studies have been con-
ducted in the field of hydrology and climatology for the
assessment and modelling of drought classes for different
regions in the world. Drought indices are one of the most
used tools for the assessment and quantification of
drought risk. A range of different drought indices involv-
ing different climatic parameters has been developed to
detect dry and wet categories of a region for a specified
time. Details on the list of drought indices corresponding
with their variable requirement can be found in Svoboda
et al. (2016).

Besides drought monitoring and assessment tools, sev-
eral probabilistic and deterministic forecasting models
have been developed and used to predict and forecast
drought classes for various climatological regions. In
recent decades, the rapid increase in the development of
theories associated with the stochastic process is found
for modelling many real-life uncertain phenomena. An
example includes, stock market and exchange rate fluctu-
ations; signals such as speech; audio and video; medical
data such as a patient’s EKG, EEG, blood pressure or
temperature; and random movements, such as Brownian
motion or random walks. Among several other stochastic
models, the theory of Markov chains is a promising
approach to dynamic model activities that have a sto-
chastic factor (Lange, 2010). To model uncertain events,
especially in the field of engineering (Takahashi et al.,
2007), economics (Lee and Chen, 2006), and physics
(Crommelin and Vanden-Eijnden, 2006), Markov chain
models play a significant role in the prediction and fore-
casting of the probabilities associated with such events.
Markov chain models can be useful for forecasting future
drought classes due to their multifaceted nature to enu-
merate uncertainties connected with hydro-meteorological
variables causing droughts.

Sen (1990) derived stationary second-order Markov
chains for finite sample lengths for exact probability dis-
tribution functions (PDF) for three representative annual

flow series from various regions of the globe. Lohani and
Loganathan (1997) used non-homogeneous Markov chain
models to characterise the random behaviour of droughts
using the Palmer Drought Severity Index. Paulo and
Pereira (2007) used Markov Chain models on the drought
classes determined by the SPI drought index to character-
ise the stochasticity of drought and predict three months
of drought class. Bacanli et al. (2009) used the SPI
drought index based on an Adaptive Neuro-Fuzzy
Inference System (ANFIS) forecasting drought. Ali et al.
(2017b) used a multilayer perceptron model and SPEI
drought index for drought forecasting in the Northern
Area and KPK.

However, it is difficult to adjust the transition prob-
ability matrix and the precision of the forecast that is
affected by objective factors. To overcome this problem,
in many applications Weighted Markov Chain (WMC)
method have been employed in several disciplines, includ-
ing hydrology and environmental sciences (Benoit, 2005;
Le-Tian, 2005; De-di and Chen, 2006; Peng et al., 2010;
Kaliakatsos-Papakostas et al., 2011; Zhou et al., 2011;
Chen and Yang, 2012; Gong et al., 2014; Gui and Shao,
2017). Chen and Yang (2012) proposed a drought predic-
tion model for SPI with different time scales under the
weighted Markov chain framework for Anhui Province
of Huaihe River in China. Outcomes associated with this
model show that the weighted Markov Chain method is a
useful approach for drought prediction, and it can be
helpful for decision-making in regional drought manage-
ment. In recent years, we have proposed a new weighting
scheme of WMC for ordinal data (see Ali et al., 2018). In
this article, the Standardised Precipitation Temperature
Index (SPTI) (Ali et al., 2017) has been used to evaluate
the proposed scheme.

However, analysing droughts by using a single variable is
not enough to distinguish different regions because drought
hazards relate to multiple variables. A comprehensive ana-
lysis of the characterisation of drought classes is required
that make a joint analysis of rainfall, runoff, and soil mois-
ture conditions (Vicente-Serrano et al., 2005). The SPI is the
simplest and commonly used drought index that is based on
accumulated precipitation (McKee et al., 1993). Vicente-
Serrano et al. (2010) developed a new multi-scaler drought
index, the standardised precipitation evapotranspiration
index (SPEI). The methodological structure of SPEI is like
SPI. However, in SPEI, instead of only precipitation, the
mean monthly temperature is also used in the estimation of
drought classes.

The objective of this research is to handle all the diffi-
culties in formulating a mathematical model for forecast-
ing SPEI drought index at a one-month time scale under
the WMC framework in various regions of Pakistan. We
use autocorrelations from the historical series of SPEI
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drought index with a one-month time scale as a weight in
first-order Markov chain transition probability matrices to
forecast the next incidence of drought categories for seven-
teen meteorological stations located in the Northern Areas
and KPK (Pakistan). The drought has become a recurrent
phenomenon in the country. In the recent decade, due to
severe drought hazards, the economic system of the country
was severely disturbed. In recent decades, several authors
had been working to explore the geographical and hydro-
logical importance of this region. Awan (2002) and Archer
and Fowler (2004) explored and inferred different climatic
variables in terms of regression, spatial correlation, and tem-
poral variation. Ahmad et al. (2012) evaluated the signifi-
cance of these mountainous areas that have substantial
potential in hydro-power production and water resources.
Ali et al. (2017a) have compared the performance of SPTI
with SPI and SPEI using time series data on precipitation
and temperature of these stations.

In this research considered seventeen meteorological
stations having different climatology and estimated

historical time series data on SPEI drought index for a
one-month time scale. Time series data on precipitation
and temperature are used to estimate SPEI values for
these stations.

The organisation of this paper is as follows. A brief
description of the study area, the estimation method of
SPEI, and the mathematical formulation of WMC
method is presented in Section 1. Section 2 consists of
temporal representations of SPEI drought classes and
results associated with WMC based forecasting. Section 3
is based on the results of this paper. In contrast, discus-
sion and conclusion have been presented in Sections 4
and 5, respectively.

2. Materials and methods

2.1. Study area and data

We consider seventeen meteorological stations located in
different climatic regions of Northern Areas of Pakistan.

Figure 1. Study area: meteorological stations of Northern Area and KPK (Pakistan).

4 Z. ALI ET AL.



These stations have high variability in rainfall throughout
the season. Concerning the climatological statistics (see
Table 1), the behaviour of all stations varies from zone
to zone.

In each season, some of the stations are continuing to
bear extremely vulnerable drought conditions. In the cur-
rent research, twelve meteorological stations exhibiting
cold and humid climate and five meteorological stations
having mild cold and arid climate are included to check
the efficiency of SPEI drought index from the global
warming perspective. Primary data on monthly total rain-
fall, mean minimum temperature, and mean maximum
temperature of each station for the period 1976–2017
were collected from the Karachi data processing center
through Pakistan Meteorological Department (PMD),
Islamabad. Figure 1 shows the geographical distribution
of the study area located in different climatological zones.

2.2. Standardised precipitation evapotranspiration
Index-SPEI

There are several procedures to report drought severity
using a multiscalar drought index (Ali et al., 2017a).
McKee et al. (1993) developed an SPI drought index,
which is based on long-term precipitation records to
quantify precipitation scarcity for different time scales.
One of the significant advantage of using the SPI index is
that it can be used to monitor drought for various time
scales. Vicente-Serrano et al. (2010) developed the stand-
ardised precipitation evapotranspiration index (SPEI): a
multiscalar drought index. In SPEI, the water balance
model based on the difference between precipitation and
potential evapotranspiration (PET) is used with a similar
estimation procedure of SPI. One significant advantage
of SPEI over SPI is to include the effect of evaporation
in rainfall data to characterise the regions under study.
The method employed in SPEI drought index for the
determination of drought classes is a little bit different
from SPI. SPEI uses both temperature and precipitation
for the characterisation of drought classes, whereas, in
the SPI drought index, only monthly cumulative precipi-
tation data is used. In SPEI drought index, monthly time
series data on drought classes is obtained by standardis-
ing the distribution of the difference between precipita-
tion and Potential Evapotranspiration (PET). Several
methods are available in the literature for the estimation
of PET. The choice of the method for the estimation of
PET depends on the availability of data and the sensitiv-
ity of the PET values. In their original paper, Vicente-
Serrano et al. (2010) had chosen the simplest approach to
calculate PET by using Thornthwait (TH) equation
(Thornthwaite 1948).

However, this method underestimates PET values at
arid regions in cold climatic regions, whereas overesti-
mates PET values in humid regions (Ali et al., 2017a).
The Hargreaves method for the estimation of PET over-
comes this issue. However, it needs additional climatic
parameters (i.e. mean minimum and mean maximum tem-
perature etc.) (Hargreaves, 1994). In this research, we use
the Hargreaves method for the estimation of PET based
on minimum mean and minimum-maximum temperature
using SPEI package in R. Further detailed procedures on
computation, temporal behaviour, and normality test on
SPEI time series data can be found in Ali et al. (2019).

2.3. Markov chain

A stochastic process, or random process fZ¼Z(t), t e Tg
is a set of random variables indexed by time. That is, for
all t in the index set T, Z(t) is a random variable. If the
index set T is a countable set, we call Z(t) a discrete-time
stochastic process. If T is a straight-set, we call Z(t) a
continuous-time stochastic process. All possible values
that Z(t) can assume, are called its state space (Chiang,
1968). A Markov chain is a stochastic process having the
property that the value of the process at time t, Zt

depends only on its previous value Zt�1 at time t� 1, but
does not depend on the past values of the process
(Haan, 1977).

2.3.1. Drought conditions as a Markov chain process. A
discrete Markov chain is a random process that describes
a sequence of events from a set of finite possible states.
In contrast, the current event depends only on the preced-
ing event. It has been commonly used to model uncertain
events in various disciplines. Each discrete Markov chain
is characterised by a transition probability matrix that
represents the probability of transition from one state to
another. Shatanawi et al. (2013) reported that the exact
prediction of Drought Index (DI) values is impossible
with ARIMA models. However, early warning of drought
can be detected from monthly Markov transition proba-
bilities. Therefore, in drought modelling context, time-ser-
ies data SPTI drought classes for a single station can be
considered as a sequence of ordinal drought classes.

Consequently, a historical series of drought classifica-
tion states for a specified station can be embodied as a
discrete Markov chain process. Here, we assume that any
single class of drought in time series of SPEI depends on
its previous class and then proceed to the construction of
the transition probability matrix. It is just statistical com-
pliance that allows us to consider each drought class as a
first-order Markov chain. However, one can also use a
second-order Markov chain, where if each class is
assumed to depend on its previous two classes.
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2.3.2. Configuration of weighted Markov chain (WMC)
for observed drought classes. In this scenario, time-series
data on drought classes determined by SPEI drought
index can be assumed as a series of correlated random
variables. Various empirical studies show that self-correl-
ation coefficients in the historical data of drought classes
for all the study regions have significant importance for
the prediction of future drought classes. This confirms
that previous drought classes (on a monthly or yearly
basis) can be considered in advance to predict the present
drought class. So, in our case, the basic idea behind using
WMC is that weighted averages can be made according to
the incidence behaviour in the past month. Hence, the prob-
ability of present or next drought classes can be inferred
and predicted in advance by appropriate configuration of
weights to each drought class in WMC framework.

The fundamental steps involved in the proposed
method for prediction of drought classes using SPEI
drought index under the WMC model are given below.

2.3.2.1. Classification quantitative values of SPEI for
transition probability matrix. Let D1, D2, … , Dn be
the time series of drought classes. Where D can assume
the nominal value droughts classes depending on the clas-
sification criteria of SPEI drought index (see Table 2). As
in each drought class, we can find the transition probabil-
ity matrix in the following form:

Drought Classes

c1 c2 . . . cn
c1
c2

..

.

cn

p11 p12 � � � p1n
p21 p22 � � � p2n
..
.

pn1

..

. . .
.

pn2 . . .

..

.

pnn

0
BBB@

1
CCCA

where, c1, c2,… , cn are the drought classes, i.e. too wet,
very wet,… , extremely dry.

In this step, we classify SPEI drought index estimated
with a one-month time scale according to the classifica-
tion criteria provided in Table 2. Descriptions on the
classification states for drought classes determined by
SPEI drought index were shown in Table 2.

Transition probability matrices for each station are
computed using the Markovchain package to predict the
future drought classes (Spedicato et al., 2016) package
of R.

2.3.2.2. Construction of the transition probability
matrix. Let Y ðtÞ

ij the number of transitions from the state
Si to state Sj through t steps in time series length of
drought classes Xk calculated from a one-month time
scale. Here, the transition probabilities for various time
steps and various drought classes are computed using the
following equation.

PðtÞ
ij ¼ Y ðtÞ

ij

Yi
, i, j ¼ 1, 2, . . . . . . m (6)

where Yi is the total number of individual drought
classes, t represents the order of Markov chain. Further,
the transition probability matrix for various drought
classes can be obtained as;

PðtÞ ¼

pðtÞ11 pðtÞ12 : : pðtÞ1m
pðtÞ21 pðtÞ22 : : pðtÞ2m
:

:

:

:

: :

: :

:

:

pðtÞm1 pðtÞm2 : : pðtÞmm

2
666666664

3
777777775

(7)

Transition probability matrices for Astore and Balakot
stations from the time series data on drought classes
determined by SPEI drought index are shown in Table 3.

2.3.2.3. Computation weights using autocorrelations.
The weights (wi) for the weighted Markov chain model can
be computed by standardising the self-correlation coefficient
(ri). The formula for weights (wi) and self-correlation coeffi-
cient (ri) are provided in Eqs. (8) and (9), respectively.

w ¼ rp
�� ��

Pm
p¼1 rp

�� �� (8)

r ¼
Pn�p

p¼1ðZðpÞ � ZÞðZðpþ1Þ � ZÞ
Pn

p¼1ðZðpÞ � ZÞ2 (9)

2.3.2.4. Prediction of the probability of the
occurrence of a drought class using weighted Markov
chain. In this step, we assume the occurrence of drought
classification states in the very last month as an initial
drought class Wi and combine it with the row vectors of
their corresponding transition probability matrix. Here,
we assumed that the inaccurate drought class is probable
due to the estimation of SPEI time series data. Hence,
weighting the drought classes according to Eq. (10), we
arrive at the prediction probabilities Pi for the next
drought classes.

Table 2. Classification criteria SPEI.

SPEI values Class

�2 Extremely wet (EV)
1.50 to 1.99 Severe wet (SW)
1.00 to 1.49 Moderate wet (MW)
.99 to �.99 Near normal (NN)
–1 to �1.49 Moderate drought (MD)
–1.5 to 1.99 Severe drought (SD)
� �2 Extreme drought (ED)

6 Z. ALI ET AL.



Pi ¼
Xm
i¼1

wiP
ðtÞ
ij (10)

In the above equation Pi are the weighted probabilities
for incoming drought events. However, the predicted
drought class is the drought class having max fPi, i e Sg
under the weighted Markov Chain method.

3. Results

For exploratory analysis, the percentage of occurrences
of various drought classes in the historical time series
data on SPEI-1 with a one-month time scale of the
selected study regions are presented in Table 4. A high
proportion of near-normal drought classes were found in
most of the stations. Moreover, the test of equality of
proportions, as suggested in Marden (1996), is performed
using easyanova Arnhold (2014) package in R.

Additionally, multiple comparison tests show that the
near-normal drought class has a significantly high pro-
portion as compared to other drought classes. However,

the severely dry drought class has a significant difference
from the severely wet class. Besides, the proportion of the
moderate dry class is significantly greater than for moder-
ate wet.

Here, transition probability matrices are used for fur-
ther prediction of future drought classes using equation
10. Weights from step one to step five associated with
each station are shown in Table 5. These weights are cal-
culated by normalising autocorrelation coefficients (see
Eq. (7)). Table 6 shows the predicted probabilities for
each drought class in December 2017 for Astore station.
For the near-normal drought class, the predicted prob-
ability of this class using the weighted Markov chain is
0.712, which is very high concerning other drought
classes. The actual drought condition is also near to nor-
mal, which indicates that the prediction is correct, and
the chance of errors is very low. On the same line, the
interpretation can be made for the rest of the months and
stations as well. One month ahead prediction probabil-
ities of the drought classes for the rest of the stations are

Table 3. One step transition probability matrix.

Astore Balakot

MD MW NN SD SW MD MW NN SD SW

MD 0.136 0.045 0.636 0.045 0.136 MD 0.125 0.063 0.813 0 0
MW 0.068 0.169 0.661 0.085 0.017 MW 0.025 0.1 0.8 0.025 0.05

P1
ij NN 0.038 0.118 0.698 0.121 0.025 P1

ij NN 0.028 0.072 0.747 0.113 0.041
SD 0 0 0.453 0.538 0.009 SD 0.032 0.113 0.5 0.29 0.065
SW 0 0.067 0.933 0 0 SW 0.045 0.091 0.727 0.091 0.045

Table 4. Percentage frequencies of drought class.

Stations

Percentages of drought classes

MD MW NN SD SW

Astore 0.09 0.03 0.71 0.15 0.02
Balakot 0.09 0.04 0.75 0.09 0.03
Kotli 0.12 0.03 0.64 0.17 0.03
Chirat 0.07 0.03 0.69 0.15 0.05
Chilas 0.08 0.02 0.67 0.17 0.06
Islamabad 0.11 0.02 0.66 0.15 0.07
Gupis 0.11 0.02 0.67 0.16 0.04
Peshawar 0.1 0.02 0.67 0.18 0.04
Saidu-Shareef 0.09 0.04 0.69 0.15 0.03
Muzafarabad 0.08 0.04 0.71 0.14 0.02
Bunji 0.1 0.03 0.68 0.17 0.04
DIKhan 0.09 0.03 0.66 0.16 0.05
Drosh 0.08 0.03 0.7 0.14 0.04
Gari-Dupata 0.07 0.04 0.7 0.16 0.03
Dir 0.07 0.03 0.71 0.16 0.03
Gilgit 0.08 0.03 0.67 0.16 0.06
Kakul 0.12 0.02 0.63 0.17 0.05

Table 5. Standardised weights of transition from one state to
another stat.

Lags

Stations w1 w2 w3 w4 w5

Astore 0.249 0.226 0.201 0.175 0.149
Balakot 0.230 0.215 0.200 0.186 0.170
Kotli 0.247 0.222 0.199 0.177 0.154
Chirat 0.236 0.217 0.200 0.183 0.164
Chilas 0.237 0.221 0.202 0.181 0.159
Islamabad 0.236 0.216 0.198 0.182 0.167
Gupis 0.240 0.222 0.201 0.179 0.159
Peshawar 0.229 0.213 0.199 0.186 0.173
Saidu-Shareef 0.240 0.221 0.201 0.179 0.159
Muzafarabad 0.248 0.225 0.199 0.175 0.153
Bunji 0.229 0.216 0.201 0.185 0.170
DIKhan 0.215 0.207 0.200 0.193 0.185
Drosh 0.228 0.213 0.200 0.187 0.172
Gari-Dupata 0.233 0.215 0.198 0.184 0.170
Dir 0.226 0.213 0.200 0.187 0.173
Gilgit 0.257 0.230 0.200 0.171 0.143
Kakul 0.239 0.216 0.196 0.183 0.167
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shown in Table 7. Except for Drosh and Peshawar, the
probabilities of near-normal drought categories are very
high in all the stations. It is due to the high frequency of
near-normal drought classes in the qualitative vectors of
drought classes in all stations.

4. Discussion

Results associated with this test show that there is a sig-
nificant difference in the proportion of each drought
class. These results are consistent from the ecological and
climatological point of view since, in these areas, most of
the stations bear longer Moonsoon and precipitation peri-
ods. In most stations, near-normal drought class found a
high probability of occurrences. However, the moderate
wet drought class has a low probability as compared to a
severely dry drought class. However, the near-normal
drought class has a high probability in most of the study
region. However, predicted probabilities for each drought

class in Peshawar, Bunji, and Drosh have somehow dif-
ferent behaviour. In Peshawar, drought classes have
almost equal probabilities except for the Severely dry
class. Bunji shows a 0.533 probability of occurrence for
the severely dry class. In Drosh station, almost equivalent
probabilities are found for near normal and moder-
ate wet.

5. Conclusion

Prediction and forecasting play a vital role, especially in
early warning situations. Consequently, accurate and pre-
cise techniques of drought forecasting may reduce their
severe effect by making effective drought mitigation poli-
cies. In this article, the SPEI-1 drought index being a
more comprehensive drought monitoring procedure is
used to classify historical monthly drought profile for
seventeen meteorological stations of Pakistan. To predict
the future drought classes, the standardised self-correl-
ation coefficient in the time series data of SPEI-1 index is
used as weights in WMC method (see Table 5).
Outcomes associated with the WMC method for predic-
tion of drought classes show that this forecasting method
is flexible enough to incorporate change of drought con-
dition, just by changing the transition probability matrix
and the autocorrelation structure. It is observed that the
probability of the near-normal drought class is higher in
most stations of the study area (see Table 7). Further, in
a global warming context, the situation of a significant
increase in trend from wet drought classes to dry drought
classes should be alarming for water resources and man-
agement authorities.

The limitation of the study includes:

1. The current study is based on SPEI index. Other
indices such as SPI and SPEI can be incorporated.
Further, their comparative assessment should be
made for better understanding.

2. In this manuscript, we have used quantitative time-
series data. Consequently, our weights are based on
autocorrelation. In the future, the qualitative time

Table 6. Predicted probabilities for the month of December 2017 at Astore.

Initial month
Drought State of
December 2017 Step Weights MD MW NN SD SW

July 2017 NN P(5) 0.149 0.023 0.084 0.783 0.094 0.016
August 2017 NN P(4) 0.175 0.020 0.080 0.804 0.083 0.014
September 2017 NN P(3) 0.201 0.015 0.073 0.832 0.068 0.012
October 2017 SD P(2) 0.226 0.001 0.006 0.254 0.739 0.001
November 2017 NN P(1) 0.249 0.005 0.040 0.923 0.028 0.005
December 2017 Pi 0.011 0.052 0.712 0.216 0.009

Table 7. One month ahead forecast probabilities of various
drought classes.

Drought classes probabilities

Stations Initial states MD MW NN SD SW

Astore NN 0.011 0.052 0.712 0.216 0.009
Balakot NN 0.009 0.033 0.895 0.055 0.008
Kotli NN 0.018 0.075 0.754 0.139 0.013
Chirat NN 0.021 0.115 0.755 0.064 0.045
Chilas MD 0.083 0.111 0.684 0.074 0.048
Islamabad NN 0.011 0.018 0.633 0.335 0.003
Gupis NN 0.014 0.042 0.870 0.063 0.010
Peshawar MW 0.213 0.292 0.225 0.011 0.259
Saidu-Shareef NN 0.007 0.035 0.573 0.376 0.009
Muzafarabad MD 0.013 0.060 0.804 0.102 0.021
Bunji NN 0.005 0.026 0.427 0.533 0.009
DIKhan NN 0.025 0.056 0.617 0.217 0.084
Drosh MD 0.150 0.321 0.395 0.022 0.113
Gari-Dupata NN 0.010 0.067 0.821 0.088 0.013
Dir NN 0.009 0.062 0.841 0.073 0.016
Gilgit MW 0.010 0.043 0.798 0.130 0.019
Kakul NN 0.013 0.056 0.662 0.259 0.010
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series of drought can be used with our novel
weighting scheme for WMC (see Ali et al. 2018).
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