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ABSTRACT

This paper contains, for pedagogical purposes, a brief derivation of quasi-geostrophic, available
potential energy using the parcel method and an approximate calculation of the work performed
during the displacement. For the study, we have used 7 years of globally averaged temperatures.
These data indicate a seasonal variation of the global mean temperature. The seasonal variation
is determined from the data with respect to amplitude and phase, and a simple model is used to
relate this variation to the seasonal variation of the planetary albedo. It is also demonstrated that
the seasonal changes in the global mean temperature due to the ellipticity of the orbit are out
of phase with the observed changes. The same data have been used to study the vertical variation
of the static stability parameter entering in quasi-geostrophic models, as a function of pressure.
The changes in the vertical direction are important for the determination of the vertical structure
functions. In the first approximation, the parameter is inversely proportional to the square of the
pressure, but deviations occur, depending on the number and position of the pressure levels. The
error in the calculation of quasi-geostrophic, available potential energy due to an incorrect

specification of the stability parameter is investigated using a specific example in Section 4.

1. Introduction

The present investigation started with a study
of globally-averaged temperatures at a number
of pressure levels for each month during the
period 1982-88. The results of this study have
been reported elsewhere (Christensen and
Wiin-Nielsen, 1989).

It was noted that a small seasonal variation
existed in the globally averaged temperatures. This
variation is analyzed with respect to amplitude
and phase in Section 3 of this paper, where an
attempt is made to explain the observations using
a simple energy balance model. While such a varia-
tion has been noted in other data samples (North
and Coakley, Jr., 1979), it has been neglected in
the theoretical studies of the seasonal variation of
the atmospheric temperature fields which have
concentrated on the much larger variation in the
deviations from the global average. In addition, it
seems that the seasonal variation in global mean
temperatures is documented for the first time as a
function of height, while other studies have limited
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themselves to the temperature field at the earth’s
surface.

The data are also well-suited to investigate the
stability in the global mean temperatures. In par-
ticular, the static stability, as it appears in quasi-
geostrophic theory, can be calculated from the
data, and its dependence on pressure can be
investigated. In this regard, we recall that the static
stability can be a function of pressure only in
quasi-geostrophic models, and it is therefore ideal
to use globally averaged data for this purpose.
Other investigations of the static stability have
been carried out. Gates (1961) used data from the
contiguous United States, but the purpose of that
study was primarily to compare various measures
of static stability and to document the horizontal
variations. Jacobs and Wiin-Nielsen (1966) used a
constant lapse rate atmosphere to find the pressure
dependence of the static stability. The same
dependence on pressure is mainly important in the
determination of the vertical structure of quasi-
geostrophic, baroclinic waves, because it enters in
the equation for the determination of the vertical
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eigenmodes (Wiin-Nielsen, 1971a and 1971b,
Kasahara and Tanaka, 1989). It is thus of interest
to use the data to determine the static stability and
to use statistical techniques to obtain empirical
formulas. Such an investigation is given in
Section 4.

The concept of available potential energy,
originally introduced by Lorenz (1955), is defined
as the surplus of total potential energy (ie., the
sum of potential and internal energy) over the min-
imum of this quantity. The smallest value of the
total potential energy is reached if all particles on
a given isentropic surface are moved adiabatically
to a level, where the pressure is equal to the global
mean pressure on the isentropic surface. The
concept of available potential energy has been
considered in further detail by Van Mieghem
(1956) and Dutton and Johnson (1967).

The introduction of available potential energy in
meteorological education is not particularly sim-
ple, if one wants to use the concept in its most
general form. On the other hand, for many pur-
poses it is an advantage to discuss energy relations
at an early stage. It is rather straightforward to
introduce the concept of potential, internal and
kinetic energy, since they may be defined for a
single parcel. It may thus be desirable to use simple
methods to give a general understanding of the
concept of available potential energy even if rather
severe approximations have to be made. Section 2
of this paper contains for pedagogical purposes an
introduction of available potential energy using
the so-called parcel method and the principles of
work and energy.

Static stability enters into the concept of
available potential energy. The result of a calcula-
tion therefore depends on the assumptions made
regarding the vertical variation of this parameter.
The sensitivity of the calculation to various
assumptions regarding the vertical dependence of
the static stability is investigated in Section 4.

2. Approximate determination of available
potential energy

In this section, we shall give a simple introduc-
tion to the concept of available potential energy.
Any new results cannot be expected, but it seems
that the way in which the calculation is made may
be novel. In addition, it uses simple concepts which

will make it possible to introduce available poten-
tial energy at an early point in the meteorological
education.

The general idea is to start from an atmosphere
at rest and in hydrostatic equilibrium. We shall
furthermore make the assumption usually made in
the so-called parcel method (Hess, 1959) that the
pressure of a parcel displayed from its equilibrium
position will adjust immediately to the pressure of
the environment. Suppose then that a parcel is
displayed a vertical distance from its equilibrium
position, where the specific volume is & and the
pressure is p. Using the parcel method we may
calculate the force acting on the parcel:

op  0p
F= %% ¢ 2”8
o—& -0
=8 =85 (2.1)
o

where 0 is the potential temperature and g is
gravity.

Since for a small displacement z, we may assume
that the environmental potential temperature
varies linearly, and that isentropic conditions
apply to the parcel, we may also write (2.1) in the
form:

dlnd
F=—g 3z z.

(22)

The work carried out during this process is
approximately:

z 0lnd g\dlnd
W:j — =_(2)2——2-2 .
. 83, zdz (2) Frakd (2.3)
We can finally replace z by
——L 0'=0-0 24
iT ez U (24)

and if we then note that the energy gained is the
opposite of the work carried out we may write that
the contribution to the available energy is

1 2 0/2
a= <§> %?, (2.5)
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where
a0
N2=8Z 2.6
0 oz (26)

is the square of the Brunt-Viisdld frequency.
Eq. (2.5) gives thus the contribution to the
available potential energy from a unit mass. The
amount of available potential energy is then
obtained by integrating over the mass of the
atmosphere. In the previous development, we have
used height as the vertical coordinate, but the
expression in (2.5) may be expressed in other verti-
cal coordinates. Since it is our intention to use data
from isobaric surfaces, we transform to pressure as
the vertical coordinate. Using standard procedures
and recalling (2.1), we find

& 00
35 (2.7)
which is in agreement with the integrand in the
approximate expression obtained by Lorenz
(1955) by series expansion of the so-called exact
expression derived under much more general con-
ditions. However, under the simplified conditions
applied here, we may state that the contribution to
the quasi-geostrophic, available potential energy
may be obtained by moving all parcels from their
actual position to a point, where the height is equal
to the average height of the pressure surface, from
which the particle started. The energy released in
the process is equal to the expression in (2.7).
One should note that the interpretation does not
mean that the available potential energy is defined
as a local quantity as for example the internal or
the kinetic energy. The reason is that the deter-
mination of the reference height requires the
topography of the whole isobaric surface. It may at
first be surprising that the derivation given here
agrees with the result obtained by Lorenz (1955)
by a truncated series expansion of the more general
integrand followed by integration over the mass of
the atmosphere. However, both methods require
smallness of the displacement and a constant
value of the static stability parameter in the
neighborhood of an isobaric surface. The small-
ness of the displacement is related to the slope of
an isobaric surface, which should be sloping only
slightly, if quasi-geostrophic theory should apply.
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3. Global temperatures

A data set of globally averaged temperatures at
a number of pressure levels was provided by the
European Centre for Medium-Range Weather
Forecasts for the years 1982-88. For each year, the
monthly averages were provided for each of the 12
months. The pressure levels were: 50, 100, 150,
200, 250, 300, 400, 500, 700, 850 and 1000 hPa.
From these data, we have produced the seven year
averages for each month at each level. We have
called each of the temperatures a global average.
Strictly speaking, they are averages between the
latitudes 87.5° north and 87.5° south, but the data
still cover 99.8 % of the area of the earth.

The data show a small seasonal variation at
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Fig. 1. The upper part shows the amplitude of the first
Fourier component, T, in degrees C, as a function of
normalized pressure, while the lower part gives the
phase, measured in days, in the same arrangement.
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each level. At the lower levels we find the highest
temperatures in June or July. This is true for all
levels between 300 and 1000 hPa, or, in other
words, in the major part of the troposphere. For
levels between 100 and 250 hPa the maxima occur
in February or March. The seasonal variation is
quite small. The amplitude and phases of the first
Fourier component are shown in Fig. 1 for the
levels between 300 and 1000hPa. The first Fourier
component is a good approximation to the
seasonal variation at the low levels as can be seen
from Fig. 2 showing the actual temperature varia-
tion and the first component. This is not the case
at the higher levels. Fig. 3 shows the same com-
parison for the 400 hPa, and the deviations are
now larger. At the 250 hPa level (Fig. 4) it makes
little sense to use the first Fourier component only.
For the levels higher than 250 hPa, the situation is
similar, and it is for this reason that only the levels
below 300 hPa have been included in Fig. 1.

If the distribution of continents and oceans
were symmetrical around the equator, we would

TE©)
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Fig. 2. A comparison between the observed seasonal
variation of the deviation of temperature from the annual
mean and its first Fourier component at 850 hPa.
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Fig. 3. As Fig. 2, but for 400 hPa.
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Fig. 4. The observed seasonal variation of the deviation
of temperature from its annual mean at 250 hPa.

probably in the first approximation expect a con-
stant globally averaged temperature through the
year. The observed small variation may then be
due to the asymmetries around the Equator. The
higher temperatures at the low levels in the North-
ern Hemisphere summer should be due to the fact
that the area of the continents is larger in this
hemisphere than in the Southern Hemisphere
resulting in a larger seasonal variation of the tem-
perature in the “continental” hemisphere than in
the more “maritime” Southern Hemisphere. If this
is so, we would observe a seasonal variation in the

~global temperature. However, another process
" may also be of importance. The distance between

the Sun and the Earth varies through the year
being smallest when the Earth is in the Perihelion
and largest with the planet in the Aphelion. The
influence of this seasonal variation in the incoming
radiation will be analysed at the end of this section.

It may be of interest to investigate, whether the
seasonal variation in the global mean temperature
can be obtained quantitatively from the considera-
tions given above. In the first approximation, we
may consider the surface of the Earth and adopt
a simple climate energy balance model. Such
models, originally designed by Budyko (1969) and
Sellers (1969), have been used by North and
Coakley, Jr. (1979) to describe the seasonal varia-
tion of the surface temperature using low order
descriptions of the latitude dependent incident
solar radiation, the albedo and the infrared out-
going flux. However, the seasonal variation in the
globally averaged temperature has been neglected
in these studies as small compared to the much
larger variation as a function of latitude. Our
problem will be to account for the small time
variation of the averaged temperature.

We adopt an energy balance model applied
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earlier by Wiin-Nielsen (1984). The basic equation
is:

dT
CE=aQ—eBaBT“,

(3.1)
in which T is the globally averaged surface tem-
perature, ¢ time, C the heat capacity, a the
planetary co-albedo, Q the solar radiation, ey the
absorption coefficient and o the Stefan-Boltzman
constant.

The steady state temperature 7, is obtained
directly from (3.1) by setting the time-derivative to
zero. It is

TO:(aOQ)IM.
ép0p

In using (3.2), we shall adopt the values

(3.2)

a,=0.68,
8B = 0.61,

Q=344 Wm~2,
0p=>5675-10"% Wm 2K —*

resulting in T, = 287 K. Since we are considering a
small variation around this mean value, it is
justified to linearize the equation. We consider
therefore T’ as a deviation from T, and write:

T’
=T 144 ).
T T0<1+ T0>

Introducing (3.2) and (3.3) in (3.1), we find

3.3)

’

T
cdd—t=a'(z) Q—4epoy T2T' (34)
which also may be written in the form:
a7’
CF+BT’=a’(t) 0, (3.5)

with B=4egop T3 =327 Wm K%

In the derivation of (3.5), it has been assumed
that the main variation is in the co-albedo, while O
is constant. Later this situation will be reversed.
The seasonal variation of the planetary albedo has
been calculated by Gruber (1977). He obtains a
maximum albedo in December-January and a
minimum in June-July with an amplitude of about
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0.022. As a first approximation we may therefore
assume that the planetary co-albedo varies as
a'(t)= — A cos(2rr) (3.6)
where 4 = 0.022, and where 7 is a non-dimensional
time using one year as the scaling factor. Inserting
(3.6) in (3.5) we obtain the following solution for
T

T'(t)= T, cos(2n(t —1,)), 3.7)
where T,=198K and ¢, =0.59. This value
corresponds to a maximum in the temperature
variation occuring on day 214. Our result is thus in
excellent agreement with the observed seasonal
variation at the surface of the Earth as shown
in Fig. 1. It should be pointed out that the value
of the heat capacity in this calculation is
1.0 x 10’ Wm —2K ~ s corresponding to the value
for the atmosphere. We have therefore made the
assumption that the remaining part of the climate
system plays a minor role in the short seasonal
variation of the global mean temperature.

The expression (3.6) assumes that the minimum
in the co-albedo is at the beginning of the year.
There is a disagreement between (3.6) and the
seasonal variation of the co-albedo as given by
North and Coakley, Jr. (1979) based on albedo
variations determined by Ellis et al. (1976), which
results in a co-albedo minimum on day 56 (end of
February) and a maximum on day 238 (end of
August). Since the solution of (3.5) will have a
maximum later than the maximum in the forcing,
it is obvious that a correct result cannot be
obtained with such a variation, if the present
model is used.

The co-albedo variation incorporated in (3.6) is
a net effect from the study of the radiation budget.
According to Gruber (1977) the outgoing
longwave radiation is generally in phase with the
co-albedo with a maximum in June-July and a
minimum in December-January. The in-phase
relationship is due primarily to the influence of the
cloudiness. It is interesting to note that these
influences are large enough to overcome the effect
of the seasonal change in Q due to the ellipticity of
the Earth’s orbit. This change is due to the fact the
Earth is closer to the Sun in January, when it
passes through the Perihelion, than in July, when
it goes through the Abhelion. The annual change
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in Q is in the first approximation according to
North and Coakley, Jr. (1979) given by

0 = Qo1+ 2ecos(2nt —10,)), (3.8)

where e is the ellipticity (e = 0.01674) and 6, is the
longitude of the Perihelion measured from the win-
ter solstice (0, = 12.73°) just as 7 is measured from
this point. When we change the reference point in
such a way that we measure from the beginning of
the year we may with sufficient accuracy write:

Q = Qo(1 + 2e cos(2n7)). (3.9)
The linearized equation considering the
seasonal variation of Q is
a7’ ,
CT+BT =2eaQ, cos(2nt) (3.10)
T

Comparing (3.10) with the system (3.5), (3.6),
we note that the only change is the sign and
magnitude of the right hand side. The amplitude
of the forcing function with ¢=0.7 and

o=344 Wm~? is 8.06 Wm ~2 in good agreement
with the amplitude of the observed annual wave in
the short-wave absorbed radiation (8 Wm™?2) as
found by Vonder Haar and Ellis (1977). The solu-
tion of (3.10) is

T'(1)= T cos(2n(t — 7, *)), (3.11)

with Ty =2.1K and 7, *=0.087 (corresponding
to day 32).

We may thus conclude that the other
parameters in the radiation budget counteract the
orbital effect in such a way that the actual maxi-
mum in the globally averaged temperature occurs
in August and not in early February.

The model used here describes the surface tem-
perature only. The decrease of the amplitude with
height in the troposphere and the approximate
constancy of the phase in the lower troposphere
have not been treated here, but they may possibly
be accounted for by vertical exchange processes.
The radiation budget data used in our study come
partly from Gruber (1977) and partly from Vonder
Haar and Ellis (1977). The two studies are not
completely consistent with eachother, because the
first study does not find the clear annual variation
in the absorbed shortwave incoming radiation
which is clearly present in the other data set.

The annual variation in the global mean surface
temperature which has been discussed in this

section is present in other data sets. North and
Coakley, Jr. (1979) find an amplitude of 2.0 K and
a phase of 209 days, where the phase is defined as
the day, on which the maximum occurs. Oort
(1983), using data for the period 1958-73, finds an
amplitude of 1.8 K and a phase of 202 days. The
three studies are thus in good agreement with each
other.

4. On static stability

In this section we shall use the globally averaged
temperatures at the various levels to investigate
the variations in the static stability in time and
with respect to a vertical coordinate, here pressure.
We shall in other words use eq. (2.7) to calculate
values of the stability parameter.

The interest in the static stability comes only in
part from the special role which its pressure
dependence plays in quasi-geostrophic models.
These models are used only in a limited way in
operational predictions, but they are still impor-
tant in diagnostic data studies and in theoretical
work. The changes in the static stability in the ver-
tical direction are much more significant in the
efforts to expand the spectral methods to three
dimensions. So far, most models have used grid
points in the vertical direction, but some efforts
have been made to represent the vertical changes
in terms of vertical structure functions (Wiin-
Nielsen, 1971a, b, Kasahara and Tanaka, 1989,
Wiin-Nielsen and Marshall, 1990). In these
studies, one will note that the vertical changes of
the static stability are of vital importance in deter-
mining the class of normalized, orthogonal func-
tions, which can be used as vertical structure func-
tions. In this regard, we refer also to the study by
Jacobs and Wiin-Nielsen (1966).

It is most convenient to obtain ¢ at levels, which
are in the middle of the layers defined by the levels,
at which the temperatures are available in the data.
Let the temperature and the pressure be T, and p,
at the bottom of such a layer, and let T, and p, be
the same quantities at the top of the layer. The
expression for ¢ in (2.7) converted to temperature
and finite differences may then be written:

R(R T T2—T1>
o=————-——],

(4.1)
Pm \Cp Pm Pr— Dy

where pr, = (p, + py)/2 and T, = (T, + T,)/2.
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The expression in (4.1) has been used to
calculate o for each level and each month using the
global mean temperatures averaged over the seven
years available here. o has thus been obtained at 10
levels: 925, 775, 600, 450, 350, 275, 225, 175, 125
and 75 hPa.

Fig. 5 show the seasonal variation of the static
stability at selected levels computed from globally
averaged temperatures. Fig. 5a shows the changes
at the lowest level (925 hPa), where the deviation
from the annual means has been plotted. It indi-
cates the larger stability in the months November—
April and the smaller values in the remaining part
of the year. Also these changes are due to the
larger continentality in the Northern Hemisphere,
because the atmosphere becomes more unstable
due to the convection over the continental heat
sources. The same type of curve (Fig. 5b) is found
in the middle troposphere (450 hPa). Both curves
have two maxima during the year. The second
maximum in July is probably due to the larger
stabilities in the Southern Hemisphere during its
winter season. In the upper troposphere (Fig. 5c)
we observe a smaller stability in the pertod May to
November and a larger than average stability in
the remaining part of the year. We may thus con-
clude that at the tropospheric levels we find the
continental influence at all levels, especially in the
first Fourier components. Finally, in Fig. 5d we
observe that the seasonal changes of the stability in
the lower stratosphere is essentially out of phase
with the changes in the troposphere.

Fig. S shows also that the absolute values of the
deviations from the annual averages increase with
height. However, the static stability itself increases
with height. A measure of the relative variation is
the ratio of the standard variation and the mean. It
is at all levels less than 10% indicating that the
seasonal variation is relatively small.

It is well-known that the static stability can be a
function of pressure only in a quasi-geostrophic
model. For any forecast, one may naturally obtain
the static stability at each pressure level where it is
needed by calculating the area averaged tem-
peratures from the initial state at the required
pressure levels and proceed to calculate the static
stability using eq. (4.1). It has been noted by Gates
(1961) that the stability parameter o on average
appears to be inversely proportional to the square
of the pressure. It would thus appear appropriate
to use the present data to investigate the pressure
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dependence. For this purpose we shall fit a func-
tional dependence of the form

-3
aff)
Po

to the data which in this case are averaged at each
level over the total period. The constants ¢, and §
are found by linear regression techniques using the
equation

(4.2)

In o =1Ino,— 6 In(p/p,) (4.3)

Using all 10 levels (N =10), we find g,=10.73
and 6 =2.24. Fig. 6 shows the curve (4.2) using
these values of the parameters, while the dots are
the original data. We note some estimates, which
are too low, around 250 hPa, but the estimate

O'OOW
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Fig. 6. The curve is the approximation in eq. (4.2) for

0o =0.72925 and ¢ = 2.2365 including all levels (N = 10).
Dots indicate observed values.
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Fig. 7. As Fig. 6, but including only the eight lowest
levels (N =8) for 6,=0.9316 and J = 1.8864.

using (2.4) are generally good. Fig. 7 is similar to
Fig. 6, but the two points at the top levels have
been deleted from the data (N = 8). They represent
the very large stabilities in the stratosphere. In this
case we get 0,=0.93 and 6 =1.89, but a similar
underestimate is found in the upper troposphere.

In addition to the annual average, we have also
calculated the values of the two parameters for all
months of the year. These values have been used to
calculate how the available potential energy
depends on the vertical changes of the static
stability. To construct an example we shall assume
that (4.2) holds. We use then (2.7) to find how
the temperature depends on pressure. Using the
boundary condition T= Ty(x, y) for p=p, the
solution is:

T=Bp, °+(T—B) p~,

P.=DP/Po»  K=R/c,, 44)
with
2
_0GoPo 1
B=—% S+x—2 (4.5)

Egs. (4.2) and (4.4) are used to calculate the
available potential energy for an area. We find that

R 1 1 —
T g Gopodt2k—1 To, (46)

where the last factor is the variance of the surface
temperature.

Suppose now that we use the values of o, and &
corresponding to the annual average for the
calculation of 4 in a given month, where the
appropriate values are g and 6*. The relative
error would then be

gy 0+2k—1
ToFr42k—1 (47)

The relative error has been calculated for each
month of the year. The results are shown in Fig. 8
indicating that the relative error is everywhere
less than 5% with positive values in the period
November to April and negative errors for the
remaining part of the year. We may thus conclude
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error ()
o

Fig. 8. The relative error in calculating the available
potential energy, if the appropriate monthly values of the
stability, according to eq. (4.2), are replaced by the
annual mean values.

that the annual changes in the static stability are of
minor importance for the calculation of the quasi-
geostrophic, available, potential energy.

5. Conclusions

The investigation of globally averaged tem-
peratures at many tropospheric and stratospheric
levels has provided an explanation of the observed
seasonal changes. The data set used here agrees
with other observational studies showing that the
global mean temperatures have a maximum in
July-August and a minimum in January-
February. We have shown that the observed
changes are opposite to the predicted seasonal
changes due to the ellipticity of the orbit of the
Earth around the Sun. The observed seasonal
changes can be described by the typical annual
cycle in the planetrary albedo which has large
values in January and small values in July. This
seasonal change in the albedo is due mainly to the
larger continental area in the Northern
Hemisphere as compared to the other half of the
Earth.

At the present time the Perihelion falls very
close to the beginning of the calender year.
Approximately ten thousand years from now the
Perihelion will occur in the middle of the year.
Assuming that the effects of ellipticity and albedo
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are independent of each other we should then
expect that the two effects will be in phase resulting
in an annual variation of the global mean tem-
perature considerably larger than at the present
time.

Agreement between predicted and observed
seasonal changes in the global mean temperature
is obtained only if the heat capacity used in the
simple climate model is that of the atmosphere. We
have thus made the assumption that the remaining
parts of the climate system does not influence the
changes in the global mean temperatures on a
time-scale as small as a year or less. This assump-
tion is supported by the fact that the observed
changes may be described as a result of systematic
seasonal changes of the planetary albedo. These
changes seem in the first approximation to be
determined by the influences of the clouds on the
albedo.

The globally averaged temperatures have been
used to study the seasonal and height changes of
the static stability. As expected, we find larger than
average values in January-February and smaller
values half a year later in agreement with the
effects of continentality on the stability. The verti-
cal variation of static stability can with good
approximation be described as inversely propor-
tional to a power of the pressure. The value of the
exponent is reasonably close to —2, but somewhat
larger if both tropospheric and stratospheric levels
are included and a little smaller if only the
tropospheric values are included in the statistical
analysis. The seasonal variations increase with
height in an absolute sense, but since the static
stability itself also increases with height, we should
use a relative seasonal change which turns out to
be quite small (less than 10%) as measured by the
ratio of the root-mean-square deviation and the
annual mean value.

The observed changes in stability are used to
calculate the relative error in the computation of
available potential energy based on a quasi-
geostrophic formulation discussed in Section 2 of
the paper. In fact, the relative error is calculated
for each month in the case, where the annual mean
value replaces the appropriate value for the month.
It is found that the error in all cases is less than
5%, but with a seasonal change in agreement with
the observed changes of the static stability.
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