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ABSTRACT

Several series of experiments were performed in a stratified towing tank to study the near-field
flow of a linearly stratified fluid over an isolated three-dimensional hill. Streamlines were
obtained in the laboratory using a stereographic method to determine the paths of plumes of dye
released upstream of the hill. Velocities over the hill center were obtained by analysis of video
recordings of dye plumes and with a propeller anemometer. The results of these experiments are
compared with numerical solutions, computed using Fast Fourier Transforms, of the linearized
equations of motion for an inviscid fluid. Numerical solutions were obtained using two different
upper boundary conditions: one represents flow in a fluid of infinite depth and the other flow in
a fluid of finite depth. Near the hill surface, the predicted streamline deflections were quite similar
in both cases except for Froude numbers close to one in the lee of the hill. Good agreement with
the measurements is found for Froude numbers (based on the hill height) greater than about 2.0.
For Froude numbers greater than about 4.0, flow patterns were observed to differ only slightly

from those for neutral flow.

1. Introduction

The interest in the flow of a stably-stratified
atmosphere over mountains has a long history.
Miles (1969) and Smith (1979) have presented
excellent reviews of earlier theoretical advances.
Much of the earlier work was directed toward
understanding the far-field lee wave structure.
More recent concerns about the transport of air
pollutants released in complex terrain have
prompted efforts toward examining the flow
upstream and nearer the hill’s surface.

Of particular interest in the present work are the
paths of streamlines around an isolated hill. Hunt
et al. (1979), among others, showed that the most
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important factor in determining the location and
magnitude of the maximum ground-level concen-
tration of pollutants released from a source
upwind of a hill is the closeness of the plume’s cen-
terline to the hill’s surface. Since in steady flows
plume paths follow streamlines, Hunt (1985)
proposed incorporating the knowledge of
streamline paths into a Gaussian plume model as
a method of predicting ground-level concentra-
tions. Since streamlines are strongly affected by the
hill shape and by the stratification, it is essential
for such a model to have an accurate method of
predicting streamline paths for different hill shapes
and stratifications.

Computational methods that use the fully non-
linear equations describing fluid motion over an
arbitrarily shaped, isolated, three-dimensional hill
are too complicated and time consuming to be
used for computing streamline paths in a practical
prediction method such as that described in
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the previous paragraph. Therefore, approximate
methods must be used. The most common
approximations are to assume that the fluid is
inviscid and Boussinesq and that the streamlines
are only slightly deflected by the presence of the
hill, so that a linearized form of the governing
equations accurately describes the motion. Several
efficient numerical techniques for solving these
approximate equations are currently available.
Smith (1980) formulated a numerical method
based on the Fast Fourier Transform that
efficiently solves the inviscid linearized equations
when the upstream flow is uniform and has a linear
density gradient. Blumen and McGregor (1976)
describe a numerical eigenfunction method that
allows for shear in the upstream flow.

The main objectives of the present work are to
produce a useful data set of real streamline paths
over an isolated, three-dimensional hill with which
approximate flow models can be compared and to
examine how accurately the small-amplitude
inviscid theory approximates this data set. To
accomplish these, laboratory measurements were
made of the flow field around a particular hill
towed through a stably stratified water channel.
Specifically, the streamlines near the hill surface
were measured in the laboratory by using a
stereographic technique for accurately locating the
position of dye plumes from sources upstream of
the hill. In addition, the velocity profile above the
center of the hill was measured using video techni-
ques as well as a propeller anemometer. The
laboratory measurements were then compared
with the results of numerical solutions of the
linearized inviscid equations. The numerical
techniques used were similar to those described by
Smith (1980).

Since our laboratory experiments were per-
formed in a towing tank, we extended Smith’s
(1980) solution to the case of a fluid of finite depth.
That is, the linearized equations were solved with
an upper boundary condition of no displacement
at a finite height above the surface as well as with
the traditional radiation condition.

The only previous measurements of streamline
paths in stably stratified flow over three-dimen-
sional topography apparently are those of Riley
et al. (1976), and their measurements were restric-
ted to extremely stable flows in which the
streamlines travel around the hill in nearly
horizontal planes. Baines (1979) made some obser-

vations of upstream blocking of stratified flow by
three-dimensional obstacles in a towing tank but
did not measure streamlines. Some preliminary
reports on the work described in the present paper
are given in Snyder et al. (1986) and Thompson
and Shipman (1987).

The model hill used in the present study is an
axisymmetric idealization of a real hill in Idaho
called Cinder Cone Butte. This particular idealized
hill has been used in many previous laboratory
studies of plume dispersion and the real hill has
been the subject of an extensive field study.
Descriptions of the laboratory and field studies are
contained in Lavery et al. (1982) and Strimaitis
et al. (1983).

The paper is organized as follows. In Section 2 a
brief outline of the linearized mathematical model
is given. The experimental apparatus and proce-
dures are described in Section 3. The experimental
results are presented and compared with the
theory in Section 4, and finally a summary of the
results and some conclusions are given in Sec-
tion 5. The pertinent details of the numerical
method for solving the linearized model are out-
lined in the Appendix.

2. Theory

Consider the steady flow of an unbounded
stratified fluid over an isolated hill as sketched in
Fig. 1. The hill is located at the origin of a Car-
tesian coordinate system with coordinates x along
the mean horizontal flow direction, y across the
mean flow direction, and z upwards. In this coor-
dinate system, the hill surface is specified by the
equation z = h(x, y). Upstream of the hill the flow
has a uniform approach velocity U and is linearly
stratified. Two upper boundary conditions will be
considered. For an unbounded layer of fluid, a
radiation condition is applied which is expected to
yield results applicable to atmospheric flows. For a
finite fluid depth, the vertical displacement at the

—

Fig. 1. Sketch of flow and coordinate system.
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upper boundary is set to zero which models the
experiments in the towing tank. Under the
assumptions of small deflections, an inviscid,
incompressible and nondiffusive fluid, the
Boussinesq approximation, and negligible Coriolis
forces, the equations representing the conservation
of mass and momentum may be approximated as:

ou dv Ow

ax+5+—5;—0 1)
B
poUZ—:=—Z—’Z)—gp, ()

where u, v, and w are the velocity perturbations
from the approach flow, p, is a reference density, p
is the perturbation from the upstream density dis-
tribution p(z), which is assumed to be a linearly
decreasing function of z, p is the perturbation of
the pressure from its hydrostatic value, and g is
the acceleration due to gravity. These are the
linearized equations of motion.

It is convenient to express these equations in
terms of a vertical displacement function. If the
coordinates of a fluid particle moving through
this steady flow field are represented as
[X(¢), Y(¢), Z(t)], where ¢ is time, then a vertical
displacement function %(x, y, z) may be defined
such that the vertical displacement of this particle
from its far upstream height z, is given by
n(X,Y,Z)=Z—z, In an analogous manner a
lateral displacement function &(x, y,z) may be
defined such that 6(X, ¥, Z)= Y — y,, where y, is
the value of Y far upstream.

Within the approximations already made,

dZ on

With this relationship (1)—(5) can be reduced to
the following single equation for n(x, y, z),

e (Vzn)+ me 0, (7
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is the constant buoyancy frequency.
Application of the two-dimensional Fourier

Transform pair (with the transform denoted by
«"») defined by

fi(k, 1, z)
1 © o .
=12 J‘ f n(x, y, z)e =+ dx dy, (8)

and
1% ,2)= Jw ik, 1, 2) e+ D) diedl, (9)

where k and / are the wavenumbers in the x and y
directions, respectively, reduces (7) to

R/

?+m 1 =0, (10)
where

m? = (k* 4+ 13)(NYU?* - k¥)?/k> (11)

For an infinitely deep fluid, the solution of (10) is

fi(k, 1, z) =1j(k, 1, 0) exp(imz) (12a)

in which m is taken as the positive imaginary root
of (11) if k2> N?/U? or the sign of m is the same
as the sign of k if k> < N2/U? in order to eliminate
an unbounded solution and to satisfy the radiation
condition (i.e., energy may propagate only away
from the hill). Now #(k, /,0) can be found by
transforming the linear boundary condition

n(x, y,0)=h(x, y) to give
fi(k, I, 0) = ﬁ(k, l). (12b)

Thus, n(x, y, z) can be expressed as

n(x, », z)=.[00 jw h(k, 1) etk Dzgitkx+ 19 qfe d,
(13)
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With the transform of the hill shape specified or
computed numerically, the double integral in (13)
can be approximated numerically using Fast
Fourier Transform techniques to produce the
vertical displacement function.

The transforms of the perturbation velocity
components can be found in terms of # as

M{J”Z)=%(.§_k2> ik, 1, z), (14)
ﬁ(k’U[’Z)=;—’:Z(Z—z—k2) ik, 1, 2), (15)
K”‘_(_’f’Ul’—ZL iki(k, I, z). (16)
In the linear approximation,

and the transform of é can be obtained from (15)
in terms of 4 as

8k, 1, z)= —kL<N2 (18)

el o i k2) ik, 1, z).

Thus, with # given by (12), », v, w and J can be
approximated by inverting (14), (15), (16) and
(18) using Fast Fourier Transforms.

For a fluid layer of finite depth D, the upper
boundary condition is #n(x, y, D)=0 which
can be transformed to #(k, [, D)=0. With this
boundary condition, the solution of (10) is
ik, I, z) = — h(k, I) sin(m(z — D))/sin(mD), (19)
in which m is taken as the positive root of (11).

Singularities (simple poles) exist at points in
(k, I) space where mD = nr, for any integer n. For
a fixed /, these singularities are located at k=
k,(I), where

ka()=3(N?/U? —n*n?/D*—1?)
i %[(NZ/UZ_nLnZ/DZ_lZ)Z
+4N21YU?]. (20)

The real values of k, are obtained by chosing the

plus sign when /#0 for n=1,2,... When /=0,
the singularities are on the real k axis at

k,(0)=N*U?—n’z*D?, n=1,2,.,m, (21)

where n, is an integer such that
nr<NU<(n,+1)n. (22)

These singularities must be considered in
evaluating the inverse transform

2= [ r-hte

x sin{m(z — D))/sin(mD)]

x e+ dk dl. (23)

One method of evaluating (23) is to divide the
part of the integrand in brackets into its analytic
and principal parts and deal with each separately.
The principal part can be obtained as

i rt r-
ﬁP(k’ I’Z)= ( = + - )a
=1 k_kn k+kn

n=

g, if1=0
”"{oo, ifl;éo}’ (24)
where
r¥=+(nn/D*)[NY*U*2+1]!

x sin(nnz/D) h(k,,, D)/k, (25)

are the residues of #(k, /, z) at the poles located
at k= tk,. The analytic part is found by sub-
tracting i, = —#p.

The inverse transform of the analytic part is
obtained numerically with Fast Fourier Trans-
forms as above. The principal part can be inverted
by first considering the inner integral (with respect
to k) which gives

j iplk, 1, 2) ks gk

=Y (rf e+ e ), (26)
Then, application of the numerical Fast Fourier
Transform to (26) with respect to [ will give
np(x, y, z). Application of Cauchy’s Residue
Theorem to the inner integral of (23) and the use
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of group velocity concepts show that the con-
tribution of these singularities are lee waves and
apply only for x>0. Therefore, np(x, y, z) for
x>0 is added to the contribution from the
analytic part.

Equations for the transforms of the lateral
deflections and the velocity perturbations are
derivable from the equations of motion and are
similar in form to (19). They possess the same
singularities which must be handled in the same
manner.

The idealized circular hill shape studied here is
represented by

h(x, y)=H/[1+ (r/L)*], (27)
where r? = (x?+ y?), H is the hill height and L is
a lateral scale of the hill. An approximate sketch
of this hill is shown in Fig. 1. The transform of
this hill shape is

h(k, )= —% HL? kei(xL) (28)

where k= (k?+1?)"? and kei is a Kelvin func-
tion, as defined by Abramowitz and Stegun
(1964). For comparison, the transform of
Crapper’s hill shape

h(x, y)=H/[1+ (r/L)*]*?, (29)
which was used in the theoretical studies of
Crapper (1959) and Smith (1980) is

Ak, 1) = % HL? exp(—«kL). (30)

Both of these transformed hill spaces are plotted
in Fig. 2. (Also plotted is the transform of a trun-
cated version of (27) that will be described in the
next section. For the purpose of comparison, the
plots in Fig. 2 have been scaled so that the three
hills have the same mean radius.)

The two nondimensional parameters in the
infinite-depth problem are F= U/(NH), which we
define as the Froude number of the flow, and
A = H/L, the aspect ratio of the hill. The assump-
tion that the hill generates small amplitude dis-
turbances requires F to be large and 4 to be
small. Just how large F and how small 4 have to
be to give a reasonably accurate approximation
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Fig. 2. Fourier Transform of hill shapes. (R is the mean
radius of the hill; for Crapper hill, R = L; for idealized
CCB, R=1.111L; for truncated CCB, R=1.012L)

to the fully nonlinear flow is difficult to determine
from analysis alone. Generally, for a specified
value of A4, a critical value of F, say F,, can be
estimated at which the linear theory produces a
vertical streamline, implying the onsét of wave
breaking somewhere in the flow. Since wave
breaking means that nonlinear effects are impor-
tant, the linear approximation would be expected
to be accurate only when F> F_. A typical value
of F,~2.0 was computed by Smith (1980) for

_ hydrostatic flow over Crapper’s hill.

In the finite-depth problem, an additional
parameter is H/D. The linearized approximation
also requires this parameter to be small.

In practice, it appears that at least 4 < 1.0 and
H/D < 1.0 are required for the linear theory to
produce a reasonably accurate approximation
near the hill surface. The hill used in the
experiments described in the next section has
A~04 and H/D~0.14. This value of 4 is quite
large for valid use of linear approximations and
perhaps a nonlinear analysis would be warranted.

Computer programs using Fast Fourier Trans-
forms were written to approximate the Fourier
Transform of a specified hill of arbitrary shape and
the inverse Fourier Transforms of (13), (14), (15),
(16) and (18) were found for an infinite-depth
fluid. The numerical methods are outlined in the
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Appendix. Similar techniques were used for the

finite-depth fluid which dealt with the singularities
as discussed above.

3. Experimental details

The experiments were performed in the large

stratified towing tank at the EPA Fluid Modeling
Facility located in Research Triangle Park, North
Carolina. The tank is 1.2 m deep, 2.4 m wide and
25 m long. The test section of this tank has clear
acrylic plastic walls and floor to provide maxi-
mum visual access. Salt water with salt concentra-
tion varying in the vertical was used to produce the
stratification. In most of the experiments described
here, the density profiles were linear with a
buoyancy frequency, N = 1.33 rad s . The specific
gravity of the salt water varied from 1.2 at the
bottom of the tank to 1.0 at the free surface. The
depth of the fluid was typically 109 cm which is
about 7 times the height of the model hill. A
detailed description of the towing tank and its
operating procedures is given in Thompson and
Snyder (1976) and Hunt and Snyder (1980).

A towing carriage that travels on rails mounted
on the sidewalls of the tank allowed model
obstacles to be towed along the length of the tank
at speeds that can be varied between 2cms™!
and 50 cms~!. The hill was mounted on a flat
baseplate and this whole apparatus was suspended
upside down from the carriage and towed at the
surface of the water with the baseplate immersed
about 0.5 cm. Although the model was towed in an
inverted position the experiments will be discussed
as though the model was in an upright position.
The Froude number was varied in most cases by
changing the tow speed U, although in a few cases
the density gradient was decreased.

The model used in the experiments was a
truncated version of (27) given by

o) = {(H+c)/[1 + (L] —e

r<5H
0, ’

r>5H
(31)

with H=1545cm, L=38.75cm, and ¢=0.97 cm.
As shown in the figures, the model had a fairly flat
top and a maximum slope of 0.45 or 24.4°. The
model was truncated so that when mounted on the
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towing-tank baseplate it blended smoothly into
the flat surface at a radius of SH. Reference circles
were painted on the model at various elevations to
aid in the flow visualization. The numerical trans-
form of this truncated hill is plotted in Fig. 2.
Fig. 3 shows the arrangement of the model and

still cameras about the tank. The tracer used in
these experiments was a blue food dye diluted with
sufficient salt water to produce a plume that was
neutrally buoyant at the release height. This
mixture was released from a bent-over stack

located near the upstream edge of the baseplate

(x= —7.5H). For these experiments, a narrow

plume was desired, so that a thin tube (1.5 mm ID)

was used for the stack and the dye mixture was
emitted nearly isokinetically to form a streamtube.
For most of the tows, two or three stacks were
used.

The technique developed to measure the three-
dimensional plume trajectories is an application of
the common stereographic process in which two
simultaneous photographs taken from different
vantage points are combinded to provide a three-
dimensional representation. Both side- and bot-
tom-view cameras moved with the model as it was
towed so that several photos were obtained during
each tow. The side-view camera was suspended
from the towing carriage and directed obliquely
upwards through the layers of salt water to avoid
internal reflections. The bottom-view camera was

TOWING

MODEL
CARRIAGE HILL
. - 1 n
al ¥ e
) .
\ - ! SIDE VIEW
\ RN CAMERA
108cm H Tt
\ ! ~~ \
1 3~
\ ! 24° T~
\ l<—124 cm —>
1
! ;
L ! ’<~ 78 cm
\\ Y’
v 1
! t
1 I}
287 cm \\ "
i} t
\ t
il t
\ i
-
\'/  BOTTOMVIEW
A
CAMERA
Vi )/
I CAMERA
=l B CARRIAGE

Fig. 3. Cross section of towing tank showing model and
camera arrangement.
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mounted on a second carriage below the tank that
moved synchronously with the model. The
cameras were triggered simultaneously by radio
command.

The rather tedious process of resolving the
three-dimensional trajectory from pairs of
photographs is described in detail by Snyder et al.
(1986). Parallax and refraction of the light through
the stratified fluid were considered in computing
the true positions from the photographic represen-
tations. Each measured streamline was obtained
by averaging three realizations. The error analysis
shows that plume trajectories were measured to
within 1 cm of their true positions.

Vertical profiles of velocity were obtained over
the center of the hill for a range of Froude numbers
using another photographic technique. A video
camera was mounted on a rigid support extended
from the towing carriage to provide a side view of
the central part of the hill and the area above it.
Also included in the field of view were vertical rods
of known height and separation as references for
determining the positions of dye markers as they
passed over the hilltop.

The video recording of the dye as it passed over
the hilltop was played back on a stop-action
recorder/monitor system that was connected to a
“frame grabber” board in a personal computer.
The recording was scanned by eye to find a seg-
ment of a dye plume that contained a characteristic
feature (marker) that moved through the field of
view. The video image was digitized. The position
of the marker was determined and then tracked
through successive frames on the video tape. The
marker’s speed was obtained by determining the
distance the marker traveled (typically about
20 cm) through a number of video frames. The
estimated maximum error in determining the
velocity is about 8 %.

Additional measurements of the average speed
over the hill center were made with a propeller
anemometer (Enercorp Instruments Ltd., Mikro-
mini - water I, model 642w - m/1). The diameter of
the propeller blade was 0.8 cm. This unit was
installed on the end of a boom that extended from
the rear of the towing carriage so that the propeller
was positioned directly below the center of the
inverted hill with the boom off to one side. The
indicated speed on the instrument’s meter was
observed over the duration of each tow and
averaged by eye. Repeated calibrations indicated
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that the propeller anemometer measured speeds
to within a maximum error of about 10%.
Measurements were made for Froude numbers of
1.0, 1.5, 2.0 and neutral flow at heights above the
hill center of (z — H)/H =0.25 and 1.0.

4. Results

Streamline trajectories were measured for
Froude numbers of F=1.0, 2.0, 3.0, 4.0, 6.0, 8.0,
and oo (neutral flow). Sideview photographs of
dye plumes originating on the centerline far
upstream are shown in Fig.4 and planview
photographs of dye plumes originating off the cen-
terline are shown in Fig. 5 for Froude numbers 1.0,
20 and co. These photographs show the basic
qualitative features of the near field flow as a func-
tion of Froude number.

The sideview photographs show that at F= 1.0
and 2.0 the flows exhibit large downward vertical
deflections over the lee side of the hill. These were
observed to persist far downstream. In contrast, at
F=co, the flow has a more nearly symmetric
streamline pattern over the upstream and
downstream sides of the hill. The planview

EJF

Fig. 4. Side view of centerline dye plumes released at
zo/H =0.25,0.75, and 1.25. Flow is left to right.
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Fig. 5. Overhead view of dye plumes released at
yo/H= —1.0, z,/H=0.25. Flow is left to right. Extra
streamer on top in (a) released at y,/H= —0.5,
zo/H =0.75. Extra streamer on top in (b) released at
yo/H=00, zo/H=025.

photographs show that the streamlines in the flows
at F= 1.0 and 2.0 have lateral deflections that per-
sist for large distances downstream of the hill. This
horizontal divergence is associated with the large
vertical deflections down the lee side of the hill.
Again, in neutral flow the streamlines in planview
are fairly symmetric upstream and downstream of
the hill. The strong downward deflections in the
stratified cases completely suppress the separation
on the lee side of the hill that appears in the neutral
case. Another feature of the flow to note is that the
dye plumes are much more diffuse in neutrally

stratified flow than in stratified flow. This feature is
most evident in the sideview photographs; tur-
bulent diffusion, particularly in the vertical, is sup-
pressed by stratification.

Quantitative measurements of dye plume trajec-
tories originating on the centerplane, far upstream,
at heights of z,/H = 0.25, 0.50, 0.75, 1.00, 1.25, and
1.50 were determined for all Froude numbers for
which experiments were performed. Also, the tra-
jectories originating at laterally offset positions of
(yo/H, 2o/H)=(2.0,0.50) and (2.5, 0.25) were
obtained for all Froude numbers. In addition, tra-
jectories for some other laterally offset position
were obtained for some Froude numbers. Only
small differences were observed in the flow pat-
terns for Froude numbers at or above 6.0. That is,
for F=6.0 and 8.0 the flow field was essentially the
same as for neutral flow. This was also found to be
true in the numerical calculations.

Fig. 6 shows the comparison of the measured
and computed streamlines on the centerplane over
the hilltop for different Froude numbers. Results
from computions using both upper boundary con-
ditions, infinite fluid depth and finite fluid depth
(with D/H =".0), are presented as two styles of
dashed lines. As anticipated, comparisons for the
F=1.0 case (Fig. 6a) were not good. In fact, some
of the computed streamlines intersect the hill sur-
face. The measured streamlines exhibit a strong
convergence over the hilltop and closely approach
the hill surface on the lee side. The dye plume
originating at a height of z,/H = 0.25 was tracked
only to a point near the upstream surface of the hill
where it probably impacts on the hill and then is
spread broadly and thinly to cover the entire hill
surface above the release level. The comparisons of
measured and computed centerplane streamlines
were better for F=2.0, 3.0, 4.0, and oc. At F=2.0
the computed and measured streamlines compare
very well upstream and over the top of the hill but
not as well downstream where the measured
streamlines have larger vertical deflections. In the
lee of the hill at F= 2.0, the finite depth predictions
are somewhat closer to the measurements than are
those assuming an infinite depth of fluid. At
F=3.0, the streamlines are better predicted
downstream but less well predicted over the top of
the hill compared with the F=2.0 case. These
rough comparisons continue to hold true for
F>3.0.
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Fig. 6. Measured and calculated centerline streamlines
over ACC. ———- Calculations - infinite depth, -------
Calculations - finite depth, Towing-tank
measurements.

The effects of stratification on vertical deflec-
tions of streamlines can be seen in Fig. 7, which
shows the measured streamline heights above the
top center of the hill as a function of Froude num-
ber for all 6 release heights. Again, the dashed lines
in the plot show the numerical results. In this
figure, it is seen that significant departures from
neutral flow (F= o0) occur for Froude numbers
less than about 4.0. For F2 4 the streamlines are
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separated by a vertical distance of about 0.2H
which is not much different from their initial verti-
cal separation of 0.25H. This indicates that there is
only a moderate speedup over the top of the hill.
For F <4 the streamlines are more contracted, the
strength of the contraction increasing as F
decreases. At F=2.0 the average vertical separa-
tion is about 0.1 H, indicating strong speedup over
the hilltop. The numerical results consistently
underpredict the vertical deflections when F> 2.0
as noted earlier.

Comparisons of the quantitative measurements
of the lateral deflections with the computed results
for streamlines originating at a height of
zo/H =0.25 at several values of y,/H for Froude
numbers 1.0, 2.0 and oo are shown in Fig. 8. The
difference between predicted lateral deflection for
finite and infinite depths of fluid are small for all
cases. The computed trajectories do not match the
measured ones very well for Froude numbers 1.0
and 2.0, although the agreement is quite good at
F = o0. Lateral deflections for streamlines originat-
ing at zo/H =0.5 and 1.0 are shown in Figs. 9 and
10. Note that in some cases, two realizations of a
measured trajectory are plotted (e.g., Fig.9b,
for yo/H=20 and Fig. 10c). The agreement
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Fig. 7. Distance of streamlines above hilltop at center of
hill for various release heights. ———— Calculations -
infinite depth, Calculations - finite depth.
Measured values: A, z,/H=025; O, zo/H=0.50; O,
2o/H=0.75; O, zo/H=1.00; V, z,/H=125; and %,
zo/H =1.50.

between measured and computed streamlines
gets increasingly better as z,/H increases. The
measured streamlines tend to have larger lateral
deflections than the computed streamlines in
the presence of stratification; at F=10 and
zo/H =0.25, our worst case, the difference between
the computed and measured lateral deflections are
as much as 2H. For neutral flow the measured tra-
jectories meander more than in the stratified cases
due to the experimental factors discussed above,
but the mean trajectories compare quite well with
the computations.

A distinct observation drawn from the plots of
lateral deflections is that at the lower values of F
the lateral deflections persist for a significant dis-
tance downstream. As shown by Smith (1980), the
theory predicts that lateral deflections will persist
farther downstream the closer z, is to 0 and at
zo =0 the lateral deflections are permanent.

Vertical profiles of the measured and computed
streamwise component of velocity above the hill
center are shown in Fig. 11 for F=1.0, 1.5, 2.0 and
co. The infinite depth values are slightly larger

than those for finite depth. They do not match the
measurements well at F=1.0. For larger Froude
numbers the calculations are reasonably good
approximations to the data, although there is con-
siderable scatter in the data at the lower Froude
numbers. None of the experimental cases produced
a strong localized jet above the hill; for this flat
topped hill, there was a fairly deep layer of nearly

=
z
>
x
N
>
I ——-
o]
-5 -4 -3 -2 -1 0o 1 2 3 4 5
x/H
Fig. 8. Top view of streamlines originating at
zo/H=025. ————— Calculations - infinite depth, -------
Calculations - finite depth, Towing-tank
measurements.
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y/H

y/H

y/H

Fig.9. Top view of streamlines originating at
zo/H =0.25. ————— Calculations - infinite depth, -------
Calculations - finite depth, Towing-tank
measurements.

constant flow speedup. The measured speed of the
flow showed a maximum increase over the uniform
upstream speed of about 45% at F=10 and
increases of about 15% for F=2.0 and neutral
flow. The speed in the thin layer just above the top
of the hill decreases as the Froude number
decreases. A fluid particle traveling along the
streamline that just passes over the top of the hill

Tellus 43A (1991), 1

x/H

Fig. 10. Top view of streamlines originating at
2o/H =025 ————— Calculations - infinite depth, -------
Calculations - finite depth, Towing-tank
measurements.

has to give up more of its kinetic energy to poten-
tial energy as the stratification increases, so that its
speed at the hilltop will decrease as the Froude
number decreases. On the other hand, the
tendency for streamlines to pass around the hill as
the Froude number decreases results in a smaller
upward vertical deflection over the top of the hill,
so the fluid speed at a small distance above the
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Fig. 11. Vertical profiles of downwind velocity component over hill center.

hilltop has to increase as the Froude number
decreases. The combination of these two effects
causes the small jet at the hilltop for Froude num-
bers less than about 2.0.

Another important feature of the real flow in the
laboratory is separation on the lee side of the hill.
This occurs in our experiments in neutrally
stratified flow because the hill is rather steep. And
because the Reynolds number is large the flow
usually separates near the crest of the hill. In stably
stratified flow, it is possible for the lee wave

properties of the flow to suppress this separation.
The experiments of Hunt and Snyder (1980) on
stably stratified flow over three-dimensional hills
provide some guidance on this point. They showed
that lee side separation in stably stratified flows
is determined by the parameter A/4L, where
A=2rU/N is the fundamental lee wave wavelength
and 4L is the appropriate streamwise length of the
hill. When A/4L > 1, the flow over the hill is like
that of neutral flow; that is, separation is con-
trolled by the pressure field in the boundary layer
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over the ridge. For the present case, this means
that the flow separates near the crest. When 4/4L
is of order 1, separation is determined by the
pressure field associated with the lee waves. When
A4L ~ 1, the lee wave closely matches the contour
of the hill and separation is completely suppressed.
When A/4L < 1, separation occurs at the location
of the trough of the first lee wave; that is, the
separation point is located at x, & (1/2) 4, where x,
is the value of x at the point of separation. For the
particular hill used in this study, the above argu-
ment tells us to expect complete suppression of
separation at Froude numbers of the order of
unity. From observation, it appears that separa-
tion was suppressed for Froude numbers in the
range 1.0 to 2.0.

5. Summary and conclusions

Streamlines were computed for both an
infinitely deep fluid and one of finite depth (with
H/D =0.14, as for the towing tank). Near the hill,
the streamlines obtained from the finite-depth
calculations differed only slightly from those
calculated assuming an infinite depth.

The computed streamline paths matched the
measured ones quite well for Froude numbers
greater than or equal to about 2.0. For the Froude
number 1.0 case, the measured streamlines had
smaller vertical deflections downstream of the hill
and much larger lateral deflections than the com-
putations. The differences between measured and
computed trajectories were largest near the sur-
face. At lower Froude numbers in the lee of the hill,
the finite depth calculations gave somewhat better
agreement with the measurements.

Vertical profiles of the streamwise component of
velocity measured above the hilltop compared
quite well with the computed values for Froude
number greater than and about equal to 2.0. At
Froude numbers of 1.5 and especially 1.0, the
agreement was not as good. A fairly deep layer of
maximum speedup was observed for all cases. The
measured speed ratio over the approach flow for
Froude number 1.0 was about 1.5 and for neutral
flow was about 1.2.

The observed near-field flows did not differ
significantly from neutral flow for Froude numbers
as low as 6.0, and the differences were minor down
to a Froude number of 4.0. For Froude numbers
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less than 4.0, the near field flow was markedly
different from neutral flow.

The main conclusion of this work is that the
numerical solution of the inviscid linearized equa-
tions for stratified flow over an isolated three-
dimensional hill is an accurate method for
predicting streamline paths in real flows for
Froude numbers, based on the hill height, greater
than or equal to about 2.0 even though 4 ~04.
This lower limit of the Froude number for the
accuracy of the linear approximation is consistent
with the arguments presented by Smith (1980) for
the critical Froude number at which a vertical
streamline first appears in the flow. (The vertical
streamline that should appear above the hill at
F=20 is not shown in Figs. 6 or 7 because it
occurs at z/H ~3m, much higher than any dye
plumes used in these experiments.)

The calculations performed in this analysis are
first order in that they are based on linear
approximations to the equations of motion. It was
assumed that the perturbations of velocity and the
streamline displacements were small so that higher
order terms could be ignored. The calculations
could be improved by using a nonlinear analysis. If
second order terms were retained, solution would
involve using the first order solutions to derive
the second order equations which would be
inhomogeneous. Solution of these would result in
better calculation of the flow for smaller Froude
numbers and larger aspect ratio hills where the
assumptions of small perturbations are not strictly
valid.

Another important feature lacking in the linear
theory used in this paper is the ability to incor-
porate shear in the upstream flow. For the type of
flows produced in a towing tank there is, of course,
no shear in the upstream flow. But in real situa-
tions in the atmosphere or in a meteorological
wind tunnel, the flow over a hill will be a bound-
ary-layer type flow that is strongly sheared close to
the ground. It is important to incorporate this
effect into the prediction model. Perhaps a numeri-
cal method similar to that used by Blumen and
McGregor (1976) could be used for such flows.
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7. Appendix. Numerical methods

FORTRAN 77 programs, designed to run on an
IBM PC-XT microcomputer, were written to
evaluate the integrals described in Section 2. The
main part of each program was the Fast Fourier
Transform (FFT) subroutine. The particular
routine used for the calculations described here is
commercially available under the trade name
87FFT from MicroWay, Inc. of Kensington, MA.
In what follows we will describe the procedure to
obtain #(x, y, z), since the method is essentially
the same for the other dependent variables in the
problem.

A two-dimensional rectangular grid is construc-
ted over the x— y plane of the computational
domain with a constant mesh size Ax in the x
direction and Ay in the y direction. The hill shape
h(x, y) on this grid is then transformed using the
FFT routine to produce A(k, /) on a two-dimen-
sional grid in k —/ space with grid spacing Ak =
2n/(N, Ax)and Al=2n/(N, Ay), where N.and N,
are the number of grid points in the x and y direc-
tions, respectively.

One complication in performing the inverse
transform of 7(k, [) that was not dealt with in the
text is the treatment when k =0. These singular
parts were subtracted from the integrands before
numerical inversion, and the final solution was
adjusted by adding a constant to make n(x, y)=0
as x = — 0.

Another difficulty with the use of the FFT
technique is that it is a finite Fourier transform.
This implies that the hill is repeated periodically in
both the x and y directions. To avoid the influence
of these other hills, the computational domain
must be made large enough so any disturbance
they create is negligibly small. On the other hand,
the grid size in the computational domain must be
small enough to fully resolve the hill. After several
sample runs with different numbers of grid points
and grid spacings, it was found that N, = N, =256
and Ax = Ay = H satisfied all the restrictions.

As a reference for the computation time, the
calculations to determine #(x, y,z,) for the
infinite-depth case at a specified value of z,
required about an hour on an IBM PC-XT with its
8088 microprocessor and 8087 math coprocessor
running at 4.77 MHz.
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