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ABSTRACT 

Two filtered models (FM) are studied for their properties in providing initial data for primitive 
equation models (PEM) solved on a bounded. extratropical region. The methods are tested on 
actual data, and topography and friction are included. The results suggest that filtered models are 
powerful tools for suppressing gravity-inertia waves in the primitive equation models in cases 
where the horizontal normal modes are difficult to find. Inconsistencies between the initialization 
method and the prognostic model regarding vertical, finite direrences and horizontal 
approximations at the lateral boundaries. may give rise to low-frequency "noise". Inconsistent 
horizontal. finite dimerences chiefly give rise to high-frequency "noise" that can be removed by a 
time filtering technique. 

1. Introduction 

The primitive equations governing the large-scale 
atmospheric motion are the hydrodynamic 
equations of motion modified by thc quasi-hydro- 
static approximation. The general solution to this 
set of equations describes a wide range of physical 
phenomena. In this paper, the Rossby mode of the 
solution signifies an advective type flow of small 
Rossby number, while the graoiry mode consists of 
Lamb waves and gravity-inertia waves. k i t h  
(1980) demonstrated that a general state uniquely 
decomposes into a Rossby mode state and a 
gravity mode state of the system linearized about a 
state at rest. 

I t  is well known that the initial conditions for the 
primitive equations must be carefully chosen to 
avoid an amount of gravity mode energy that will 
ruin the forecast. Filtered models were early 
proposed as a tool to compute the required balance 
between the mass and wind field (Hinkelmann, 
1951; Charney, 1955; Phillips, 1960). This 
approach is called sratic initializarion. It was quite 
early discarded owing to a number of reasons. The 
method is hardly applicable in the tropics without 

special treatments (see Houghton and Washington, 
1969). Furthermore, physical processes are 
difficult to incorporate in the procedure. Finally, 
the diagnostic equations applied are generally 
formulated so as to be inconsistent with the 
primitive equations. 

To dispense with some of these problems, the 
method of dynamic inirializarion was introduced 
instead (Miyakoda and Moyer, 1968; Nitta and 
Hovermale, 1969). In this method, the primitive 
equations are integrated back and forth about the 
initial time step utilizing the geostrophic adjust- 
ment process. The adjustment is accelerated by the 
use of high-frequency damping devices. Unfortun- 
ately, this damping also destroys some of the 
Rossby mode energy, since it does not distinguish 
between small-scale synoptic features and large- 
scale, or high-order, gravity waves. Another draw- 
back is that the convergence of the iteration 
procedure is uncertain and time consuming. In a 
recent paper by Bratseth (1982). some of these 
problems seem to be eliminated. 

A recent approach to the initialization problem is 
the non-linear normal mode initializarion (Machen- 
hauer, 1977; Baer, 1977; Baer and Tribbia, 
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1977). The Machenhauer scheme, that claims the 
time rate of change of the normal mode coefficients 
for the gravity mode to vanish, was employed in the 
ECMWF model (Temperton and Williamson, 
1979). The Baer-Tribbia scheme, which is some- 
what more general, was tested by Tribbia (1979). 
The latter paper emphasizes the method’s applic- 
ability in the tropics. The main problem with this 
method is that it requires detailed knowledge of the 
horizontal and vertical modes of the linearized 
system. For most limited area models, the horizon- 
tal modes are hardly possible to find. Another 
problem is the lack of convergence for high-order 
vertical modes and for when physical processes are 
included (Temperton and Williamson, 1979). 

In this paper we wish to re-examine the static 
initialization method applied on a bounded, extra- 
tropical domain, to investigate how serious the 
above-mentioned problems appear to be in practice. 
Leith (1980) showed that in an f-plane model, the 
first iteration step in the Baer-Tribbia and Machen- 
hauer schemes corresponds exactly to the solution 
of the non-linear balance equation with a divergent 
wind component computed from the quasi-geo- 
strophic omega equation. This has been shown 
earlier by linear theory (Phillips, 1960) to be the 
required divergence to completely filter the gravity 
mode. Such a method of static initialization was 
tested by Lejenas (1977). showing rather dis- 
couraging results; it will nevertheless be employed 
here. A more complete filtered model from the 
Lorenz (1960) energy consistent hierarchy will also 
be considered. The filtering approximation of this 
latter model is that the time rate of change of the 
horizontal divergence vanishes. This is in many 
ways similar to the filtering condition of the 
Machenhauer scheme, and is therefore an inter- 
esting approach. We will employ a height-con- 
strained method, i.e. the wind field is adjusted to the 
mass field. To satisfy the condition for ellipticity of 
the non-linear balance equation, the analysed mass 
field must be modified in some areas. This problem 
is also encountered in height-constrained, non- 
linear normal mode initialization (Daley, 1978: 
Tribbia. I98 I). 

In the experiments, standard pressure coordin- 
ates are used and topography and Ekman friction 
are parameterized. The filtered models are des- 
cribed in Section 2. the primitive equation models 
and the experiments in Section 3 and the experi- 
mental results in Section 4. 

2. The initialization methods 

We have solved two filtered models to obtain the 
horizontal wind from the analysed mass field. In 
both models, the horizontal wind is split into a 
rotational and a divergent part: 

v = vy + v,, (2.1) 

where vv = k x Ow and vx = Vx. Here v is the 
horizontal wind, w the stream function, x the 
velocity potential, k the vertical unit vector and V 
the horizontal gradient at constant pressure. 

the balance equation (solved for w): 
The equations are: 

V’ 0 - v . ( f v w )  + 0 .  (VV’ VV,) + alv, . V(V d 

+tV.(v,.Vv,)+ v .  ( w 3 ] = 0 ;  (2.2) 

the omega equation (solved for w): 

a a  a 
at a p  BP 

v f * Vw + - Iv,. V(V’ w + f ) l  --- 

the continuity equation (solved for 1): 

v*x + 0, = 0; 

V’ w, + vv.V(V’w +f) 
the vorticity equation (solved for w,): 

- fw ,+a(v , .V(V~w+f) -w ,~w 
+ w V ’ ~ , + k * V ~ x ~ , } = 0 .  

The symbols are standard except for the vertical, 
static stability parameter S = -a@,/@. 

If the tracer a is equal to zero, we have the 
classical non-linear balance equation and the 
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quasi-geostrophic omega equation which corres- 
ponds to the first step in the Machenhauer iteration. 
Here, this model is called FM 1. The model FM2 is 
achieved when o = 1. The filtering approximation is 

a 
at 
-vv’x=o. 

The upper and lower boundary conditions are 

w = O  at p=200mb, (2.7a) 

and 

gv, * V H 

- f-’gC,lv,lk.V x v,l at p =  I W m b  
(2.7b) 

with v, = K(v, cos d + k x v, sin 0. 
Subscripts 0 and s denote lo00 mb and surface 

respectively. H = H(x ,y )  is the height of the terrain 
above mean sea kvel. We have chosen CD = 
3. lo-’, p, = 1.2923 kg m-’, K = 0.7 and B = &n. 

Mountains and Ekman friction are thus taken 
into account. 

The lateral conditions are 

x = 0 = y, = 0, 

where n is a coordinate parallel to the lateral 
boundary. The condition for w is adopted from 
Bolin (1956). 

With 4 given, w and x are easily solved from 
(2.2), (2.3) and (2.4) with a = 0. However, an 
iteration must be performed between (2.3) and (2.5) 
due to the Helmholr-term (faw,,lar) in the 
boundary condition (2.7). FM2 is mathematically 
very complex and an extensive iteration between 
(2.2). (2.3). (2.4) and (2.5) is performed with the 
FMl fields as initial conditions (Pedersen and 
Grenskei, 1969). An under-relaxation is applied to 
secure convergence. The solution of the non-linear 
balance equation is proved by lversen and Nordeng 
(1982) to be straightforward, provided that the 
geopotential field is adjusted according to the 
ellipticity condition (Courant and Hilbert, 1962). 
The maximum adjustments of the height of the 300 
mb surface, range between 50 m and 150 m for the 

different cases. Affected regions are confined to 
bounded areas with small absolute vorticity, mainly 
subtropic regions (Paegle and Paegle, 1976). 

3. The experiments 

To investigate how the different initial fields 
influence the solution, two primitive equation 
models are integrated. In model PEMI, the 
horizontal wind is described by its Cartesian 
components u and u. The equations formulated on 
a polar stereographic map with map factor m, can 
be written 

+ ( f  + K ) U  + m#,-F*=O, (3.lb) 

4Pf  + -.[ + 
+ #,WP+ so=o. - (3. lc) 

(3.ld) 

with 

F =  Fl i + F z  j = -gatlap, 

. = ( I  pC Do’ Iv Iv s a tp=  1 W m b  

The finite difference scheme applied to eqs. (3.1) 
was examined by Grammeltvedt (1969) (scheme F) 
and he showed that it conserves energy. 

The model PEM2 is constructed to obtain a 
model as consistent with the FMs as possible. 
Hence, the horizontal equations of motion are the 
vorticity and the divergence equations with wand x 

elsewhere 
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Fig. 1. The geopotential height field obtained after I 2  h integration with PEM I and the Euler backward scheme, i.e. 
I2September 197700GMT+ I2h.(a) IOOOmb.(b)500mb. 

Table 1. The series of experiments. The initial massjeld is a forecast of the geopotential height, 00 GMT 
12 September + 12 h. integrated with PEMl and the Euler backward (EB) scheme. In VIII. the corres- 
ponding forecast for the wind is used as initial wind 

Experiment no. I 11 111 IV V VI v11 VIM 

Initial wind FMI FMI FM2 FM2 FMI FM2 FM2 EB 
no no no 
div. div. div. 

~ ~~ 

Model PEMZ PEM2 PEMZ PEM2 PEMl PEMl PEMl PEMl 

No. of timesteps 5 I2 144 512 I44 I44 144 144 144 

as history-carrying variables. The equations are: 

V’ ly, + (v, + v,)*V(V’ly + f) + (V2 ly + f) V’X 

av 
a P  

+ WV‘ vp + k. vw x - - F,=O,  (3.2a) 

V’X, + V,’ V(V2X) -/V’ w + V2(-  v f. vv 
+ v. (v,. VV,) + 2v * (vx* VV,) + v. (WV,) 

- Fx = 0, (3.2b) 

& +  v.v+, + sw=o, (3.2~) 

v 2 x + w p = o ,  (3.2d) 

Is, + v * v+s + ws 4** = gws. (3.2~) 
In (3.2b). terms containing only x or w are omitted 
as in the balance equation of FM2. Here F, = 
- ga(k - V x ~ ) / a p  and F, = -ga(V. r)/ap. 

Eqs. (3.2a) and (3.2b) are solved as Poisson 
equations at each time step. Eqs. (3. I )  and (3.2) are 
solved on a horizontal grid covering a rectangular 
area on the northern hemisphere of approximately 
12,000 km x I 1,000 km. The mesh size is d = 300 
km at 60° N. The filtered models are solved using a 
non-staggered grid. The same grid is used with the 
primitive equation models. The vertical area of 
integration between 200 mb and 1OOO mb is 
resolved in four layers of thickness A p  = 200 mb 
with the vertical motion o computed at the 
intermediate levels. The boundary conditions arc o 
= 0 at p = 200 mb, and that all time tendencies 
vanish at the lateral boundaries. To prevent 
non-linear, numerical instability, a second-order 
filter (Shapiro, 1970) is applied to the time 
tendencies at each time step. The time step is AI = 
600 s. 
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Fig. 2. The horizontal divergence at 12 September 1977 00 GMT + 12 h. Units s-I. The thick continuous line 
signifies zero divergence, D indicate divergence and C convergence. (a) FM I ,  (b) FM2, (c) the field achieved by I 2  h 
integration with PEM I and the Euler backward scheme. 

To get a reference for our results, a 12 h PEMl 
forecast was made at 00 GMT 12 September 1977 
with FM2 initialization and a Euler backward time 
scheme. The initial mass field was taken from the 
routine objective analysis made at the Norwegian 
Meteorological Institute (Bjwheim, 1979). The 
resulting forecast for mass field and wind contained 
very little high-frequency “noise”. 

The mass field, I2 September 1977,OO GMT + 
12 h displayed in Fig. I, constitutes the basis for a 
series of prognostic integrations with the non- 
damping leap-frog time scheme (see Table 1). The 

corresponding initial wind is obtained from FM1, 
FM2 or the Euler backward integration. The 
differences between FMl and FM2 are primarily 
manifested in the horizontal divergence. The 
divergence of the initial wind fields is shown in Fig. 
2. The FM1 and the FM2 divergences are similar, 
the latter with somewhat larger amplitudes. A 
closer examination reveals that the divergent part 
of the FM2 wind is about 10%-25 % stronger. The 
divergence of the wind obtained from the Euler 
backward integration, resembles that of the filtered 
models. However, due to the stationarity of waves 
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with wavelength twice the mesh size in a non- 
staggered grid (Mesinger and Arakawa, 1976), it 
contains some small-scale energy. In general, 
stationary waves, for example forced by topo- 
graphy, will not be damped by the Euler backward 
time scheme. 

4. Rerulb 

One of the reasons for discussing the schemes 
presented in this paper is that the horizontal modes 
are difficult to find. As a consequence, we are not 
able to decompose a general state of the system 
into a Rossby mode and a gravity mode. The 
vertical modes, however, can be found by the 
method of Okland (1972). The matrix to be 
diagonalized is in his case symmetric and the 
eigenvectors are orthogonal. The corresponding 
eigenvalues are the phase speed of pure gravity 
waves. They are given in Table 2, while the 
normalized eigenvectors are displayed in Fig. 3. 
These eigenvectors do not exactly diagonalize the 
models PEMl and PEM2 due to both a horizon- 

Table 2. Phase speeds for linear gravity waves in 
the present four layer model 

Vertical P h w  
Mode order speed (m s-') 

0 254.9 
I 42.6 
2 23.5 
3 16.2 

0 0.S - n=O. ---- n. 9. -.- n-2. -. ........ n.3. 

Fig. J. The normdied verticd eigenvcctws Pm for linear 
gravity-inertia waves. 

tally constant static stability and slightly different 
vertical finite differences. The eigenvectors are 
found only for the putpose of qualitative dis- 
cussions. Let P be the matrix with the eigen- 
vectors as columns. With 6 expressing the horizon- 
tal wind divergence, the equation of continuity, 
(3. Id) or (3.2d), can be integrated. 

Defining 

we have w = -ApM& = - A p J @ &  where 

&= - 1) 
is & projected into the phase space of the vertical 
modes and 

b.522 0.752 0.386 0.084 
1.030 0.841 -0.358 -0.327 
1.523 0.485 -0.489 0.456 

p.999 -0.063 0.018 -0.008 (4.2) 

We now see that w, is clearly dominated by the 
external mode a,, while the internal modes are 
better traced at the upper levels. 

In Fig. 4, the absolute values of w averaged over 
a central region of the integration area are shown 
as a function of time for each level. The initial wind 
is from FMI. For the case of initial divergence 
inc lzd ,  an almost time-independent development 
of Iwl is obtained from both PEMl and PEM2. 
When initial divergence is omitted, a distinct 
oscillation about this constant value is excited. This 
oscillation with a period of about 10 h is hardly 
traceable at lo00 mb, but is very clear at the upper 
levels. The oscillation is therefore probably due to 
an internal gravity-inertia wave, and a look at the 
time development of w at a single point indicates 
the first internal mode. Figures for the case with 
initial wind from FM2 show very small differences 
from the curves in Fig. 4. Hence, it is of vital 
importance that the initial wind contains diver- 
gence, and the divergence obtained from FMl or 
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1 I 
1. a I -  b - - - - c 0- LOOmb 0-f l  4OOmb 

I I 

cn m 
Q l! Q 1: 

c? 600mb p )  0 . 7 -  -- 600 m b 

time (h) time (h) 

Fig. 4. The area mean of the absolute value of w versus time. Thick continuous line: with initial divergence; thin 
continuous line: without initial divergence. (a) Initial wind from FMI and prognostic model PEM2. (b) Initial wind 
from FM I and prognostic model PEM 1. 

Fig. 5.  The area mean of the absolute value of the lo00 
mb height tendencies. All tests include initial divergence. 
Curve I: initial wind from FM2 and prognostic model 
PEM2. Curve 11: initial wind from FM2 and prognostic 
model PEMI. Curve 111: initial wind from the 12 h 
PEMl forecast with Eukr backward scheme and 
prognostic model PEM I .  

FM2 is satisfactory. This contradicts what was 
found by Lejenas (1977). but is in accordance with 
the linear theory of Phillips (1960). 

The curves in Fig. 4 also reveal some differences 
between PEMl and PEMZ that mainly show up at 
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the 10oO mb level, which indicates the external 
mode. The PEMl forecast leads to slow& in- 
creasing and distinctly larger values for 101 at 
10oO mb than does the PEMZ forecast. At other 
levels, differences can hardly be detected. We 
therefore believe that the inconsistencies in the 
numerical approximations between the initiali- 
zation method and the prognostic model give rise 
chiefly to external gravity-inertia waves. Those 
waves that are excited due to horizontal finite 
differences should be of quite short wavelength and 
hence of high frequency. They are easily elimin- 
ated by means of the Euler backward time scheme. 
In Fig. 5, three curves are displayed showing the 
area averaged, and absolute geopotential height 
tendencies at 10oO mb. The curve for PEM I shows 
larger values (-9 m h-l) than the PEMZ curves 
(-5 m h-l), both with initial wind from FM2. The 
very smooth curve obtained when the Euler 
backward wind is input for PEMI, is somewhere in 
between (27 m h-I), and hence there is some 
low-frequency energy left in the system. This 
energy represents either internal modes due to 
inconsistent vertical differences and interpolations, 
or an external mode excited by the extrapolation of 
the wind that has to be made at the lateral 
boundaries. A test run with an integration area only 
covering the internal points in the original grid (so 
that no extrapolation is needed), reveals that the 



28 T. IVERSEN AND 7. E. NORDENG 

continuous 

boundary-effects can explain some, but not all, of 
the energy. 

Two of the experiments have been run for a 
longer time period than the others ( 5  12 timesteps). 
These were forecasts with PEM2. to find dif- 
ferences between the FMI and FM2 initial fields. 
We have already mentioned that the development 
of 101 for the primitive equation model does not 
show significant differences. To investigate this 
further, a Fourier-cosine transformation of the time 
evolution of the 10oO mb height tendencies was 
performed. The linear trend of the time series was 
removed. Subsequent to the application of a 
frequency smoother, En = ( E n - ,  + En + En+,)/3 
( u .  AI = nl1024, v = frequency, En = energy), the 
energy spectrum was averaged in space. This result 
is given in Fig. 6. There are very small differences 
between the two initialization methods, except 
within the frequency range 0.05 h-la.12 h-I, 
corresponding to a period range 8 h-20 h. Here 
PEM2 contains considerably more energy when 
initialized with FMI than with FM2. Since the 
main difference between FM I wind and FM2 wind 
is their divergence. the low-frequency differences 
probably trace differences in internal modes. 

5. Conclusions 
For limited area models on an extratropical 

region, the non-linear normal mode initialization 

cannot be applied in a straightforward manner. 
Other methods are therefore important, In this 
paper. the classical method of static initialization 
has been considered, since this method does not 
require knowledge of the horizontal modes. Two 
filtered models have been studied: the first, FMI, 
corresponds to the first iteration in the non-linear, 
normal mode initialization (kith,  1980); the 
second. FM2. assumes the time derivative of the 
horizontal divergence to vanish. In our case, both 
FM I and FM2 produce initial fields that satisfy the 
demands of non-oscillatory motions, except for 
some high-frequency energy than can be removed 
by a time-filtering method. When the prognostic 
model is not consistent with the filtered, diagnostic 
model, inconsistencies at the lateral boundaries and 
in the vertical treatment seem to be the more 
important. However, the inconsistencies do not lead 
to fatal developments in our case, but should be 
paid attention to when using static initialization. 

The complete FM2 method give less low-fre- 
quency waves. The preference of FM2 will prob 
ably be larger for models with more layers or a 
finer horizontal grid. When solving FM2, an 
iteration has to be applied. It may be argued that 
this iteration will not always converge. In some 
cases the introduction of an under-relaxation 
coefficient will help, but not always. However, in 
the non-linear, normal mode initialization there also 
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exist such problems when higher order internal 
modes are taken into account. These problems are 
still worse when friction and diabatic affects are 
included (Temperton and Williamson, 1979). How- 
ever, a satisfactory balance is achieved by inter- 
rupting the iteration after a few scans, even for the 
divergent cases. In our tests, both topography and 
Ekman friction are included. 

In these tests, mass field constrained initiali- 
zations are made. If one wishes to include wind 
observations, a variational technique (Stephens, 
1970) or combinations with dynamic initialization 
methods (e.g. Bratseth, 1982) can be employed. 
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