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ABSTRACT 
The existence of solutions to the non-linear normal mode initialization proposed by 
Machenhauer is examined in a low-order version of a shallow water model on an equatorial 
/$plane. The model contains only three modes: one Rossby mode and two gravity type modes. 
S i p k  physical forcing is included in the model. 

The analysis shows that generally there is more than one state that satisfies the initial 
conditions. Only one, however, can be accepted as a realistic initial state. Furthermore, in the 
case without non-adiabatic forcing, the iterative non-linear normal mode procedure can converge 
only to the realistic initial state. When the Rossby amplitude is increased beyond a critical value, 
the realistic initial state ceases to exist. The critical value of the Rossby amplitude decreases 
when the fluid becomes more shallow. Non-adiabatic forcing may also violate the existence of 
the realistic initial state. The critical forcing necessary to do this, decreases with decreasing depth 
of the fluid. 

1. Introduction 

Models used for weather forecasting based on the 
primitive equations have been used since the early 
1960s. These models are, unlike the filtered models 
used earlier, able to describe high-frequency oscil- 
lations (gravity waves). If the initial state is not 
properly chosen, the gravity waves tend to get 
unrealistically large amplitudes. Through the years, 
there have been several approaches on how to 
balance the wind field against the height field 
initially, in order to avoid unrealistically large 
high-frequency oscillations. The most successful 
ones have been the so-called non-linear normal 
mode initializations proposed by Machenhauer 
(1977) and Baer (1977). In these methods the 
physical variables are projected on the normal 
modes of the linearized equations. In principle, the 
normal modes are divided into two dilTerent 
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classes: the low-frequency Rossby modes and the 
high-frequency gravity modes. Machenhauer re- 
quires the initial tendencies of the gravity modes to 
be zero while Baer assumes the amplitudes of the 
normal modes to be dependent of two time scales, 
one fast and one slow, and requires that the 
variations on the fast time scale disappear. 

The Machenhauer procedure has been incot- 
porated in the ECMWF (European Centre for 
Medium Range Weather Forecasts) forecasting 
model and in that context has proved to be very 
effective in removing spurious oscillations from the 
forecast. However, some problems have also 
appeared. Temperton and Williamson ( I  979) 
reported that the procedure diverges for small 
values of the equivalent depth. They also found that 
when forcing due to diabatic effects was included in 
the procedure, the divergence occurred for even 
larger values of the equivalent depth. Tribbia 
(1981) showed that in a low-order model on an 

/plane, there is no solution to the height- 
constrained Machenhauer initialization for certain 
height fields, indicating that the problem with 
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EXISTENCE OF SOLUTIONS TO MACHENHAUER'S NONUNEAR NORMAL MODE INmALlZATION 3 I 

divergence might be a fundamental and not a 
numerical problem. 

This work is an attempt to gain some insight into 
the problems concerning the divergence of the 
unconstrained Machenhauer initialization pro- 
cedure by using a low-order shallow water model 
on an equatorial @-plane. The model, which is 
written in normal mode form (Gollvik and Than- 
ing, 1980). contains only three modes: one Rossby 
mode and two gravity-type modes. The small 
number of variables in the model enables us to 
partly use analytical methods. 

The model is discussed in Section 2. Section 3 
contains the analysis in the no-forcing case while 
the effects of simple diabatic forcing are considered 
in Section 4. A summary is given in Section 5. 

2. Themodel 

The model used in this investigation is a low-order 
version of a shallow water model on an equatorial 
@-plane. written in normal-mode form. described by 
Gollvik and Thaning (1980). A very similar model 
was used by Tribbia (1979). The governing 
equations are: 

(2.1) 

(2.2) ae 
ac 

/ M N N 3 3  

(2.4) 

Here the W's are the interaction coefficients and 
Dm.n., is the complex amplitude of an eigensolution 
$,,,.n., to the linear part of system (2.1 F(2.3):  (;)= 

I" Am,n,,Hn- I(q) - Bm.n.1 n +  I )e-+/*+/mA 

C m . n . j H n ( ) t )  
cl' '(-Am.n~,Hn- - Bm.n . jHn+ I(V ("' where (2.5) 

H ,  = a Hermite polynomial of order n (when n 
is even (odd) H, is symmetric (anti- 
symmetric) with respect to the equator) 

q = K1"8 

m = the zonal wavenumber 
n = a meridional index 
j = mode index (j = I refers to a Rossby 

mode. j = 2, 3 refer to gravity-inertia 
modes) 

m + K%,.,~ E:.iJ 
in I .- 

Am.nJ = 

1 
where u, L' and 4 are perturbations from the state of Cm.nJ. = - 
respectively. Furthermore (u.v.#.t) are scaled with Em.,,, = the kinetic energy of one single mode 
(U,U.2i2ra U,1/2R) and 1 = xlr,; 8= ulr, ( ra is the integrated over the whole domain 
radius and Q is the rotational frequency of the a,,, = the frequencies of the modes 

rest and from the mean geopotential @ = gH, %i., 

earth). The different a,,,,;s satisfy the following disper- 
sion relation: 
ah,, - U,,(m'K-' + (2n + 1)K-I'') - mK-' = 0. 

are two non-dimensional numbers, corresponding 
to the Lamb parameter and the planetary Rossby 
number, respectively. If we rewrite eqs. (2.1)-(2.3) 
in normal mode form we get a system of ordinary 
differential equations: 

(2.6) 
For some special choices of m and n the system 
(2 .1H2 .3 )  has solutions which are not auto- 
matically incorporated in (2.5). These are the 
Kelvin modes, the mixed Rossby-gravity modes (n 
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32 L. THANMG 

= 0; m > 0) and the sloshing modes (m = 0). The 
latter modes are sloshing across the equator with 
typical gravity frequencies. A feature of the 
sloshing mode, which is worthwhile pointing out 
can be seen from eq. (2.5). Since Am,n,, and B,,n,, 
both are purely imaginary, C,,,n,, is real, and 
furthermore m = 0 (i.e. el* = 1). a real value of the 
complex sloshing mode amplitude, means that we 
have no height field and only a v-component of the 
wind. If on the other hand the amplitude is 
imaginary, we have only a height field and a 
u-component of the wind. 

We can now construct a low-order system by 
selecting a number of modes which interact 
non-linearly with each other. In the present study, 
we want to use a system small enough to be treated 
analytically (at least partly) but still large enough to 
contain non-trivial non-linear interactions. Further- 
more, we require that the Machenhauer 
initialization procedure generates non-trivial 
gravity fields. A low-order system that fulfils these 
requirements is one containing one Rossby mode 
and two gravity modes selected in the following 
way. The Rossby mode is symmetric around the 
equator and has a zonal wavenumber k (i.e., m = k, 
n = 1, j = 1); one gravity mode which is a 
symmetric sloshing mode (i.e., m = 0, n = 1, j = 2); 
the third mode is a symmetric eastward propa- 
gating gravity mode with zonal wavenumber 2k 
6.e.. m = 2k, n = 1 , j  = 2). 

A low-order model like this only crudely 
describes the motions in the real atmosphere, but it 
still contains some of the most important features 
of a primitive weather prediction model, namely: 
(a) the Rossby mode which has a frequency and a 

balance between the wind and height fields that 
resembles the real atmosphere; 

(b) gravity modes which can describe high- 
frequency oscillations. 

There are of course, other possible three-mode 
systems, but this is the only type that combines the 
following features which we believe are essential. 
( 1 )  Both gravity modes are forced by wave-wave 

(2) All three modes contain non-linear interactions 
interaction of Rossby-Rossby type. 

with both the others. 
Let us introduce the following notation: 

D, = X, + iX, 
D, = Y, + iY,  
D, = 2, + iZ, 

where S, R and G stand for sloshing, Rossby and 
gravity respectively. 

We can now write the adiabatic low-order model 
as a system of six real ordinary differential 
equations: 

d - x, = u,x, - a,@: + y i )  - a& + zf), dt (2.7) 

d 
- dt X I  = -a& - a,x,x,, 

In these equations the a’s, /l’s and y’s are the 
interaction coefficients describing the non-linear 
wave-to-wave interaction. Table 1 shows the 
interaction coefficients for k = 6. K = 10 and E = 
0.05. 

In some experiments we have included a simple 
non-adiabatic forcing in the model according to: 

(2.14) 
- a0 + Bu + 2 + &(ti$ + u s ) =  F,, 
ar a8 

(2.15) 

F,, F, and F. represent a spatially-fixed forcing 
which does not interact non-linearly with the 
dynamical fields (e.g., differential heating from land 
and sea distribution). It may also be thought of as 
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Table 1. The inreroction cmflcienrs and rhe eigen- 
frequencies (0) for K = 10 ( H  z 8792.8 m). 
I? = 0.05 (U ~ 5 0  m s-I)and k = 6 

i =I W Yl 0 

I 1.43. lo-' -2.77. lo-' -9.64. lo-' 0, = 0.97 
2 1.20. lo-' -4.33. lo-' -2.03. lo-' u,= -0.13 
3 4.69. lo-' 9.58. lo-' -1.27*10-' 0,= 3.96 

the coupling between dimerent vertical modes 
appearing in multilevel models. The terms including 
+b describe non-linear orographic interactions in the 
model. 

In order to include the physical forcing into eqs. 
(2.7H2.12). we have to expand the fields accord- 
ing to: 

M N  

F, = 1 2: (/r + i/Z(;;") tfJq)e. -qh+llRA, 
in=-M n=O 

(2.16) 

M N  

F, = 1 ( / y  + ify)~,,(q) e-J/z+lM, 
m=-M n-0 

(2.17) 

M N  

F. = 1 2 (1";" + rf)Hn(q)e-qz'ztflRA, 
m- -M r = O  

(2.18) 

#b = 1 (&zm + it+$zn*) t f 2 ~ * ( v )  e-**/z+l~4. (2.19) 

For simplicity, the mountains are symmetric 
around the equator (n = 0 and n = 2 is used) and 
have components only in the wave number of the 
Rossby mode (i.e.. m = k). 

If we introduce expansions (2.16)-(2.19) into 
system (2.13)-(2. IS), expand the dynamical fields 
in their normal modes and make use of the 
orthogonality properties of the normal modes we 
will find that when forcing is included, the system 
(2.7)-(2.12) is replaced by: 

I 

* = O  

(2.20) 

d 
-Yr = ~ R Y I  - Blxr-vr + BzxtYi - B Q 9 r  + YIZI) dr 

+ FR+ + FRrp (2.22) 

= - 0 R . v ~  - BlXr.v, - BZXIYr - B,Qrzi - Yfzr) 
d 

+ FRlb + FRU' (2.23) 

d 
- ~ r = ~ ~ f f - Y I X r 2 r -  hQf-Y:)+ y3x121 
dr 

+ FG+ + Forp (2.24) 

d 
- q = - u  G 2 r - YIXr21 - 2hYrYl - h x f 2 r  + 
dr 

(2.25) 

where Fsfb, FR+. . . . contain the interactions with 
mountains and Fs,, FSu. F,,,,, ... describe the 
spatially-fixed forcing. 

If we denote the interaction coefficients describ- 
ing the physical forcing with 6 we can write the F's 
in the following way (let us choose Fs,,. FG+ and 
FGM as examples): 

Fs,, = 41 P;'. (2.26) 

= 6GIQr#&o + Y f e 0 )  + 6 G 2 Q r 6 z  + Yl&')* 
(2.27) 

F O l / = 6 G , f $ o +  6G~f$2+$~fi1+&6$$o 

+ & I f  22. (2.28) 

3. The no-forcing case 

In the case of no-forcing, the system (2.7)-(2.12) 
defines the model. The Machenhauer initialization 
method determines, for given Rossby amplitudes, 
the gravity amplitudes in such a way that the 
tendencies in the gravity amplitudes are zero 
initially. This means in our model that we shall 
require; 

dx, dx, dz, dr, 
(3.1) dr dr dr dr 

Conditions (3.1) give us the following system of 
non-linear equations: 

usxl - %Qf + y:) - a,(rf + 2:) = 0, (3.2) 

=-=-=-- - 0. - 
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34 L. THANING 

-asx, - a,x,x, = 0, 

0ozl- YIXrzr - ~ 2 c Y f  - Y ; )  + YIx,~, = 0, 

-0oZr - YlXrzt - ~Y~Y,Y ,  - YIX~Z, = 0 

(3.3) 

(3.4) 

(3.5) 
Let us choose a coordinate system such that the 

Rossby amplitude is a real quantity (i.e., y, # 0; 
y, = 0). This means that eqs. (3.3) and (3.5) are 
independent of the Rossby amplitude: 

-usx, - a,x,x, = 0, (3.6) 
-uozr - y,x,z, - y,x,zr = 0. (3.7) 

These equations can be satisfied only if 

(I) xr=zr=0, 
(x f r z f  arbitrary), 

00 or (11) x, = O;x, = - - 
Y l  

(2,. I, arbitrary), 

0, -Y,X,Z, 

=I 0, - YIUJ~, 
or (111) x, = - -. 9 z,= 

(x,,t, arbitrary). 

If alternative (I) is true, then eqs. (3.2) and (3.4) 
yield: 

asx, - a,y; - a1z; = 0, (3.8) 
%I, - Y2Yf + YIXfZ, = 0. 
Alternative (11) leads to: 

(3.9) 

a,yf - al(rf + I : )  = 0 (3.10) 0s  00 --- 
b 

002,  - y2y; - 002, = 0. 
*yf=O, 

(3.1 I) 

i.e. alternative (11) is of no interest to us. 

introducing 

Y4 = 

we can rewrite eq. (3.2) according to 

The third alternative is more complicated, but by 

Yl 

00 - Yl~s/a,’ 

Eq. (3.12) cannot be satisfied for arbitrary values 
of a,, a2 and a], since the condition 

2 ; ) O  

must also be satisfied. 
Since, in this investigation, a,, a, and a, are all 

positive, (3.12) cannot be satisfied and therefore we 
have to reject alternative (111). 

We can also find another reason to exclude 
alternatives (11) and (111) by considering the 
iterative method used to solve the non-linear system 
(3.2)-(3.5). We can write iteration number v + 1 
as: 

If we now start the iterative procedure with all 
gravity amplitudes zero (i.e., x$O) = xjo) = = rjo) 
= 0), then we can see from eqs. (3.14) and (3.16) 
that xp) and I!.‘ will remain zero for all values of v, 
that is, the iterative procedure leads to the solution 
given by alternative (I). 

In order to simplify the investigation of alter- 
native (I) let us rewrite eqs. (3.8) and (3.9): 

(3.17) 

(3.18) 

Eq. (3.17) represents a parabola and eq. (3.18) a 
hyperbola. These two curves are plotted in Fig. 1 in 
a qualitative way, in the sense that the signs, but 
not necessarily the magnitudes, of the interaction 
coefficients and the frequencies are correct. We can 
see from Fig. 1, that generally there are more than 
one possible initial state, that satisfy the Mach- 
enhauer condition. 

In Table 2 the values of the gravity amplitudes 
satisfying the Machenhauer condition are tabulated 
for different values of the depth and for k = 6, 

Table 3 contains the ratios between the terms 
describing the Rossby-Rossby interaction and the 
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EXISTENCE OF SOLUTIONS TO MACHENHAUER’S NON-LINEAR NORMAL MODE lNlTlALlZATlON 35 

Table 3. Intercomparison of the t e r m  in the 
equations dejning the initial state according to 
Machenhauer’s method. 

Fig. I .  The Machenhauer condition. The parabola 
illustrates dx,/dr = 0 and the hyperbola dr,/dr = 0. The 
intersections represent states that satisfy the Machen- 
hauer condition. 

gravity-gravity interaction in the two gravity 
equations (cf eqs. (3.8) and 3.9)) for two values 
o f  the depth. 

Tables 2 and 3 and the fact that in a multilevel 
model, J’, = I is  too large, except for the external 
mode, help us classify the three solutions into two 
groups: 

(I) containing solution I, in which: 
(a) the gravity amplitudes < the Rossby 

amplitude; 
(b) a balance exists between the linear gravity 

term and the term describing the Rossby- 
Rossby interaction. 

(2) containing solutions II and 111, in which: 
(a) the gravity amplitudes > the Rossby 

amplitude; 
(b) a balance exists between the h e a r  gravity 

term and the term describing the gravity- 
gravity interaction. 

I (I) 9.8- 10’ 2.7. 10) 
(II) 4. I -10-4 2. I . I O - ~  K = 10 

(Ill) 4.1 lo-‘ 2.1 . lo-‘ (H = 8792.6 m) 

(I) 3.7-10’ 1.3.10’ 
(11) 1.9 * lo-’ 7.3 * lo-’ 

(111) 1.5 - lo-’ 6.1. lo-’ 

Solution (I) corresponds to the solution with relatively 
small gravity amplitudes. Solutions (11) and (Ill) 
correspond to the solutions with relatively large 
gravity amplitudes. k = 6; E = 0.05 and y, = 1. 

In this paper we will henceforth refer to the 
solutions in group (I) as the “true Machenhauer 
solutions”. 

Now let us investigate to which point in phase 
space the iterative Machenhauer procedure con- 
verges. We again choose y, = 0 x, = z, = 0. Eqs. 
(3.13) and (3.15) then define the iterative 
procedure: 

XjD+ 1) = - +-, %yt 

US US 
(3.19) 

(3.20) 
00 

Introduce 

x, = i, + x;, z, = i, + z;,  

where i, and i, satisfy the initial condition, and 

Table 2. Gravity amplitudes sariflying the Machenhauer condition; E = 0.05, k = 6,  y, = I 

Solution I II 111 
H(m) X I  21 XI 21 XI 21 

8792.8 1.2.10-’ -5.1 * lo-‘ 3.1 * 10’ -2.5 * 10’ 3.1 - 10’ 2.5 * 10’ 
879.3 3.4 * 10-2 -3.2 * lo-’ 1.1 * 10’ -5.6 * 10’ 1.1 * 10’ 5.6 * 10’ 
87.9 7.3 1 10-2 -1.6. lo-’ 4.8.109 -1.6.10’ 4.8 * 100 1.6. 10’ 

0.9 1.3 * lo-’ -2.2 * 10-1 1.8*100 -2.9. 100 2.0- loo 3.1 * 100 
8.8 1.1 * lo-’ -6.8 * lo-’ 2.5 - 109 -5.8 * 100 2.6. 100 5.9. 100 
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36 L. THANMG 

The equations may then be written: 

Xju+ I)' = I f  i Z(d '  + (II(I(.Y)2, (3.21) 
sp+l)' = b2(fZ(d' + x'd'i + x(d' z (0)' ). (3.22) 

A linearization of this system yields: 

(3.23) 

The initialization procedure will converge only if 
the eigenvalues of system (3.23) fulfil the condition 

I11 < 1. 

The eigenvalues are the solutions to: 

-A(-A + b2i) - 2u2b2i2 = 0, (3.24) 

and the condition 1 > - I  yields that the solution 
(il, il) must be situated inside (on the concave side 
of) the parabola: 

I 
XI=--  b2 + 2u2z:. (3.25) 

while the condition A < I yields that the solution 
must be inside the parabola 

I 
XI = - - 2u2z:. 

bI 
(3.26) 

We shall deduce some further properties by making 
use of the two equations defining dx,/dr = 0 (eq. 
(3.17)) and dz,/dt = 0 (eq. (3.18)) which we can 
rewrite as: 

XI  = u1 + a2z:, (3.27) 

6 ,  I I 
XI=--- + -. 

62 I1 62 
(3.28) 

First we note that the parabola (3.26) and the 
horizontal asymptote to the hyperbola (3.28) (x, = 
Vb2) intersect at z,  = 0. Secondly, if we dneren- 
tiate eqs. (3.27) and (3.28) with respect to 2,. 

- XI = 2U,11, (3.29) 
d 

&lpI"bdr 

(3.30) 

we find that the parabola defining dx,/dr = 0 has 
the same slope as the hyperbola defining dzjdr = 0 
when 

b, 1 2u21, = -- 
6, I: '  

(3.3 I )  

We find the intersection between the parabola 
limiting the region in which A < 1 (eq. (3.26)) and 
the hyperbola (3.28) from 

bl I * 2u,I ,  = -- 
b, I : '  

This equation is the same as (3.3 l), which means 
that the parabola (3.26) intersects the hyperbola 
(3.28) at the value of zI where the hyperbola has the 
same slope as the parabola (3.27). For obvious 
reasons (cf. Fig. I), this value of zI has to be 
situated somewhere between the 2,'s defining 
solution (I) and solution (11) in Fig. 1. This means 
that if there are three solutions that satisfy the 
Machenhauer condition, the iterative procedure 
can converge only to the "true Machenhauer 
solution" as illustrated in Fig. 2. If the parameters 
are such that we only have one solution (e.g., if the 
parabola dx,/dr = 0 is shiRed high enough so that 
solutions (I) and (11) disappear), the remaining 
solution is always above the asymptote and the 
iterative procedure cannot find it. 

The next  step in order to understand the 
mathematical properties of the system will be to 

Fig. 2. The convergence of the iterative Machmhauer 
procedure. The procedure diverges outside the hatched 
region. 
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investigate what happens when we vary the 
magnitude of the meteorological amplitude, y,. 
From eq. (3.17). we see that if we increase y,. the 
parabola will be lifted (cf. Fig. I). In the same way, 
eq. (3.18) tells us that an increase ofy, would move 
the branches of the hyperbola somewhat away 
from their asymptote. These features are illustrated 
in Fig. 3. In  this figure, we see that when y, is 
increased, the solutions (I) and (11) will become 
closer, and obviously there must be a critical value 
ofyr where we lose the two solutions (I) and (11). 

31 I 

Fig. 3. The influence of changing the Rossby amplitude 
y,. Full line is for y, = y,,. dashed line for y, > yr,. 

I 

Fig. 4.  The values of one gravity amplitude (2,) 

satisfying the Machenhauer condition for dimerent values 
of the Rossby amplitude (I;). 

We can also describe the same feature by 
eliminating xf from eqs. (3.17) and (3.18): 

(3.32) 
Y2 a2 

Y3 0s  
f l  

--- 

Fig. 4 shows characteristics of eq. (3.32) with the 
current signs of the interaction coefficients. We see 
that for small values of y;, there are three possible 
values of zf. that is, three solutions, and that when 
yt > y:e,,t the two solutions where z, < 0 are lost. 

In Fig. 5, eq. (3.32) is illustrated for different 
values of K that is, for different values of the depth 
of the fluid. Fig. 5 tells us that if we decrease the 
depth of the fluid (increase K), the critical value of 
.vf will also decrease. 

Fig. 6 shows the values ofyfc,,, for k = 6. 

4. The case with forcing 

When we include physical forcing in the model, 
the appropriate equations are given by eqs. 
(2.20H2.25). The Machenhauer condition then 
leads to (still for the case y, = 0): 

Fig. 5. Same as Fig. 4 but the variation of the equivaknt 
depth (H) is included. I( - I/H. 
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asxl - oll~f - a,(zf + 4) 

-osx, - a,x,xI = 0, 

+ Fw=O, (4.5) 
(4.6) 

oGzi - ylxrzr - y2Y: + y jx lZ i  + + FOrf= O* 

(4.7) 

(4.8) 

As in the case without forcing, we see that x ,  = zr 
= 0 satisfies eqs. (4.6 and 4.7) and also that these 
values of x, and z, are the same as those yielded by 
the iterative procedure. Therefore we again have to 
deal with a two-dimensional problem namely: 

(4.9) 

€ = 0.02 -oGzr - YIX ,Z I  - YJXlZ ,  = 0. 

osxl - %yf - a3zi + FSH= 0, 

oGzl - Y2Yf + y3xlzl  + + FOrf= O' (4.10) 

We found earlier that the Machenhauer proce- 
dure diverges in the case without forcing if yf > 
yfc,,,. By setting 
Fsrf = -%Yfcar (4. I I) 

we can estimate the forcing necessary to violate the 
non-linear normal-mode initialization. From eqs. 
(2.26)-(2.28) we get: 

Fsrf= 412'9 (4.13) 

+ FGrf= -Y2Ykt* (4.12) 

Fig. 6. Critical values of the Rossby amplitude (Y,~,,) 
beyond which "the true Machenhauer solution" does not Forb = &,(y, f iO + y&) 

exist. k = 6. + sG2err^,.2 + Yl&')* (4.14) 
U . O + d  f 2 k . 2 + 8  f U . 1  

FGrf= s G 3 f w  01 W 01 h osxi - %yf - a 3 ( z f  + $1 + Fsl/= 0, (4.1) 
+ & f E 0 +  d G 7 f 2 2 *  (4. IS) 

-osxr - a,x,x, + Fslb + Fsv= 0, (4.2) 
The forcing on the v-component of the wind in 

wavenumber zero calculated from eqs. (4.13) and 
(4. I I )  (k = 6, E = 0.05) is tabulated in Table 4. We 

% Z I  - h X r z r  - y ~ y f  + )'3xizi + + F ~ ~ =  O* 

(4.3) 

- 0 O z r -  Y Ix rz t -  YJxizr + Forb + FGr,= 0. Table 4. Critical values of the spatially $xed 
forcing on the v-momentum (k = 6: E = 0.05) 

(4.4) 
Accekration 
(m 5-1 h-9 Let us investigate whether the mountains or the 

spatially-fixed forcing can cause the Machenhauer H(m) at 30° 1st 
procedure to diverge. If, in order to simplify the 
investigation, we assume that the forcing does not 8792.8 -5.6 -147 
contribute to the imaginary part of the gravity 879.3 -0.94 -25.67 

87.9 -0.2 I -5.49 
8.8 4.04 -1.1 

4.008 -0.2 o.9 

amplitudes, and furthermore that yI = 0, the system 
detining the initial state can be written (cf. eqs. 
(2.20H2.25)): 

Tellus 36A ( 1984). I 



EXISTENCE OF SOLUTIONS TO MACHENHAMR’S NON-LINEAR NORMAL MODE INmALlZAflON 39 

Table 5.  Critical values of the orographic forcing (k  = 6; E = 0.05) 

Height (m) 
latitude Y2 

Height of the 
mountains (m) +y = - Y,& 

Yz 
YrUU 

&,O=-- 

H (m) 80, at the equator 43, z 50° 

8792.6 4.93 23,353 24.89 1 17,936 
879.3 0.19 883 -0.30 2.8 I 2  
87.9 0.012 60 -0.009 86 
8.8 0.00 I 2 6 -0.oO07 7 
0.9 O.OOO1 0.7 -0.oooO3 0.3 

Table 6. Critical values of the spatially $xed 
forcing on the u-momentum (k = 6; E = 0.05) 

8792.8 0.58 
879.3 0.13 
87.9 0.05 

8.8 0.010 
0.9 0.01 I 

31 
7 
2 
0.5 
0.6 

Table 7 .  Critical values of the spatially &ed 
forcing on the heighr-fied (k = 6; E = 0.05) 

Yz Divergence (s-’) f r* = - -YLM 450 lot 

8792.8 0.18 2.7 * lo-’ 
879.3 0.0 I 1.9 * lo-‘ 
87.9 0.001 2.1 f lo-’ 

8.8 o.Oo0 I 1.5 * lo-’ 
0.9 0.00004 5. I * lo-’ 

H (m) 43 

see that for large values of the equivalent depth, a 
very strong forcing is needed in order to reach the 
region where “the true Machenhauer solution” 
disappears. For small values of the equivalent 
depth, however, a very moderate forcing is 
sufficient to risk the initialization procedure. The 
negative sign of the accelerations in Table 4 means 
that the acceleration is directed towards the 
equator. Table 5 shows the effect of mountains for 
wavenumber m = k = 6 calculated from eqs. (4.14) 
and (4.12). Table 6 displays the forcing on the 
u-component of the wind in wavenumber 2k = 12 
and n = 2, and Table 7 the forcing on the height 
field in wavenumber 2k = 12, n = 2. All these 

tables demonstrate the same trend; when the depth 
of the fluid is large, very strong forcing is required 
in order to lose the “the true Machenhauer 
solution”. For the depth corresponding to the 
external mode, the forcing required is unlikely to 
occur, but if we diminish the depth to of the 
external one, the forcing is quite conceivable. For 
the smallest values of the depth, the forcing needed 
is slight. 

5. Summary and conclusions 

In this investigation, we have tried to gain insight 
into the non-linear normal mode initialization by 
using a low-order shallow water model at the 
equator. We have put special emphasis on trying to 
find possible explanations for the fact that the 
iterative non-linear normal-mode procedure tends 
to diverge, when the equivalent depth is diminished 
or when forcing is included in the procedure. The 
model contains only three modes; one Rossby 
mode, one gravity-inertia mode and one sloshing 
mode. AU three modes are symmetric with respect 
to the equator. We have also included forcing in the 
model in the form of momentum and height forcing 
fixed in space and also orography. The orography 
has the same wavenumber as the Rossby mode. 

We defined the initial state by requiring the 
tendencies of the gravity-inertia mode and of the 
sloshing mode to be equal to zero. We were able to 
reduce the resulting system to one containing only 
two variables. From this two-dimensional system 
we deduced that generally there are three different 
states that satisfy the initial conditions. Except for 
very small depth of the fluid, it is obvious that two 
of these possible initial states have unrealistically 
large gravity amplitudes. Furthermore, the states 
with relatively large gravity amplitudes are charac- 
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terized by an approximative balance between the 
linear term in the gravity equation and the 
non-linear term describing the interaction between 
the gravity modes. This means that these initial 
states are essentially independent of the Rossby 
motion. From a meteorological point of view, such 
initial states can hardly be accepted, since the idea 
with the initialization is to adjust the motion that is 
defined by the Rossby modes, in order to avoid 
high-frequency oscillation. An investigation of the 
iterative procedure normally used to solve the 
non-linear system, showed that this procedure 
converges only to the initial state that has the 
smallest gravity and amplitudes. 

When we increased the Rossby amplitude, which 
acts like a forcing to the system defined by the 
initial conditions, we found a critical value of the 
Rossby amplitude beyond which two of the 
possible initial states do not exist. 

One of these is the realistic state, defined by 
small gravity amplitudes, to which the iterative 
procedure converges in the case of smaller Rossby 
amplitudes. The critical value of the Rossby 
amplitude also becomes smaller when the depth of 
the fluid is diminished. Since the Rossby ampli- 
tudes in a multilevel model also decrease with 
diminishing depth, we cannot say that these results 
imply that the reason for which the non-linear 
normal mode initialization procedure diverges for 
small values of the equivalent depth, is that a 
relevant solution does not exist, but the results 
point at this as a possible explanation. 

In the case with spatially fixed forcing, we 
avoided the complexity of the four-dimensional 
problem by choosing the forcing in such a way that 
we could again eliminate two equations from the 
system defining the initial state. It was then clear 
that this type of forcing plays the same rale in the 
initialization procedure, as does the forcing from 
the Rossby wave. By using the results from the 
case without forcing, we could then calculate the 
magnitude of the forcing necessary in order to lose 
the meteorologically relevant solution. These cal- 
culations showed that the critical forcing is very 
strong for large depths and that it decreases with 
decreasing fluid depth. For small values of the 
depth, the critical forcing becomes extremely small; 
for example, when H = 0.9 m, the height of the 
critical mountains is 0.1 m. Although the simple 
model of this investigation is far from the complex 
models used for weather prediction, these results 

make it likely that the non-linear normal mode 
initialization procedure diverges when forcing is 
included, because the relevant solution disappears. 

A simplified model such as the one used in this 
investigation, does not contain all the complexity of 
a weather prediction model. For example, the 
truncation of the model does not allow for 
non-linear terms describing Rossby-gravity interac- 
tion in the gravity equations. An example of such 
an interaction is the advection by a mean wind, 
which might influence the convergence properties 
of the Machenhauer initialization (Phillips, 198 1 ; 
Ballish, 1981). But, since the model is able to 
describe motion on two dimerent time scales, as 
well as non-trivial non-linear interactions between 
these two types of motion, it still contains some of 
the most important features involved in the 
initialization process. The results from an in- 
vestigation using such a simplified model can never 
tell the whole truth of the full problem, but they can 
give us clues of how to understand and how to 
attack the more complex problems in a weather 
prediction model. 

The fact that, in our simplified model, there are 
sometimes no acceptable solutions satisfying the 
Machenhauer condition, implies that this initial 
constraint should perhaps be modified. Daley 
( 1978) suggested a variational technique, which 
also allows for a change in the Rossby modes in 
order to satisfy some additional initial constraint. 
Another approach is to allow the initial tendencies 
of the gravity amplitudes to be non-zero. An 
approach of this type is also physically relevant 
when we think of the initialization problem in terms 
of the slow manifold (Leith 1980). From this point 
of view, initial gravity tendencies are necessary, in 
order to allow the model to stay on the slow 
manifold. Such a property is inherent in the Baer and 
Tribbia (1977) procedure, since this generates 
initial non-zero gravity tendencies. However, the 
application of this method to weather prediction 
models is very complicated. Therefore, it is of great 
interest to further explore approaches in which the 
initial gravity tendencies are non-zero. 
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