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ABSTRACT 
The statistical equilibrium solution of ~ j - p l a n ~ ,  primitive-equation model with a single quadratic 
energy invariant is determined by numerical integration. The initial condition resrmbks the 
atmosphere in terms of the shape and magnitude of its energy spectrum. The equilibrium solution 
is one in which energy is equipartihed among all the linearly independent modes of the system. 
This state is attained after two simulated years. 

The approach to equilibrium is explored in detail. It is characterized by (at least) two stages. 
The first is dominated by quasi-gcostrophic dynamics and nonlinear balances. The approximate 
conservation of quasi-gwstrophii potential enstrophy is important during this stage, so that the 
solution initially tends to the equilibrium solution of a quasi-geostrophic form of the model. The 
second stage is characterized by a very slow transfer of energy from gcastrophii modes to 
inertial-gravity waves. The rate of transfer of energy during this stage is shown to be very 
sensitive to initial conditions, 

I. Introduction 

In Emco (1982a) a solution to a very low order, 
adiabatic, primitive-equation model was presented 
Emco’s intent was simply to compare the final 
statistical-equilibrium solution with solutions from 
diabatic models. Starting from a nearly geostrophic 
initial condition, he demonstrated that, unlike the 
diabatic models, the adiabatic one tended to 
equipartition energy to each independent mode of 
the system. In particular, ageostrophic motions in 
the form of gravity waves became as energetic as 
the geostrophic motions. From this and other 
experiments, he concluded that dissipation was an 
important process for the maintenance of approxi- 
mate geostrophic balance within the atmosphere. 

Emco’s adiabatic experiment began from an 
initial condition whose spectra resembled the 
atmosphere’s in shape but not in magnitude. Since 
details of the approach to equilibrium are expected 
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to depend strongly on the initial strength of the low 
(e.g., its energy and enstrophy), he did not discuss 
the transition to his solution, In particular, he did 
not try to describe the rate of approach to the anal 
statistically-steady state. This decision was also 
motivated by consideration of his model’s sim- 
plicity. For example, due to its sparse-spectral 
design, it did not include small-scale, nearly- 
resonant, triad interactions, as would exist either in 
high resolution models or in the atmosphere. If 
such interactions allow instabilities, their effects 
may be initially important in an adiabatic 
experiment. 

In this study, Err ids  experiments are repeated 
using a multi-level spectral model which is not 
sparse. The initial condition simulates an at- 
mospheric state in amplitude as well as spectral 
shape. The transient behavior of the solution is 
examined. In particular, the effect of an initial, 
nearly gaostrophic balance is dixuss6d. While 
specific resonances are not measured, the impor- 
tance of non-resonant quasi-geostrophic intcrac- 
tions early in the solution is demonstrated. 
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A model is introduced in Section 2. That is 
followed by a description of the model’s linear 
normal modes (cf. Leith, 1980). The modes are 
either geostrophic or ageostrophic, and have 
specified resonant frequencies. The first experiment 
with the primitiveequation model is described in 
Section 4. In Section 5, both a quasi-geostrophic 
solution and a balance model solution are presented 
for comparison with the former. Other experiments 
are described in Section 6. Conclusions, and a 
comparison with results presented by Frederiksen 
( 198 I). are presented in the final section. 

2. Themodel 

The primitive-equation ( P E )  model is derived 
from that of Hoskins and Bretherton ( I  972). I t  is 
both hydrostatic and Boussinesq. and is defined on 
a periodic fplane. The vertical coordinate z is a 
prescribed function of pressurep, 

z = [I -. H,. 

where the subscript s denotes a fixed. constant 
surface value, and H, = C,e,/g is the scale height 
of an isentropic atmosphere with potential tem- 
perature 0,. C, is the specific heat of air at constant 
pressure. and K = R/C, ,  where R is the gas 
constant. 

The model equations are 

iq - =gW/O,,, 
its 

i’w 
-= -v*v. 
iL? 

(3) 

(4) 

The potential temperature has been separated into 
three components: 

u(~v,y,~, l )  = 0, + a2 + o’(.vs’.z.I) (6)  

u is a prescribed (time and space) constant d6/dz. 
The overbar distinguishes a prescribed z-dependent 
portion of a field from a prognostic (primed) 
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portion. V and V are the two-dimensional velocity 
vector ( U J )  and gradient operator, respectively, 
expressed on surfaces of constant z .  I is time. f is 
the Coriolis parameter. w is the vertical “velocity” 
dzldr. 4 is a perturbation geopotential determined 
hydrostatically from 8’ (that contribution to # by 
19, + RL does not affect the dynamics). k is a vector 
perpendicular to surfaces of constant I. These 
equations can also be derived from the primitive 
equations of Lorenz (1960) if a term w(l  - K) 

r 1 ( H +  - z)-I, which would otherwise appear on 
the right-hand side of (3, is ignored. 

Eqs. (2)-(5) are solved with boundary conditions 
w = 0 at z = 0 and z = nH. This upper boundary 
condition is somewhat artificial since nH is not 
specified below as equal to H,. On any z surface 
the fields are assumed to be periodic, with 
fundamental wavelength 2nD. D is set to 1.55 x 
10‘ m. L = (ga/O,)l’z H l f  defines a radius of 
deformation. Here values ofJ= IO-‘S-~, g = 9.8 m 
s-~, 0, = 290 K. a = 0.0045 K m-l. C, = lo00 mz 
s - ~  K-I, and R = 287 mz s - ~  K-‘ were used to 
obtain H, = 2.96 x 10‘ m, and L = 3.93 x 10’ m. 
For comparison with future work, the value H = 
(I04/n) m was used. The Boussinesq approxi- 
mation is invalid near z = H, in any case, so this 
choice is not too inappropriate. 

The numerical version of the model has a 
pseudo-spectral design by Orstag (personal com- 
munication). Solutims are restricted to the form 

NJ Nh NI 

flx.y.z.1) = 1 1 2 &jJ./.r) 

x expli(jx + ky)/DI cos(/z/H), 

j:=-N,k=-Nh / = O  

(7) 

with similar expressions for V, 8’. and w, but with 
sine replacing cosine for the latter two. The asterisk 
denotes a complex conjugate. Hereafter, only the 
spectral coefficients will be referenced, so the caret 
(*) notation will be dropped. The dependence on the 
integer indicesj. k, / will be denoted by a subscript 
K. 

In the experiments to be described, N, = I I ,  Nk 
= 5 ,  and N, = 5. All nonlinear terms are calculated 
on a grid using fast Fourier transforms. The grid 
has dimensions 32, 16. and 8 in the x, y, and z 
directions, respectively. This resolution is sufficient 
to ensure alias-free transforms of quadratic terms. 

The integrations in time are performed using 



44 R. M. ERRICO 

structure, they are called baroclinic. If the fields are 
geostrophically balanced, then both aK and dK 
are zero for all K. Thus, gK is called the coefficient 
for a baroclinic geostrophic mode. aK and dK are 
those for ageostrophic modes. 

For each K = (j,k,O), there is only one mode, 
whose coefficient may be expressed as 

Lorenz’s (197 1) alternating 4-cycle scheme with a 
time step of At = 250 s. This scheme is accurate 
through the d‘ldr‘ term in the Taylor expansion of 
the variables at time f expressing those at time f + 
4Af. For Exp. 1, the numerical scheme results in a 
loss of energy of less than 0.0007% during the first 
100 simulated days. 

3. Normal modes 
The linear normal modes of this model are 

obtained as the independent solutions of (2)-(5), 
subject to the spectral forms (e.g. (7)-(8)), and 
ignoring all quadratic terms (cf. kith, 1980). 
Associated with each normal mode is a (linear) 
resonant frequency. The advantage of using a 
normal mode description results from this explicit 
identification and separation of resonant frequen- 
cies. The presence or absence of resonant dynamic 
forcing (due to nonlinearity) greatly affects the 
solutions. 

For each K = (j,k,l) with I # 0, there are three 
modes, whose amplitudes (i.e., coefllcients) may be 
expressed as: 

This mode is both geostrophic and barotropic. 
The modes associated with k, gK, aK, and dK are 

associated with eigenvalues 0, 0, -WK and WK, 
respectively. Thus, the geostrophic modes are 
stationary in the linearized model. Only nonlinear 
effects can change their coefficients. In the linear 
model, aK and dK are amplitudes of inertial gravity 
waves travelling with phase velocities q( D/(j2 + 
&2)”2 and - y rD/ ( j2  + k2)’”, respectively. 

The model conserves total energy E (aside from 
roundoff and time discretization errors) expressed 
in the form of kinetic energy 

plus available potential energy (9) 

j2 + k2 

E can also be expressed in terms of the mode 
coefficients as 

E = B E  + GE + AE (18) 

where 

D 
2% (j2 + k2)“’ ’ 

X 

BE=f  b,b& 
K.I+O 

D 
2% ( j2 + k2)”2 ’ 

X GE=f  K./#O g K & ,  

where AE = f (aKak + dKdk). 
K,I#O 

(12) % = f  If aK and dK are set to zero at each time step, 
then the model is quasi-geostrophic (QG). In that 
case, an additional quantity 

(14) 

cK and 6, are the vorticity and divergence at scale 
K, respectively. Since these models have an internal 

i .  
D 

& = - ( ~ U K  + kUK). 
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is also conserved. This is the total QG potential 
enstrophy. 

-d 
“‘%5 em 49.5 27.5 155 

2-0 WAVE LENGTH (IO’ml 

2-OWAVE LENGTH (IO’m) 

I 1 I 

2-0 WAVE LENGTH ( I d m )  

Fig. 1. (a) Initial energy spectra (units of J kg-t per unit 
wavenumber) for the barotropic (-- ), baroclinic 
geostrophic (- - -- - ), and ageostrophic (---) 
modes as a function of horizontal wave length 
(logarithmic scak). (b) Initial energy spectra (units of J 
kg-I per unit wavenumber) for the baroclinic geostrophic 
modes as a function of indicated vertical mode number 
and horizontal wave length. (c) Same as (b), except for 
ageostrophic modes. 

4. The primary experiment 
The energy spectra of the barotropic, baroclinic 

geostrophic, and ageostrophic modes at the initial 
time ( I  = 0)  for Exp. I appear in Fig. la as a 
function of horizontal wave length 2nD(j2 + 
k*)-”’. These spectra are respectively similar to 
those of the kinetic energy of the barotropic wind 
(identical in this case), the available potential 
energy, and twice the energy of the itrotational 
wind. Energy spectra for the baroclinic geostrophic 
and ageostrophic modes are further resolved into 
contributions by separate vertical modes I in Figs. 
I b and Ic, respectively. Since the number of modes 
contributing to a spectrum at any one scale varies 
(due to the discrete nature of the scales), the values 
appearing in Figs. la-lc are normalized by 2** 
+ kz)1’2/M,k, where M is the number of indepen- 
dent pairs ( j , k )  which yield a particular value ofj’ 
+ k’ (cf. Lin. 1982). 

This initial condition was obtained from a 
solution lo a high-resolution diabatic version of the 
model. That model was designed to simulate 
atmospheric dynamics. Thus, the spectra appearing 
in Figs. la-lc should be qualitatively similar to 
those of the atmosphere (assuming the latter could 
be defined in some similar manner; cf. Kasahara 
and Puri, 1981). In particular, the most energetic 
mode is a very large scale baroclinic geostrophic 
one. the barotropic spectrum peaks near the 

i 

DAYS 

Fig. 2. The three types of energy. BE (- 1. GE 
1, and AE (---), as functions of time. (----- 
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Fig. 3. Energy spectra (units of J kg per unit wavenumber) averaged over the last 40 days for (a) the geostrophic 
modes (b) the ageostrophic modes as a function of vertical mode I (not shown) and horizontal wave length 
(logarithmic scak). The spectrum of the barotropic mode is also presented in (a). Spectral values have been normalized 
so that exact equipartitioning would appear as a single horizontal line. 

Rossby radius, and the ageostrophic modes are 
relatively weak. 

For this initial condition, both UK and d K  have 
been determined from 4( and g K  using the 
initialization scheme proposed by Machenhauer 
(1977). Specifically, a linear initialization followed 
by four iterations of his nonlinear scheme were 
used to determine all OK and d ~ .  His procedure 
yields fields for which &K/dt z 0 for each K (and 
similarly for d ~ ) .  This condition biases the solution 
to one that is gravity-wave free for some initial 
span of time. 

Time series for BE, GE, and AE appear for 
comparison in Fig. 2. Note that after 700 days, AE 
z 2GE z IOBE. This is the relationship satisfied by 
an equipanitioning of energy among all the 
independent modes of the system (10: 5 : 1 are the 
proportions of the three types of modes in this 
model). 

Spectra for the geostrophic modes as functions 
of horizontal wavelength and I are presented in Fig. 
3a. Spectra for ageostrophic modes are presented 
similarly in Fig. 3b. For this presentation, the 
spectral values have been divided by M,, and 
ZM,., in each respective figure. Thus, exact 
equipartitioning would appear as a single hori- 
zontal line in these figures. (The additional factor of 
two in the normalization for Fig. 3b accounts for 
the independence of the UK and d K  modes.) These 
figures confirm that this model tends to equipar- 

a28 026 tl 
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Fig. 4. The Rossby number E as a function of time. 

tition the energy, although for this specific case the 
process takes more than 600 days. 

The time series of the Rossby number E appears 
in Fig. 4. As in Errico (1982a), it is defined here as 

&=$-I tX:c,C . (23) 
( K  ) 

The additional factor of4 appears here because 
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The initial value of E is 0.085. By day 15, E > 0.30. 
Towards the end of the integration, E rz 0.32 with 
fluctuations of approximately 4%. This dramatic 
change of E from its initially small value is 
consistent with the change in energy spectra during 
this time. 

5. The initial approach toward equilibrium 

From examination of only G E  and BE for the 
first 40 days in Fig. 2, one may conclude that the 
solution approaches a statistical-equilibrium state 
not characterized by energy equipartitioning. Dur- 
ing this period, the baroclinic geostrophic modes 
yield more than half their energy to the barotropic 
geostrophic modes. In other words, at the end of 
this period, most energy is in the form of kinetic 
energy, and the velocity field is approximately 
barotropic. However, examination of AE during 
this initial stage suggests that no equilibrium state 
has been attained in fact. In particular, at day 40, 
AE appears to be increasing with an approximate 
doubling time of 20 days. 

This initial behaviour of Exp. 1 can be explained 
by comparing its solution with one obtained from a 
quasi-geostrophic form of the model. The QG 
model in this case is obtained by transforming from 
Y and 4 to normal-mode coefficients, replacing the 
values of UK and d~ by zero, transforming back to 
the original variables, and then calculating the time 
tendencies. This procedure is executed at each time 
step of the numerical integration. 

The QG model is run for 120 simulated days in 
Exp. 2. The initial condition for this experiment is 
obtained from that of Exp. 1 by appropriately 
replacing values of OK and dK by zero. Thus, 
coefficients of the geostrophic modes for both 
experiments are initially identical. Time series of 
BE (solid line) and GE (dashed line) for Exp. 2 
appear in Fig. 5. They are denoted by a label 2, and 
are to be compared with those of Exp. 1 (labeled I). 
In Exp. 2, BE and G E  do not change significantly 
aRer 60 days, unlike in Exp. 1. 

The solution of the QG model does not tend to 
an energy equipartioning because there are two 
quadratic constraints on the solution. Unlike the 
PE model, the QG model conserves Q as well as E 
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DAYS 
Fig. 5. Comparison of the time series of BE (- ) 
and GE (----- ) for the first 60 days of Exps. 1-3 (the 
PE. QG, and BA models, respeaively). 

(actually E' = BE + GE). The effects of such a 
pair of constraints have been described by 
Kraichnan (1967). Fox and Orsrag (1973). Salmon 
et al. (1976). and Frederiksen and Sawford (1980). 
The present QG model results agree quantitatively 
with those of Salmon et al. (1976). 

During the first 10 days, respective values of 
both BE and GE are similar in Exps. I and 2. 
During this time, the agestrophic modes in Exp. I 
are very weak. The solution then is approximately 
quasi-geostrophic. Also, the ageostrophic modes 
during this time are relatively slow (compared with 
their resonant frequencies). These results imply that 
the ageostrophic modes have remained approxi- 
mately balanced. This conclusion is confirmed by 
direct calculation of both the root mean power- 
weighted squared frequency of the modes and the 
energy of the unbalanced portion of the ageostro- 
phic field (both measures as described in Errico, 
1982a). A time series of the forma quantity 
appears in Fig. 6 for barotropic, baroclinic gee 
strophic, and ageostrophic modes. 

Although the ageostrophic modes are weak 
throughout the first 40 days, their effect on some 
geostrophic modes may be large for reasons 
suggested in Errico (1982b). This effect could 
explain the differences between Exps. I and 2 at 
day 20. To test this hypothesis, a balanced (BA) 
model of the type described in Errico (198%) was 



R. M. ERRICO 
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Fig. 6. The root mean power-weighted squared frequcn- 
cia of the barotropic (- ), batoclinic geosttophic 
(. . . . . . . . ), and ageostrophic (--- ) modes as a 
runctiOn of time for the first 50 days of Exp. 1. 

Fig. 7. Comparison of the time series of AE for the 6rst 
20 days of the PE modd Exp. 1 (- ) and the BA 
model(----- ) E X ~ .  3. 

developed. It is described in the appendix for the section, the rate of approach to equilibrium is 
present model configuration. It conserves the same discussed as a function of E, with the spectral shape 
energy as the QG model (i.e., E' = BE + GE), but fixed. The rate of approach is detined here as 

(25) 
includes some effects of a balanced ageostrophic 
field (see the appendix). fitl,t2) = lnlAE(t2)/AE(tl)~/(r2 - tl). 

The BA model was integrated for 60 days in 
Exp. 3. Time series of BE and GE appear in Fig. 5. 
They are labeled by the number 3. These series 
resembk those of the solution to the PE model 
more closely than those of the solution to the QG 
model. The time series of AE for exps. 1 and 3 
appear for comparison in Fig. 7. They are very 
similar out to 10 days; by day 20 the former is 
larger by 3096. These results, along with the 
formerly described analyses of the ageostrophic 
modes in Exp. I, confirm that the differences 
between the QG and PE model solutions during the 
first 40 days are primarily the effeas of a balanced 
portion of the ageostrophic fields. 

6. The rate of approach to equilibrium 

In general, the length of time before statistical 
equilibrium is attained depends on details of the 
initial spectra. For given relative amplitudes of all 
the modes (Le., shape of the spectra), the initial 
condition can be specified by a single number. 
Here, that number is chosen as E. In the present 

As described in the last section, there are two 
primary stages of the approach to equilibrium. The 
first stage is dominated by quasi-geostrophic 
dynamics. During this stage, the growth of A E  is 
relatively rapid. The second stage is one of slow 
growth of gravity waves (i.e., resonant-frequency 
ageostrophic modes). This latter stage is described 
below. Each stage is characterized by its own E 
dependence of y. In Exp. 1, the first 40 days may be 
considered as stage one, and the remaining 660 
days as stage two. 

6.1. Stageone 
In the QG f-plane model, the time scale is 

determined by the quadratic advective terms. If the 
coefficients of all modes are scaled by the initial 
value of E (denoted E,), and if time is s d e d  by EF', 
then el can be explicitly removed as a parameter in 
the equations. This implies that if a solution is 
known for a single value of E,, it can be determined 
for any value of el by appropriately scaling the 
known solution. Thus, in the QG modd, the rate of 
approach to statistical equilibrium is proportional 
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to cI if the initial relative amplitudes of the modes 
are fixed. 

For stage one, similar scaling arguments can be 
applied to the PE model to the degree that it 
behaves like the QG model. The rate of change of 
the geostrophic modes is approximately proportio- 
nal to c,. The same is true of y. 

Since the balanced aK and dK are quadratic 
functions of b, and g,, A E  scales like E:. Thus, the 
change in A E  during this initial stage scales like &:. 
However, if and when equipartioning is obtained, 
AE a E:. Thus, the smaller c,, then the greater is 
that change in A E  which must occur during the 
second stage. These arguments apply only for cI 4 
I which is a necessary condition for the PE and QG 
solutions to be similar initially. This scaling is more 
accurate for smaller c,. 

6.2. Stage two 
The rate of approach to statistical equilibrium 

during stage two is examined here in terms of the 
instability of the QG equilibrium solution to 
ageostrophic disturbance. In this way, it is un- 
necessary to repeat the integrations of stage one. 
The solution during that stage may be obtained 
approximately by rescaling the QG solution as 
described above. 

Day 70 of the solution in Exp. 2 has been chosen 
to determine the initial conditions for Exps. 4-10. 
Any other day after 20 presumably would be 
appropriate. In each experiment, those geostrophic 
coefficients are multiplied by a single rescaling 
coefficient c,,. They are then used as the initial 
geostrophic coefficients. Coefficients of the ageo- 
strophic modes are obtained by some number of 
iterations N of Machenhauer’s scheme (beginning 
from a linear initialization, denoted by N = 0). 
Values of c, = 0.086 cR and N for Exps. 3-10 
appear in Table I (0.086 is c, of Exps. 1-3). 

Time series of AE for Exps. 4-10 appear for 
comparison in Fig. 8. It is difficult to quantify the 
results of these experiments by looking at any 
single time period. y may vary greatly with time 
(e.g. in Exp. 4) or with initial condition (compare 
Exps. 8-9 for the first 70 days). In each experi- 
ment, E typically varies by 10% during the period 
of integration. Thus, interpretation of a time-mean 
y as a function of a fixed cI is questionable. 

However, several qualitative results may be 
obtained from Fig. 8. Smaller values of el tend to be 
associated with smaller values of y. This applies to 
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Table 1. Initial conditions for Exps. 4-10 

Exp. 4 5 6 7 8 9 10 

tl 
N I2 9 6 6 0 4 0 

0.096 0.086 0.086 0.077 0.070 0.070 0.065 

- - 0 10 20 30 40 50 60 70 

0 20 40 60 80 100 I20 140 160 180xx)220240 

DAYS 

Fig. 8. Comparison of the time series of AE for Exps. 
4-10. 

the time behaviors of Exps. 4-6 also (E decreases 
during the first two-thirds of the integrations for 
Exps. 4-10). For small el, a nonlinearly-balanced 
initial condition (i.e., N L I )  tends to have a smalkr 
y initially than one that is linearly balanced (N = 0). 

7. Conclusions 

For the primitive-equation model which has 
energy as its single quadratic invariant, at- 
mospheric initial conditions yield statistical equilib 
rium solutions characterized by the equipar- 
titioning of energy among all the independent linear 
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modes of the model. For the particular f-plane 
model and initial conditions used here, this equilib- 
rium state is attained aRer two simulated years. 
The two-year transient time is characterized by at 
least two stages. The first stage is governed by 
quasi-geostrophic dynamics, during which the 
ageostrophic modes are relatively balanced. The 
second stage is characterized by the slow growth of 
ageostrophic motions at their resonant frequencies 
(i.e. of inertial gravity waves). 

When started from an atmospheric initial con- 
dition, the quasi-geostrophic potential enstrophy 
changes very slowly in the primitive equation 
model. Thus, for an initial period (-40 days in the 
present case) the primitive equation solution resem- 
bles a quasi-geostrophic solution for which both 
energy and potential enstrophy are important 
invariants. The primary differences between the 
two solutions during this time are due to those 
agcostrophic processes which may be represented 
in an energy-conserving nonlinearly balanced 
model. During this stage, the ageostrophic energy 
changes greatly, but primarily due to changes in the 
geostrophic fields and the balanced portion of the 
ageostrophic fields which they determine. 

The present results may be compared with some 
preliminary ones reported by Frederiksen (198 I). 
He examined kinetic energy spectra obtained using 
a multilevel primitive-equation model on the sphere. 
His results suggest the relatively quick establish- 
ment of an equilibrium for rotational modes, 
analogous to the stage-one quasi-equilibrium 
described here. Thereatter, the kinetic energy 
spectrum tends to flatten, which suggests a ten- 
dency toward equipartitioning, also as observed 
here. Both of his equilibria appear to establish 
themselves more quickly than do the corre- 
sponding equilibria in the primary experiment here. 

Small changes in the initial fields (i.e., < 20%) 
may greatly sect the length of time before 
equilibrium is attained. Two effects act in concert 
here. The percentage of the change in A E  which 
occurs during the first stage as compared with that 
during the second stage strongly depends on the 
initial fields. Also, during the second stage, the 
instability of the geostrophic fields to ageostrophic 
disturbances are very sensitive to the strength of 
those fields. Thus, the length of time before 
equilibrium is attained may be quite long (many 
simulated years) for other atmospheric models or 
initial conditions. For this reason, the unstable 

quasi-geostrophic equilibrium attained at the end of 
stage one may be misinterpreted as the true 
equilibrium solution. 

Most of the quantitative results in this paper are 
strongly model dependent. For models with vastly 
greater resolution, the proportion of energy in any 
mode at equilibrium will be vastly diminished. Also, 
the use of spherical geometry may significantly 
change the coefficients which describe nonlinear 
interactions among modes, as well as change the 
resonances of the types of modes (e.g., in this case 
rotational modes have non-zero eigenvalues). 
Therefore, the times for various quasicquilibria or 
a final equilibrium to become established may be as 
greatly affacted as they are by small changes in the 
initial conditions. However, these other models 
may also be expected to have equilibria solely 
determined by their invariants, as in the present 
case. With these caveats, the present results should 
be interpreted qualitatively, illustrating tendencies 
and types of equilibria. 

8. Appendix 

Formulation of the balanced (BA) model 
A loworder version of this model is described in 

Errico (1982b). It can be derived formally from a 
PE model by: (1) assuming the Rossby number E is 
very small ( E  < 1); (2) assuming the time scak is 
order E-I ;  (3) noting that the first two conditions 
yield an approximate diagnostic relationship which 
describes ageostrophic coefficients in terms of 
geostrophic coefficients; and (4) retaining all terms 
in the prognostic equations for geostrophic 
coefficients through third order in E, after sub 
stituting for ageostrophic coefficients using the 
relation described in step 3. Through the trun- 
cation in step 4, the relationship of step 3 becomes 
a pair of exact relationships. One is related to the 
quasi-geostrophic omega equation. The other is 
related to a nonlinear balance condition (e.g., to 
that of Haltiner, 1971). The model conserves the 
kinetic energy plus available potential energy of the 
geostrophic modes. For further details, the reader 
should consult Errico (1982b). 

The present BA model has been developed from 
the present PE model by utilizing a system of 
transforms and filters. The procedure is as follows: 
(1) set aK = 0 and d K  = 0 for all K, and then 
calculate da,/dt and dd,/dt; (2) reset 0, = 

Tellus 36A (1984). 1 
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-(i/t*)(dUK/df) and d~ = (i/%)(ddK/df) for K 
(with the filtering in step I ,  this yields the desired 
balance condition); (3) calculate dbK/dr and dgK/dr 
from the initial b~ and gK and balanced UK and dK; 
(4) set b~ = 0 and gK = 0 and recalculate db& 
and dgddr; ( 5 )  finally, subtract the time tendencies 
calculated in step 4 from those in step 3. The last 
two steps remove quadratic ageostrophic-mode 
terms from the prognostic geostrophic-mode 
equations. Throughout this procedure the 
coefficients and their time tendencies are computed 
using the appropriate linear transformations o f  the 
physical fields (e.g., eqs. 9- I I). 

Both the BA and QG models are integrated with 
a time step of  lo00 s. 
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