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1. Introduction 

“According to Krueger and Fritz (1961). one of  
the outstanding features calling for explanation in 
the cellular cloud patterns revealed by satellites is 
that the diameter-to-depth ratio i s  around 30, 
instead of  about 3 as predicted by classical theory 
and verified by laboratory experiments.” This call 
for explanation in the introductory sentence of a 
short communication by Priestley (1962) is as 
urgent today as 21 years ago. He advocated and 
Ray (1965) calculated the influence of anisotropic 
eddy dilfusion as a possible solution to the problem 
of cell flatness. Using the classical Boussinesq 
approximation to describe Rayleigh-Benard con- 
vection and introducing turbulent horizontal heat 
and momentum dilfusion coefficients of about 100 
times the vertical value, results in cell aspect ratios 
of  the required magnitude. This was confirmed 
recently by Sheu et al. (1980) making eddy 
anisotropy a major candidate for explanation of  the 
dilference between observation and theory (also 
Agee and Mitchell, 1977). 

2. Influence of eddy anisotropy 

Applying the classical Rayleigh-Henard equa- 
tions to the atmosphere, suggests the replacement 
of  molecular conductivity and viscosity by their 
turbulent counterparts. These are not necessarily 
isotropic. especially when different horizontal and 
vertical scales are involved. In the following, the 
nomenclature of Ray is used where eddy aniso- 
tropies m and N are defined as the ratio of turbulent 
horizontal to vertical conductivity and viscosity. 
respectively. 
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Their introduction leads in the linear analysis to 
the following dilferential equation for the vertical 
velocity perturbation “(0 (eq. (1.13) in the paper 
by Ray): 

( ( D z - m a z ) ( D z - n a 2 ) ( D z  - a ’ )  + Ra’)W(C)=O, 
(1 )  

where Dz = (lz/(lg?, 5 the dimensionless vertical 
coordinate, a the dimensionless wave number. and 
R the Rayleigh number. The solution for the free 
slip case i s  given by 

w ( 0  CC COS R{ (2) 

which yields the condition 

R = (R’ + ma*)(nz + no’) I + - . ( ::) (3) 

The critical Rayleigh number R, is found as the 
minimum of this expression when varied with 
respect to a. Table I shows critical Rayleigh and 
wave numbers for various combinations of m and 

Table I .  Critical wace number a,, aspect ratio 
27/a,. and critical Rayleigh number R, for 
diflerent values of m and n in the case of free 
boundaries 

m o r n  m o r n  a, 2Ra, R, 

0 o w  0 97.4 
0 1 3.14 0.64 389.6 
I I 2.22 2.8 657.5 
I 100 0.821 7.6 12,744.6 

10 100 0.537 11.7 17.388.6 
10 lo00 0.305 20.6 119.010.3 

100 lo00 0.176 35.7 169,288.4 
100 100 0.311 20.2 39.349.5 



88 S. BAKAN 

n. The aspect ratio at the onset of convection, 
and also the critical Rayleigh number grow 
monotonously with increasing eddy anisotropy m 
orland n, R, and the critical aspect ratio being 
smallest at m = n = 0. Values of several hundred 
for m and n result in the required aspect ratio of 
about 30. In the nonlinear study by Sheu et al. 
(1980). eddy anisotropy was introduced in the 
same way as a parameter yielding similar results 
concerning the cell aspect ratio at the onset of 
instability. 

Unfortunately, there exists no simple and straight- 
forward answer to the question, which value of m 
and n is typical for the atmosphere in the case of 
cellular convection. Turbulent exchange coefficients 
as a parameterization of small-scale turbulent 
transport, depend on the length scales considered. 
The functional form of this dependence is not quite 
clear. While the simplest combination of dimen- 
sions needs a length times a velocity scale to pro- 
duce the dimension of the exchange coefficient 
(length x lengthhime), mixing length theory sug- 
gests the square of the length scale times a 
velocity gradient. Assuming that either the typical 
velocity or its gradient are independent of the 
length scale would give K cc I or K cc I*,  respec- 
tively. Following Sutton (1953). similarity con- 
siderations in good agreement with observations 
suggest a dependence K cc 1'''. Therefore, a general 
form of 
K cc I" (4) 

will be used in the following where 0 I a I 2. The 
typical horizontal dimension for cellular convection 
is the diameter of convection cells L. Thus, the 
horizontal exchange coefficients are given by 

KMh = fMh L""*, KHh = fHh Lbnb. 

The indices M and H refer to momentum and heat 
transport, respectively, and h indicates horizontal 
exchange. With the convection layer depth d as the 
typical vertical dimension, analogous expressions 
for the vertical exchange (index v)  are 

KM,. fM,. dl'Me, KH~? = fHs daHt'. 

Assuming aMh = aML. = a,,, and aHh = aH, = a,,, 
and defining fm = fMh/fMo+fn = fHh/sHu yields for 
the eddy anisotropies: 

As the aspect ratio L l d  is related to the wave- 
number of the cells by a = ZndlL, the eddy aniso- 
tropies are inversely proportional to the wave- 
number. A further simplification is introduced by 
assuming the anisotropy of heat and momentum 
exchange to be identical ( a  = a,,, = a,,, f = fm =&), 
which yields for the Rayleigh number 

R = (n2 +faz-ay (1 + :). (7) 

f is set to (2n)d which corresponds to isotropic 
turbulence (m = n = I )  when the horizontal and 
vertical scales are equal. Resulting critical par- 
ameter values for a = 0, I ,  2 are given in Table 2. 
Obviously, the introduction of any a > 0 results in 
increasing critical wave number and decreasing 
aspect ratio. At a 2 2, the smallest critical Rayleigh 
number is reached with a, = co and vanishing 
aspect ratio. 

Table 2. Critical wave number, aspect ratio and 
Rayleigh number of dflerent values of a in the case 
of free boundaries 

0 2.22 2.83 657.5 
I 2.49 2.52 1687.3 
2 a0 0 2435.2 

>2 a0 0 97.4 

3. Conclusions 

The introduction of a constant eddy anisotropy 
greater than I leads to an aspect ratio of the 
starting convection that is larger than in the clas- 
sical case of an isotropic exchange coefficient. Not 
only the aspect ratio, but also the critical Rayleigh 
number grow with increasing eddy anisotropy. 
Eddy anisotropies smaller than 1 result in smaller 
aspect ratios and critical Rayleigh numbers. The 
minimum value of R, would be found for a, = QO or 
vanishing aspect ratio if no scale dependence of the 
eddy exchange coefficient were introduced. And 
even with such an introduction, the minimum R, 
appears at an aspect ratio that is smaller than in 
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the case of isotropic turbulent exchange. Ad- 
mittedly, the adapted functional form of the scale 
dependence of the exchange coefficients may be 
wrong in detail, but the above results hold qualita- 
tively for any functional dependence as long as the 
eddy anisotropy increases with the cell aspect ratio. 

Usually it is assumed that a layer heated from 
below will become convectively unstable at the 
smallest possible, the critical Rayleigh number. 
Interpreting observed atmospheric convection pat- 
terns with use of the results of such a linear analysis 

implies the further assumption that the fully 
developed convection pattern is still strongly 
related to the pattern at the onset of convection. 
Assuming all this as usual, the above analysis 
predicts the preference of eddy anisotropies smaller 
than one, that are related to cell aspect ratios even 
smaller than those of classical analysis. 

These results strongly suggest that the eddy 
anisotropy cannot be the reason for the observed 
cell flatness. Therefore, Priestley’s introductory call 
for explanation is still urgent. 
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