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ABSTRACT

It is now well known that parallel cloud bands are widespread in the earth's atmosphere.
Observations from manned and unmanned spacecraft and from high-altitude aircraft
in connection with soundings from ships and ground stations have shed light on their
origin. These and a special investigation of tropical cloudstreets during the BOMEX
Project suggest the following typical characteristics of convective cloudstreets: Length
= 20 to 500 km; spacing ~ 2 to 8 km; layer height ~ 0.8 to 2 km; width-to-height ratio ~

2 to 4; wind structure: little change of direction with height; vertical gradient of wind
shear (profile curvature) = 10-7 to 10-6 cm-1 sec-1; alignment: along the mean wind
of the convective layer.

On the theoretical side, linear wind shear is known to favor convective "streeting".
The present theory investigates the effect of the observed profile curvature neglecting
linear shear effects. It shows that the curvature itself enforces alignment of ccnvective
cells with the flow direction. Inertial forces arising from the vorticity field counteract
buoyancy forces. Their ratio as expressed in a modified Froude numer determines the
value of the critical Rayleigh number responsible for the onset of convection. In a
flowing medium this number is raised, often by several orders of magnitude, over that
of a resting medium for all convective modes, except the longitudinal mode. Some
three-dimensional computer presentations illustrate these results.

A quantitative application of the simplified theory to actual atmospheric conditions
is attempted. It indicates that in strong flows heated from below longitudinal rolls
may double their amplitude in a matter of 10 minutes while transverse rolls decay at a
similar rate with symmetric cells having nearly neutral stability.

The relations of this concept to other hypotheses and to the GoertlcrfTaylor rolls are
discussed. Finally it is speculated that the formation of wind streaks on water surfaces
may be related to a similar mechanism.

Introduction

The banded cloud structure of the earth's
atmosphere, hardly noticeable from the ground,
revealed itself to the meteorological observer
when aviation offered the opportunity to view
clouds from sufficient heights. Birds and human
soaring pilots utilizing the banded updrafts in
the subcloud layer identified them as convective
phenomena connected with strong winds (Wood
cook, 1942; Kuettner, 1947, 1959).8ince the event
of spaceflight, weather satellites and photo
graphs from manned spacecraft have establish
ed cloud streets of different scales as a common
characteristic of the atmosphere. In an earlier
investigation, conducted just prior to the first

earth oriented satellites (Kuettner, 1959; to be
called "Part I" from here on), the band structure
of the atmosphere was found to originate in
convective layers with higher than normal
winds and a curved vertical velocity profile
of rather uniform direction. These findings
were attributed to the thermal wind conditions
connected with large scale "heated flows" in
the boundary layer advecting cold air over warm
surfaces.

In a preliminary theoretical note on the
underlying mechanism contained in Part I, it
was pointed out that longitudinal rolls are the
preferred convective mode of a flow in which
buoyancy forces are counteracted by vorticity
forces arising from the vertical shear gradient.
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It was also stated that "in Part II to be publish
ed separately, the theory of this type of organi
zed convection will be discussed." The present
article constitutes a much delayed fulfillment of
this pledge.

In the meantime considerable work of observa
tional and theoretical nature has been published.
Schuetz & Fritz (1961) have investigated cloud
streets over the Caribbean Sea as seen by a
narrow angle television camera from TIROS 1.
The findings of Part I were generally confirmed.
The thorough analysis of three long-distance
flights over the Pacific Ocean (Malkus & Riehl,
1964a and b) contains a wealth of information
on organized convection over the tropical
oceans. Of specific interest is the description of
the superimposed "parallel" and "crosswind"
modes which the authors attribute to shearing
layers at different heights. (This study also
shows what it takes to analyse atmospheric
cloud patterns from aircraft flying at moderate
heights.) In another study, Plank (1966)
investigated cumulus patterns over Florida
during a summer month and analysed them
with respect to the wind conditions. His results
did not corroborate the findings of Part I and
were considered inconclusive. Konrad (1968) has
investigated the alignment of convective cells
in clear air by powerful radars concluding that
"clear air thermal streeting" is connected with a
vertical wind structure essentially unidirectional
with the thermal streets. Further, he found a
decided curvature in the wind profile whose
magnitude agrees with the findings of Part I,
but "may be much higher locally, i.e., by an
order of magnitude". Spacing between streets
was roughly twice the height of the convective
layer. Konrad's results indicate that condensa
tion is not essential to the formation of convec
tive streets, in agreement with the experience of
glider pilots who have used "dry streets" in
straight flight.

The enormous amount of pictorial information
by the long, successful series of weather satellites
has produced many practical applications.
Today cloud bands are used operationally as
approximate indicators of the flow direction by
experienced personnel concerned with daily
synoptic nephanalysis (Anderson, Ferguson &
Oliver, 1966; Anderson et al., 1969).

Many cloud streets, specifically over the
subtropical and tropical oceans, islands and
coastal areas are however beyond the resolving
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power of present synoptic satellite cameras. In
these iatitudes color photographs taken by the
Mercury, Gemini and Apollo astronauts give
impressive testimony to the abundance of
cloud bands. Samples of these pictures are given
in Kuettner & Soules (1966). Gaby (1967)
using satellite and conventional data has in
vestigated cloudstreets over the tropical oceans
and their relation to the surface winds and has
found that a very large majority of cumulus
lines in equatorial latitudes is oriented parallel
to the surface winds.

Also, the interesting balloon measurements
of helical circulations in the boundary layer by
Gifford (1953) and by Angell, Pack & Dickson
(1968) should be mentioned here. They represent
counterrotating (helical) longitudinal roll vorti
ces of about 4 km separation. Hanna (1969)
presents evidence that the widespread occur
rence of longitudinal sand dunes often seen on
astronaut photographs is due to convective
circulations oriented along the direction of the
prevailing winds.

Theoretical work has likewise advanced
rapidly in the last few years. Faller (1963), in
experiments with rotating fluids which have a
radial flow component towards the center,
found spiral bands resembling those in hurri
canes. The bands are oriented at an angle to
the left of the free geostrophic flow on top of
the boundary layer, i.e., they approximate the
direction of flow at some intermediate level
within the boundary layer. Extending these
findings he has proposed to apply them to the
formation of normal atmospheric cloud streets
(Faller, 1965). Barcilon (1965) studying two
dimensional waves in a non-divergent Ekman
layer (without radial flow) finds equivalence of
the Ekman instability to that of a classical
boundary layer in parallel flow whose vertical
profile is given by the projection of the Ekman
velocity components on a vertical plane. Faller &
Kaylor (1966) studied numerically the instabi
lity of a laminar Ekman boundary layer. Lilly
(1966) has shown that two types of instability
are involved in Faller's experiments, one being
inviscid and connected with an inflection point
in the component normal to the basic flow, the
other being a new mechanism of instability
dependent on the Coriolis effect. Brown (1970)
has shown that finite two-dimensional perturba
tions (helical rolls) in a neutrally buoyant fluid
tend to alter the dynamically unstable Ekman
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I. Observations in the Atmosphere

The pictorial and aerological material of Part
I was based primarily on ground and airborne

(1,1

Fixed Top

Fig. 1. Laboratory experiments producing longitudi
nal convection bands. (Avsec, 1939). Bottom:
Velocity profile of air moving between fixed top and
bottom boundaries. Top: Displacement 8 between
times t, and t2 •

different from that responsible for bands in
Couette flow. A preliminary treatment of this
problem was given by Kuettner (1967). Gage &
Reid (1968) have studied the general stability
problem in stratified plane Poisseuille flow.
Chapter II of this paper will say more about
the theory of organized convection in atmospher
ic boundary layer flows with curved wind pro
files.

Finally, the laboratory experiments on
cellular convection in resting and flowing media
must be mentioned here. Following Benard's
(1900, 1927) classical work most of these
experiments were conducted prior to World
War II, culminating in Avsec's (1939) magni
ficent monograph. The development of longi
tudinal rolls was observed in flowing media
heated from below, when (1) the top and bottom
boundaries were fixed-resulting in a curved
velocity profile (Terada, 1928; Avsec, 1939),
see also Fig. 1 and 2-or (2) when the top
boundary moved relative to the bottom
boundary-resulting in a Couette-like flow
(Graham, 1933; Chandra, 1938). The similarity
of these laboratory experiments to atmospheric
cloud formations has often been noted, for
example by Mal (1931), and Brunt (1951).

flow profile so that it becomes stable in com
bination with the secondary flow. These studies
on the stability of the Ekman layer in the
absence of buoyancy forces are of general
interest to atmospheric flows with directional
shear, although the case of precisely neutral
stability is probably rare in the atmosphere.

Also the unstable modes of parallel flow with
linear shear (Couette flow) have been studied in
connection with atmospheric convection bands.
Kuo (1963) found that for small negative values
of the Richardson number longitudinal bands
will be the dominant form of convection while
for large negative values transverse waves will
also be excited. Kuo attributes these findings
to the (stabilizing) effect of the Couette flow on
disturbances oriented across the flow. While Kuo
assumed a Prandtl number of unity, the work
of Deardorff (1965) and of Gallagher & Mercer
(1965) deals with Couette flow at different
Prandtl numbers. Only two-dimensional distur
bances were considered. The stabilizing effect
of shear on disturbances oriented across the
flow is expressed by the critical Rayleigh
number as a function of Reynolds number and
Prandtl number. High Reynolds and Prandtl
numbers raise the critical Rayleigh number for
these disturbances, favoring the longitudinal
mode. The physical process by which Couette
flow stabilizes transverse perturbations has
been elucidated by Asai (1970), who has shown
that, through upwards transport of momentum,
kinetic energy of the perturbation is transformed
into that of the basic flow, draining the reservoir
of potential energy contained in the unstably
stratified fluid. This however, is not true for
longitudinal disturbances.

As pointed out earlier, the vertical wind
profiles in the atmospheric boundary layer
found under conditions of cloudstreet develop
ment rarely resemble pure Couette flow and are
frequently curved. Also the veering of wind
with height as postulated by Ekman flow is not
typical; little directional change with height is
common and even backing rather than veering is
found as a consequence of the baroclinic situa
tion.

While the vorticity in Couette flow is constant
with height, it has a vertical gradient in curved
velocity profiles. Therefore, the conservation
and the vertical transport of differential
vorticity by convective motions become im
portant factors and the mechanism is quite
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Fig. 2. Longitudinal convection bands in air heated from below (Avsec, 1939) using tobacco smoke.

observations. Since then, cloud photography
from very high flying aircraft (U-2, RB-57F,
etc.) and from spacecraft has revealed the full
extension of the banded structure of the atmos
phere on many scales. The following material
refers primarily to the convective scale and the
planetary boundary layer.

Detailed results of a special study on
cloudstreets during the BOMEX Project con
ducted over the tropical Atlantic in 1969
(Kuettner & Holland, 1969) are being published
separately. Here only two examples will be
given: Fig. 3 shows typical cumulus streets in
the trade wind layer as observed from the
NASA Convair 990 (Photo Dr Marlatt) on
July 25, 1969 during this project, and Fig. 4
gives a panoramic view of cloudstreets over the
BOMEX area photographed from a RB-57F
at about 52 000 ft on June 28, 1969. (The "glo
bal" appearance is a. wide-angle-lens effect.)
The orientation of the bands in Fig. 4 is roughly
from 100° to 280° and their average spacing
about 3 km. Fig. 5 shows the corresponding
radar wind sounding from the oceanographic
ship "Discoverer" stationed close to the photo-
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graphed area. Average wind direction in the
trade-wind layer and orientation of the cloud
streets coincide, as usual, within about 10° and
the wind profile shows a characteristic curvature
of about 2 x 10-7 cm-I sec-I. If the layer depth
is about 1.5 km, the width/height ratio of the
bands is near 2. During the BOMEX Project
cloudstreets were observed directly over the
equator (Coriolis acceleration f = 0). A total of
69 observations from the ship "Mt Mitchell" on
the orientation of cloudstreets with respect to
surface winds and wavecrests indicate that their
alignment is very close indeed to the prevailing
wind direction (Fig. 6).

As has been mentioned earlier, excellent
information is now available from unmanned
and manned spacecraft. Fig. 7 gives a view of
the cloud cover over Florida from the Mercury
Redstone spacecraft MR-2 shortly after liftoff
on Jan. 31, 1961, with a virtually simultaneous
aerologieal sounding from Cape Kennedy (Fig.
8). The cloudstreets are oriented in the general
wind direction and the wind profile is curved
with about 2 x 10-7 cm-I/sec-I. The layer
depth is roughly 1.2 km.
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Fig. 3. Cloudstreets over the tropical Atlantic as seen from NASA Convair 990 at 30000 feet on July 25,
1970 during Bomex Project. (Photo Marlatt.)

Some examples from meteorological satellites
follow. Fig. 9 is a "Nimbus" picture of Wisconsin
showing cloudstreets up to 150 km in length,
spaced about 5 km apart on August 30, 1964.
The pibal of Greenbay (Fig. 10) suggests a layer
depth of 1.2 km and a curvature of about 4.5 x

10-7 cm"! sec~l. Orientation and wind direction
in the convective layer roughly coincide and the
width/height ratio is near 4. Fig. 11 shows the
outflow of arctic air ( - 100 to - 30°C) over the
open Gulf of St. Lawrence on Feb. 4, 1963. The
developing vigorous convection over the warm
water is organized in snow bands, reaching over
500 km length and spaced approximately 8 km
apart. (There are probably further subdivisions
but these cannot be resolved with the vidicon
camera of this spacecraft.) The early morning
soundings west and east of the Gulf (Fig. 12)
suggest strong west-north-westerly winds with
a curvature of 2 to 3 X 10-7 em-I sec:", There is
little change of wind direction with height and
slight backing may be noted.

The most impressive high resolution views of
global cloud cover have come from manned

spacecraft in low orbits. Some of these were
published in an earlier paper (Kuettner &
Soules, 1967). In Fig. 13, we show the exquisite
Apollo 6 picture of widespread convective bands
developing in a southerly flow inland of the
coastline of Georgia on April 4, 1968. Many of
these bands extend over 100 km in length.
Their average spacing is between 2 and 2.5 km.
The morning sounding of .Iaoksonville, Florida,
which is just south of the lower right corner of
the picture shows a layer depth of about 0.8 km
with strong curvature (7 x 10-7 cm- I sec-I)
(Fig. 14); the shear near the ground is likewise
high (3 x 1O~2 see :"). The width/height ratio
seems to lie between 2.5 and 3.

In general these observations resemble the
preliminary findings of Part I, the numerical
values of the vorticity gradient being some
what higher than originally expected. Directio
nal changes of the wind in the convective layer
are small. Our conclusions may be summarized
by stating that convective cloudbands in the
earth's atmosphere tend to form in strong flows
heated from below with a curved velocity profile

Tellus XXIII (1971), 4--5
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Fig. 4. Wide-angle view of cloudbands over Bomex array as seen from USAF RB-57F at 52 000 ft on June
28, 1970. Cloudstreets are oriented from approximately 100° to 280°. Average spacing: 3 km. Aircraft
flying from left to right on each frame.

Tellus XXIII (1971), 4-5
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Fig. 6. Orientation of tropical cloud bands with
respect to surface winds as observed by the oceano
graphic ship "Mt. Mitchell" during BOMJ<JX Project
(69 cases).
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Fig. 5. Rawinsonde from ship "Discoverer" near
location and time of high altitude photos, Fig. 4.
Numbers along curve are wind directions in degrees.
Average curvature, UN (in cm-lisec-l) of velocity
profile is also noted. Solid bar marks estimated top of
convective layer.

Fig. 7. View of cloustreets over Florida r ear Cape Kennedy as taken from Mercury Redstone spacecraft
Mr-2 on January 31, 1961. (Photo NASA.)
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Fig. 8. Special rawin sounding taken during MR-2 launch at Cape Kennedy on January 31, 1961 (Fig. 7).
Numbers on left curve are wind directions, numbers on right curve are relative humidities.

Fig. 9. "Nimbus" satellite picture of cloudstreets over Wisconsin taken on August 30, 1964. Maximum
length of band: 150 krn, average spacing: 5 km.
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of rather uniform direction. Typical values found
are as follows: Length of cloudstreets: 20 to 500
km; spacing: 2 to 8 km; layer height: 0.8 to 2
km; widthjheight ratio: 2 to 4; vertical shear
gradient: 10-7 to 10-6 cm-1 sec- J

II. Theory

It may help to briefly describe the physical
mechanism underlying the subsequent theoreti
cal derivation.

;
.! 5..
.; 4
c
o
;
~ 3

o
w 2
Q

~
;:: 1
:;(

GREEN BAY, WIS.- 30 AUG.1964,12:00%
PIIAL

247

23

222'

180'
5 10 15 20 25 30 35

WIND SPEED- knots
40

1. BRIEF DESCRIPTION OF PHYSICAL

MECHANISM

Our observational findings suggest that
vorticity forces (forces associated with profile
curvature) enter the convective mechanism. In
using the term "vorticity", it should be under
stood that we are talking about vorticity around
a horizontal axis normal to the basic flow
direction, i.e. the y component of vorticity.
Assuming parallel flow in the x direction, this
vorticity is essentially given by the vertical
shear of the horizontal wind. It is known that
the restoring forces experienced by a displaced
parcel conserving its vorticity in an environ
ment of varying vorticity tend to return the
parcel to its original level. This mechanism also
underlies the Rossby waves in the westerlies and
the Tollmien-Schlichting waves in the boundary
layer. It may be visualized as follows (Lin, 1955):

In a normal boundary layer the velocity
profile is curved and the vorticity is decreasing
upwards, i.e., a horizontal layer near the ground
has a higher vorticity (shear) than an layer near
the top (Fig. 15, left); the vorticity gradient is
negative (o'ujoz' < 0). If a fluid element from a
lower level is displaced upwards it conserves its
vorticity and constitues a "relative vortex"
having an excess vorticity over its new environ
ment. (Fig. 15, right.) The resulting distortion of
the basic vorticity field causes fluid elements on
the left side of the vortex to be replaced by
elements from lower levels (having an excess
vorticity) and those on the right side by elements
from higher levels (having a vorticity deficiency).
This redistribution induces a downward accelera
tion of the "vortex" returning the displaced
element toward the level where it belonged and
where it finds no differential vorticity.

This mechanism applies to every vertically
displaced element, as long as the vorticity

Fig. 10. Pibal {sounding taken at Green Bay,
Wisconsin on August 30, 1964, 12: 00 Z. (Fig. 9.)
Numers along curve are wind directions.

gradient does not change sign. The motion is
therefore stable (If the vorticity gradient chang
es sign, i.e., if there is an inflection point in the
velocity profile an element displaced through
this inflection point may "find a home" of
equal vorticity on the other side of the inflection
point, resulting in the well-known inviscid
instability.)

Fluid elements displaced upwards or down
wards under the action of buoyancy forces will
therefore have to overcome the restoring forces
resulting from the vorticity gradient. Nature
can circumvent this restriction of convective
motion by selecting a specific mode of convection
in which such restoring forces cannot arise: If
all fluid elements along a horizontal line in the
direction of flow organize themselves to move
upwards simultaneously and complete their
circulation in a plane normal to the x, z plane,
no differential vorticities can develop between
them in the x, z plane and convection is unin
hibited by restoring forces. This mode of
organized convection represents helical motions
in longitudinal rolls, the precise dimensions of
which are regulated by other factors such as
viscosity. It should be noted that in the y, z
plane the convective circulations do not en
counter restoring forces either because in this
plane there exists no basic flow and therefore
no vorticity gradient.

One can derive this mechanism more rigor
ously by introducing the vorticity gradient into
the equations of the classical theory of cellular
convection (Rayleigh, 1916). The results of this
theory are then modified as follows:

Tellus XXIII (1971), 4-5
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Fig. 11. Tiros-V satellite picture of Gulf of St. Lawrence on February 4, 1963, showing outflow of arctic
air over open water causing the development of snow-producing convective bands. Bands measure up to 550
km in length, and are spaced approximately 8 km apart.

The well-known critical Rayleigh number
which characterizes the onset of convection in a
medium at rest holds also for two dimensional
longitudinal rolls. All other convection modes,
however, require higher Rayleigh numbers, that
is higher vertical density gradients. This is true
for three-dimensional cells and for two-dimensio
nal rolls of different orientation, the highest
numbers being required for transverse rolls.

In the atmosphere, the observed vertical
gradients of wind shear create stabilizing forces

Tellus XXIII (1971), 4-5

27 - 712894

which may be of a magnitude comparable to
that of the bouyancy forces. Therefore, as solar
heating of the ground increases, three-dimensio
nal convection cells may still be entirely sup
pressed wh'Ie two-dimensional cells stretching in
the wind direction are already highly amplified.
Later, three-dimensional convection may also
amplify but the growth rates are smaller. Thus
longitudinal bands represent the prevailingmode
of convection. An approximate theory of this
mechanism is given in the next section.
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Fig. 12. Rawinsondes taken at Sept lIes, Quebec, and at Stephenville, Newfoundland, (Fig. II) on February
4, 1963, 12:00 Z. Wind directions and temperatures are marked along curves. Note backing of wind with
height.

2. THEORY OF CONVECTION BANDS

The following simplified flow conditions are
assumed: an incompressible, viscous and con
ductive fluid of height H and of infinite horizon
tal extension flows steadily and under gravity
over flat ground in the horizontal x direction.
Its speed (but not its direction) varies with
height. (See Fig. 15).

The vertical density gradient is constant and
positive, setting the stage for convection. It
shall be small compared to the density itself.
Therefore, their ratio will be neglected every
where except in its "buoyancy" function, i.e.,
in connection with gravity. (Boussinesq's
approximation; first applied to the problem of
cellular convection by Rayleigh, 1916).

It is furthermore assumed that both the
kinematic viscosity and the heat diffusivity
are invariant throughout the medium and that
a linear thermal expansion function holds for
the small density changes under consideration.

JACKSONVILLE. FLORIDA

x 10' feet
10~':"::::''------r----r----,--------,

190

5f-----t-----f''''

167

40
Knot.

Fig. 14. Rawinsonde taken at Jacksonville, Florida
(just south of the lower edge of Fig. 13) on April 4,
1968 at 12:00 Z. Explanations under Fig. 5 apply.

Fig. 15. Schematic presentation of: Basic flow and
density profile (left). Relative vorticity of vertically
displaced convective element and resulting restoring
force (right). See text for further explanation.

The Coriolis force will be neglected as the
circulation period of atmospheric convective
systems is generally small compared to the
inertial period 2n/f where f = Coriolis accelera
tion, resulting in large Rossby numbers.

Using small perturbation methods, the
properties of the basic flow, to be designated by
symbols with a bar (-), shall be functions of
height only except the pressure which shall fall
off in the flow direction to keep the flow steady
against viscosity. Perturbation quantities will
be expressed by the same symbols as the basic
quantities but without a bar. Prime ( )' and
double prime ( )" denote first and second deriva
tives with respect to height.

Using a ground fixed conventional Cartesian
coordinate system, x and y, being the horizontal
coordinates, u and v the corresponding horizontal
velocity components, z the vertical coordinate
and w the vertical velocity component, the

Tellus XXIII (1971),4-5
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Fig. 13. Cloudstreets over Georgia developing near the coastline in a southerly flow on April 4, 1968, as
seen from Apollo 6. Maximum length of bands: over 100 km; spacing: 2 to 2.5 km. (Photo NASA.)
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which characterizes the dimensions of a con
vective cell. Combining (7), (11) and (13)

(c, -I- "d' + is) [(aT -I-'I'd' + is) d' + iZit"]
-gfJ(l' +m') ~O (14)

Two cases will be compared: Convection in a
resting medium (Rayleigh case) and convection
in a flowing medium.

a; and a, are the real and imaginary parts of
a, respectively, and c the phase velocity for
waves of wavenumber l. For simplicity, we
introduced furthermore the quantity

(13)

(12)

d' ~ (l' +m' +n 2
)

s ~Ul +a; ~ l(it -c)

Here

exp[i(lx -I-my) +at]

profile curvature on the convective modes by the
following simplifications:

In analogy to certain boundary layer studies
we approximate the height dependent flow
velocity u(z) by a characteristic mean velocity
u of the layer under consideration. Obviously
this approximation eliminates any effects of the
wind shear u'(z).

Likewise, the curvature Ii" of the vertical
wind profile shall be expressed by a character
istic mean value ii",

Introducing three-dimensional harmonic per·
turbations, we leave the door open for an
exponential amplification or damping. If land
mare wavenumbers along x and y, and if a is
the exponential time constant, a complex
quantity, all perturbations will contain the fac
tor

With all basic quantities in (7) now invariant,
harmonic variations of w with height are ad
missable, the phase of which depends on the
boundary conditions.

Rayleigh (1916) in his classical theory of
cellular convection selected those boundary
conditions "which are simplest from the mat.he
matieal point of view," namely

w ~ io" ~ 0 at z = 0, H. (9)

This corresponds to fixed, "slippery" boundaries.
More realistic boundary conditions were later
investigated by Jeffreys (1926) and Pellew &
Southwell (1940) without affecting the validity
of Rayleigh's basic conclusions.

By retaining Rayleigh's boundary conditions,
the fundamental difference of convection in a
resting and in a moving medium can be demon
strated in the simplcts fashion. We therefore
apply (9) in this study.

Assuming w proportional to sin (nz), the above
boundary conditions are satisfied by

2.1. Convection in a medium at rest (Rayleigh's
case)

In a resting medium it ~ un ~ O. Considering
stationary conditions (ai ~ 0) (14) reduces to

(o, +"d') (aT +vd2 )d ' -gfJ(l2 +m') ~O (15)

which corresponds to equation (37) of Rayleigh
(1916) whose results shall be recalled here.

Rayleigh considers the case of "marginal
stability" where the maximum amplification

amax ~ 0

In this case optimum cell dimensions arc given
by

(17)

resulting in the well-known "critical Rayleigh
number",

n, ~gfJ/"vn'~ ["(I-m-1 =27/4 ~6,75 (18)

n ..~ rn/H

where r is an integer. With

(10)
The mode of greatest instability is that for
which n is smallest,

i.e. r - 1, see (10).

the critical Rayleigh number as expressed by

R~ = g(JH'/kv ~ 27n'/4'" 658 (20)

wI! = -n2 w

the operators used earlier rcduco to

v" ~ - (l' +m' + nO) )

V'~ ~ - (l2 'm') )

f ~ aT+ 'I'd' +is

F <o; +"d' +is

(11)

With

n =n/H (19)
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___.=====:V"

It should be remembered that both heat
conductivity and viscosity have been taken into
account here, but that they are assumed to be
numerically equal.

Introducing (24) into (14) the following
quadratic equation results

Fig. 16. Longitudinal cells with helical motions
(also called "rolls," "streets," "lines", "bands",
"strips").

The amplification contant is now given by

2.2 Convection in a flowing medium

To solve the more general equation (14)
where u, u'=l=O we neglect, in a first approxima
tion, the difference between the diffusivities for
momentum and heat, and assume the Prandtl
number

as follows from (13), (17), and (19).
Rayleigh states this "uncertainty principle"

as follows: "I do not see that any plausible
hypothesis as to the origin of the initial distur
bances leads us to expect one particular ratio
of sides in preference to another."

This situation changes drastically if convec
tion takes place in a flowing medium.

The corresponding values for more realistic
boundary conditions (both boundaries fixed, or
one free/one fixed, see Jeffreys, 1926; Pellew &
Southwell, 1940) range from 1 100 to 1 700.

It has been noticed by Rayleigh that only the
value of the sum (12 +m") is determined by the
stability criterion, but not 12 and m 2 separately.

For example, two-dimensional cells, i.e.,
convection bands (also called "rolls," "lines",
"strips", "streets") would be equally amplified
as three-dimensional cells ("symmetrical cells"),
Fig. 16 and 17, but their spacing would be
different. Bands would have a wavelength

which is the real part of the solution of (26).
This relation between amplification and cell
size in non-uniform flow was already cited in
Part I and will now be discussed.

The choice of sign in front of the bracket
indicates the possibility of a positive growth
rate.

The first term in the bracket containing
gravity and density gradient represents the
buoyancy. Its magnitude depends on the cell
dimensions such that, with decreasing horizon
tal cell size (increasing land m) the term tends
towards a finite maximum value, namely gp
while it tends toward zero with increasing cell
size.

The second expression in the bracket is the
vorticity term. Regardless of the sign of the
shear gradient, u·, this term always subtracts
from the buoyancy. If larger than the buoyancy
term, the vorticity term is responsible for waves
of the type mentioned earlier. Due to the
presence of vorticity, the real part of the bracket
may vanish at finite values of l,

The last term (27), the viscosity/conductivity
term, is always negative and tends to suppress
or dampen buoyant motions. For decreasing cell
size (increasing land m) it tends toward -00

while, for increasing cell size, it approaches the
finite negative value, -v*n2•

(21

(22)

A.b = 2V2 H

symmetrical cells a wavelength

A.. = 4 H

Here

7' = fd" = Fd" = (e, +v*d" + i8)d' (24)

Since the parameters f and F are now identi
cal, one may introduce the quantity

(23)P, =v/k = 1

v* ~ (kv)i (25) Fig. 17. Symmetric cells.
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Fig. 18. Three-dimensional computer presentation
of growth rate (J as a function of horizontal wave'num
bers land m (equation 27) for a medium of rest.
~he maximum growth rate is given by a circular
ridge (A, B) defined by a certain value of (l' +m').
Rayleigh's case.

This brings us to the general behavior of the
growth rate a, in (27) as a function of the hori
zontal wave numbers land m,

General behavior of growth rate as a function of
wave numbers. The behavior of this function can
best be visualized by a three-dimensional com
puter presentation of equation (27). Fig. 18
shows the case of a medium at rest, Fig. 19
that of a flowing medium. In both cases, the
mushroom like body has the following character
istics:

In the center, that is at m ~ l = 0, (J is negative.
(From now on, a, will be replaced by (J with the
understanding that we are dealing with a real
quant.ity.} At this point the horizontal wave
lengths tend towards infinity and correspond to
one unlimited symmetric convective cell. Due to
vanishing buoyancy and the presence of vis
cosity/conductivity the motion dies out. On
the outside, as land m grow without limit (the
cells getting narrower) (J tends toward minus
infinity. Here the motion again dies out, due to
the action of conductivity and viscosity and
rapidly increasing gradients of temperature
and velocity among cells.

Between these two extremes, there is a range
of cell dimensions where (J reaches a maximum
which may be positive depending on the magni
tude of fJ in the buoyancy term.

If the medium is at rest the maximum of (J

is characterized by a circular ridge of constant
elevation (Fig. 18). The radial nature of this

Fig. 19. Same as Fig. 18, but a for flowing medium
(equation 27). The maximum growth rate holds only
for 1~ 0 (point A), i.e. for longitudinal cells (l is the
:vave number along the flow direction). For m ~ 0,
i.e. for transverse cells, the growth rate is negative
(Point B).

ridge indicates that maximum amplification is
the same over the m-axis (point A) as over the
l-axis (point B) and applies to any combination
of land m resulting in a certain critical value of
(l' + m'). This illustrates that there is no prefer
ence for a definite ratio of the cell sides (Ray
leigh's "uncertainty principle", see p. 417 above).

In a flowing medium (Fig. 19) the ridge of
maximum amplification is deformed by the
vorticity term. Slopes develop toward the l
axis such that saddle points (B) form thcre
while position and elevation of the maxima ovcr
the m axis (A) remain unchanged.

The emerging cell form is now uniquely
determined by point A and the condition l = 0,
which corresponds to two-dimensional convec
tion bands stretching without limit in the
direction of flow (longitudinal bands). In
contrast the saddle point B signifies that
convection bands stretching normal to the flow

Fig. 20. Quadrant with positive wave numbers land
m of Fig. 18.
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direction (transverse bands) are least amplified
or, as in Fig. 19, damped. It will be noticed
that the center area in Fig. 19 has the appear·
ance of a "cushion", the center point being a
saddle, while in Fig. 18 no such "cushion"
exists and the center "point represents an abso
lute minimum. This is due to the fact that the
bracket in (27) reaches zero at finite values of l,
if the vorticity term is 9= 0, in this way exposing
the bell-shaped viscosity term (Fig. 19). In
contrast the bracket in (27) reaches zero at the
origin, if the vorticity term is zero, in this
way exposing the funnel-shaped buoyancy
term (Fig. 18) witb a minimum at the center.

Since only positive wave numbers are of
interest here, the positive quadrants of Fig. 18
and 19 are reproduced in Figs 20 and 21. A
plane view of Fig. 21 gives the contours of the
growth rate a in the lim plane for the case of the
flowing medium (Fig. 22). As can be seen a
varies, in the selected case, from + 2.3 x 10-3

sec :" for longitudinal bands to about -1.7 x
10-3 sec-1 for transverse bands, while symmetric
cells (l =m) are nearly neutral. The example
chosen will be discussed later.

The behavior of the growth rate a illustrated
in these figures will now be derived more
rigorously from equation (27).

Convection pattern in a flowing medium.
Introducing the quantity

Fig. 21. Quadmnt with positive wave numbers I
and m of Fig. 19.

1 = 0; ('P/tpd') = 2v* (34)

m = 0; ('P -u·2/ 4 )/tpd· ~ 2v* (35)

The remaining alternative may be inter
preteted as the case treated by Rayleigh with
u· =0, since both (30) and (31) are then sat.is
fied by the single condition

'P = 2tpd· v*

(Rayleigh's criterion) and land m remain
indeterminate.

Obviously, the first alternative, (33), repre
sents the negative center cf Figs. 18 and 19,

O(f/ol ~ o(f/om = 0

where Cis defined by (17), equation (27) may be
rewritten as

Transverse Bonds

(29)

(28)

(3l)

a = =tip -v*d2

[('P/tpd') - 2v*]m = 0

Cell dimensions land m yielding maximum
growth rate a, as determined by

Here

are given by

{[('P -u·2
/4 )/tpd' ] -2v*}l = 0 (30)

and

'P = gfJn2+ l2-a;;2/2 d2

The following alternatives result:

1 =m = 0

(32)

(33)

Fig. 22. Plane view of Fig. 21. showing the contours
of the growth rate a as a function of wave numbers I
and m. Longitudinal bands are highly amplified
(A), symmetrical cells are nearly neutral, transverse
bands are highly damped (B).
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corresponding to a convection cell of infinite where
horizontal extension.

Here
a = -v* d 2

(40)

and the motion is damped.
Case (34) represents the peak A of a along the

m axis and corresponds to longitudinal bands,
while case (35) corresponds to the saddle point
B along the l axis and represents bands across
the flow direction ("transverse bands"), see
Figs. 19, 21 and 22.

e relates inertia to buoyancy forces and may
be considered as a Eroude number (or the
reciprocal of a modified Richardson number).
It is the appearance of inertia forces expressed
by e which is responsible for the changes in the
cellular pattern from a medium at rest.

Comparing (39) and (36) it is seen that the cell
dimensions are modified by e such that for

and the spacing of transverse bands is reduced
in comparison with longitudinal bands.

Introducing (39) into (29) for a ~O (marginal
stability) the critical Rayleigh number R o
defined in (18) is modified by e to

Case 1. Bands along flow direction (longitudi
nal bands). Taking alternative (34) first and
introducing it into (29), under the condition of
marginal stability given by (16), we obtain

Substituting (28) and (32), with l = 0 and
m +0, the cell dimensions are determined by
the relation

e >0, C<2/3 (41)

c= n 2/d2 = 2/3 (36)
For small s, this reduces, in view of (39), to

and for large e to

This is identical with Rayleigh's case, see
(17). Introduction of (36) into (29), for a~O

yields as critical Rayleigh number R c the same
value as was derived for a medium at rest, see
(18):

(37)

(43)

(44)

Now, however, Rayleigh's undeterminedness
regarding the ratio of cell sides is removed.
There is no question anymore whether (21) or
(22) applies. With l = 0, the convection cells are
bands along the flow direction and their
approximate spacing as given by (21) is

It is clear then that in this case the critical
Rayleigh number for transverse bands grows
approximately with the 4th power of the profile
curvature u', strongly penalizing the transverse
mode against the longitudinal mode. The
corresponding equation for symmetrical (square)
cells is:

(38)
(45)

under the assumed boundary conditions. Fig.
16 illustrates this case.

Case 2: Bands across the flow direction (trans
verse bands). We now turn to the other alterna
tive, (35) and introduce it into (29), again
implying "marginal stability." We obtain

Substituting (28) and (32), where m =0 and
l+O

W + (1/4 - C/3)e] = 2/3 (39)

Functions (42) and (45) are plotted in Fig.
23 which shows the ratio of the critical Ray
leigh number Rc to the unmodified Rayleigh
number R o, defined in (18), as a function of the
Froude number e for longitudinal, transverse
and symmetrical cells. It can be seen that a
given Rayleigh number may well be super
critical for the longitudinal mode, but sub
critical for the transverse or symmetrical mode.
In this way longitudinal bands are first ampli
fied and emerge as the prevailing convection
pattern in a flowing medium.
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III. Discussion

The formation of longitudinal convection
bands as derived in the previous section is
closely related to the well-known Goertler
instability over curved boundaries (Goertler,
1940) and to Taylor's (1923) experiments with
rotating cylinders. In both cases the formation
of longitudinal rolls is controlled by a dimension
less number of the form

G = ReVlfT (Goertler number)

where Re = Reynolds number, Z= layer depth
and r = radius of curvature. Jeffreys (1928) and
Goertler (1959) have already recognized the
equivalence of inertia and buoyancy forces in
creating this type of instability.

The Goertler number can be understood to be
the square root of a product of the regular
Reynolds number and a modified Reynolds
number which relates centrifugal forces u"/r to
viscosity forces vu/Z". Replacing the centrifugal
force by the buoyancy force gPH and substitu
ting H for Zone obtains the Grasshof number

which, for a Prandtl number of unity, see (23),
is identical with the Rayleigh number defined
in (20).

Even quantitatively there is rough agree
ment. With the critical Goertler and Taylor
numbers, Go, ranging from about 10 to 40
(Schlichting, 1960)-provided they are applied
to the appropriate layer depth-we find approxi
mately

curvature). Obviously the vorticity gradient u"
contains shear by definition, but in addition it
can be connected with small or large average
shear (see for example Fig. 12, as compared with
Fig. 14). A more complete theory covering the
effects of both shear and shear gradient should
establish their relation more clearly. The
physical mechanisms involved in the two cases
appear to be quite different.

Our results may be compared with those of
Gage & Reid (1968) who investigated the case
of thermally stratified Poisseuille flow. Their
stability boundaries, presented as a function of
Reynolds and Rayleigh numbers, depend on the
orientation of the two-dimensional disturbances
(or their three-dimensional equivalents). The
shapes of these boundaries are different from
ours, due to the fact that, in addition to con
vective cells, the formation of two-dimensional
Tollmien-Schlichting waves was included. Their
analysis shows that for such waves the most
unstable mode is the transverse disturbance
independent of the Rayleigh number-while
for thermal convection the most unstable mode
is the longitudinal disturbance-independent of
the Reynolds number. Thus, for sufficiently
high Reynolds numbers, Tollmien-Schlichting
waves could form at Rayleigh numbers which are
higher than the critical Rayleigh number of
longitudinal cells, but lower than the critical
Rayleigh number of transverse cells. These
waves would be superimposed on longitudinal
convection rolls. Such patterns are occasionally
observedunder cloudstreet conditions. (Malkus&
Riehl, 1964). The Apollo 9 photo, Fig. 24,
taken by the astronauts over the BOMEX area
suggests a formation of this type. Generalisa
tion to more arbitrary wind profiles and a
corresponding growth rate analysis are now
needed.

IV. Application to the Atmosphere

Application of the theory of Section II to the
earth's atmosphere requires care. Especially
difficult are quantitative estimates.

As in other incompressible theories the
positive density gradient needs to be replaced
by the negative gradient of potential tempera
ture (J so that

As has been pointed out earlier, linear wind
shear has been shown to exert similar "streeting"
effects on convection as the shear gradient.
(Kuo, 1963; Deardorff, 1965; Gallagher &
Mercer, 1965; Asai, 1970). At first glance it
appeared that the shear term had dropped out
by the operation leading to equation (6).
However, a height-dependent basic flow u(z)

was still contained in (7). As mentioned before,
it was the simplification of introducing a charac
teristic mean velocity 11 which eliminated the
effect of shear (but facilitated the treatment of
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Konrad's (1968) radar observations of thermal
streets in clear air.

The effect of condensation is two-fold: It
introduces a buoyancy source at an elevated
level and it extends convection upwards into a
layer which is unstably stratified inside clouds
and stably stratified outside. This situation also
affects the eddy diffusivity which will tend to
have higher horizontal than vertical components.
As Kuo (1965) has shown, the effect of a condi
tionally unstable atmosphere in stable surround
ings is to increase the area of descending currents
in comparison to that of ascending currents.
The non-isotropy of eddy diffusivities also
tends to enlarge the spacing between upcurrents.
The effect is minimized if the clouds are shallow.

To test the significance of the velocity profiles
observed in the atmosphere, some quantitative
estimates can be made with respect to the
Rayleigh number

R = gf3jV*2 n 4, (47)

see (18) and (25), and the Froude number

c =uH2 jgf3n 2 (48)

see (40). Obviously R will be smallest and e
largest when convection begins to develop,
since gf3 will be quite small. As a consequence,
the influence of the wind profile on the critical
Rayleigh number and on the mode of convection
will be maximized, as Fig. 23 shows.

Longitudinal rolls will therefore develop in
the early stages of convective activities. Later
on, also other modes may be excited but to a
lesser degree than the longitudinal modes.

Superadiabatic temperature gradients in the
dry atmosphere are notoriously difficult to
measure-except in the layer immediately
adjacent to the ground-because the deviations
from the dry-adiabate are within the error of
the temperature elements of standard radio
sondes (about 0.5°C). We are therefore justified
to assume that the vertical potential tempera
ture gradient 0' is smaller than 0.5°jkm.
Keeping in mind that this should be an average
value throughout the convective layer, in
cluding areas of ascending and descending
motion, 0' is probably quite small. The quantity
gf3 should then be of the order of 10-5 sec-2 or
smaller. Great difficulty is also encountered in
arriving at valid estimates of eddy diffusivit.ies
for momentum and heat, especially since the
concept of eddy viscosity in the planetary

I-+--t-:f-t-f'-!--+
r--~-----r----t--.,.<----j--,,~ E = un: _

, glln
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Fig. 23. Ratio of critical Rayleigh number Re, as
defined by equations (42) and (45), to unmodified
Rayleigh number Ro, as defined by equation (18), as
a function of Froude number c. Depending on the
profile curvature -ff", contained in e, transverse
bands and symmetric cells require higher critical
Rayleigh numbers than longitudinal bands.

Molecular viscosity and heat conductivity
have to be replaced by eddy diffusivities which
in turn are a function of convective turbulence.
The assumption (23) of a Prandtl number of
unity may, under these conditions, hold better
than in the molecular case, especially in near
neutral air (Lumley & Panofsky, 1964).

Regarding the simplified boundary condi
tions used in the above theory, they are not
directly applicable to atmospheric convection
over oceans and land where a quasi-fixed lower
and a quasi-free upper boundary exists. The
latter usually consists of a temperature inversion
or stably stratified layer. This will change the
value of the critical Rayleigh number, but not
invalidate the physical picture, as -Ieffreys
(1928) and Southwell & Pellow (1940), following
Rayleigh's (1916) simplified theory, have shown.
Rayleigh's boundary conditions have been used
here for reasons explained earlier. Refinement
of the theory for more realistic boundary
conditions is required.

A complication is introduced by atmospheric
condensation which, unfortunately, is the only
simple way to make atmospheric convection
modes visible. Glider experience, however, shows
that dry "updraft streets" form under similar
conditions as cloudstreets, allowing the glider
pilot to fly straight under clear skies, rather
than to circle in thermals. This is confirmed by
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Fig. 24. Cloud development near BOMEX area as photographed by the Apollo-9 astronauts (Photo NASA).

bound rry layer needs improvement. Under
convective conditions we may assume that

10' < v* < 10· cm' sec- l

A value of 10' em" sec- l will be adapted here.
From the observations described in Section I,
we may assume a layer height of the order of
1 km,

With these values the Rayleigh number
defined in (47) is of the order of 10". Since the
critical Rayleigh number R. ~ 6.75, see (18),
the quantity R/Ro'" 150, see Fig. 23.

Tellus XXIII (1971), 4-5

The observed vorticity gradient UN ranges
from 10-' to 10-. cm-l sec-l. The computer
presentations, Figs. 19, 21, and 22, use the
upper value. In this case e'" 100 and the critical
Rayleigh number R c for symmetric cells is a
little over 150 (see Figs. 22, 23), i.e. R/Rc '" 1.
Symmetric convection therefore has neutral
stability. In contrast transverse cells have a
critical Rayleigh number of 600 resulting in
R/Rc = 0.25 and the growth rate (] = - 1.7 x 10-"
sec-l. Therefore transverse rolls are highly
damped, their amplitude decaying with a half
life of about 7 min. Since the Fronde number, s,
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is proportional to Re'/R it is possible that
Tollmien-Schlichting waves develop for the
transverse mode of supercritical Reynolds
numbers (see Section III). For longitudinal rolls
in turn R; ~ R. and the existing Rayleigh num
ber R is highly supercritical for this mode. (R/Rc
= 150). Thus, convection bands have a growth

rate (J = + 2.3 X 10-3 and may double their
amplitude in a little over 5 min. The actually
observed values of u" (see Section I) lie between
2 and 7 x 10-7 corresponding to a range of E from
4 to 50 with somewhat less dramatic contrasts
between the different convection modes.

It should be kept in mind that, due to the
high powers involved in the dimensionless
numbers, all values are highly sensitive to the
uncertainties in the assumed magnitude of the
quantities fl, v, nand iV.Therefore, the examples
chosen should be considered as qualitative
illustrations of a largely unknown atmospheric
process.

The observed "width/height" ratio of cloud
streets (2 to 4) corresponds satisfactorily to the
expected theoretical value of 2.8, see (21) for
steady convection and to laboratory experi
ments with curved velocity profiles (Avsec,
1939). In this connection a remark on the
assumed exponential growth rate, see discussion
between equations (8) and (9), is in order. Both
atmospheric and laboratory observations suggest
that in reality a new steady state is approached

when the convective perturbation velocities have
reached sufficiently high values to accomplish
the required heat transport. The theoretical
width/height ratio for the case (J = 0 may then be
expected again.

It should be mentioned here that the above
theory may also apply to the wind streaks often
observed on lake and ocean surfaces (Roll,
1965). One may speculate that the wind stress
on the water surface will result in a curved
velocity profile in the upper layers of the water
while evaporative cooling of the water surface
will favor unstable stratification. If turbulent
mixing takes place-which can be expected
under high wind conditions and may actually
define a threshold value for the wind speed
a deep mixing layer will form and the assump
tion of a Prandtl number of unity will also be
justified. The spacing of the streaks which
represent helical circulations (Langmuir, 1938)
will then depend on the depth of the mixed
layer and should be a multiple of it.

Acknowledgements

The writer expresses his gratitude to Professor
R. Pierce for his valuable suggestions andto Dr.
R. Slutz for his kind cooperation in the genera
tion of three-dimensional computer presenta
tions.

REFERENCES

Alaka, Queney, et al. 1960. The air flow over moun
tains, WMO Tech. Note No. 34, Geneva.

Anderson, R. K., Ferguson E. W. & V. J. Oliver.
1966. The use of satellite pictures in weather
analysis and forecasting. WMO Tech. Note. No.
75, Geneva. WMO No. 190,96 pp.

Anderson, R. K. et al, 1969. Application of meteoro
logical satellite data in analysis and forecasting.
ESSA Technical Report. NESC 51.

Angell, J. K., Pack, D. H. & Dickson, C. R. 1968.
A Lagrangian study of helical circulations in the
planetary boundary layer. J. Atmos. Sci. 25, 707
717.

Asai, T. 1970. Three-dimensional features of thermal
convection in a plane Couette flow. J. Met. Soc.
Japan 48, 18-29.

Avsec, D. 1939. Tourbillons thermoconvectifs dans
l'air. Theses de la Iaculte des Sciences de I'Univer
site de Paris. Serie A., No. 1910, pp. 214.

Bareilon, V. 1965. Stability of non-divergent Ekman
layers. Tellus 17, 53-68.

Brown, R. A. 1970. A secondary flow model for the
planetary boundary layer. J. Atmos. Sci. 27, 742
757.

Benard, H. 1900. Les tourbillons cellulaires dans

une nappe liquide. Rev. gen. sci. pur. appl. I I,
1261-1271; 1309-1328.

Benard, H. 1927. Sur les tourbillons en bandes et la
theorie de Rayleigh. C. R. Acad. Sci. Paris 185,
1257-1259.

Brunt, D. 1951. Experimental cloud formation.
Compendium of Meteorology, p. 1255-1262.

Chandra, K. 1938. Instability of fluids heated from
below. Proc. Roy. Soc. A 164, 231-242.

Deardorff, J. W. 1965. Gravitational instability
between horizontal plates with shear. Phys.
Fluids 8, 1027-1030.

Faller, A. J. 1963. An experimental study of the
instability of the laminar Ekman boundary layer.
J. Fluid. Mech. 15, 560-576.

Faller, A. J. 1965. Large eddies in the atmospheric
boundary layer and their possible role in the
formation of cloud rows. J. Atmos. Sci. 22, 176
184.

Faller, A. J. & Kaylor, R. E. 1966. A numerical
study of the instability of the laminar Ekman
boundary layer. J. Atmos. Sci. 23, 466-480.

Gaby, D. C. 1967. Cumulus cloud lines vs, surface
wind in equatorial latitudes. Mon. Weath. Rev.
Wash. 85, 203-208.

Tellus XXIII (1971), 4-5



CLOUD BANDS IN EARTH'S ATMOSPHERE 425

Gage, K. S. & Reid, W. J. 1968. The stability of
thermally stratified plane Poiseuille flow. J.
Fluid Mech. 33, 21-32.

Gallagher, A. P. & Mercer, A. Mcd. 1965. On the
behaviour of small disturbances in plane Couette
flow with a temperature gradient. Proc. Roy. Soc.
A 286, 117-128.

Gifford, F. A. 1953. A study of low-level air trajec
tories at Oak Ridge, Tenn., Mon. Weath. Rev.
Wash. 81,179-192.

Goertler, H. 1940. Uber eine dreidimensionale
Instabilitiit laminarer Grenzschichtstromungen
an konkaven Wanden. Nachr. Ges. Wiss. Goetting
en, Math .. Phys. Klasse, Neue Folge 1, 2.

Goertler, H. 1959. Uber eine Analogie zwischen den
Instabilitaten laminarer Grenzschichtstromungen
an konkaven Wanden und an erwarrnten Wanden.
Lnq. Arch. 28, 71-78.

Graham, A. 1933. Shear patterns in an unstable
layer of air. Phil. Trans. Roy. Soc. London 232,
285-290.

Hanna, S. 1969. The formation of longitudinal sand
dunes by large helical eddies in the atmosphere.
J. Applied Met. 8, 874-883.

Jeffreys, H. 1928. Some cases of instability in fluid
motion. Proc. Roy. Soc. A 118, 195-208.

Konrad, T. G 1968. The alignment of clear air
convective cells. Proc. Inti. Conf. Cloud Physics,
Toronto, Canada, 539-543.

Kuettner, J. P. 1949. Der Segelflug in Aufwind
strassen. Schweiz. Aerorev. 24, 480-482.

Kuettner, J. P. 1959. The band structure of the
atmosphere. Tellus 11, 267-294.

Kuettner, J. P. & Soules, S. D. 1966. Organized
convection as seen from space. Bull. Amer.
Meteor, Soc. 47, 364-370.

Kuettner, J. P. 1967. Cloudstreets, theory and
observat.ions. Aero Revue 42, 52-56, 109-112.

Kuo, H. 1963. Perturbations of plane Couette flow
in stratified fluid and origin of cloud streets.
Physics of Fluids 6,195-211.

Kuo, H. 1965. Further studies of the properties of
cellular convection in a conditionally unstable
atmosphere. Tellus 17, 413-433.

Langmuir, 1. 1938. Surface motion of water induced
by wind. Science 87, 119-123.

Lilly, D. K. 1966. On the stability of Ekman
boundary flow. J. Atmos. Sci., 23, 481-494.

Lin, C. 1955. The theory of hydrodynamic stability.
Cambridge University Press. 155 pp.

Lumley, J. & Panofsky, H. 1964. The structure of
atmospheric turbulence. Wiley, New York. 231 pp.

Mal, S. 1930. Forms of stratified clouds. Beitr, Phys.
frei. Atmos. 17, 40-70.

Malkus, J. S. & Riehl, H. 1964. Cloud structure and
distributions over the tropical Pacific Ocean.
University of California Press, Berkeley and Los
Angles. 229 pp.

Pellew, A. & Southwell, R. 1950. On maintained
convective motion in a fluid heated from below.
Proc, Roy. Soc. A176, 312-343.

Plank, V. G. 1966. Wind conditions in situations of
patternform and non-patternform cumulus con
vection. Tellus 18. 1-12.

Rayleigh, Lord. 1916. On convection currents in a
horizontal layer of fluid, when the higher tem
perature is on the underside. Phil. Mag. (Series 6)
32, 529-546.

Roll, H. 1965. Physics of the Marine Atmosphere.
Academic Press, New York. 426 pp.

Schlichting, H. 1960. Boundary layer theory. McGraw
Hill, New York. 630 pp.

Schuetz, J. & Fritz, S. 1961. Cloud streets over the
Caribbean Sea. Mon. lI"eath. Rev. 89, 375-382.

Taylor, G. 1. 1923. Stability of a viscous liquid
contained between two rotating cylinders. Phil.
Trans. A 223, 289-343.

Terada, T. 1928. Some experiments on periodic
columnar forms of vortices caused by convection.
Report Aeron. Res. Inst., Tokyo, Imp. Univ. 3, 1
46.

Woodcook, A. 1941. Soaring over the open sea. Sci.
Mon. 55, 226-232.

OBJIAQHhIE TIOJIOChI B 3EMHOfl: ATMOC<DEPE. HABJIIO,lJ,EHHH H TEOPHH

Teneps XOpOIllO H3BeCTHO, qTO napannerrsuue
nOJIOCbI 06JIaHOB urapoxo pacnpocrpaneusr B
3eMHoil arxoctpepe. Ha6JIIOAeHHlI C ynpaanne
MbiX H aBTOMaTHqeCHHX HOCMHqeCHHX rcoparinett
H C BhICOTHbiX CaMOJIeTOB BMeCTe C 30HAHpoBa
HHeM C CYAOB H Ha3eMHblX cTaH~Hil npOJIHJIH
CBeT I1a HX npoHCXOmAeHHe. 8TH H cneuaans
nsre HCCJIeAOBaHHR TpOnHqeCHHX nopoasex 06JIa·
HOB BO npeMII npoexra BOM8KC AaIOT CJIe·
AYIO~He THnHqHble xapaHTepHCTHHH HOHBeH
TllBHblX 06JIaqHblX nopoacex: AJIHHa OT 20 AO
500 KM, paanenenae OT 2 AO 8 /CM, BblCOTa CJIOII
OT 0,8 AO 2 KM, OTHOllleHHe mapausr H BbiCOTe
OT 2 AO 4, crpyarypa nerpa - MaJIOe H3MeHeHHe
HanpaBJIeHlllI C BbiCOTOtl:, BepTHHaJIbHbltl: rpa
AlleHT CABHra BeTpa (HpllBH3Ha npo<pllJIII) OT
10-7 AO 10-0 CM-1 ceH-I, BbITIIHYTOCTb - BAOJIb
cpenaero BeTpa B HOHBeHTllBHOM CJIoe.
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C reoperasecxoa CTOpOHbI H3BeCTHO, qTO
JIHHetl:Hbltl: CABHr aerpa no BhlCOTe 6JIaro
npHIITcTByeT 06pa30BaHHIO HOHBeHTHBHbIX AO
pomerc. B aacroamea pafiore accnenyerca
a<p<peHT I1a6JIIOAaeMotl: HpllBH3HbI npO<pHJIII B
npeHe6pemeHHH a<p<peHTaMli JIliHetl:Horo no Bbl·
COTe cnnara nerpa. TIoHa3aHO, qTO HpllBH3Ha
caMa no ce6e Bbl3b1BaeT BbiTlIrliBaHlie HOHBeH
TllBHbIX IIqeeH B nanpaanenaa cpennero no
TOHa. HHep~HaJIbHble CliJIbI, B03HllHaIO~He B
naxpeeost nOJIe, nporaaoneacmyror CliJIaM n.ra
ByqeCTH. Hx OTHOllleHHe, nupaareanos HaH
MOAll<pll~llpoBaHHoe qllCJIO <DpYAa, onpenenaer
BeJIllqHHY HpllTHqeCHOrO qllCJIa PaJIeR, OTBeT·
CTBeHHoro aa B03HllHHOBeHlle HOHBeH~Hll. B
ABHmy~etl:cR cpene aTO qllCJIO YBeJIllqllBaeTCII,
qaCTO na HeCHOJIbHO nopanaon, no cpaBHeHHIO
C ero 3HaqeHHeM B nouoauieaca cpene, AJIII
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ucex HOHBeKTI1BHbIX MO.J:, aa IICKJIlO'leHIIeM

npono.u.non MO.J:bI. ,l],JIR I1.rIJIIOCTpaI~IHI 3TIIX

rrOJIOiKeIII1i1 npnueneau peaym.ruru HeKOTOpbIX

TpeXMepHbIX 'lI1C:reHHbIX pacseron.

TI penupaunra nonsrrxa IWJIl1'leCTBeHHOrO I1C

no.n.aonanaa peay.ns-rarnu ynpouienuoa reopun
K peaJIbHbIM aTMOCepepHbIM YCJIOBllfiM. TIOJIy

'leHO, 'ITO )J.JIFI 6bICTPbIX rexenaa, nonorpenae

MbIX cHllay, npono.nr.nue BoaMy~eHllfi MoryT

YABOllTb CBOIO aMrrJIllTYAY aa BpeMFI rrOpfiAKa

10 MllHyT, D TO BpeMFI ,\31{ rrouepe-nnre BO:IMy

tueuan aaryxator C TaKoif iKe CKOpOCTblO, npa

'leM CllMMeTpll'lHble fI'leliHll 6JI1l31{1l I{ nenrpans
HOti yCTOti'lllBOCTll.

06CYiKAalOTCR TaKiKe cuaaa 3TOti HOII~err~llII

C APyrllMll runoreaaaa II C B03My~eHllfiMII

I'epr.nepa-T3tiJIOpa. H aKOHe~, rrpIIBO;J,RTCfI cne

KyJIfII\llll, 'ITO epOpMllpOBaHl1e BeTpOBbIX nOJIOC

na rrOBepXHOCTII BOAbI M01KeT 6bITb CBR3aHO C

ananora-ruu« MexaHIIaMOM.
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