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ABSTRACT

The effect of lateral boundary perturbations (LBPs) on the mesoscale breeding (MBD) method and the local

ensemble transform Kalman filter (LETKF) as the initial perturbations generators for mesoscale ensemble

prediction systems (EPSs) was examined. A LBPs method using the Japan Meteorological Agency’s (JMA’s)

operational one-week global ensemble prediction was developed and applied to the mesoscale EPS of the

Meteorological Research Institute for the World Weather Research Programme, Beijing 2008 Olympics

Research and Development Project. The amplitude of the LBPs was adjusted based on the ensemble spread

statistics considering the difference of the forecast times of the JMA’s one-week EPS and the associated

breeding/ensemble Kalman filter (EnKF) cycles. LBPs in the ensemble forecast increase the ensemble spread

and improve the accuracy of the ensemble mean forecast. In the MBD method, if LBPs were introduced in its

breeding cycles, the growth rate of the generated bred vectors is increased, and the ensemble spread and the

root mean square errors (RMSEs) of the ensemble mean are further improved in the ensemble forecast. With

LBPs in the breeding cycles, positional correspondences to the meteorological disturbances and the

orthogonality of the bred vectors are improved. Brier Skill Scores (BSSs) also showed a remarkable effect

of LBPs in the breeding cycles. LBPs showed a similar effect with the LETKF. If LBPs were introduced in the

EnKF data assimilation cycles, the ensemble spread, ensemble mean accuracy, and BSSs for precipitation were

improved, although the relative advantage of LETKF as the initial perturbations generator against MDB was

not necessarily clear. LBPs in the EnKF cycles contribute not to the orthogonalisation but to prevent the

underestimation of the forecast error near the lateral boundary.

The accuracy of the LETKF analyses was compared with that of the mesoscale 4D-VAR analyses. With

LBPs in the LETKF cycles, the RMSEs of the forecasts from the LETKF analysis were improved and some of

them became comparable to those of the mesoscale 4D-VAR analyses based on the JMA’s operational data

assimilation system. These results show the importance of LBPs in the MBD method and LETKF. LBPs are

critical not only to ameliorate the underestimation of the ensemble spread in the ensemble forecast but also to

produce better initial perturbations and to improve the LETKF analysis.
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1. Introduction

The operational numerical weather prediction (NWP) has

been considerably improved by continuous advance in

numerical modelling and data assimilation techniques.

However, many difficulties remain in predicting mesoscale

severe weather with specifications of intensity, location and

timing. One of the reasons for these difficulties is the

general lack of observation data for high-resolution real-

time data assimilation. Another reason is the inherent low

predictability of small-scale severe phenomena that occur

under convectively unstable atmospheric conditions.

To cope with significant forecast uncertainties of mesos-

cale severe weather, the mesoscale ensemble prediction

system (EPS) is becoming viable. Operations of short-range

regional EPSs have been started in some forecast centers:

the Short-Range Ensemble Forecast (SREF) system of the
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National Center for Environment Prediction (NCEP) (Du

et al., 2003), the Met Office Global and Regional Ensemble

Prediction System (MOGREPS) of the UK Met Office

(Bowler et al., 2008), the Limited Area Ensemble Prediction

System within the COSMO consortium (COSMO-LEPS)

of Agenzia Regionale Prevenzione e Ambiennte -Romagna

(ARPA-SMR) of Italy (Marsigli et al., 2005) and the

Limited Area Ensemble Forecasting system using the

ALADIN model (ALDIN-LAEF) of the Central Institute

for Meteorology and Geodynamics (ZAMG) of Austria

(Wang et al., 2011). One of the possible choices for the

initial perturbation method for a limited model EPS is

dynamical downscaling of a global EPS. Some current

operational regional EPSs use downscaling of perturba-

tions produced by the global EPS (Marsigli et al., 2005;

Houtekamer et al., 2007; Bowler et al., 2008), whereas

others generate initial perturbations using a regional

model-based perturbation method such as the Breeding of

Growing Modes (BGM) method (e.g. Du et al., 2003;

Wang et al., 2011). Recently, the use of the ensemble

transform Kalman filter (ETKF; Bishop et al., 2001) as the

generator of initial perturbations for global EPSs has

become more frequent. Wang and Bishop (2003) compared

BGM and ETKF as initial perturbations generators and

showed that ETKF had the advantage that the amplitude

of the initial perturbations reflected the magnitude of the

local analysis error. However, they used a low-resolution

(T42 with 18 vertical levels) global climate model for the

comparison. Bowler (2006) compared ensemble prediction

among singular vector (SV), BGM and ETKF methods,

but the model was a toy model (Lorenz model; Lorenz,

1995). Bowler and Mylne (2009) tested ETKF as the initial

perturbations generator for a regional version of MO-

GREPS, but because the mesoscale ETKF did not yield

clear advantage, the operational system was implemented

with global ETKF downscaling (Bowler et al., 2008). They

did not compare regional ETKF with regional BGM.

In addition to the choice of initial perturbations, another

important feature of mesoscale EPSs is the existence of

lateral boundary conditions (LBCs). As shown by Anthes

et al. (1985, 1989), LBCs play a key role in limited-area

NWP. Because error growth in a mesoscale model is

restricted by the LBCs (Errico and Baumhefner, 1987;

Warner et al., 1989), an ensemble forecast in a limited-area

model tends to lose its variance as lead time increases if the

LBCs are not perturbed (Hamill and Colucci, 1997; Hou et

al., 2001). Nutter et al. (2004a, 2004b) examined the impact

of coarsely resolved and temporally interpolated LBCs on

the dispersion of limited-area model ensemble forecasts and

showed that the lateral boundary perturbations (LBPs) help

to increase the ensemble spread of the nested model.

A barotropic periodic channel domain model was used in

their study. Recently, Saito et al. (2010b) applied LBPs from

the global one-week EPS forecast of the Japan Meteorolo-

gical Agency (JMA) to their ensemble prediction of the

Myanmar cyclone Nargis and showed that when LBPs were

introduced, the ensemble spread increased by about 50%

and root mean square errors (RMSEs) of the ensemble mean

forecast became smaller than the case without LBPs.

Those previous studies have shown the importance of

LBPs in mesoscale ensemble forecasts. However, some

initial perturbations generators such as the BGM and the

Ensemble Kalman filter (EnKF) methods need LBCs in

their breeding/EnKF cycles, and their effects on the

produced initial perturbations have hardly been investi-

gated. Torn et al. (2006) was the first to assess how LBCs

affect the performance of limited-area EnKFs. They applied

two methods, LBPs provided by a larger domain and a

simpler alternative method employing presumed spatial and

temporal covariance relationships to an EPS using the

Weather Research and Forecasting (WRF) model (Skamar-

ock et al., 2005) and suggested that ensemble LBCs can be

specified without a global ensemble by perturbing around an

ensemble mean. However, the horizontal resolution of the

regional ensemble in their study was 100 km, which is very

coarse for current mesoscale EPSs. Moreover, they did not

compare the methods using the global ensemble perturba-

tions. Recently, Vié et al. (2011) studied the impact of

uncertainties on initial and LBCs in cloud-resolving en-

semble simulations with a mesoscale model and showed that

LBPs have an impact at longer range to increase the

ensemble spread. However, the uncertainty on LBCs was

not considered in the perturbed observations experiment to

generate the initial perturbations.

In 2008, the World Weather Research Programme

(WWRP) Beijing 2008 Olympics Forecast Demonstration/

Research and Development Project (B08FDP/RDP) was

conducted in conjunction with the Beijing Olympic Games.

B08FDP/RDP was an international research project of

WWRP of the World Meteorological Organization

(WMO) for short-range weather forecasting. The main

part of the B08RDP project, called Tier-1, was an inter-

comparison of mesoscale EPSs with a horizontal resolution

of 15 km. The Meteorological Research Institute (MRI) of

JMA participated in this project by applying the JMA non-

hydrostatic model (NHM). Prior to the 2008 intercompar-

ison experiment of B08RDP, MRI developed five initial

perturbation methods and compared their performances

objectively: (1) a downscaling method of JMA’s opera-

tional one-week EPS, (2) a targeted global model SV

method, (3) a mesoscale model SV method, (4) a mesoscale

BGM method, and (5) an ensemble transform method

based on the local ensemble transform Kalman filter

(LETKF). In addition, MRI developed two LBP methods

and examined their impacts on the ensemble forecast.
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The results of the comparison of the five initial perturba-

tion methods for the mesoscale ensemble prediction con-

ducted by MRI are reported in a separate paper (Saito

et al., 2011; hereafter referred as ‘S2011’). As the second part

of the MRI/JMA studies for the B08RDP project, we

examined the influence of LBPs onmesoscale EPSs. Because

the importance of LBPs in mesoscale EPSs was already

made clear by the previous studies, we focus here on how

LBPs affect the performance of BGM and LETKF as the

initial perturbation generators by investigating their effect

on the breeding/EnKF cycles. EPS performance is validated

by the RMSEs of the ensemble forecasts, the ensemble

spreads and their growth rate and Brier Skill Scores (BSSs)

for precipitation. Moreover, the accuracy of the LETKF

analyses as a data assimilation method with and without

LBPs in the EnKF cycles is compared with that of state-

of-the-art mesoscale 4D-VAR analyses (Kunii et al., 2010).

This article is organised as follows. Section 2 briefly

introduces the WWRP B08FDP/RDP project. Section 3

presents the initial and LBPmethods used in the study.

Section 4 describes the design of the experiment. In Section

5, the pure effect of LBPs on the EPS with no initial

perturbations is reconfirmed, and then the effect of the

LBPs on the BGM method is presented. In Section 6, the

effect of LBPs in the EnKF cycles of LETKF is presented.

In Section 7, we discuss the evolution of the energy norm,

and the BSSs of the ensemble experiments, and we perform

a similarity index analysis to evaluate the characteristics of

the bred perturbation vectors. In addition, the accuracy of

the LETKF analyses is compared with that of the

mesoscale 4D-VAR analyses. Summary and concluding

remarks are given in Section 8.

2. The WWRP B08FDP/RDP project

The B08FDP/RDP was an international research project of

WWRP that succeeded the Sydney 2000 Forecast Demon-

stration Project (Sydney 2000FDP; Keenan et al., 2003).

The B08FDP/RDP consisted of two components: an FDP

component for very short-range forecasting of up to 6 h

based on nowcasting, and an RDP component for short-

range forecasts of up to 36 h based on mesoscale EPSs.

A main part of the RDP component was the intercompar-

ison of mesoscale EPSs based on regional models with a

horizontal resolution of 15 km, called Tier-1.

The 2008 B08RDP experiment was conducted over

about one month in summer 2008 to coincide with the

period of the Beijing Olympic Games that took place from

8 to 24 August 2008. In the Tier-1 ensemble experiment, the

six participants1 were requested to run their ensemble

predictions for a forecast time (FT) of up to 36 h, starting

every day at 12 UTC. The results were interpolated into

verification grids with a resolution of 0.158 over a common

verification domain (105�1258E, 30�458N; see Fig. 4).

Duan et al. (2012) provided a detailed overview of

B08RDP, and Kunii et al. (2011) have reported the results

of the international EPS intercomparison.

Prior to the 2008 intercomparison experiment of

B08RDP, MRI developed five initial perturbation methods

and two LBP methods and examined their performance

and impacts on the ensemble forecast. Details of MRI and

JMA’s activities in B08FDP/RDP have been published as

an MRI Technical Report (Saito et al., 2010a), while the

results of the comparison of the five initial perturbation

methods have been reported in S2011.

3. Initial and LBP methods

3.1. Initial perturbation methods

In this study, we compare two initial perturbation methods,

the mesoscale breeding (MBD) method and the LETKF

method with and without the LBPs.

3.1.1. MBD method. MBD employs a self-breeding cycle

with NHM. To evaluate the magnitude of the bred

perturbations, the moist total energy (TE) norm of

Barkmeijer et al. (2001) was employed:

TE ¼ 1

2

ZZ
U �U
� �2þ V � V

� �2þ
cp

H
h� h
� �2 þ wq

L2

cpH
q� qð Þ2

( )
dSdP

þ 1

2

Z
RH

Pr

ðPsea � PseaÞ
2
dS:

Here, overbar represents the ensemble mean. According

to the JMA global EPS, U �300K, Pr�800 hPa and

wq�0.1 were used, and the norm was computed below

5.3 km above ground level.

To produce bred vectors, 6-h self-breeding cycles at a

horizontal resolution of 40 km were performed (Fig. 1a).

The moist TE norms were computed by the differences

between the control runs and the perturbed runs, and the

bred perturbations of all prognostic variables except soil

temperature were normalised every 6 h. The normalisation

coefficients were determined by the square root of the

ratios of the moist TE norms of perturbed runs to a

standard norm, which was computed using the prescribed

values of the model variables (0.35 hPa for mean sea level

pressure, 1.0m/s for wind speed, 0.4K for potential

temperature and 5% for relative humidity (RH), respec-

tively). These values are about 50% of the magnitudes of

(1)

1MRI/JMA, NCEP, Meteorological Service of Canada (MSC),

ZAMG, the National Meteorological Center (NMC) of the China

Meteorological Administration and the Chinese Academy of

Meteorological Sciences (CAMS).
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JMA’s operational Meso 4D-VAR statistical background

errors (Koizumi et al., 2005). To save computational time,

forecasts in the breeding cycles were performed using the

warm rain process.

Five independent breeding cycles were performed, and

the five bred vectors were interpolated and added to the

initial conditions of the control run to obtain five positive

ensemble members at a horizontal resolution of 15 km.

Additionally, the interpolated bred vectors were sub-

tracted from the initial conditions of the control run to

make five negative ensemble members. These negative

members are essentially symmetric with respect to the

positive members, but the ensemble mean is slightly

modified owing to the super-saturation adjustment.

S2011 describes more details about the breeding process

such as the initial seed.

3.1.2. LETKF method We investigated the performance of

NHM-LETKF (Miyoshi and Aranami, 2006) as the initial

perturbations generator in the mesoscale EPS. The LETKF

(Hunt et al., 2007) following the ETKF approach (Bishop

et al., 2001) was used to solve the Kalman filter analysis

equation for the covariance matrix. The analysis equation

for LETKF is:

Xa ¼ �xf eþ dXf ~PaðHdXÞT R�1ðyo �Hðxf ÞÞeþ
ffiffiffiffiffiffiffiffiffiffiffiffi
m� 1
p

UD�1=2UT
� �

¼ �xf eþ dXf ~PaðHdXÞT R�1ðyo �Hðxf ÞÞ eþ dXf T:

Fig. 1. Schematic diagrams of (a) the MBD method and (b) the LET method.

(2)
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Here, x is the model variable, xf the ensemble mean and

dX the ensemble perturbation matrix. H is the observation

operator and H is its tangent linear, yo the observation, R

the observation error covariance and e is an m-dimensional

row vector (1, . . ., 1) where m is the ensemble size.
~
P

a
¼ UD�1UT is the analysis error covariance matrix in

the space spanned by forecast ensemble perturbations

(‘tilde space’), and U and D are obtained by an eigenvalue

decomposition. The first term is the background, the

second term is the analysis increment and the third term

is the ensemble-perturbation update by the transform

matrix T. In S2011, and in Sections 6.1 and 6.2 in this

article, the third term was used as the ensemble perturba-

tion generator and the first two terms were replaced by the

Meso 4D-VAR analysis in the ensemble forecast. Note that

rescaling in the breeding method corresponds to the use of

a diagonal transform matrix, while T is non-diagonal in

LETKF. Miyoshi (2010) gave the detailed formulation and

its application to NHM. Hereafter, we call the initial

perturbation method using LETKF as the ‘LET method’ or

simply ‘LET’, according to S2011.
Figure 1b is an outline of the LET procedure and the

ensemble prediction in B08RDP. As in the MBD method,

6-h EnKF forecast-analysis cycles with NHM (40 kmL40)

were performed four times a day, but the ensemble size was

increased to 20 to reduce the sampling errors in the

analysis. A multiplicative inflation factor of 10% to the

ensemble perturbations (i.e. 21% covariance inflation) was

employed. Covariance localisation was performed with

observation localisation scales of five horizontal grid points

and three vertical levels, in which the influence of an

observation is cut off when the distance is larger than the

product of the localisation scale and 2.0*sqrt(10/3). Surface

and upper sounding data including Aircraft Meteorological

Data and Reporting data that passed the operational

quality control (QC) procedures (Table 1) were assimilated

by LETKF. The analysis ensemble was recentered around

the analysis from the Meso 4D-Var system (Kunii et al.,

2010) at every 12 UTC in the LETKF forecast-analysis

cycles. Then, 10 members were selected by a cluster analysis

based on distances evaluated by the variation of the

normalised energy norm in the lower atmosphere (eq. (4)

in S2011). To reduce the computation time, the warm rain

process was adopted in the forecast-analysis cycles.

Miyoshi and Aranami’s (2006) NHM-LETKF was

modified by Seko (2010) as follows: (1) improved treat-

ments of momentum (e.g. accurate treatment of air density)

and pressure as prognostic variables, (2) implementation of

vertical hybrid coordinates, (3) saturation adjustment of

the initial field, (4) removal of local patches, (5) a cluster

analysis procedure to choose 10 members from 20 mem-

bers, and (6) introduction of LBPs in forecast-analysis

cycles. Local patches, those originated from the local

EnKF (Ott et al., 2004), were removed by the method of

Miyoshi et al. (2007) to avoid a problem of analysis

discontinuity. This method was implemented for NHM-

LETKF by Fujita et al. (2009).

S2011 describes further details of the cluster analysis.

Seko et al. (2011) performed mesoscale and cloud-resolving

ensemble forecast experiments for a heavy rainfall event in

western Japan using NHM-LETKF and obtained promis-

ing results.

3.2. LBPs method

The JMA operational one-week EPS was used for LBPs.

Fig. 2 shows the procedure to prepare LBCs and LBPs.

Perturbations were obtained from the JMA operational

one-week EPS (TL319L60) by subtracting the control run

forecast from the first five positive ensemble members.

Although the horizontal resolution of the JMA one-week

EPS is about 60 km, 6-h archived forecast grid point values

(GPVs) with 12 pressure levels and horizontal resolution of

1.258 are used in B08RDP. These data cover the Regional

Specialized Meteorological Center (RSMC) Tokyo respon-

sible area (80�1808E, 0�71.58N) and are transferred daily

by the Numerical Prediction Division (NPD) of JMA in

Tokyo to MRI in Tsukuba through an exclusive line.

Because the highest level of the archived forecast GPV is at

100 hPa, which is lower than the top of the 40-level NHM

(22.1 km; about 40 hPa), the forecast GPVs were first

interpolated into the 6-h 32-level hybrid NHM (NHM

L32) model levels (model top at 13.8 km; about 160 hPa),

Table 1. List of data assimilated in the Meso 4D-VAR and

LETKF analyses

LETKF Meso 4DVAR

GTS data Radiosonde Radiosonde

Pilot balloon Pilot balloon

Aircraft

(AMDAR)

Aircraft (AMDAR)

Ship

Buoy

QuikSCAT sea surface winds

Domestic data Non Wind profiler in Japan

Aircraft (domestic ACARS)

Radar-AMeDAS analysed

rainfall in Japan

One-hour precipitation

amount and total precipitable

water retrieved from SSM/I,

TMI and AMSR-E.

Radial velocity data of

operational Doppler radars in

Japan
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and the perturbations were obtained by subtracting the

interpolated field of the control run from that of the

perturbed runs. Then, the perturbations were normalised

and added to the 3-h LBCs of the control run of the 40-

level hybrid NHM (NHM L40). Perturbations at the NHM

L32 32nd level were extrapolated to the top eight levels of

NHM L40. At the kz-th level, the amplitudes of that

perturbations were multiplied by the coefficient c1�{1-

cos(p*(kz-40)/8)}/2, so that the perturbation amplitude

would become zero at the top of NHM L40.

Because the data transfer timing of the RSMC Tokyo

ensemble forecast GPVs from NPD/JMA to MRI was too

late to conduct a near real-time EPS run of B08RDP, the

RSMC data at 12 UTC of the day before were used. The

amplitudes of the global EPS perturbations were adjusted

to take into account the difference in initial times. To

evaluate the forecast errors of JMA’s operational global

EPS, the statistical evolution of the ensemble spread of the

500 hPa height field (Figure 3) was adopted. The ensemble

spread of the global EPS was defined by a function

WEPSPR (FT), and the amplitude of perturbation at the

global EPS FT�iftg (24�60 h) was adjusted by multiplying

it by the following coefficient c2:

c2 ¼ WEPSPR ðiftrÞ
WEPSPR ðiftgÞ

; (3)

where iftr is the FTof the mesoscale ensemble prediction

(0�36 h). The value of c2 is about 0.30 at the initial time of

Fig. 2. Schematic diagram of the preparation procedure for LBCs and LBPs.
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the ensemble forecast (iftr�0 and iftg�24) and becomes

0.59 at the end of the 36-h ensemble forecast period

(iftr�36 and iftg�60). After amplitude adjustment, per-

turbations were interpolated in time and space and added

to the 3-h 40 km L40 LBCs for NHM produced by the

JMA’s high resolution global spectral model (GSM)

forecast. The water vapour saturation adjustment was

applied to all perturbed LBCs to avoid supersaturated

conditions.2

Similar LBPs were prepared with a horizontal resolution

of 40 km for breeding cycles in MBD and the EnKF data

assimilation cycles in LETKF. For the initial time of the

first breeding/EnKF cycles, c2�1.00 because iftr�
iftg�0, while c2 becomes 0.28 at the end of the fourth

breeding/EnKF cycles (iftr�6 and iftg�24).

4. Design of the experiments

4.1. Breeding/EnKF cycles

In the breeding/EnKF cycles, the model domain (Figure 4)

has 97�73 grid points with a horizontal resolution of

40 km. The number of vertical levels is 40, with the lowest

level at 20m above ground level, and the depth of the layers

stretches from 40 to 1180m with increasing height. Near

lateral boundaries, absorbing layers of six grid points

(240 km) are inserted with Rayleigh damping using a 1/e-

folding time of 2400 s, whereas in the upper eight layers,

levels 33�40, similar absorbing layers are employed to

prevent false reflection of internal gravity waves.

In MBD, five-member 6-h breeding cycles were con-

ducted successively from 12 UTC 2 July (Fig. 1a), with

initial seeds given by perturbations from the operational

global one-week EPS of JMA. Initial conditions of the

control runs were prepared using JMA’s operational global

4D-VAR analysis 6 hourly. In the LET method, 20-

member 6-h EnKF cycles were conducted successively

from 12 UTC 30 June (Fig. 1b), with the initial seeds

prepared using high-resolution (0.18758) global analyses of
JMA at different analysis times. The observational dataset

used in the operational global analyses of JMA after the

QC procedures, except for satellite radiances, was assimi-

lated by the LETKF.

LBCs of the control run were given by the JMA’s

operational high resolution GSM (TL959L60), whereas

the LBPs described in Section 3.2 were added to the

ensemble members. Physical processes were the same as

in the ensemble forecast, but the warm rain process was

used for the cloud microphysics to save computational

time.

4.2. Ensemble forecasts

The ensemble forecasts at a horizontal resolution of 15 km

were performed for 2 d, 3 and 4 July 2008, with initial times

of 12 UTC up to a 36-h FT with 11 ensemble members. The

model domain comprised 232�200 grid points, and

vertical coordinates were the same as in the Breeding/

EnKF cycles. Near lateral and upper boundaries, similar

absorbing layers were also employed.

Initial conditions and LBCs of the control run were

prepared by the Meso 4D-VAR analyses over the Beijing

area (Kunii et al., 2010) and by JMA’s high-resolution

operational GSM forecast (Japan Meteorological Agency,

2007), respectively.

A three-ice bulk cloud microphysics scheme that predicts

cloud water, rain, cloud ice, snow and graupel and a Kain�
Fritsch convective parameterisation scheme are included as

the moist processes. Other physical processes including the

Fig. 3. Time sequence of the statistical ensemble spread of the

500 hPa height filed in the JMA’s global one-week EPS. A line

indicated by triangles is the spread by the global BGM before

October 2007, whereas squares indicate the spread by the global SV

method after November 2007. Courtesy of Ryouta Sakai of JMA.

2A similar procedure was employed in the ensemble prediction of

the Myanmar cyclone Nargis (Saito et al., 2010b), but in the case

of the Nargis’ EPS, the 6-h RSMC Tokyo responsible area data

were not used because of their limited coverage. As an alternative,

another 11-levels 12-h global EPS forecast dataset was used.

Amplitudes adjustment with eq. (3) was not performed because the

JMA one-week ensemble result at 12 UTC of the same day was

available.
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atmospheric radiation were basically the same as in JMA’s

operational mesoscale model (MSM; Saito et al., 2006,

2007; Japan Meteorological Agency, 2007).

For more detailed specifications of the mesoscale EPS

and modifications to the forecast model in B08RDP, see

S2011.

4.3. Comparison experiments

To examine the effect of LBPs in the Breeding/EnKF cycles

and 36-hr ensemble forecasts on EPS, we conducted six

experiments using 4DVAR analysis data for initial condi-

tions (Table 2). Additional two ensemble forecasts

(LET_kfbf and LET_kfbfc) with control run initial condi-

tions given by LETKF analyses are described in Section 7.4.

During the period of comparison, a synoptic low

pressure system passed over eastern China. Fig. 4 shows

the control forecast without perturbations at the initial

time 12 UTC, 4 July 2008. A low pressure system was

located southwest of Beijing at 15 UTC, 4 July (Fig. 4a;

FT�3) and moved northeastward bringing rainfall to the

area northeast of Beijing on 5 July (Fig. 4b; FT�24).

5. Effect of LBPs in MBD

5.1. Pure effect of LBPs

First, we see the ensemble characteristics purely due to the

LBPs with no initial perturbations for reference (‘NIP_lbpf’

experiment). Figure 5 shows the ensemble spread horizon-

tal distribution for meridional horizontal wind (V) at

850 hPa. Even without initial perturbations, if we apply

the LBPs to the forecast, the ensemble spread soon

increases near the lateral boundaries by FT�3 (Figure

5a), and the influence of the LBPs propagates inside the

model domain. By FT�24, the spread has grown around

the synoptic disturbance, and eventually a distinct large

spread area appears corresponding to a low pressure

system northeast of Beijing at FT�36 (Fig. 5b).

Fig. 5c shows the evolution of the ensemble spreads of

surface variables in the common verification area

(105�1258E, 30�458N; see Fig. 4). The ensemble spread

gradually increases with time from zero at the initial time

without the initial perturbations. The spread of mean sea

level pressure (Psea) increases most rapidly because pres-

sure difference propagates with the speed of sound waves.

Spreads increase almost linearly during the 36-h forecast

period and reach about 1m/s for meridional wind (V),

0.8 hPa for surface pressure, 0.58C for temperature (T) and

Table 2. List of experiments

Name Initial

condition

of the

control

run

Initial

perturbations

LBPs in

breeding/

EnKF cycles

to produce

initial

perturbations

LBPs in

the

ensemble

forecast

NIP_lbpf 4DVAR No � Yes

MBD_nlbp 4DVAR BGM No No

MBD_lbpf 4DVAR BGM No Yes

MBD_lbpfc 4DVAR BGM Yes Yes

LET_lbpf 4DVAR LETKF No Yes

LET_lbpfc 4DVAR LETKF Yes Yes

LET_kfbf LETKF LETKF No Yes

LET_kfbfc LETKF LETKF Yes Yes

Fig. 4. Sea level pressure (contours) and accumulated 3-h precipitation (colour scale) predicted by the control run. Initial time is 12 UTC,

4 July 2008. The colour bar indicates precipitation intensity in mm. (a) FT�3. (b) FT�24.
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3% for RH. The spread of 3-h accumulated rain (RR3H)

decreases after FT�27 owing to the passage of the low

pressure system.

RMSEs of the control run at FT�24 against the

initial condition (analysis at 12 UTC 5 July) were almost

the same for zonal wind (U), T and Psea but slightly

smaller than those of the control run for V and RH

(figures not shown, see Fig. E-5-4 of Saito et al. 2010a),

which means that even with no initial perturbations, the

mesoscale EPS with LBPs act as an ensemble forecast up

to a point and may improve the accuracy of the ensemble

mean.

5.2. Ensemble forecast without LBPs

Next, we confirm mesoscale EPS features without LBPs

and investigate the characteristics of the bred vectors (the

‘MBD_nlbp’ experiment). Figure 6a, b shows the horizon-

tal maps of the ensemble spread for V at 850 hPa at FT�0

and FT�36, respectively. In this case, the bred vectors

cannot grow near the lateral boundaries; thus, the initial

perturbations are confined to inside of the model domain

(Fig. 6a). The ensemble spread remains small and even

decreases slightly near the lateral boundaries in the forecast

period. At FT�36, the spread is small and has barely

grown around the low pressure system (Fig. 6b).

Fig. 6c shows the evolution of the ensemble spread for

surface variables. The spreads reach maximum values at

around FT�24 and then start decaying. The temperature

ensemble spread increases in the day time (FT�12�21),
corresponding to the diurnal cycle.

Enlarged views of the horizontal distribution of surface

precipitation at FT�24 are shown in Fig. 9a. Here, only

members ‘p05’ and ‘m05’ are shown in the left two

columns. Precipitation patterns by each ensemble member

are similar. The ensemble spread (the right most column)

also had a pattern similar to that of the ensemble mean (the

second right column), suggesting that the ensemble disper-

sion was mainly due to small positional differences of

intense rainfalls.

Fig. 5. (a) Ensemble spread for meridional horizontal wind (V) at 850 hPa in the experiment with LBP only (NIP_lbpf). Initial time is 12

UTC 4 July 2008. (b) Ensemble spread at FT�36. (c) Time sequence of the ensemble spreads of surface elements in the common

verification area.

EFFECT OF LATERAL BOUNDARY PERTURBATIONS 9



5.3. Effect of LBPs in the ensemble forecast

In this experiment, LBPs described in Section 3.2 are

interpolated and introduced in the 36-h ensemble forecast

with a horizontal resolution of 15 km. When LBPs are

introduced (the ‘MBD_lbpf’ experiment), ensemble spreads

in the latter half of the period (after FT�18) become larger.

Fig. 7a, b shows the horizontal maps of ensemble spread for

V at 850 hPa in the MBD experiment including LBPs.

Although the ensemble spread at FT�0 (Fig. 7a) is identical

to that of MBD_nlbp (Fig. 6a), the ensemble spread at

FT�36 (Fig. 7b) extends throughout the model domain,

and the amplitude of the spread around the low pressure

system becomes larger compared to the results for

MBD_nlbp (Fig. 6b). However, Fig. 7b is similar to Fig.

5b, suggesting that at FT�36, the influence of LBPs is

dominant and that bred initial perturbations may contribute

only slightly to the spread. This implication is confirmed by

the time series of the ensemble spread (Fig. 7c). Spreads for

MBD_lbpf are larger than those for MBD_nlbp (Fig. 6c) in

the second half of the forecast period, but at FT�36,

MBD_lbpf spreads are not far from those obtained in the

experiment without initial perturbations (NIP_lbpf; Fig. 5c).

5.4. Effect of LBPs in breeding cycles

The above results suggest that ensemble spreads in

MBD_lbpf were mainly contributed by LBPs in the latter

half of the forecasts and that the initial MBD perturbations

did not grow much. To further examine the effect of LBPs

in breeding cycles, LBPs were applied not only to

the ensemble forecast but also to the breeding cycles at a

horizontal resolution of 40 km (the ‘MBD_lbpfc’

xperiment).

Figure 8a, b shows the horizontal distributions of the

ensemble spread of V at 850 hPa. The bred initial perturba-

tions at FT�0 (Fig. 8a) are distributed over the whole

forecast domain and their amplitudes have become larger.

Compared with MBD_lbpf (Figure 7a), the location of the

large initial spread area in central China has shifted

southwestward, so that the positional correspondence

with the low pressure system is improved. The differences

Fig. 6. Similar to Fig. 5 but for the MBD experiment without LBPs (MBD_nlbp).

10 K. SAITO ET AL.



between MBD_lbpfc and MBD_lbpf continue throughout

the ensemble forecast period. At FT�36 (Fig. 8b), the

spread is larger and more solid than in Figure 7b.

Time series of ensemble spreads is shown in Figure. 8c.

The spreads become larger from the initial time and tend

to increase throughout the forecast period. Diurnal

changes in the spreads of surface temperature and

relative humidity become more distinct. This suggests

that each member has its own weather, and diurnal

change in each member is different. The magnitudes of

the ensemble spreads at FT�36 are much larger than

those of MBD_lbpf. Interestingly, even though the same

LBPs were applied to MBD_lbpfc and MBD_lbpf in the

ensemble forecast, the differences in spread amplitudes at

FT�36 between them (compare Fig. 8c and 7c) are

larger than those between MBD_lbpf (Fig. 7c) and

NIP_lbpf (Figure 5c). Namely, LBPs in breeding cycles

play an important role in producing growing bred

vectors that in turn increase the forecast ensemble spread

more effectively than the LBPs in the ensemble forecast

period.

Fig. 9b shows 3 h accumulated precipitation at 12UTC

5 July (FT�24) by MBD_lbpfc. Member ‘p05’ predicts

two separate rainfall bands, one east and one south of

Beijing (double circle), whereas member ‘m05’ predicts an

intense rainfall region northeast of Beijing. Large ensemble

spread areas extend further southwest than in MBD_nlbp

(Figure 9a).

The introduction of LBPs in the breeding cycles con-

tributes not only to increasing the ensemble spread but also

to improving the accuracy of the ensemble mean. Averaged

RMSEs for two initial times (3 and 4 July 2008) for the

control runs and for the MBD ensemble forecasts are

shown in Fig. 10. Compared with the control run (single

deterministic forecast), the ensemble mean RMSEs for

surface variables are smaller even without LBPs

(MBD_nlbp) (Fig. 10a). If we apply LBPs in the ensemble

forecast (MBD_lbpf), RMSEs become smaller. The advan-

tage of the ensemble forecast is the most distinct in

MBD_lbpfc, where LBPs are introduced in the breeding

cycles. The 500 hPa level verifications yield the same

conclusion (Fig. 10b).

Fig. 7. Similar to Fig. 6 but with LBPs in the ensemble forecast (MBD_lbpf).
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6. Effect of LBPs in LETKF

Similar experiments as in the MBD method were per-

formed with the LETKF (‘LET’ experiment). Because the

advantage of LBPs in the ensemble forecast was obvious, as

described in Section 5, we focus on the effect of LBPs in the

LETKF cycles in this section. LBPs described in Section

3.2 are introduced in the 36-h ensemble forecast with a

horizontal resolution of 15 km.

6.1. Ensemble forecast with the LET method

Fig. 11a, b shows the ensemble spread of V at 850 hPa by the

LETKF when LBPs were introduced in the ensemble

forecast (‘LET_lbpf’). Because the LBPs were omitted in

the EnKF forecast analysis cycles in this experiment, no

initial spreads are seen near the lateral boundaries (Fig. 11a).

At FT�36, the large spread area has moved northward to a

location, corresponding to that of the low pressure system

(Fig. 11b). These distributions of the ensemble spread are

similar to those obtained with MBD_lbpf (Fig. 7a, b) except

that the amplitude of spread in LET_lbpf is slightly smaller

than that in MBD_lbpf. Initial perturbations of LET are

smaller than those in MBD over Japan and around Beijing,

where the observation density is high. This suggests that the

LET generates initial perturbations that represent the

accuracy of the analysis.

Fig. 11c shows the evolution of the ensemble spreads of

surface fields in the common verification area. The

characteristics of the spreads are similar to the correspond-

ing results in MBD_lbpf (Fig. 7c), but the diurnal cycles in

temperature and relative humidity in the day time are

somewhat smaller than those in the MBD method. Spreads

at FT�36 are almost the same as those in NIP_lbpf and

MBD_lbpf (Fig. 5c and 7c, respectively), suggesting that

the influence of LBPs is dominant.

The 3-h accumulated precipitation at 12UTC 5 July

(FT�24) resembled that in MBD_lbpf, and the results

produced by eachmemberwere similar to the ensemblemean

(figure not shown, see Fig. E-5-20 of Saito et al. 2010a).

Fig. 8. Similar to Fig. 7 but with LBPs in both breeding cycles and the ensemble forecast (MBD_lbpfc).
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6.2. Effect of LBPs in EnKF cycles on ensemble

prediction

In this experiment, LBPs were applied not only to the

ensemble forecast but also to the EnKF forecast analysis

cycles of LETKF with a horizontal resolution of 40 km

(‘LET_lbpfc’). The procedures described in Section 4.1

were applied to the 6-h EnKF cycles of LETKF from 12

UTC 30 June 2008.

Fig. 12a, b shows the ensemble spread horizontal

distribution of V at 850 hPa. The analysed initial perturba-

tions at FT�0 (Fig. 12a) extend over the whole forecast

domain and their amplitudes become larger compared with

LET_lbpf. Compared with Fig. 11a, the location of the

large initial spread area shifts southwestward, and the

positional correspondence with the synoptic disturbance

(the low pressure system) is improved. Note that the initial

perturbations are still small over Japan and around Beijing,

where the observation density is high. Unlike in

MBD_lbpfc (Fig. 7b), in LET, the initial ensemble spread

corresponds well to the observation density. The effect of

initial perturbations continues throughout the forecast

period of 36 h. At FT�36, the spread (Fig. 12b) is larger

and more solid than in LET_lbpf (Fig. 11b), although it is

slightly smaller than that in MBD_lbpfc (Fig. 8b).

The evolution of the ensemble spreads is shown in Fig.

12c. Spreads become larger from the early stage of the

forecast and continue increasing throughout the forecast

period. The diurnal cycle becomes clearer than in Fig. 12c

but slightly smaller than that of MBD_lbpfc (Fig. 8c), as

discussed in S2011. Magnitudes of ensemble spreads at

FT�36 are also much larger than in Fig. 12c. The 3 h

accumulated precipitation at 12UTC 5 July (FT�24)

shows that the individuality of each member is increased,

similar to the MBD_lbpfc case (figure not shown, see Fig.

E-5-23 of Saito et al. 2010a).

Averaged RMSEs for two initial times (3 and 4 July

2008) for surface and 500 hPa variables are shown in Fig.

13a, b. The ensemble mean RMSEs are smaller than those

of the control runs, and the introduction of LBPs in EnKF

cycles not only increases the ensemble spread but also

improves the accuracy of the ensemble mean, which means

that the RMSE/spread ratio approaches unity.3 RMSEs of

the ensemble mean decrease as a result of the implementa-

tion of LBPs in the forecast analysis cycle. RMSEs of

LET_lbpfc were compared with those of MBD_lbpfc in

Fig. 7 of S2011, where LETKF ensemble mean RMSEs

were slightly larger than those for MBD.

7. Statistical evaluation and discussion

7.1. Evolution of energy norm

In the previous sections, we showed the evolution of

ensemble spreads of the model surface variables in the

ensemble predictions from MBD and LET perturbations

for 12 UTC, 4 July 2008. The ensemble spread is a basic

index that shows the properness of perturbations in EPS

(Jolliffe and Stephenson, 2003), but its magnitude depends

Fig. 9. Three-hour accumulated precipitation at 12UTC 5 July (FT�24) predicted by each member. From left, member p05, member

m05, the ensemble mean and the ensemble spread. (a) MBD method without LBPs (MBD_nlbp). (b) MBD method with LBPs in both

breeding cycles and the ensemble forecast (MBD_lbpfc).

3Comparison of RMSEs and ensemble spreads for MBD_lbpfc

and LET_lbpfc has been given in Fig. 8 of S2011, where the

ensemble predictions were still under dispersive compared with the

model errors. Similar tendencies were seen in all mesoscale EPSs in

the B08RDP intercomparison experiment (Kunii et al., 2011).
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on how the perturbations are scaled. To investigate the

initial ensemble variance and the growth of perturbations,

magnitudes of the energy norms and their evolution in the

ensemble prediction were examined. As in S2011, the TE

norms by Barkmeijer et al. (2001) with wq�0.2 in the

common verification area were computed for the five

vertical levels (surface, 850, 700, 500 and 250 hPa) and at

3-h intervals until FT�24 for the two cases with initial

times of 12 UTC, 3 July and 12 UTC, 4 July 2008.

Fig. 14a shows the evolution of the TE norms in the five

ensemble experiments (MBD_nlbp, MBD_lbpf,

MBD_lbpfc, LET_lbpf and LET_lbpfc) until FT�24. All

experiments showed steady growth of the TE norms, but the

MBD_nlbp norm did not increase after FT�18 owing to

the fixed LBCs. The magnitude of the initial norms was the

same in MBD_lbpf as in MBD_nlbp, but the MBD_lbpf

norm increased throughout the simulation period. The TE

norm of MBD_lbpfc was about twice that of MBD_lbpf at

FT�0, and it increased remarkably with time. Similar

tendencies were seen in the LETKF norms. The TE norm of

LET_lbpf was slightly larger than that of MBD_lbpf at the

initial time, but it increased slightly more slowly compared

with MBD_lbpf. The TE norm of LET_lbpfc was about

twice that of LET_lbpf at FT�0, and it increased with time,

although the growth was somewhat more sluggish than that

of LET_lbpfc, as discussed in S2011.

Figure 14b depicts the time series of the norm growth

rates defined by the tendency of TE norms (slope of TE

norm lines in Figure 14a). The growth rate of the

MBD_nlbp norm was lowest among the three MBD

methods, and after FT�6, it became the lowest among all

five experiments. When LBPs were introduced in the

breeding (EnKF) cycles, the initial growth rate of

MBD_lbpfc (LET_lbpfc) was larger than that ofMBD_lbpf

(LET_lbpf). After FT�12, the growth rates of MBD_lbpf

and LET_lbpf became seemingly larger than those of

Fig. 10. (a) Averaged RMSEs against initial conditions for 3�4 July 2008 for surface variables. From left to right, Psea, T, RH and V.

(b) Same as in (a) but for 500 hPa variables.
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MBD_lbpfc and LET_lbpfc, respectively because the same

LBPs were employed for all four experiments, and the

absolute magnitudes of MBD_lbpfc and LET_lbpfc at the

initial time were about twice as large as those of MBD_lbpf

and LET_lbpf.

7.2. Precipitation forecast performance

We examined the precipitation forecast performances of

the five ensemble experiments by computing BSSs that

measure the skill of EPS as the probabilistic quantitative

precipitation forecast. As in S2011, forecasted precipita-

tions in the common domain were interpolated to verifica-

tion grids with a resolution of 0.158 and compared with

CMA’s surface rain gauge network data (400 synoptic

observation stations and 722 automated observation sta-

tions (Figure 1 of Kunii et al., 2011)).

Figure 15 shows the time series of BSSs for precipitation

of 1mm/6 h by the five experiments. Averages of two EPSs

with initial times of 12 UTC, 3 July and 12 UTC, 4 July

2008, are depicted. Remarkable effects of the LBPs in the

breeding/EnKF cycles are seen for all precipitation inten-

sities. MBD_lbpfc showed the best performance among the

five experiments, followed by LET_lbpfc. The better

performance of MBD_lbpf compared to MBD_nlbp is

not unexpected, but surprisingly, the performance differ-

ence between MBD_lbpfc and MBD_lbpf was much larger

than that between MBD_lbpf and MBD_nlbp. This result

means that the introduction of LBPs in the breeding cycles

to produce bred vectors is more important than the

introduction of LBPs in the ensemble forecast in the

mesoscale BGM method.

Similar to theMBDmethod results, the difference in BSSs

of LET_lbpfc and LET_lbpf was very large. Without LBPs

Fig. 11. Similar to Fig. 7 but for the LET method (LET_lbpf).

EFFECT OF LATERAL BOUNDARY PERTURBATIONS 15



in the EnKF cycles, LET_lbpf showed a poor performance

for the precipitation forecast comparable to MBD_nlbp

even with LBPs included in its ensemble forecast.

7.3. Similarity index

In the previous sections, the ensemble forecast performance

was improved significantly by applying LBPs in the

breeding/EnKF cycles. To examine the reason for the

improvement, the orthogonality of initial perturbations

was examined by computing the similarity index defined

by:

SI ¼ affiffiffiffiffiffiffiffiffiffiffi
ða; aÞ

p ;
bffiffiffiffiffiffiffiffiffiffiffiffi
ðb;bÞ

p
 !

: (4)

Here a and b are bred vectors, (,) indicates the inner

product and the norm operator is given by the moist TE

norm eq. (1). The similarity index becomes 1 (�1) if the two
vectors have the same (opposite) directions, and it becomes

0 if the two vectors are orthogonal. It is known that bred

vectors tend to converge to the leading Lyapunov vector in

the BGM method (Reynolds and Errico, 1999; Annan,

2004). Although this is not necessarily the case in opera-

tional global forecast models (Kalnay et al., 2002; Corazza

et al., 2003), such a condition is not likely to be expected in

the case of a limited area model under the strong forcing by

LBCs.

Table 3a shows the similarity indexes between the bred

vectors produced by the MBD method. Here, p1�p5 are

positive perturbations and m1�m5 are negative perturba-

tions. Because negative perturbations are obtained by

subtracting the bred vectors, their directions are opposite

to those of the positive perturbations with the same

numbers except for a slight deformation due to the

Fig. 12. Similar to Fig. 11 but with LBPs in both forecast analysis cycles and the ensemble forecast (LET_lbpfc).
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moisture saturation adjustment. Consequently, the similar-

ity indexes between positive and negative perturbations

with the same vector number are almost �1.0 (indicated

with grey shade). In this table, upper triangular matrix

components indicate the case without LBPs in the breeding

cycles (MBD_lbpf), whereas lower triangular matrix com-

ponents indicate the case with LBPs in breeding cycles

(MBD_lbpfc). Values less than �0.4 or greater than 0.4

(indicated in boldface) mean that the angle between the two

vectors is less than 668. In MBD_lbpf, about 30% of bred

vectors (12 of 40) were similar to each other. In

MBD_lbpfc, the number of such similar vector pairs

decreased drastically to 10% (4 of 40), indicating that the

orthogonality of each vector was improved. The improve-

ment of ensemble forecast performance (decrease in

RMSEs and increase in BSSs) by LBPs in the breeding

cycles is partly attributable to this effect.

Similarity indexes of initial perturbations were examined

for the LET method as well. Table 3b shows the similarity

indexes for the cases without and with LBPs in EnKF

cycles. Unlike the MBD cases (Table 3a), orthogonalities

between the initial perturbations were generally good even

without LBPs in the EnKF cycles (LET_lbpf; upper

triangle matrix components), and the similarity indexes

were not very different from the case with LBPs

(LET_lbpfc; lower triangle matrix components). In the

case of LETKF, the bred vectors are linearly combined by

the transform matrix, and the ensemble transform prevents

the perturbation vectors from converging to a leading

Lyapunov vector. In other words, orthogonality in the

MBD method may depend on the characteristics of LBPs,

whereas in LET, the independence of the transformed

vectors does not rely on the orthogonality of LBPs. In the

case of LET, LBPs in EnKF cycles are important not to

underestimate the forecast errors and to keep the magni-

tude of the perturbation amplitude plausible.

7.4. Effect of LBPs in LETKF as the data

assimilation scheme

In the previous sections, perturbations produced by the

ensemble transform in LETKF were used only as initial

Table 3. (a) Similarity indexes between bred vectors. Upper triangular matrix components indicate the case without LBPs in the breeding

cycles (MBD_lbpf), and lower triangular matrix components show the case with LBPs in the breeding cycles (MBD_lbpfc). Values less

than �0.4 or greater than 0.4 are indicated in boldface. (b) Same as (a) but for LET initial perturbations. Upper triangular matrix

components indicate the case without LBPs in EnKF cycles (LET_lbpf), whereas lower triangular matrix components indicate the case

with LBPs in EnKF cycles (LET_lbpfc)

P1 p2 p3 P4 p5 m1 m2 m3 m4 m5

(a)

p1 1.00 0.25 0.50 0.18 0.21 �1.00 �0.25 �0.49 �0.18 �0.21

p2 0.09 1.00 0.04 0.02 0.62 �0.25 �0.99 �0.03 �0.01 �0.61

p3 0.39 0.28 1.00 0.65 �0.05 �0.49 �0.03 �0.99 �0.64 0.06

p4 0.21 0.03 0.20 1.00 �0.18 �0.18 0.00 �0.64 �0.98 0.19

p5 �0.07 0.53 0.00 0.25 1.00 �0.20 �0.61 0.06 0.19 �0.99

m1 �0.99 �0.08 �0.37 �0.21 0.07 1.00 0.25 0.50 0.19 0.21

m2 �0.08 �0.98 �0.25 �0.02 �0.52 0.08 1.00 0.03 0.00 0.62

m3 �0.37 �0.26 �0.97 �0.19 0.01 0.37 0.27 1.00 0.65 �0.06

m4 �0.20 �0.02 �0.18 �0.99 �0.24 0.21 0.02 0.19 1.00 �0.19

m5 0.07 �0.52 0.02 �0.24 �0.99 �0.07 0.53 �0.01 0.24 1.00

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

(b)

M1 1.00 0.07 �0.23 �0.18 0.01 0.09 �0.03 �0.46 �0.30 �0.19

M2 �0.10 1.00 �0.11 �0.07 0.01 0.12 �0.31 �0.22 �0.33 �0.36

M3 0.19 �0.51 1.00 �0.06 �0.40 �0.34 �0.12 �0.03 0.27 0.03

M4 �0.18 �0.25 0.01 1.00 �0.22 �0.23 �0.02 �0.11 0.03 �0.15

M5 �0.10 0.32 �0.37 �0.26 1.00 0.06 �0.16 �0.01 �0.25 �0.02

M6 �0.56 0.12 �0.19 �0.02 0.06 1.00 �0.11 �0.07 �0.36 �0.18

M7 �0.01 �0.07 �0.07 �0.11 �0.17 �0.09 1.00 �0.14 0.10 �0.07

M8 0.03 �0.14 0.07 �0.10 �0.17 �0.17 �0.31 1.00 0.00 0.11

M9 �0.02 �0.27 0.09 �0.07 �0.15 �0.20 �0.20 �0.17 1.00 �0.02

M10 �0.23 �0.07 �0.26 �0.03 �0.14 0.07 0.00 �0.22 0.04 1.00
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perturbations for a high resolution (15 km) ensemble

forecast, and the initial conditions for the control run

were replaced by the Meso 4DVAR analysis (Kunii et al.,

2010). LETKF could produce its own analysis, but the

analysis increment was discarded in the ensemble forecast

initial condition. In the case of LETKF, the forecast error

covariance is constructed by the ensemble perturbations;

thus, without LBPs, forecast errors near lateral boundaries

are underestimated. This underestimation of forecast errors

results in underestimation of the Kalman gain near the

lateral boundaries and would degrade the accuracy of the

LETKF analysis. To investigate the differences in analysis

accuracy, we conducted additional experiments in which

the LETKF ensemble mean analyses were used as initial

conditions for the control runs in the ensemble. Two

experiments without and with LBPs in forecast-analysis

cycles in LETKF were conducted (LET_kfbf and

LET_kfbfc, respectively). LBPs in the ensemble forecast

were used for both experiments.

With regard to the evolution of the ensemble spread,

similar tendencies were seen as in the case of the Meso

4DAVAR analysis (LET_lbpfc and LET_lbpf), that is,

ensemble spread grew more rapidly and diurnal cycles in

surface temperature and relative humidity became more

distinct if LBPs were present in the EnKF cycles (figures

not shown, see Fig. E-5-26 of Saito et al. 2010a).

Figure 16 shows the forecast of LET_lbpfc. Despite the

limitation of assimilated observation data (see Table 2),

forecast fields from the LETKF analysis with LBPs in

EnKF cycles are seemingly not inferior to those from the

Meso 4DVAR analysis (Fig. 4).

Figure 17 compares RMSEs of 24-h forecasts from 12

UTC 4 July 2008 for the control run and the ensemble

means from the LETKF analyses against the initial

conditions (Meso 4DVAR analysis) of the day after.

Here, the performance of LETKF as the data assimilation

scheme is evaluated by examining the RMSEs of the

control runs by LET_kfbf and LET_kfbfc along with those

Fig. 13. Similar to Fig. 10 but for the LET method.
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for the ensemble means. At the surface, RMSEs of the

control run from LETKF analyses (LET_kfbf and

LET_kfbfc) are larger than those of Meso 4D-VAR, except

for V (Fig. 16a). When LBPs were introduced in the EnKF

forecast-analysis cycles (LET_kfbfc), RMSEs of the con-

trol run decreased for RH but increased for Psea and Ts. At

500 hPa, RMSEs of the control run for LET were larger

than those for Meso 4DVAR for T but smaller for Z500,

RH and V. When LBPs were introduced in EnKF cycles,

RMSEs of LETKF control run further decreased for all

variables. These results indicate that the accuracy of the

LETKF analysis improves with the presence of LBPs in the

EnKF analysis cycles. RMSEs of the ensemble means

(LET_kfbf_em and LET_kfbfc_em) were smaller than

those of the control runs for all variables at both the

surface and 500 hPa. Considering that in our study the

number of LETKF ensemble members was limited (20) and

RMSEs were evaluated against the initial conditions given

by Meso 4D-VAR, this result seems promising in the sense

that the LETKF analysis showed nearly comparable

performance in RMSEs with the Meso 4D-VAR analysis

for some variables.

8. Summary and concluding remarks

The effect of LBPs in mesoscale ensemble prediction using

the mesoscale BGM method and the LETKF method was

examined as a second part of MRI studies for WWRP

B08RDP. An LBP method using the JMA’s operational

one-week global EPS was developed and applied to MRI’s

EPS for B08RDP. The amplitudes of LBPs were adjusted

considering the global EPS’s FTat the initial times of the

mesoscale EPS and the associated breeding/EnKF cycles.

The influence of LBPs became dominant in the latter half

of the 36-h ensemble forecast period, and even without

initial perturbations the ensemble spread grew at local

areas of uncertainty corresponding to mesoscale distur-

bances with the introduction of LBPs.

Three experiments (MBD_nlbp, MBD_lbpf and

MBD_lbpfc) were conducted with the MBD method to

examine the effect of LBPs in the ensemble forecast and

Fig. 14. (a) Time series of the TE norm. Averages of two EPSs

with initial times of 12 UTC, 3 July and 12 UTC, 4 July 2008. (b)

Time series of growth rate of TE norm.

Fig. 15. Brier Skill Scores against different 6-h precipitation

intensity thresholds for the five initial perturbation methods over

two 36-h EPSs with initial times of 12 UTC, 3 July, and 12 UTC, 4

July 2008.
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Fig. 16. Similar to Fig. 4 but by the control run with LETKF analysis (LET_kfbfc).

Fig. 17. (a) RMSEs of FT�24 forecast fields from 4 July 2008 against the Meso 4D-VAR analysis of 5 July 2008 for surface variables.

4DVAR is the forecast from the 4DVAR analysis, whereas LET_kfbf and LET_kfbfc are forecasts from the LETKF analyses without and

with LBPs in EnKF cycles, respectively. LET_kfbf_em and LET_kfbfc_em are their ensemble mean without and with LBPs in EnKF

cycles. (b) Same as (a) but for 500 hPa variables.
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the breeding cycles. In the MBD method, LBPs increased

the ensemble spread and improved the accuracy of the

ensemble mean in the 36-h ensemble forecast. When LBPs

were introduced in the 6-h breeding cycles to produce the

initial perturbations, the ensemble spread and RMSE of

the ensemble mean were further improved in the ensemble

forecast, and the effect lasted throughout the 36-h forecast

period. Positional lags between the bred vectors and the

locations of synoptic disturbances decreased with the

introduction of LBPs in breeding cycles.

Two experiments (LET_lbpf and LET_lbpfc) were con-

ducted with the LET method to examine the effect of LBPs

in the EnKF data assimilation cycles. A similar tendency

was seen with LET as with MBD. When LBPs were

introduced in the 6-h EnKF cycles to produce the initial

perturbations, the ensemble spread and RMSE of the

ensemble mean were further improved in the ensemble

forecast, and the effect continued throughout the whole

period of the forecast. In the case of LETKF, LBPs in

EnKF cycles also helped to prevent underestimation of the

forecast error near the lateral boundaries.

Evolution of the TE norm was also examined. Inclusion

of LBPs in the breeding/EnKF cycles doubled the ampli-

tudes of initial perturbations and increased initial growth

rates of the bred vectors and ETKF initial perturbations.

Growth of perturbations for MBD was slightly larger than

that for LET, as discussed in S2011. BSSs were computed

to examine the performance of the quantitative probabil-

istic precipitation forecast by the mesoscale EPSs.

MBD_lbpfc showed the best performance among the five

experiments, followed by LET_lbpfc. Surprisingly, the

performance difference between MBD_lbpfc and

MBD_lbpf was larger than that between MBD_lbpf and

MBD_nlbp, which means that the introduction of LBPs in

the breeding cycles is more important than the introduction

of LBPs in the ensemble forecast in the mesoscale BGM

method. Similarly, without LBPs in the EnKF cycles, the

precipitation forecast of LET_ lbpf was poor even if it

included LBPs in its ensemble forecast.

We discussed the characteristics of the bred perturba-

tion vectors by a similarity index analysis. In MBD_lbpf,

about 30% of bred vectors were similar to each other, but

the number of such similar vector pairs decreased to 10%

if LBPs were introduced in the breeding cycles

(MBD_lbpfc). In the case of the LET method, orthogon-

alities between the initial perturbations were generally

good even without LBPs in the EnKF cycles owing to the

ensemble transform.

The accuracy of the LETKF analysis was evaluated by

comparing the RMSEs of the control run forecasts from the

mesoscale 4D-VAR analyses. The accuracy of the LETKF

analysis was also improved by the introduction of LBPs in

the EnKF cycles. Despite the limitations of the experi-

mental design for the LETKF, i.e. the small ensemble size

(20) and unfavourable verification measure, some RMSEs

of the forecasts from LETKF analyses showed values

comparable to those from the Meso 4D-VAR analyses.

Our results show that the LBPs in mesoscale ensemble

prediction are very important not only to enlarge the

ensemble spread in the ensemble forecast but also to produce

better initial perturbations and to improve the LETKF

analysis when the LBPs are used in the breeding/EnKF

cycles.

In this study (and in S2011), the relative advantage of the

LET method as the initial perturbations generator against

the MBD method was not necessarily clear. In S2011, we

showed that with a small computational overhead, the

MBD method yielded satisfactory results as an ensemble

perturbation generator, especially for moderate to intense

rains. There are several points in the LET method that

should be further investigated such as the sensitivity to the

choices of the ensemble size, inflation factor and localisa-

tion parameters. Recently, Miyoshi and Kunii (2011)

developed the LETKF system with the WRF model and

assimilateronymsd real observations. Their results showed

that adaptive covariance inflation improved the forecast

performance significantly. Orthogonality of LETKF per-

turbations did not depend on the LBPs, which may be an

advantage of LET compared with MBD. The physical

process perturbation should be implemented in non-linear

models in MBD and LET to consider the model uncer-

tainty. These topics are subjects for future studies.
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Appendix

List of acronyms

ARPA-SMR Agenzia Regionale Prevenzione e Am-

biennte Romagna-Servizio Meteo Regio-

nale

BGM Breeding of Growing Modes

BSS Brier Skill Score

B08FDP Beijing 2008 Olympics Forecast Demon-

stration Project

B08RDP Beijing 2008 Olympics Research and

Development Project

CAMS Chinese Academy of Meteorological

Sciences

CMA China Meteorological Administration

COSMO-

LEPS

COnsortium for Small-scale MOdeling-

Limited area Ensemble Prediction System

EnKF Ensemble Kalman Filter

EPS Ensemble Prediction System

ETKF Ensemble Transform Kalman Filter

FT Forecast Time

GPV Grid Point Value

GSM Global Spectral Model

GSV Global model Singular Vector

JMA Japan Meteorological Agency

LAEF Limited Area Ensemble Forecasting

LET Local Ensemble Transform (method)

LETKF Local Ensemble Transform Kalman Filter

MBD Mesoscale BreeDing growing mode

(method)

MOGREPS Met Office Global and Regional Ensemble

Prediction System

MRI Meteorological Research Institute

MSC Meteorological Service of Canada

MSM MesoScale Model

NCEP National Centers for Environmental

Prediction

NHM Non-Hydrostatic Model

NMC National Meteorological Center

NPD Numerical Prediction Division

NWP Numerical Weather Prediction

RSMC Regional Specialized Meteorological

Center

RMSE Root Mean Square Error

SREF Short-Range Ensemble Forecast

SV Singular Vector

TE Total Energy

WMO World Meteorological Organization

WWRP World Weather Research Programme

ZAMG Zentralanstalt für Meteorologie und

Geodynamik
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