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ABSTRACT

The characteristics associated with an exponential distribution is used as a yard stick to assess distributions for

24-hr precipitation records from 13 771 rain gauges from mainly the USA and Europe. It is shown that the

daily accumulated precipitation amount is approximately similar to an exponential distribution, but not

identical, and that quantiles of the distributions can to a zeroth order be specified from the mean of the wet-day

precipitation. However, the data have a thicker upper tail than the exponential distribution. We propose a

simple method for making a crude estimate for quantiles of wet-day 24-hr precipitation distribution, and a

refinement of the exponential distribution based on principal component analysis. We also show that the high

quantiles are related to the wet-day mean. The associations between the wet-day mean and quantiles from the

observations are compared with results from regional climate model simulations, taken from a number of

regional climate models. Similar tendencies are seen in the models as in the rain gauge data.
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1. Introduction

Skillful modelling of heavy 24-hr precipitation is important

for various risk analyses, with relevance to water manage-

ment, agriculture, design values for construction of infra-

structure (Smither and Schulze, 2001), health (Epstein and

Ferber, 2011), and the insurance business (Wilson and

Toumi, 2005). The relevance of heavy 24-hr precipitation

spans over time horizons from days to decades, and is

regarded as one of the key elements in climate change

adaptation (Semenov and Bengtsson, 2002; Wilson and

Toumi, 2005; Kundzewicz et al., 2007). To provide a

reliable description of risks associated with heavy rain, it

is important to establish robust and accurate methods for

predicting the precipitation statistics.

There have been a number of studies in the past on 24-hr

precipitation and on how best to describe it in terms of

statistical models. Precipitation has been difficult to char-

acterise with one universal method, and previous work has,

therefore, employed a range of different approaches and

methods to describe and model daily rainfall.

For instance, Woolhiser and Roldán (1982) used chain-

dependent and independent exponential, gamma, and mixed

exponential distributions to describe 24-hr precipitation,

adopting maximum likelihood estimation to fit the models.

Wilks (1998, 1999) also applied mixed exponential distribu-

tion to model non-zero (wet day) precipitation amounts.

In a later study, Wilson and Toumi (2005) suggested that

a stretched exponential tail with a shape parameter of two-

third was the best method, based on the water balance

equation. Their analysis was based on data from 270

stations from the Global Daily Climatology Network

(GDCN). Furthermore, Wilson and Toumi (2005) argued

that there is no clear physical justification for many of the

distributions applied in the past, and hence questioned the

validity of their applicability to unmeasured extremes and

their veracity under climate change.

Semenov and Bengtsson (2002) assumed a gamma

distribution when they analysed the mean daily precipita-

tion, the intensity, probability of wet days, and parameters

of gamma distributions of observed precipitation and

results from a global climate model (GCM) simulation

with transient increase in greenhouse gas (GHG) forcing.

They proposed that future increases of heavy precipitation

events for the land areas will be disproportional to changes

in mean.
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Recent works on modelling the distributions have used

quantile regression. For instance, Bremnes (2004) estimated

the probability of wet-day precipitation and quantiles in

the distribution of precipitation amounts, based on probit

regression and local quantile regression. In another effort

to improve precipitation forecasts, Friederichs and Hense

(2007) proposed a statistical downscaling approach for

extremes using censored quantile regression.

A different approach to those cited above was adopted

by Frei et al. (2006), who used a generalised extreme value

(GEV) distribution (Coles, 2001) to analyse 24-hr precipi-

tation return value intervals in a number of regional

climate models (RCMs). They also found that precipitation

extremes increase more (or decrease less) than would be

expected from the scaling of present-day extremes.

For adaptation to a climate change, most assessments

rely on information downscaled from GCMs. The quality

of these results hinges on both the GCMs as well as the

downscaling methods. RCMs have often been used to

model the precipitation statistics, however, they tend to

involve large uncertainties (Giorgi et al., 2008; Oreskes

et al., 2010), and the question of the reliability of return

value analysis based on RCM results, hinges on the RCMs’

ability to correctly simulate the important processes.

Orskaug et al. (2011) compared 24-hr precipitation from

one RCM and gridded rainfall estimates, and concluded

that it could skillfully describe the lower quantiles over

Norway, but underestimated the higher levels of precipita-

tion. This finding is not surprising for a quantity that

follows a gamma or an exponential distribution (the

differences between the lower quantiles are small due to

the shape of the gamma or exponential distributions). In

addition to RCMs, which solve equations that represent

the known relevant processes explicitly, empirical�statisti-

cal models can capture aspects that are not well known but

nevertheless embedded in the data (Benestad et al., 2008).

A number of studies based on statistical downscaling

have attempted to model extreme precipitation, often in

terms of certain indices (Friederichs and Hense, 2007;

Schmidli et al., 2007; Timbal and Jones, 2008; Maraun

et al., 2010; Themeßl et al., 2010), but only a few have

focused on predicting the shape of probability density

functions (p.d.f.). Pryor et al. (2005) used statistical

downscaling to predict the shape of the p.d.f. for local

wind speeds. Based on analyses of 24-hr precipitation for

Europe, Benestad (2007, 2010) proposed that estimates for

quantiles could be approximated using an exponential

distribution for those that are not in the extreme upper

tail. This work was based on fitting a linear trend in to

frequencies from a histogram (log y-axis); however, fitting

parameters from histograms is not regarded as an accurate

method. A superior approach is to apply maximum like-

lihood estimation or to base the fit to the mean value.

Here, a new method is presented for describing 24-hr

precipitation statistics, using a simple exponential distribu-

tion as a frame work. The exponential distribution

(Balakrishnan and Basu, 1995) is simple and has useful

properties whereby its quantiles are determined by the

mean value according to qp � �ln(1�p)m (see the appendix

for derivation). In other words, the probability of extreme

precipitation can quickly and easily be inferred from the

mean rainfall if the distribution follows an exponential

distribution. Furthermore, if precipitation statistics in

general is limited to one family of distributions, it is also

possible to compare data that are not assumed to have the

same quantiles, and as long as the precipitation follows an

exponential distribution approximately, then quantile�
quantile plots against an exponential distribution provide

a frame work for assessing results from RCMs.

The work presented here has several similarities with that

of Wilson and Toumi (2005), however the objective is to

evaluate the simple method for providing a zeroth-order

approximation for moderately high percentiles proposed by

Benestad (2007, 2010). Our hypothesis is that the quantiles

are related to the wet-day mean precipitation m. Benestad

(2007) also suggested that the shape of the p.d.f. of 24-hr

precipitation is affected by the mean climate as well as

geographical parameters, and another motivation is to see

if there is also a relationship between the quantiles of the

wet-day distributions of 24-hr precipitation and mean

conditions beyond Europe. Here we exclude the extreme

upper tail of the distribution. We compare the analysis of

rain gauge data with results from RCMs, and explore

methods for refining the description of the quantiles in

terms of an exponential distribution.

The outline of the rest of article is a description of the

method and data, followed by a section describing the

results, a discussion, conclusion, and an appendix provid-

ing more in-depth details about the methods.

2. Data and methods

The 24-hr rain gauge data (X) from the USA were

taken from the GDCN1 (Legates and Willmott, 1990a,b;

Lanzante, 1996; Peterson et al., 1997) and included 11281

sites mainly not only from the USA (11151) but also

from Uzbekistan (54) and Venezuela (76). Rain gauge data

from Europe were taken from the European Climate

Assessment & Dataset2 (ECA&D) data set (Klein Tank

et al., 2002), comprising 2490 records of 24-hr accumulated

precipitation. Only wet-day data were included in the

analysis, setting the threshold (X0) to 1 mm/day to exclude

1http://www.ncdc.noaa.gov/oa/climate/research/gdcn/gdcn.html
2http://eca.knmi.nl/
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dew, condensation and traces of moisture unrelated to

precipitation. The analysis was not sensitive to this

threshold, and the 24-hr precipitation was transformed

by taking the amount exceeding the threshold value

X � X0 ! X 0ð Þ.
Keeping only stations with more than 1000 wet days

leaves 11 281 for the GDCN data and 2398 for the

ECA&D, and 13 679 in total after short records were

removed from the original sample of 13 771 rain gauge

records. The locations of the stations are shown in Fig. 1,

showing greatest coverage over the USA and Europe, but

also a few stations scattered elsewhere. Although the

country code in the GDCN only suggests that the data

should come from the USA, Venezuela and Uzbekistan,

some may actually be from weather stations in foreign

lands operated by these countries (e.g. possessions, military

bases, research stations, etc.). The ECA&D data cover

63 countries, mostly around Europe and Russia, but also

extending to Greenland, the Caucasus and parts of the

Middle East. The symbols in Fig. 1 are colour coded, with

red for sites with low values for 95th percentile, assuming

an exponential distribution, and blue for sites with high

values.

The analysis also included an assessment of precipitation

distributions from state-of-the-art RCMs, taken from the

ENSEMBLES project (van der Linden and Mitchell, 2009).

Table 1 lists the RCMs from ENSEMBLES, all of which

had a spatial resolution of approximately 50 km and used

ERA40 as boundary conditions. For practical reasons

(memory limitation), 25% of the grid boxes along the

boundaries were excluded for the RCMs. The analysis here

was applied to each grid box time series, and did not utilise

information about its geographical location. The analysis

was repeated for the HadRM3.0 RCM with 25 km spatial

resolution in addition to the 50 km resolution.

The analysis was based on quantile�quantile plots

(hereafter ‘qq-plots’) where 14 quantiles estimated accord-

ing to qp ¼ �ln 1� pð Þm were plotted against corresponding

empirically3 estimated value for p � [0.50, 0.55, . . ., 0.99]

(using uneven increments in p). The derivation of this

expression is provided in the appendix, and the code for

doing the analysis was implemented in the R-environment

(version 2.12.1) (R Development Core Team, 2004) and

provided by the package ‘qqplotter (version 1.10)’. Series

that exhibit a perfect exponential distribution will provide

points along the diagonal in the qq-plots.

A principal component analysis (PCA)4 was applied to

quantiles of wet-day 24-hr rain gauge records to describe

the most important relation between observed values and

estimated values. In this case, the PCA was performed

without subtracting the mean state, and the data matrix on

which the PCA was performed was constructed from

observations (qp on the y-axis) and corresponding

estimated values qp ¼ �ln 1� pð Þm (points shown along

the x-axis). The application of PCA on a combination of

different data sets is a means of identifying patterns of co-

variance (Bretherton et al., 1992), and by including

estimates according to qp ¼ �ln 1� pð Þm, the analysis takes

into account information about the degree of similarity

between the 24-hr wet-day rainfall distribution and the

exponential distribution.

The definition of an ‘extreme events’ may vary from

situation to situation, however, the glossary of Solomon

et al. (2007) defines an extreme weather event as ‘an event

that is rare within its statistical reference distribution at a

particular place. Definitions of ‘‘rare’’ vary, but an extreme

weather event would normally be as rare as or rarer than the

10th or 90th percentile. By definition, the characteristics of

what is called extreme weather may vary from place to place’.

The 95th percentile involves probabilities lower than

0.05, and because the number of days with amounts

exceeding 1 mm d�1 is typically 33% of the total number

of days, the probability of exceeding this for all days is more

like 0.02.

3. Results

Figure 2 demonstrates that the quantiles q0.95 of the wet-

day 24-hr precipitation to some extent can be specified by

its wet-day mean m. Moreover, the qq-plot shows that most

of the points are concentrated along the diagonal, suggest-

ing that the statistical distribution for the 24-hr precipita-

tion to a zeroth order is approximately exponential for

virtually all of the rainfall records. However, the points

exhibit a scatter around the diagonal, with a systematic bias

for the high quantiles, where the empirical estimates tend to

suggest a thicker upper tail in the distribution. Hence, the

exponential will tend to underestimate the return values for

the empirical rain gauge data. The points in Fig. 2 were

colour coded with red for sites with low mean (wet � dry)

precipitation and blue for sites with high mean precipita-

tion. The dominance of red shading for low values and blue

shading for high values is consistent with the quantiles

being affected by the mean (wet � dry days) precipitation.

Figure 3 shows corresponding qq-plot for the 99th

percentile, which exhibits a greater scatter than for the

95th percentile (Fig. 2). There are nevertheless clear hints of

a dependency between these high percentiles and the wet-

day mean m. A linear regression analysis was used to

compare quantile estimates assuming an exponential dis-

tribution, where qp ¼ �ln 1� pð Þm; against the empirical

estimate. The regression analysis involved 14 different

3Using the function quantile() in the R-environment.
4See appendix for details.
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quantiles and rain gauge records from 13 771 locations, and

the statistics describing the goodness of fit included

R2�0.95, f-statistic of 3.9�106on 1 and 191 504 degrees

of freedom, and a p-value B10�15.

Figure 4 shows a similar analysis as Fig. 2 but for RCMs

that are shown in different colours. As with the observa-

tions, the RCMs are scattered around the diagonal,

suggesting a distribution that is close to being exponential.

The RCMs vary in the absolute magnitude of the quantiles

(scale parameter) as well as in the wet-day frequency. A

similar analysis applied to one of the RCMs (HadRCM3)

with spatial resolution of 25 and 50 km, respectively (not

shown), also suggests that the shape of the distribution of

the 24-hr precipitation from the RCMs is robust.

Although Fig. 2 shows a cloud of all the data points,

it does not convey any information about the density

of the points, as they may mask each other. Figure 5, on

the other hand, shows a quantile�quantile boxplot, for

which the boxes describe the interquartile range (mid 50%

of the points) of the points in the qq-plot. This figure

includes a range of quantiles (p � [0.50, 0.55, . . ., 0.95] and

p � [0.96, 0.97, 0.98, 0.99]). The interpretation is more

complicated for a range of quantiles and stations with

different values for m and qp. However, the inclusion of

a range of probabilities makes the results more general, as

variables following the exponential distribution are ex-

pected to produce points on the diagonal regardless of the

level of probability.

A PCA of the cloud of points in the qq-plot in Fig. 5

produced a leading mode describing a smoothly varying

function (Fig. 6). Likewise, the second mode had a smooth

shape with a different curvature. Despite the scatter of
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Fig. 1. Map of locations of the rain gauge data used in the analysis with number of wet days greater than 1000. The points are colour

coded according to the 95th percentile estimated according to qp ¼ � ln 1� pð Þm.

Table 1. List of RCMs from the ENSEMBLES projects. All these

runs were forced with ERA40

Centre RCM

CHMI ALADIN

CNRM RM4.5

DMI HIRHAM

ETHZ CLM

GKSS CLM

ICTP REGCM3

INM RCA3

KNMI RACMO2

METNO HIRHAM

METO/HC HadRM3.0

MPI REMO

OURANOSM CRCM

SMHI RCA

UCLM PROMES

4 R. E. BENESTAD ET AL.



points in Figs. 5 and 6, the qq-box plots and the PCA

suggest that the quantiles qp of the 24-hr precipitation

is not far from being exponential for different values

of p, albeit with a growing systematic bias for higher

values. The points diverging away from the diagonal for

24-hr precipitation amounts greater than 200 mm d�1

represent only eight locations.

The two leading modes could reconstruct most of the

scatter seen in Figs 2 and 3 (Fig. 7). Whereas the leading

PCA mode (red lines) only seems to describe the main ‘axis’

of the cloud, the sum of the first and second mode (blue)

appears to account for most of the spread of the points.

The eigenvalues from the PCA suggested that the leading

mode explained 99.4% of the total variance, and an

independent linear regression analysis between data repre-

sented by the grey points in Fig. 7 and the red lines yielded

an R2-statistic of 0.98. Hence, the red lines in the figure

provide a close description of the 14 quantiles between the

50% and 99% levels for the vast majority of the rain gauge

records.

The sum of the two leading modes of the PCA can

reproduce with even higher accuracy quantiles up to q0.99.

A linear regression analysis between the values represented

by the blue curves and the grey points gave an R2-statistic of

99.7%. Figure 8 shows a scatter plot between q0.99 derived

from two PCA modes and observed values. Here, the

set of quantiles was estimated according to Z ¼ U
P

V T ,

and the value for q0.99 was extracted from the vector,

taking the value in Z with the index corresponding to

the observed 99th quantile (see the appendix for more

details). A linear regression analysis suggested that the

leading mode by itself could account for 93.1% of the

variance, for 13 768 degrees of freedom and a virtually

zero p-value. A reconstruction of q0.99 based on the sum

of PCA modes 1 and 2, on the other hand, gave an

R2-value of 99.4%.

An interesting question is whether the PC loadings, one

for each station, exhibit any systematic pattern in terms of

geographical location. A multiple regression analysis of

the PC loadings of the leading mode indicated a strong
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Fig. 2. Quantile�quantile plot, plotting qp ¼ � ln 1� pð Þm against the corresponding empirical estimate for estimated 95% quantile.

The colour coding indicates the mean precipitation (wet � dry days). The data include GDCN for US stations as well as ECA&D, whose

locations are shown in Fig. 1. The points are colour coded according to the 95th percentile estimated according to the mean (wet � dry)

precipitation. The black-dashed lines are confidence intervals determined through Monte-Carlo simulations. Light grey contours show the

point density.
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relationship with mean (wet � dry day) precipitation,

altitude, latitude and longitude (p-value less than 10�15

for all these), and a regression analysis can account for

65% of the variance (adjusted R2). The regression analysis

did not include the mean 2-metre temperature [T(2m)] or

mean sea-level pressure that also may have an effect on

these shapes, although the effect of T(2m) is expected to

co-vary with the altitude and latitude. Figure 9 shows a

map of the geographical distribution of the PC loadings of

the leading mode.

The same regression analysis for the second PCA mode,

on the other hand, could only associate with 15% of the

variance (not shown), but the same geographical para-

meters that were important for the leading mode also

exhibited a close link to the second mode.

4. Discussion

Rain is a product of several different phenomena, such as

fronts, nimbostratus, cyclones, convective clouds, and

orographic forcing. The micro-physics of rain initiation

may involve a cascading avalanche through collision and

coalescence (Blyth et al., 1997), conditioned by the larger

scale environment (Rogers and Yau, 1989). Wilson and

Toumi (2005) provided a simple and elegant description

of precipitation in terms of horizontal convergence of

moisture flux, but their simple model did not resolve

more complicated situations, such as multiple updraught

from a single precipitating ascent. They nevertheless

observed a remarkable uniform character in the precipita-

tion characteristics, arguing that the data should follow a

stretched exponential. Here, the empirical precipitation

data from USA and Europe also exhibit a uniform

behaviour in terms of belonging to one family of curves

that for some purposes can be approximated as being

exponential.

Assuming a simple exponential distribution allows a

rule-of-the-thumb estimation of higher percentiles, albeit

with some biases. The higher the quantile, the greater the

bias. More sophisticated methods will provide a more

accurate description of the upper tails of the rainfall

distributions, and we have shown that a simple PCA,

based on the assumption that the data approximately

follow an exponential distribution, can explain most of

the variance in its two leading modes. An exploration

of the PCA products, furthermore, suggests that 65% of

the variance of the leading PC and 15% of the second PC

can be predicted from information about the stations’
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Fig. 3. Same as Fig. 2 but for the 99% quantile. The red line shows a linear best fit to the points based on linear regression. A cutoff of

200 mm d�1 was used here, and for 8 locations the 99% quantile exceeded this limit (Fig. 5).
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geographical situation and can, hence, be used to provide a

refined description of the upper quantiles. One interesting

question is whether it is possible to predict the remaining

part of these PC loadings.

Wilson and Toumi (2005) suggested that the stretched

exponential shape is unlikely to change under a climate

change. If this means that if the shape approximately

similar to the exponential found in the present data does

not change, then a change in upper quantiles in the future

too will be closely related to the wet day mean m, and

would, furthermore, be in qualitative agreement with

higher quantiles changing disproportionally compared to

lower ones, as proposed by Semenov and Bengtsson (2002)

and Frei et al. (2006).

These results also support the findings of Benestad (2007,

2010) in the sense that the distribution is approximately

exponential, and that the quantiles exhibit a systematic

relationship with the mean (wet � dry days) precipitation.

Benestad (2007) also related the rate of the exponential

(m in emx where m B 0) to the mean 2-metre temperature

and (wet � dry day) precipitation. Although this latter

relationship was not examined further here, there is some

support for the link between the mean (wet � dry day)

precipitation and the quantiles, as seen in the colour coding

in Figs. 2 and 3. It is also possible that m and m are related

to the mean sea-level pressure, as high-pressure regions

tend to be associated with dry climates with blue skies (sub-

tropics, the Azores high), whereas low-pressure regions

often are near the storm tracks.

This study focused on the wet-day distribution of the

precipitation, but to provide useful return values and

intervals, it is important to also include the wet-day

frequency. The total rain amount can be described in terms

of a Bayesian probability f x rjð Þg rð Þ, where f is the p.d.f. for

the wet-day amount and g(r) is the probability of a wet day.

The probability for rain g(r) is related to cloudiness, and

hence correlates with temperature, depending on the

situation. The question of causality is furthermore ambig-

uous: Hot temperatures favour convection during summer,

whereas summertime stratocumulus clouds block the sun.

Our results do not necessarily disagree with the conclu-

sion of Orskaug et al. (2011), as here we compared the

24-hr precipitation distribution with an exponential dis-

tribution. The analysis presented in Figs 2�4 suggests that

the RCMs simulate lower values for the higher quantiles

than seen in the observations (the grey points are further
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Fig. 4. Same as Fig. 2, but contrasting results from the ENSEMBLES RCMs against corresponding analysis based on European

ECA&D data (grey symbols). Only the rain gauge data with quantiles of similar range as the RCMs are shown.
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Fig. 6. The leading mode of the PCA of the points in Fig. 5 (black solid line) is shown on top of the cloud of points (grey) from all the

GDCN stations (N�13549), whereas the dashed lines show the effect of the second mode (mode 1 9 mode 2).
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up the diagonal). But, it is also important to keep in mind

that the representation of precipitation in RCMs is

different to observations, as the former describes an area

mean, whereas the latter is more a point measurement.

A better way to assess the RCM results would be to

compare them with gridded precipitation analyses such

as E-OBS (Haylock et al., 2008; van den Besselaar et al.,

2011).

Our findings are also qualitatively in good agreement

with Wilson and Toumi (2005), even though it is not

entirely clear to us that their assertion is valid. Their thesis

builds on Frisch and Sornett’s (1997) which states that

stretched exponential p.d.f.s can arise because of an under-

lying random multiplicative processes, where the upper tail

of the p.d.f. is produced from the sum of a finite number of

independent random variables with a common p.d.f. e�f(x) .

Wilson and Toumi (2005) argued that the precipitation

total Racc ¼ j� q�m (where j is the instantaneous

precipitation efficiency, q is the mean specific humidity or

mass mixing ratio, and m is the mass of air advected into

the column and pushed through the moist level) and

assumed these to be normal variables with similar p.d.f.s.

Monte-Carlo simulations involving taking the product

of three series of random normally distributed values

(each with N�100 000) suggest an unrealistic description

of the lower quantiles and that the quantiles depend on

the mean values of the different factors (not shown).

Another aspect to consider is the errors in the rain

gauge measurements. Such errors are likely to affect the

scatter and bias. Large sampling fluctuations are also

expected at the very upper end of the tails. The effect of

errors may be reduced using a large sample of stations

and applying PCA, keeping only the two leading modes.

The PCA may, furthermore, facilitate a more sophisti-

cated method to provide a more accurate/precise estimates

of return values than assuming an exponential distribu-

tion, yet making no assumption about the shape of the

p.d.f.

A comparison between the PCA-based representation of

quantiles presented here and other methods such as the

gamma distribution, generalised Pareto distribution (GPD)

or a mixture of these (Vrac and Naveau, 2007) could

provide benchmarks about accuracy and precision. This is,

however, beyond the scope of the present article. Frigessi

Fig. 7. Reconstruction of the spread in the qq-plot from the two leading PCAs X�aiE, where index i refers to the station number.

A linear regression analysis between the grey points in the scatter plot and the leading PCA mode (red curves) suggests that the leading

mode could reproduce 98.4% variance. A similar regression analysis applied to the sum of the two leading PCA modes (blue curves)

explained 99.7%.
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et al. (2003) and Friederichs (2010) argued that selecting

exceedance thresholds may be tricky, and the threshold

levels will probably vary from location to location and

merit a study by themselves. A comparison between best-fit

exponential and gamma distributions was made by

Benestad (2010), and it was mainly for the low percentiles

that the different types diverged. Nevertheless, further

comparisons and evaluations should be carried out in

future studies.

5. Conclusions

The daily rainfall distribution is approximately exponential

to a zeroth order, with a bias in the upper part of the tail.

This characteristic seems to be universal over different

regions of the world and in both empirical data and

regional climate model results. This means that, to a zeroth

order, quantiles for 24-hr precipitation can be specified

from the wet-day mean according to qp ¼ �ln 1� pð Þm, and

hence it is possible to provide an approximate estimation of

the 24-hr wet-day precipitation quantiles once the wet-day

mean m is known. However, the two leading modes from a

PCA can be used to provide a more accurate representation

of the daily rainfall distribution.
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7. Appendix

A.1. Derivation of the analytical expression

The p.d.f. is used to describe the transform X � X0 ! X 0,

i.e. the rainfall amounts exceeding a threshold value (here

taken to be 1 mm d�1). Let f X 0ð Þ be the p.d.f. of variable

X 08X 0]0 (precipitation, which X’ refers to here, cannot be

negative). Then

Z 1

x¼0

f xð Þdx ¼ 1 (A.1)

We assume that X’ follows an exponential distribution of

the form emx 8mB0, and the area under this curve is:

Z 1

x¼0

emxdx ¼ 1

m
emx

� �1
0

¼

0� 1

m
¼ � 1

m
8; mB0

�f xð Þ ¼ �memx:

(A.2)

The analytical expression for the percentiles can be found

by solving the integral over the p.d.f.:

p ¼
Z qr

x¼0

�memxdx ¼ �emx½ �qp

0 ¼

� emqp þ 1 8 mB0;

�qp ¼
ln 1�pð Þ

m
:

(A.3)

An analytical expression for the mean value (m) can be

derived by employing integration by parts:

m¼
R1

x¼0
�mxemxdx ¼

�m x
m

emx
� �1

0
�
R1

x¼0
1
m

emxdx
� 	

¼

�m x
m2

� �1
0
;

�m ¼ � 1
m
8 mB0:

(A.4)

By combining equations A.3 and A.4, we get the expression

relating the percentiles to the mean value:

qp ¼ �In 1� pð Þm (A.5)

A.2. Computation of PCA

The PCA was performed on a matrix Z containing the

quantiles calculated according to qp ¼ �ln 1� pð Þm and

corresponding quantiles estimated through the R command

‘quantile(X?, p)’, where p � [p1, p2, . . . pm] .The PCA was

performed on the quantiles without subtracting the mean

values (often PCA are performed on anomalies rather than

the total values). Each column of Z represented one rain

gauge record (N rain gauges in total), and consisted of

vectors constructed by concatenating the m values of

qp with corresponding m values of ‘quantile (X?, p)’. A

singular vector decomposition (SVD) (Press et al., 1989)

was applied to Z to compute the principal components:

Z ¼ U
P

V T . We used eigenvectors scaled by the eigenva-

lue E ¼ U
P

to represent the leading modes. The graphi-

cal presentation of the PCA modes involved splitting each

mode into two components representing qp and ‘quantile

(X?, p)’ respectively. The PCA was implemented using the

qPCA() function in the qqplotter package.

The reconstruction of the individual quantiles was based

on the expression Z ¼ U
P

V T , for which the columns

of matrix Z can be regarded as a set of N vectors
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Z[z1, z2, . . . zN] . Each column z i contains both a set of

quantiles according to qp ¼ �ln 1� pð Þm and the corre-

sponding observed values quantile(X?, p). Hence, the

original quantiles can be reconstructed from PCA by

taking the element in z i with the index that corresponds

to quantile (X?, p).

A.3. Implementation

The analysis and figures presented here were made using

the R-package ‘qqplotter’ (version 1.10) and the R-package

‘PrecipStat’ (version 1.00) that contain the data needed to

get these results. Both these packages are free and open

source and can be obtained from the CRAN web site:

http://cran.r-project.org. These R-packages also include

basic documentation about their functions. Most of

the results presented in this paper were produced by the

function call ‘qqplotter()’.

� Map of locations of the rain gauge data used in

the analysis with number of wet-days greater

than 1000. The points are colour coded according

to the 95th percentile estimated according to

qp ¼ �ln 1� pð Þm.

� Quantile-quantile plot, plotting qp ¼ �ln 1� pð Þm
against the corresponding empirical estimate for

estimated 95% quantile. The colour coding indicates

the mean precipitation (wet � dry days). The data

include GDCN for US stations as well as ECA&D,

whose locations are shown in Fig. 1. The points are

colour coded according to the 95th percentile esti-

mated according to the mean (wet � dry) precipita-

tion. The black-dashed lines are confidence intervals

determined through Monte-Carlo simulations. Light

grey contours show the point density.

� Same as Fig. 2, but for the 99% quantile. The red

line shows a linear best fit to the points based on

linear regression. A cut-off of 200 mm d�1 was used

here, and for 8 locations the 99% quantile exceeded

this limit (Fig. 5).

� Same as Fig. 2, but contrasting results from the

ENSEMBLES RCMs against corresponding analy-

sis based on European ECA&D data (grey sym-

bols). Only the rain gauge data with quantiles of

similar range as the RCMs are shown.

� X-y boxplot, plotting qp ¼ �ln 1� pð Þm against the

corresponding empirically estimated quantile. The

plot shows a range of different quantiles, from 50%

to 99%. The boxes deviating strongly from the

diagonal above 200 mm d�1 represent 18 of the

quantiles found from the observations, representing

only 8 locations.

� The leading mode of the PCA of the points in Fig. 5

(black solid line) shown on top of the cloud of

points (grey) from all the GDCN stations

(N�13549), whereas the dashed lines show the

effect of the second mode (mode 1 9 mode 2).

� Reconstruction of the spread in the qq-plot from

the two leading PCAs X ¼ aiE, where index i refers

to the station number. A linear regression analysis

between the grey points in the scatter-plot and the

leading PCA mode (red curves) suggests that

the leading mode could reproduce 98% variance.

A similar regression analysis applied to the sum of

the two leading PCA modes (blue curves) explained

99.7%.

� Scatter-plot showing values for q0.99 from observa-

tions compared with corresponding reconstructed

values based on modes 1 and 2 from the PCA. The

red dashed line shows the best fit based on a

regression analysis.

� Map showing the distribution of the leading PC

loadings. No scale is given to the colourbar, as the

value of the PC loadings are meaningless without

the other components of the PCA (eigenvalue and

mode).
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