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ABSTRACT

A 4-dimensional variational data assimilation (4D-Var) scheme for the HIgh Resolution Limited Area Model

(HIRLAM) forecasting system is described in this article. The innovative approaches to the multi-incremental

formulation, the weak digital filter constraint and the semi-Lagrangian time integration are highlighted with

some details. The implicit dynamical structure functions are discussed using single observation experiments,

and the sensitivity to various parameters of the 4D-Var formulation is illustrated. To assess the meteorological

impact of HIRLAM 4D-Var, data assimilation experiments for five periods of 1 month each were performed,

using HIRLAM 3D-Var as a reference. It is shown that the HIRLAM 4D-Var consistently out-performs the

HIRLAM 3D-Var, in particular for cases with strong mesoscale storm developments. The computational

performance of the HIRLAM 4D-Var is also discussed.
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1. Introduction

The 4-dimensional variational data assimilation (4D-Var)

was first suggested by Le Dimet and Talagrand (1986) and

Lewis and Derber (1985). The idea of 4D-Var is to use

observations over a finite time interval to compute an

optimal initial state for a numerical weather prediction

(NWP) model. The model initial state is obtained by

minimising a cost function, which consists of one term

measuring the distance between the 3-dimensional model

initial state and a model background state at the beginning

of the assimilation window, and another termmeasuring the

distance between the observations distributed over the

assimilation window and the corresponding model state

values evaluated in the observation points. This article is

concerned with the 4D-Var for theHIghResolution Limited

Area Model (HIRLAM) forecasting system (Undén et al.,

2002). The HIRLAM 4D-Var also includes optional cost

function terms, one term to damp high-frequency oscilla-

tions, one term used for the control of lateral boundary

conditions, one model error term (not yet validated) and one

large-scale constraint term (Dahlgren and Gustafsson, 2012).

One of the most important aspects of 4D-Var is its

implicit flow-dependent assimilation structure functions

(Thépaut et al., 1996). 4D-Var takes the time dimension

into account through the forecast model. Inclusion of the

forecast model into the data assimilation process makes it

possible to assimilate not only forecast model state variables

but also diagnostic quantities, for example, surface pressure

tendency and precipitation intensity. It is also possible to

assimilate efficiently observations with a high resolution in

time. Examples are surface observations, radar observa-

tions and ground-based Global Positioning System (GPS)

observations. At horizontal resolutions of a few kilometre,

the model-generated structure functions are probably much

more important than any explicit balance constraints
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specified for the background term. There are no such

obvious balance constraints known that can be applied to

the convective storm scales, and thus 3-dimensional meth-

ods like 3D-Var will be less efficient in the mesoscale.

4D-Var provides us with the possibility to avoid an

explicit initialisation at the start of the forecast to be run

from the analyses. This is made possible through the

application of a weak ‘initialisation’ constraint in the

4D-Var procedure. One such constraint, the weak digital

filter constraint (Gustafsson, 1992; Gauthier and Thépaut,

2001), is discussed in this article. 4D-Var may also reduce

the spin-up of physical processes during the first hours of

the forecast. This necessitates, in addition, the application

of reasonably realistic physical parameterisations [in the

tangent linear (TL) and adjoint (AD) models].

One basic weakness of 4D-Var is the assumption of a

perfect forecast model over the assimilation window � the

forecast model is applied as a strong optimisation con-

straint. However, there exist possibilities to partly com-

pensate for this weakness of 4D-Var. The original idea of

Lewis and Derber (1985) to use some quantity representing

model errors, for example, a tendency bias, in the

assimilation control vector has recently received renewed

interest (Trémolet, 2006) and can be applied also in the

HIRLAM 4D-Var.

The incremental 4D-Var approach (Courtier et al., 1994)

is based on a linearisation of the forecast model equations

around a model trajectory being sufficiently close to the

true development of the atmosphere, such that the resulting

analysis would be within the estimation error of the truth.

It may be argued that such linearisations are impossible, or

very difficult, when taking strongly non-linear processes

like convection into account. It may be necessary to

introduce the different spatial scales and the different

processes step-wise into the minimisation, starting with

quasi-linear near-adiabatic synoptic scale processes and

introducing smaller scales and physical processes gradually.

For this purpose, there must be access to a range of

regularised and simplified TL and AD physical parameter-

isation schemes that can be applied during different phases

of the minimisation.

Another weakness of 4D-Var in its original formulation

is the lack of flow dependency of the assimilation structure

functions at the start of the assimilation window. Ensemble

assimilation techniques, like the Ensemble Kalman Filter

(Evensen, 1994), provide a natural framework for introdu-

cing such flow dependency. Hybrids between variational

and ensemble assimilation techniques (Wang et al., 2007)

have recently been applied with promising results. A hybrid

variational ensemble data assimilation scheme, using the

augmentation of the assimilation control variable suggested

by Lorenc (2003), has also been developed for HIRLAM

and will be described in a separate article.

An operational 4D-Var coupled to a spectral mesoscale

model was introduced at the Japan Meteorological Agency

(JMA) in March 2002 (Kawabata et al., 2007). The JMA

4D-Var has many characteristics in common with the

HIRLAM 4D-Var: the spectral model formulation, the

control of the lateral boundary conditions and the use of

the National Metorological Center, the former name of the

National Center for Environmental Prediction, Washing-

ton, USA (NMC) method for background error statistics.

The formulation of the HIRLAM 4D-Var is presented in

Section 2, followed by an example of implicit dynamical

structure functions in Section 3 using simulated observa-

tion experiments. The model setup for real observation

experiments is then described in Section 4. Some sensitivity

experiments regarding the weak digital filter constraint and

the settings for the multi-incremental minimisation are

presented in Sections 5 and 6, respectively. Results from

pre-operational testing of HIRLAM 4D-Var and compar-

ison with 3D-Var are provided in Section 7. These tests

preceded the operational introduction of HIRLAM 4D-

Var at the Swedish Meteorological and Hydrological

Institute (SMHI) in January 2008. The computational

efficiency of the HIRLAM 4D-Var is discussed in Section

8 and some concluding remarks are given in Section 9.

2. The HIRLAM 4D-Var formulation

The first step in the development of HIRLAM 4D-Var was

the adiabatic Eulerian TL and AD models and the

application to studies of sensitivity of forecast errors to

initial states and lateral boundaries (Gustafsson and

Huang, 1996; Gustafsson et al., 1998). The AD model

was also used to improve the Optimal Interpolation-based

HIRLAM data assimilation system at that time (Huang

et al., 1997). Further developments of the HIRLAM

4D-Var (Huang et al., 2002) included the incremental

formulation proposed by Courtier et al. (1994), applied

also in HIRLAM 3D-Var (Gustafsson et al., 2001;

Lindskog et al., 2001) and the implementation of the

simplified physics packages from European Centre for

Medium-range Weather Forecasts (ECMWF) (Buizza,

1993) and Météo-France (Janisková et al., 1999). Later

developments include the multi-incremental formulation

following Veersé and Thépaut (1998), the semi-Lagrangian

time integration following Hortal (2002), the use of grid

point HIRLAM forecasts for the 4D-Var background, the

weak digital filter constraint following Gustafsson (1992)

and the control of lateral boundary conditions following

the JMA approach (Kawabata et al., 2007).

The HIRLAM 4D-Var utilises Fourier transforms in the

TL and AD models as well as in the background error

constraint calculations. An area extension, suggested by

Haugen and Machenhauer (1993), is applied in order to
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make assimilation increments periodic in both horizontal

directions. Details on this area extension have been

presented by Gustafsson et al. (2001).

2.1. The multi-incremental formulation

A fundamental problem in the application of 4D-Var is the

non-linearity of the forecast model and the related risk for

finding a local rather than the global minimum by a

straightforward minimisation of the cost function J. It can

be argued that variations of assimilation increments for

near-adiabatic larger scale flow over an assimilation win-

dow of 6�12 h are more accurately approximated under

assumptions of model linearity than the corresponding

variations of assimilation increments for smaller scale

diabatic flow. The basic idea of the multi-incremental

approach is therefore to split the minimisation problem

into a sequence of subproblems, where we first determine

the minimum of the cost function for larger scale incre-

ments, with near-adiabatic processes included in the fore-

cast model only and with a linearisation of the forecast

model around a non-linear forecast starting from a model

background initial state. Having determined these large-

scale increments, it can be assumed that we are closer to the

global minimum of the original minimisation problem and

we can introduce smaller spatial scales and more diabatic

processes step by step. In each step, we will relinearise the

forecast model equations around the non-linear model

trajectory starting from the improved initial state found in

the previous minimisation step. With exception for the

effects of variational quality control (VarQC) (see Lindskog

et al., 2001), this relinearisation procedure guarantees that

each minimisation subproblem remains a quadratic mini-

misation problem. This sequence of minimisation subpro-

blems is often referred to as the ‘outer minimisation loop’ in

4D-Var, while the solution of each minimisation subpro-

blem is referred to as an ‘inner minimisation loop’.

Let x0 denote the model initial state to be determined at

time t � t0 at the beginning of the data assimilation

interval, xb
0 the corresponding background model state

and dx0 ¼ x0 � xb
0 the total assimilation increment. The

total assimilation increment dx0 is determined as a sum of

assimilation increment contributions

dx0 ¼
XNs

s¼1

dxs
0

where the contributions dxs
0 are determined through the

solution of a sequence of quadratic minimisation problems

for t �1,2, . . . ,Nt, with Nt being the number of outer

minimisation loop iterations. Considering the background

and observation error constraints, the cost function for

determination of dxs
0 is defined by

Jðdxs
0Þ ¼ Jbðdxs

0Þ þ Joðdxs
0Þ

where

Jbðdxs
0Þ ¼

1

2

Xs

l¼1

dxl
0

 !T

B�1
Xs

l¼1

dxl
0

 !

Joðdxs
0Þ ¼

1

2

X0

k¼K

Hs�1Ms�1
k dxs

0 � ds
k

� �T
R�1

Hs�1Ms�1
k dxs

0 � ds
k

� �
with

ds
k ¼ HðMkðxs�1

0 ÞÞ � yk

here, Mk denotes a non-linear forecast from time t0 until

time tk, and H denotes a non-linear observation operator.

Ms�1
k and Hs�1 denote a TL forecast from time t0 until time

tk and a linear observation operator, respectively, both

obtained by linearisation of the corresponding non-linear

model and observation operator around the non-linear

forecast starting from x0
0 ¼ xb

0 for t �1 and from

xs�1
0 ¼ xb

0 þ
Xs�1

l¼1

dxl
0;

for t�1, yk denotes the vector of observations available

at time tk, B a matrix containing covariances of back-

ground errors and R a matrix containing covariances of

observation errors.

For application of a standard minimisation software

package (for example Gilbert and Lemaréchal, 1989), the

gradient of J with respect to the increment dxs
0 is needed.

This gradient is given by

rdxs
0
J ¼ B�1

Xs

l¼1

dxl
0

 !
þ
X0

k¼K

Ms�1
k

� �T
Hs�1
� �T

R�1

Hs�1Ms�1
k dxs

0 � ds
k

� �
where ðMs�1

k Þ
T
denotes the AD of the TL model Ms�1

k and

ðHs�1ÞT the AD of the TL observation operator Hs�1. The

gradient is calculated through a single integration of the TL

model Ms�1
k forward in time over the assimilation time

window, followed by a backward integration of the AD

model ðMs�1
k Þ

T
over the same time interval.

The spatial resolution of the contribution dxs
0 to the

assimilation increment can gradually increase for each

outer loop iteration, and the TL forecast model Ms�1
k can

be designed to include more and more complex physical

processes with increasing outer loop minimisation iteration

number. One particular feature of the HIRLAM 4D-Var is

that the non-linear model may be either the grid point
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HIRLAM with a finite difference formulation or the

spectral HIRLAM based on the spectral transform techni-

que, while the TL model and the AD of the TL model are

always based on the spectral model formulation. The non-

linear model integrations are carried out with full model

resolution for each outer loop iteration, and the resulting

model trajectories are used at full resolution for calculation

of Jo contributions and, after truncation, for the linearisa-

tions related to the TL and AD models. This approach was

chosen in order to have the best possible model trajectory

to be used for the linearisations.

To simplify the notations, we have dropped the index

t �1, denoting the outer loop iteration number of the non-

linear model state used for linearisation, in the descriptions

and discussions of Ms�1
k and Ht�1 below.

2.2. The background error constraint

The main purpose of the variational data assimilation

background constraint is to force assimilation increments

to obey balance relations and spatial spectral character-

istics in accordance with statistical information on forecast

background errors. The background error constraint of the

HIRLAM 4D-Var is a modified version of the background

error constraint described by Berre (2000). An f-plane

balance based on a constant Coriolis parameter f0 is

applied by Berre, while a balance operator based on a

spatially variable Coriolis parameter f is applied in

HIRLAM 4D-Var as well as in HIRLAM 3D-Var.

The large dimension of the background error covariance

matrix B makes it difficult to store and it is practically

impossible to compute B�1 by matrix inversion in grid

point space. Furthermore, for the minimisation to converge

rapidly, a pre-conditioning is necessary. The ideal pre-

conditioning is to transform the increment into a control

variable such that the Hessian matrix of the cost function J

becomes the identity matrix. For the HIRLAM 3D-Var we

have introduced a control variable transform x �Udx0,

making it possible to assume that the Hessian matrix of the

background error constraint Jb is an identity matrix. This is

a good pre-conditioning as long as the Hessian of Jb is large

compared to the Hessians of the other cost function

contributions. Two main assumptions built into the control

variable transform of the HIRLAM 3D-Var are those of

horizontal homogeneity with respect to horizontal correla-

tions, making the correlation matrix of a single 2-dimen-

sional field diagonal in spectral space and the decoupling

vertically through projection on eigenvectors of vertical

correlation matrices. The transform U is defined:

U � PVLSGF where F is the Fourier transform to spectral

space, G is the balance operator based on statistical

regression techniques (Berre, 2000), S is the normalisation

with the background error standard deviations, L is the

normalisation with the square roots of the horizontal

spectral correlation density functions of forecast errors, V

is the projection on the eigenvectors of the vertical forecast

error correlation matrices and P is the normalisation with

the square roots of the eigenvalues of the vertical forecast

error correlation matrices. Note that the background error

standard deviations are specified separately and preserved

for different horizontal increment resolutions, which means

that the horizontal spectral correlation densities have to be

renormalised when horizontal resolution is changed. The

forecast error statistical parameters are computed using the

NMC method (Parrish and Derber, 1992). In connection

with introduction of the multi-incremental minimisation,

the question arose of which control variable to transfer

between the different outer loop minimisation iterations. It

turned out that neither the transformed control variable x
nor the analysis increment dx0 in grid point space could be

used. The transformed variable x includes a normalisation

with the square root of the horizontal spectral density

function, which is resolution dependent. x, therefore,

cannot be used when the resolution is changed between

the outer loop iterations, nor can the grid-point increment

dx0 be used because the Fourier transform back to the

spectral space control variable space is non-unique. The

non-uniqueness of the direct Fourier transform is due to

the use of an extension zone to obtain bi-periodic varia-

tions in both horizontal dimensions. The applied solution is

to transfer a ‘half-way’ transformed control variable

L�1V�1P�1x between the outer loop minimisation itera-

tions.

The assimilation control variables in the reference

HIRLAM 4D-Var and 3D-Var are vorticity, unbalanced

divergence, unbalanced temperature, unbalanced surface

pressure and unbalanced specific humidity. For the humid-

ity analysis, a renormalised pseudo-relative humidity

assimilation control variable may also be applied (Gus-

tafsson et al., 2011). The renormalisation follows Hólm et

al. (2002), and the purpose is to improve Gaussianity close

to zero humidity and saturated model background states.

Since the renormalisation has a non-linear formulation,

several outer loop minimisation iterations are required

(Gustafsson et al., 2011).

2.3. Observation operators, observation error

covariances and VarQC

The observation operators include the non-linear operator

H, the TL operator H and the AD operator HT. Each

observation operator generally includes a horizontal inter-

polation of the model state to observation geographical

locations, a calculation of pressures and geopotentials at

model levels (at the observation locations), a vertical
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interpolation of the model state to observation altitudes

and specialised operators for each type of observation.

To compute the observation constraint, the observation

error covariance matrix R is needed. Both instrument

errors and representativeness errors are represented in R.

Just like in the HIRLAM 3D-Var, we assume observation

errors to be uncorrelated and only the error standard

deviations enter into R. For the observed values from

conventional data types and their associated error standard

deviations, we use the same procedures as in the HIRLAM

3D-Var (Lindskog et al., 2001). The conventional observa-

tions include synoptic observations (SYNOP), ship obser-

vations (SHIP), buoys (BUOY), pilot balloons (PILOT),

radiosondes (TEMP) and aircraft reports. In addition, the

ATOVS AMSU-A radiance data over seawater areas have

been used in this study (Schyberg et al., 2003).

The HIRLAM 4D-Var has been applied to the assimila-

tion of clear and cloud-affected SEVIRI radiances by

Stengel et al. (2009, 2010), and in this work the renorma-

lised pseudo-relative humidity assimilation control variable

and several outer loop iterations were applied successfully.

The VarQC accounts for the possibility of gross errors,

represented by a flat Probability Density Function (PDF),

in addition to random errors, represented by a Gaussian

PDF (Andersson and Järvinen, 1999). The VarQC is only

applied during a sequence of iterations between two

specified iteration numbers of the HIRLAM 4D-Var

minimisation. Observed values considered as rejected by

the end of this sequence of iterations are left out from the

remaining part of the minimisation iterations in order to

stay with a quadratic minimisation problem (for details see

Lindskog et al., 2001).

All observed values that enter into the HIRLAM 4D-Var

minimisation have also been subject to a number of stand-

alone quality control algorithms like comparison with a

short range forecast background value. These (screening)

quality control algorithms are the same as those applied in

HIRLAM 3D-Var (Lindskog et al., 2001).

2.4. Assimilation forecast models

The non-linear forecast model M is used to propagate the

background model state, as well as subsequent analysis

guess fields in the outer minimisation loop, forward in time,

the TL model Mk is used to propagate the analysis

increments forward in time, while the AD model MT
k is

used to propagate the gradients of the cost function with

respect to the model state variables backward in time.

The operational version of the HIRLAM forecast model

is based on a grid point representation for model varia-

bles, approximation of spatial derivatives by second-order

finite differences and a semi-implicit time stepping

(Undén et al., 2002). However, the spectral version of the

HIRLAM forecast model is also available (Gustafsson,

1991; Gustafsson and McDonald, 1996).

The Eulerian version of the spectral HIRLAM was

chosen as the basis for the development of the TL and

AD models (Mk and MT
k ), mainly due to practical reasons

(Gustafsson and Huang, 1996); for example, the Fourier

transforms are self-AD, and the ADs of complicated finite

difference expressions are avoided. A manual coding

technique was used statement by statement, block by block

and subroutine by subroutine. The following steps are

needed: (1) Coding of the TL counterpart of the non-linear

code; (2) By considering each TL code statement as a

complex valued matrix operator, the AD code statement is

derived by taking the complex conjugate and transpose of

it; (3) The correctness of AD code is checked. If the AD

code has been formulated correctly, the following should

hold up to the machine accuracy:

ðMkxÞTðMkxÞ ¼ xT ½MT
k ðMkxÞ�:

(4) Finally, to test the validity of the TL approximation,

gradient tests are performed on selected TL components

and the full TL model:

WðaÞ ¼ J½xþ arxJ� � JðxÞ
a rxJ½ �TrxJ

¼ 1þOðaÞ:

For values of a which are small but not too close to zero at

machine accuracy, the above value is expected to be close

to unity.

2.4.1. Semi-Lagrangian time integration in the TL and

AD models. To improve the computing performance of

HIRLAM 4D-Var, semi-Lagrangian versions of the TL

and AD HIRLAM spectral models were developed.

The semi-Lagrangian scheme of the original spectral

HIRLAM model (Gustafsson and McDonald, 1996) was

modified along the ideas of the ‘Stable Extrapolation

Two-Time-Level Scheme (SETTLS)’ described by Hortal

(2002). This semi-Lagrangian scheme provided a significant

performance improvement due to less severe restrictions on

the time-step and due to a cleaner two-time-level formula-

tion, avoiding the need for any time filter.

The basic idea of the SETTLS semi-Lagrangian scheme

is to expand any unknown model quantity in a second-

order Taylor series around the departure point of the semi-

Lagrangian trajectory at time t, including an estimation of

the second-order term through averaging along the back-

ward trajectory between time t�Dt and time t. For the

implementation of this scheme into the spectral HIRLAM,

we followed the model equations described by Gustafsson

and McDonald (1996) and the numerical scheme of Hortal

(2002) closely. A linear 3-dimensional interpolation scheme

is used in the calculation of model trajectories and for

HIRLAM 4D-VAR 5



non-linear quantities, while a 3-dimensional cubic inter-

polation scheme is used for all basic model quantities

that are subject to the semi-Lagrangian interpolation.

The semi-Lagrangian scheme is combined with a semi-

implicit time integration (for details see Gustafsson and

McDonald, 1996).

The TL and AD of semi-Lagrangian time integration

schemes were discussed by Polavarapu et al. (1996). The

main issue is that the interpolation, needed to fetch various

quantities along the backwards trajectories in the semi-

Lagrangian scheme, is not differentiable unless we restrict

the interpolation in the linearised scheme to use values

from the same set of grid points that is used in the

corresponding non-linear scheme. In other words, even if

the trajectory perturbed by the TL wind increment

indicates that we should move to a new set of grid points

for the interpolation, we should still use the set of grid

points determined by the unperturbed trajectory.

Starting from the requirement for differentiability, the

development of the TL and AD semi-Lagrangian schemes

for HIRLAM 4D-Var was a straightforward task. The TL

trajectory calculation provides TL (perturbed) trajectory

displacements and the TL semi-Lagrangian interpolation,

the needed TL (perturbed) quantities. Similarly, the AD

semi-Lagrangian interpolation and trajectory calculations

provide links from gradients of increments in the inter-

polated quantities to gradients of increments in the grid

point fields as well as gradients of increments in the wind

field used for the trajectory calculations.

From a numerical stability point of view, due to the

linearisation of the interpolation scheme, the TL and the

AD of the semi-Lagrangian scheme act more like an

Eulerian scheme than a semi-Lagrangian scheme. It is the

magnitude of the wind increment that determines the

stability for any particular case. For this reason, it is

computationally favourable to utilise the multi-incremental

minimisation formulation by letting outer loop iterations at

coarser resolution to determine a larger fraction of the

assimilation increments.

2.4.2. The TL and AD model physics Due to the incre-

mental formulation of the HIRLAM 4D-Var, it is also

reasonable to simplify the linearised (TL and AD) HIR-

LAM physics or even to utilise other linearised physics

packages.

One of the ECMWF simplified physics packages (Buizza,

1993), referred to as the Buizza scheme here to distinguish

it from other ECMWF simplified physics packages, was

chosen due to its extreme simplicity. The scheme contains

only a very simple representation of vertical diffusion

of momentum and surface friction. The Météo-France

Simplified Physics package contains a series of simplified

computations of radiation, vertical turbulent diffusion,

orographic gravity wave drags, deep convection and strati-

form precipitation fluxes (Janisková et al., 1999). The

individual physics contributions in this package can be

computed independently, thus the need for extra array

storage and partial recalculation of non-linear steps in

physics AD subroutines are drastically reduced compared

to the case using, for example, the TL and AD of the full

HIRLAM physics (Yang, 2002). For the experiments

reported on in this article, only the turbulence parameter-

isation of the Janisková et al. (1999) package has been

applied, since it is a more complete turbulence scheme than

the Buizza (1993) scheme that treats vertical turbulent

exchange of momentum only. The large-scale condensation

scheme of Janisková has also been applied successfully for

certain data periods with the HIRLAM 4D-Var but was

not applied here because of a too strong tendency to trigger

unrealistic small-scale instabilities.

2.5. The weak digital filter constraint

Numerical weather prediction models based on the primi-

tive equations describe slow Rossby modes as well as fast

gravity modes. While the former are of main meteorologi-

cal interests, the latter are only associated with small

amplitude in the atmosphere as measured, for example,

by the kinetic energy power spectrum of the gravity modes.

When fitting a model trajectory to observations, as

formulated in 4D-Var, we wish to modify the Rossby

modes while minimising the amplitudes of fast gravity wave

oscillations. Commonly used approaches to control the fast

modes are to apply the Non-linear Normal Mode Initi-

alisation (NNMI) scheme (Machenhauer, 1977) or the

Digital Filter Initialisation (DFI) scheme (Lynch and

Huang, 1992). The TL and AD of the NNMI have been

introduced into the HIRLAM 4D-Var as well as a weak

digital filter constraint. The weak digital filter formulation

follows Gustafsson (1992) and Gauthier and Thépaut

(2001). A term Jc is added to the 4D-Var cost function:

Jc ¼
cdf

2
ðdxN=2 � dxdf

N=2Þ
T C�1ðdxN=2 � dxdf

N=2Þ (1)

with

dxN=2 � dxdf

N=2 ¼ dxN=2 �
XN

n¼0

fndxn ¼
XN

n¼0

hndxn (2)

where dxn is the model state assimilation increment at time-

step n calculated from the initial state assimilation incre-

ment dx0 by the TL model dxn�Mndx0, N is the number of

time steps over the data assimilation window and dxdf

N=2

is the digitally filtered assimilation increment at the

mid-point of the data assimilation window. Note that N

6 N. GUSTAFSSON ET AL



must be an even number. The parameter cdf we will

consider is a tuning parameter, describing the relative

importance of the noise filtering constraint Jc in compar-

ison with the observation error constraint Jo and the

background error constraint Jb. The diagonal matrix C�1

defines the relative weights given to different model

variables at different vertical levels in the weak digital

filter constraint and we have defined these in accordance

with the total energy norm, with no horizontal variation of

the integration weights (and with no horizontal resolu-

tion dependency of the horizontal weights). fn, finally, are

the digital filter weights. We have determined these in

accordance with the Dolph filter (Lynch, 1997), which

is defined by a time span (� the length of the data

assimilation window �5 h in our case) and a cutoff

frequency period, Tc.

Using the reformulated digital filter weights (hn,n

�0,. . .,N), the digital filter cost function Jc and its gradient

with respect to the initial time assimilation increment may

be calculated as follows:

Jc ¼
cdf

2

XN

n¼0

hndxn

 !T

C�1
XN

n¼0

hndxn

 !
(3)

and

rdx0
Jc ¼

X0

k¼N

cdf MT
k hkC�1

XN

n¼0

hndxn

 !
(4)

From the expression for the gradient rdx0
Jc, we can notice

that the deviations from the digitally filtered model

assimilation increment will enter as a forcing for the AD

model equations (MT
k ), similar to the way the deviations

from the observations (as defined by Jo) also enter as a

forcing to the AD model equations.

The weak digital filter constraint is applied in inner

minimisation loops of the HIRLAM 4D-Var only. We

consider the constraint mainly as a tool to avoid fast

gravity wave oscillations in the TL model integrations.

Furthermore, it is not clear how one should apply the filter

to the total assimilation increment over several outer loop

iterations, since this total increment will include contribu-

tions also from the non-linear model trajectory runs

between the outer loop iterations.

2.6. Implementation issues

The HIRLAM 4D-Var includes the HIRLAM 3D-Var

as a component. There are a number of differences between

3D-Var and 4D-Var (assuming 6 h cycling and taking the

analysis around 0000 UTC as an example):

Assimilation interval: For 3D-Var, the assimilation

interval is 6 h, 21:00�02:59 h, but this is just a matter of

definition. For 4D-Var, with a 6-h assimilation interval,

20:30�02:29 h may be chosen in order to have symmetric

hourly observation windows. A centred 3-h assimilation

interval, 22:30�01:29 h, or an uncentred 5-h interval,

20:30�01:29 h, may also be chosen. Overlaps of adjacent

assimilation intervals should be avoided due to the risk of

repeated use of observations.

Observation window: For 3D-Var, the observation win-

dow length may be freely chosen as long as no overlap of

adjacent observation windows occurs. In the 3D-Var

experiments described in this article, the observation

window length was 6 h, 20:30�02:29 h. For 4D-Var, the

observation window length is currently set to 1 h, but it can

easily be changed. Six observation windows were used

for the analysis: 20:30�21:29, 21:30�22:29, 22:30�23:29,
23:30�00:29, 00:30�01:29, 01:30�02:29 h. Note that the

observation window 02:30�03:29 h is not included for

this cycle in order to avoid repeated use of the same

observations.

Background states: For 3D-Var, hourly background

states are provided in order to minimise the model error

influence on the innovations, which is sometimes referred

to as First Guess at Appropriate Time (FGAT). For 4D-

Var, hourly background states are also provided.

Analysis propagation: For 3D-Var, the full analysis state

is propagated forward in time to the next analysis time by

the non-linear forecast model, while with 4D-Var there is

also an option to propagate the assimilation increment

forward in time by the TL model to the start of the next

assimilation window.

3. Implicit dynamical structure functions

A crucial component of all statistical analysis schemes is

the background error covariance matrix, B. The B matrix

determines the shape of the analysis increments and the

degree of balances in the analysis. An efficient way to check

a data assimilation scheme is to perform single simulated

observation impact experiments. The analysis increments

due to a single observation can directly be associated with

the multivariate structure functions, that is a single row or

column of B, and their flow dependencies in the case of 4D-

Var. Single observation impact experiments with the

ECMWF 3D-Var and 4D-Var were carried out by Thépaut

et al. (1996). Based on the theoretical equivalence between

4D-Var and the Extended Kalman Filter (EKF) (Ghil

and Malanotte-Rizzoli, 1991), the analysis increments from

these experiments were used to investigate the dynamical

structure functions implied in the ECMWF 4D-Var.

It was shown that the implied ECMWF 4D-Var structure

functions differ considerably from those of 3D-Var. The

main features of 4D-Var such as flow dependency asso-

ciated with baroclinic structures were demonstrated.

HIRLAM 4D-VAR 7



Single observation impact experiments with the HIR-

LAM 3D-Var have confirmed that the analysis increments

are in accordance with the applied analysis structure

functions and that the fit of the analysis to the observations

is in agreement with the assumed background and observa-

tional error statistics (Gustafsson et al., 2001; Lindskog et

al., 2001). Here, we used single observation impact experi-

ments to investigate the structure functions implied by the

HIRLAM 4D-Var increments.

We first derive a special solution for 4D-Var with only

one outer loop iteration and with only one observation y at

time tk and with R ¼ r2
o. Introducing d ¼ y�H Mk xb

0ð Þð Þ
and dropping the summation in the gradient calculation as

well as the outer loop index, the cost function gradient

becomes

rdx0
J ¼ B�1dx0 þMT

k HT R�1 HMkdx0 � d½ � (5)

At the minimum, rdx0
J ¼ 0, and with Hk�HMK we will

have

dx0 ¼ B�1 þHT
k R�1Hk

� ��1
HT

k R�1d

¼ BHT
k HkBHT

k þ R
� ��1

d (6)

where we also have introduced the dual (or the observation

space) solution (see Kalnay (2003) for an elegant proof of

the equivalence of the two solutions). Multiplying withMk

we will get the solution at time tk

dxk ¼ BkHT HBkHT þ R
� ��1

d (7)

where Bk ¼ MkBMT
k is the background error covariance

matrix valid at time tk, as provided by an EKF. Assuming

that the single observation concerns model component j,

denoted by dxjðtkÞ, the solution for model component i is

given by:

xiðtkÞ ¼
BijðtkÞ

BjjðtkÞ þ r2
o

d (8)

which is the solution also given by an EKF. This means

that the impact of a single observation at time tk on the

increment dxk valid at time tk is given by the flow-

dependent background error covariance Bk, calculated in

exactly the same way as through the EKF. In this sense,

4D-Var is equivalent to an EKF over the time period of the

data assimilation window. We provide an example of these

flow-dependent background error covariance matrices in

the following, together with a discussion of their signifi-

cance and a comparison with 3D-Var covariance matrices.

The case chosen is the severe cyclone of 3 December

1999, which crossed Denmark during the evening. We have

selected the period between 06 UTC and 12 UTC,

characterised by the strongest baroclinic development, for

our experiment. The forecast background trajectory is

produced by a HIRLAM non-linear model run with full

physics from an interpolated ECMWF analysis at 00 UTC

3 December 1999. The simulated observations will be

assimilated at 11 UTC, 5 h into the data assimilation

window, and the 00 UTC �11 h background mean sea

level pressure (MSLP) forecast is given in Fig. 1.

First, we introduce a single simulated surface pressure

observation increment of �5 hPa at 578N 38E, in the area

with the fastest development of the storm. As a reference

for the 4D-Var experiment, we first carry out a 3D-Var

single simulated observation experiment. The result is

presented in Fig. 2. As expected, we obtain an almost

isotropic, rather large-scale, and completely flow indepen-

dent, surface pressure increment. The deviations from

isotropy in areas with elevated terrain can be explained

by the use of the increment of the logarithm of surface

pressure as the assimilation control variable.

Second, we will use the same single simulated surface

pressure observation in a 4D-Var experiment over the data

assimilation window 06 UTC �12 UTC. We will thus

introduce the observation at the end of the data assimila-

tion window, where we can expect the background error

covariance to have been influenced by TL dynamics over

5 h of model integration time. The result of this experiment

in the form of the surface pressure assimilation increments

at 11 UTC is presented in Fig. 3. The main difference

between the 3D-Var and the 4D-Var experiments is that the

4D-Var surface pressure increments at 11 UTC occur for

much smaller horizontal scales, comparable to the hor-

izontal scales of the core of the mesoscale storm develop-

ment as seen in the non-linear forecast for the same time in

Fig. 1. From this we may conclude that the implicit

propagation of the background error covariance matrix

980
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Fig. 1. HIgh Resolution Limited Area Model mean sea level

pressure (MSLP) forecast on 3 December 1999, 00 UTC�11 h.

The contour interval is 5 hPa.
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over the data assimilation window provides information

on preferred scales (and structures) of development as

determined by the linearisation around the non-linear

trajectory.

We may ask what perturbations at the start of the

assimilation window are required to create the mesoscale

storm perturbations as seen in the surface pressure

assimilation increments 5 h later in Fig. 3. It turns out

that the surface pressure assimilation increments at the

start of the assimilation window (06 UTC) are quite small,

while there exist significant wind and temperature assim-

ilation increments at upper tropospheric levels, upstream of

the storm development 5 h later. A vertical cross section of

the 06 UTC wind and temperature increments in the NW�
SE direction centred over the British Isles is presented in

Fig. 4. The vertically tilted wind and temperature incre-

ments in this figure indicate an enhanced baroclinicity of

the initial state for the TL model that 5 h later results in the

intensified storm development. In other words, the most

efficient initial change to provide an intensified storm

development, as seen by surface pressure, is to change the

upper air fields responsible for the enhanced dynamical

development.

To further illustrate the flow-dependent character of

the implicitly propagated background error covariance

matrix, we have repeated the 4D-Var experiments, but

now with insertion of the simulated surface pressure

observation increment in a more dynamically stable area

at 558N 208W, thus in the middle of a high pressure

system at the time of observation (11 UTC), see Fig. 1.

The resulting 4D-Var surface pressure increment at 11

UTC (Fig. 5) turns out to be quite different from the

corresponding increment in the area of the storm devel-

opment in Fig. 3. The similarity with the 3D-Var

increments and the smaller amplitude of the increments

at 11 UTC indicate a dominance of advective and

diffusive processes in the propagation of the background

error covariance matrix.

These two examples of 4D-Var single simulated observa-

tion experiments provide evidence of the abilities of 4D-Var

to take flow dependency into account. It needs to be

stressed, however, that the flow dependency is limited to

time scales corresponding to the length of the data

assimilation window, since the background error covar-

iance matrix is assumed static and flow independent at the

start of the data assimilation window.

4. Model setup for HIRLAM 4D-Var tuning and

validation experiments using real observations

Parallel data assimilation and forecast experiments have

been carried out in order to tune and to validate the

performance of the HIRLAM 4D-Var. Some of these

experiments were done for the reference HIRLAM (RCR)

domain (Fig. 6) with 60 vertical levels and 582�448

horizontal grid points and with a horizontal grid resolution

of 16 km in the non-linear model. Further experiments were

carried out on the operational SMHI 22 km HIRLAM

domain with 40 vertical levels. This domain includes

306�306 horizontal grid points and the domain has a

reduced extension, mainly in the west, in comparison with

-3
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40N

50N

20W 10W 0 10E

Fig. 3. 4D-Var surface pressure assimilation increments for 3

December 1999, 11 UTC, from a single surface pressure observa-

tion increment of �5 hPa at 578N 38E for 3 December 1999, 11

UTC. The data assimilation window is from 06 UTC until 12

UTC. The assumed standard deviation of the observation error is

0.5 hPa. The contour interval is 1 hPa.
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40N
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Fig. 2. 3D-Var surface pressure assimilation increments for

3 December 1999, 11 UTC from a single surface pressure

observation increment of �5 hPa at 578N 38E for 3 December

1999, 11 UTC. The assumed standard deviation of the observation

error is 0.5 hPa. The contour interval is 1 hPa.
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the RCR domain. Background error statistics for the

experiments in this study were derived with the NMC-

method (Parrish and Derber, 1992) and with input of

forecast difference data (�36 h and �12 h forecasts valid

at the same time) from the RCR domain and from all

four seasons. This is certainly not the most optimal

choice, since separate studies of moisture background

error statistics, for example, have indicated a rather

significant seasonal dependency of such background error

statistics (Gustafsson et al., 2011).

The HIRLAM grid point forecast model applies a two-

time level semi-Lagrangian semi-implicit integration

scheme (Undén et al., 2002). The physical parameterisa-

tions include the Cuxart, Bougeault and Redelsperger

(CBR) turbulence scheme (Cuxart et al., 2000), the Kain�
Fritsch convection scheme (Kain, 2004), the Rasch�Krist-

jánsson cloud water scheme (Rasch and Kristjánsson,

1998), the simplified radiation scheme of Savijärvi (1990)

and the ISBA surface and soil scheme (Noilhan and

Mahfouf, 1996).
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Fig. 4. Vertical cross-section with 4D-Var assimilation increments of temperature and the wind component normal to the vertical cross-

section at 3 December 1999, 06 UTC, from a single surface pressure observation increment of �5 hPa at 578N 38E with observation time 3

December 1999, 11 UTC. The data assimilation window is from 06 UTC until 12 UTC. The assumed standard deviation of the observation

error is 0.5 hPa. The vertical cross-section extends from 678N 258W until 488N 158E. Contour intervals are 0.5 m s�1 and 0.1 K.
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Fig. 5. 4D-Var surface pressure assimilation increments for 3

December 1999, 11 UTC, from a single surface pressure observa-

tion increment of �5 hPa at 558N 208W for 3 December 1999, 11

UTC. The data assimilation window is from 06 UTC until 12

UTC. The assumed standard deviation of the observation error is

0.5 hPa. The contour interval is 1 hPa.
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5. Tuning and validation of the weak digital filter

constraint

A problem with the weak digital filter constraint is the

weight, given by the coefficient cdf , to assign to the

constraint. We will determine the value of cdf through

data assimilation experiments over the RCR model domain

with a typical horizontal resolution of the first inner

minimisation loop. The horizontal resolution of the non-

linear forecast model is 16 km, while the horizontal

resolution of the first inner minimisation loop is six times

coarser (96 km). A total of 50 minimisation iterations were

carried out with the conjugate gradient minimisation

algorithm. Figure 7a shows the evolution with the iteration

number of the observation constraint Jo, while Fig. 7b

shows the evolution of Jc=cdf , both for the following values

of cdf : 0.001, 1.0, 4.0, 16.0 and 32.0. Jo is a measure of the

fit to the observations during the minimisation iterations,

while Jc=cdf is a measure of the magnitude of high-

frequency oscillations during the TL model integrations.

We can observe that a larger assigned value of the

coefficient cdf provides a direct response in the form of a

stronger damping of high-frequency oscillations. We can

also observe that for cdf 	 4:0, the value of the observation

constraint is only very weakly sensitive to cdf . Thus by

selecting cdf �4.0 we will have a significant damping of

high-frequency oscillations while, at the same time, the fit

to observations will not be very much affected as compared

to not applying the Jc constraint (this case is represented

here by the Jo and Jc curves for cdf �0.001).

Just as important as the effect of reducing the amplitude

of high-frequency oscillations in the TL model integrations

of the minimisation itself is the need to damp high-

frequency oscillations in non-linear forecast model runs

issued from the analysis model states produced by the

analysis. In our case, the model formulations differ

(spectral TL model versus non-linear (NL) grid point

model and different physical parameterisation schemes)

as well as the horizontal model resolution (96 km for the

20N
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40N

40W 30W 20W 10W 0 10E 20E 30E

Fig. 6. The HIgh Resolution Limited Area Model RCR data

assimilation and forecast domain.
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Fig. 7. The observation contribution Jo (a) and the normalised

digital filter constraint contribution Jc=cdf (b) to the total cost

function as a function of the inner loop minimisation iteration

number for different values of the weak digital filter constraint

coefficient cdf �0.001, 1.0, 4.0, 16.0 and 32.0. First outer loop

iteration with 50 inner loop minimisation iterations for a

horizontal increment resolution of 6� the non-linear model

resolution. The RCR domain with 60 levels and 16 km horizontal

resolution is applied in the non-linear model.
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TL model versus 16 km for the NL model). Taking these

significant model differences into account, it is clear that

the weak digital filter constraint is quite effective for

reducing high-frequency oscillations in the high resolution

NL model runs when the low-resolution assimilation

increments are added to the high resolution background

model state. This is illustrated in Fig. 8, which shows the

area-averaged absolute value of the surface pressure

tendency for every time step during the 5-h NL model

integration until the mid-point of the last observation

window of the data assimilation window. High-frequency

oscillations as manifested in surface pressure tendencies are

effectively damped by applying the weak digital filter

constraint in the HIRLAM 4D-Var minimisation. Some

high-frequency oscillations remain, most likely associated

with non-linear interactions, with model physics, and with

smaller scales not represented by the coarse resolution

TL model, but these oscillations are damped quite quickly

(51 h) in the NL model integrations.

For the RCR model domain with 60 levels and with a

16 km horizontal resolution, we have made the choice to

use cdf �4.0 for inner loop minimisation iterations with

a horizontal increment resolution six times coarser than

the original non-linear model resolution. For the same

non-linear model configuration, it turned out that a

reasonable value of cdf could be obtained for other

horizontal resolutions of the inner minimisation loops

simply by taking the squared number of increment

components into account. For example, for a horizontal

increment resolution three times coarser than the original

non-linear model resolution, a value of cdf �0.25 �4.0/

(2 * 2)2 turned out to be efficient, with cdf �4.0 being the

value optimised for a horizontal increment resolution six

times coarser than the non-linear model resolution. Note

that the horizontal integration weights for the total energy

norm are set to be constant (�1).

6. Tuning and validation of the multi-incremental

minimisation

The multi-incremental design of the HIRLAM 4D-Var

minimisation provides flexibility. The number of outer loop

iterations can be varied, and the horizontal resolution of

the assimilation increment as well as the choice of

simplified physics for each iteration in the outer loop

may also be varied. The time step for the TL and AD

models needs to be specified such that numerical instability

is avoided. The fraction of the total wind increment to be

determined in a particular outer loop iteration sets the

requirement on maximum time step for stability (see

discussion in Subsection 2.4.1). Therefore, it is an advan-

tage for computational efficiency if a larger fraction of the

assimilation increment can be calculated within outer loop

iterations with coarser resolution of the assimilation

increment. Finally, there is also some flexibility with regard

to the application of observation quality control within

the 4D-Var assimilation. Variational quality control is

switched on over a specified range of inner loop minimisa-

tion iterations in one of several outer loop minimisation

iterations. With 3D-Var or with 4D-Var with one outer

loop iteration, it turned out to be beneficial to switch on

VarQC during an early part of the inner loop minimisation

iterations, to reject all observations not passing the VarQC

and to solve a fully quadratic minimisation problem for the

remaining inner loop iterations. On the other hand, with

several outer loop iterations, it may be argued that VarQC

should be applied at highest possible resolution and with an

improved model state available to support the quality

control decisions, normally during the last outer loop

iteration.

We have carried out some sensitivity experiments in

order to understand better and to be able to specify in more

detail the minimisation design. These experiments were

carried out for the RCR domain with 60 vertical levels and

with a horizontal resolution of 16 km of the non-linear

model. As a reference we applied a single relatively high

resolution (48 km) outer loop minimisation iteration with a

sufficient number of iterations (100) in the inner loop

minimisation. To be comparable to the multiple outer loop

minimisation tests, see below, VarQC was applied between
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Fig. 8. Horizontal average of the absolute value of the surface

pressure tendency (in hPa/3 h) for every time-step, with a time step

length of 6 minutes, during the non-linear model integration over 5

h from initial data based on HIgh Resolution Limited Area Model

4D-Var, including a weak digital filter constraint with different

values of the weak digital filter constraint coefficient cdf �0.001,

1.0, 4.0, 16.0 and 32.0. One outer loop iteration with 50 inner loop

minimisation iterations for a horizontal increment resolution of

6� the non-linear model resolution and the RCR domain with 60

levels and 16 km horizontal resolution in the non-linear model are

applied.
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iteration 65 and 75. Secondly, we carried out a minimisa-

tion with two iterations in the outer loop, both with 50

iterations and with the same horizontal resolution (48 km)

in the inner loop minimisations. Finally, we carried out two

experiments, again with two outer loop iterations but with

a coarser resolution (96 km) in first outer loop iteration.

One experiment had 60 inner loop iterations in the first

outer loop iteration and 40 inner loop iterations in the

second outer loop iteration. For the second experiment, we

reduced the number of inner loop iterations to 30 in the

first outer loop iteration and increased the number of inner

loop iterations to 70 in the second outer loop iteration. For

the experiments with two outer loop iterations, we placed

the VarQC between the same inner loop iteration numbers

as in the single outer loop experiment in order to have

comparable results.

The performance of the minimisation with the different

strategies is illustrated for the variation of the observation

constraint (Jo) as a function of the iteration number in

Fig. 9a and for the corresponding background error

constraint (Jb) in Fig. 9b. Firstly, we may notice the drop

in Jo when the observation error non-Gaussian PDF of the

VarQC is switched on in iteration 65 and the further drop

when all rejected observations are removed from cost

function contributions in iteration 75. Secondly, we can

notice that the convergence towards fit to the observations,

measured by Jo, is faster with a higher resolution of the

assimilation increments from the start of the minimisation.

Concerning the comparison between a minimisation with a

single outer loop (100 inner loop iterations) and two outer

loop iterations (50�50 iterations) at 48 km increment

resolution, we may notice a slight retardation of the

convergence towards observations at the start of the second

outer loop due to a minimisation restart. More impor-

tantly, we see a better fit to observations in the two outer

loop cases as compared to the single outer loop case, by the

end of the minimisation. This is most likely due to a benefit

of the relinearisations in the second outer loop.

With regard to the experiments with a coarser resolution

in the first outer loop than in the second outer loop (96 vs.

48 km), we see a clear retardation of the convergence

towards fit to observations (Jo) in the experiment with 60

inner loop iterations in the first outer loop. This indicates

that there is very little to gain with these coarse resolution

increments beyond iteration 40, and further iterations are

meaningless since they will only provide an over-fit to the

observations of the larger scale increments. This effect is

clearly seen also in the behaviour of the Jb as a function of

iteration number (Fig. 9a). After 60 iterations with a coarse

resolution increment, we can first see a jump in Jb, due to

the renormalisation of the horizontal spectral densities

between the outer loop iterations, and then a drop in Jb
throughout the second outer loop minimisation that could

partly be explained by redistribution of increment varia-

bility from larger scales to the smaller horizontal scales

available in the second outer loop at finer resolution. The

same effect, but less pronounced, can be seen in the

Jb-curve for the experiment with 30 and 70 inner loop

iterations, respectively. One may say that with fewer inner
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Fig. 9. The observation error constraint contribution Jo (a) and

the background error constraint contribution Jb (b) to the total

cost function as a function of the total inner loop minimisation

iteration number for four different minimisation strategies: (1) one

outer loop minimisation with a 48 km horizontal resolution of the

assimilation increment and with 100 inner loop iterations; (2) two

outer loop iterations, both with 50 iterations in the inner loops and

with 48 km resolution of the increments; (3) and (4) two

experiments with two outer loop iterations, both with 96 km

resolution in the first outer loop and with 48 km in the second

outer loop, one experiment with 30 inner loop iterations in the first

outer loop and with 70 iterations in the second outer loop. Another

experiment has 60 iterations in the first outer loop and 40 iterations

in the second outer loop. The RCR domain with 60 levels and 16

km horizontal resolution in the non-linear model is applied.
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loop iterations in the first outer loop iteration at coarser

resolution, there is less need for a redistribution of

increment variability from larger to smaller scales in the

second outer loop iteration.

In order to illustrate more directly the spectral char-

acteristics of the assimilation increments during the mini-

misation, we have calculated the kinetic energy spectra of

the assimilation increments. Figure 10a shows the kinetic

energy spectra at model level 30 (around 500 hPa) after 10,

20, 30, 60 and 100 inner loop iterations of the single outer

loop minimisation at 48 km horizontal resolution. It is

quite clear that mainly large horizontal scales are estab-

lished during the first inner loop iterations of the mini-

misation and that the horizontal scales of the increment

gradually becomes smaller and smaller with the inner loop

iteration number. From this we can conclude that it may be

sufficient to run a limited number of inner loop iterations

in the first outer loop iteration at coarse resolution, in case

the intention is to establish the large-scale part of the

assimilation increment. This is confirmed by the kinetic

energy spectra at the corresponding inner loop iterations of

the experiment with 60 inner loop iterations at 96 km in the

first outer loop and with 40 iterations at 48 km in the

second outer loop iteration (Fig. 10b). Thus, if we take as

many as 60 iterations in the first outer loop at a coarse

resolution, we may notice that the change in the kinetic

energy spectrum over the 40 iterations of the second outer

loop is mainly a redistribution of energy from larger scales

to smaller scales. An experimental design of multi-incre-

mental minimisation strategies for 4D-Var, with results

similar to those presented here, has been reported by

Lawless and Nichols (2006).

In order to investigate the impact of different minimisa-

tion strategies on the forecast quality, a few minimisation

strategies were applied in a 1-month-long data assimilation

and forecast experiment over the SMHI domain with a

22 km horizontal resolution and with 40 vertical levels. The

data period of June 2005 was selected, thus a summer period

with smaller spatial scales of importance, that could

enhance the sensitivity to the minimisation. Figure 11 shows

the BIAS (mean error) and Root Mean Square Error

(RMSE) verification scores for MSLP, as verified against

SYNOP observations, for three of these experiments: (1) a

single outer loop at 44 km increment resolution with 100

inner loop iterations; (2) a single outer loop at 66 km

increment resolution with 100 inner loop iterations; (3)

two outer loop iterations at 66 and 44 km resolution,

respectively, and with 50 inner loop iterations each. We

show the verification scores for a Scandinavian domain,

since the impact of the minimisation scheme turned out to

be strongest in the centre of the model domain.

From the results in Fig. 11, we can see that the RMSE

MSLP forecast verification scores for this month of

experimentation do not depend so strongly on the resolu-

tion, whether 66 or 44 km, of the assimilation increment in

a single outer loop iteration minimisation. But more
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Fig. 10. Kinetic energy spectrum at model level 30 (around 500

hPa) for the assimilation increments. (a) After 10, 20, 30, 50 and

100 inner loop iterations of a 4D-Var minimisation with a single

outer loop iteration with a 48 km horizontal resolution of the

increments. (b) Same as in (a) but for the experiment with two

outer loop iterations, with 60 iterations at 96 km resolution in the

first outer loop and with 40 iterations at 48 km in the second. The

assimilation was carried out with the HIgh Resolution Limited

Area Model 4D-Var for the RCR domain with 60 levels and 16 km

horizontal resolution in the non-linear model.
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importantly, we can see that with two iterations in the outer

loop minimisation we get reduced RMSE verification

scores. The significance of the time-averaged RMSE

verification score differences in Fig. 11 was also checked

by a student’s t-test (for details on the significance test see

below). It turned out that the RMS score differences

between the experiments with a single and with two outer

minimisation loops were significant at the 90% level for

forecasts longer than �6 h, while the forecast score

differences for the experiments with different inner loop

resolutions were not significantly different. For the same

three experiments, BIAS and RMSE verification scores for

vertical temperature and wind profile forecasts (not

shown), as verified against radiosonde data, indicated a

similar pattern but with less significant differences between

the three experiments.

To summarise, the application of the multi-incremental

minimisation turns out to be an efficient tool for

reducing the computational cost of the HIRLAM 4D-

Var as well as for improving the model initial state

through the relinearisations of the forecast model and the

observation operators carried out between the outer loop

iterations.

7. Comparisons between HIRLAM 4D-Var and

3D-Var

In order to validate the performance of the HIRLAM 4D-

Var and compare it with the performance of 3D-Var,

parallel data assimilation and forecast experiments have

been carried out over the 4months: April 2004, January

2005, June 2005 and January 2007. The performance of

4D-Var with two different numbers of outer loop iterations

was compared as well. These experiments were done for the

operational SMHI domain with 22 km horizontal resolu-

tion and with 40 vertical levels. To illustrate the effects of

HIRLAM 4D-Var for individual cases, parallel data

assimilation and forecast experiments were carried out

also for the stormy month of December 1999 on the larger

RCR horizontal domain (Fig. 6), with a 16 km horizontal

resolution and with 60 vertical levels.

7.1. The data assimilation experiments using the

operational SMHI domain

The following three versions of data assimilation were

compared:

(1) 3DVar: HIRLAM 3D-Var with the FGAT of the

observations, with a 6-h data assimilation window in

a 6-h data assimilation cycle and with an incremental

DFI. The assimilation increments were calculated in

spectral space with a shortest resolved wavelength of

66 km.

(2) 4DVar1: 4D-Var with one iteration in the outer loop

minimisation, with a 6-h data assimilation window

and with the observations collected in six observa-

tion time windows of 930 minutes around each full

hour. The shortest resolved wavelength of the

assimilation increments was 132 km (66 km grid

point resolution) and the time step of the TL and

AD models was 30 minutes. The maximum number

of iterations in the inner loop minimisation was 70.

No explicit initialisation was applied, relying solely

on the weak digital filter constraint during the

4D-Var minimisation.

(3) 4DVar2: 4D-Var with two iterations in the outer loop

minimisation, with a 6-h data assimilation window

and with the observations collected in six observation

time windows of930 minutes around each full hour.

The first outer loop iteration was applied with a

shortest resolved wavelength of 132 km and with

maximum 40 iterations in the inner loop minimisa-

tion. The second outer loop iteration was applied

with a shortest resolved wavelength of 88 km and

with maximum 30 iterations in the inner loop

minimisation. The time step of the TL and ADmodel
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Fig. 11. BIAS (mean error, thin lines) and root mean square

error (RMSE, thick lines) mean sea level pressure (MSLP)

verification scores for June 2005 as a function of forecast length.

Verification against surface observations over a Scandinavian

domain. Experiment 4DVAR1 (full lines): 4D-Var with one outer

loop iteration at 66 km resolution, experiment 4djun05D (dashed

lines): 4DVAR with one outer loop iteration at 44 km resolution

and experiment 4DVAR2 (dotted lines): 4DVAR with two outer

loop iterations at 66 km and 44 km resolution, respectively.
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integrations was 30 minutes in both outer loop

minimisation iterations. No explicit initialisation

was applied, relying solely on the weak digital filter

constraint of the 4D-Var minimisation.

Variational quality control was applied in all three experi-

ments. Variational quality control was switched on between

inner loop iterations 15 and 25 of experiments 3DVar and

4DVar1 and similarly applied only during the second outer

loop minimisation iteration of experiment 4DVar2. Once

VarQC was switched off, observations considered as

rejected by the VarQC algorithm were no longer used.

The following types of observations were utilised for the

data assimilation experiments: temperature, wind and

specific humidity profiles from TEMP reports; wind

profiles from PILOT reports; surface pressure measure-

ments from SYNOP, SHIP and DRIBU reports; wind and

temperature measurements from aircraft reports (AIREP

and AMDAR) and, finally, AMSU-A satellite radiance

measurements over seawater and sea ice surfaces only. A

bias correction, following Harris and Kelly (2001), was

applied to the AMSU-A radiance measurements.

Operational ECMWF global forecasts were used for the

lateral boundary conditions of the experiments, with a shift

6 h backward in initial time for the lateral boundary

conditions as compared with the initial time of the

HIRLAM experiment.

7.2. Observation selection

In addition to the algorithmic differences, the operational

application of HIRLAM 3D-Var and 4D-Var also differ

with respect to the selection of observations to influence the

assimilation. The 3D-Var applies a 3-dimensional data

selection, including data thinning, for the whole 6-h

observation window, while the 4D-Var applies the same

type of data selection to each of the hourly observation

windows. Table 1 presents the number of observed values

that enter into the 3D-Var and 4D-Var minimisations,

after screening quality control and data thinning, for two

typical data assimilation cycles, one at 06 UTC and one at

12 UTC.

Table 1. Numbers of Active Observed Values that Enter the 3D-Var and 4D-Var Minimisations for 12 January 2007 06 UTC (a) and 12

UTC (b)

3D-Var 4D-Var

06 03 04 05 06 07 08

(a) Type and variable UTC UTC UTC UTC UTC UTC UTC Total

TEMP u/v 785 21 0 0 712 35 50 818

TEMP T 735 20 0 0 624 67 62 773

TEMP q 689 20 0 0 578 62 62 722

PILOT u/v 114 0 0 0 114 0 0 114

SYNOP ps 2106 1900 862 860 2041 872 864 7399

SHIP ps 167 85 65 64 113 63 67 457

DRIBU ps 57 50 54 54 51 48 38 295

Airep u/v 1928 143 273 288 422 412 314 1852

AIREP T 1950 142 273 290 438 414 316 1874

AMSU-A rad. 21230 5680 0 9190 90 8760 0 23720

3D-Var 4D-Var

12 09 10 11 12 13 14

(b) Type and variable UTC UTC UTC UTC UTC UTC UTC Total

TEMP u/v 6427 0 0 181 6255 537 0 6973

TEMP T 5381 0 0 109 5266 547 0 5922

TEMP q 4499 0 0 109 4384 19 0 4512

PILOT u/v 33 0 0 0 33 0 0 33

SYNOP ps 2114 1999 874 881 2086 872 861 7573

SHIP ps 160 86 68 68 112 31 30 395

DRIBU ps 59 44 53 50 52 47 17 263

Airep u/v 2952 223 497 608 653 513 420 2914

AIREP T 2968 228 508 612 655 513 419 2935

AMSU-A rad. 7890 0 1230 1080 2370 3490 0 8170
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We may notice that the main effect of the 4D-Var data

selection is the increased number of selected surface

pressure observations as compared to the 3D-Var data

selection. The reason is that the current HIRLAM 3D-Var

data selection only extracts one report from the same

observation station and the same observation window.

Since 3D-Var neglects the time variation of the assimilation

increment over the assimilation window, it is considered

appropriate to select only the report closest in time to the

nominal assimilation time in this case. With the 4D-Var

data selection designed for a time-variable assimilation

increment, we will thus have a chance to utilise the

dynamical information inherent in a time series of surface

pressure measurement. On the other hand, in case of a

significant time correlation of errors of surface observa-

tions from the same station, there is an obvious risk with

the present 4D-Var data selection algorithm to over-fit the

influence of such observations.

Note that the efficient number of AMSU-A radiance

measurements that were utilised during the minimisation

should be reduced by a factor ] 0.6 from the figures in

Table 1 since radiance channels 1�4 (out of 10) are given

very small weights by applying very large observation error

standard deviations because these satellite radiance mea-

surements are strongly influenced by surface conditions.

7.3. Forecast verification scores

Forecasts up to �48 h were produced every 6 h from the

4months of data assimilation. These forecasts were verified

against SYNOP and TEMP observations. Time-averaged

verification scores for MSLP forecasts, in the form of BIAS

(mean error) and RMSE, as functions of forecast length

and for a Scandinavian area in the centre of the full

forecast domain, are presented in Fig. 12. The reduction in

RMSE verification scores for surface pressure by the
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Fig. 12. BIAS (Mean error, thin lines) and root mean square error (RMSE, thick lines) mean sea level pressure (MSLP) forecast

verification scores for a Scandinavian domain as a function of forecast length. Time averaged scores for April 2004 (a), January 2005 (b),

June 2005 (c) and January 2007 (d). 3D-Var (full line), 4D-Var with one outer loop iteration (dashed line) and 4D-Var with two outer loop

iterations (dotted lines).
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4D-Var in comparison with 3D-Var is clearly seen for all

4months of experimentation. We can also notice a

(smaller) reduction in the RMSE verification scores for

the experiment with two 4D-Var outer loop minimisation

iterations in comparison with only one outer loop mini-

misation iteration. The significancy of the RMSE verifica-

tion score differences in Fig. 12 was checked by a student’s

t-test. On the 90% significancy level, the RMSE scores for

the 4D-Var-based forecasts turned out to be significantly

smaller than the RMSE scores for the 3D-Var-based

forecasts for all forecast lengths and for all 4months, while

the RMSE scores for forecasts based on 4D-Var two outer

loop iterations were significantly smaller than the scores

with one outer loop for June 2005 and January 2007 only.

The BIAS verification scores indicate a rather systematic

positive valued bias for all 4months of experimentation.

This bias is most likely linked to the cold tropospheric bias

that the HIRLAM forecast model used for the present

experimentation was affected by.

Mean sea level pressure verification scores for a complete

European domain also indicate a positive impact of 4D-

Var in comparison with 3D-Var for the 4months of

comparison. Although the magnitudes of the forecast score

differences are smaller over the European domain than

over the Scandinavian domain, since forecasts for verifica-

tion stations closer to the lateral boundaries will be much

faster influenced by the lateral boundary conditions, the

time averages of the differences are statistically significant.

We show normalised mean RMSE forecast verification

score differences between 3D-Var and 4D-Var (with one

outer loop iteration) for MSLP and for all 4months of

experimentation over a European domain as a function of

forecast length in Fig. 13. Vertical bars represent signifi-

cance at the 90% level based on a student’s t-test.
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averaged scores for April 2004 (a), January 2005 (b), June 2005 (c) and January 2007 (d). Vertical red bars represent significance at the 90%

level.

18 N. GUSTAFSSON ET AL



To determine whether the differences in results between the

two experiments A and B were statistically significant, we

performed a student’s t-test for the normalised mean

difference dAB in forecast-minus-observation RMSE scores.

dAB ¼
RMSEA �RMSEB

0:5
ðRMSEA þRMSEBÞ
(9)

We assumed that the normalised RMSE score differences

have a Gaussian distribution and a serial correlation in

time. The serial correlation was assumed to be lag-one

autoregressive. The autocorrelation r of the time series of

the normalised RMSE score differences of these parameters

was computed and used to correct the sample size and

subsequently modify the variance accordingly.

BIAS and RMSE forecast verification scores for upper

air variables as verified against radiosonde observations

(not shown) indicated a neutral or a small positive impact

of the 4D-Var experiments over the 3D-Var experiments

for all 4months of experimentation. The positive impact in

RMSE verification scores for 4D-Var as compared to 3D-

Var was largest at upper air jet levels (around 300 hPa), and

this, together with the positive impact for MSLP forecasts,

is an indication that the improvement provided by 4D-Var

mainly concerns the handling of baroclinic, synoptic scale,

disturbances in the data assimilation process. The cold

lower troposphere temperature bias was quite obvious in

the temperature verification scores.

7.4. A case study � the stormy month of December

1999

During December 1999, three major storms hit Europe

with devastating effects on human life and material

resources. In the evening of 3 December 1999, a very

intensive mesoscale low pressure system hit Jutland in

western Denmark (see Fig. 14), on 26 December another

storm hit Northern France and Germany (not shown), and

2 d later another mesoscale storm hit western and central

France (see Fig. 15).

Since forecasting of major storm developments is

strongly sensitive to the baroclinicity of the initial states

for the forecast model integrations, and as we have already

demonstrated (see Section 3) that the HIRLAM 4D-Var

provides a quite different flow-dependent influence of

individual observations compared to HIRLAM 3D-Var

in such storm situations, we decided to rerun data

assimilation and forecasts for the whole month of Decem-

ber 1999 with both assimilation methods. The experiments

were carried out on the larger RCR domain, with a model

grid resolution of 16 km and with 60 vertical levels. Two

outer loop iterations were applied in the 4D-Var minimisa-

tion. The lateral boundary conditions for these December

1999 experiments were extracted from the ECMWF ERA-

40 reanalysis archives. Since only forecasts up to �6 h were

available from ERA-40 at 06 UTC and 18 UTC, it was not

possible to apply the FGAT option in the HIRLAM 3D-

Var assimilation runs.

Time-averaged MSLP forecast verification scores for

December 1999 in the form of BIAS and RMSE, as

functions of forecast length for a European domain, are

presented in Fig. 16. The reduction in RMSE verification

scores for MSLP by the 4D-Var in comparison with 3D-

Var is clearly seen also for the December 1999 experiment.
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Fig. 14. HIgh Resolution Limited Area Model 4D-Var mean sea

level pressure (MSLP) analysis for 3 December 1999, 18UTC. The

contour interval is 2 hPa.
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One particularity with these verification scores for Decem-

ber 1999 is the large difference in the RMS scores (and also

the large positive BIAS for the 3D-Var scores) at �0 h, for

the deviations between the analyses and the observations.

By examining time series of forecast verification scores as

well as forecast verification scores for subdomains over

Denmark and France (not shown), it was found that these

large differences at initial time were caused by numerous

rejections of correct observations in the case of 3D-Var

data assimilation, in particular during the intensive mesos-

cale storm events, while the 4D-Var data assimilation was

more successful in this respect.

The short range forecasts of the three major storms in

December 1999 were all improved by using HIRLAM 4D-

Var for the data assimilation in comparison with HIRLAM

3D-Var. We present a few examples. The �30-h MSLP

forecasts valid at 3 December 1999 18 UTC are shown in

Fig. 17 with the forecast based on 3D-Var initial data in

panel (a) and with the forecast based on 4D-Var initial data

in the panel (b). The forecast based on 4D-Var has a much

improved structure and intensity of the low pressure

development with 959 hPa in the centre of the low, as

compared with 971 hPa in the 3D-Var-based forecast and

with the verification analysis (see Fig. 14) with 953 hPa in

the centre of the low.

Comparing the �18 h-MSLP forecasts valid at the same

time (Fig. 18) we may notice that both the 3D-Var- and the

4D-Var-based forecasts have improved as compared to the

forecasts based on 12 h earlier initial data. The 4D-Var-

based forecast is still significantly better than the 3D-Var-

based forecast, with respect to the position of the low

pressure system as well as with respect to the intensity of

the low pressure development (957 hPa in the 4D-Var case

and 963 hPa in the 3D-Var case). It should be added that

the 3D-Var-based verification analysis of the MSLP (not

shown) is very similar to the 4D-Var-based verification

analysis as shown in Fig. 14.

The question arises concerning the origin of the forecast

improvements caused by the 4D-Var initial data as

compared to the 3D-Var initial data for the particular

case of the storm development in the evening of the

3 December 1999. Since the storm development was

generally quite predictable, it was necessary to follow

analysis and forecast differences upstream and backwards

in time for several days. The assimilation increments were

quite small, generally leading to quite small forecast

improvements, both with 3D-Var and with 4D-Var, for

each assimilation cycle. Thus, it was not possible to identify

any specific treatment of any observation that caused the

major improvements by the 4D-Var assimilation. What

became obvious, however, were the significant differences

between the structures of the 3D-Var and 4D-Var assim-

ilation increments, with 4D-Var showing distinct flow-

dependent increment structures. We demonstrate this here

by showing the 3D-Var and 4D-Var surface pressure

assimilation increments over the North Sea for two

assimilation cycles, 3 December 1999 06 UTC in Fig. 19

and 3 December 1999 12 UTC in Fig. 20, both during the

most intensive mesoscale storm development.

The most obvious differences between the 3D-Var and

4D-Var assimilation increments in Figs. 19 and 20 are the

differences in horizontal scale. The horizontal scales of the

3D-Var assimilation increments reflect the large-scale (and

smooth) synoptic scale structures of the static 3D-Var

assimilation structure functions, describing the long-term

average structures of background errors, while the 4D-Var

assimilation increments are dominated by mesoscale struc-

tures reflecting the current instabilities of the flow, that is,

the assimilation structures are strongly flow-dependent.

There are clear similarities between the real 4D-Var

assimilation increments valid at 3 December 1999 12

UTC in Fig. 20 and the 4D-Var assimilation increments

from the single simulated observation experiment in Fig. 3.

With regard to the 3D-Var assimilation increments from

two consecutive assimilation cycles, there was a rather

large-scale negative surface pressure increment at 3 De-

cember 1999 06 UTC, when the mesoscale low pressure

system was positioned over land (the British Isles) with

many SYNOP observation stations, while there were large-

scale positive (thus compensating) surface pressure incre-

ments 6 h later, when the mesoscale low pressure system

was positioned over the less observation dense North Sea.

More generally, 3D-Var favours extrapolation from data

dense areas to data sparse areas with large-scale static 3D-

Var structure functions. In cases when the real forecast

errors have much smaller scales, such as in this case of a
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Fig. 16. BIAS (mean error, thin lines) and root mean square

error (RMSE, thick lines) mean sea level pressure (MSLP) forecast

verification scores for a European domain as a function of forecast

length. Time averaged scores for December 1999. 3D-Var (full

lines) and 4D-Var (dashed lines).
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mesoscale storm development, this will result in assimila-

tion increments that are too large-scale, and this can be

seen as a detrimental aliasing effect.

The mesoscale storm, also known as the ‘Second French

Christmas Storm’, that hit the French Atlantic coast in the

evening of 27 December 1999 has been studied by several

modelling groups, and it has been shown to be quite

unpredictable and sensitive to even small changes in the

use of observations, both in the data assimilation details and

in the forecast model. This is also the case with the present
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data from 2 December 1999, 12 UTC. The contour interval is 2 hPa.
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3D-Var and 4D-Var data assimilation experiments. With

the 3D-Var data assimilation, the intensity of the mesoscale

low was only captured when the mesoscale low had already

moved in over French territory with a denser network of

SYNOP stations. Due to the poor background model state,

and due to the large-scale static 3D-Var assimilation

structure functions applied in the VarQC, it takes the

3D-Var several assimilation cycles to capture the low

pressure development, since most of the important observa-

tions are simply rejected. The �6 h-MSLP forecast from

the 3D-Var data assimilation cycle, valid for 27 December

1999 18 UTC, is presented in Fig. 21a, to be compared with
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data from 3 December 1999, 00 UTC. The contour interval is 2 hPa.

22 N. GUSTAFSSON ET AL



verification analysis in Fig. 15 and the corresponding

4D-Var-based �6 h forecast in Fig. 21b. Note that the

4D-Var-based �6 h forecast is the background state for

the verification analysis, but what is important is that

the 4D-Var analysis (as well as the analysis background

state) agrees with the observations and avoids the rejec-

tion of all important observations as in the 3D-Var

assimilation cycle. This poor treatment of the observations

in the 3D-Var assimilation cycle is even seen in the average

verification scores for the whole month of December 1999
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Fig. 19. Surface pressure assimilation increments for 3 December 1999, 06 UTC, with 3D-Var (a) and with 4D-Var (b). The contour

interval is 1 hPa.
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over the European domain (Fig. 16). One may speculate

whether FGAT and a data selection similar to the 4D-Var

data selection would have improved the 3D-Var perfor-

mance. On the one hand, the VarQC data rejection

algorithm would certainly have had a better chance to

accept more observations due to the support from a time

series of observed values in each station. On the other hand,

the intensity of the storm development was caught by

4D-Var already over the data-sparse sea areas, where data

selection should be less of a problem and where implicit

flow-dependent structure functions are likely to be more

important.

-1

1
1

1

2
2

50N

55N

(a)

(b)

0 5E 10E 15E

-6
-5
-4
-3

-2

-1
-1

-1

-1

-1

-1

-1

50N

55N

0 5E 10E 15E

Fig. 20. Surface pressure assimilation increments for 3 December 1999, 12UTC, with 3D-Var (a) and with 4D-Var (b). The contour

interval is 1 hPa.

24 N. GUSTAFSSON ET AL



7.5. Summary of comparisons between HIRLAM

4D-Var and HIRLAM 3D-Var

Data assimilation and forecast experiments have been

carried out for five data periods of 1month each. These

experiments indicate the clear positive impact of HIRLAM

4D-Var as compared to 3D-Var as measured by forecast

verification scores. HIRLAM 4D-Var provides the possi-

bility of using more observations, for example, several

observations from the same station within the 6-h data

assimilation windows, as well as the advantages of applying

implicit flow-dependent assimilation structure functions
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within these assimilation windows. The experiments carried

out for the stormy month of December 1999 indicate that

the implicit flow-dependent structure functions of HIR-

LAM 4D-Var provide a substantial part of this positive

impact, directly by producing more realistic data assimila-

tion increments and VarQC decisions, and indirectly

through an improvement of the whole data assimilation

cycling.

8. Remarks on the HIRLAM 4D-Var code

The HIRLAM 4D-Var computer code is based on the

semi-Lagrangian spectral HIRLAM code (Gustafsson and

McDonald, 1996). The code is written in Fortran 90 and

with two levels of parallelisation, MPI for communication

between distributed memory computer nodes and OpenMP

for parallelisation between computer processors sharing

memory within the same computing node. The parallelisa-

tion for the non-linear, TL and AD spectral models has

been described by Gustafsson (1999). Grid point space

calculations are based on a 1-dimensional area decomposi-

tion in the y-direction only for the upper level of

parallelisation, which sets a limit on the maximum number

of computer nodes for which the assimilation code can be

applied. Spectral calculations, for example in the solving of

the semi-implicit equations, are based on a two-dimen-

sional area decomposition. The transposition of data

between the grid point space and the spectral space area

decompositions, essentially carried out within the spectral

(FFT) transforms, is done by message passing (MPI

commands). The parallelisation of the observation hand-

ling was suggested by Rantakokko (1997). All horizontal

interpolations from grid point space to the positions of the

observations are carried out on the processors where the

grid point information resides in accordance with model

area decomposition, while the remaining computational

work of the observation operators is shared equally

between the computational nodes by letting each computa-

tional node take care of the same number of observations

of each observation type. An efficient handling of the area

extension zone, needed in order to provide bi-periodic

variations required by the spectral transforms, is a critical

issue in the parallelisation of the HIRLAM 4D-Var, since

the extension zone has to be wide enough to let horizontal

correlations approach zero over the distance of the width of

the extension zone. This is achieved by doing the model

domain decomposition and all grid point calculations over

the real (unextended) model domain only. In this way only

the spectral transforms and the spectral space calculations

are affected by the extension zone with only a minor

dependence of the total calculation time on the width of the

extension zone.

We have included in Table 2 a coarse profiling of the

computation time for HIRLAM 4D-Var on the RCR

domain (16 km resolution and 60 vertical levels) for an

IBM parallel computer utilising 32 processors on a single

computing node. Calculation times include two outer loop

iterations, the first with 30 inner loop iterations at 96 km

horizontal resolution and the second with 40 inner loop

iterations at 48 km horizontal resolution, as well as the

non-linear model trajectory and forecast calculations. The

first thing to be noticed is the relatively long time spent in

reading and writing the grid point fields, although this

process has also been made partially parallel. The second

thing to be noticed is the dominance of the TL and AD

model calculations during the minimisations. A large

fraction of the TL and AD model calculations is devoted

to the semi-Lagrangian (SL) part of the calculations, and

out of the SL calculation time a large fraction of the time

(75%) is spent on communication between the processors.

Due to the relatively long time steps applied in the

HIRLAM 4D-Var, information from neighbouring pro-

cessors is needed over the so-called ‘halo zones’ with a

width of 6�8 grid lengths. Similarly, the calculation time

for the spectral transforms includes a large fraction of

inter-processor communications (memory transpositions).

We may finally note that the total cost for HIRLAM 4D-

Var with the described multi-incremental minimisation is of

the same order as that for a 48-h non-linear model forecast.

9. Concluding remarks

We have here provided a rather detailed description of the

HIRLAM 4D-Var, including the multi-incremental mini-

misation, the TL and AD models based on the spectral,

semi-Lagrangian and semi-implicit version of the HIR-

LAM forecast model, the comprehensive observation

handling system and the weak digital filter constraint.

The ability of the HIRLAM 4D-Var to provide implicit

flow-dependent assimilation structure functions, giving

a flow-dependent influence of observations within the

assimilation window, was demonstrated for a mesoscale

storm development over the North Sea on the 3 December

1999 (‘the Danish storm’). The flow-dependent structure

functions provided in the centre of the storm development

were contrasted to structure functions in areas of weaker

dynamical instabilities as well as to flow-independent 3D-

Var structure functions.

For a good performance of the weak digital filter

constraint, it is necessary to provide well-tuned values of

the weighting coefficient in front of the constraint. With

such well-tuned values, high-frequency oscillations are

efficiently damped during the TL model integrations and

also, which cannot be taken for granted, during the

non-linear model integrations initialised with HIRLAM
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4D-Var initial state data. It is demonstrated that no

explicit initialisation is needed when the weak digital

filter constraint is applied during the HIRLAM 4D-Var

minimisation.

The multi-incremental minimisation of the HIRLAM

4D-Var provides flexibility, but the design of the multi-

incremental scheme necessitates some care. On the one

hand, it is shown that several outer loop iterations provide

improved initial conditions, as measured by improved

forecast verification scores, due to relinearisation of the

non-linear forecast model and the non-linear observation

operators. On the other hand, coarse resolution (and

computationally cheap) outer loop iterations cannot be

applied with too many inner loop iterations as it will

just be a waste of computational resources since such

coarse resolution outer loops will project the observation

increments onto too large spatial scales that have to

be adjusted later on during more high resolution outer

loop iterations.

For the operational application of the HIRLAM 4D-

Var, it has been possible to design a multi-incremental

minimisation scheme such that the total cost of the

HIRLAM 4D-Var is approximately equal to the cost of a

�48 h forecast. Such multi-incremental versions of the

HIRLAM 4D-Var have been operationally implemented at

the Swedish, Finnish and Irish weather services.

The HIRLAM 4D-Var has been proven to consistently

out-perform the HIRLAM 3D-Var over 5months of

data assimilation and forecast experiments, as proven by

forecast verification scores. Identified cases of significant

improvement include mainly strong mesoscale storm devel-

opments, pointing to the abilities of 4D-Var to improve

the initial baroclinicity of importance for such storm

developments.

Future activities with regard to 4D-Var and data

assimilation in general include further development of the

hybrid variational ensemble data assimilation for HIR-

LAM allowing for flow-dependent assimilation structure

functions also at the start of the assimilation window and

development of 4D-Var for the mesoscale HARMONIE

forecasting system built on the ECMWF IFS (Integrated

Forecast System). It is also crucial for the forecasting

performance to improve data assimilation aspects of the

coupling to the host model. The HIRLAM forecasting

system is generally applied with forecast lateral boundary

conditions from an earlier global model run than the actual

HIRLAM forecast run. Any limited area data assimilation

has difficulties in properly assimilating the larger scales,

and for this reason, it is not sufficient to refresh only the

lateral boundaries but it is also necessary to adapt the large

scales in the interior of the LAM domain from the

information given by a new global forecast run. Further-

more, for a LAM 4D-Var data assimilation, it is also

necessary to control the lateral boundary conditions in

order to utilise more efficiently observations in the vicinity

of these lateral boundaries.

Table 2. Example of Computation Times in Seconds on an IBM Computer with 32 Processors for Different parts of HIRLAM 4D-Var

(a)NL 5 h trajectory for outer loop 1: 120 s

Minimisation outer loop 1: 107 s TL and AD models: 83 s SL calc.: 30 s

FFTs: 24 s

SI calc.: 9 s

Physics: 20 s

Jb: 3 s

Jo: 10 s

Read and write fields in outer loop 1: 63 s

Prepare observations in outer loop 1: 19 s

(b)NL 5 h trajectory for outer loop 2: 120 s

Minimisation outer loop 2: 285 s TL and AD models: 241 s SL calc.: 80 s

FFTs: 80 s

SI calc.: 25 s

Physics: 56 s

Jb: 12 s

Jo: 18 s

Read and write fields in outer loop 2: 191 s

Prepare observations in outer loop 2: 17 s

NL 48 h forecast: 850 s

(a) 30 inner loop iterations at 96 km increment resolution; (b) 40 inner loop iterations at 48 km increment resolution, both with 60 vertical

levels. The non-linear model domain is the RCR with a 16 km horizontal resolution.
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Gilbert, J. C. and Lemaréchal, C. 1989. Some numerical experi-

ments with variable-storage quasi-Newton algorithms. Math.

Prog. B45, 407�435.
Gustafsson, N. 1991. The HIRLAM model. In: Proceedings of the

ECMWF Seminar on Numerical methods in atmospheric models,

9�13 September 1991, Volume II. ECMWF, Shinfield Park,

Reading, RG2 9AX, UK.

Gustafsson, N. 1992. Use of a digital filter as weak constraint in

variational data assimilation. In: Proceedings of a workshop on

variational assimilation, with special emphasis on three-dimen-

sional aspects. ECMWF, Shinfield Park, Reading, RG2 9AX,

UK.

Gustafsson, N. 1999. The numerical scheme and lateral boun-

dary conditions for the spectral HIRLAM and its adjoint.

In: Proceedings of the seminar on recent developments in

numerical methods for atmospheric modelling. ECMWF, Read-

ing, RG2 9AX, UK.

Gustafsson, N., Berre, L., Hörnquist, S., Huang, X.-Y.,

Lindskog, M. and co-authors. 2001. Three-dimensional varia-

tional data assimilation for a limited area model. Part I: general

formulation and the background error constraint. Tellus 53A,

425�446.
Gustafsson, N. and Huang, X.-Y. 1996. Sensitivity experiments

with the spectral HIRLAM and its adjoint. Tellus 48A, 501�517.
Gustafsson, N., Källén, E. and Thorsteinsson, S. 1998. Sensitivity

of forecast errors to initial and lateral boundary conditions.

Tellus 50A, 167�185.
Gustafsson, N. and McDonald, A. 1996. A comparison of the

HIRLAM gridpoint and spectral semi-Lagrangian models.

Mon. Wea. Rev. 124, 2008�2022.
Gustafsson, N., Thorsteinsson, S., Stengel, M. and Hólm, E.
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