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ABSTRACT

Tropical cyclone dynamics is investigated by means of a conceptual box model. The tropical cyclone (TC) is

divided into three regions, the eye, eyewall and ambient region. The model forms a low-order dynamical system

of three ordinary differential equations. These are based on entropy budget equations comprising processes of

surface enthalpy transfer, entropy advection, convection and radiative cooling. For tropical ocean parameter

settings, the system possesses four non-trivial steady state solutions when the sea surface temperature (SST) is

above a critical value. Two steady states are unstable while the two remaining states are stable. Bifurcation

diagrams provide an explanation why only finite-amplitude perturbations above a critical SST can transform

into TCs. Besides SST, relative humidity of the ambient region forms an important model parameter. The

surfaces that describe equilibria as a function of SST and relative humidity reveal a cusp-catastrophe where the

two non-trivial equilibria split into four. Within the model regime of four equilibria, cyclogenesis becomes very

unlikely due to the repelling and attracting effects of the two additional equilibria. The results are in qualitative

agreement with observations and evince the relevance of the simple model approach to the dynamics of TC

formation and its maximum potential intensity.
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1. Introduction

A tropical cyclone (TC) can be considered in an idealised

sense as an autonomous dynamical system. Although it is

possible to simulate TCs in numeric models quite accu-

rately, only little is known about their dynamical system

characteristics. These characteristics are important to find

out how often TCs appear and which intensity they may

reach under different climate conditions. Our aim is to gain

more understanding of the dynamical system TC using a

hierarchy of models. In this contribution, we start with a

highly simplified low-order model to grasp its dynamics.

Knowledge on the dynamical system properties of TCs

helps to understand and judge the impact of climate change

on their potential intensity (PI) and frequency of occur-

rence. It is still not clear how TCs react to global warming.

Swanson (2008) found in observations a non-local re-

sponse, pointing out that TC activity is correlated to

relative sea surface temperature (SST) (i.e. local minus

global mean SST). This suggests that besides local SST,

also the environmental atmospheric stratification is crucial

for TC dynamics because the latter is possibly influenced

by the global mean SST.

It has been hypothesised that tropical cyclones can be

understood as a stable branch occurring beyond a sub-

critical saddle node bifurcation at a certain SST. The other

unstable branch after the bifurcation is associated with

smaller but finite wind speeds that must be exceeded

initially for the excitation of tropical cyclogenesis. There-

fore, it could explain why not all initial perturbations

develop into TCs. It remains unclear, why such a bifurca-

tion should occur and what physical processes are respon-

sible for this. Tang and Emanuel (2010) have shown that

entrainment of low-entropy air towards the centre may

form an obstruction to TC formation and intensification.

They found a ventilation threshold, i.e. a bifurcation for

steady-state solutions in their model. Emanuel (1989)

demonstrated with a simplified axisymmetric model that

import of low-entropy air into the boundary layer by

shallow clouds or precipitation induced downdrafts can

provide reasons for the finite amplitude nature of tropical

cyclogenesis. Frisius and Hasselbeck (2009) found with

more complex models the importance of precipitating
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downdrafts for suppression of initial perturbations. There-

fore, it is likely that such processes are an essential

ingredient for realistic dynamical system characteristics.

In this study, we investigate the dependency of TC

intensity on SST and different factors that determine the

entrainment of low-entropy air such as relative humidity in

the catchment area of a TC and shallow convection within

the ambient region. With regard to SST, it is found that the

model indeed reproduces a subcritical bifurcation as

hypothesised earlier by Emanuel and Nolan. Furthermore,

we detect an amplitude threshold for the generation of a

TC within a certain regime depending on SST and the

mentioned entrainment factors. The threshold disappears

for enhanced SST values and decreased entrainment of

low-entropy air via secondary circulation in the vertical�
radial plane. In turn, TCs of relatively high intensity can

develop from an initial state very close to that at rest. The

whole regime also proves to be sensitive to parameters

constituting the convective exchange within the catchment

area in the environment of the storm.

The remainder of this article is organised as follows: The

conceptual model and the processes included are presented

in section 2. In section 3, the TC state of the model is

estimated and analysed. Section 4 shows and discusses the

models’ equilibria, their stability and bifurcations with

regard to different parameters. In section 5, cyclogenesis

mechanisms in the box model and its transient dynamics

are investigated. Concluding remarks are given in section 6.

2. Model formulation

The model is based on the assumption of an axisymmetric

vortex and is formulated in cylindrical coordinates. The TC

is divided into three regions above the boundary layer: (i)

eye, (ii) eyewall and (iii) outer region (see Fig. 1). The

dynamical system is described by three autonomous

ordinary differential equations and contains inhibiting

processes. Therefore, not only the most intense states are

considered but also the transient dynamics of development.

The eye is assumed to develop passively with the eyewall

and is treated as a solid body in rotation. Angular

momentum surfaces form the boundaries of the eyewall.

Within the Ekman layer, the outer eyewall boundary is

located at the radius of maximum winds (RMW). Idealised

axisymmetric model simulations reveal that the angular

momentum at the RMW remains roughly constant during

tropical cyclogenesis (see Appendix). For the model

formulation, it is useful to introduce the so-called potential

radius:

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 2vr

f

s
¼

ffiffiffiffiffiffiffi
2m

f

s
; (1)

where r denotes the physical radius, v the tangential

velocity, f the Coriolis parameter and m the angular

momentum density. We may interpret the model as a box

model because the boundaries between the three regions are

fixed in potential radius space.

2.1. Boundary layer flow

The dynamical equations are subject to the hydrostatic and

the Boussinesq approximations. The latter leads to non-

divergence of the radial�axial flow, i.e.

1

r

@

@r
rubð Þ þ @wb

@z
¼ 0; (2)

where ub is the radial velocity, wb the vertical velocity

within the boundary layer and z the height. Because of the

assumed non-divergence, we can introduce a mass-stream

function C having the following properties:

2prqbub ¼ �
@W

@z
; 2prqbwb ¼

@W

@r
; (3)

where rb denotes the uniform density in the boundary

layer.

The boundary layer is of a constant height Hb. We adopt

the simple slab boundary layer model of Schubert and

Hack (1983) in which a simplified aerodynamic drag law as

a function of the balanced tangential wind at the boundary

layer top (z�Hb) is assumed. The equation for boundary

layer tangential wind vb becomes

fbub ¼ �
CD

Hb

vbj jvb; (4)

where CD is the surface drag coefficient and fb the absolute

vorticity. Using this closure and ignoring vertical variation

Fig. 1. Sketch of the low-order tropical cyclone model, where

s denotes specific entropy, R the potential radius and r the

physical radius. The index letters b, i and a stand for boundary

layer, inner and ambient region, respectively. Evaluation at

saturation is indicated by an asterisk. Further notation is given

in the text.
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of the horizontal wind components, we obtain the vertical

velocity wb at z�Hb by vertical integration of the

continuity equation (2). A comparison to eq. (3) leads to

the following expression for the mass stream function at the

top of the boundary layer:

Wb ¼ 2prbqbCD

jvbjvb

fb

: (5)

The index b symbolises evaluation at z�Hb. We are aware

of the limitations of this simple balanced boundary layer

model [see Smith and Montgomery (2008)] but think it is

appropriate in the context of a low-order model.

2.2. The eye

In the eye, we assume solid body rotation. Therefore, the

tangential wind becomes

vb ¼ ve

rb

rb1

¼ ve

R

R1

; (6)

where rb1 and R1 denote the physical radius and potential

radius of the eye boundary, respectively (see Fig. 1). The

velocity vb1 coincides with the eyewall velocity at R�R1.

The eye plays only a passive role in the present box model.

This means, we neglect energy and mass fluxes from the eye

into the eyewall. Hence, the model is not designed to

investigate the role of eye�eyewall interaction processes.

We skip this option because in this way, it is not necessary

to determine mass fluxes, radial wind and entropy in the

eye, and the thermodynamic budget equations to describe

the system can be reduced to a number of three, as

developed and defined in the following subsections.

2.3. The eyewall

Within the eyewall, we assume validity of the gradient wind

balance, saturated pseudoadiabatic ascent and angular

momentum conservation. These conditions allow for

application of the thermal wind balance equation derived

by Emanuel (1986), which relates specific saturation

entropy s* to angular momentum density m:

Tb � T

m

ds�

dm
¼ 2

Tb � T

f 2R3

ds�

dR
¼ 1

r2
� 1

rb
2
; (7)

where T denotes the temperature. Note that the saturation

entropy s* is only a function of angular momentum m. In

eq. (7), the radius r as well as the temperature T is

considered as a function of potential radius R and

height z. The thermal wind balance equation (7) delivers

the shape of the angular momentum surfaces as a function

of R and the saturation entropy gradient at R. It can also

be written as:

G z�Hbð Þ ¼ 1

r zð Þ2
� 1

rb
2
; (8)

with

G ¼ 2C

f 2R3

ds�

dR
; (9)

where G denotes the temperature lapse rate. The tropo-

pause temperature Tt is presumed to be constant and

independent of variations in the SST Ts, unless stated

otherwise. The vertical temperature profile is approximated

as linear with a constant lapse rate G throughout the

troposphere. Using these assumptions, G is simply calcu-

lated from the difference between Tt and Ts divided by the

tropopause height. This equation is evaluated at the inner

and outer eyewall boundary, where the potential radius

takes the values R�R1 and R�R2, respectively.

We approximate the radial entropy gradient at R�R2

with a finite difference expression

ds�

dR

����
R¼R2

� � s�i � s�a

DR
; (10)

where DR is the characteristic distance between the eyewall

region and the outer region, s�i and s�a the mean saturated

moist entropy anomaly of the eyewall and the outer region,

respectively. So, we obtain at R�R2:

G2 z�Hbð Þ ¼ 1

r2 zð Þ2
� 1

rb2
2
; (11)

with

G2 ¼
2C

f 2R2
3

s�a � s�i

DR
: (12)

Index 2 indicates evaluation at the outer eyewall boundary

and, consequently, r2(z) denotes the physical radius of the

angular momentum surface at R�R2. Equation (11)

prescribes the shape of the angular momentum surface at

the outer eyewall boundary. However, there are still two

unknowns, namely r2 and rb2. For closure, we assume that

the mass M enveloped by this angular momentum surface

is conserved (the reasonability of this assumption is

addressed in section 2.5 and the Appendix). Using the

simplifying assumption of a constant density r (Boussinesq

A LOW-ORDER TROPICAL CYCLONE MODEL 3



approximation), the mass M as a function of G2 and rb2
becomes1:

M ¼ pq
ZHþHb

Hb

r2
2dz ¼ pq

G2

ln 1þ G2rb2
2H

� �
: (13)

A more detailed derivation of eq. (13) is given in Frisius

(2005). With this relation, we can determine the physical

radius rb2 and tangential wind speed vb2 [see eq. (1)] at the

outer eyewall boundary by the following equations:

rb2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

G2H
exp

G2M

pq

� �
� 1

	 
s
; (14)

vb2 ¼
f

2

R2
2 � rb2

2

rb2

: ð15Þ

By combination of eqs (9), (14) and (15), vb can be

computed as a function of the radial saturation entropy

gradient at given potential radii. It can be seen that vb
decreases with decreasing ds*/dR (not pictured here). We

consider vb2 at R2 as the maximum tangential velocity.

Hence, the maximal ds*/dR occurs at R2 and must be

smaller elsewhere. Looking at eq. (10), this condition is

fulfilled when the radial entropy gradient at the inner edge

of the eyewall (R�R1) is calculated by:

ds�

dR

����
R¼R1

¼ � s�i � s�a

DR

R1

R2

 !j�1

; (16)

where R1 is the potential radius of the inner eyewall and j is

the power of the radial decrease (k]1) in saturation

entropy with increasing distance from the RMW at R2.

In analogy to eq. (12) and under consideration of eq. (16),

we obtain at the inner eyewall boundary:

G1 ¼
2C

f 2R1
3

s�a � s�i

DR

R1

R2

 !j�1

: (17)

To avoid that the eyewall forms a discontinuity, the

angular momentum surfaces should not cross, i.e. G2 must

be equal to or greater than G1. This also provides an upper

limit for k [k54 , see also Emanuel (1997)]. As mass fluxes

from the eye into the eyewall are not considered in the box

model (see section 2.2), we assume the mass of the eye

enclosed by R1 is conserved. With this simplification and

the Boussinesq approximation, the eye mass in the free

atmosphere above the boundary layer can be calculated

analogously to eq. (13):

Me ¼ pq
ZHþHb

Hb

r1
2dz ¼ pq

G1

ln 1þ G1rb1
2H

� �
; (18)

From this, we can determine the physical radius rb1 and

tangential wind speed vb1 at the inner eyewall boundary by

the following equations:

rb1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

G1H
exp

G1Me

pq

� �
� 1

	 
s
; (19)

vb1 ¼
f

2

R1
2 � rb1

2

rb1

: ð20Þ

2.4. The ambient region

Ascent does not take place in the ambient region that might

be partially subsaturated. The mean specific entropy sa is

attributed to this region and is smaller than its saturation

value s�a. These values are treated as constants. We intend

to include prognostic equations for these entropies in the

future. For the present low-order model, we only need to

calculate the boundary layer mass flux from the ambient

region into the eyewall region. By eq. (5), it does not only

depend upon tangential wind vb2 and physical radius rb2 but

also on absolute vorticity fb2. To determine fb2, a wind

profile in the vicinity of rb2 must be known. We assume the

profile to be in the shape of

vb ¼
vb2rb2

b

rb
b

for rb > rb2; (21)

where the exponent of radial decline b takes a value

between 0.5 and 1.

Consequently, the absolute vorticity fb2 at the outer

eyewall boundary becomes

fb2 ¼ f þ 1� bð Þ vb2

rb2

: (22)

This expression can be substituted in eq. (5) to determine

the mass transport into the eyewall region. The mass

transport turns out to be sensitive to changes in b. A

theoretically determined value by Emanuel (1986) becomes

b:0.5. For such a small value, however, the radial inflow

to the eyewall region is too weak when we assume realistic

values for the maximum tangential wind and the RMW.

For example, assuming vb2�50 m s�1 and rb2 �10 km and

default values for the other model parameters (Table 1)

gives a radial wind speed at R�R2 of only about 2 m s�1.

1Note that the coarse assumption of a constant density does not

have a large impact on the tangential wind vb, as detected by

Frisius (2005). Furthermore, the relation rb2
2 ¼ ðGHÞ�1

is almost

satisfied for a fully developed tropical cyclone so that the

assumption of a constant density is not relevant in the mature

state.
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A maximum value of b�1 on the other hand, results in an

unrealistically high radial wind even twice as high as the

tangential wind.

2.5. Thermodynamic equations

The low-order model is based on thermodynamic variables.

All needed hydrodynamic variables can be deduced diag-

nostically from eqs (5), (12), (14), (15), (17), (19), (20) and

(22). First, a prognostic equation for saturation entropy of

the eyewall s�i is needed. It is changed by the mass flux from

the boundary layer and diabatic processes such as radiation

or turbulent mixing. The mass flux results from eq. (5)

evaluated at r�rb2. At the inner edge of the eyewall, we

assume vanishing mass exchange with the eye. Further-

more, we presume that the inflow from the boundary layer

into the eyewall is exactly compensated by the outflow in

the upper troposphere. This implicates that the eyewall

mass enclosed by angular momentum surfaces above the

boundary layer is conserved. It is calculated in terms of

potential radii:

Mi ¼M �Me ¼M � pqHR1
2 ¼ pqH R2

2 � R1
2

� �
: (23)

Mi given by eq. (23) is equivalent to the mass of the resting

state with vertically oriented eyewall boundaries, i.e. r1�R1

and r2�R2. This assumption seems to be the most reason-

able one because TCs typically grow in a horizontally

uniform tropical atmosphere close to rest. As the model

cyclone intensifies, the boundaries slant and the eyewall

obtains the shape of a hyperboloid as drafted in Fig. 1.

The diabatic processes are parameterised with a linear

relaxation to the state of the ambient region. Furthermore,

we assume saturation, so that we can equate entropy with

saturation entropy. Then, we obtain the following prog-

nostic equation:

ds�i

dt
¼ Wb2

sbi � s�i

Mi

þ s�a � s�i

sE

; (24)

where sbi is the mean specific entropy of the boundary layer

beneath the eyewall, s�a the saturated moist entropy of the

ambient region and tE the timescale for damping by

diabatic cooling processes. The first term on the right-

hand side (rhs) of eq. (24) represents the upward transport

of high entropy air into the eyewall from the boundary

layer beneath via the secondary circulation in the radial�
vertical plane. Hence, it is related to deep convection in the

inner region. The second term represents diabatic cooling.

Further equations for specific entropy of the boundary

layer are needed. To calculate their tendencies, the mass

of the boundary layer beneath the eyewall must be known.

It is given by

Mbi ¼ pqb rb2
2 � rb1

2
� �

Hb; (25)

and may change in the course of development due to

changes in rb2 and rb1. The specific entropy is altered by

surface heat fluxes and lateral inflow from the ambient

region. These are applied by the following equation:

dsbi

dt
¼ Wb2

sba � sbi

Mbi

þ CH

2Hb

jvb2j þ jvb1jð Þ soi � sbið Þ; (26)

where sba denotes the specific boundary layer entropy of

the outer region,2 CH the surface transfer coefficient for

enthalpy and soi the mean specific entropy at the ocean

surface beneath the eyewall. Advective transport within the

boundary layer via secondary circulation is represented by

the first term on the rhs of eq. (26). The second term

represents the surface transfer of latent heat into the

boundary layer due to the prescribed thermodynamical

disequilibrium between the sea surface and the atmospheric

boundary layer. It has been simplified using an averaged

wind speed in the box.

The specific boundary layer entropy sba outside the

eyewall is altered by surface heat fluxes, radial advection,

Table 1. Default model parameters

Notation Value Meaning

ra 420 km Outer radius where ps�pref,s
rba 420 km Outer radius of the ambient region

tE 48 h Timescale, diabatic cooling

tC 4 h Timescale, convective exchange

CH 0.003 Transfer coefficient for enthalpy

CD 0.003 Transfer coefficient for momentum

H 13.5 km Tropopause height minus

boundary layer height

Hb 1.5 km Boundary layer height

f 5�10�5s�1 Coriolis parameter

j 3 Eyewall entropy profile parameter

d 0.25 Entrainment parameter

R1 90 km Inner potential radius of eyewall

R2 180 km Outer potential radius of eyewall

DR 30 km Distance eyewall � outer region

r 0.45 kg m�3 Mean density

rb 1.1 kg m�3 Mean boundary layer density

Tt 203.15 K Tropopause temperature

Ts 301.15 K Sea surface temperature

ha 45% Relative humidity, ambient region

pa 500 hPa Pressure level, ambient region

href ;b 80% Relative humidity, boundary layer

pref 1000 hPa Reference surface pressure

b 0.875 Tangential wind profile parameter

2Strictly speaking, it should be the boundary layer entropy at

R �R2. However, we do not resolve the radial entropy profile in

this low-order model and, therefore, assume a representative value

for the whole box.
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convective cooling and downwelling of low-entropy air

from the free atmosphere above the boundary layer related

to mass transfer along the secondary circulation. The

following equation for the mean entropy sba in the outer

region’s boundary layer is introduced:

dsba

dt
¼ Wb2

dsa þ ð1� dÞsba0 � sba

Mba

þ CH

2Hb

jvb2j soa � sbað Þ þ sa � sba

sC

; ð27Þ

where 05d5 1 is an entrainment parameter describing the

entrainment of air into the ambient boundary layer. Taking

d�1 would be equivalent to the assumption that air

transported by the secondary circulation came entirely

vertically from the free atmosphere above the outer

boundary layer, whereas taking d�0 would correspond

to assuming the entire air flew in sidewise from the far-field

surroundings. In the following, we arbitrarily presume

d�0.25, i.e. 25% of the secondary circulation inflow into

the outer boundary layer comes from above, and 75%

laterally from the far-field beyond rba. soa and sa are the

mean specific entropies at the ocean surface and in the free

atmosphere above the boundary layer, sba0 is the far-field

boundary layer entropy and tC is the timescale for

exchange processes across the top of the boundary layer

due to shallow convection, which is represented by the

third term in eq. (27). The boundary layer mass in the

ambient region is given by

Mba ¼ pqbðrba
2 � rb2

2ÞHb (28)

and may change in the course of the development due to

changes in rb2. The radius rba determines the width of the

ambient boundary layer and, therefore, its thermal inertia.

Yet, we have to determine the specific entropy so at the

sea surface and the specific entropy sa in the ambient region

above the boundary layer, which will be done in the

following. The sea surface entropy changes with time due

to its dependence on surface pressure ps. We use the

approximated expression

so Ts; psð Þ ¼ Lv

q�v

Ts

�
qv;ref

Tref

 !
� Rd ln

ps

pref

 !

þcpln
Ts

Tref

 !
; ð29Þ

where Ts denotes the SST and qv the specific humidity. The

index ref symbolises that the quantity is a constant

reference quantity, and the asterisk denotes that the

moisture variable is considered at saturation. The reference

entropy sref coincides with the boundary layer entropy of

the undisturbed environment, i.e. sba0�0. Here, the

temperature is identical to the SST Ts and the relative

humidity takes the value href ;b. Therefore, we obtain

so ¼ Lv

q�v � qv;ref

Ts

 !
� Rd ln

ps

pref

 !
; (30)

with the specific reference humidity qn,ref.

We assume gradient wind balance to calculate the

surface pressure ps. Hence,

RdTs

ps

@ps

@r
¼ vb

2

r
þ fvb; (31)

where Rd is the specific gas constant of dry air. A radial

integration to infinity would lead to a diverging integral

when the tangential wind takes a profile of the shape

described by eq. (21). Therefore, the integration is only

applied to a finite radius ra where the surface pressure

coincides with the reference value. By integration of eq.

(31), we obtain

RdTsln
ps2

p0

 !
¼ � vb2

2

2b
1� rb2

ra

 !2b
2
4

3
5

þ fvb2rb2

1� b
1� ra

rb2

 !1�b
2
4

3
5: ð32Þ

The surface pressure can be used to evaluate the entropy so2
at the radius rb2. For the surface entropy of the eyewall

region, we assume soi�so2 and for the outer region

soa�(so2�soa0)/2, respectively, where soa0 is the entropy

at the surface for R0�, namely

soa0 ¼ Lv

q�v � qv;ref

Ts

 !
: (33)

The undisturbed environment may be in a state of

convective�radiative equilibrium, which is neutral to con-

vective instability. It excludes an acquisition of kinetic

energy from environmental convective available potential

energy (CAPE). Observations indicate that CAPE does not

vanish during the mature state of a TC (e.g. Sheets, 1969;

Frank, 1977; Bogner et al., 2000) and increases with radial

distance from the centre of the storm. Hence, assuming

neutrality to convection, or more accurately to slantwise

convection in potential radius space, may be appropriate

for the eyewall region but not suitable for the ambient

region. Therefore, we have investigated different cases that

differ in their far-field equilibrium stratification:

� Case I, where we assume a constant lapse rate and

boundary layer relative humidity (href,b),

� case N1, where neutrality to convection is

maintained by adjusting boundary layer relative

humidity,
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� case N2, where neutrality to convection is main-

tained by adjusting the temperature lapse rate,

� hybrid case H, which excludes convective instability,

such as in case N2, but allows for stability in the

ambient region such as in case I.

Convective instability in the far environment can only arise

in case I. For case N2 and case H, we implement a lower

convective damping, i.e. tC�8 h instead of tC�4 h. The

reasons will be discussed in section 4. The entropy in the

ambient region sa is given by

sa ¼ Lv

qv;a

Ta

�
qv;ref

Tref

 !
� Rd ln

pa

pref

 !
þ cpln

Ta

Tref

 !
; ð34Þ

where the index a denotes that the quantity is evaluated in

the ambient region at a characteristic pressure level above

the boundary layer pa. The temperature Ta is calculated for

a given pressure level pa in analogy to a formula proposed

by Reed and Jablonowski (2011) [see their eq. (5)]. We

found that the difference between virtual and absolute

temperature is relatively small in the calculation of Ta. It

does not affect the outcoming tendencies discussed in this

study. In the course frame of the box model, the difference

between absolute and virtual temperature can therefore be

neglected and Ta is determined sufficiently accurate by

Ta ¼ Ts

pa

pref

 !Rd C
g

; (35)

with the gravitational acceleration g�9.806 m s�1. Due to

subsaturation in the ambient region on average, sa is

smaller than the corresponding saturation entropy s�a. As

stated above, the boundary layer entropy in the far

environment at the outer boundary of the box model sba0
is put to zero. Consequently, the saturated entropy of the

ambient region s�a must also be zero to provide for the case

of convective neutrality. In this reference frame, sa mea-

sured as an anomaly of sba0 becomes negative. In case N1,

we consider the moisture conditions of a pseudoadiabati-

cally ascending parcel as the reference state and determine

the relative humidity in the boundary layer analytically. In

this way, it is assured that the value of the reference

entropy equals that taken in the calculation of the surface

entropy. In the non-neutral case I, s�a is calculated in

reference to the prescribed conditions within the boundary

layer beneath, and relative humidity in the boundary layer

at rba is set to a value of 80%. In the other neutral case N2,

Ta is not calculated from eq. (35). Instead, it is determined

numerically to provide for neutrality such as in case N1

considered here (see above). In the hybrid case H, this will

be done only where convective instability would occur.

Elsewhere, the hybrid case H is identical to case I.

2.6. The thermodynamical system

The derivations of the previous subsections lead to a closed

low-order TC model. The assumptions that were necessary

to formulate the model are further substantiated in the

Appendix by evaluating a TC simulation with a complex

axisymmetric cloud model. The low-order model takes the

form of a dynamical system with three autonomous

ordinary differential equations for the three unknowns s�i ,

sbi and sba. The equations are given by

ds�i

dt
¼ Wb2

sbi � s�i

Mi

þ s�a � s�i

sE

; (36a)

dsbi

dt
¼ Wb2

sba � sbi

Mbi

þ CH

2Hb

jvb1j þ jvb2jð Þ soi � sbið Þ; ð36bÞ

dsba

dt
¼ Wb2

dsa � sba

Mba

þ CH

2Hb

jvb2j soa � sbað Þ þ sa � sba

sC

: ð36cÞ

In these equations, the mass stream function Cb2, the

tangential velocities vb1 and vb2, the boundary layer masses

Mbi and Mba, and the specific entropies at the sea surface,

soi and soa, can be written as a function of s�i by

consideration of eqs (5), (12), (14), (15), (17), (19), (20),

(22), (25) and (32). This is advantageous for the calculation

of equilibria because we can derive a single equation for the

equilibrium values of s�i .

The system dynamics depend on a number of model

parameters. These are ra, rba, tE, tC, CH, CD, H, Hb, f, j, d,
R1, R2, DR, r, rb, Tt, Ts, ha, pa, href,b, pref and b (Table 1).

Fixed parameter values for moisture and temperature at

the respective pressure levels were chosen in close agree-

ment to observational data (Jordan, 1958). The regions’

extents in potential radius space, i.e. R1 and R2, were

chosen in accordance with those of simulations with a high-

resolution axisymmetric model (see Appendix).

3. Estimation of the TC state

Here, we consider the steady state solution that can be

associated to a TC at its final intensity. For this purpose,

we only consider the effects of transport via secondary

circulation and latent heat transfer between ocean and

atmosphere, and shallow convection. The obstructive effect

of radiative cooling is neglected, i.e. we set 1/tE�0. For a

comparison with Emanuel’s PI theory (E-PI, Emanuel,

1986), the existence of an eye is neglected by setting R�0.

The environmental CAPE should vanish as in E-PI, i.e.

sba0 ¼ s�a ¼ 0. In addition to this, we presume the ambient

region to be saturated by setting sa�0 to have a relaxation

towards a neutral state by shallow convection. Further-

more, the entrainment parameter d is set to zero, i.e.

entrainment of air along the secondary circulation does not

enter from above the boundary layer but only from the far
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environment. With these assumptions, we determine steady

state solutions of the dynamical system (see eqs 36a, b, c)

and solve the following equations:

0 ¼ Wb2

sbi � s�i

Mi

; (37)

0 ¼ Wb2

sba � sbi

Mbi

þ CH

2Hb

jvb2j soi � sbið Þ; (38)

0 ¼ �Wb2

sba

Mba

þ CH

2Hb

jvb2j soa � sbað Þ � sba

sC

: (39)

The Coriolis force at R�R2 is small compared to the

centrifugal force for a TC vortex. In turn, the higher order

term rb2
2 becomes very small against R2

2 and therefore

negligible. Equations (15) and (22) can be simplified

accordingly:

vb2 ¼
f

2

R2
2

rb2

; fb2 ¼ ð1� bÞ vb2

rb2

: (40)

Because rb2BBr2jz¼HbþH for a fully developed TC, we can

simplify the thermal wind balance equation [see eqs (11)

and (12)] to

1

rb2
2
¼ 2CH

f 2R2
3

s�i

DR
: (41)

Application of these approximations to eq. (5) leads to the

following equation for the mass transport:

Wb2 ¼
pqbfR2

2CD

1� b
rb2: (42)

Then, evaluation of eqs (37) and (38) gives

s�i ¼ sbi ¼
sba þ

CH

4CD
ð1� bÞsoi

1þ CH

4CD
ð1� bÞ

: (43)

Evaluation of eq. (39) using the approximation

rba
2 � rb2

2 � rba
2 for a fully developed cyclone leads to

sba ¼
CH

4CD
ð1� bÞsoa

rb2
2

rba
2 þ CH

4CD
ð1� bÞ þ rb2

Hb 1�bð Þ
R2

2fCD

1
sC

: (44)

We see that shallow convection and entrainment are

necessary to attain a boundary layer entropy below that

of the sea surface in the outer region. Because rb2BBrba, the

first term in the denominator of eq. (44) can be neglected.

Only for very strong damping, i.e. smaller tC values,

shallow convection provides the dominant contribution

and the approximation

sba ¼
CH vb2sC

2Hb

soa (45)

holds. The physically valid solution for tangential wind

with this approximation, negelecting the pressure depen-

dence of surface entropy so that soi ¼ soa 	 so, becomes:

vb2 ¼
CHCHR2sCso

8HbDRð1þ CH

CD
cÞ

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CHCHR2sCso

8HbDRð1þ CH

CD
cÞ

" #2

þCH

CD

CHR2

2DR

cso

1þ CH

CD
c

vuut ; ð46Þ

where g �(1�b)/4. This formula will be compared with

that of E-PI theory (Emanuel, 1995). It predicts for

maximum wind speed squared

vmax;E
2 ¼ CH

CD

ðTs � ToutÞðso2 � sb2Þ; (47)

where so2 and sb2 are the entropies of the surface and the

boundary layer at R�R2, respectively. sb2 is calculated in

such a way that the relative humidity of the boundary layer

equals environmental relative humidity, and the boundary

layer temperature is identical to SST. Tout denotes the

outflow temperature at the top lid of the model. Hence, the

factor Ts�Tout can be identified with GH in eq. (46). E-PI is

proportional to (CH/CD)
1/2. A similar formula results for

very small tC because then, the second term under the

square root in eq. (46) dominates. This is consistent with

E-PI because fixation of boundary layer relative humidity

outside the eyewall by shallow convection is a crucial

assumption in this theory. Figure 2 displays maximum

tangential wind as a function of CH/CD using standard
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parameters for different tC. For small tC (0.5 h), the

increase in tangential wind with CH/CD is similar to the

approximation (46) and it is roughly proportional to

(CH/CD)
1/2. For larger damping timescales, eq. (46) be-

comes a poor approximation. When shallow convection is

switched off, we obtain a very rapid increase of vmax with

CH/CD and constancy afterwards in the box model. This

behaviour seems rather unrealistic as it is unlike that of

more complex numerical models (e.g. Emanuel 1995; Bryan

and Rotunno, 2009a].

4. Equilibria, bifurcations and stability

As a standard parameter set of our model experiments, we

use the values listed in Table 1. The simulations are based

on this set as has been elaborated in section 2, unless stated

otherwise.

First, equilibria are determined by an iterative proce-

dure. The output of the standard simulation with gradual

change in SST shows two up to four equilibria apart

from the trivial solution, which is associated with an

atmosphere at rest. Conducting a stability analysis by

which eigenvalues from the respective Jacobian are

numerically determined, we detect that the fourth or

uppermost and the second equilibrium are stable (every-

where, apart from the A-regime that will be described

below), whereas the first and third intermediate equilibria

are unstable. The second equilibrium represents a low-

pressure system of rather small intensity and the uppermost

is associated with a TC. Figure 3 displays the maximum

tangential wind of these equilibria as a function of SST for

different values of relative humidity in the ambient region

ha. It can be seen from the 3-D plot (Fig. 3) and the regime

diagrams (Fig. 4) that the number of equilibria strongly

depends on ha. In all cases, there is a threshold for the

formation of cyclones, which is majorly determined by

SST. Below a temperature of about 188C, no stable low-

pressure system would form in the model. Within a certain

regime spanned by ha and SST, we obtain two unstable

equilibria, denoted by an A in the regime diagrams. The

lower equilibrium acts as a repellor everywhere it exists.

The upper one of these two equilibria exhibits the character

of an unstable or negative fix point associated with two

complex conjugated eigenvalues. For slightly higher tem-

peratures and with increasing relative humidity in the

ambient region, the fix point attractor becomes stable

where the A-regime turns into the B1-regime. Two addi-

tional equilibria arise by a cusp catastrophe in the C-regime

(Fig. 4) of which the upper one is stable (Fig. 3). The

additional repellor imposes an amplitude threshold, i.e. it is

obstructive to the formation of a storm reaching TC

intensity. Only in the B2-regime, where we have two

equilibria again, SST and ha are sufficiently high for the

formation of a TC from a small initial disturbance in an

atmospheric state close to rest.

As can be seen from Fig. 5, the principal equilibrium

structure as described above is qualitatively stable to

changes in the exponent b that describes the radial decline

of tangential wind velocity. However, there are quantitative

changes and tendencies, i.e. the intensity of the TC

decreases for lower b-values. This may be due to an

enhanced mass transport across rb2 into the inner boundary

layer with increasing b-values because Cb2 is approximately

proportional to (1�b)�1 [compare with eq. (42)]. Further-

more, the amplitude threshold is shifted to lower SSTs for

lower b-values. This is true for both cases I and N1

pictured in Figs 3�5. Qualitatively and in terms of

maximum wind speed for TCs, there is no visible difference

between the non-neutral case I (Figs 3a, 4a and 5a) and

case N1 (Figs 3b, 4b and 5b), whereas the amplitude

threshold is sensitive to the stability conditions in the
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Fig. 3. Equilibrium solutions for maximum tangential wind as a

function of Ts (8C) and ha (fraction by one) for (a) the non-neutral

case I and (b) case N1 under the assumption of convective

neutrality. Stable equilibria are coloured in dark grey and unstable

equilibria in brighter grey.
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ambient region. As can be seen from Fig. 4, the C-regime is

broadened and the amplitude threshold is shifted towards

higher temperatures in case N1. The quantitative differ-

ences between case I and case N1 disappear for d�1 (not

pictured here), presuming that air transported by the

secondary circulation into the boundary layer comes

entirely vertical from the ambient region above rather

than its surroundings (in the figures shown here, d equals

0.25 as stated in Table 1). The higher the amount of

horizontal air transport into the boundary layer from the

surroundings (i.e. the smaller d), the larger becomes

the difference between case I and case N1 with regard to

the location and extent of the C-regime in the Ts�ha-plane.

Model results from case I and case N1 are in qualitative

agreement and display relatively small differences with

regard to their quantitative behaviour. The decrease in

boundary layer humidity in case N1 at higher SSTs

compensates for the decreased dry static stability that we

obtain when SST increases, whereas the tropopause

temperature is held fixed. This way to maintain neutrality

to convection results in unrealistically low values for

relative humidity in the outer boundary layer at warm

tropical SSTs. At Ts:258C, boundary layer humidity falls

below 60% and it decreases even further for higher SSTs in

case N1. On the other hand, relative humidity of the

boundary layer at rba does not need to be calculated from

other model variables in case I (see section 2.5). Instead, a

fixed value of href,b�80% is chosen in case I, i.e. changes in

dry static stability are not counteracted by changes

in boundary layer humidity to keep moist neutrality.

For reasons of clarity, we relinquish a further discussion

on results of case N1 in the following part of this section

and only display results from case I. However, we note that

the results obtained from case N1 exhibit the same
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behaviour as those from case I with regard to changes in

the parameters investigated in this study.

Tropical cyclone intensity as well as the number of

equilibrium solutions is sensitive to relative humidity in the

ambient region above the boundary layer ha (see above).

The entropy in the ambient region depends on ha [see

eq. (34)]. Thereby, this model parameter highly influences

the entrainment of low-entropy air from the ambient region

into the boundary layer beneath via secondary circulation

and shallow convection within the ambient region [see eq.

(27)]. Another parameter, which determines the entrain-

ment of low-entropy air into the boundary layer, is the

timescale for convective damping tC [see eq. (27)]. As can

be seen from Fig. 6, the strength of convective damping has

a notable impact on TC intensity as well as the SST-

amplitude threshold. For lower values in tC, i.e. enhanced

shallow convective damping, maximum potential intensity

(MPI) decreases and the amplitude threshold is shifted to

higher SSTs. The sensitivity of the equilibrium structure to

convective damping within the ambient region is further

illustrated in regime diagrams in Fig. 7. The formation

threshold is hardly affected by changes in tC, whereas the

amplitude threshold is shifted to higher SSTs and relative

humidity in the ambient region.

In Case N2, we make use of another possibility to ensure

neutrality with respect to convection. In difference to case

N1, the temperature stratification is corrected, whereas the

boundary layer relative humidity href,b is kept constant.

Instead of using eq. (35), the temperature Ta is determined

iteratively, so that s�a becomes zero. The lapse rate G has

been corrected accordingly. In Case I, the vertical tem-

perature difference between Ts and Ta increases by defini-

tion with increasing SST, whereas Tt is treated as constant

and independent of Ts [see section 2.3 and eq. (35)]. By

contrast in case N2, neutrality to convection is maintained
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by adjustment of Ta, which results in a decreased tempera-

ture difference between Ts and Ta (not pictured here),

acting against instability. Model studies on global climate

feedbacks reveal that the upper tropospheric temperature

in the tropics increases in response to global warming and

the tropospheric temperature lapse rate decreases (Hansen

et al., 1984; Hegerl et al., 2007), which stabilises the vertical

stratification. The configuration of case I allows us to

investigate the behaviour of the dynamical system for

different tropopause temperatures (Figs 8 and 9). The TC

intensity increases with increasing difference between SST

and tropopause temperature by lowering Tt (Fig. 8), and

the amplitude as well as the formation threshold is shifted

to lower SSTs (Fig. 9).

The equilibrium surfaces of maximum tangential wind

and the regime diagram for case N2 are shown in Figs 10a

and 11a, respectively. We see that non-trivial solutions

appear for much lower SSTs, even below the freezing point,

than in the other cases. For example, a maximum wind

speed of about 33 m s�1 results for an SST of Ts�188C
and ha�80%. Under these conditions, TCs do not occur in

the real atmosphere. Therefore, we think that the assump-

tion of convective neutrality cannot be applied in general.

Looking at the regime diagram (Fig. 11a), we see that the

equilibria exhibit a cusp bifurcation at Ts:108C and

ha�50%. Beside its different position, the C-regime is

also oriented in a different way compared to cases I and

N1. Furthermore, the lower stable equilibrium becomes

unstable for SSTs and low relative humidity, where the

B1-regime again switches to the A-regime. A notable

qualitative difference in comparison to case I and N1 is

that the B2-regime narrows with increasing SST, i.e. the

obstruction for tropical cyclogenesis becomes larger with
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increasing SST in case N2. On the other hand, the steady

state TC intensifies at higher SSTs. In Case N2, the

N-regime arises only below an SST of about �108C,
where the validity of the model is rather questionable.

The results for the hybrid case H are displayed in Figs

10b and 11b. In this case, we have a clear SST formation

threshold because in the regions with moist static stability,

it coincides with case I, except for some small differences

due to the different value for tC. Therefore, the A-regime

occurs at both edges in the SST range shown in the regime

diagram in case H. For larger SSTs, however, the regimes

are (by definition) assembled identically to case N2 and

quite differently from case I. So, a comparison to case H

indicates that TC intensity in case I is sensitive to

environmental CAPE. This is probably a consequence of

the fact that the temperature Ta cannot change in time due

to convective exchange. Possibly, case I would be more

similar to the hybrid case, if a dynamical adjustment of Ta

were allowed. Such an adjustment might be realisable by

implementation of a prognostic entropy equation for the

ambient region. However, this is beyond the scope of this

study and will be subject to our future investigations.

It becomes evident from Fig. 11b that tropical cyclogenesis

is less likely for higher SSTs in the hybrid case H. This may

seem to be surprising but is in qualitative agreement with

recent climate change simulations that show a tendency

towards increasing intensity and a decreasing frequency of

occurrence of TCs in response to global warming (e.g.

Bengtsson et al., 2007). An explanation for the increasing

obstruction seems to be related to the secondary circulation

that intensifies with increasing entropy difference between

the atmosphere and the ocean. This enhances the injection

of low-entropy air into the eyewall region and inhibits more

efficiently the development of a TC.

Entrainment of low-entropy air by shallow convection in

the ambient region, in addition to that by the secondary

circulation, also has a highly impeding impact on TC

formation in case H (Fig. 12). When we choose the same

timescale for convective damping as depicted in Fig. 7a for

case I (tC�6 h), the B2-regime exists only for relative

humidity in the ambient region approximately equal or
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coloured in dark grey and unstable equilibria in brighter grey.
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into the unphysical range of temperatures below the freezing point.
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even higher than that in the boundary layer beneath

(Fig. 12c). Even if we take less than half the strength

in convective damping as in case I, by setting tC to 10 h

(Fig. 12a), a development of a TC from a small initial

disturbance close to the state at rest still becomes only

possible for relative humidity in the ambient region higher

than ca. 63%, which is still about 18% higher, than the

standard value we have chosen with regard to observa-

tional data at the 500 hPa-level (Jordan, 1958). To further

abate the amplitude threshold with respect to ha in case H,

the entrainment of low-entropy air by convection within

the ambient region must be further reduced by an increase

in tC. For higher values in tC, the tendency of TCs

becoming less likely with increasing SST is more pro-

nounced (Fig. 12). On the other hand, in case I (see above)

we found that TCs generally become more likely with both

higher values in ha and increased SSTs (Figs 3a and 4a),

and the influence of ha on the amplitude threshold gets

smaller with decreased convective damping in the ambient

region (Figs 6 and 7).

5. Cyclogenesis

5.1. Initial growth

To analyse the behaviour in the early phase of storm

development, cyclogenesis in the box model is considered in

a highly idealised way. In a state near to an atmosphere at

rest, the eyewall region plays the role of a convective ring

that eventually contracts and forms the eyewall of the fully

developed TC. Such a cyclogenesis scenario is possible in

an axisymmetric TC model. Regarding the growth of the

TC, conditional instability of the second kind (CISK),

[Charney and Eliassen (1964)] and wind-induced surface

heat exchange (WISHE) [Emanuel (1997)] mechanisms

may become crucial. The importance of these processes

can be analysed in the box model by consideration of small

amplitudes and neglecting obstructive processes, i.e.

d ¼ 1=sE ¼ 1=sC ¼ 0. Linearisation and combination of

eqs (12), (14) and (15) with respect to the state at rest gives

vb ¼
CH

2f DR
s�i : (48)

Using this approximation for vb2 and f � f in eq. (5), we

obtain for the mass stream function

Wb2 ¼ CDpqbR2

C2H2

2f 3DR2
s�2i : (49)
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The entropies at the sea surface and the mass Mbi are

assumed to be constant. With these relations, the dynami-

cal system becomes

ds�i

dt
¼ FC

Mi

s�2i ðsbi � s�i Þ; (50)

dsbi

dt
¼ FC

Mbi

s�2i ðsba � sbiÞ þ FWis
�
i soi � sbið Þ; (51)

dsba

dt
¼ � FC

Mba

s�2i sba þ FWas�i soa � sbað Þ: (52)

where

FC ¼ CDpqbR2

C2H2

2f 3DR2
;FWa ¼ CH

CH

4f DRHb

;

FWi ¼ CH 1þ R1

R2

 !j�1
2
4

3
5 CH

4f DRHb

;

The atmosphere at rest (with s�i ¼ 0) forms a steady state

solution of the system. For this state, sbi and sba can take

arbitrary values because exchange with the sea surface

vanishes. A stability analysis by linearisation of the system

(50)�(52) reveals that the state at rest is dynamically

indifferent. However, small perturbations may grow and

eventually form a TC. This can be seen by solving eq. (50)

for a prescribed boundary layer entropy sbi, which is

positive and non-zero when the atmosphere is unstable to

convection. Then, ignoring the third-order term on the rhs

leads to the following solution:

s�i ¼
s�i0

1� FC

Mi
sbits

�
i0

; (53)

which describes an intensification of the vortex with

increasing growth rate from a small initial perturbation

s�i0. This corresponds to cyclogenesis by the CISK mechan-

ism, where the frictionally induced boundary layer inflow is

responsible for latent heat release in the eyewall and

thereby enhances the tangential wind. This in turn strength-

ens the inflow and, thereby, closes the feedback loop. We

see that the intensification rate is proportional to the drag

coefficient CD. The growth stops when the eyewall-satu-

rated moist entropy attains the value of the boundary layer.

For excitation of a pure WISHE feedback, the atmo-

sphere must be neutrally stratified, i.e. s�i ¼ sbi. Convection

is implicitly assumed to remove any convective instability

immediately. Equating s�i with sbi and linearisation of

eq. (51) gives

dsbi

dt
¼ FWisoisbi; (54)

The solution of this equation describes a perturbation

intensifying with a growth rate r ¼ FWisoi proportional to

CH.

We see that both CISK and WISHE feedbacks may be

excited in the box model. Indeed, in the model these

feedbacks act in a combined way. Combining the CISK

and WISHE term by substitution of eq. (54) into the time

derivative of eq. (50), neglecting third-order terms, we

obtain the following differential equation:

d

dt

1

s�2i

ds�i

dt

 !
¼ FCFWi

Mi

sois
�
i ; (55)

This equation shows that the intensification rate is

proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CHCD

p
. The relevance of the combination

of CISK and WISHE intensification mechanisms can be

tested by variation of CH and CD as has been suggested by

Craig and Gray (1996). Therefore, we performed various

cyclogenesis simulations with the simplified system

(50)�(52). All necessary model parameters are given in

Table 1. Figure 13 displays time evolution of entropy s�i for

various values of CH and CD. We clearly see that the

growth rate is indeed a function of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CH CD

p
, whereas the

final intensity depends on CH/CD.

5.2. Transient dynamics of amplification and

equilibration

The stability properties of the different equilibria are also

reflected in the time development when we consider

cyclogenesis, including all effects prescribed by the thermo-

dynamic budget equations (eq. 36, section 2). For this

purpose, the time integration is started close to or from

initial conditions corresponding to the unstable equilibria
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(Fig. 14). Model experiments initialised by negative (posi-

tive) s�i -perturbations, inducing a negative (positive) devia-

tion in velocity, with respect to a system repellor run

into the respective lower (higher) stable equilibrium. As

initialised with a negative perturbation with respect to the

lowest unstable equilibrium, the system simply runs into

the state of an atmosphere at rest. The smallest positive

eyewall entropy perturbation introduced to the time

experiments plotted in Fig. 14 equals 10�4 J kg�1 K�1

and is gradually doubled. The higher the magnitude of the

perturbation, the faster does the system reach a stable state.

At the beginning, the maximum tangential wind speed

hardly increases for several days and it takes much longer

than for higher perturbations until it intensifies with a

relatively high rate. However, the maximum intensification

rate is not visibly affected by the magnitude of the initial

perturbation. Concerning TC genesis from very small

initial perturbations (see Fig. 14b), our result is in

qualitative agreement with that found earlier in a three-

layer axisymmetric TC model by Anthes (1982).

As can be seen in Fig. 14b, the cyclone intensifies rapidly

in the initial phase until it reaches a first maximum. Then, it

slightly decays and further intensifies at a smaller rate than

in the beginning. To some extent, this behaviour can be

attributed to the action of the lower attractor that acts into

the opposite direction of the upper attractor after the initial

growth. The further we move away from the C-regime into

the B2-regime (in Ts�ha space), the weaker is the impeding

effect of the lower attractor on TC formation and the

higher is the intensification rate as the system develops

from a weak storm into a tropical cyclone.

6. Discussion and conclusions

The dynamical system analysis of TCs in a conceptual box

model reveals the existence of an SST threshold for the

formation of cyclones under different conditions. We find

that no cyclone would form below a certain SST. If

neutrality to convection is maintained by moisture adjust-

ment in the boundary layer (case N1), the SST formation

threshold does not differ from that found in the case in

which moist static instability was not excluded (case I).

The results of the neutral case N1 and the case, which

allows for both negative and positive CAPE outside the

eyewall (case I), are in good qualitative and quantitative

agreement with regard to MPI, TC intensification and their

sensitivity to the other model parameters investigated in this

study. The type of neutralisation we obtain in case N1

corresponds to the neutralisation mechanism found from a

correlation analysis of tropical soundings in regions with

negative CAPE trends (DeMott and Randall, 2004). But in

the box model, moisture adjustment (case N1) to maintain

neutrality under decreased dry static stability results in

unrealistically low values of boundary layer relative humid-

ity over a warm tropical ocean. Quantitatively, this may

possibly be due to the fact that we cannot look at the

dynamically combined effect in the box model (i.e. we

consider either a moisture or a lapse rate adjustment). On

the other hand, when neutrality is kept by temperature

adjustment in the ambient region as in case N2, the

formation threshold would be shifted to SSTs below the

freezing point, and storms of TC intensity already form over

greatly colder water than in reality. This is also a result of E-

PI theory excluding moist static stability of the atmosphere

and premising a neutral ambient atmosphere instead.

Observational studies give evidence for the existence of

non-zero CAPE in the catchment area of a TC. Hurricane

soundings computed from radiosonde measurements

(Sheets, 1969) and measurements from dropwindsondes

(Bogner et al., 2000) point to the existence of considerable
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Fig. 14. Time development (in days) of vb2 (in m s�1) in case I

with ha�45% started near an unstable equilibrium for (a) Ts

�258C and (b) Ts�288C. Equilibrium solutions in the upper panel

(a) are located in the C-regime (see Figs 3a and 4a), and model runs

initialised by small perturbations with respect to the upper repellor

are plotted with dashed lines and those started near the lower

equilibrium are plotted with solid lines. In the lower panel (b),

equilibrium solutions exist in the B2-regime with only one repellor.

For each repellor, runs were initialised by one negative perturbation

and six gradually increased positive perturbations.
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amounts of positive CAPE with increased radial distance

from the centre of a mature TC. Analyses of satellite and

radiosonde observations over areas with deep convection in

the tropical Pacific exhibit the existence of positive CAPE

for SSTs higher than 288C and negative CAPE for SSTs

below 278C (Fu et al., 1994). Therefore, we also considered a

hybrid case that allows for stability but prohibits instability

by temperature adjustment (case H). Neutrality is probably

a suitable assumption for regions characterised by strong

convection because it contributes to the adjustment of the

atmosphere towards a neutral state and in reverse, a reduced

static stability facilitates convection.

The stability of the troposphere is to some extent

determined by the temperature lapse rate. DeMott and

Randall (2004) found that the correlation between tem-

perature lapse rate, moisture content and CAPE depends

on the sign of the trend in CAPE. Their results indicate that

a decrease in CAPE is primarily driven by changes in the

lapse rate, whereas increases in CAPE are chiefly driven by

increasing moisture contents. Results from global climate

models show that the lapse rate feedback in global warming

scenarios, with enhanced mean SST, has a stabilising effect

in the tropics by heating the upper troposphere at the

expense of the surface (e.g. Hansen et al., 1984; Hegerl

et al., 2007). This view is in accordance with the observed

non-locality of TCs (Swanson, 2008). In this context, non-

locality means that TC activity depends on the relation

between local SST anomalies and global mean SST rather

than only on local SST anomalies. With regard to the box

model, this suggests that the tropopause temperature is

mainly a function of global mean SST and that SST

anomalies cause variations in static stability also crucial for

TC activity. In the box model, this effect can be seen in

both case N1, where decreased dry static stability is

accompanied by a decrease in relative boundary layer

humidity to maintain moist neutrality and in the non-

neutral case I, where boundary layer humidity is held fixed.

Presuming that changes in tropopause temperature are

mainly controlled by changes in mean SST rather than

local SST anomalies infers that the amplitude threshold of

26.58C for TC development observed under present climate

conditions is shifted under climate change.

Both, the hybrid case H and case I with no adjustment,

display five different regimes with respect to the number of

equilibrium states and their stability properties for different

values in SST and relative humidity in the ambient region.

By definition, case H and I are identical with regard to the

formation threshold. Within a certain range in SST and ha,

we detect an additional repellor forming an amplitude

threshold for the development of a TC. The amplitude

threshold is sensitive to SST and entrainment of low-

entropy air into the boundary layer. In case, we allow for

positive CAPE in the ambient region, SST plays a more

dominant role in setting the amplitude threshold than

entrainment along the secondary circulation. Here, our

model results imply that the frequency of occurrence of

TCs rises with decreased entrainment of low-entropy air

and locally increased SST.

In the hybrid case, the entrainment effect has a high

impact on the amplitude threshold. TCs can only develop

from small initial disturbances, when relative humidity in

the ambient region is sufficiently high and convective

damping within the ambient air is sufficiently low. In

case H, TCs also become more intense but occur less

frequently with increased SSTs when CAPE is zero. Here,

neutrality is maintained by temperature adjustment result-

ing in a decreased vertical temperature gradient from the

surface to mid-tropospheric levels at higher SSTs. Other-

wise, instability to convection would rise over a warmer

ocean as it does in case I. Because of this temperature

adjustment, it was not possible here to probe the effect of a

reduced or increased tropical tropopause temperature in

response to global warming or cooling, combined with that

of a regionally enhanced temperature gradient in the low-

to-mid-tropospheric levels in response to a local increase in

SST. Hence, in contrast to case I, we cannot discern the

impact of local SST anomalies and non-local changes on

SST in case H. Presumably, this is the major reason for the

different results, we obtain in case I and H. This could be

further investigated by testing the system behaviour for a

dynamical temperature adjustment in case I. In the frame

of the conceptual model, this may be feasible by imple-

mentation of an additional thermodynamic budget equa-

tion for the entropy in the ambient region, which is beyond

the scope of this work but will be subject to a future study.
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8. Appendix

A.1. Comparison with results of the axisymmetric

cloud model HURMOD

The model formulation presented in section 2 is based on

several assumptions. A comparison with the results of a

complex model is useful to evaluate these assumptions. For

this purpose, we analyse experiments simulated with the
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axisymmetric cloud model HURMOD. The model and the

simulations were described in detail by Frisius and

Hasselbeck (2009). For the analysis we choose the experi-

ment WARMRAIN. It is a simulation of genesis and

equilibration of an axisymmetric tropical cyclone excluding

the ice phase. In this case, the tropical cyclone reaches a

quasi-steady state after equilibration. On the other hand,

significant intensity fluctuations and eyewall replacement

appear if the ice phase is included (experiment ICE). Such a

complex behaviour is certainly beyond the scope of the

simple box model. Therefore, this experiment is not

suitable for the comparison.

Figure 15 displays vertical velocity at z�1250 m and

saturation entropy at z�5250 m as a function of potential

radius and time. We clearly see the eyewall region with

positive vertical velocities in a potential radius range

between 90 and 180 km. This region can even be identified

in the growth period between 24 and 48 hours. The eyewall

boundaries (to be defined as the 1 m s�1 isoline) migrate

slowly towards larger potential radii but the eyewall width

remains almost constant in potential radius space. The slow

outward drift may be associated to the adjustment of the

tropical cyclone to an equilibrium state with a certain

radius of maximum wind. This hypothesis will be investi-

gated in a subsequent study. Nevertheless, the assumption

of constant boundaries for the eyewall seems reasonable to

us in the context of a simple conceptual model. Consistent

with the box model, saturation entropy does not vary

appreciably with time outside the eyewall. The same is true

for actual entropy (not shown). Cross sections of mass

stream function and entropy time averaged over the period

of 75�140 h are shown in Fig. 16. Obviously, the nearly

vertically oriented isentropes in the eyewall support the

assumption of slantwise neutrality used in the inner region

of the box-model. The streamlines are also vertically

oriented in the eyewall region with maximum vertical

winds up to 8.4 m s�1 (not shown). The boundary layer

inflow has a large vertical extent of about 2 km due

to enhanced microturbulent vertical exchange. This value is

a bit larger than that chosen for the box model solutions

(1.5 km). The mass flux of approximately 1.5�109 kg s�1

into the eyewall is comparable to predictions from the box-

model. Using the standard parameters (see table 1),

CD�0.0035 (corresponds to HURMOD for a tangential

surface wind of 60 m s�1), R2�180 km, rb2�12 km

(estimated from HURMOD) we obtain Cb2�1.88�109

kg s�1. The entrainment of low entropy air in the

boundary layer outside the eyewall is evident from the

mass streamfunction field. The largest entropy values

appear inside the eye. This is, however, energetically not

relevant for the box-model.

Radial profiles of tangential wind at z�1250 m for

different times in the cyclogenesis phase are displayed in

Fig. 17. An intensification of maximum tangential wind

Fig. 15. Vertical velocity at z�1250 m (black isolines, contour

interval 1 m s�1) and saturation entropy (shadings, J kg�1 K�1)

at z�5250 m as a function of potential radius and time for the

HURMOD experiment.

Fig. 16. Mass stream function (black isolines, contour interval

0.25�109 kg s�1) and specific entropy (shadings, J kg�1 K�1)

time averaged over the period 75�140 h as a function of potential

radius and height for the HURMOD experiment.
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from 34 m s�1 to 65 m s�1 takes place within 12 hours

while the radius of maximum winds migrates inward from

r�12 km to r�8 km. The radius of maximum tangential

wind and maximum gradient wind is located within the

eyewall (not shown). Bryan and Rotunno (2009b) found in

their axisymmetric model simulations at a higher resolution

that the maximum gradient wind (denoted by vg,max) is

located close to the outer edge of the eyewall (see their

Fig. 3). This is more consistent with the box-model and

presumably a result of their finer model resolution.

However, the figure also shows a decay of tangential

wind with approximately v / r�0:875 outside the eyewall.

This is fulfilled best just outside the wind maximum near to

the outer edge of the eyewall. Therefore, the choice

b�0.875 is in good agreement with HURMOD since the

radial mass flux is calculated at this location. On the other

hand, the displayed analytical profile v / r�0:542 cannot be

adapted to the HURMOD profiles indicating that the

choice b�0.542 does not agree with HURMOD results.

Finally, we have investigated the time variation of

eyewall and eye mass in the HURMOD experiment. For

this purpose, we prescribe the inner and outer eyewall

boundaries by R1�90 km and R2�180 km, respectively.

The eyewall region extends vertically from z�1 km to

z�11.5 km. Looking at the time evolution of the eyewall

and eye masses (Fig. 18), we see that the eyewall mass

increases from 2.6�1014 kg to 4.2�1014 kg and afterwards

it decreases again. The latter might be a result of the slow

outward migration of the eyewall (Fig. 15). The variation

of eyewall mass Mi has an effect on the growth rate and

final intensity in the box-model. However, the assumption

of constant eyewall mass is acceptable for the simple model

since the variation remains below 50% with respect to the

mean value. The change of eye mass is much more

dramatic. At the beginning the eye region can of course

not be associated with an eye. The term ‘eye’ just refers to

the region RBR1. The eye mass decays by more than one

order of magnitude during the development from 4�1013

kg to 9�1011 kg. The reason for this dramatic decay seems

to result from the fact that the R1 surface is not an

isentropic surface and more vertically oriented in HUR-

MOD. This clear discrepancy with the box model is only of

minor importance. Due to a relatively small eye mass,

eyewall mass would only increase slightly if we would

assume a vertical boundary between eye and eyewall

instead of an isentrope. The only consequence of introdu-

cing a vertical boundary would be a slightly slower growth

and weaker intensity of the tropical cyclone. The sum of

eyewall mass and eye mass, i.e. M�Mi�Me is needed for

the determination of the box model’s tangential wind vb2

which in turn sensitively influences the mass-flux into the

eyewall. The dependence of vb2 on M is weak for intense

cyclones. In the growth stage M varies less than Mi due to

the decay of eye mass Me. Hence, the assumption of

constant M is quite coarse but acceptable for the purpose

of a conceptual model.
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