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ABSTRACT

We propose to add an extra source of information to the data-assimilation of the regional HIgh Resolution

Limited Area Model (HIRLAM) model, constraining larger scales to the host model providing the lateral

boundary conditions. An extra term, Jk, measuring the distance to the large-scale vorticity of the host model, is

added to the cost-function of the variational data-assimilation. Vorticity is chosen because it is a good

representative of the large-scale flow and because vorticity is a basic control variable of the HIRLAM

variational data-assimilation. Furthermore, by choosing only vorticity, the remaining model variables,

divergence, temperature, surface pressure and specific humidity will be allowed to adapt to the modified

vorticity field in accordance with the internal balance constraints of the regional model. The error

characteristics of the Jk term are described by the horizontal spectral densities and the vertical eigenmodes

(eigenvectors and eigenvalues) of the host model vorticity forecast error fields, expressed in the regional model

geometry. The vorticity field, provided by the European Centre for Medium-range Weather Forecasts

(ECMWF) operational model, was assimilated into the HIRLAMmodel during an experiment period of 33 d in

winter with positive impact on forecast verification statistics for upper air variables and mean sea level pressure.

Keywords: data-assimilation, large-scale constraint, error covariances, limited area, host model

1. Introduction

In order to run a regional Numerical Weather Prediction

(NWP) model, an initial condition and a host model

providing lateral boundaries are required. In this work

we have used the HIRLAM model in which the initial

condition is determined by combining observations and Fa

short forecast with variational data assimilation, and the

host model is usually the operational ECMWF model.

The HIRLAM data-assimilation system is based on the

variational technique described in Gustafsson et al. (2001)

and Lindskog et al. (2001). In this work it is run in

four-dimensional variational analysis (4D-Var) mode,

described in Huang et al. (2002) and Gustafsson (2006),

and the background error covariances include a statistical

balance, Berre (2000).

The variational procedure finds the optimal model state

constrained by the models internal balances and observa-

tions, i.e. the host model is not taken into consideration.

The aim of this paper is to examine a way to include

selected information from the host model in the data-

assimilation procedure.

One reason for doing this is to make the initial model

state more consistent with the host model that will be

applied at the lateral boundaries during time-integration.

Another reason is that the global models often have more

advanced assimilation techniques that use more satellite

data, for example, and therefore give a better description of

the large-scale flow. Using observations inside a regional

domain only, larger scales cannot be described in a proper

way, and will be aliased on smaller scales, so by blending

the large-scale information into the regional model we can

also hope to improve the regional model forecasts.

In Guidard and Fischer (2008), information from the

global Action de Recherche Petite Echelle et Grand Echelle

(ARPEGE) model analysis was blended into the regional

Aire Limitée Adaption Dynamique développement Inter-

National (ALADIN) model by adding the ARPEGE

analysis as a constraint in the data-assimilation. All upper

air variables and surface pressure from ARPEGE were

applied with a diagonal error matrix, and the spectral

information vector was truncated such that only the large
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scales were affected. In this work we take a different

approach by selecting only the vorticity field from the host

model, ECMWF, and we let that represent the large-scale

flow which we assume is better described due to its extensive

use of satellite observations and due its use of a global

domain. Furthermore, we use a short forecast from

ECMWF, instead of an analysis, to reduce the possibility

of error correlations between the host model field and the

observations used in the regional model data-assimilation.

Also, it is not even possible for us in practice to use the

ECMWF analysis in an operational context since it is not

available in real time. Finally, the error covariances of the

ECMWFvorticity field are not assumed to be represented by

a diagonal matrix.

The paper outline is briefly as follows:

Details of the background error constraint, Jb, in HIR-

LAM and how vorticity is treated is described in Section 2.

This information is needed for Section 3, where the formula-

tion of the host model constraint is explained in detail.

Thereafter, in Section 4, we explain how the errors of the

host model constraint are modelled and compared with the

background error covariances. Section 5 points out some

details on the implementation. The impact of the new

constraint on an analysis is also investigated with a simple

three-dimensional variational analysis (3D-Var) single

case test.

The impact on forecasts, using a multi incremental 4D-

Var setting, is then shown in Section 6. In Section 7 we

summarise and make concluding remarks.

2. Balance constraints and control vector

The following notations will be used throughout the rest of

this article:

� Variables in spectral space are denoted: x̂

� Subscript ls denotes data from the host model

(ECMWF), example: xls
� Subscript b denotes data from the regional model

background (HIRLAM), example: xb
� An increment is the deviation from the regional

model background:dx ¼ x � xb

The model state increment vector in the HIRLAM

assimilation is

dx̂ ¼

dû
dv̂
dT̂
dq̂

dlnp̂s

0
BBBB@

1
CCCCA (1)

and the general formulation of the background error

constraint, Jb, is

Jb ¼
1

2
dx̂T B�1dx̂ (2)

where B contains the error covariances of x̂b. All variables

in x̂b are related to each other and therefore the B matrix

becomes quite complex. To ensure a fast convergence of the

minimisation, a pre-conditioning through a variable trans-

form is introduced. The change of variable is designed as a

series of operators that successively removes the correla-

tions between the components in dx̂ until we end up with a

new variable, called v̂, whose covariance matrix can be

assumed to be the identity matrix.

The series of transforms can be written as

v̂ ¼ c�1=2

b V T
b k�1=2

b r�1
b FGdx̂ (3)

G�calculate vorticity and divergence.

F�balance operators.

sb�background error standard deviation. Horizontal

average, i.e. one value per vertical level.

lb�horizontal spectral density of the background error

correlation. Diagonal matrix.

Vb�eigenvectors of the vertical background error correla-

tion matrix. Orthonormal matrix, i.e. V �1
b ¼ V T

b .

gb�eigenvalues of the vertical background error correla-

tion matrix. Diagonal matrix.

The balance operators F follows Berre (2000) and the

remaining operators are described in Gustafsson et al.

(2001).

After the G operator is applied, the state vector contains

(df̂, dĝ, dT̂ , dq̂, dlnp̂s). Then the F operator removes the

cross-correlations between the variables and the state

vector is written (df̂, dĝu, dT̂u, dq̂u, dlnp̂s), where subscript

u means that the variables are unbalanced. dT̂ and dlnp̂s

are often combined into one variable, and the balance

operators described as going from the unbalanced state

to the model state. Following the notations in Berre

(2000), and also omitting all d and the ln for pressure to

make the expression more compact, the balance operators

acts as the following

f̂
ĝ

ðT̂ ; p̂sÞ
q̂

0
BB@

1
CCA ¼

E 0 0 0

MH E 0 0
NH P E 0

QH R S E

0
BB@

1
CCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
F�1

f̂
ĝu

ðT̂ ; p̂sÞu
q̂u

0
BB@

1
CCA (4)

where E is the identity matrix, M, N, P, Q, R and S

are vertical balance operators derived by linear regression

and H is a similar horizontal balance operator that relates

a linearised geopotential with vorticity, including also a

horizontally varying Coriolis parameter. It should also be
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noted that since F�1 is triangular, the inverse is also

triangular, so both F�1 and F have the same shape. This

means that when we go from model state to the control

vector, or from the control vector to the model state as

in eq. (4), vorticity is not affected by the balance operators.

If we only consider vorticity, the transform from model

state to the control vector can be written as

Lb ¼ c�1=2

b V T
b k�1=2

b r�1
b

v̂ ¼ Lbdf̂
(5)

but in the minimisation only the inverse and its adjoint

are used

L�1
b ¼ rbk

1=2

b V bc
1=2

b

df̂ ¼ L�1
b v̂

(6)

3. Formulation of the host model constraint

We believe that the host model is better at describing the

large-scale flow of which vorticity is a good descriptor.

From the previous section it is also clear that vorticity has

very appealing characteristics because it is also a data-

assimilation control variable. Therefore we add an extra

term to the cost-function that describes the difference

between the regional- and host-model vorticity fields:

J ¼ Jb þ Jo þ Jk

Jkðf̂Þ ¼
1

2
ðf̂� f̂lsÞ

T
B�1

ls ðf̂� f̂lsÞ (7)

f̂ls is represented by a short forecast from the host

model and Bls contains the error covariances of f̂ls. For

simplicity we will ignore the cross-correlations between

the errors of f̂ls and x̂b as well as the cross-correlations

between the errors of f̂ls and the observation errors. The

cross-correlations between the errors of f̂ls and b are

certainly different from zero and will be examined in

the next section. Using a host model forecast instead of

a host model analysis eliminates the need to consider

the cross-correlations between the errors in f̂ls and the

observation errors, since the observations used to deter-

mine the analysis from which f̂ls originates are at least

6 h old. Also, most regional models do not have the

global host model analysis available in real time.

Now we set f̂ ¼ f̂b þ df̂ in eq. (7):

Jkðdf̂Þ ¼ 1

2
ðf̂b þ df̂� f̂lsÞ

T
B�1

ls ðf̂b þ df̂� f̂lsÞ (8)

where f̂b is the regional model background.

We now also denote d̂k ¼ f̂b � f̂ls which gives

Jkðdf̂Þ ¼ 1

2
ðd̂k þ df̂ÞT B�1

ls ðd̂k þ df̂Þ (9)

Bls is not a diagonal matrix which makes this formulation

difficult to use. Therefore a pre-conditioning is introduced

using a similar transform as for the background error

covariances B, but using the error characteristics of Bls:

Lls ¼ c�1=2

ls V T
ls k
�1=2

ls r�1
ls (10)

Projecting both d̂k and df̂ through Lls will give a state

vector whose error covariance matrix is the identity matrix.

Jkðdf̂Þ ¼ 1

2
ðLlsd̂k þ Llsdf̂ÞT ðLlsd̂k þ Llsdf̂Þ (11)

This pre-conditioning hopefully also helps assuring a good

minimisation towards the host model vorticity field.

As a last step, eq. (6) is used to express Jk as a function of

the control vector.

Jkðv̂Þ ¼
1

2
ðLlsd̂k þ LlsL

�1
b v̂ÞT ðLlsd̂k þ LlsL

�1
b v̂Þ (12)

The derivative of Jkðv̂Þ with respect to v̂ gives a gradient

that can be directly added to the total gradient, that now

becomes

@J

@v̂
¼ v̂|{z}

rJb

þL�T
b H T HðxbÞ � y þHL�1

b v̂
� |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

rJo

þL�T
b LT

ls ðLlsd̂k þ LlsL
�1
b v̂Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

rJk

(13)

4. Error covariances

To implement the host model constraint Jk we need the

error covariances of the ECMWF model as seen in the

HIRLAM model geometry. To achieve this, ECMWF

forecasts were interpolated to the HIRLAM geometry

and then processed with the software used to determine

the HIRLAM background error statistics. Both HIRLAM

and interpolated ECMWF fields were processed simulta-

neously which allowed for cross-covariances between the

errors of two models to be calculated.

The statistics presented will focus on displaying contents

of importance for this work. For example, the contents

of the L�1
b and Lls operators that will be used in the

assimilation, eqs. (6) and (10).

4.1. Regional model geometry

All calculations are carried out on the HIRLAM reference

area, called Regular Cycle with the Reference (RCR),

Fig. 1. The horizontal grid is expressed in a rotated lat/lon

geometry defined by shifting the South pole. Model top is

at 10 hPa and there are 60 vertical levels. Model levels are

numbered from the top and down, i.e. model level 1 is at

(13)
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the top and level 60 is closest to ground. The data-

assimilation calculations are carried out in spectral space

and therefore an area extension, following Haugen and

Machenhauer (1993), is used to ensure periodic variations

in both horizontal dimensions. The horizontal resolution

and number of gridpoints are presented in Fig. 2.

On each vertical level, an arbitrary variable, a(x,y), is

represented by a bi-Fourier series:

aðx; yÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NXLNYL
p

X
k

X
l

âkle
2pi kx

NXL
þ ly

NYLð Þ (14)

So the variable a is in spectral space defined by the complex

coefficients âkl . An elliptical truncation

k

Kmax

 !2

þ l

Lmax

 !2

� 1 (15)

is used to obtain an isotropic and homogeneous resolution

over the whole area. Each wave-number pair (k, l) is linked

to a total wave-number k* by

k	 ¼ Ns

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

NXL

� �2

þ l

NYL

� �2
s

(16)

where Ns is a scaling factor that is equal to the length of

the extended domain divided by a map factor.

4.2. Host model geometry

The ECMWF data used in the forecast experiments in

this work originate from a spectral T799 model with

91 vertical levels and the model top at 0.01 hPa. T799

corresponds to a gridpoint resolution of about 25 km in

a reduced Gaussian grid.

It should be noted that the ECMWF forecasts used for

the derivation of the host model error statistics in this study

were retrieved from the ECMWF archives in a horizontal

resolution of 0.5 latitude�longitude. These forecast fields

were subject to a bi-linear horizontal interpolation followed

by a vertical interpolation to the HIRLAM geometry. Due

to the simple interpolation procedure, one should not trust

statistical information concerning horizontal waves shorter

than approximately 150 km.

4.3. Statistics

Short-range forecast errors were simulated by applying an

ad hoc assumption that differences between forecasts of

different length valid at the same time can be taken as a

proxy for such forecast errors. Thus, we applied what is

referred to as the ‘NMC method’. Pairs of �36 h and

�12 h forecasts, valid at the same time, were obtained

from the ECMWF and HIRLAM RCR archives for 87

situations, all at 00UTC, during the period September�
November 2008. Forecast differences were relaxed towards

Fig. 1. Geographical coverage of the HIRLAM reference, called RCR, domain which is used in these experiments.
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zero in the lateral boundary relaxation zone of the fore-

cast model (Fig. 2), in order to avoid aliasing effects

through the extrapolations to the area extension zone that

are applied in order to get bi-periodic variations over the

extended domain. All calculations of statistics were carried

out in spectral space ignoring covariances between spectral

component coefficients of different horizontal wave-num-

bers, thus implicitly assuming horizontal homogeneity with

respect to the covariances in gridpoint space.

The horizontal variance power spectra for vorticity,

Pz(k
*), is an output entity from the NMC statistics software

that shows the contribution to the total variance for

different wavelengths. Pz(k
*) is plotted on three different

vertical levels in the left column of Fig. 3, while the cross

correlation between the HIRLAM and ECMWF vorticity

fields is plotted in the right column of the same figure.

We see that HIRLAM has larger values throughout the

whole spectrum. Since the NMC statistics are based on

forecast differences, one reason could be that HIRLAM is

more active and has a larger spread due to its higher

resolution. Another reason may be difference between

the data-assimilation methods applied in the forecasting

systems producing the forecast fields that enter into the

statistical calculations. ECMWF applied 4D-Var, while the

HIRLAM fields during autumn 2008 were produced with

3D-Var. It is known that introduction of 4D-Var reduces

the ‘jumpiness’ in the time-series of forecast evolutions, and

the difference between �12 h and �36 h forecasts valid at

the same time is essentially a measure of jumpiness. Also

note that the horizontal resolution used in the retrieval of

the ECMWF forecast fields from the archives makes any

comparison of covariance spectra meaningless for horizon-

tal wave-numbers greater than 64 (wave length 160 km).

The cross-correlation between ECMWF and HIRLAM

vorticity forecast differences is strongest for the longest

scales, right column in Fig. 3. Since longer scales are more

predictable, and since these larger scales are to a large

extent controlled by the host model through the lateral

boundary relaxation, it is likely that both models produce

somewhat similar large-scale structures which make the

shape of the statistics reasonable. It seems like it is safe to

ignore the cross-correlations for shorter scales while it may

be more questionable for longer scales.

The horizontally averaged standard deviations, Fig. 4,

also show that the HIRLAM values exceed the ECMWF

ones on all levels. They both have rather similar shapes

from the top and down to level 30 with a maximum around

model level 15 (:350 hPa) which corresponds to the jet-

stream level. Below, HIRLAM has another maximum

around level 43 (:850 hPa) which is not present in the

ECMWF statistics. These horizontally averaged standard

deviations are applied in the assimilation weights L�1
b

and Lls but are adjusted with an empirical scaling factor.

The scaling factor for sls is used to adjust the weight of

the host model term, see Section 5.2.

Figure 5 shows the horizontal spectral densities, kzðk	Þ,
as calculated by the NMC statistics software. kzðk	Þ and
Ps(k

*) are related via a simple expression:

Pzðk	Þ ¼ kzðk	Þ 2pk	
NXLNYL

N2
s

 !

kzðk	Þ is the input to the HIRLAM data-assimilation,

but before applied in assimilation they are scaled such that

their sum, divided with the number of gridpoints, is equal

to 1. It should be noted that the result of that scaling is

resolution dependent. So what we see in Fig. 5 is not

exactly what is used in the Lls and L�1
b operators, i.e. k1=2

ls

and k1=2

b . In Fig. 5 we see that the ECMWF spectrum is

sharper than HIRLAM on all levels. At the same time,

the ECMWF values are larger for large scales (small

wave-numbers) and vice versa for short scales. For

ECMWF in relation to HIRLAM, this means that large

scales contribute more than short scales to the horizontal

correlation which gives broader horizontal structure

functions for ECMWF (not shown). This is natural due

to the difference in resolution.

Next we take a look at the eigenmodes of the vertical

error covariance matrix, Figs. 6 and 7. Each eigenmode

is represented by an eigenvector and a corresponding

eigenvalue.

The eigenvector and eigenvalue for mode n and

wave-number k* can be denoted V z
n;k . z�1, Number of

vertical LEVels (NLEV) and gn,k. The sum of eigenvalues

over all modes, for a specific wave-number k*, is constant

Fig. 2. Integration area of the spectral HIRLAM tangent linear

and adjoint model applied in 4D-Var, together with the horizontal

resolution and the number of gridpoints for the setup used in the

experiments presented in this work.
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and equal to the number of modes, which is the same as the

number of vertical levels, thus:

XNmod

n¼1

cn;k	 ¼ NLEV

and the ratio

cn;k	PNmod

n¼1

cn;k	

tells us how much of the total variance that is explained by

mode n. How the variance is distributed vertically for

eigenmode n is shown by the eigenvector V z
n;k.

Figure 6 shows the eigenvalues for the first six leading

modes. At the bottom, the combined effect of these modes

is shown. We see that these modes include 90% of the

variance for the longest scales and then gradually decrease

as the scales get shorter. This is important to remember

for the ECMWF data because we choose to use only the

six first, or leading, modes of Vis and cls in the operator

Lls, eq. (10). Lls then acts as a vertical filter that removes

part of the small scale variance from the host model,

including also vertically small scale noise introduced by

the vertical interpolation procedure. In the same figure

we also see how the higher order modes contain less

large-scale information. Fig. 7 shows the structures of some
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Fig. 3. Left column: Horizontal variance power spectra, Pzðk	Þ, for vorticity forecast differences at model levels 5 (:90 hPa), 30

(:630 hPa) and 50 (:920 hPa), full line�ECMWF and dotted line�HIRLAM. Right column: cross-correlation of vorticity forecast

differences between HIRLAM and ECMWF.
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eigenvectors. For each mode, the wave-number that is

associated with the largest eigenvalue is chosen. The shapes

are quite similar with a slight shift of phase for modes 5�8.
It should however be mentioned that the shape of the

eigenvectors for a specific mode varies a little between the

wave-numbers.

5. Implementation

5.1. Low resolution increments

A short ECMWF forecast, with the geometry described in

the first paragraph of Section 4.2, is interpolated to the

HIRLAM geometry described in Section 4.1. The inter-

polated ECMWF wind-field is thereafter transformed to

spectral space. It is important to mention this because it

means that a 25 km grid is interpolated to a 16 km grid, and

the ECMWF field is thus oversampled and contains false

high-resolution information.

In practice, however, this is never a problem for us due to

two reasons:

First, the actual minimisation is a carried out on a

grid mesh with lower resolution than the original grid

(16 km), this incremental formulation is also described in

Gustafsson et al. (2001). One of the reasons for this

is to reduce the computational cost. In this work, all

analyzes are carried out in a resolution either three or

six times lower than the original resolution, i.e. a grid

mesh of 48 km or 96 km. This means that the oversampled

part of the ECMWF vorticity field is never used.

Second, The Jk term itself is truncated to an even lower

resolution as described in Section 5.2.

5.2. Tuning and truncation of the Jk term

In Section 4.3, a scaling of the standard deviation sls in the

operator Lls [eq. (10)] was mentioned. The purpose of this

scaling is to adjust the weight for the Jk-constraint in

relation to the other terms in the cost-function. In the

HIRLAM variational analysis code, a similar scaling is

applied to the background error standard deviation to

adjust the weight of the Jb term in relation the observation

term Jo. The tuning factor, here called a, is applied as such:

rscaled
ls ¼

ffiffiffi
a
p

rls

and the actual tuning procedure in this study is rather

ad hoc. A few different values of scaling-factors, a�1, 5,

10, 100, were applied on a 3D-Var test case with

J�Jb�Jo�Jk and the behaviour of the cost-function,

and the individual terms separately, during minimisation,

were studied. a�100 gave Jk no weight at all, while a�1

made Jk too dominating. With a�5 and a�10 the Jk
and Jo terms both minimised smoothly. a�5 however

gave a more distinct minimisation of the Jk term without

losing the fit towards observations. Therefore a�5 was

used throughout all experiments in this study.

The Jk term is also truncated at k*�45, wave length

around 230 km, to make sure only large scales are

penalised. In terms of low-resolution increments, described

in Section 5.1, k*�45 corresponds to a resolution about

seven times lower than the original resolution.

5.3. 3D-Var single case test

As a first step, we perform a 3D-Var analysis with only

the background and Jk as constraints, i.e. J�Jb�Jk.
The date of the single case test was 22 October 2008 at

06UTC, and both xb and fls are �06 h forecasts from the

previous cycle.

The analysis converges in four iterations, not shown,

and the resolution was 48 km, i.e. three times lower than

the original resolution but the Jk term was truncated at

k*�45 as mentioned in the previous section. Both the

first guess xb and analysis xa are then compared with

the host model field xls. This is done by computing Root

Mean Square (RMS) values in gridpoint space for (xb�xls)
and (xa�xls) for the upper air variables z, u, y, T, q. The

differences are computed for every vertical level and

are presented as profiles in Fig. 8.
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Because Jk contains vorticity only, with no cross-

correlations to any other variables, the analysed vorticity

field must be closer to ECMWF than the first guess,

otherwise, there would be something wrong with the

implementation.

We now see in the upper left plot in Fig. 8 that the

analysed vorticity field is clearly closer to ECMWF

compared with the first guess. So the Jk implementation

seems to do what it is supposed to. Differences in the other

variables are produced by HIRLAM’s internal balances via

the B matrix and do therefore not have to be closer to

ECMWF.

It is also interesting to investigate how the host model

constraint acts on different scales. For simplicity, we only

look at the vorticity field and compare the complex spectral

coefficients of the differences f̂b � f̂ls

� �
and f̂b � f̂ls

� �
.

As explained in Section 4.1, these differences are repre-

sented as bi-Fourier series as shown in eq. (14), and each

wave-number pair (k, l) is linked to the total wave-number

k* [eq. (16)].

To be able to visualise these difference fields they

have been expressed as 1-D arrays over k*. Each element is

the average of the absolute values of all spectral coefficients

with wave-number pairs (k, l) that are linked to the same k*.
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In Fig. 9, the top figure shows the averaged 1-D spectrum

of the difference f̂b � f̂ls

� �
as a full line and f̂b � f̂ls

� �
as a

dotted line. It can now be seen that the analysed vorticity

is drawn towards ECMWF on all scales where Jk is active.

The size of the increments is also shown in the middle of

Fig. 9. This plot shows the average absolute value of the
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vorticity increments df̂ at the last iteration which corre-

sponds to the difference between the full and dotted line in

the top plot in Fig. 9.

The largest increments are introduced at k*�2�8,
peaking at 5 and thereafter slowly decreases until k*�45

where it becomes zero.

However, the relative size of the increments is rather

uniformly distributed over the spectrum as shown in the

bottom plot of Fig. 9.

Now we have verified that the implementation of the

Jk term draws the analysis closer to the host model

(ECMWF) vorticity field, and that the largest increments

are introduced on the longest scales.

6. Forecast impact

6.1. Analysis setup

A 4D-Var setup with two outer loops was chosen for

the forecast impact experiment in order to be close to

what is used operationally at SMHI.

Two outer loops in HIRLAM means that the inner

loop begins in a coarse resolution and performs a number

of iterations. Then, as an intermediate step, the control

vector is saved and a temporary analysis file written from

which a new, non-linear trajectory is calculated with the

forecast model to make a re-linearization of the observa-

tion operators and for the tangent-linear model. The

second inner loop then continues in a higher resolution to

finish the analysis.

In HIRLAM the 4D-Var time-window is 93 h around

the nominal analysis time and the first outer loop uses

the �03 h forecast from the previous cycle as first

guess. Since the control vector is updated and the cost-

function gradient is calculated at the beginning of the

time-window it is appropriate to also use a �03 h fore-

cast for the host model constraint.

The first loop is carried out with 96 km resolution

(six times lower than original) for a maximum of 60

iterations, and the second loop is carried out in 48 km

resolution for a maximum of 30 iterations.
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6.2. Experiment period and observation usage

The model was run up to �48 h every 6th hour from

24 January 00UTC to 25 February 2009 at 18UTC,

i.e. 33 d. For simplicity, only conventional observations

were used in the data-assimilation. Conventional observa-

tion types include SYNOP, SHIP, BOUY, TEMP, PILOT

and AIRCRAFT.

Two sets of assimilation experiments were carried out

throughout the 33-d period:

� ref � reference run. Only observations used in the

analysis.

� jk_active � same as reference but with the host

model constraint activated in data-assimilation.

6.3. 4D-Var minimisation case

As in the 3D-Var singe case test, it is interesting to see the

cost-function behaviour for a 4D-Var case with observa-

tions. One date in the impact experiment was chosen

arbitrarily, 24 January 2009 at 12UTC, and studied. The

cost-function contains three terms Jb, Jo and Jk and

each part is plotted separately, together with the total

value Jtot in Fig. 10.

It is important to note that the cost-function values

of the Jb and Jk terms are resolution dependent. Jb is

the scalar product of the control vector, Jb ¼ v̂T v̂, and

similarly the Jk value is the scalar product described in

eq. (12). These vectors are thus longer in the 2nd outer

loop. At the same time, the horizontal spectral density,

lb and lis, undergoes a resolution-dependent scaling

described in Section 4.3, as well as the coefficients of the

spectral fields. These three factors combined, cause the

cost-function values of Jb and Jk to make a discontinuous

jump between the 1st and 2nd outer loops. Because of

this discontinuity, the decrease of the cost-function

value should be compared with the initial value of each

loop.

In Fig. 10 we see that the total cost-function value, as

well as the observation term Jo, decreases and converges in

both loops, while Jk decreases and converges, already in the

 10

 20

 30

 40

 50

 60
 0  0.5  1  1.5  2  2.5  3

M
od

el
 le

ve
l

[s-1]*109

Vorticity

RMS(xb-xls)
RMS(xa-xls)

 10

 20

 30

 40

 50

 60
 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

M
od

el
 le

ve
l

[K]

Temperature

RMS(xb-xls)
RMS(xa-xls)  10

 20

 30

 40

 50

 60
 0  1  2  3  4  5  6  7  8

M
od

el
 le

ve
l

[kg/kg]*107

Specific humidity

RMS(xb-xls)
RMS(xa-xls)

 10

 20

 30

 40

 50

 60
 1.5  2  2.5  3  3.5  4  4.5  5  5.5  6

M
od

el
 le

ve
l

[m/s]

Wind

u RMS(xb-xls)
u RMS(xa-xls)
v RMS(xb-xls)
v RMS(xa-xls)

Fig. 8. Analysis impact on upper air fields for a test case using 3D-Var and only the background and host model constraints,

i.e. J ¼ Jb þ Jk and thus no observations. Full line: RMS difference between xb and xls. Dotted line: RMS difference between xa and xls. xb
is the background and first guess HIRLAM field and xls is the ECMWF �06 h forecast used as constraint in Jk. Notice that the inclusion of
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1st loop, and is then almost constant in the 2nd. It is

possible that the reason for this is that Jk only acts on

large scales which converges faster. The main conclusion

from Fig. 10 is that the analysis draws closer to both

observations and Jk simultaneously.

Root Mean Square differences for this particular case,

as described in Section 5.3 and Fig. 8, also show that

the analysed vorticity is clearly closer to ECMWF (not

shown).

6.4. Observation verification results

Forecasts were verified by computing mean and RMS

errors against all available SYNOP and radiosonde sta-

tions in the area. In this case it adds up to around 2000

SYNOP and 175 radiosonde stations.

For surface parameters like 2 m temperature, humidity

and 10m wind the impact was neutral. Mean sea level

pressure showed a clear positive impact, Fig. 11. Upper air

parameters, computed against radiosondes, also had a

clearly reduced RMS error for the jk_active experiment

for temperature, wind, geopotential and specific humidity.

Fig. 12 shows vertical profiles of mean and RMS errors of

temperature calculated at midnight, 00UTC and noon,

12UTC.

6.5. One case for illustration

Before making the concluding remarks, we also compare

one case in the forecast experiment period and see what the

differences looks like. The date was chosen from a time-

series of RMS errors of �24 h forecasts of surface
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As mentioned in Section 6.3, the resolution dependency of Jb and Jk is clearly shown here.
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pressure, Fig. 13. Around 30 January 2009, the RMS errors

of �24 h forecasts differed with approximately 1.0 hPa

between the experiments, with advantage to the jk_active

experiment. Therefore the 12UTC run from 29 January

was chosen for the study since the �24 h fore-

cast from that time is valid on 30 January. We are thus
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5 d into the experiment period and the two experi-

ments have evolved separately through a number of data-

assimilation cycles and forecast integrations. One cannot

expect large-scale differences only just because Jk acts

on large scales. The non-linear forecast integration can

generate differences on all scales.

Figure 14 shows the analyzes of the mean sea level

pressure (MSLP) fields, from the experiment (jk_active)

and reference (ref) runs, and the difference between them.

The overall large-scale synoptic features are quite similar

with an intense low at the coast of Newfoundland, and a

high pressure system to the south-east, over the Atlantic. A

large trough stretches from Greenland to the south-east

with a low-pressure system just to the West of Ireland.

There is also another low-pressure minima near Iceland.

Then there is a massive high pressure over northern Russia

with a ridge that stretches to the south-west into Scandi-

navia. The difference map reveals that the most noticeable

differences are associated with the low-pressure system to

the West of Ireland. A closer look at the MSLP fields

shows that it is the shape of the low-pressure system that is

different, and that the low is bit deeper in the experiment

(jk_active).

When this is integrated forward in time we see that it is a

blocking high pressure over Russia/Scandinavia, and the

low to the West of Ireland moves straight to the North

while the low outside of Newfoundland moves to the East.

After 24 h, Fig. 15, the low originally to the West of Ireland

is located near Iceland. The differences have grown in both

spatial scale and magnitude and are still associated with the

low-pressure system near Iceland. If we compare the MSLP

fields we see that it is the shape and the depth of the low

that have changed. The low in the reference run is now

deeper and more intense than the low in the (jk_active)

experiment. This low has thus developed differently in

the experiments. In the reference run, the low moved

northwards and intensified while the low in (jk_active)

experiment moved to the North and weakened a bit.

7. Summary and concluding remarks

In this paper, we have described and tested a method to

assimilate the host model information (ECMWF) into a

regional NWP model (HIRLAM). The vorticity field from

the host model was chosen to act as a constraint in the

regional model variational analysis. For simplicity, the host

model vorticity constraint was assumed to be univariate,

i.e. no cross-correlations to any regional model variables or

observations. This, along with the characteristics of vorti-

city in the statistical balance, led to an error covariance

matrix that could be made diagonal by using the horizontal

spectral densities and vertical eigenmodes.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

24 Jan 31 Jan 07 Feb 14 Feb 21 Feb 28 Feb
 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

P
re

ss
ur

e 
[h

P
a]

N
o 

ca
se

s

Date

Selection: ALL   2068 stations
 Surface pressure

 At {00,06,12,18} + 24  Window:  6h

RMSE ref
RMSE jk_active

BIAS ref
BIAS jk_active

CASES

Fig. 13. Time-series of surface pressure �24 h forecast errors compared with observations. The two lines at the top show the RMS

errors, and the ones at the bottom the mean error. Full line: reference experiment (i.e. the host model constraint is not activated. Dotted

line: same as reference except that Jk is now actively used.

ASSIMILATING HOST MODEL INFORMATION INTO A LIMITED AREA MODEL 15



A forecast experiment of 33 d has given very promising

results with reduced RMS errors of upper air forecast fields

compared with radiosonde observations as well as mean

sea level pressure forecast fields compared with synop

observations.

The study clearly indicates that the host model informa-

tion is important to include when determining the initial

condition.
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29 January 2009 12UTC, thus valid at 30 January 2009 12UTC.
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