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ABSTRACT

Covariance inflation and localisation are two important techniques that are used to improve the performance

of the ensemble Kalman filter (EnKF) by (in effect) adjusting the sample covariances of the estimates in the

state space. In this work, an additional auxiliary technique, called residual nudging, is proposed to monitor

and, if necessary, adjust the residual norms of state estimates in the observation space. In an EnKF with

residual nudging, if the residual norm of an analysis is larger than a pre-specified value, then the analysis is

replaced by a new one whose residual norm is no larger than a pre-specified value. Otherwise, the analysis is

considered as a reasonable estimate and no change is made. A rule for choosing the pre-specified value is

suggested. Based on this rule, the corresponding new state estimates are explicitly derived in case of linear

observations. Numerical experiments in the 40-dimensional Lorenz 96 model show that introducing residual

nudging to an EnKF may improve its accuracy and/or enhance its stability against filter divergence, especially

in the small ensemble scenario.
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1. Introduction

The ensemble Kalman filter (EnKF) (Evensen, 1994;

Burgers et al., 1998; Houtekamer and Mitchell, 1998;

Anderson, 2001; Bishop et al., 2001; Pham, 2001; Hoteit

et al., 2002; Whitaker and Hamill, 2002) is an efficient

algorithm for data assimilation in high-dimensional

systems. Because of its runtime efficiency and simplicity

in implementation, it has received ever-increasing attention

from researchers in various fields. In many applications of

the EnKF, due to limited computational resources, an

EnKF can only be run with an ensemble size much smaller

than the dimension of the state space. In such circum-

stances, problems often arise, noticeably on the quality of

the sample covariances, including rank-deficiency, under-

estimation of the covariance matrices (Whitaker and

Hamill, 2002; Sacher and Bartello, 2008), and spuriously

large cross-variances between independent (or uncorre-

lated) state variables (Hamill et al., 2001). To mitigate

these problems, it is customary to introduce two auxiliary

techniques, covariance inflation (Anderson and Anderson,

1999) and localisation (Hamill et al., 2001), to the EnKF.

On the one hand, covariance inflation increases the

estimated sample covariances in order to compensate for

the effect of underestimation, which also increases the

robustness of the EnKF as reported by Luo and Hoteit

(2011). On the other hand, covariance localisation intro-

duces a ‘distance’-dependent tapering function to the

elements of the sample covariances and smoothes out

the spuriously large values in them. In addition, covariance

localisation also increases the ranks of the sample

covariances (Hamill et al., 2009).

Both covariance inflation and localisation are techniques

that in effect adjust the sample covariances in the state

space. Since data assimilation is a practice of estimation

that incorporates information from both the state and

observation spaces, it would be natural for one to make use

of the information in the observation space to improve the

performance of an EnKF.

In this study we propose such an observation-space-

based auxiliary technique, called residual nudging, for the

EnKF. Here, a ‘residual’ is a vector in the observation

space and is defined as the projection of an analysis mean

onto the observation space subtracted from the corre-

sponding observation. In residual nudging, our objective is

to make the vector norm of the residual (‘residual norm’

for short) no larger than a pre-specified value. This is

motivated by the observation that if the residual norm is

too large, then the corresponding analysis mean is often a

poor estimate. In such cases, it is better off to choose as the

new estimate a state vector whose residual norm is smaller.
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The method presented in this work is close to the idea of

Van Leeuwen (2010), in which a nudging term is added to

the particle filter so that the projections of the particles

onto the observation space are drawn closer to the

corresponding observation, and the particles themselves

are associated with almost equal weights. By doing so, the

modified particle filter can achieve a remarkably good

performance using only 20 particles in the chaotic 40-

dimensional Lorenz-96 (L96) model (Lorenz and Emanuel,

1998), while traditional methods may need thousands of

particles (Van Leeuwen, 2010). Other similar, residual-

related methods were also found in the literature, for

example, see Anderson (2007, 2009) and Song et al. (2010).

Anderson (2007, 2009) suggested adaptive covariance

inflation schemes in the context of hierarchical ensemble

filtering. There the inflation factor l is considered as a

random variable (with a presumed initial prior distribution)

and in effect adjusts the projection of the background

(co)variances onto the observation space.1 With an incom-

ing observation, the prior distribution is updated to the

posterior one based on Bayes’ rule, while the residual

affects the shape of the posterior distribution of l. On the

other hand, Song et al. (2010) considered the idea of

replacing an existing analysis ensemble member by a new

one, in which the residual plays a role in generating the new

ensemble member.

Our main purpose is to use residual nudging as a

safeguard strategy, with which the projections of state

estimates onto the observation space, under suitable

conditions, are guaranteed to be within a pre-specified

distance to the corresponding observations. We will discuss

how to choose the pre-specified distance and construct

the (possibly) new state estimates accordingly in case of

linear observations. In this work, the ensemble adjustment

Kalman filter (EAKF) (Anderson, 2001) is adopted for

the purpose of demonstration, while the extension to other

filters can be done in a similar way. Through numerical

experiments in the L96 model, we show that the EAKF

equipped with residual nudging (EAKF-RN) is more

robust than the normal EAKF. In addition, the accuracy

of the EAKF-RN is comparable to, and sometimes (much)

better than, that of the normal EAKF.

This work is organised as follows. Section 2 reviews the

filtering step of the EAKF, introduces the concept of

residual nudging, and discusses how it can be implemented

in the EAKF. Section 3 investigates the effect of residual

nudging on the performance of the Kalman filter (KF) in

a linear/Gaussian system, which aims to provide some

insights of how residual nudging may affect the behaviour

of an already optimal filter. Section 4 extends the investiga-

tion to the Lorenz 96 model, in which we examine the

performance of the EAKF-RN in various scenarios and

compare it with the normal EAKF. Section 5 discusses

possible extensions of the current study and concludes the

work.

2. Ensemble Kalman filtering with residual

nudging

Suppose that at the k-th assimilation cycle, one has a

background ensemble Xb
k ¼ fxb

k;ig
n

i¼1 with n members. The

incoming observation yo
k is obtained from the following

observation system

yk ¼ Hkxk þ vk; (1)

where Hk is a matrix, and vk is the observation noise, with

zero mean and covariance Rk. For convenience of discus-

sion, we assume that the dimensions of Xk and yk are mx

and my, respectively, my5mx, and Hk has full row rank.

2.1. The filtering step of the EAKF with covariance

inflation and localisation

We first summarise the filtering step of the EAKF with

both covariance inflation and localisation. For simplicity,

here we only consider the scenario with constant covariance

inflation and localisation and refer readers to, for example,

Anderson (2007, 2009) for the details of adaptive config-

uration of the EAKF. In the context of EAKF, it is

assumed that the covariance Rk of the observation noise

is a diagonal matrix, such that one can assimilate the

incoming observation in a serial way. Following Anderson

(2007, 2009), we use a single scalar observation to de-

monstrate the assimilation algorithm in the EAKF. To this

end, in this subsection (only) we temporarily assume that

the observation vector yk�yk is a scalar random variable,

with zero mean and variance Rk. The notation of the

incoming observation thus becomes yo
k, with the dimension

my�1. The algorithm description below mainly follows

Anderson (2007).

Suppose that the i-th ensemble member xb
k;i of Xb

k con-

sists of mx elements ðxb
k;iÞj(j ¼ 1; � � � ;mx) such that

xb
k;i ¼ ½ðxb

k;iÞ1; � � � ; ðxb
k;iÞmx

�T . Then the sample mean bxb
k of

Xb
k is bxb

k ¼
P

n

i¼1

xb
k;i=n. To introduce covariance inflation to

the filter, suppose that DXb
k � fDxb

k;i : Dxb
k;i ¼ xb

k;i � bxb
kg

n

i¼1

is the ensemble of deviations with respect to Xb
k and l]1

the inflation factor, then the inflated background ensemble

is Xinf
k � fx

inf
k;i : xinf

k;i ¼ bxb
k þ

ffiffiffi

k
p

Dxb
k;ig

n

i¼1 (Anderson, 2007,

2009). With covariance inflation, Xinf
k and Xb

k have the same

mean, but the sample covariance of Xinf
k is l times that

1In contrast, in residual nudging we are interested in adjusting the

projection of the background mean. Comparison and/or combina-

tion of these two strategies will be deferred to future investigations.
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of Xb
k. In what follows, we do not particularly distinguish

background ensembles with and without covariance

inflation through different notations. Instead, we always

denote the background ensemble by Xb
k, no matter whether

it is inflated or not. One can tell whether a background

ensemble is inflated by checking the value of l; for

example, l�1 means no inflation and l�1 means with

covariance inflation.

On the other hand, suppose that the projection of Xb
k

onto the observation space is Yb
k ¼ fyb

k;i : yb
k;i ¼ Hkxb

k;ig
n

i¼1,

then one can compute the sample mean ŷb
k and sample

variance p̂b
yy;k as

ŷb
k ¼ 1

n

P

n

i¼1

yb
k;i;

p̂b
yy;k ¼ 1

n�1

P

n

i¼1

ðyb
k;i � ŷb

kÞ
2
:

(2)

With the incoming observation yo
k, one updates ŷb

k and p̂b
yy;k

to their analysis counterparts, ŷa
k and p̂a

yy;k, respectively,

through the following formulae [Anderson, 2007, eqs.

(3.2)�(3.3)].

p̂a
yy;k ¼ ½ðp̂b

yy;kÞ
�1 þ R�1

k �
�1
;

ŷa
k ¼ p̂a

yy;k½ðp̂b
yy;kÞ

�1
ŷb

k þ R�1
k yo

k�:
(3)

Accordingly, one can update the projection Yb
k to its

analysis counterpart Ya
k � fya

k;i : ya
k;i ¼ yb

k;i þ dyk;ig
n

i¼1,

where the increments dyk;i with respect to yb
k;i are given by

dyk;i ¼
ffiffiffiffiffiffiffiffiffi

p̂a
yy;k

p̂b
yy;k

s

ðyb
k;i � ŷb

kÞ þ ŷa
k � yb

k;i: (4)

One can verify that the sample mean and covariance of

Ya
k are ŷa

k and p̂a
yy;k, respectively. Also note the difference

between the concepts of deviations and increments. For

distinction, we have used D to denote deviations and d to

denote increments.

After the above quantities are calculated, one proceeds

to update the background ensemble Xb
k to the analysis

of Xa
k � fxa

k;i : xa
k;i ¼ xb

k;i þ dxk;ig
n

i¼1, where the increment

dxk;i with respect to the i-th background ensemble member

xb
k;i is an mx dimensional vector, that is, dxk;i ¼
½ðdxk;iÞ1; � � � ; ðdxk;iÞmx

�T , where the j-th element ðdxk;iÞj of

dxk;i is given by

ðdxk;iÞj ¼ ðp̂
j
xy;k=p̂b

yy;kÞdyk;i ; j ¼ 1; � � � ;mx; (5)

with p̂
j
xy;k being the sample cross-variance between all

the j-th elements of the ensemble members of Xb
k, and the

projection ensemble Yb
k ¼ fyb

k;ig
n

i¼1, that is,

p̂
j
xy;k ¼

1

n� 1

X

n

i¼1

½ðxb
k;iÞj � ðbxb

kÞj �½yb
k;i � ŷb

k�: (6)

With relatively small ensemble sizes, eq. (6) often results

in spuriously large sample cross-variances (Hamill et al.,

2001). To tackle this problem, one may introduce covar-

iance localisation (Hamill et al., 2001) to the EAKF, in

which the main idea is to multiply p̂
j
xy;k in eq. (5) by a

‘distance’-dependent tapering coefficient gij � 1 (Anderson,

2007, 2009). We will discuss how to compute hij in the

experiments with respect to the L96 model.

After obtaining the analysis ensemble Xa
k, one computes

the analysis mean bxa
k ¼

P

n

i¼1

xa
k;i=n (analysis for short) and

uses it as the posterior estimate of the system state.

Propagating Xa
k forward through the dynamical model,

a background ensemble at the next assimilation time is

obtained, and a new assimilation cycle starts, and so on.

2.2. Residual nudging

As will be shown later, the EAKF may suffer from filter

divergence in certain circumstances, even when it is

equipped with both covariance inflation and localisation.

To mitigate filter divergence, intuitively one may choose to

adjust the estimate bxa
k and move it closer toward the truth

xtr
k . In practice, though, xtr

k is normally unknown, thus it is

infeasible to apply this state-space-based strategy. In what

follows, we introduce a similar, but observation-space-

based strategy, in which the main idea is to monitor, and,

if necessary, adjust the residual norm of the estimate. For

this reason, we refer to this strategy as residual nudging.

By definition, the residual with respect to the analysis

mean bxa
k is bra

k � Hkbx
a
k � yo

k. We also define the 2-norm of a

vector z as

jjzk2 �
ffiffiffiffiffiffiffi

zT z
p

: (7)

The objective in residual nudging is the following.

We accept bxa
k as a reasonable estimate if its residual norm

jjbra
k k2 is no larger than a pre-specified value, for instance,

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

traceðRkÞ
p

, with b�0 being called the noise level

coefficient hereafter (the reason in choosing this pre-

specified value is explained later). Otherwise, we consider

bxa
k a poor estimate, and thus find a replacement, for

instance, exa
k, based on the estimate bxa

k and the observation

yo
k so that the residual norm of exa

k is no larger than

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

traceðRkÞ
p

. To this end, we stress that the assumption

my5mx may be necessary in certain cases (see the later

discussion). In this work, we focus on the cases with

my5mx, which is true for many geophysical problems.

The objective of residual nudging can be achieved as

follows. First of all, we compute a scalar ck 2 ½0; 1�, called
the fraction coefficient hereafter [cf. eq. (9a) later for the

reason], according to the formula

ck ¼ minð1; b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

traceðRkÞ
p

=jjbra
kk2Þ; (8)

ENSEMBLE KALMAN FILTERING WITH RESIDUAL NUDGING 3



where the function min(a,b) finds the minimum between

the scalars a and b. The rationale behind eq. (8) is this: if

jj bra
k k2 > b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

traceðRkÞ
p

, then we need to multiply jj bra
k k2 by

a coefficient ckB1 to reduce jj bra
k k2 to the pre-specified

value. Otherwise, we do nothing and keep jj bra
k k2 as it is,

which is equivalent to multiplying jj bra
k k2 by ck�1.

Next, we construct a new estimate exa
k by letting

exa
k ¼ ck bx

a
k þ ð1� ckÞ xo

k; (9a)

xo
k ¼ HT

k ðHkHT
k Þ
�1yo

k: (9b)

The term HT
k ðHkHT

k Þ
�1

in eq. (9b) is the Moore-Penrose

generalised inverse of Hk, such that xo
k in eq. (9b) provides

a least-square solution for the equation Hkx ¼ yo
k

(Engl et al., 2000, chapter 2). We refer to xo
k as the

observation inversion hereafter. With eq. (9), the new

residualera
k ¼ Hkex

a
k � yo

k ¼ ckbr
a
k so that jj era

k k2 ¼ ck jj bra
kk2 �

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

traceðRkÞ
p

according to eq. (8).

In residual nudging we only attempt to adjust the analysis

mean bxa
k of the EAKF, but not its covariance. To this end,

let the analysis ensemble be Xa
k ¼ fxa

k;i : xa
k;i ¼ bxa

k

þDxa
k;ig

n

i¼1, where the deviations Dxa
k;i ¼ xa

k;i � bxa
k. We then

replace the original analysis mean bxa
k by exa

k and change the

analysis ensemble to eXa
k ¼ fexa

k;i : exa
k;i ¼ exa

k þ Dxa
k;ig

n

i¼1.

Therefore, in comparison with the normal EAKF, the

EAKF with residual nudging (EAKF-RN for short) just

has additional steps in eqs. (8) and (9), while all the other

procedures remain the same. In doing so, residual nudging is

compatible with both covariance inflation and localisation.

2.3. Discussion

Choosing the pre-specified value in the form of

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

traceðRkÞ
p

is motivated by the following consideration.

Let xtr
k be the truth such that yo

k ¼ Hkxtr
k þ vk. Then

era
k ¼ Hkex

a
k � yo

k ¼ Hkðexa
k � xtr

k Þ � vk and by the triangle

inequality

jjera
kk2 � jjHkðexa

k � xtr
k Þjj2 þ jjvkk2: (10)

For a reasonably good estimate exa
k, we expect that the

magnitude of Hkex
a
k �Hkxtr

k should not substantially exceed

the observation noise level. On the other hand, we have

ðEjj vkk2Þ
2 � Ejj vk k

2
2 ¼ traceðEðvkvT

k ÞÞ ¼ traceðRkÞ, thus

the expectation Ejj vk k2 of the norm of the observation

noise is (at most) in the order of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

traceðRkÞ
p

. One may thus

use
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

traceðRkÞ
p

to characterise the noise level. By requiring

that a reasonably good estimate has jjHkðexa
k � xtr

k Þk2 in the

order of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

traceðRkÞ
p

(or less), one comes to the choice in

the form of b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

traceðRkÞ
p

. The criterion in choosing the

above threshold is very similar to that in certain quality

control algorithms (called check of plausibility, see, for

example, Gandin, 1988, for a survey), in which one is

assumed to have prior knowledge about, for instance,

the mean �ysand variance ss of a scalar observation ys.

In quality control, ys is often assumed to be a Gaussian

random variable so that for a measured observation yo
s , if

the ratio jyo
s � �ysj=rs is too large, then yo

s is discarded, or

is at least deemed suspected (Gandin, 1988). The main

differences between residual nudging and quality control

are the following. While quality control checks the

plausibility of an incoming observation, residual nudging

checks the plausibility of a state estimate and suggests a

replacement if the original state estimate does not pass the

test. Moreover, as long as the 2-norm is used, the

expectation Ejj vkk
2
2 is always traceðRkÞ, independent of

the distribution of vk. This independence, on the one hand,

implies that the inequality in eq. (10), hence the threshold

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

traceðRkÞ
p

, holds without requiring the knowledge of the

distribution of Hkðexa
k � xtr

k Þ. On the other hand, the

absence of the knowledge of the distribution means that

less statistical information is gained in choosing the

threshold b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

traceðRkÞ
p

. For instance, one may not be

able to assign a statistical meaning to b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

traceðRkÞ
p

, nor

obtain a confidence (or significance) level in accepting (or

rejecting) a state estimate. Finally, it is also possible for one

to adopt another distance metric, for example, the 1- or �-

norm, for which the inequality in eq. (10) still holds. In

such circumstances, the expectation, Ejjv k2
1or Ejj vkk

2
1,

may not be equal to traceðRkÞ anymore so that one may

need to choose a threshold different from b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

traceðRkÞ
p

.

Despite the stated differences, we expect that residual

nudging can be used in conjunction with observation

quality control, although this is not pursed in the current

study.

Even though the noise level coefficient b in residual

nudging is chosen to be time-invariant, the resulting

fraction coefficient ck, in general, changes with time

according to eq. (8). The coefficient b affects how the new

analysis exa
k combines the original one bxa

k and the observation

inversion xo
k. This can be seen from eqs. (8) and (9a).

Because ck 2 ½0; 1�, the new analysis exa
k in eq. (9a) is a convex

combination of bxa
k and xo

k, that is, an estimate somewhere in-

between the original estimate bxa
k and the observation

inversion xo
k, depending on the value of ck. If one chooses

a large value for b, or if for a fixed b the original residual

norm bra
k is sufficiently small, then the fraction coefficient

ck ! 1 according to eq. (8), thus exa
k ! bxa

k according to eq.

(9a). Therefore, exa
k will be a good estimate if bxa

k is so, but

may not be able to achieve a good estimation accuracy when

bxa
k itself is poor. On the other hand, if one chooses a very

small value for b, or if for a fixed b the original residual

norm bra
k ! þ1 (e.g. with filter divergence), then ck ! 0

and exa
k ! xo

k. In this case, the estimate exa
k is calculated

mainly based on the information content of the observation

yo
k and may result in a relatively poor accuracy. This is
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largely because of (1) the presence of the observation noise

vkin eq. (1), and (2) the ignorance of the prior knowledge of

the model dynamics. As a result, pushing the projection of

state estimates very close to noisy observations may have

some negative consequences. For instance, in geophysical

applications, dynamical balances of the numerical models

may not be honoured so that the estimation errors may be

relatively large. However, using xo
k as the estimate may be a

relatively safe (although conservative) strategy against filter

divergence. In the sense of the above discussion, the choice

of b reflects the extent to which one wants to achieve the

trade-off between a filter’s potential accuracy and stability

against divergence. This point is further demonstrated

through some further experiments.

Some numerical issues related to the computation of the

observation inversion xo
k are discussed in order. One is the

existence and uniqueness of the observation inversion.

Under the assumptions that my5mx and that Hk is of

full row rank, the observation inversion, as a solution of

the equation Hkx ¼ yo
k, does exist (Meyer, 2001, chapter 4).

Finding a concrete solution, however, is in general an

under-determined problem; hence, the solution is not

unique unless my�mx. This point can be seen as follows.

When myBmx, the null space S
N of Hk contains non-zero

elements; that is, there exist elements xn 2 S
N , xn 6¼ 0, such

that Hkxn ¼ 0 (Meyer, 2001, chapter 4). As a result, given

an observation inversion xo
k, xo

k þ xn is also a solution of the

equation Hkx ¼ yo
k for any xn 2 S

N . Therefore, which

solution one should take is an open problem in practice.

In the context of state estimation, it is desirable to choose a

solution that is close to the truth xtr
k , which, unfortunately,

is infeasible without the knowledge of xtr
k . As a trade-off,

one may choose as a solution some estimate that possesses

certain properties. The Moore-Penrose generalised inverse

xo
k given in eq. (9b) is such a choice, which is the unique,

and ‘best-approximate’, solution in the sense that it has the

minimum 2-norm among all least-squares solutions (Engl

et al., 2000, Theorem 2.5).

It is also worth mentioning what may happen if our

assumptions, that my5mx and that Hk is of full row rank,

are not valid. In the former case, with my�mx, the

equation Hkx ¼ yo
k is over-determined, meaning that there

may be no solution that solves the equation exactly. One

may still obtain an approximate solution by recasting the

problem of solving the linear equation as a linear least-

squares problem, which yields the unique, least-squares

solution in the form of xo
k ¼ ðHT

k HkÞ
�1HT

k yo
k, similar to (but

different from) eq. (9b). Because Hkxo
k � yo

k may not be 0, in

general, one may thus not be able to find a new estimate exa
k

with a sufficiently small (e.g. zero) residual. Therefore, the

inequality jjera
kk2 � b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

traceðRkÞ
p

may not hold for some

sufficiently small b. This restriction is consistent with the

nature of over-determined problems (i.e. no exact solution).

It does not necessarily mean that residual nudging cannot

be applied to an over-determined problem but instead

implies that the noise level coefficient b should entail a

lower bound that may be larger than 0.

In the latter case, without loss of generality, suppose that

my5mx and Hk is not of full row rank, then the matrix

product HkHT
k is singular so that it may be numerically

unstable to compute its inverse. In such circumstances, one

needs to employ a certain regularisation technique to

obtain an approximate, but stable, solution. For instance,

one may adopt the Tikhonov regularisation (Engl et al.,

2000, chapter 4) so that the solution in eq. (9b) becomes

xo
k ¼ HT

k ðHkHT
k þ aIÞ�1yo

k, where a is the regularisation

parameter chosen according to a certain criterion. The

observation inversion in eq. (9b) can be treated as a special

case of the Tikhonov regularisation solution with a�0,

while the concept of residual nudging is also applicable to

the general cases with a"0 following our deduction in

section 2.2.2 In this sense, the state estimate of the EAKF-

RN can be considered as a hybrid of the original EAKF

estimate and the (regularised) least-squares solution of the

equation Hkx ¼ yo
k. This point of view opens up many

other possibilities, given the various types of regularisation

techniques in the literature (see, e.g., Engl et al. 2000).

The computation of the matrix product HT
k ðHkHT

k Þ
�1

is a

non-trivial issue in large-scale problems and is worthy of

further discussion.3 In general cases where the observation

operator Hk is time varying, the computational cost is

comparable to that in evaluating the Kalman gain. In terms

of numerical computations, one possible choice is to apply

QR factorisation (Meyer, 2001, chapter 5) to HT
k such that

HT
k is factorised as the product of an orthogonal, mx�mx

matrix Q and an upper-triangular, mx�my matrix U,

where for notational convenience we drop the time index k

in these matrices. Note that QQT�QT Q �Imx
, and

U ¼ ½UT
my
; 0T
ðmx�myÞmy

�T , with Imx
being the mx-dimensional

identity matrix, 0ðmx�myÞmy
the ðmx �myÞ �my zero matrix,

and Uma non-singular, upper-triangular, my�mx matrix

in which all elements below the main diagonal are zero.

With some algebra, it can be shown that the product

HT
k ðHkHT

k Þ
�1 ¼ Q ½U�1

my
; 0ðmx�myÞmy

�T ¼ Qmx my
ðU�1

my
ÞT , where

Qmx my
is a matrix that is comprised of the first my columns

of Q, and the inverse U�1
my

of the upper-triangular matrix

2In general cases with a"0, it can be shown that a sufficient

condition to achieve residual nudging is, for example,

ckðjjbra
kk2 � jjyo

kk2Þ � b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

traceðRkÞ
p

� jjyo
kk2, with the (possibly)

new estimate exa
k again given by eq. (9a).

3For the experiments to be presented later, since the dimensions of

the dynamical models are relatively low, we choose to directly

compute the matrix product HT
k ðHkHT

k Þ
�1
. The matrix inversion

ðHkHT
k Þ
�1

is done through the MATLAB (R2011b) built-in

function INV.
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Umy
can be computed element-by-element in a recursive

way (called back substitution, Meyer 2001, chapter 5). In

certain circumstances, further reduction of computational

cost and/or storage can be achieved, for instance, when

Hk is sparse (Meyer, 2001, chapter 5) or when Hk is time

invariant, for example, in a static observation network. In

the latter case, one only needs to evaluate the product

HT
k ðHkHT

k Þ
�1

once and for all.

3. Numerical results in a linear scalar system

Here we use a scalar, first-order autoregressive (AR1)

model driven by Gaussian white noise, to investigate the

performance of the KF (Kalman, 1960), and that of the KF

with residual nudging (KF-RN), in which residual nudging

is introduced to the posterior estimate of the KF in the

same way as in the EAKF. The motivation in conducting

this experiment is as follows. With linear and Gaussian

observations, the KF provides the optimal estimate in the

sense of, for instance, minimum variance (MV) (Jazwinski,

1970). Therefore, we use the KF estimate as the reference

to examine the behaviour of the KF-RN under different

settings, which reveals how residual nudging may affect the

performance of the KF.

The scalar AR1 model is given by

xkþ1 ¼ 0:9xk þ uk; (11)

where uk represents the dynamical noise and follows the

Gaussian distribution with zero mean and variance 1 and is

thus denoted by uk�N (uk : 0,1). The observation model is

described by

yk ¼ xk þ vk; (12)

where vk�Nðvk : 0; 1Þ is the observation noise and is

uncorrelated with uk.

In the experiment, we integrate the AR1 model forward

for 10 000 steps (integration steps hereafter), with the initial

value randomly drawn from the Gaussian distribution

N(0,1), and the associated initial prior variance being 1.

The true states (truth) fxkg
10000
i¼1 are obtained by drawing

samples of dynamical noise from the distribution N(0,1),

adding them to xk to obtain xk�1 at the next integration

step, and so on. The synthetic observations yo
k are obtained

by adding to model states xk samples of observation noise

from the distribution N(0,1). For convenience of compar-

ison, we generate and store synthetic observations at every

integration step. However, we choose to assimilate them for

every Sa integration steps, with Sa 2 f1; 2; 4; 8g, in order to

investigate the impact of Sa on filter performance. In doing

so, data assimilation with different Sa, or other experiment

settings (e.g. the noise level coefficient b in the KF-RN),

will have identical observations at the same integration

steps. For convenience, hereafter we may sometimes use the

concept ‘assimilation step’, with one assimilation step equal

to Sa integration steps. In addition, we may also call Sa the

assimilation step when it causes no confusion.

In the KF-RN, we also choose to vary the noise level

coefficient b, with b �{0.01,0.05,0.1,0.5,1,2,3,4,6,8,10}, in

order to investigate its effect on filter performance. In order

to reduce statistical fluctuations, we repeat the experiment

20 times, each time with randomly drawn initial value,

samples of dynamical and observation noise (so that the

truth and the corresponding observations are produced at

random). Except for the introduction of residual nudging,

the KF-RN has the same configurations and experiment

settings as the KF.

We use the average root mean squared error (average

RMSE) to measure the accuracy of a filter estimate. For an

mx-dimensional system, the RMSE ek of an estimate

bxk ¼ ½x̂k;1; � � � ; x̂k;mx
�T with respect to the true state vector

xtr
k ¼ ½xtr

k;1; � � � ; xtr
k;mx
�T at time instant k is defined as

ek ¼ jj bxk � xtr
k k2=

ffiffiffiffiffiffi

mx

p
: (13)

The average RMSE êk at time instant k over M

repetitions of the same experiment is thus defined as

êk ¼
P

M

j¼1

e
j
k=M(M�20 in our setting), where e

j
kdenotes the

RMSE at time instant k in the j-th repetition of the

experiment. We also define the time mean RMSE ê as

the average of êk over the assimilation time window with

N integration steps, that is, ê ¼
P

N

i¼1

êk=N(N�10 000 here).

We also use the spread to measure the estimated un-

certainty associated with an estimation. To this end, let bPk

be the estimated covariance matrix with respect to the

estimate bxk. Then the spread sk at time instant k is defined as

sk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

traceðbPkÞ=mx

q

: (14)

Table 1. Time mean RMSEs and spreads of the KF, and the

minimum time mean RMSEs (over different b) of the KF-RN, in

the AR1 model with different Sa

Sa�

1 2 4 8

KF

RMSE 0.6184 0.8260 1.0592 1.2997

Spread 0.7729 1.0413 1.3419 1.8241

KF-RN

Min RMSE 0.6183 0.8259 1.0592 1.2997

Achieved at b�2 b�2 b]2 b]2

The KF and KF-RN have identical time mean spreads; therefore,

only those of the KF are presented. In the bottom row, we also

report the ranges of b in which the minimum time mean RMSEs of

the KF-RN are achieved.

6 XIAODONG LUO AND IBRAHIM HOTEIT



The average spread ŝk and the time mean (average) spread ŝ

are defined in a way similar to their counterparts with

respect to the RMSE.

Table 1 reports the time mean RMSEs and spreads of

the KF at different assimilation steps Sa. The time mean

RMSE of the KF grows as Sa increases, indicating that the

performance of the KF deteriorates as the assimilation

frequency decreases. The time mean spread of the KF

exhibits a similar tendency as Sa increases. However,

the time mean spread tends to be larger than the time

mean RMSE, indicating that the corresponding variance is

over-estimated.

Figure 1 shows the time mean RMSEs of the KF-RN

(dash�dot lines marked by diamonds), as functions of the

noise level coefficient b, at different assimilation steps Sa.

Given the different orders of magnitudes of b, we adopt the

logarithmic scale for the x-axes. Then for comparison, we

also plot the time mean RMSEs of the KF (solid lines)

at each Sa. Since the time mean RMSEs of the KF are

independent of the choice of b, they are horizontal lines in

the plots. However, the choice of b does influence the

performance of the KF-RN. As shown in all of the plots of

Fig. 1, if one adopts a small b, for instance, b�0.01, for

the KF-RN, then the resulting time mean RMSE is higher

than that of the KF. This is because such a choice may

force the KF-RN to rely excessively on the observations

when updating the prior estimates, such that the informa-

tion contents in the prior estimates are largely ignored. As

b grows, the time mean RMSE of the KF-RN decreases

and eventually converges to that of the KF when b is

sufficiently large, for instance, b]3. These results are

consistent with our expectation of the behaviour of a filter

equipped with residual nudging, as has been discussed

above in section 2.3.

It is also of interest to gain some insights of the behaviour

of the fraction coefficients ck in the KF-RNwith different b.

To this end, Fig. 2 plots two sample time series of ck in the

KF-RNwith b�0.1 (upper left panel), and b�1 (lower left

panel), respectively, together with their corresponding

histograms (right panels). For convenience of visualisation,

the assimilation time window is shortened to 1000 steps

(with the observations assimilated for every four steps). At

b�0.1, ck tends to be relatively small, with the mean value

being 0.4213 and the median 0.3027. Among the 250 ck
values, 210 of them are less than 1, meaning that residual

nudging is effective at those steps. A histogram of ck is also

shown on the upper right panel. There it indicates that ck
distributes like a U-shape, with relatively large proportions

of ck taking values that are less than 0.2, or equal to 1. On

the other hand, at b�1, ck tends to remain close to 1, with
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Fig. 1. Time mean RMSEs of the KF and the KF-RN as functions of the noise level coefficient in the AR1 model, with different Sa.
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the mean being 0.9892 and the median 1, and only 16 out of

250 ck values are less than 1. These are also manifested in the

histogram on the lower right panel, where one can see that

ck largely concentrate on 1.

In Table 1, we report the minimum time mean RMSEs

that the KF-RN can achieve by varying the value of b at

different Sa, together with the values of the b at which the

minima are obtained for specific Sa. When Sa�1,2, the

minimum time mean RMSEs of the KF-RN, both achieved

at b�2, are (very) slightly lower than the time mean

RMSEs of the KF; the time mean RMSEs of the KF-RN

become the same as those of the KF when b]3. On the

other hand, when Sa�4,8, the minimum time mean

RMSEs of the KF-RN are identical to the time mean

RMSEs of the KF and are obtained when b]2. The

reason that the KF-RN can have lower time mean RMSEs

than the ‘optimal’ KF at Sa�1,2 might be the following.

The classic filtering theory states that the KF is optimal

under the MV criterion (Jazwinski, 1970); that is, taking

the mean of the posterior conditional probability density

function (pdf) as the state estimate, the KF has the lowest

possible expectation of squared estimation error. Note that

here the expectation is taken over all possible values of the

truth (i.e. by treating the truth as a random variable).

Therefore, in principle one has to repeat the same experi-

ment for a sufficiently large number of times (with

randomly drawn truth) in order to verify the performance

of the filters under the MV criterion. For computational

convenience, though, we only repeat the experiment 20

times. Thus in our opinion the slight out-performance of

the KF-RN might be largely attributed to statistical

fluctuations.

In Table 1 we do not present the time mean spreads of

the KF-RN because they are in fact identical to those of

the KF. This is because in the KF, the forecast and

update of the (estimated) covariance matrix of the system

state are not influenced by the mean estimate of the

system state (Jazwinski, 1970). Since residual nudging

only changes the estimate of the system state (if necessary)

and nothing else, it is expected that the KF and KF-RN

share the same covariance matrix. This point, however, is

not necessarily true in the context of ensemble filtering

in a non-linear system. For instance, if the dynamical

model is non-linear, then the background covariance

at the next assimilation time is affected by the analysis

mean at the current time, such that two analysis

ensembles with different sample (analysis) means but

identical sample (analysis) covariance may result in

different sample (background) means and covariances at

the next assimilation time.
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Fig. 2. Left panels: Sample time series of the fraction coefficients of the KF-RN with b�0.1 (upper) and b�1 (lower), respectively.

Right panels: The corresponding histograms of the fraction coefficient time series.

8 XIAODONG LUO AND IBRAHIM HOTEIT



The above results suggest that it may not be very

meaningful to introduce residual nudging to a Bayesian

filter that already performs well. In practice, though, due to

the existence of various sources of uncertainties (Anderson,

2007; Luo and Hoteit, 2011), a Bayesian filter is often

suboptimal and is even likely to suffer from divergence

(Schlee et al., 1967). In such circumstances, instead of only

looking into the accuracy of a filter, it may also be desirable

to take the stability of the filter into account. Through the

experiments below, we show that equipping the EAKF

with residual nudging can not only help improve its

stability but also achieve a filter accuracy that is compar-

able to, sometimes even (much) better than, that of the

normal EAKF, especially in the small ensemble scenario.

4. Numerical results in the 40-dimensional L96

model

4.1. Experiment settings

Here we use the 40-dimensional Lorenz-96 (L96) model

(Lorenz and Emanuel, 1998) as the test bed. The governing

equations of the L96 model are given by

dxi

dt
¼ xiþ1 � xi�2

� �

xi�1 � xi þ F ; i ¼ 1; � � � ; 40: (15)

The quadratic terms simulate advection, the linear term

represents internal dissipation and F acts as the external

forcing term (Lorenz, 1996). Throughout this work, we

choose F�8 unless otherwise stated. For consistency, we

define x�1�x39, x0�x40 and x41�x1 in eq. (15) and

construct the state vector x � ½x1; x2; � � � ; x40�
T
.

We use the fourth-order Runge-Kutta method to inte-

grate (and discretise) the system from time 0 to 75, with a

constant integration step of 0.05. To avoid the transition

effect, we discard the trajectory between 0 and 25 and use

the rest for data assimilation. The synthetic observation yk

is obtained by measuring (with observation noise) every

d elements of the state vector xk ¼ ½xk;1; xk;2; � � � ; xk;40�
T
at

time instant k, that is,

yk ¼ Hdxk þ vk; (16)

where H
d is a (J�1)�40matrix such that Hdxk ¼

½xk;1; xk;1þd ; � � � ; xk;1þJd �
T
, with J�floor(39/d) being the

largest integer that is less than, or equal to, 39/d, and vkis

the observation noise following the Gaussian distribution

Nðvk : 0; IJþ1Þ, with Ij�1 being the (J�1)-dimensional

identity matrix. The elements ðHdÞpq of the matrix Hd can

be determined as follows.

ðHdÞpq ¼ 1if q ¼ ðp� 1Þ d þ 1 ; otherwiseðHdÞpq ¼ 0 ;

for p ¼ 1; � � � ; ðJ þ 1Þ; q ¼ 1; � � � ; 40. In all the experiments

below, we generate and store the synthetic observations

at every integration step but assimilate the observa-

tions for every four integration steps unless otherwise

stated.

The filters in the experiments are configured as follows.

To generate an initial background ensemble, we run the

L96 model from 0 to 2500 (overall 50 000 integration steps)

and compute the temporal mean and covariance of the

trajectory.4 We then assume that the initial state vectors

follow the Gaussian distribution with the same mean and

covariance and draw a specified number of samples to

form the background ensemble. Covariance inflation

(Anderson and Anderson, 1999) and localisation (Hamill

et al., 2001) are conducted in all the experiments. Con-

cretely, covariance inflation, with the inflation factor l, is

introduced following the discussion above in section 2.1.

Covariance localisation is conducted following Anderson

(2007, 2009), which introduces an additional parameter lc,

called the length scale (or half-width following Anderson

2007, 2009) hereafter, to the EAKF. The distance dij
between two state variables xi and xj are defined as

dij ¼ minðji � jj=40; 1� ji � jj=40Þ, and the corresponding

tapering coefficient hij [cf. the text below eq. (6)] is

determined by the fifth-order polynomial function j(dij,lc)
in Gaspari and Cohn (1999) with half-width lc. For dijB2lc,

one has 0Bhij51, and hij�0 otherwise. With both

covariance inflation and localisation, the performance of

the normal EAKF is in general comparable to the

established results with respect to the L96 model under

similar experiment setting, see, for example, Hunt et al.

(2004) and Fertig et al. (2007).

To reduce statistical fluctuations, we repeat each experi-

ment below for 20 times, each time with randomly drawn

initial state vector, initial background ensembles and

observations. Except for the introduction of residual

nudging, in all experiments the normal EAKF and the

EAKF-RN have identical configurations and experiment

settings.

4.2. Experiment results

4.2.1. Results with different observation operators. Here

we consider four different observation operators Hd, with

d�1,2,4,8, respectively. For convenience, we refer to them

as the full, 1/2, 1/4 and 1/8 observation scenarios,

respectively. The concrete configurations of the normal

EAKF and the EAKF-RN are as follows. In both filters,

the ensemble size is fixed to be 20. The half-width lc of

4Let fxkg
N

k¼1 be a set of state vectors at different time instants

which form a state trajectory from time instant 1 to N. Then the

temporal mean and covariance of the trajectory are taken as the

sample mean and covariance of the set fxkg
N

k¼1, respectively.
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covariance localisation increases from 0.1 to 0.5, each time

with an even increment of 0.1. For convenience, we denote

this setting by lc 2 f0:1 : 0:1 : 0:5g. Similar notations

will be frequently used later. The inflation factor

k 2 f1 : 0:05 : 1:25g, and the noise level coefficient b�2

in the EAKF-RN.

The upper panels of Fig. 3 shows the contour plots of the

time mean RMSEs of the normal EAKF (left) and that of

the EAKF-RN (right), in the full observation scenario, as

functions of the inflation factor l and the half-width lc.

Given a fixed l, the time mean RMSEs of both the EAKF

and EAKF-RN tend to increase as the half-width lc
increases. On the other hand, given a fixed lc, when

lc�0.1, the time mean RMSEs of both filters exhibit the

U-turn behaviour, that is, the time mean RMSEs tend to

decrease as l grows, until it reaches a certain value (1.10 for

both filters). After that, the time mean RMSEs will increase

instead as l grows further. However, when lc�0.1, the time

mean RMSEs of both filters tend to decrease as l increases

within the range of tested l. The normal EAKF achieves its

minimum time mean RMSE (0.5605) at the point

ðlc ¼ 0:1; k ¼ 1:10Þ, and the EAKF-RN also hits its mini-

mum time mean RMSE (0.5586) at the same place. In

general, the EAKF and the EAKF-RN have similar

performances at lc�0.1, but at other places the EAKF-

RN may perform substantially better than the EAKF. For

instance, at (lc�0.4, l�1.05) the time mean RMSE of the

normal EAKF is about 3.3, while that of the EAKF-RN is

about 1.6. Moreover, a filter divergence is spotted in the

normal EAKF at (lc�0.3, l�1.25) so that the contour

plot around this point is empty and indicates no RMSE

value. Filter divergence, however, is not observed in the

EAKF-RN at the same place. For clarity, here a ‘diver-

gence’ is identified as an event in which the RMSE of a

filter becomes abnormally large. More specifically, the filter

is considered divergent in the Lorenz 96 model, if its

RMSE at any particular time instant is larger than 103. As

mentioned previously, we repeat each experiment 20 times

in order to reduce statistical fluctuations. In accordance

with this setting, a filter divergence is reported whenever

there is at least one (but not necessarily all) divergence(s)

out of 20 repetitions.

In the 1/2 and 1/4 observation scenarios, there are many

cases in which filter divergences are spotted. For this

reason, we choose to directly report the assimilation results

in Tables 2 and 3, respectively, rather than showing their

contour plots as in the full observation scenario. In the 1/2

observation scenario, filter divergences of the normal
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Fig. 3. Time mean RMSEs of the normal EAKF and the EAKF-RN, as functions of inflation factor and half-width, in the full and 1/8

observation scenarios.
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EAKF, marked by ‘Div’ in Table 2, are spotted in 24 out of

30 different combinations of lc and l values (5 lc values

by 6 l values). In contrast, in the EAKF-RN no filter

divergence is observed. On the other hand, when there is no

filter divergence occurring in either filter, the performance

of the EAKF and the EAKF-RN is very close to each

other, with the time mean RMSEs of the EAKF-RN

slightly lower than those of the EAKF, except at (lc�0.1,

l�1.15) and (lc�0.1, l�1.25). The situation in the 1/4

observation is similar. As shown in Table 3, the EAKF

diverges in 17 out of 30 tested cases, while there is no filter

divergence spotted in the EAKF-RN. The performance of

the EAKF and the EAKF-RN is close to each other when

the EAKF does not diverge.

The lower panels of Fig. 3 show the contour plots of the

time mean RMSEs of the normal EAKF (left) and that of

the EAKF-RN (right), in the 1/8 observation scenario. In

this scenario, no filter divergence is spotted in the EAKF.

Overall, the performance of the EAKF and the EAKF-RN

is very close to each other, although the EAKF-RN has a

slightly lower minimum time mean RMSE (2.9556 achieved

at (lc�0.1, l�1)) than that of the EAKF (2.9619 obtained

at the same place).

We then examine the impact of residual nudging on the

time mean spreads of the filters in different observation

scenarios. For the full and 1/8 observation scenarios, we

plot the time mean spreads of the EAKF and the EAKF-

RN in Fig. 4; while for the 1/2 and 1/4 observation

scenarios, we report them in Tables 2 and 3, in the

parentheses after the RMSE values. In all the reported

cases in which the EAKF does not diverge, the time mean

spreads of the EAKF-RN in general do not significantly

Table 3. As in Table 2, except that it is in the 1/4 observation scenario

lc�0.1 lc�0.2 lc�0.3 lc�0.4 lc�0.5

EAKF

l�1.00 2.0685 (1.5730) Div Div Div Div

l�1.05 1.9908 (1.7849) Div Div Div Div

l�1.10 2.0223 (2.0447) 2.3014 (1.5640) Div Div Div

l�1.15 2.0819 (2.3592) 2.2174 (1.7254) 2.9502 (1.5820) Div Div

l�1.20 2.1903 (2.6869) 2.1839 (1.9468) 2.7534 (1.7191) Div Div

l�1.25 2.3586 (3.0392) 2.2596 (2.2340) 2.6413 (1.8780) Div Div

EAKF-RN

l�1.00 2.0840 (1.5689) 2.6099 (1.1984) 3.0267 (1.0110) 3.0453 (0.8703) 3.0469 (0.7899)

l�1.05 2.0042 (1.7790) 2.3341 (1.3762) 2.8493 (1.1936) 3.0573 (1.0403) 3.1015 (0.9618)

l�1.10 1.9860 (2.0339) 2.2976 (1.5332) 2.8154 (1.3484) 3.0527 (1.2112) 3.1251 (1.1028)

l�1.15 2.0766 (2.3648) 2.2389 (1.7244) 2.7737 (1.4940) 3.1247 (1.3341) 3.2583 (1.2558)

l�1.20 2.1886 (2.6948) 2.2312 (1.9710) 2.6566 (1.6824) 3.0992 (1.5048) 3.2340 (1.3674)

l�1.25 2.3436 (3.0359) 2.2352 (2.2344) 2.6168 (1.8427) 3.0977 (1.6509) 3.2897 (1.5098)

Table 2. Time mean RMSEs (spreads) of the normal EAKF and the EAKF-RN in the 1/2 observation scenario, as functions of the

covariance inflation factor and the half-width of covariance localisation

lc�0.1 lc�0.2 lc�0.3 lc�0.4 lc�0.5

EAKF

l�1.00 1.0721 (0.7049) Div Div Div Div

l�1.05 1.0091 (0.7457) Div Div Div Div

l�1.10 0.9789 (0.7868) Div Div Div Div

l�1.15 0.9662 (0.8209) Div Div Div Div

l�1.20 0.9515 (0.8566) Div Div Div Div

l�1.25 0.9623 (0.8929) Div Div Div Div

EAKF-RN

l�1.00 1.0325 (0.7002) 1.8256 (0.5697) 2.1099 (0.5127) 2.2734 (0.4736) 2.2964 (0.4579)

l�1.05 1.0051 (0.7419) 1.4072 (0.6185) 1.9879 (0.5644) 2.1821 (0.5269) 2.2468 (0.5050)

l�1.10 0.9598 (0.7842) 1.2313 (0.6553) 1.8517 (0.6030) 2.0342 (0.5699) 2.1742 (0.5470)

l�1.15 0.9673 (0.8201) 1.2024 (0.6870) 1.6507 (0.6388) 1.9317 (0.6015) 2.0953 (0.5845)

l�1.20 0.9474 (0.8565) 1.1788 (0.7183) 1.5776 (0.6680) 1.9059 (0.6336) 2.0806 (0.6098)

l�1.25 0.9650 (0.8935) 1.1856 (0.7484) 1.5315 (0.6945) 1.7778 (0.6603) 2.0071 (0.6383)
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deviate from those of the EAKF. In cases that the EAKF

does diverge, the EAKF-RN may still maintain positive

and finite time mean spreads. The closeness of the time

mean spreads of the EAKF and EAKF-RN in the former

cases, though, may depend on the experiment settings,

for example, the choice of the noise level coefficient b.

However, from our experience, as long as b is reasonably

large (such as b]2), the time mean spread of the EAKF-

RN often approaches that of the EAKF. For brevity,

hereafter we do not report the spread values.

Overall, in both the normal EAKF and the EAKF-RN,

their time mean RMSEs tend to increase as the number of

elements in an observation decreases. The performance of

the EAKF-RN, in terms of time mean RMSE, is in general

comparable to, and sometimes (substantially) better than,

that of the EAKF. Moreover, the EAKF-RN tends to

perform more stable than the EAKF.

4.2.2. Results with different noise level coefficients. Next

we examine the effect of the noise level coefficient b on the

performance of the EAKF-RN. The experiment settings

are as follows. We conduct the experiments in four

observation scenarios as in the previous experiment. The

ensemble size of the EAKF-RN is 20. We choose the

noise level coefficient b from the sets {0}, {0.02 : 0.02 : 0.1},

{0.2 : 0.2 : 1} and {2,3,4,6,8}. The reason to single out b�0

will be given soon. Under the above setting, it is infeasible

for us to adopt too many combinations of lc and l as in the

previous experiment, either for presentation or computa-

tion. Therefore, we only choose two such combinations in

the current experiment (similar choices will also be made in

subsequent experiments, in which we can only afford to

vary some of the parameter values, and have to freeze the

rest). In the first combination, we let lc�0.1 and l�1.15,

and in the second, lc�0.3 and l�1.03. From the previous

experiment results, the former choice represents a relatively

good filter configuration for the normal EAKF, while

the latter a less proper one. We thus use these two

configurations to illustrate the effect of residual nudging

when the normal EAKF has reasonable/(relatively) poor

performance.

Figure 5 depicts the time mean RMSEs of the EAKF-

RN as functions of b in different observation scenarios, in

which the relatively good filter configuration lc�0.1 and

l�1.15 is adopted. Due to different orders of magnitudes

of b, the x-axes are all plotted in the logarithmic scale. For

this reason, it is inconvenient to show the results of b�0 at

log0 (���). Instead, we plot the results at b�0.005 and
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Fig. 4. Time mean spreads of the normal EAKF and the EAKF-RN, as functions of inflation factor and half-width, in the full and 1/8

observation scenarios.
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‘artificially’ label that point 0. The time mean RMSEs of

the normal EAKF are independent of b and are plotted

as horizontal lines in the relevant subfigures (if no filter

divergence in the normal EAKF). In all observation

scenarios, the time mean RMSEs of the EAKF-RN are

relatively large at small b values (for instance, b�0.02). As

b increases, the time mean RMSEs of the EAKF-RN tend

to converge to those of the normal EAKF. During the

processes of convergence, the minimum time mean RMSE

of the EAKF-RN in the full observation scenario is lower

than that of the normal EAKF, while the minimum time

mean RMSEs of the EAKF-RN in other observation

scenarios are either indistinguishable from (in the 1/2 and

1/4 observation scenarios), or slightly higher than (in the 1/

8 observation scenario), those of the normal EAKF.

Figure 6 shows the time mean RMSEs of the normal

EAKF and the EAKF-RN, with experiment settings

similar to those in Fig. 5, except that the covariance

localisation and inflation configuration become lc�0.3

and l�1.05, respectively, which, as will be shown below,

makes the normal EAKF perform worse in comparison to

the previous case in Fig. 5.

With lc�0.3 and l�1.05, the resulting EAKF-RN

behaves similarly to that with the previous configuration

lc�0.1 and l�1.15. For the current filter configuration,

though, as b grows, the time mean RMSEs of the EAKF-

RN exhibit clear troughs in all observation scenarios.

On the other hand, compared to the previous results in

Fig. 5, the performance of the normal EAKF deteriorates

in all observation scenarios. Indeed, with the current

filter configuration, the normal EAKF may perform

(substantially) worse than the EAKF-RN under the same

experiment settings, especially if a proper b value is chosen

for the EAKF-RN. In particular, the normal EAKF

diverges in the 1/2 (upper right) and 1/4 (lower left)

observation scenarios, while no filter divergence is spotted

in the EAKF-RN with b53, although the EAKF-RN does

diverge in the 1/2 and 1/4 observation scenarios, given

b]4. This suggests that one may increase the stability of

the EAKF-RN against filter divergence by decreasing the

value of b so that ck is closer to 0 and the observation

inversion becomes more influential in eq. (9a), as we have

discussed in section 2.3.

It is also worth mentioning the behaviour of the EAKF-

RN with small b values. As one can see in Figs. 5 and 6,

given different filter configurations, the EAKF-RN may

behave quite differently at relatively large b values.

However, as b tends to 0, the time mean RMSEs of the
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Fig. 5. Time mean RMSEs of the normal EAKF and the EAKF-RN as functions of the noise level coefficient in different observation

scenarios, with l�1.15 and lc�0.1.
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EAKF-RN with different configurations tend to converge,

despite the different combinations of lc and l. This is

because, as b00, ck00 in eq. (8), the new estimate exa
k,

according to eq. (9a), approaches the observation inversion

xo
k, which is independent of, for instance, the half-width lc,

the inflation factor l and the ensemble size.5 Since the time

mean RMSE continuously depends on b, it is not surpris-

ing to find that in Figs. 5 and 6, the time mean RMSEs of

the EAKF-RN with small b, for instance, at b�0.02, are

very close to the corresponding values at b�0.

More insights of the filters’ behaviour may be gained by

examining the fraction coefficient ck in the EAKF-RN.

For the relatively good filter configuration (lc�0.1 and

l�1.15), we have seen in Fig. 5 that the EAKF and the

EAKF-RN have very close performance, and our experi-

ment results show that ck mostly concentrate on 1, similar

to the situations on the lower panels of Fig. 2 (not

reported). Of more interest is the case in which the normal

EAKF is less properly configured (lc�0.3 and l�1.05)

and may suffer from filter divergence. On the upper panels

of Fig. 7, we show sample time series of the RMSEs of the

normal EAKF and EAKF-RN (b�2) in the 1/2 observa-

tion scenario. On the upper left panel, the EAKF has an

exceptionally large RMSE (in the order of 1021) at time

step k�26 and is thus considered diverged. In contrast, on

the upper right panel, the EAKF-RN (b�2) has all the

RMSEs less than 5 (with the corresponding time mean

RMSE being 1.8931), and filter divergence is avoided. The

lower left panel shows the time series of the fraction

coefficient ck, which has the mean 0.9499 and the median 1.

Among 250 ck values, 78 are less than 1. For reference, a

histogram of ck is plotted on the lower right panel, which

confirms that ck largely concentrate on 1.

In Figure 8, we also examine what happens before the

normal EAKF diverges. On the upper panel, we show the

time series of the RMSEs of the EAKF (in the solid line

with asterisks) and the EAKF-RN (b�2, in the dotted line

with plus signs). One can see that, at the beginning, for

instance, when the time instant k515, the difference

between the EAKF and the EAKF-RN is relatively less

significant. For 165k525, the difference becomes more

obvious. On the middle panel, we report the difference

5When the observation operator is time-varying, the assimilation

step Sa in general has an influence on the observation inversion, as

Sa decides when the observations are assimilated.
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Fig. 6. As in Fig. 5, but with l�1.05 and lc�0.3 for both the filters. Note that in the 1/2 and 1/4 observation scenarios divergences of

the normal EAKF are spotted; hence, no horizontal lines are indicated in the corresponding plots. The EAKF-RN also diverges in the 1/2

and 1/4 observation scenarios for b]4.
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between the EAKF and the EAKF-RN (b�2), in terms of

the RMSE of the EAKF minus that of the EAKF-RN, for

15k516. The reason for not including the RMSE

differences at larger time instants is that their amplitudes

are relatively large and may make relatively small values

indistinguishable from 0, which is not desired for our

purpose. On the lower panel, we also show the fraction

coefficients ck of the EAKF-RN (b�2) for 15k525.

Note the availability of ck depends on the availability of

the incoming observations; therefore, ck appear for every

four steps only. Based on these figures, one may tell what

happens to make the EAKF and EAKF-RN behave

differently. At time step k�4, there is an incoming

observation. However, because c4�1, the EAKF and

EAKF-RN share identical estimates from k�1 to k�7.

At k�8, there is one more incoming observation, and this

time c8 is less than 1, meaning that residual nudging is

effective, so that there is a (very) small difference spotted

between the estimates of the EAKF and EAKF-RN. At

k�12, residual nudging is conducted again (but no more

for subsequent steps up to k�24), which, together with

the previous residual nudging, makes the estimates of the

EAKF-RN deviate from those of the EAKF and eventually

avoid filter divergence at k�26.

Overall, we have shown that when the normal EAKF is

properly configured, the performance of the normal EAKF

and the EAKF-RN is in general comparable. However, if

the EAKF is not configured properly, then the EAKF-RN

may perform (substantially) better than the normal EAKF.

For many large scale data assimilation problems, it may be

very expensive to conduct an extensive parameter searching

in order to configure the EnKF (Anderson, 2007). Should

the EnKF be ill-configured, we expect that introducing

residual nudging to the EnKF may enhance its perfor-

mance, in terms of filter accuracy and/or stability against

divergence.

4.2.3. Results with different ensemble sizes. Here we exam-

ine the effect of the ensemble size n on the performance of

the normal EAKF and the EAKF-RN. The experiment

settings are as follows. We also conduct the experiment in

four observation scenarios. The ensemble size n is chosen

from the set {2,4,6,8,10,20,40,60,80}. In the experiment, we

fix lc�0.1 and l�1.15 for both the normal EAKF and the

EAKF-RN. In the EAKF-RN, we adopt two noise level

coefficients, with b being 1 and 2, respectively.
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of the RMSE of the EAKF-RN (b�2) under the same experiment settings as the EAKF; lower left: corresponding fraction coefficient ck in
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Figure 9 shows the time mean RMSEs of the normal

EAKF (solid lines with squares) and those of the EAKF-

RNs with b�1 and 2 (dotted lines with bold points, and

dash-dotted lines with crosses, respectively), in different

observation scenarios. In the full observation scenario, no

filter divergence is found for all the ensemble sizes n in

either filter. When n510, the EAKF-RN with b�1 tends

to perform better than the EAKF-RN with b�2, while

the latter is better than the normal EAKF. This is

particularly the case with a relatively small ensemble

size, for instance, at n�2. On the other hand, when

n]20, the time mean RMSEs of the three filters are

almost indistinguishable.

In the 1/2 observation scenario, the normal EAKF

diverges when n510, so there are no square markers

appearing at those n values. The EAKF-RN with b�2

appears more robust than the normal EAKF, although

there is still a filter divergence spotted at n�4. In contrast,

the EAKF-RN with b�1 is the most robust filter,

which does not diverge for all the tested ensemble sizes.

In terms of time mean RMSE, though, when the filters do

not diverge, the EAKF-RN with b�1 tends to perform

worse than the EAKF-RN with b�2, while the latter

appears to be indistinguishable from the normal EAKF

for n]20.

The situations in the 1/4 and 1/8 observation scenarios

are similar to that in the 1/2 one. In the 1/4 observation

scenario, the normal EAKF diverges for n58, while the

EAKF-RN appears to be more robust, except that there is

a filter divergence at n�4 for the EAKF-RN with b�2.

When n�2, the EAKF-RN with b�2 performs better

than the filter with b�1, but at n�6 or 8, the filter with

b�1 performs better instead. For n]10, the performance

of all three filters is almost indistinguishable. In the 1/8

observation scenario, the normal EAKF and the EAKF-

RN with b�2 diverge at n�2 and 4, while the EAKF-RN

with b�1 diverges only at n�2. For n�6 or 8, the

EAKF-RN with b�1 has the best performance in terms of

time mean RMSE, the EAKF-RN with b�2 the second,

while the normal EAKF the last. For n]10, the perfor-

mance of the three filters are almost indistinguishable,

except that at n�10, the time mean RMSE of the EAKF-

RN with b�1 is slightly higher than those of the other two

filters.

The above results suggest that n�20 appears to be a

reasonable ensemble size for the normal EAKF in the
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Fig. 10. Time mean RMSEs of the normal EAKF, as functions of the assimilation step Sa and the observation noise variance, in

different observation scenarios.
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L96 model, since in all these four observation scenarios,

the performance of the normal EAKF with n�20 is very

close to that with larger n values. As the ensemble size n

decreases, the normal EAKF becomes more unstable. The

performance of the EAKF-RN with b�1 and 2 is almost

indistinguishable from the normal EAKF for n]20.

However, given smaller ensemble sizes, the EAKF-RN

tends to perform better than the normal EAKF, in terms of

both filter accuracy and stability against filter divergence.

In particular, one may enhance the stability of the EAKF-

RN by reducing the noise level coefficient b, since as b00,

the time mean RMSEs of the EAKF-RN in different

observation scenarios become independent of the ensemble

size n and approach the corresponding values at b�0. This

property may be of interest in certain circumstances, for

instance, those in which, due to practical limitations, one

can only afford to run an EnKF with a very small ensemble

size, so that filter stability becomes an important factor in

consideration.

4.2.4. Results with different assimilation steps and

observation noise variances. Here we examine the effects of

the assimilation step Sa and the observation noise variance

on the performance of the normal EAKF and the EAKF-

RN. We assume that the observation noise covariance

matrix Rk is in the form of gI, where I is the identity matrix

with a suitable dimension in different observation scenarios,

and g�0 is a real scalar. As a result, the variances ofRk are g

for all variables in an observation vector, while the cross-

variances are all zero. The experiment settings are as follows.

The ensemble size is 20, lc�0.1 and l�1.15 for both the

normal EAKF and the EAKF-RN. The noise level coeffi-

cients b is 2 in the EAKF-RN.We conduct the experiment in

four different observation scenarios and choose Sa from the

set {1,4,8,12}, and g from the set {0.01,0.1,1,10,50}. The

relatively large values of g, for instance, g�10,50, are used

to represent the scenario in which the quality of the

observations is relatively poor. Here we assume that we

know the observation noise variance precisely, while in a

subsequent experiment, we will consider the case in which

the observation noise variance is mis-specified.

Figures 10 and 11 show the time mean RMSEs of the

normal EAKF and the EAKF-RN, respectively, in differ-

ent observation scenarios. In the full observation scenario

(upper left panels), for a fixed variance g, the time mean

RMSEs of both the normal EAKF and the EAKF-RN

tend to increase as the assimilation step Sa increases. On the

other hand, for a fixed Sa, the time mean RMSEs of both

filters appear to be monotonically increasing functions of
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Fig. 11. As in Fig. 10, but for the EAKF-RN with b�2.
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the variance g. With g�0.01, 0.1,1, the time mean RMSEs

of the EAKF-RN tend to be lower than those of the

normal EAKF, while with g�10,50, they are almost

indistinguishable, meaning that for relatively poor observa-

tion, the normal EAKF and the EAKF-RN have almost

the same performance in terms of estimation accuracy,

which appears to be also true in other observation

scenarios, as will be shown below. In terms of filter

stability, for Sa�8 and 12, the normal EAKF diverges at

g�0.01 and 0.1, but the EAKF-RN avoids filter diver-

gences at all these places.

In the 1/2 observation scenario (upper right panels), for a

fixed variance g, the time mean RMSEs of both the normal

EAKF and the EAKF-RN also grow as the assimilation

step Sa increases. However, for a fixed Sa, the time mean

RMSEs of the two filters have behaviour different from

that in the previous observation scenario. For Sa�1, the

time mean RMSE of the normal EAKF is still a mono-

tonically increasing function of g; for Sa�4,8, the normal

EAKF diverges at g�0.01 and 0.1 and has monotonically

increasing time mean RMSE for g]1; for Sa�12, the time

mean RMSE of the normal EAKF achieves its minimum at

g�0.1 (slightly lower than that at 0.01) and thus exhibits

the U-turn behaviour, a phenomenon that is more visible in

the EAKF-RN. Indeed, for all tested Sa values, the time

mean RMSEs of the EAKF-RN all have their minima

at g�0.1, rather than at g�0.01. The normal EAKF and

the EAKF-RN have almost indistinguishable time mean

RMSEs for g]1. While the normal EAKF tends to

perform better than the EAKF-RN at g�0.01 and 0.1 in

terms of time mean RMSE, it is more likely to suffer from

filter divergence (e.g. at Sa�4,8). This is an example of the

trade-off between filter accuracy and stability, as discussed

previously in section 2.3.

In the 1/4 observation scenario (lower left panels), for

a fixed assimilation step Sa, the time mean RMSEs of

both the normal EAKF and the EAKF-RN again appear

to be monotonically increasing as g increases. For a

fixed variance g, though, the time mean RMSEs of both

filters tend to exhibit the U-turn behaviour, in which the

minimum time mean RMSE is achieved at Sa�4 (except

for the filter divergence in the normal EAKF at g�0.01),

rather than at Sa�1. The normal EAKF and the EAKF-

RN have almost indistinguishable time mean RMSEs for

g]0.1. At g�0.01, though, the normal EAKF seems to

perform better than the EAKF-RN in terms of time mean
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Fig. 12. Time mean RMSEs of the EAKF, as functions of the (possibly) mis-specified driving force F and the observation noise variance

g, in different observation scenarios.
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RMSE. However, filter divergences are spotted at (Sa�4,

g�0.01) and (Sa�1, g�50), which are again avoided in

the EAKF-RN.

In the 1/8 observation scenario (lower right panels), the

quantitative behaviour of the two filters, as functions of Sa

and g, is almost the same as that in the 1/4 observation

scenario. The main differences are as follows. The time

mean RMSEs of the normal EAKF and the EAKF-RN

are almost indistinguishable in all tested cases. Filter

divergences are spotted at Sa�1, with g�1, 10 and 50,

respectively, not only in the normal EAKF, but also in the

EAKF-RN. One may, however, avoid these filter diver-

gences in the EAKF-RN by assigning to it a smaller b, as

some of the previous experiment results have suggested.

Overall, the above experiment results are consistent with

our discussion in section 2.3. When equipped with residual

nudging, the EAKF-RN appears to be more stable than the

normal EAKF, although maybe at the cost of some loss of

estimation accuracy in certain circumstances (e.g. when

with too small b values).

4.2.5. Results with imperfect models and mis-specified

observation error covariances. Finally, we examine filter

performance of the normal EAKF and the EAKF-RN

when they are subject to uncertainties in specifying the

forcing term F in eq. (15) and the observation error

covariance Rk. We again conduct the experiments in four

observation scenarios. The ensemble sizes of both filters are

20. The half-width lc of covariance localisation is 0.1, and

the covariance inflation factor l is 1.15. The true value of F

is 8, while the true observation error covariance Rk is I20. In

the experiments, we let the value of F in the (possibly)

imperfect model be chosen from the set {4,6,8,10,12}, and

the (possibly) mis-specified covariance Rk in the form of

gI20, with c 2 f0:25; 0:5; 1; 2; 5; 10g.6 In the EAKF-RN, the

noise level coefficient b�2.

Figures 12 and 13 show the time mean RMSEs of the

normal EAKF and the EAKF-RN, respectively, as func-

tions of the (possibly) mis-specified driving force F and

the observation noise variance g, in different observation

scenarios. In the full observation scenario (upper left

panels), for a fixed g, the time mean RMSEs of both

filters exhibit the U-turn behaviour with respect to F,

achieving their minima at F�8. This point also appears to

6The (possibly) mis-specified observation error covariance, in the

form of gI20, is used for both background update, as described in

section 2.1, and residual nudging through eq. (8).
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Fig. 13. As in Fig. 12, but for the EAKF-RN with b�2.
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be valid in other observation scenarios. On the other hand,

for a fixed F, the behaviour of the filters is very similar to

that reported in Figs. 5 and 6, since the role of the

(possibly) mis-specified variance g is similar to the ob-

servation noise level coefficient b (note, though, that g also

appears in the computation of the Kalman gain). When g is

relatively small (for instance, g52), the EAKF-RN tends

to perform better than the normal EAKF in terms of time

mean RMSE. Moreover, the normal EAKF diverges at

(F �12, g�0.25), while the EAKF-RN avoids the diver-

gence. On the other hand, when g is relatively large (for

instance, g]6), the EAKF-RN and the normal EAKF

have almost indistinguishable performance, not only for

the current experiment results but also for those in the

other observation scenarios. This is largely because mis-

takenly over-estimating the variance g has an effect similar

to increasing b so that the observation inversion in eq. (9a)

becomes less influential for state estimation, and the

EAKF-RN has almost the same estimate as the normal

EAKF.

In the 1/2 observation scenario (upper right panels),

when g is relatively small (for instance, g51), the normal

EAKF tends to diverge for all F. The EAKF-RN avoids

filter divergences in some of the areas, though there are still

two cases spotted at F�12, with g�1 and g�2, respec-

tively. As g becomes larger, the performance of the normal

EAKF and the EAKF-RN is very close to each other,

similar to the situation in the full observation scenario. In

both the 1/4 and 1/8 observation scenarios (lower panels),

there are also almost no differences between the time mean

RMSEs of the two filters, although the time mean RMSE

of the EAKF-RN appears to be slightly lower than that of

the normal EAKF in the 1/4 observation scenario for

relatively small F and g (around the lower left corners).

Both filters diverge in the 1/4 observation scenario, at

(F�10, g�0.25), otherwise neither filter diverges.

5. Discussion and conclusion

In this work, we proposed an auxiliary technique, that is,

residual nudging, for ensemble Kalman filtering. The main

idea of residual nudging is to monitor, and if necessary,

adjust the residual norm of a state estimate. In an under-

determined state estimation problem, if the residual norm is

larger than a pre-specified value, then we reject the estimate

and replace it by a new one whose residual norm is equal to

the pre-specified value; otherwise we accept the estimate.

We discussed how to choose the pre-specified value and

demonstrated how one can construct a new state estimate

based on the original one and the observation inversion,

given a linear observation operator.

Through the numerical experiments in both the scalar

AR1 and the Lorenz 96 models, we showed that by

choosing a proper noise level coefficient, the EAKF-RN

in general works more stable than the normal EAKF, while

achieving an accuracy that is often comparable to, some-

time even (much) better than, that of the normal EAKF,

especially if the normal EAKF is ill-configured. This may

occur, for instance, when the EAKF is equipped with

improperly chosen covariance inflation factor and/or half-

width of covariance localisation, too small ensemble size,

and so on. In many data assimilation practices, it may be

very expensive to conduct extensive searching for proper

inflation factor and/or half-width, or to run a large scale

model with too many ensemble members. In such circum-

stances, we expect that residual nudging may help improve

the filter performance, in terms of filter stability, and even

accuracy.

We also implemented residual nudging in some other

filters, including the stochastic EnKF (Burgers et al., 1998)

and the singular evolutive interpolated Kalman filter

(SEIK) (Pham, 2001; Hoteit et al., 2002), and observed

similar performance improvements (not shown in this

work). Since residual nudging only aims to adjust the

estimates, we envision that residual nudging can be

associated with other data assimilation approaches, includ-

ing, for instance, the extended KF, the particle filter, and

various smoothers. This will be verified elsewhere.

One problem not addressed in this work is the non-

linearity of the observation operator. In such circum-

stances, we conjecture that the rule in choosing the

pre-specified value b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

traceðRkÞ
p

may still be applicable.

However, the construction of new state estimates would

become more complicated than eqs. (8) and (9). One

possible strategy is to linearise the observation operator

or employ more sophisticated methods, such as iterative

searching algorithms (see, for example, Gu and Oliver

2007; Lorentzen and Nævdal, 2011), to find new estimates

whose residual norms are no larger than b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

traceðRkÞ
p

. This

is another topic that will be investigated in the future.

6. Acknowledgements

We thank Dr Jeffrey Anderson for his kind advices on using

the EAKF codes (MATLAB) in the Data Assimilation

Research Testbed (DART, version ‘kodiak’, 2011). This

provides the basis for us to build the EAKF codes used in

our experiments. We also thank two anonymous reviewers

for their constructive comments and suggestions. One

reviewer points out the similarity between residual nudging

and the adaptive inflation schemes in Anderson (2007,

2009) and suggests conducting the experiment with respect

to the KF in the AR1 model. Another reviewer points out

the possible combinations of the EnKF and the regularisa-

tion approaches in inverse problems. Luo acknowledges

partial financial support from the Research Council of

ENSEMBLE KALMAN FILTERING WITH RESIDUAL NUDGING 21



Norway and industrial partners, through the project

‘Transient well flow modelling and modern estimation

techniques for accurate production allocation’.

References

Anderson, J. L. 2001. An ensemble adjustment Kalman filter for

data assimilation. Mon. Wea. Rev. 129, 2884�2903.
Anderson, J. L. 2007. An adaptive covariance inflation error

correction algorithm for ensemble filters.Tellus. 59A(2), 210�224.
Anderson, J. L. 2009. Spatially and temporally varying adaptive

covariance inflation for ensemble filters. Tellus. 61A, 72�83.
Anderson, J. L. and Anderson, S. L. 1999. A Monte Carlo

implementation of the non-linear filtering problem to produce

ensemble assimilations and forecasts. Mon. Wea. Rev. 127,

2741�2758.
Bishop, C. H., Etherton, B. J. and Majumdar, S. J. 2001. Adaptive

sampling with ensemble transform Kalman filter. Part I:

theoretical aspects. Mon. Wea. Rev. 129, 420�436.
Burgers, G., van Leeuwen, P. J. and Evensen, G. 1998. On the

analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev.

126, 1719�1724.
Engl, H. W., Hanke, M. and Neubauer, A. 2000. Regularization of

Inverse Problems. Springer, New York.

Evensen, G. 1994. Sequential data assimilation with a nonlinear

quasi-geostrophic model using Monte Carlo methods to forecast

error statistics. J. Geophys. Res. 99, 10143�10162.
Fertig, E., Harlim, J. and Hunt, B. 2007. A comparative study of

4D-VAR and a 4D ensemble Kalman filter: perfect model

simulations with lorenz-96. Tellus. 59A, 96�100.
Gandin, L. S. 1988. Complex quality control of meteorological

observations. Mon. Wea. Rev. 116, 1137�1156.
Gaspari, G. and Cohn, S. E. 1999. Construction of correlation

functions in two and three dimensions. Quart. J. Roy. Meteor.

Soc. 125, 723�757.
Gu, Y. and Oliver, D. 2007. An iterative ensemble Kalman filter

for multiphase fluid flow data assimilation. SPE Journal. 12,

438�446.
Hamill, T. M., Whitaker, J. S. and Snyder, C. 2001. Distance-

dependent filtering of background error covariance estimates in

an ensemble Kalman filter. Mon. Wea. Rev. 129, 2776�2790.
Hamill, T. M., Whitaker, J. S., Anderson, J. L. and Snyder, C.

2009. Comments on ‘Sigma-point Kalman filter data assimila-

tion methods for strongly nonlinear systems’. J. Atmos. Sci. 66,

3498�3500.

Hoteit, I., Pham, D. T. and Blum, J. 2002. A simplified reduced

order Kalman filtering and application to altimetric data

assimilation in Tropical Pacific. J. Mar. Syst. 36, 101�127.
Houtekamer, P. L. and Mitchell, H. L. 1998. Data assimilation

using an ensemble Kalman filter technique. Mon. Wea. Rev. 126,

796�811.
Hunt, B., Kalnay, E., Kostelich, E., Ott, E., Patil, D. and co-

authors. Four-dimensional ensemble Kalman filtering. Tellus.

56A(4), 273�277.
Jazwinski, A. H. 1970. Stochastic Processes and Filtering Theory.

Academic Press, San Diego.

Kalman, R. 1960. A new approach to linear filtering and

prediction problems. Trans. ASME, Ser. D, J. Basic Eng. 82,

35�45.
Lorentzen, R. and Nævdal, G. 2011. An iterative ensemble

Kalman filter. IEEE Trans. Automa. Contr. 56, 1990�1995.
Lorenz, E. N. 1996. Predictability-a problem partly solved. In:

Predictability (ed. T. Palmer). ECMWF, Reading, UK, pp. 1�18.
Lorenz, E. N. and Emanuel, K. A. 1998. Optimal sites for

supplementary weather observations: Simulation with a small

model. J. Atmos. Sci. 55, 399�414.
Luo, X. and Hoteit, I. 2011. Robust ensemble filtering and its

relation to covariance inflation in the ensemble Kalman filter.

Mon. Wea. Rev. 139, 3938�3953.
Meyer, C. D. 2001. Matrix analysis and applied linear algebra.

SIAM, Philadelphia.

Pham, D. T. 2001. Stochastic methods for sequential data

assimilation in strongly nonlinear systems. Mon. Wea. Rev.

129, 1194�1207.
Sacher, W. and Bartello, P. 2008. Sampling errors in ensemble

Kalman filtering. Part I: Theory. Mon. Wea. Rev. 136(8),

3035�3049.
Schlee, F. H., Standish, C. J. and Toda, N. F. 1967. Divergence in

the Kalman filter. AIAA Journal. 5, 1114�1120.
Song, H., Hoteit, I., Cornuelle, B. and Subramanian, A. 2010. An

adaptive approach to mitigate background covariance limita-

tions in the ensemble Kalman filter. Mon. Wea. Rev. 138(7),

2825�2845.
Van Leeuwen, P. J. 2010. Nonlinear data assimilation in geos-

ciences: An extremely efficient particle filter. Quart. J. Roy.

Meteor. Soc. 136, 1991�1999.
Whitaker, J. S. and Hamill, T. M. 2002. Ensemble data assimila-

tion without perturbed observations. Mon. Wea. Rev. 130,

1913�1924.

22 XIAODONG LUO AND IBRAHIM HOTEIT


