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ABSTRACT

We explore the theoretical framework as well as the associated algorithms for the problem of optimally placing

mobile observation platforms to maximise the improvement of estimation accuracy. The approach in this study

is based on the concept of observability, which is a quantitative measure of the information provided by sensor

data and user-knowledge. To find the optimal sensor locations, the observability is maximised using a gradient

projection method. The Burgers equation is used to verify this approach. To prove the optimality of the sensor

locations, Monte Carlo experimentations are carried out using standard 4D-Var algorithms based on two sets

of data, one from equally spaced sensors and the other from the optimal sensor locations. The results show that,

relative to equally spaced sensors, the 4D-Var data assimilation achieves significantly improved estimation

accuracy if the sensors are placed at the optimal locations. A robustness study is also carried out in which the

error covariance matrix is varied by 50% and the sensor noise covariance is varied by 100%. In addition, both

Gaussian and uniform probability distributions are used for the sensor noise and initial estimation errors. In all

cases, the optimal sensor locations result in significantly improved estimation accuracy.
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1. Introduction

One of the important components of the numerical weather

prediction (NWP) is atmospheric data assimilation. Atmo-

spheric data assimilation provides the best available state

estimate (i.e. the initial conditions) to be used in NWP. It is

a procedure to combine all the available prior information,

such as background, prediction model, observations, ob-

servation operators, and the associated error statistics,

to obtain the state estimate using proper mathematical

techniques. In the same community of data assimilation,

various techniques, such as variational algorithms (e.g.

3D-Var and 4D-Var) and ensemble Kalman filters (e.g.

EnKF) as well as hybrid variational/ensemble algorithms,

are currently used in atmospheric data assimilation.

It is well known within the data assimilation community

that not every observation has the same impact on the

NWP forecast. The observation impact depends on the

information content of each assimilated observation and

the data assimilation system used to assimilate it. It is

highly desirable to know the potential impact of each

observation on short term NWP forecasts or some other

measures of interests. Virtually all the existing researches

in this area are based on the pioneering work of Baker and

Daley (2000). They introduced the concept of observation

sensitivity (also known as the gradient of atmospheric

analysis with respect to the observations). Baker and Daley

(2000) showed that observation sensitivity is simply the

adjoint of the data assimilation system. They also provided

an elegant way to construct the adjoint of an observation-

space variational data assimilation system. Langland and

Baker (2004) proposed a technique to routinely calculate

the observation impact on short term NWP forecasts (24 hr

forecast in their case). The technique requires: a) the

adjoint of the US Navy’s global NWP model (NOGAPS,

see Hogan and Rosmond (1991); Rosmond (1997)) to

provide the sensitivity of the 24 hr forecast errors with

respect to the initial condition; b) the adjoint of the US

Navy’s 4D-Var data assimilation system [NAVDAS-AS,

see Xu et al. (2005)]. Their results provided very useful

inside information that was impossible to obtain before.

Because observations play such an important role in

the data assimilation and in the subsequent forecast,

many additional studies to address various aspects of

the observation impact have been conducted since 2000
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at various institutions around the world. The following is

a list of works related to the variational data assimilation

algorithms: Cardinali et al. (2004); Xu et al. (2006); Daescu

(2008); Tremolet (2008); Baker and Langland (2009);

Cardinali (2009); Daescu and Todling (2009, 2010); Gelaro

and Zhu (2009); Gelaro et al. (2010); Cardinali and Prates

(2011). Similar studies were also conducted for ensemble

data assimilation methods, such as Liu and Kalnay (2008),

Liu et al. (2009), and Li et al. (2009). Despite the success in

the area of observation impact, this can only provide the

observation impact information after the observation is

already assimilated and the analysis is used as the initial

condition to make the short term forecast. Currently it is

not possible to deal with the issue of optimal sensor

placement in the planning of the targeting observation

during a field experiment.

In this study, we explore the theoretical framework

as well as the associated algorithms for the problem of

optimally placing mobile observation platforms to max-

imise the improvement of estimation accuracy. The current

adjoint (or ensemble) based observation monitor system

can provide the evaluation of the observation impact only

after the fact. A comprehensive solution to the planning

of optimal sensor placement is still an open problem. In

our approach, the optimal sensor locations are calculated

around a nominal trajectory or a forecast defined by an

initial state u0. This is necessary because, for non-linear

systems, the observability is trajectory dependent. Using

the same sensor locations, the observability can have

significant change around different trajectories. For sensors

with mobility, the issue of unknown nominal trajectory is

resolved using a moving horizon approach. The optimal

sensor locations are found based on the current approx-

imate of the system trajectory. After a period of time, an

updated estimate of the system trajectory is computed

and a forecast is given. Based on that, a new set of optimal

sensor locations are found and the sensors are relocated.

The process is repeated in a time interval synchronised with

the estimation and forecast process.

The theory and algorithm developed in this study are

based on the concept of observability, which is a quanti-

tative measure of the information provided by sensor

data and user-knowledge. The observability can be numeri-

cally computed based on the system’s dynamic model. It

provides the cost function for the optimisation of sensor

locations. In this study, the Burgers equation is used to

verify the theory and the approach. In the computation,

the system’s observability is numerically approximated

using an empirical Gramian matrix method (to be ex-

plained below). Then the observability is maximised using

a gradient projection method to find the optimal sensor

locations. To verify the optimality of the method, Monte

Carlo numerical experiments are carried out using standard

4D-Var algorithms based on two sets of data, one from

equally spaced sensors and the other from the optimal

sensor locations. The results show that, relative to equally

spaced sensors, the 4D-Var data assimilation achieves

significantly improved estimation accuracy if the sensors

are placed at the optimal locations. A robustness study is

also carried out in which the initial error covariance matrix

is varied by 50% and the sensor noise covariance is varied

by 100%. To further test the robustness, the numerical

experiments are implemented using various sets of data

with both Gaussian and uniform probability distribu-

tions. In all cases, the optimal sensor locations result in

significantly improved estimation accuracy.

The study is organised as follows. In Section 2, the

concept of observability is introduced for general dynami-

cal systems. Its approximation using an empirical Gramian

matrix is also introduced. In Section 3, the problem of

optimal sensor placement is formulated and a gradient

projection method is introduced for its computation. In

Section 4, the concept and the algorithms are applied to

a system defined by the Burgers equation as an illustra-

tive example. The optimal sensor locations are found. In

Section 5, a standard 4D-Var data assimilation method is

applied to test the optimal sensor locations. In Section 6,

the robustness of the optimal sensor locations is tested

using several covariance matrices as well as different

probability distributions. At the end of this section, we

revisit the definition of observability to address some

related issues on the norms and metrics used in the concept.

2. Observability

The concept of observability has been widely used in control

system theory and its applications. In this study, we follow

the recent research work by Kang and Xu (2009a, 2009b)

on the quantitative measure of observability. Consider a

discrete-time dynamical system

uðk þ 1Þ ¼ f ðk; uðkÞÞ (1)

where u 2 R
Nu is the state variable of the system, k is an

integer representing the time steps since the initial time,

and f is a function of (k,u). If the original model is defined

by a continuous-time differential equation, then (1) repre-

sents its discretisation where u(k) is the state of the system

at grid points. Let l be a parameter that defines the sensor

configuration. In this study, l represents the locations of

the sensors in space. However, the concept is applicable

to other sensor parameters such as path, orientation,

and density. The output, denoted by y(k), of eq. (1) is the

variable measured by sensors. It is a function of the state

variable and sensor locations,

yðkÞ ¼ hðuðkÞ; kÞ; y 2 R
Ny
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In the simulations, h(u,l) is computed using spline if l is

not located at grid points. Other interpolating algorithms

are applicable as well. To summarise, we study the obser-

vability of the state variable based on the following system

model:

uðk þ 1Þ ¼ f ðk; uðkÞÞ; u 2 R
Nu

yðkÞ ¼ hðuðkÞ; kÞ; y 2 R
Ny

0 � k � Nt

(2)

Let u(k;u0), k�0,1, . . ., Nt, be the trajectory of the system

with initial state u(0;u0)�u0. The corresponding output is

denoted by y(k,l;u0), i.e.

yðk; k; u0Þ ¼ hðuðk; u0Þ; kÞ

In the following, we define the observability of u(0). The

definition can be generalised to the observability of the

state at any time, k�k0. Consider a nominal trajectory

u(k;u0), k�0,1, . . ., Nt. The variation of the measured

variable y(k) under the variation of u0 is defined as follows:

Jðu0; du0; kÞ
¼ duT

0 P1du0 þ jjyð�; k; u0 þ du0Þ � yð�; k; u0ÞjjY
(3)

where P1 is a weight matrix that reflects our confidence

on the background from the previous estimation process

step or the initial guess. If P1 is large, the background

is most likely close to the true value, which implies a

good observability. Similar to data assimilation, P1 can be

assigned as the inverse matrix of the background error

covariance. In this study, the term including P1 is not

applied so that the study is focused on the second term in

eq. (3), which represents the impact of the sensor informa-

tion. We adopt the following norm for jj � jj2Y .

XNt

k¼0

jjyðk; k; u0 þ du0Þ � yðk; k; u0Þjj
2
P2

where jjvjj2P2
¼ vT P2v. Because y( �) represents the output

from various types of sensors with different error prob-

ability distributions, P2 in eq. (3) is a weight matrix, for

instance, the inverse matrix of the sensor noise covariance.

In addition, P2 can be used to weight the importance of

different sensors in a data assimilation process, which is a

potential application of the concept to sensor assessment.

The state space of the system is R
Nu . However, it is not

necessarily the space used for the estimate, or the space of

estimation. For large scale systems with high dimension Nu,

it is often the case that a low dimensional subspace is able

to provide adequate estimation accuracy. For the definition

of observability, we introduce the space for estimation,

W � R
Nu . The space has a norm, jj � jj, which is the same

norm that we use to measure the error of an estimated u0.

We assume that the estimate is updated at each time step

using vectors in W. The following definition of observa-

bility is the discrete-time version of a special case defined in

Kang and Xu (2009a). It agrees in spirit with the approach

in Krener and Ide (2009).

Definition 1. Let r�0 be a positive number. Then the

number o is defined as follows

e2 ¼ mindu0
Jðu0; du0; kÞ

subject to
jjdu0jj ¼ q;
du0 2W

(4)

The ratio r/o is a measure of observability. It is called an

unobservability index.

The value of o represents the smallest variation of

y corresponding to variations of u0. A small value of o

implies that u0 is less observable. In the extreme case of

o�0, it implies that the sensor cannot detect the variation

of u0 in at least one direction; and P1 does not contain any

information about the accuracy of the initial guess in the

same direction. Therefore, u0 is unobservable. The value

of du0 obtained from solving the optimisation problem

[eq. (4)] represents the direction of du0 in which the sen-

sors and initial guess are least sensitive or accurate. To

summarise, a small value of r/o implies strong observa-

bility. For the case of linear systems with w ¼ R
Nu , the ratio

r/o equals the value of unobservability index defined in

Krener and Ide (2009). If we consider J in eq. (3) as the

error of sensors and NNdu0NN as the estimation error, then

r/o�1 implies that the magnitude of the worst error in the

estimation of u0 is at about the same level as the sensor

error. If r/o belongs to the interval [1,10] then the worst

estimation error is larger than the sensor error, but in the

same order of magnitude. Depending on the error tolerance

required by data assimilation, for specific systems one can

define the ranges of the value of r/o in which the system is

strongly observable, reasonably observable, weakly obser-

vable, and unobservable.

Interested readers are referred to Kang and Xu (2009b)

for illustrative examples of observability. The following is

an artificial and simple example of an unobservable system.

In this case, the unobservability index is �. Suppose

u1ðk þ 1Þ ¼ u1ðkÞ þ u2ðkÞ
u2ðk þ 1Þ ¼ u2ðkÞ þ u3ðkÞ

u3ðk þ 1Þ ¼ u3ðkÞ þ 1
(5)

Suppose the sensors are able to measure the value of u2, i.e.

Y ðkÞ ¼ u2ðkÞ

Given any initial condition u0�[u01 u02 u03]
T , we can

generate two trajectories using u(0)�u0 and u(0)�u0�
[0.1 0 0]T, i.e. r�NNdu0NN=0.1. It is obvious that the two

different trajectories of u(k) result in the same value of y(k).

In other words, the sensor completely fails to catch the

change of value in the initial condition. In this case, o�0

because the cost in eq. (3) equals zero, where we assume
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P1�0 (no a priori statistical information about the initial

condition). Obviously u1(0) is not observable. The unob-

servability index, r/o, equals infinity because o�0 .

The system becomes observable if we can measure u1(k), i.e.

yðkÞ ¼ u1ðkÞ

The system [eq. (5)] with this output can be written into

the following matrix form

uðk þ 1Þ ¼ AuðkÞ þ B

yðkÞ ¼ CuðkÞ

A ¼
1 1 0
0 1 1

0 0 1

2
4

3
5;B ¼

0
0

1

2
4
3
5

C ¼ 1 0 0½ �

(6)

If u(k) is a trajectory of eq. (6) with an initial state u0, then

the trajectory with an initial variation du0 is

uðkÞ þA
kdu0

Therefore

yðk; u0 þ du0Þ � yðk; u0Þ ¼ CAkdu0

If we use the Euclidean norm in eq. (3), then

J2 ¼
PN

k¼0

duT
0 ðAkÞT CT CAkdu0

¼ duT
0 Gdu0

where N�1 is the total number of the sampling data used

in the estimation process, and

G ¼
XN

k¼0

ðAkÞT CT CAk

Therefore, o in eq. (4) satisfies

e2 ¼ r2 k du0 k2
2

where s2 is the smallest eigenvalue of G. Suppose

Idu0I2�r, then

q= 2¼ 1=r

Following this example, we can approximate the unobser-

vability index for non-linear systems with a small value

of r. The matrix G can be numerically approximated by a

method of empirical Gramian matrix, which is a general-

isation of the algorithm in Krener and Ide (2009). Consider

the mapping

du0 ! ðdu0; yð�; k; u0 þ du0Þ � yð�; k; u0ÞÞ (7)

From eq. (3), the cost function J(u0, du0,l) is, in fact, the

norm of the image of this mapping. The minimisation in

eq. (4) is to find the image of the mapping [eq. (7)] with

smallest norm subject to Idu0I�r. Let v1,v2, . . . , vs be

an orthonormal basis of the space W. Then the variation

of du0 on the sphere jjdu0jj ¼ q can be represented by

du0 ¼
X

aivi

where

X
a2

i ¼ q2

For each direction vi, the variation of the output can be

estimated empirically by

DiðkÞ ¼ 1
2q yðk; k; u0 þ qviÞ � yðk; k; u0 � qviÞð Þ; (8)

for k�0, . . ., Nt. The mapping [eq. (7)] can be locally

approximated by

du0 ¼
P

aivi ! ðdu0;
P

aiDið�ÞÞ (9)

Therefore, the minimum value in eq. (4) approximately

equals the smallest norm of the images under the mapping

[eq. (9)] subject to
P

a2
i ¼ q2. More specifically,

Jðu0; du0; kÞ � aT Ga; a ¼ a1 � � � as½ �T (10)

where

G ¼ ðGijÞ
s

i;j¼1

Gij ¼ ðBvi; vj >P1
þBDi;Dj >P2

Þ

¼ vT
i P1vj þ

PNt

k¼0

DiðkÞ
T

P2DjðkÞ

Let s2 be the smallest eigenvalue of G, then the smallest

norm of the images under eq. (9) subject to
P

a2
i ¼ q2 is

sr. Therefore, the unobservability index r/o is approxi-

mated by 1/s .

In linear algebra, G is called a Gramian matrix. Because

we are trying to compute the observability before sensors

collecting data and because of the random sensor error,

there are endless possible estimates of a state variable. The

Gramian matrix G approximates the mapping from the

possible estimation error to the variation of the output, or

the possible sensor error.

What eq. (4) measures is, in fact, the observability of the

initial state u0. However, an accurate initial state does not

automatically guarantee good accuracy along the entire

trajectory. One may want to measure the observability using

u(Nt) , the final state, or other time point u(k), to define the

observability. Because a trajectory is uniquely determined

by any given u(k) for a fixed time k, it is straightforward

to generalise Definition 1 to the observability of any u(k).

The selection of k depends on the system or the accuracy

requirement of specific applications. To guarantee an over-

all accuracy, it is also possible to use different norms, such

as L2-norm. This issue is addressed in Section 6.
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3. Optimal sensor placement

The concept of observability provides a quantitative

measure of the quality of sensor information for the

purpose of state estimation. More specifically, the value

of o defined in eq. (4) depends on l, the sensor locations.

We treat o as a function of l, o(l), which is used as the

performance measure of sensor locations. The best sensor

locations are those that maximise the value of this

performance measure, i.e.

maxk eðkÞ
subject to

kmin � k � kmax

(11)

From Section 2, the value of o(l) can be computed

using the method of empirical Gramian matrix. Therefore,

eq. (11) is, in fact, a problem of maximisation with both

linear and non-linear constraints. This problem is numeri-

cally challenging. Further research is required to find effi-

cient computational methods. For the purpose of proving

the concepts of observability and sensor placement, in

the following we adopt a projection gradient method to

numerically solve eq. (11).

The gradient with respect to l is defined by

rk ¼
@e

@k

Suppose the location of the ith sensor is bounded by

kmin;i � ki � kmax;i. To find the searching direction on the

boundary of the region, the following projected gradient is

used.

rk;i
¼

0; if ki ¼ kmin;i and rk;iB0

0; if ki ¼ kmax;i and rk;i > 0

rk;i; otherwise

8
<

:

where rk;i is the ith component of rk. The projected

gradient direction guarantees that the searching direction

points toward the inside of the boxed region. Thus eq. (11)

can be treated as a problem of unconstrained maximisa-

tion. Given a search direction�r, a process of line search is

then carried out using the Armijo algorithm model. Details

about this line search algorithm are referred to Polak

(1997).

4. An example of Burgers’ equation

To verify the concept, the theory is applied to the following

Burgers’ equation

@Uðx;tÞ
@t
þUðx; tÞ @Uðx;tÞ

@x
¼ j @2Uðx;tÞ

@x2

Uðx; 0Þ ¼ U0ðxÞ
Uð0; tÞ ¼ f1ðtÞ
UðL; tÞ ¼ f2ðtÞ

(12)

Suppose we can measure the value of U(x,t) at Ny fixed

locations in the time interval [0,T]. The question is: what

sensor locations maximise the observability around the

nominal trajectory U(x,t) ?

For the purpose of computation, we discretise the

problem at a set of uniformly spaced nodes,

x0 ¼ 0Bx1B� � �BxN ¼ L;

where

Dx ¼ xiþ1 � xi ¼ L=N:

Sensors are located in the interval [0,L], not necessarily at

the nodes (Fig. 1). Define ui(t)�U(xi,t) for i�1, 2, . . . N�1.
System [eq. (12)] is discretised using the central difference

method

_u1 ¼ �u1
u2�f1ðtÞ

2Dx
þ j u2þf1ðtÞ�2u1

Dx2

_u2 ¼ �u2
u3�u1

2Dx
þ j u3þu1�2u2

Dx2

..

.

_uN�1 ¼ �uN�1
f2ðtÞ�uN�2

2Dx
þ j f2ðtÞþuN�2�2uN�1

Dx2

(13)

Using the framework in Section 2, the discretised version

of eq. (13) represents the dynamical system [eq. (2)]. In all

computations that follow, we apply a Runge-Kutta algo-

rithm to eq. (13). The observability is computed around a

nominal trajectory defined by the initial value

u0 ¼ U0ðx1Þ U0ðx2Þ � � � U0ðxN�1Þ½ �T (14)

In the following, we use eq. (13) as the true model. The loca-

tions of the Ny sensors are represented by the parameter

k ¼ k1 k2 � � � kNy

� �

where li is the x-coordinate of the sensor in space. A solu-

tion of the system in the (t,x,u)-space with the points of

sensor sampling is shown in Fig. 2.

We assume that sensors can be located anywhere in

the interval [0,L], not necessarily at the nodes. Because of

that, the value of the true solution at the sensor locations

is not directly available from the discretised model. For

the purpose of computation, the value of sensor data is

generated by the following interpolation

y ¼ hðu; kÞ
¼ Inð½x1 � � � xN�1�; u; kÞ

(15)

X0

λ1
λ2 λ7

X2
XNX1

Fig. 1. Illustrative graph of nodes in discretisation and sensor

locations.
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where In(a,b,g) represents the interpolation of (a,b)

evaluated at g. Because l is a vector, hðu; kÞ 2 R
Ny . In

this study, the interpolations are computed using cubic

splines. In the framework introduced in Section 2, the

output, y, of the system in eq. (2) is defined by eq. (15).

Suppose each sensor collects Nt readings at the frequency

1=Dt in the time interval [0,T], i.e. Dt ¼ T=Nt. The cost

function defined in eq. (3) with constant weights has the

following expression

Jðdu0; kÞ ¼
PNt

k¼0

jjhðuðtk; u0Þ; kÞ � hðuðtk; u0 þ du0Þ; kÞjj
2

¼
PNt

k¼0

jjInðX ; uðtk; u0Þ; kÞ � InðX ; uðtk; u0 þ du0Þ; kÞjj
2

(16)

where X ¼ ½x1 � � � xN�1�, tk�tk-1�Dt. In this example, the

cost does not include the norm of the initial error, i.e. we

focus on the observability with respect to the sensor data

only. The minimisation in eq. (4) has the following form

e2 ¼ Jðdu0; kÞ
subject to
jjdu0jj ¼ qo

du0 2W
_u ¼ f ðuÞ; f ðuÞ is defined in ð13Þ

8
>>>><

>>>>:

The observability is measured by the ratio r/o. The smaller

is this ratio, the stronger is the observability.

The computations are based on a set of specific para-

meter values. The number of sensors is seven, i.e. Ny�7.

The nodes for discretisation divide the space, [0,2p], into

N�50 equal length subintervals. However, the dimension

of the space for estimation, W, is much smaller. In fact,

we assume that the initial state U(x,0) can be accurately

approximated using finite terms of Fourier series,

Uðx; 0Þ �
P6

k¼1

ak cosðkxÞ þ bk sinðkxÞ (17)

The space for estimation, i.e. W in Definition 1, is defined

to be all functions in the form of eq. (17). The observability

is defined around a nominal trajectory. In this example,

the nominal trajectory is defined by the initial state, U0(x),

which is given below. The plot of the nominal trajectory

is shown in Fig. 2. We assume that U(x,t) can be ap-

proximated by Fourier series. Therefore, the space for

estimation is

W ¼ span a0 þ
XNF

k¼1

ak cosðkX Þ þ bk sinðkX Þ ak; bk 2 Rj
( )

where X ¼ x1 � � � xN�1½ �T : The initial value of the

truth is

U0ðxÞ ¼
x3ð2� xÞ3; x � 2

0; x > 2

�

Details on the parameters used in this example are listed as

follows.

Ny ¼ 7 ðseven sensorsÞ
NF ¼ 6

j ¼ 0:14

L ¼ 2p ðlength of x�intervalÞ
N ¼ 50 ðN� 1 is the dimension of ð13ÞÞ
T ¼ 5 ðfinal timeÞ

Nt ¼ 20

Dt ¼ T=Nt ðtime step size of sensorsÞ
f1ðtÞ ¼ 0 ðboundary conditionÞ
f2ðtÞ ¼ 0 ðboundary conditionÞ
qo ¼ 0:01 ðradius of the variation of u0Þ

Following the formulation and algorithm in Section 3,

the optimal sensor locations are computed under the con-

straints 2p=N � ki � 2ðN � 1Þp=N,

k ¼ ½0:7504 1:0628 1:7664 2:0812 3:9754 4:8250 5:4302�
(18)

In this case, the unobservability index is

q=e ¼ 1:75

This number implies that, in the worst case, the error of

the u(0) estimate is about 1.75 times the sensor error as

measured by the norm J(du0,l). In other words, a reasonable
estimate of u(0) should have an error within 1.75 times the

sensor error. Because of different scales used for the state

space and sensor errors, the value of unobservability index

must be combined with the expected, or standard deviation,

of the sensor error to assess the accuracy of state estimate.
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Fig. 2. A trajectory with sensor locations.
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If the sensor error is at the same scale as the desired bound

of estimation error, then r/o�1.75 implies that u(0) is

observable. On the other hand, independent of the scales

of the variables, the unobservability index is directly

comparable to other sensor locations. For the purpose of

comparison, let us consider the equally spaced sensor

locations,

k1 k2 � � � k7½ � ¼ 2p
8

2 2p
8
� � � 7 2p

8

� �
(19)

In this case, the unobservability index is

q=e ¼ 12:92

It is larger than that from optimal sensor locations by more

than seven times. We can conclude that the state variable is

weakly observable using equally spaced sensors. Its data is

much less valuable than those from optimal sensor loca-

tions. Therefore we expect significantly larger error in state

estimation if sensors are equally spaced, no matter what

estimation method is used.

The equally spaced and the optimal sensor locations are

shown in Fig. 3. The optimal sensor locations agree with

our intuitive sense. It is not the full values of the model

state trajectory U(x,t) that are important for the observa-

bility, but rather the dynamics of the trajectory. As shown

in Fig. 2, U(x,t) is much more dynamically active with

relatively high rate of change on the left side in the space.

On the right side, U(x,t) is relatively calm. Optimising the

observability automatically takes this phenomenon into

consideration. As a result, the optimal solution places four

sensors on the left side; and leaves three sensors on the

right side. Because the observability is relative to nominal

trajectories based on forecast, it is desirable that at least

some sensors have mobility so that the optimal sensor

locations can be updated in real-time and the sensor system

is adaptive to the dynamic reality.

5. Optimal sensor locations for data assimilation

High observability of a trajectory implies that a reasonable

estimation method should be able to recover the trajec-

tory with small error. More specifically, if the estimation

method is based on the minimisation of the cost function

J in eq. (3), then the optimal sensor locations guarantee to

minimise the worst error. Data assimilation is based on the

minimisation of a cost function. We expect that the concept

of observability is applicable to data assimilations. More

specifically, we want to verify the following belief: im-

proved observability results in smaller estimation error. For

this purpose, data assimilation results using optimal sensor

locations are compared to the results from equally spaced

sensors. The comparison is based on a set of Monte Carlo

experiments using 200 data sets consisting of randomly

generated initial background errors and sensor noise.

For each set of data, a standard algorithm of 4D-Var is

applied to estimate the trajectory. For the reasons of space,

details on the 4D-Var algorithm used in this section

are referred to Xu and Daley (2000) and Xu et al. (2007).

The tangent linear model and the adjoint model are

developed using the algorithm from Rosmond (1997).

The linear equations in the data assimilation are solved

using a standard conjugate gradient algorithm in Golub

and Van Loan (1996).

The data sets for the Monte Carlo experiments are

generated randomly. Two hundred sets of background

trajectories are generated around the true trajectory with

initial state u0 in eq. (14). The background, ub(t), represents

an estimate from the previous step or an initial guess of the

true trajectory. The variation of the initial state of back-

grounds, ub(0) � u0, is a random variable with a Gaussian

distribution of zero mean. The average of jjub
0 � u0jj is

0.3638, which is about 11.14% relative to jju0jj. The data

assimilation uses backgrounds that are projected to the

space for estimation, W, defined in eq. (4).

In a 4D-Var data assimilation, an estimate ua(t) is

obtained using the system model as well as sensor informa-

tion, i.e. the output y(ti), which is corrupted by noise. For

each background, we generate a set of sensor information

with noise

yðtiÞ ¼ ytrueðtiÞ þ Rvi

vi 2 R
Ny � standard white Gaussian noise

R ¼ 0:001

(20)

where ytrue(ti) is the value of the true state at the sensor

location. The standard deviation of the sensor noise, R, is

about 0.7�1% of the average value of u(x,t). Later in the

robustness study, it is increased to about 2%. We choose

0

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6

Fig. 3. Sensor locations: equally spaced (blue) and optimal

locations (red).
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a relatively small noise because this study is specifically

focused on the impact on data assimilation by the single

factor of sensor locations.

The sensors are not always placed at the grid points of

the discretised model [eq. (13)]. Therefore, in the simula-

tions ytrue(ti) is not directly available from the model. In

the computation of observability, cubic spline is used to

approximate its value, which is defined in eq. (15). However,

for 4D-Var estimation we adopt a linear interpolation

method to approximate ytrue(ti) so that the matrix H in

the algorithm is easily available. Numerical experiments

(results are not shown) confirm that the error caused by the

linear interpolation is negligible.

In the Monte Carlo experiments, 200 sets of background

are generated as described above,

fub
kðtÞjk ¼ 1; 2; � � � ; 200g (21)

The notation in this section is different from previous

sections. The sub-index, k, in ub
kðtÞ is not the time step as

in previous sections. It represents the index in the Monte

Carlo experiments. The time step is represented by ti. For

each background, two sets of sensor data with noise are

generated, one based on equally spaced sensors and the

other on optimal sensor locations. The sensor data is

available only at the sampling point in time and space, i.e.

a sequence of the following form

y1ðt0Þ y1ðt1Þ � � � y1ðtNt
Þ

y2ðt0Þ y2ðt1Þ � � � y2ðtNt
Þ

� � � � � � � � � � � �
yNy
ðt0Þ y2ðt1Þ � � � yNy

ðtNt
Þ

2
664

3
775 (22)

where Nt�20 and Ny�7. For each combination of back-

ground and sensor locations, the analysis, ua(t), is found

using 4D-Var data assimilation. The analysis is an estimate

of the truth. Two norms are used in the evaluation of

estimation error from different sensor locations. Let

utruth(t) be the true trajectory of the system, i.e. the truth.

For an analysis, ua(t), the overall error of ua(t) is measured

using the following norm

jjua � utruthjj2 ¼
R T

0
jjuaðtÞ � utruthðtÞjj2dt (23)

where jjuaðtÞ � utruthðtÞjj is the norm in R
N�1. The error of

the initial state ua(0) is defined by

jjuað0Þ � u0jj (24)

Using the backgrounds in eq. (21) and the 4D-Var

estimation process, 200 estimate of the truth is numeri-

cally generated. The accuracy of the data assimilation is

characterised by the root-mean-square error (RMSE)

based on the norms eq. (23) and eq. (24),

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k¼1

jjua
k
�utruth jj2

N

s
(25)

for ua
kð�Þ and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

k¼1

jjua
k
ð0Þ�utruthð0Þjj2

N

s
(26)

for the initial state, where N is the number of numerical

experiments. The RMSE of backgrounds, ub
kð�Þ, is defined

in a similar way. In the Monte Carlo experiments, the back-

grounds in eq. (21) are randomly generated so that the

RMSE of ub( �) is 0.3638, which is 11.14% relative to the

norm of the truth, utruth(t); the RMSE of initial states ua(0)

equals 0.3524, which is 15.13% relative to the truth u0. 4D-

Var data assimilations are applied to all backgrounds in

eq. (21) with sensor data in the form of eq. (22), from both

the equally spaced sensor locations [eq. (19)] and the

optimal locations [eq. (18)]. The data assimilation algo-

rithm requires the background error covariance and the

sensor noise covariance. They are generated from the

set of errors fub
kð0Þ � u0j k ¼ 1; � � � ;Nk ¼ 200g and noise

ðv1; v2; � � � ; vNt
Þ normalised by Nt�1.

The plots of the errors jjuað0Þ � utruthð0Þjj and

jjuað�Þ � utruthð�Þjj from the Monte Carlo experiments are

shown in Figs. 4 and 5. The estimation accuracy is signi-

ficantly improved by using the optimal sensor locations.

In fact, the RMSE of ua
kð�Þ, k�1,2, . . ., 200, is 0.0788 for

the equally spaced sensor locations. The RMSE is reduced

to 0.0325 if the optimal sensor locations are used, which

is an improvement of more than 59%. The errors of the

initial states have similar behaviour. For equally spaced

sensors, the RMSE of initial states is 0.1647; and the value is
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Fig. 4. The scatter plot of r/o vs. jjuað0Þ � utruthð0Þjj.

8 W. KANG AND L. XU



0.0786 for optimal sensor locations, which is a 52% error

reduction. These results are summarised in Table 1.

The Monte Carlo experiments show that the concept of

observability is consistent with the outcomes from data

assimilation, i.e. data from sensors with higher observability

results in higher estimation accuracy. This implies that

sensor data with high observability contains more valuable

information than those with low observability. However,

one might notice from Table 1 that the scale of accuracy

improvement does not match with the scale of the observa-

bility. In fact, the unobservability index of optimal sensor

locations is 1.75 in contrast to 12.92 for equally spaced

sensors, i.e. the observability is improved by about 86%.

However, the improvement of estimation accuracy is about

50�60% depending on the choice of the norm. This pheno-

menon is largely due to the error covariance of initial

background. In the computation of unobservability index,

the impact of the error covariance of ub
kð0Þ is not included in

the cost function [eq. (16)]. However, one can certainly take

this into consideration as a part of the cost function, i.e.

a non-zero P1 in eq. (3). In the example of Burgers equation,

we ignore the initial error covariance so that the observa-

bility is focused on the quality of sensor locations only.

On the other hand, if the covariance of the background is

known at the time of sensor location design, it can certainly

be included in the cost function eq. (3) so that the optimal

locations reflect the combined value of the information on

both the initial error covariance and the sensor data.

Figure 6 shows the RMSE as a function of time. More

specifically, using the 200 analysis resulting from data

assimilation we define the following function

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

k¼1

jjua
kðtÞ � utruthðtÞjj2

N

vuuut

where N�200. In Fig. 6, the curve represents the

RMSE from equally spaced sensors and the dash curve

represents the result using optimal sensor locations. Due to

the non-linear nature of the system, the sensitivity of the

state variables to sensor noise is not evenly distributed

along a trajectory. Maximising observability results in an

overall improvement of the estimation accuracy. More

specifically, the optimal sensor locations result in signifi-

cantly smaller error when the estimation is difficult and

relatively inaccurate, which is in the time interval [0,1.3].

To compromise, the optimal sensor locations result in

slightly bigger error in [1.3,5] when the estimate is relatively

accurate.

The initial state and the interval of two times standard

deviation are shown in Fig. 7, in which the curve is the

result of using equally spaced sensors and the dash curve

represents the result using optimal sensor locations, which

has a significantly smaller error standard deviation.

6. Robustness analysis and some additional issues

In practical applications, robustness is an important factor

in evaluating optimal designs. It is desired that suboptimal

or acceptable results can be achieved in the presence of

uncertainties. In data assimilations, the specification of the

initial error covariance, Pb
0, is a significant challenge due to

its size and uncertainty. In the robustness study, Pb
0 is

varied from its true value by about 10%. Then the RMSEs

of ua( �) using equally spaced sensors and optimal locations

are computed, which equal 0.0938 and 0.0351, respectively.

If the covariance matrix is changed by about 50% from its

true value, the RMSEs become 0.1191 and 0.0887. The

results are summarised in Table 2. The robustness is also

numerically tested for the sensor noise covariance, R. If

the matrix is changed by 100% from the true value, the

RMSEs are 0.0646 and 0.0407 for equally spaced sensors

and optimal sensor locations, respectively. In all cases, the

optimal sensor locations result in significantly improved

Table 1. Summary of Monte Carlo experiments

Unobservability index, r/o RMSE of ua(0) RMSE of ua( �)

Equally spaced sensors 12.92 0.1647 0.0788

Optimal sensor location 1.75 0.0786 0.0325

Improvement 86% 52% 58%

0 2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

ρ/∈ ρ/∈=12.92ρ/∈=1.75

er
ro

r 
of

 u
a ( 

)

Fig. 5. The scatter plot of r/o vs. jjuað�Þ � utruthð�Þjj.
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estimation accuracy, which ranges from 25% to 62%

(see Table 2).

In addition to the variations of covariance matrices,

another study is carried out to test the robustness under

different probability distributions. In the previous numer-

ical experiments, the background and sensor noise are both

generated using normal distributions. To test the robust-

ness, we generate a set of 200 backgrounds using uniform

distribution in the interval of [�0.17, 0.17]. The sensor

noise follows uniform distribution in [�0.003, 0.003]. Then

4D-Var data assimilation is applied to this set of data

to generate two hundred ua
kð�Þ. The results are shown in

Table 3. Consistent to the previous numerical results, the

estimation error of u(0) is improved by 35% by using the

optimal sensor locations. The improvement in the estima-

tion of u( �) is more than 42%.

In the following, we revisit Definition 1 to address

some related issues. What eq. (4) measures is, in fact, the

observability of the initial state u0. More specifically, the

meaning of o and r can be explained as follows: if the

sensor error is bounded by o, then the worst least square

estimate ua(0) of the initial state u0 has an error that is less

than or equal to r. Because the trajectory of a system is

uniquely determined by its initial state, for many systems

an accurate estimate of u0 results in an accurate estimate

of the entire trajectory. However, the initial state is

not always the first priority in estimation. For instance,

filtering problems require an accurate estimation of the

current state, rather than the initial state. In the example

of Burgers’ equation, the system is stable in which the

trajectory has active non-linear behaviour around the

initial time. As a result, we focus on the observability of

the initial state. Nevertheless, an accurate initial state does

not automatically guarantee a good accuracy along the

entire trajectory. In order to accommodate various require-

ments in estimation and prediction, it is necessary to define

observability using different types of norms.

It is straightforward to generalise Definition 1 to the

observability of u(k0) for any fixed time k0. Given any

u(k0) �u0, it uniquely determines a trajectory u(k;u0). The

associated cost, J(u0,du0,l), can be defined in a similar

way as in eq. (3). Let r�0 be a positive number. Then the

number o is defined as follows

e2 ¼ mindu0
Jðu0; du0; kÞ

subject to
jjdu0jj ¼ q
du0 2W

(27)

The ratio r/o is a measure of the observability of

u(k0). This number can be approximated using empirical

Gramian matrix method introduced in Section 2, except

that eq. (8) is defined using perturbations around u(k0).

Instead of focusing on a fixed point in the time interval,

observability can be defined for an entire trajectory u( �).
For this purpose, the norm of du must measure the overall

error along the trajectory, for instance the l p-norm

jjdujj ¼
XNt

k¼0

jduðkÞjp
 !1=p

Given a nominal trajectory u(k), the space W is a subset

of differentiable functions such that

u(k)�d(k) is a trajectory that satisfies the dynamics

model [eq. (1)]. For non-linear systems, W is not a linear

space. It is a differential manifold with a metric. Although

the space of differentiable functions is infinitely dimen-

sional, the tangent space of W has a finite dimension. This

is because trajectories are uniquely determined by initial
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states, which are from a finite dimensional space. Suppose

the output, i.e. the sensor measurement, is represented by

yðkÞ ¼ hðk; u; ðkÞÞ

The sensor measurement around the nominal trajectory

is denoted by y(k;u�du), i.e.

yðk;uþ duÞ ¼ hðk; uðkÞ þ duðkÞÞ

the variation of the measured variable y(k) around a

nominal trajectory is defined as follows

Jðu; duÞ ¼ duð0ÞT P1duð0Þ þ jj yð�; uþ duÞ � yð�; uÞ jjY
(28)

The observability of u( �) is defined as follows,

e2 ¼ mindu Jðu; duÞ
subject to
jjdujj ¼ q
du 2W

(29)

For this definition of observability, the empirical Gramian

method can be modified to approximate r/o.

7. Conclusions

To summarise, the concept of observability is defined as the

theoretical foundation for the optimal design of sensor

locations. The method of empirical Gramian matrix is a

practical way to approximate the observability. It provides

a cost function for the optimisation of sensor locations,

which is carried out numerically using a gradient projection

method. As a testbed, the Burgers equation is employed in

the examples. The concept and computational methods are

found applicable to these examples. The results prove that

optimal sensor placement leads to significantly improved

estimation accuracy in data assimilations when 4D-Var is

used; and the performance is tested to be robust.

This work raises many questions for long term research.

Optimal trajectory planning is an active research area in

control systems in which the path, the control, and the

trajectory of unmanned vehicles are designed to optimise a

given performance measure (see, for instance, Tang et al.

(2011) and references therein). The combination of algo-

rithms in trajectory planning with the concept of observa-

bility is an obvious next step of research. The goal is to

extend the results in this study on fixed sensor locations to

mobile sensors in more dynamic environments. It requires

optimal solutions with much higher dimensions that are

subject to complicated constraints. In computation, devel-

oping numerical algorithms of observability for large scale

systems is a fundamental challenge in meteorology applica-

tions. The examples in this study serve the purpose of

prooving concepts. However, the dimension of the problem

is too low to verify the capability of finding optimal sensor

design for high dimensional systems.
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