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ABSTRACT

Non-Gaussian/non-linear data assimilation is becoming an increasingly important area of research in the

Geosciences as the resolution and non-linearity of models are increased and more and more non-linear

observation operators are being used. In this study, we look at the effect of relaxing the assumption of a

Gaussian prior on the impact of observations within the data assimilation system. Three different measures of

observation impact are studied: the sensitivity of the posterior mean to the observations, mutual information

and relative entropy. The sensitivity of the posterior mean is derived analytically when the prior is modelled

by a simplified Gaussian mixture and the observation errors are Gaussian. It is found that the sensitivity

is a strong function of the value of the observation and proportional to the posterior variance. Similarly,

relative entropy is found to be a strong function of the value of the observation. However, the errors

in estimating these two measures using a Gaussian approximation to the prior can differ significantly. This

hampers conclusions about the effect of the non-Gaussian prior on observation impact. Mutual information

does not depend on the value of the observation and is seen to be close to its Gaussian approximation. These

findings are illustrated with the particle filter applied to the Lorenz ’63 system. This article is concluded with a

discussion of the appropriateness of these measures of observation impact for different situations.
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1. Introduction

In data assimilation, the aim is to combine observations

with a priori information in a way which takes into account

a statistical representation of their respective errors. In

the Geosciences, the a priori information commonly comes

from a sophisticated physical and dynamical model of the

phenomena of interest, for example a numerical weather

prediction.

Despite the non-linearity of these models, assimilation

methods based on linearising the model and assuming

Gaussian statistics have proved a powerful tool. Such

methods include 4DVar, which is in operational use at

many meteorological centres (Rabier, 2005). However, the

assimilation is restricted to time and spatial scales where

the non-linearity is small (Pires et al., 1996; Evensen, 1997).

At higher resolutions (e.g. convective scales), these

geophysical models are highly non-linear, which potentially

gives rise to significantly non-Gaussian a priori error

distributions. This has led to an increasing interest in

the methods of data assimilation, which do not rely on

assumptions about the near linearity of the model and

Gaussian error distributions.

Two reviews highlighting the recent developments in

non-linear (non-Gaussian) data assimilation have been

given by van Leeuwen (2009) and Bocquet et al. (2010).

Many of the methods discussed in these papers are based

on the direct application of Bayes’ theorem in which the

posterior distribution, p(xjy), (the probability distribution

of the state given the observations), is derived from the

multiplication and normalisation of the prior, p(x), with

the likelihood, p(yjx) (the probability distribution of the

observations given the state):

pðxjyÞ ¼ pðxÞ pðyjxÞ
Ð

pðxÞ pðyjxÞdx
: (1)

The analysis is then often defined as the mode or mean

of the posterior distribution.

The assimilation of observations is expected to give

us a better understanding of the state; however, it is

clear that some observations are more useful than others.
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For example, some observations may be more accurate,

and others may provide information about a larger part

of state space. It is therefore important to understand the

impact that individual observations and subsets of obser-

vations have on the posterior distribution.

In Gaussian data assimilation (Gaussian prior and

likelihood function), many measures of observation impact

on the analysis are operationally used, for example:

(1) The degrees of freedom for signal (the effective

degrees of freedom) (e.g. Fisher, 2003).

(2) The sensitivity of the analysis to the observations,

utilising the adjoint of the model (Cardinali et al.,

2004).

(3) The reduction in the analysis error covariances

compared with the a priori error covariances. This

may be related to the idea of mutual information

(the reduction in entropy) as used by Eyre (1990).

(4) There has also been an increasing interest in the

use of relative entropy (Xu, 2007; Xu et al., 2009),

which will be shown in the next section to measure

the observations influence on both the analysis and

the analysis error covariance.

The aim of this study is to look at the impact a non-

Gaussian prior has on the observation impact as measured

by three different measures: the sensitivity of the analysis

to the observations, mutual information and relative

entropy. It is assumed throughout that the observation

error has a Gaussian distribution.

In the next section, these three measures will be derived

for Gaussian data assimilation. In Section 3, a simple

model of the non-Gaussian prior will be presented. The

effect that this prior has on the sensitivity of the analysis

to the observations will then be studied and compared

with the impact on the mutual information and relative

entropy. In Section 4.1, these differences will be illus-

trated with the Lorenz ’63 model. Finally, in Section 5,

a summary of the findings and conclusions will be

presented.

2. Observation impact in Gaussian data

assimilation

If the prior and likelihood can be assumed to be

Gaussian [given by N(xb,B) and N(y,R), respectively] and

the function mapping from state to observation space is

linear (written as matrix H), then the posterior distri-

bution is also Gaussian and can be characterised solely

by its mean (the analysis), xa, and its error covariance

matrix, Pa:

xa ¼ xb þ Kðy �HxbÞ: (2)

Here, K is known as the Kalman gain matrix, which is a

function of B, R and H:

K ¼ ðHT R�1Hþ B�1Þ�1HT R�1: (3)

The posterior (analysis error) covariance matrix is given by:

Pa ¼ ðI� KHÞB: (4)

This is independent of the means of the prior and

likelihood.

For a derivation of eqs. (2) and (4), refer to, for example,

Kalnay (2003).

2.1. The sensitivity of the analysis to the observations

The linear relationship between the analysis and the

observations, given by eq. (2), allows for a direct inter-

pretation of the analysis sensitivity to the observations

in terms of the Kalman gain matrix:

S ¼ @Hxa

@y
¼ HK: (5)

This is a p�p matrix, where p is the size of the observa-

tion space. This allows for the evaluation of the impact

of individual observations on the analysis projected onto

observation space. In this context, S was studied by

Cardinali et al. (2004). From eqs. (5) and (3), it can be

seen that accurate independent observations of features,

which we have little prior knowledge of, have the greatest

impact on the analysis because the Kalman gain will be

large (Cardinali et al., 2004).

The trace of S gives the degrees of freedom for signal, ds.

This evaluates the expected fit of the analysis to xb

normalised by the error covariance matrix, B. That is

ds�E[(xa�xb)
TB�1(xa�xb)]�trace(S) (Rodgers, 2000).

The diagonal elements of the sensitivity matrix are bounded

by 0 and 1 if R is diagonal, and therefore ds lies between 0

and p. The closer ds is to p the greater the observation

impact.

2.2. Mutual information

Mutual information measures the reduction in entropy

when an observation is made, that is the difference between

entropy in the prior and the posterior. In information

theory, entropy is a measure of the uncertainty associated

with a random variable. For a probability distribution

p(x), entropy can be defined as �
Ð

pðvÞ ln pðvÞdv. The

entropy of a conditional probability distribution, p(xNz), is
defined as �

Ð Ð
pðv; zÞ ln pðvjzÞdvdz. This is the expected

entropy of x when conditioning with z. (Note that given

these definitions, entropy is dependent on the choice of

units for the variable x.)
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When p(x) is a Gaussian, the entropy associated with x

depends only on its covariance matrix, Cx. The entropy in

this case is given by (1/2)ln [(2pe)nNCxN], where n is the size

of the vector x and j*j denotes the determinant (Rodgers,

2000). Mutual information for a Gaussian prior and

posterior is therefore given by:

MI ¼ 1

2
ln jBP�1

a j: (6)

Mutual information for Gaussian data assimilation is

therefore a measure of the difference in the determinant

of the prior and posterior covariance matrices. Hence, it

can be interpreted as the difference between a measure of

the hypervolumes enclosed by iso-probability surfaces of

the prior and posterior (Tarantola, 2005).

Mutual information can be rewritten in terms of the

eigenvalues of the sensitivity matrix, S, presented in the last

section. Firstly, note that BP�1
a ¼ ðIn �HKÞ�1

using eq. (4)

and the determinant of (In�HK) is equal to the determi-

nant of (Ip�KH), where In and Ip are the identity matrix of

dimension n�n and p�p, respectively. This leads to:

MI ¼ � 1

2

Xr

i¼1

lnj1� kij; (7)

where li is the ith eigenvalue of S (ordered in descending

magnitude) and r5min(n, p) is the rank of S. This links

mutual information to the sensitivity of the analysis to the

observations and hence to the degrees of freedom for signal

[trace (S)]. It is a scalar interpretation of the observation

impact, and therefore the impact of individual observations

may not be easily quantified. However, mutual information

can be shown to be additive with successive observations

(see Appendix A.1).

2.3. Relative entropy

Relative entropy measures the gain in information of the

posterior relative to the prior.

RE ¼
ð

pðxjyÞ ln pðxjyÞ
pðxÞ

dx: (8)

Relative entropy can be thought of as a measure of the ‘dis-

tance’ between p(xjy) and p(x). However, it is not a true dis-

tance because it is not symmetric (Cover and Thomas, 1991).

When both the prior and posterior are Gaussian, relative

entropy is given by (Bishop 2006):

RE ¼ 1

2
ðxa � xbÞ

T B�1ðxa � xbÞ þ
1

2
ln jBP�1

a j

þ 1

2
traceðB�1PaÞ �

1

2
n; ð9Þ

The first term is known as the signal term, which

measures the change in the mean of the distribution. The

rest is known as the dispersion term, which measures the

change in the covariances. This can be shown to equal

MI minus half the degrees of freedom for signal given by

the trace of the sensitivity matrix. The dispersion term can

therefore be written in terms of the eigenvalues of the

sensitivity matrix whilst the signal term depends on the

value of the observations and the prior mean.

The dependence of relative entropy on both the mean

and variance of the posterior makes it an attractive

measure, as it gives a more complete description of the

observation impact. It can also be shown that relative

entropy is invariant under a general non-linear change of

variables (Kleeman, 2011). In Section 3.3, it is seen that

mutual information may be written as a measure of the

relative entropy of p(x, y) with respect to p(x)p(y). Writing

mutual information in this way shows that if the same non-

linear transformation is applied to x and y then mutual

information is also left invariant.

A comparison of the degrees of freedom for signal,

mutual information and relative entropy for Gaussian

assimilation was performed by Xu et al. (2009). It was

concluded that in application to the optimal radar scan

configurement there was little difference in which measure

was used. In the next section, we shall look at how a non-

Gaussian prior affects these three measures.

3. Observation impact in non-Gaussian data

assimilation

From the previous section, it is seen that in Gaussian

data assimilation the impact of the observations as

measured by the three different measures is dependent on

the ratio of the prescribed error variances of the prior and

observations as well as their means for relative entropy.

When the prior is non-Gaussian, the additional structure

in the prior will be shown to be important for calculating

the impact of the observations.

A study performed by Bocquet (2008) compared the

information content of observations when the prior is

assumed to be Gaussian and Bernoulli for the inverse

modelling of a pollutant source. For this case study, a tracer

gas was released from a point source over Northern France;

observations of the gas were then made at locations across

Europe. The measures of observation impact included the

analysis error variance, the sensitivity matrix, mutual infor-

mation and the degrees of freedom for signal. It was found

that the more realistic non-Gaussian prior, which took into

account the positivity of the released mass, allowed for

observations far from the source to have a far greater impact

on the analysis, giving a more accurate retrieval.
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In this work, it is intended to use a much simpler

idealised setup to understand the difference between the

analysis sensitivity, mutual information and relative

entropy when the prior is no longer Gaussian. An initially

Gaussian prior may become non-Gaussian due to a non-

linear forecast model. In particular, the model dynamics

may lead to a skewed or multimodal distribution. The

particle filter (PF) is an example of an assimilation scheme,

which tries to represent the non-linear evolution of the

prior (van Leeuwen, 2009). This will be used in Section

4.1 to illustrate the effect of the prior structure on the

observation impact. Firstly, we shall look at the case when

the prior can be modelled as a Gaussian mixture.

3.1. Problem setup

A Gaussian mixture allows for the representation of a

wide range of non-Gaussian prior distributions. It is given

by:

pðxÞ ¼
XN

i¼1

wi½ð2pÞnjBij�
�ð1=2Þ

�exp � 1

2
ðx� xbiÞ

T B�1
i ðx� xbiÞ

� �

; (10)

where RN
i¼1wi ¼ 1 (Bishop, 2006) and xbi and Bi are the

mean and covariance of the ith Gaussian component,

respectively.

In this study, p(x) is simplified to a two-component

Gaussian mixture (i.e. N�2) in one dimension (i.e. n�1).

To reduce the number of parameters describing the prior

further, the variances of the two component Gaussians

are equal. This allows the prior to be described by four

free parameters:

(1) w, the weight given to the first Gaussian, leaving

the weight given to the second Gaussian as 1�w;
(2) m1, the mean of the first Gaussian;

(3) m2, the mean of the second Gaussian; and

(4) s2, the variance of both Gaussian components.

Although restrictive, a large range of non-Gaussian priors

can be modelled by this mixture, see, for example, Fig. 5.

The likelihood function is then taken to be Gaussian

with mean my, interpreted as the measured value, and

variance ks2, where k is a scalar. This is equivalent to

assuming we have direct observations of x.

Using Bayes’ theorem, eq. (1), this implies that the

posterior distribution is also a two-component Gaussian

distribution with updated parameters given by ~w, ~l1, ~l2

and ~r2:

~w ¼ we�a1

we�a1 þ ð1� wÞe�a2

; (11)

where ai ¼ ½ðly � liÞ
2Þ=ð2ð1þ kÞr2�:

~li ¼
ly þ kli

1þ k
; (12)

for i�1, 2:

~r2 ¼ kr2

1þ k
:

3.2. Analysis sensitivity to the observations

Here, we define the analysis as the mean of the posterior.

In many cases. this will not correspond to the mode, as

the posterior may be bi-modal [or multimodal in the case

of the more general prior described by eq. (10)]. This

makes the mode more difficult to uniquely define, and the

mode will have infinite sensitivity to observations when

the mode transfers from one peak to another.

When the prior is non-Gaussian, the simple linear

relationship between the mean of the posterior and the

observations [as seen in eq. (2)] breaks down. This can

be seen in the following.

The mean of the posterior, the analysis, is given by:

la ¼ ~w~l1 þ ð1� ~wÞ~l2:

Recall that ~w and ~li are a function of my given by eqs. (11)

and (12), respectively. The sensitivity of the analysis may

be computed as:

S ¼ @la

@ly

¼ 1

k þ 1
þ ð~l1 � ~l2Þ

@~w

@ly

:

With a little manipulation this can be written in terms of

the parameters describing the prior:

S ¼ 1

k þ 1
þ kwð1� wÞðl1 � l2Þ

2
exp�a1�a2

ð1þ kÞ2r2½w exp�a1 þ ð1� wÞexp�a2 �2
: (13)

From eq. (13) it is seen that S is a function of the

observation value due to the appearance of the exponent ai.

An illustration of S as a function of my is given in

Fig. 1 for k�2, s2�1, w�0.25, m1��1.5, m2�1.5.

On the left, the prior given by these parameters is plotted;

it is both negatively skewed and bimodal. On the right,

S is given.

S is seen to be a symmetric function about a maximum

at my�m0 (solid grey vertical line). Away from my�m0
the sensitivity asymptotes to [1/(k�1)] [(1/3) in this case].

The value of my for which the analysis shows the greatest

sensitivity, m0, is given in terms of the parameters describ-

ing the prior and likelihood as:

l0 ¼
1

2ðl1 � l2Þ
l2

1 � l2
2 � 2ð1þ kÞr2 ln

w

1� w

� �� �

: (14)

This is found by solving ð@2la=@l
2
yÞ ¼ 0 for my.
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It can be shown that for this value of my the Gaussian

components in the posterior have equal weight, that is

w e�a1 ¼ ð1� wÞe�a2 from eq. (11). Therefore, the posterior

is symmetric and the analysis (given by the mean) is

in the well between the two Gaussian components of the

posterior. At this point, a small change in the observed

value will dramatically change the shape of the posterior

and the value of its mean. Note that this is also true

for the posterior mode, which has infinite sensitivity in

the region where observations give a symmetric posterior

distribution.

An implication of this is that for a fixed prior and

observation error variance, the observation that has max-

imum impact on the analysis value also gives the largest

analysis error variance. In fact it can be proved:

S ¼ @la

@ly

¼
r2

xjy

r2
y

; (15)

for Gaussian mixture priors of any order and Gaussian

likelihoods, see Appendix A.2. Note that S is unbounded

as [(m1�m2)
2/s2] increases. Therefore, r2

xjy may be much

greater than r2
y when the prior describes two highly

probable but distinct regimes.

Also plotted in Fig. 1 is the sensitivity of the analysis

to the observations when the prior is approximated

by a Gaussian distribution, SG, (dashed line). This is not

a function of the value of the observation as shown

in Section 2.1. For this case:

SG ¼ r2
x

r2
x þ r2

y

(16)

where r2
x is the variance of the prior, r2

x ¼ r2þ
wð1� wÞðl1 � l2Þ

2
. Substituting this into eq. (16) gives:

SG ¼ 1

k þ 1
þ kwð1� wÞðl1 � l2Þ

2

ð1þ kÞ2r2 þ ð1þ kÞwð1� wÞðl1 � l2Þ
2
:

This is bounded by [1/(k�1)] and 1. Note that through-

out this paper *G refers to the value of * derived when

approximating the prior as a Gaussian.

From Fig. 1 we see that when the full prior is used

to assimilate the observation the analysis may be both more

or less sensitive to the observation than when the prior is

approximated by a Gaussian. The degree to which the

sensitivity is affected depends on the value of the observa-

tion. When m�BmyBm� (marked on Fig. 1 by the dashed

grey vertical lines) the Gaussian approximation results in

an analysis, which is less sensitive to the observations than

when the full prior is used and vice versa when the

observation is outside of this region. The dependence of

m� and m� on the parameters of the prior and likelihood

and the magnitude of the disagreement between S and SG

will be discussed further in the next section.

3.3. Comparison to mutual information and relative

entropy

Recall that mutual information is given by the prior

entropy minus the conditional entropy:

MI ¼ �
ð

pðxÞln½pðxÞ�dxþ
ð ð

pðx; yÞln½pðxjyÞ�dxdy (17)
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Fig. 1. Left: the prior distribution. The vertical blue line shows the prior mean, mx. Right: ð@la=@lyÞ (solid) and the Gaussian

approximation (dashed) for k�2, s2�1, w�0.25, m1��1.5, m2��1.5. m �, m0 and m� explained within the text.

OBSERVATION IMPACT IN NON-GAUSSIAN DATA ASSIMILATION 5



Despite the dependence of the posterior error variance on

the observations, the conditional entropy is independent

of the value of the observations. Therefore, mutual

information, unlike the sensitivity of the posterior mean

to the observations, is independent of the value of the

observations. This is shown in Fig. 2 where the measures

are normalised by their Gaussian approximations. The

analysis sensitivity is given in black and the mutual

information is given in red. In this example, the Gaussian

approximation to mutual information is about 102% of the

true value, a very small error.
Also plotted in Fig. 2 is the relative entropy norma-

lised by its Gaussian approximation, REG. As seen in

Section 2.3, relative entropy combines the effect of the

observations on both the position and shape of the posterior

distribution. This explains the asymmetry in RE/REG as:

(1) The error in the effect of the observations on the

shape of the posterior is to some extent measured by

the error in r2
xjy and hence S [see eq. (15)]. This is

symmetric about my�m0 (solid grey vertical line in

Figs. 1 and 2).

(2) However, the error in the position of the posterior is

given by the error in the squared difference between

the prior mean and the analysis (ma�mx)
2. This is

zero at my�mx (solid blue vertical line), but while

lG
a � lxð Þ2 is a quadratic function of my this is

distorted in the non-Gaussian case because of the

dependence of ð@la=@lyÞ on my.

Using relative entropy to measure how the observation

impact changes when the full prior is used may now lead

to different conclusions than when the analysis sensitivity

is used.

� Firstly, in this case, the range of values for the

error in relative entropy when a Gaussian prior is

assumed is smaller.

� Secondly, the observation values, which have a

bigger (lesser) impact when the full prior is used,

can differ. For example, in Fig. 2, if the observation

value were �5, then the relative entropy would

agree with the Gaussian approximation but the

Gaussian approximation to the analysis sensitivity

would be almost twice its real value. Similarly

if the observation value were �3, the Gaussian

approximation to the relative entropy would be

about (5/6) times its real value, whilst the error in

the Gaussian approximation to the analysis sensi-

tivity would be approximately 0.

The large variation of these two measures as a function

of the observation makes their interpretation more difficult

for a single experiment. For some applications such as

the design of new observation systems it may be more

useful to look at the average impact.

The expected value of relative entropy can be shown

to be equal to mutual information. This can be shown by

writing mutual information in its equivalent form:

MI ¼
ð ð

pðx; yÞln pðx; yÞ
pðxÞ pðyÞ

" #

dxdy: (18)

Here mutual information is interpreted as how ‘close’ two

variables are to being independent, that is the error in

approximating p(x, y) by p(x) p(y) (Cover and Thomas,

1991). In this form MI can be seen to be
Ð

pðyÞRE dy

[see eq. (8)]. The marginal distribution, p(y), is given by:

pðyÞ ¼
XN

i¼1

wiAie
�ai ; (19)

where

Ai ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p r2
i þ r2

y

� �r :

In Fig. 2, we can compare mutual information (red) to the

expected analysis sensitivity (black dashed),
Ð

pðyÞS dy. It is

seen that for this case mutual information is marginally

closer to its Gaussian approximation than
Ð

pðyÞS dy is. In

both cases, the Gaussian approximation to the prior

overestimates the average impact of the observations, as

this assumes the prior has less information (less structure)

than in fact it does.
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Fig. 2. S (black), MI (red), RE (blue) all normalised by their

Gaussian approximations. For the same parameters in Fig. 1.

The black dashed line shows
Ð

pðyÞS dy normalised by its Gaussian

approximations.
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The relationship between the three measures of observa-

tion impact shown in Fig. 2 extends to a wider range of

prior distributions described by the simple two-component

Gaussian mixture. In Fig. 3, the analysis sensitivity and

relative entropy are plotted for a range of values of

m2�m1 when w�(1/2) (top row) and w when m2�m1�3

(bottom row).

For this range of prior distributions, the magnitude of the

error in the Gaussian approximation to the relative entropy

is smaller than the error in the analysis sensitivity. The tilt in

the error fields seen for both measures as w is varied

(bottom row) follows from the equation for m0, eq. (14).

It is seen in Fig. 3 that the magnitude of the error

in the Gaussian approximation increases as the prior

becomes more non-Gaussian, that is more bi-modal

(m2�m1 increases) and more skewed [Nw�(1/2)N increases],

as one would expect.

The range of values for which the sensitivity is

underestimated (red contours), given by m��m�, is only

weakly a function of the non-Gaussianity of the prior.

It is more greatly influenced by the variance of the

likelihood. As the error variance of the observations

increases the magnitude of S decreases (as would be

expected, poor observations have a weaker impact). How-

ever, the range of values of my for which S is greater than

SG also increases.

In Fig. 4, mutual information normalised by its Gaussian

approximation (left) can be compared with the average

analysis sensitivity normalised by its Gaussian approxima-

tion (right) for a range of values of m2�m1 (y-axis) and

w (x-axis).

As expected from Fig. 3, in which S/SG was seen to be

generally larger than RE/REG, the error in the Gaussian

approximation of MI is less than the error in the Gaussian

approximation of
Ð

pðyÞS dy. In both measures, the Gaus-

sian approximation always overestimates the observation

impact but only by a marginal amount, increasing as the

prior becomes more skewed and more bimodal. The peak in

the skewness, calculated as r�3
x

Ð
ðx� lxÞ

3
pðxÞdx, is given by

the grey lines in Fig. 4.
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4. Calculating observation impact in the PF

4.1. Illustration using the Lorenz ’63 model

The effect of the non-Gaussian prior on the measures

of observation impact is now illustrated using the low-

dimensional Lorenz 1963 model (Lorenz, 1963), given by:

dv1

dt
¼ rðv2 � v1Þ

dv2

dt
¼ �v1v3 þ qv1 � v2
dv3

dt
¼ v1v2 � bv3:

(20)

Using the following parameters, s�10, r�28 and

b�8/3, eq. (20) gives rise to a chaotic system with a

strange attractor. The solution is seen to orbit around two

equilibrium points giving two ‘regimes’.

We can represent a prior distribution of the state,

x�(x1, x2, x3)
T, by a large number, Np, of weighted

‘particles’ (e.g. van Leeuwen, 2009):

pðxtÞ �
XNp

i¼1

wt�1
i d x� xt

ið Þ (21)

where d(*) is the Dirac delta function, i is the particle

index and t is the observation time index. The number

of particles, Np, used in this work is 10 000 to avoid

sampling issues.

At the initial time, all weights, w0
i , are equal to (1/Np). In

this work, the initial prior is taken to be Gaussian with

covariance matrix given by:

B ¼
1 1

2
1
4

1
2

1 1
2

1
4

1
2

1

0

@

1

A;

and therefore the initial particles are drawn from N(xT,B),

where xT is the known truth at initial time.

This initial prior distribution is then evolved forward

in time to the first observation by propagating each

particle forward using a fourth-order Runge-Kutta dis-

cretisation of the equations given by eq. (20) with a time

step of 0.01. Observations, y, are relatively sparse, made

at every 50 time steps, and of only the x1 variable. The

observation error is assumed to be Gaussian with mean

zero and a large error variance, r2
y ¼ 10. At the time of

the first observation the non-linearity of the Lorenz ’63

system gives rise to a new prior distribution of x1, which is

no longer Gaussian.

At the time of the observation, the weights of each

particle (which were initially all equal) are updated using:

wt
i ¼

wt�1
i p ytjxt

ið Þ
PNp

j¼1

wt�1
j p ytjxt

j

	 

:

The particles with updated weights now represent the

posterior distribution, which is given by:

pðxtjy1:tÞ �
XNp

i

wt
id x� xt

ið Þ: (22)

The particles are then propagated forward to the next

observation, and the weights are again updated. It is

desirable to have a large number of particles with non-

negligible weight, so that the posterior distribution is

accurately represented. A common problem with this

standard PF for a limited sample size is filter divergence,

when over time all the weight falls onto only a few particles.
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In this example, the large sample size ensures that the

effective number of particles 1=ðRiw
2
i Þ½ � is greater than 25

up to the 10th observation time. Note that no resampling of

the particles is used.

In Fig. 5, the priors are plotted as histograms for the

first 10 observation times, and the observations are given

by the blue stars.

The priors are far from Gaussian (black line). In

particular at observation times 4 and 9 the prior appears

to be bimodal. At each assimilation time, the observed state

is represented by the particles. This is in agreement with the

large effective number of particles (see definition above).

In Fig. 6a, the analysis (mean of the particles,

la ¼
PNp

i¼1 wixi) of x1 (red) is plotted alongside the true

trajectory (grey) and the observations (black crosses).

The analysis, given by the mean of the particles, gives a

fairly good estimate of the truth until the 350th time

step (7th observation) when there is a large uncertainty

as to the sign of the x1 seen in Fig. 5.

For these non-idealised prior distributions we can now

calculate the impact of the observations using the three

different measures and compare to the observation impact

when the priors are approximated by a Gaussian. Firstly,

the Gaussian approximations to the observation impacts

are calculated using eqs. (5), (6) and (9) in Section 2. xb
and B are calculated directly from the particles at the

observation time using the weights before they have been

updated, for example:

xt
b ¼

XNp

i¼1

wt�1
i xt

i (23)

Bt ¼
XNp

i¼1

wt�1
i xt

i � xt
bð Þ xt

i � xt
bð ÞT: (24)

xa and pa are then calculated using eqs. (2) and (4),

where H�(1, 0, 0).

In this example, R ¼ r2
y is constant and so for the

Gaussian approximations to the observation impact only
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Fig. 5. The evolution of the marginal prior distribution of x1: each panel gives a histogram representation of the particles at the time of

the observations (bar plots). The blue stars give the value of the observations at each time. The black lines give a Gaussian approximation

to the prior distribution and the red lines give a two-component Gaussian mixture fit to the prior distribution with identical variances, as

described in Section 3.1.
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the spread in the prior distribution is important, given by

the variance, this is plotted in Fig. 6b. In Fig. 6c, the

Gaussian approximations to the observation impacts are

plotted. As expected in all cases the observation impact is

large when the prior variance is large (observation times 4,

7 and 9).
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Fig. 6. (a) The analysis (mean of particles) as a function of time (red), the true trajectory (grey) and observations of the truth (black

crosses). (b) The prior variance as a function of observation time. (c) Approximations to the analysis sensitivity (black), relative entropy

(blue) and mutual information (red dashed) assuming the prior distribution is Gaussian, with mean and covariance calculated from the

weighted particles. (d) Approximations to the analysis sensitivity (black), relative entropy (blue) and mutual information (red dashed)

calculated directly from the particle representation of the prior and posterior. Also plotted is the expected sensitivity
Ð

pðyÞS dy (black

dashed) and the ratio of the posterior variance to the observation error variance (grey dashed).
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The strong dependence of each measure on the ratio of

the observation error variance to the prior error variance

means that each measure is seen to be in good agreement,

as was also seen by Xu et al. (2009). Even relative entropy

(blue) is dominated by the change in the prior variance

rather than the value of the observation. This is not

necessarily expected, as for Gaussian statistics relative

entropy is a quadratic function of the observed value

[see eq. (9)]. As such the consistency of relative entropy

with the other measures may change dramatically depend-

ing on the underlying model used. The results given in

Kleeman (2002) illustrate this for the application of

quantifying predictability.

In order to calculate the sensitivity of the analysis

to the observations in the full non-Gaussian case, small

perturbations to the observations, Dmy, are made at each

observation time; the analysis sensitivity is then approxi-

mated by the change in the analysis of x1, Dma, that is:

@la

@ly

� Dla

Dly

: (25)

However, using eq. (15) we may also approximate the

sensitivity using the spread in the particles using the

updated weights, and therefore:

@la

@ly

� 1

r2
y

XNp

i¼1

wt
i ðv1Þ

t

i � ðlv1
Þta

h i2

; (26)

where lv1

� �t

a
is the mean value of x1 in the updated

particles at observation time t, that is lv1

� �t

a
¼
PNp

i¼1 wt
iðv1Þ

t
.

The agreement between these two approximations to the

sensitivity is seen to be good in Fig. 6d, comparing

the black solid line (Dma/Dmy) to the grey-dashed line

r2
xjy=r

2
y

� �
.

The relative entropy may be calculated directly from

the weights:

REt �
XNp

i¼1

wt
i ln

wt
i

wt�1
i

(27)

and is given by the blue line in Fig. 6d.

Mutual information is approximated using quadrature

by:

MIt �
XP

j¼1

REt yt
j

� �
p yt

j

� �
Dy (28)

where

p yt
j

� �
¼
XNp

i¼1

wt�1
i P yj jxt

i

� �

for yj ¼ �20;�20þ Dy; . . . ; 20� Dy; 20:

Dy was taken to be 1.

For the non-Gaussian representation of the prior the

observation impacts are seen to roughly follow the pattern

of higher observation impact when the prior variance is

large (Fig. 6d). However, there are some notable differences

between these and the Gaussian approximations to these

measures:

(1) The sensitivity of the analysis to the observation

is more variable, fluctuating from about 0.2 to 1.

In particular, the sensitivity is much greater at

observation time 7 and much less at time 9. This

leads to cases when the analysis is less sensitive

to observations despite a larger prior variance, for

example comparing the sensitivity at observation

time 9 to time 8.

(2) The Gaussian approximation to the sensitivity is

more comparable to the full sensitivity averaged

over observations,
Ð

SpðyÞ dy (black-dashed line in

Fig. 6d). Although again the relationship between

this measure and the prior variance does break down

at observation time 9.

(3) For relative entropy and mutual information, the

relationship between high observation impact and

large prior variance appears to hold more robustly,

although there are still discrepancies for relative

entropy. For example, relative entropy is greater at

observation time 7 than 9 despite the prior variance

being greater at observation time 9.

It is clearer to see the differences between the Gaussian

and PF approximations by plotting their ratio, as given

in Fig. 7a.

As also seen in Section 3, the Gaussian approximation

always overestimates the mutual information (red-dashed

line) and the averaged sensitivity (black-dashed line). The

error in these averaged measures roughly increases with

time, as the Gaussian approximation to the prior becomes

increasingly poor (see Fig. 7b). In particular, at observation

time 9, SG is approximately twice
R

SpðyÞ dy. The error in

the Gaussian approximation to the sensitivity and relative

entropy is seen to fluctuate. As already shown in Section 3,

these errors are expected to depend strongly on the

exact value of the observation.

In Fig. 8, the four measures are plotted as a function

of the observation value and then normalised by their

Gaussian approximation (similar to Fig. 2) for observation

time 7 (when the error in relative entropy is largest) and

time 9 (when the sensitivity is much smaller than expected

given the increase in the prior variance at this time; see

Fig. 6d).

At each of these times there is indeed a large range

of values for the normalised S and RE as a function

of observation value.
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The error in the Gaussian approximation of S has

the largest range at observation time 9 when the prior is

clearly bimodal (see Fig. 5), ranging from approximately

three times too large to about four times too small. For

the realisation of the observation used (represented by the

vertical black dash-dot line in Fig. 8a), the sensitivity is

much smaller than would be expected.

At observation time 7, the root mean square error

(RMSE) of the Gaussian fit is better (see Fig. 7), and the

Gaussian approximation to S has a smaller error range.

In this case, the Gaussian approximation to S ranges

from being approximately six times too large to about

1.5 times too small. The observed value at this time

(vertical black dash-dot line in Fig. 8b) leads to the

sensitivity being underestimated.

For the normalised relative entropy, the range of values

is more uniform across the observation times. Ranging

from approximately 0.6 to 1.8 at observation time 9

and 0.6�1.7 at observation time 7. However, the realisation

of the observations at each of the times results in a very

different error in the Gaussian approximation.

Fig. 8 can be understood to some extent using the

theory for a prior given by a Gaussian mixture developed

in Section 3. The goodness of fit of the simplified Gaussian

mixture to the priors for these cases is summarised in

Table 1; also see red lines in Fig. 5.

At observation time 9 the simplified Gaussian mixture

fit to the prior has the smallest RMSE. Therefore, as

expected in Section 3, the sensitivity is symmetrical about

a maximum; however, it does not tend to r2= r2 þ r2
y

� �
,

which in this case is 0.375, as expected, continuing to

decrease to a much smaller value. At the observation time

7, the two-component Gaussian mixture fit is poorer,

and the normalised S is no longer symmetrical as a function

of observation value.

5. Conclusions and discussion

The aim of this work has been to give a detailed study

of the effect of a non-Gaussian prior on the impact of

the observations on the analysis. For simplicity this has

been restricted to one dimension.

A non-Gaussian prior was modelled as a two-component

Gaussian mixture with equal variance, allowing for skew-

ness and bi-modality. Describing the prior in this way

allowed for the sensitivity of the mean of the posterior, our

analysis, to the observation to be derived analytically.

The sensitivity of the analysis was shown to be a

strong function of the value of the observations and equal

to the posterior variance divided by the observation error

variance. This result extends to the case of all smooth

priors that can be described as a Gaussian mixture and

Gaussian likelihoods. This means that an observation for

which the analysis is very sensitive may not necessarily be a

good observation in terms of minimising the posterior

variance. The difference between relative entropy and its

Gaussian approximation was also shown to be a strong

function of the observation value. Mutual information,

however, is independent of the value of observation used

and was seen to be in good agreement with its Gaussian

approximation.

Applying these measures of observation impact to

the PF technique for solving the Lorenz ’63 equations, it

is seen that the non-Gaussian prior breaks down the

agreement between these measures of observation impact

because of their strong dependence on the value of the

observation. Averaging these measures over observation

space was shown to bring them closer to their Gaussian

approximations. However, the Gaussian approximation

was always seen to overestimate the averaged values. This
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is because the Gaussian approximation to the prior

underestimates the information in the prior and therefore

in an averaged sense overestimates the impact of the

observations.

In conclusion when calculating the observation impact

in a non-Gaussian assimilation system it is important to

give careful consideration to what you wish to measure:

(1) To understand the potential of new observing

systems an average value of observation impact,

such as mutual information, may be more useful.

This can be approximated using a Gaussian assump-

tion to the prior, giving a small overestimate when

the prior is non-Gaussian.

(2) However, it can be argued that the relative entropy

gives the most complete measure of observation

impact and may be more useful when given a

particular realisation of an observation that cannot

be repeated.

(3) The sensitivity of the posterior mean to observations

is a less useful measure of observation impact due

to its being inversely proportional to the reduction

in the posterior variance, which is often an objective

in data assimilation.

In practice, when the model is non-linear, the full prior

and posterior PDFs are never known and can only

be sampled by expensive techniques such as the PF.

A limited ensemble size makes an accurate measurement

of relative entropy difficult (Haven et al., 2005). In the

work of Majda et al. (2002), lower bounds are given for

relative entropy using a maximum entropy approximation

to the PDFs using the sample moments. The aim of Haven

et al. (2005) was to give a minimum relative entropy

estimate with a statistical level of confidence implied by

the sample. Similar difficulty is also faced when calculating

mutual information when the observation space is large

(Hoffmann et al., 2006).

All conclusions made are applicable for Gaussian

observation errors. Non-Gaussian observation errors due

to a non-linear map between observation and state space

or non-Gaussian measurement errors are left for future

work.
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7. Appendix

A.1. Proof that MI is additive

Mutual information has the attractive quality that it is

additive with successive observations. For example if at

time t�1, a new set of observations, ynew, are made such

that the total set of observations up to this time are given

by the vector, yt�1�(yt, ynew). Then the mutual informa-

tion given the total set of observations, MIt�1, is equal to
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Fig. 8. S (black), MI (red dashed), RE (blue) and
Ð

pðyÞS dy

(black dashed) as a function of the observation value all normal-

ised by their Gaussian approximations. The black dashed-dot

vertical line gives the realisation of the observation assimilated by

the PF. Top: observation time 9. Bottom: observation time 7.

Table 1. Parameters describing the simplified Gaussian mixture

with two components fit to the prior at the given observation

times. The last column summarises the fit as the RMSE

Observation time w m1 m2 s2 RMSE

7 0.75 �12.5 11 6 1.87�10�2

9 0.5 �10 11 6 9.8�10�3
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the sum of the mutual information given the previous set of

observations, MIt, and the mutual information given the

new observations, MInew:

MItþ1 ¼MIt þMInew (29)

Proof. From the definition of mutual information

[eq. (17)] we have:

MItþ1 ¼�
ð

PðxÞ lnPðxÞdx

þ
ð ð

Pðx; ytþ1Þ lnPðxjytþ1Þdxdy:

(30)

This may be expanded using Bayes’ theorem to give:

MItþ1 ¼�
ð

PðxÞ lnPðxÞdx

þ
ð ð

Pðx; yt; ynewÞ ln PðynewjxÞPðytjxÞPðxÞ
PðynewÞPðytÞ

" #

dxdy:

(31)

The log term may then be separated:

MItþ1 ¼�
ð

PðxÞ lnPðxÞdx

þ
ð ð

Pðx; yt; ynewÞ lnPðynewjxÞdxdy

þ
ð ð

Pðx; yt; ynewÞ lnPðytjxÞdxdy

þ
ð ð

Pðx; yt; ynewÞ lnPðxÞdxdy

�
ð ð

Pðx; yt; ynewÞ lnPðynewÞdxdy

�
ð ð

Pðx; yt; ynewÞ lnPðytÞdxdy:

(32)

This can be simplified using the identity:
Ð Ð

Pða;bÞ
lnPðbÞdadb ¼

Ð
PðbÞ lnPðbÞdb:

MItþ1 ¼
ð ð

Pðx; ynewÞ lnPðynewjxÞdxdynew

þ
ð ð

Pðx; ytÞ lnPðytjxÞdxdyt

�
ð

PðynewÞ lnPðynewÞdynew

�
ð

PðytÞ lnPðytÞdyt:

(33)

This is equal to MIt�MInew using (Cover and Thomas,

1991):

ð ð
Pðx; yÞ lnPðyjxÞdxdy �

ð
PðyÞ lnPðyÞdy

¼
ð ð

Pðx; yÞ lnPðxjyÞdxdy �
ð

PðxÞ lnPðxÞdx: (34)

Q.E.D.

A.2. The sensitivity of the analysis to the observations

for Gaussian mixtures of arbitrary order

It can be proved that when the likelihood is Gaussian

N ly; r
2
y

� �
and the prior is a Gaussian mixture that the

sensitivity of the mean of the posterior to the observations

is equal to the analysis error variance divided by the

observation error variance. That is:

@la

@ly

¼
r2

xjy

r2
y

:

Proof. Let the prior, p(x), be given by a Gaussian mixture:

pðxÞ ¼
XN

i¼1

wi 2pr2
i

	 
�ð1=2Þ
exp �ðx� liÞ

2

2r2
i

" #

;

where
PN

i¼1 wi ¼ 1. From Bayes’ theorem the posterior

may be similarly expressed as:

pðxjyÞ ¼
XN

i¼1

~wi 2p~r2
i

	 
�ð1=2Þ
exp �ðx� ~liÞ

2

2~r2
i

" #

:

The updated weights are given by:

~wi ¼
wiAie

�ai

PN

j¼1 wjAje
�aj

; (35)

where

Ai ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p r2
i þ r2

y

� �r and ai ¼
ðly � liÞ

2

2 r2
y þ r2

i

� �

The updated means are given by:

~li ¼
lyr

2
i þ lir

2
y

r2
i þ r2

y

: (36)

The updated variances are given by:

~r2
i ¼

r2
i r

2
y

r2
i þ r2

y

:

The mean of the posterior is given by:

la ¼
XN

i¼1

~wi ~li: (37)

Differentiating eq. (37) with respect to the observation

value gives:

@la

@ly

¼
XN

i¼1

~wi

@~li

@ly

þ @~wi

@ly

~li

 !

(38)

From eq. (36) ð@~li=@lyÞ can be seen to be r2
i = r2

i þ r2
y

� �h i
,

which is equal to ð~r2
i =r

2
yÞ.
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The second term requires more manipulation. Let

wiAie
�ai in eq. (35) be ŵi then:

~wi ¼
ŵiP
j ŵj

and

@~wi

@ly

¼
ŵ0i
PN

j¼1 ŵj � ŵi

PN

j¼1 ŵ0j
PN

j¼1 ŵj

� �2
(39)

where ŵ0i ¼ ð@ŵi=@lyÞ. We can rewrite eq. (39) using

ŵ0i ¼ �ð@ai=@lyÞŵi ¼ �a0iŵi:

@~wi

@ly

¼
PN

j¼1 ŵ0iŵj � ŵiŵ
0
j

� �

PN

j¼1 ŵj

� �2

¼
ŵi

PN

j¼1
^wj a0j � a0i

	 


PN

j¼1 ŵj

� �2

¼ ~wi

XN

j¼1

~wj a0j � a0i

� �
:

(40)

Substitute ð@~li=@lyÞ ¼ ~r2
i =r

2
y

� �
and eq. (40) into eq. (38):

@la

@ly

¼
XN

i¼1

~wi ~r
2
i

r2
y

þ
XN

i¼1

~li ~wi

XN

j¼1

~wj a0j � a0i

� �
:

The variance of the posterior is given by:

r2
xjy ¼

ð
ðx� laÞ

2
pðxjyÞdx ¼

XN

i¼1

~wi ~r
2
i þ

XN

i¼1

~wið~li � laÞ
2
:

The second term can be rewritten as:

XN

i¼1

~wið~li � laÞ
2 ¼

XN

i¼1

~wi ~l
2
i �

XN

i¼1

~wi ~li

 !2

¼
XN

i¼1

~wi ~li ~li �
XN

j¼1

~wj ~lj

 !

¼
XN

i¼1

~wi ~li

XN

j¼1

~wjð~li � ~ljÞ:

Therefore ð@la=@lyÞ ¼ r2
xjy=r

2
y

� �
holds if:

XN

i¼1

~wi ~r
2
i

r2
y

þ
XN

i¼1

~li ~wi

XN

j¼1

~wj a0j � a0i

� �

¼ 1

r2
y

XN

i¼1

~wi ~r
2
i þ

XN

i¼1

~wi ~li

XN

j¼1

~wjð~li � ~ljÞ
" #

:

Or equivalently:

XN

i¼1

~li ~wi

XN

j¼1

~wj a0j � a0i �
~li � ~lj

r2
y

 !

¼ 0:

This is true because a0j � a0i � ½ð~li � ~ljÞ=r2
y� ¼ 0 for all

i, j, since: a0i þ
~li

r2
y
¼ ly

r2
y
:

Q.E.D.
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