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ABSTRACT

Flow regimes of dry, stratified flow passing over an isolated two-dimensional (2-D) orography mainly

concentrate at two stagnation points. One occurs on the upslope of the orography owing to flow blocking;

another is related to gravity wave breaking (GWB) over the leeside. Smith (1979) put forward a hypothesis that

the occurring of GWB is suppressed when the low-level vertical wind shear (VWS) exceeds some value. In the

present study, a theoretical solution in a two-layer linear model of orographic flow with a VWS over a bell-

shaped 2-D orography is developed to investigate the effect of VWS on GWB’s occurring over a range of

surface Froude number Fr0�U0/Nh (U0 is surface wind speed, h is orography height and N is stability

parameter), over which the GWB occurs first and the upstream flow blocking is excluded. Based on previous

simulations and experiments, the range of surface Froude number selected is 0.65Fr052.0. Based on this

solution, the conditions of surface wind speed (U0) and one-to-one matching critical VWS (Duc) for GWB’s

occurring are discussed. Over the selected range of Fr0, GWB’s occurring will be suppressed if the VWS (Du) is
larger than Duc at given U0. Moreover, there is a maximum value of Duc over the selected range of Fr0, which is

labelled as Dumax, and its matching surface wind speed by U0m. Once the Du is larger than Dumax, the flow will

pass over the orography without GWB’s occurring. That means, over the selected range of Fr0, the flow regime

of 2-D orographic flow related to GWB occurring primarily will be absent when Du�Dumax, regardless of the

value for U0. In addition, the vertical profile of atmospheric stability and height of VWS could result in

different features of mountain wave, which leads to different Duc and Dumax for the GWB’s occurring. The

possible inaccuracy of estimated Duc in the present linear model is also discussed.
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1. Introduction

Effects of topography on weather and climate have been

widely studied for several decades. When an incoming flow

imposes on an isolated orography, different regimes of

orographic flow may appear, such as flow blocking, gravity

wave breaking (GWB), downslope windstorm, downstream

waking and trapped wave on the leeside (Smith, 1979).

These flow regimes have been extensively investigated using

observations, theoretical analyses and numerical simulations.

The classification of orographic flow regimes is closely

related to two stagnation points. One is related to the

blocking, which occurs at the lower boundary of the

windward slope, and another is attributed to the formation

of GWB over the leeside. Smith (1989), Baines and Smith

(1993) extended Sheppard’s theory (Sheppard, 1956) to

investigate the influences of atmospheric stratification on

the flow regimes and concluded: (i) the amplitude of

orographic disturbances is height-dependent; and (ii) the

shape of orography can influence the orographic flow. In

order to understand the flow regimes, two non-dimensional

parameters were introduced: U/Nh and Na/U, where U, N,

h, and a are upstream horizontal wind velocity, Brunt�
Väisälä frequency, mountain height and mountain half-

width (Miles and Huppert, 1969). U/Nh is the Froude

number (Fr�U/Nh) that measures the degree of linearity,

and Na/U measures the degree of hydrostaticity. Using the

two parameters, Rotunno and Ferretti (2001) presented a

systematic classification on the flow regimes for a two-

dimensional (2-D) flow over an isolated orography (see their

Fig. 11). Lin and Wang (1996) synthesised previous studies

(e.g. Miles and Huppert, 1969; Baines and Hoinka, 1985;
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Pierrehumbert and Wyman, 1985; Smith, 1985), and

proposed four regimes for the 2-D, non-rotating, uniform

Boussinesq, continuously stratified hydrostatic flow over an

isolated bell-shape hill based on idealised non-linear numer-

ical simulations: (1) regime I: flow with both wave breaking

and upstream blocking, but upstream blocking occurs first

(0.35FrB0.6); (2) regime II: flow similar with regime I,

but the wave breaking occurs first (0.65Fr50.9); (3)

regime III: flow with only wave breaking aloft

(0.9BFr51.12); and (4) regime IV: flow with neither

wave breaking aloft nor upstream blocking (Fr�1.12.

Obviously, these four flow regimes are mainly associated

with two flow characters, namely, flow blocking and GWB.

GWB is characterised by strong turbulent mixing with

flow stagnation or local wind reversal over mountain, and

the streamline on the top of orography becomes more steep

and vertical. Base on the hydrostatic solution of Long’s

model for a bell-shaped mountain, Miles and Huppert

(1969) identified the non-dimensional mountain height

(H�hN/U�0.85) that separates orographic flows into

supercritical and subcritical regimes, or wave breaking

and no wave breaking. On the other hand, Laprise and

Peltier (1989) proposed a critical value of hN/U�0.78 for a

semi-circle obstacle, suggesting that the orographic shape is

an important factor for GWB’s occurring.

To simplify the problem, aforementioned studies for

understanding orographic flows often adopted an assump-

tion that the upstream incoming flow is uniform. However,

in the real atmosphere there always exists a low-level

vertical wind shear (VWS) (Poulos et al., 2002; Woods and

Smith, 2011), which is an important factor for the devel-

opment and maintenance of convective storm (Thorpe

et al., 1982). Moreover, VWS can also influence the

overturning on the upslope and downslope subsidence

over the leeside of the terrain. Concretely, Smith (1989)

suggested that VWS can bring on two effects: reducing the

effective stability of the orographic flow and making

the value of effective non-dimensional mountain height

(H�hN/U) rise rapidly for GWB. He even speculated that

when the VWS (or the Richardson number) exceeds some

value (RiB20), there will be no GWB occurring aloft, as is

a ubiquitous atmospheric condition in the mid-latitude.

However, how VWS influences orographic flows and

GWB’s occurring has not been widely studied so far.

The objective of this study is to investigate the effects of

VWS on the GWB’s occurring over an isolated orography.

In particular, we seek to explore the following three

questions. (1) Why can VWS suppress the GWB’s occur-

ring (2) Is there a maximum VWS (MVWS) for GWB’s

occurring, or not? And if the answer is yes, once the VWS is

larger than the MVWS, will there be GWB’s occurring (3)

What are the controlling factors for the MVWS?

Since the lacking of specified observation and 2-D or 3-D

simulation on the VWS’s impact to GWB, and the

complexity of such problem, a 2-D simplified theoretical

orographic flow model is used in the present study. Similar

to the previous theoretical study on the orographic flow,

the simplified model could include the leading-order effect

of VWS on the mountain wave. Also the possible errors of

such model are discussed.

This paper is organised as follows. A two-layer linear

model with the hydrostatic stratified flow over a 2-D, bell-

shape orography is briefly described, and the analytical

solutions of this model are presented in Section 2. The

influence of VWS on orographic flows and the conditions

of GWB’s occurring are discussed in Section 3. Concluding

remarks are given in Section 4.

2. Two-layer linear model and its solution: low-

level wind shear case

Similar to Wang and Lin (1999), the linear governing

equations for a 2-D, steady-state, non-rotating and hydro-

static flow over orography are given as follows:

Uux þUzwþ /x ¼ 0; (1)

/z ¼ b; (2)

ux þ wz ¼ 0; (3)

Ubx þN2w ¼ 0: (4)

where u and w are the perturbations of horizontal and

vertical velocities, respectively; U denotes the basic hor-

izontal wind that varies with height, U�U(z); f is

perturbation geopotential height (f�gz); and b is the

buoyancy perturbation, b¼ gh0=h0.

The 2-D flow over orography is assumed to have two

layers in the vertical. In the lower wind shear layer

(05zBd), where d is the thickness of VWS layer, the

horizontal basic flow is westerly and its speed increases

linearly with height from U0 at the surface up to (U0�Du)
at the height of d, where Du is the VWS. The Brunt�Väisälä
frequency of N1 is a constant in this layer. The upper layer

is a uniform wind layer (z]d), where the horizontal basic

wind speed and Brunt�Väisälä frequency are both con-

stants, namely, (U0�Du), and N2 (Fig. 1).

Using eqs. (1)�(4), the equation for the vertical velocity

can be obtained:

wzz þ
N2

U2
�Uzz

U

� �
w ¼ 0: (5)

Similar to Wang and Lin (1999), a one-sided Fourier

transform pair is adopted:

ŵðk; zÞ ¼ 1

p

Z 1

�1
wðx; zÞ e�ikx dx; (6)
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wðx; zÞ ¼ Re

Z 1

0

ŵðk; zÞ eikx dk

� �
: (7)

Substituting eq. (7) into eq. (5), the Scorer’s Equation

(Scorer, 1949) is obtained:

ŵzz þ
N2

U2
�Uzz

U

� �
ŵ ¼ 0: (8)

Consequently, the governing equation of ŵðk; zÞ in each

layer becomes:

ŵ1zz þ
N2

1

U0 þ Du
d z

� �2
ŵ1 ¼ 0 for 0 � zBd; (9)

ŵ2zz þ
N2

2

ðU0 þ DuÞ2
ŵ2 ¼ 0 for z 	 d: (10)

At the interface between the two layers, in order to keep the

continuity of perturbation pressure and vertical velocity

field, we have:

ŵ1 ¼ ŵ2;
@ŵ1

@z
� Du

dðU0 þ DuÞ
ŵ1 ¼

@ŵ2

@z
at z ¼ d: (11)

The profile of the bell shape orography is given by:

h ¼ h0

1þ x
a

� �2
; (12)

where h0 is the orographic height, and a is the orographic

half-width. In the present study, it is assumed that the

height of shear layer is no smaller than the height of

orography, i.e. d]h0. Therefore, the lower boundary

condition is given as follows,

w1 ¼ U0 þ
Du

d
h

� �
hx at z ¼ 0: (13)

After taking the Fourier transform, eq. (13) becomes

ŵ1 ¼ ikah0 e
�ka U0 þ

Du

4d
h0ð1þ kaÞ

� �
at z ¼ 0: (14)

With eq. (14), the solutions of eqs. (9) and (10) can be

obtained:

ŵ1 ¼ A1 zþU0d

Du

� �1=2þn

þB1 zþU0d

Du

� �1=2�n

for

0 � zBd;

(15)

ŵ2 ¼ A2 e
i

N2
U0þDu

ðz�dÞ þ B2 e
�i

N2
U0þDu

ðz�dÞ
for z 	 d; (16)

where v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4� Ri

p
for RiB1/4, and v ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ri � 1=4

p
for Ri]1/4. Ri ¼ N2

1=ðDu=dÞ2 is the Richardson number.

The solutions have the form of lee-wave solution analysed

by Wurtele (1957) and Wurtele et al. (1987).

Assume the mountain wave propagates upward, the

upper radiation condition is open, so B2�0 (Booker and

Bretherton, 1967). The other coefficients are:

A1 ¼
�ikah0 e

�ka U0 þ Du
4d h0ð1þ kaÞ


 �
X1X4 � X2X3

X2; (17)

A2 ¼
ikah0 e

�ka U0 þ Du
4d h0ð1þ kaÞ


 �
X1X4 � X2X3

2n; (18)

B1 ¼
ikah0 e

�ka U0 þ Du
4d h0ð1þ kaÞ


 �
X1X4 � X2X3

X1: (19)

where:

X1 ¼ ð1=2þ nÞ


 dþU0d

Du

� ��1=2þn

� N2

U0 þ Du
þ Du

dðU0 þ DuÞ

" #


 dþU0d

Du

� �1=2þn

; (20)

X2 ¼ ð1=2� nÞ


 dþU0d

Du

� ��1=2�n

� N2

U0 þ Du
þ Du

dðU0 þ DuÞ

" #


 dþU0d

Du

� �1=2�n

; (21)

X3 ¼
U0d

Du

� �1=2þn

; (22)

X4 ¼
U0d

Du

� �1=2�n

: (23)

 

z

0U 0U u+ Δ

δ

1N

2N

0

Fig. 1. Vertical profiles of Brunt�Väisälä frequency and basic

wind speed. U0 is surface wind speed, and Du is the low-level VWS.
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Finally, applied with the inverse Fourier transform, the

perturbations of horizontal and vertical velocities in the

physical space can be obtained:

w1 ¼ Re
�h0aCX2

X1X4 � X2X3

zþU0d

Du

� �1=2þn
"

þ h0aCX1

X1X4 � X2X3

zþU0d

Du

� �1=2�n
#
; (24)

w2 ¼ Re
h0aC

X1X4 � X2X3

� 2n � e
iN2

U0þDu
ðz�dÞ

" #
; (25)

u1 ¼ Re
h0aDX2

X1X4 � X2X3

ð1=2þ nÞ zþU0d

Du

� �n�1=2
"

þ �h0aDX1

X1X4 � X2X3

ð1=2� nÞ zþU0d

Du

� ��1=2�n
#
;

(26)

u2 ¼ Re
�h0aD

X1X4 � X2X3

2n
iN2

U0 þ Du
e

iN2
U0þDu

ðz�dÞ

" #
; (27)

where:

C ¼ iU0

ða� ixÞ2
þ xþ 3ai

ða� ixÞ3
Duh0

4d

" #
;

D ¼ U0

a� ix
þ 2a� ix

ða� ixÞ2
Duh0

4d

" #
:

(28)

u1 and w1 are the perturbations of horizontal and vertical

velocities in the lower wind shear layer, respectively; u2 and

w2 denote those in the upper uniform layer.

3. Conditions for GWB occurring under VWS

In order to investigate the effects of VWS on GWB, the

flow regime associated with the upstream blocking is

excluded; that means the upstream blocking is assumed

to have no impact on the formation of GWB. However, in

the real atmosphere many factors can influence the up-

stream blocking or GWB, which is rather difficult to

analyse (Baines and Hoinka, 1985; Pierrehumert and

Wyman, 1985; Smith and Gronas, 1993). In order

to simplify problem, the surface Froude number

(Fr0�U0/N1h0) is used to be as a control parameter for

the occurring of flow blocking and GWB, which is similar

to what used in most studies of 2-D orographic flow.

Moreover, based on the previous theoretical and numerical

studies on 2-D orographic flow, a reference range of

surface Froude number Fr0 is selected, so Frb5Fr05Frd,

where Frb and Frd are the critical lower and upper surface

Froude numbers. Thus, there is only GWB’s occurring, or

the GBW’s occurring is earlier than the formation of

upstream blocking when Fr0 is larger than Frb while Fr0
must be smaller than Frd, which ensures the formation of

GWB without VWS. As identified by Lin and Wang (1996),

the flow regimes discussed are the 2-D, non-rotating,

stratified flow over an isolated bell-shape orography, and

the approximate critical lower and upper Fr0 are selected to

be 0.6 and 1.12, respectively. Therefore, all investigations in

the present study will be on the range of 0.65Fr052.0.

The appearance of stagnation points over the orography

is an important characteristic for GWB’s occurring (Smith,

1989), in which the horizontal velocity is zero within the

fluid over orography (Dörnbrack and Nappo, 1997).

Similarly, the occurring of zero horizontal velocity is also

applied here as the condition for GWB formation based on

the solutions in Section 2. According to eqs. (26) and (27),

if the shear layer depth (d), orography height (h0), and

Brunt�Väisälä frequencies (N1 and N2) are given, the other

two parameters can be determined when the GWB is just

appearing, namely, the surface wind speed (U0) and the

critical VWS (Duc), which have one-to-one relationship.

3.1. Experimental design and parameter mapping

method

The experiments in this study are given in Table 1. The

experiments are operated in terms of four groups, named

A, B, C and D for different heights of the low-level wind

shear layer with 1, 3, 4 and 5 km, respectively. Each

experiment group contains five cases with different Brunt�
Väisälä frequency configurations of N2/N1�0.01/0.01,

0.0075/0.0075, 0.005/0.005, 0.005/0.01 and 0.02/0.01

(s�1/s�1). In the present study, the orographic height

and half-width are both constant, i.e. h0�1 km, and a�10

km. The Exp B1 with N2/N1�0.01/0.01 and d�3 km is

chosen as the control experiment (CTRL).

As discussed in Section 2, when the parameters of d, h0,

N1 and N2 are given, the position of stagnation point and

remnant parameters (U0 and Duc) will be determined using

a parameter mapping method. This method is designed as

follows. The surface Froude number changes over the

range 0.65Fr052.0. Therefore, U0 increases from 0.6

N1h0 to 2.0 N1h0 with a numerical step of 0.05 ms�1, while

Du drops from a large value to zero with a step of 0.01

ms�1. The model domain is 200 km (�100�100 km) in the

x-direction and 10 km (0�10 km) in the z-direction, with

the horizontal and vertical resolutions being 1 m for both.

Thereby, based on this method, when the horizontal

velocity in the x�z plane becomes zero, U0 and Duc for

GWB’s occurring can be obtained.
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3.2. Experimental results

3.2.1. Case 1: N2/N1�1. According to the parameter

mapping method described above, the relationship between

U0 and Duc is one-to-one matching, and Duc decreases as U0

increases. More details are given for Exps CTRL and B2 in

Fig. 2. In addition, Fig. 3 depicts the non-dimensional

maximum negative horizontal wind perturbation

(MNHWP; u/N1h) depending on different values of Fr0

and Du/U0, which indicates that the amplitude of topo-

graphic wave disturbance (solid contour) weakens rapidly

with increasing Du/U0 (or Du), but varies little with Fr0 (or

U0); so for each U0 over the range 0.65Fr052.0, there

would be a Du that leads to a stagnation point where the

total horizontal velocity is zero, and it is defined as Duc.
Meanwhile, if non-dimensionalisingU0 and Duc obtained by

the parameter mapping method (viz., Fr0 and Duc/U0) and

superimposing them onto Fig. 3, the orographic flow will be

separated into two regimes: without GWB (NWB) and with

GWB (WB), as shown by the dotted line in Fig. 3.

Therefore, when U0 is given, if Du exceeds Duc (viz.

Du�Duc), there is no GWB’s occurring over orography,

which is in the NWB regime. Moreover, as shown in Fig. 3,

Duc decreases asU0 increases over the range 0.65Fr052.0;

so there would be a maximum value of Duc, denoted as

MVWS (Dumax), and its corresponding surface wind speed

(U0) is labelled asU0m, so in CTRL, Dumax�2.16 ms�1 and

U0m�0.6 N1h0 (see Table 1 or Fig. 3b). This result implies

that if the VWS is larger thanMVWS (viz. Du�Dumax), the

GWB’s occurring over orography will be suppressed, such

as in CTRL; if Du�3 ms�1�Dumax�2.16 ms�1, the

orographic flow will have no GWB no matter what value

U0 has, as long as 0.65Fr052.0. Therefore, it makes the

flow regimes related to GWB in Lin and Wang (1996)

unlikely in this situation. Similar to CTRL, in Exps B2

and B3 there is also Dumax (Table 1), and there will be no

GWB over orography when Du�Dumax. In a sense, this

result confirms what were proposed by Smith (1989) that

Table 1. Experimental designs and results

Experiments d (km) N2/N1 (s
�1/s�1) U0m (ms�1) Dumax (ms�1) Dumax/U0m

A1 1 0.01/0.01 6.0 1.65 0.275

A2 1 0.0075/0.0075 4.5 1.23 0.273

A3 1 0.005/0.005 3.0 0.82 0.273

A4 1 0.005/0.01 6.0 1.64 0.273

A5 1 0.02/0.01 6.0 1.65 0.275

B1 (CTRL) 3 0.01/0.01 6.0 2.16 0.36

B2 3 0.0075/0.0075 4.5 1.62 0.36

B3 3 0.005/0.005 3.0 1.08 0.36

B4 3 0.005/0.01 6.0 1.66 0.277

B5 3 0.02/0.01 6.8 5.81 0.854

C1 4 0.01/0.01 6.0 2.6 0.433

C2 4 0.0075/0.0075 4.5 1.95 0.433

C3 4 0.005/0.005 3.0 1.3 0.433

C4 4 0.005/0.01 6.0 5.15 0.858

C5 4 0.02/0.01 10.0 5.14 0.514

D1 5 0.01/0.01 6.0 3.2 0.533

D2 5 0.0075/0.0075 4.5 2.4 0.533

D3 5 0.005/0.005 3.0 1.6 0.533

D4 5 0.005/0.01 7.8 4.78 0.613

D5 5 0.02/0.01 6.0 5.3 0.883

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1.0

1.5

2.0

2.5

3.0
N1=N2=0.005
N1=N2=0.0075
N1=N2=0.01

0  (m/s)U

 (
m

/s
)

cu
Δ

Fig. 2. Surface wind speed and its one-to-one correspondence to

low-level VWS when the stagnation point starts appearing over the

leeside in Exps CTRL (B1), B2, and B3. Dots, triangles, and

asterisks denote Exps CTRL, B2, and B3, respectively.
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Fig. 3. Normalised MNHWP (u/N1h) for different non-dimensional values of Fr0 and Du/U0. The dotted line denotes the points for Fr0
and the corresponding Duc/U0when the stagnation just appears over the leeside. ‘NWB’ denotes the region with no wave breaking (solid

contour); ‘WB’ denotes the region with wave breaking (dashed contour). (a) Exp A1; (b) Exp CTRL; (c) Exp C1; and (d) Exp D1.
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non-dimensional mountain height for wave breaking will

increase with increasing low-level vertical shear and that if

the VWS exceeds some critical value, there will be no GWB

occurring.

In order to verify the above statement that topographic

wave disturbance weakens rapidly with increasing Du, but
varies little with U0, the horizontal perturbation velocity in

three different configurations for surface wind speed (U0)

and VWS (Du) in CTRL is indicated in Fig. 4. Figures 4a,b

illustrate there is slight variation in the amplitude of

orographic disturbance for the uniform flow with different

U0 (here Du"0, but very small owing to the Richardson

number introduced in this linear model). However, com-

parison of Fig. 4c with Fig. 4a shows that the negative

perturbation of horizontal wind reduces rapidly with the

increasing of Du, which means that the orographic dis-

turbance obviously weakens with the increasing of low-

level VWS.

In addition, the lapse rate of orographic disturbance

relative to Du/U0 (or Du) increases as d decreases, as shown

in Fig. 3. That is because there is a larger VWS’s effect to

weaken orographic disturbance for shallower wind shear

layer with the same Du. And the maximum Du/U0

(Dumax/U0m) is always at the same value of U0/N1h0

(especially, U0/N1h0�0.6) for each experiment in Case 1.

Since h0 is constant, that means U0/N1 is also constant.

Therefore, if d is given, there exists only one parameter

(Du/U0) when wave breaking occurs, namely, Dumax/U0m is
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a constant for a given d, when N2/N1�1 and no matter

N1�0.01, 0.0075 or 0.005 s�1, which can also be verified

based on the numerical calculations in Table 1. Moreover,

Dumax/U0m (or Dumax) increases as d increases, and Exp D1

has the largest Dumax/U0m�0.533 (or Dumax�3.2 ms�1);

details are given in Table 1 and Fig. 5. Meanwhile, it is

worth noting that the position of stagnation point begins in

the upper layer (Exp A1), and shifts to that in the lower

layer (Exp D1) as d increases (Fig. 6a).

3.2.2. Case 2:N2/N1�1/2. Table 1 shows that there is also

Dumax in Exps A4, B4 and C4 when U0m�0.6 N1h0, and

Dumax also increases as d increases. However, Dumax is about

4.78 ms�1 in Exp D4, which is smaller than 5.15 ms�1 in

Exp C4, and the surface wind speed U0m�0.78�N1h0. It is

said that there exists another factor that limits the increase

of Dumax except for the confinement of Fr0]0.6.

Skyllingstad (1991) identified that, if the atmospheric

stability is not uniform in the vertical, there will be a layer

interface between the lower and upper layers. This interface

can induce wave reflection and resonance when the atmo-

spheric stability above the interface is smaller, and the wave

amplitude strengthened in the lower layer reduces with the

increase of the ambient stability above the interface. When

d/l�1/4�n/2 (n�0, 1, 2, . . ., and l is vertical wavelength

in the lower layer), the criteria for wave over-reflection

proposed by Lindzen and Tung (1976, hereafter LT76) is

even applicable to this situation. Based on LT76’s criteria,

the average thickness of the lower stable layer for the wave

ducting is 1.8 km, which is calculated from the dispersion

relation. Figure 7 displays the horizontal wind perturbation

in Exps D1 and D4 with U0�10 ms�1 and Du-
�10�4ms�1. In Exp D1 with N2/N1�1, topographic

wave can vertically propagation without wave reflection

and ducting (Fig. 7a), but with N2/N1�1/2 in Exp D4,

there is wave reflection at the layer interface between the

lower and upper layers, and the wave amplitude below the

interface is doubled (Fig. 7b). This result is consistent with

the LT76’s criteria on wave ducting, and it could explain

why higher wind speed happened due to larger stability

difference between upper and lower layers in the 1997 event

than in 1999 event (Jones et al., 2002).

Similar to the case of N2/N1�1, the orographic flow in

Exps A4, B4, C4 and D4 have also two flow regimes: with

GWB and without GWB (Fig. 8). And the non-dimen-

sional MNHWP (u/N1h) also generally decreases as Du
increases, but its variation with Fr0 becomes more remark-

able than that in Case 1, because the vertical propagating

gravity wave is reflected by the layer interface. Moreover,

in Exps B4, C4 and D4 with d�1.8 km, the pattern of

MNHWP tends to shift toward the cases with larger Fr0 as

d increases, as denoted by a broad dashed line in Fig. 8.

The increase of d may enlarge the ducted vertical wave-

length according to the LT76’s criteria [l�d/(1/4�n/2)].

Based on U�lN/2p, the pattern of MNHWP will shift to

the case with larger Fr0 as d increases (Fig. 8). In addition,

similar to the case of N2/N1�1, it can be found that

Dumax/U0m in the case of N2/N1�1/2 is also a constant

when d is given (Figs. 5 and 8), and the stagnation point

shifts from upper to lower layer as d increases (Fig. 6b).

3.2.3. Case 3: N2/N1�2. As shown in Fig. 9, the non-

dimensional MNHWP varies with Fr0 and Du/U0 in the case

ofN2/N1�2. The distribution ofMNHWP also shifts to the

case with larger Fr0 from Exp B5 to Exp D5. However, the

features of topographic waves in this case are different from

those in Case 2. In Case 3 the amplified topographic wave

exists in the upper layer: there is no obvious variation of

wave amplitude in the vertical transmission process when

d/l�1/4�n/2, such as in Exp D5 when U0�10 ms�1,

Du�10�4 ms�1 (Fig. 7c). When d/l�n/2, however, the

gravity wave amplitude in the upper layer is doubled,

such as in Exp D5 when U0�16 ms�1, Du �10�4 ms�1

(Fig. 7d).

Moreover, there are two subzones (WB1 and WB2) for

the GWB in Exp D5. In WB1 (0.65Fr051.02), Fr0 is a

relatively small and there is Dumax�5.3 ms�1 when

Fr0�0.6. In WB2 (1.285Fr051.69), the features are the

same as those in WB1, but Dumax�3.5 ms�1, which is

smaller than 5.3 ms�1 in WB1. Additionally, when

1.02BFr0B1.28 or Fr0�1.69, there will be no stagnation

point in this area because MNHWP is smaller than the

basic wind speed (not shown).
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As displayed in Fig. 5, Dumax/U0m in Case 3 is also a

constant for a given d, similar to Cases 1 and 2, though

only in Case 1 Dumax/U0m increases with increasing d. It is

also worth noting that Dumax/U0m of Exp B5 (d�3 km,

N2/N1�2, Dumax/U0m�0.854) is almost equal to that of

Exp C4 (d�4 km, N2/N1�1/2, Dumax/U0m�0.858), which

means Dumax/U0m may have the same value in different

cases with different d as long as the Brunt�Väisälä
frequency configuration is adjusted in both lower and

upper layers. In Case 3, however, almost all the stagnation

points are located in the upper layer, which is different

from those in Cases 1 and 2 (Fig. 6c).

In summary, over the range of 0.65U0/N1h052.0,

when there exists a low-level VWS layer, no matter what

the Brunt�Väisälä frequency profile is, there will be a

maximum critical VWS (Dumax) for GWB’s occurring over

orography. If the low-level VWS Du�Dumax, the flow over

orography will not generate GWB.

3.3. Discussion

Based on the two-layer linear model, the effects of VWS on

mountain wave disturbance were investigated. The ampli-

tude of wave rapidly weakens as the VWS increases, so

there exists a maximum critical VWS Dumax for GWB’s

occurring, and when the VWS Du�Dumax, GWB will not

occur.

The above results are obtained based on the linear

theory, however, so these results may be influenced by

inherent limitations of the linear theory. For example, in a

single-layer linear model with constant N and U, Lilly and

Klemp (1979) have identified that the wave amplitude is
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roughly similar between linear theory and finite-amplitude

solution for a small terrain, but the assumption of constant

N and U can play a role to restrain non-linear responses of

gravity wave (Smith, 1977). Furthermore, as discussed in

Durran (1986, 1992) the non-linear effect sharply strength-

ens as the mountain height increases, and the linear theory

predicts a weak response where large-amplitude wave is

produced for a larger mountain height, so that the

horizontal wind perturbation in a linear model may be

smaller than that in the reality, and then there may exist

some deviations on the estimation of critical VWS (Duc)
obtained between the linear model and the real atmosphere.

Besides, in a multilayer linear model of orographic flow

with different atmospheric stability, the dependence of

wave response prediction is different on stability profile.

Based on the demonstrations by Durran (1992), when the

higher stability is in the lower layer (as in Case 2 of

N2/N1�1/2), the real wave response increases as the

mountain height increases, which means that the linear

model could underpredict the wave response, and then

Duc may be overpredicted by the linear theory for a larger

mountain height. In addition, the real wave response is

sensitive to the location of the stability interface when the

higher stability is located in the upper layer (Durran 1992),

e.g. when the interface is at the height of 0.5 l, the linear

theory predicts a stronger wave response, and then Duc will
be underpredicted by the linear theory. However, when the

interface is at the height of 0.6 l, the wave response

predicted by the linear theory is significantly weaker

than that in the reality, so Duc is overpredicted by the
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linear theory. Thus, in the present study the critical VWS

(Duc) may be overpredicted in Case 1 (N2/N1�1) and Case

2 (N2/N1�1/2), and underpredicted in some experiments of

Case 2 (N2/N1�1/2). Moreover, since there are two factors

controlling the VWS profile, namely, the height of interface

(d) and VWS increment (Du), the prediction error of (Duc)
from the VWS profile mainly depends on the height of

interface. Therefore, the accuracy of the calculation for

Duc depending on the shear profile is similar to that on

the stability profile. Of course, this present study only

discussed the case of constant low-level VWS. Therefore,

the study on more accurate calculation of Duc is needed to

go beyond the linear theory in the future.

4. Concluding remarks

Two-dimensional, steady-state, non-rotating, frictionless,

two-layer linear model of orographic flow with a low-level

VWS is developed to study flow dynamics over an isolated

orography. Using the analytical solutions derived from this

linear model, the effects of the VWS on GWB’s occurring

over orography were discussed. However, all results

discussed in the present study are confined over the range

of 0.65U0/N1h052.0 in order to exclude the impact of

upstream blocking to the formation of GWB. If the

orographic height (h0), atmospheric stability parameters

(N1 and N2), and the height of VWS layer (d) are given, the

horizontal surface basic wind (U0) and its one-to-one

corresponding critical VWS (Duc) for GWB’s occurring

can be determined by a parameter-space search. Therefore,

if U0 is also given, when the VWS (Du) is larger than its

critical VWS (Duc), i.e. Du�Duc, the occurring of GWB

over orography will be suppressed.

In addition, over the selected range of surface Froude

number (Frb5Fr05Frd), there is a maximum critical VWS

(Dumax) within Duc and a relative surface wind speed (U0m)

for the occurring of GWB. It implies that, if Du�Dumax,

there will be no GWB’s occurring over orography no

matter what value U0 has, as long as 0.65U0/N1h0m52.0.

Therefore, the flow regimes related to GWB’s occurring in

the case of uniform upstream flow proposed by Lin and

Wang (1996) will disappear when the low-level VWS is

larger than a critical one. It also confirms Smith’s hypoth-

esis that non-dimensional mountain height for wave break-

ing will increase with increasing VWS, and exceeds some

value, there will be no GWB. Moreover, if d and N2/N1 are

constant, Dumax/U0m will also be a constant.

Why does there exist a MVWS for GWB’s occurring

over orography? Firstly, in the regimes for higher surface

Froude number, MNHWP is smaller than the basic

horizontal wind, which is the same as that in a uniform

upstream flow. Secondly, MNHWP generally decreases as

VWS increases.

Furthermore, the response of Dumax to atmospheric

stability configuration in the lower and upper layers is

different. When N2/N1�1, the variation of MNHWP in

response to U0 is weak, and rapidly decreases with

increasing Du; so Duc reaches a maximum value at

U0�0.6 N1h0. When N2/N1�1/2 or 2, owing to different

Brunt-Väisälä frequencies in the lower and upper layers,

the vertically propagating gravity wave may be amplified or

diminished by reflection from the layer interface, which

leads to its distribution pattern shifting to a higher Froude

number as d increases, and U0m also shifts to a higher

Froude number, maybe no longer at U0�0.6 N1h0, such as

in Exps C5 and D4.
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Since the present study adopts two-layer linear model to

investigate the impact of VWS on mountain waves and

GWB, the errors of prediction in wave response are

included due to the limitations of the linear theory

(Durran, 1986, 1992). Compared with that in the real

atmosphere, consequently, the critical VWS (Duc) obtained
in this study might have deviations depending on some

factors, i.e. larger mountain height, stability and VWS

profile as discussed in Section 3. Nevertheless, it seems true

that the amplitude of topographic wave weakens as VWS

increases; so there should exist a maximum value of Dumax,

and if Du�Dumax, the GWB does not occur, which was

quantitatively proved in this study. Maybe it is helpful to

understand the response of topographic flow on low-level

VWS. In addition, a non-linear model may be needed to

further investigate the VWS’s effect on GWB.
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