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ABSTRACT

Ensemble clustering (EC) can arise in data assimilation with ensemble square root filters (EnSRFs) using

non-linear models: an M-member ensemble splits into a single outlier and a cluster of M�1 members. The

stochastic Ensemble Kalman Filter does not present this problem. Modifications to the EnSRFs by a periodic

resampling of the ensemble through random rotations have been proposed to address it. We introduce a metric

to quantify the presence of EC and present evidence to dispel the notion that EC leads to filter failure. Starting

from a univariate model, we show that EC is not a permanent but transient phenomenon; it occurs

intermittently in non-linear models. We perform a series of data assimilation experiments using a standard

EnSRF and a modified EnSRF by a resampling though random rotations. The modified EnSRF thus alleviates

issues associated with EC at the cost of traceability of individual ensemble trajectories and cannot use some

of algorithms that enhance performance of standard EnSRF. In the non-linear regimes of low-dimensional

models, the analysis root mean square error of the standard EnSRF slowly grows with ensemble size if the size

is larger than the dimension of the model state. However, we do not observe this problem in a more complex

model that uses an ensemble size much smaller than the dimension of the model state, along with inflation and

localisation. Overall, we find that transient EC does not handicap the performance of the standard EnSRF.
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1. Introduction

The ensemble Kalman filter (EnKF) is a Monte Carlo

implementation of the Kalman filter (KF, Kalman, 1960),

which relies on the evolution of a family (ensemble) of

trajectories in the forecast and performs the KF analysis

using the sample estimators for mean and covariance when

observations become available. Depending on the way the

analysis is carried out, EnKF algorithms can be classified

into stochastic and deterministic. The stochastic (perturbed

observations) EnKF makes use of random number realisa-

tions to update individual ensemble members in the

analysis (Burgers et al., 1998; Houtekamer and Mitchell,

1998). These random realisations can be a source of

sampling error that decreases as the sample size increases

(Whitaker and Hamill, 2002); in fact, the KF covariance

equation is satisfied only in a statistical sense. In contrast,

the ensemble square root filters (EnSRF) use algorithms

for transforming the forecast ensemble into analysis

ensemble with consistent statistics (Tippett et al., 2003).

The EnSRFs include ensemble adjustment Kalman filter

(EAKF, Anderson, 2001), serial EnSRF (Whitaker and

Hamill, 2002), ensemble transform Kalman filter (ETKF;

one-sided: Bishop et al., 2001; spherical simplex or sym-

metric: Wang et al., 2004), local ensemble Kalman filter

(LEKF; Ott et al., 2004) and local ensemble transform

Kalman filter (LETKF; Hunt et al., 2007).

As in the KF, the optimality of any EnKF is not

guaranteed when the non-linear error-growth in the fore-

cast becomes significant and the distribution of the

ensemble members is no longer Gaussian. In non-linear
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forecast models, the departure from linear error-growth

can depend upon the frequency of observations, the length

of the assimilation window and the magnitude of the

observational error covariance (Lawson and Hansen, 2004;

Kalnay et al., 2007).

In a seminal study, Lawson and Hansen (2004) analysed

the update mechanisms of the stochastic EnKF and the

serial EnSRF and compared their performance in linear

and non-linear regimes of the forecast. Their analysis

showed that the serial EnSRF is better than the stochastic

EnKF at retaining higher order moments of the back-

ground distribution. This implies, however, that any

departure from Gaussianity in the background ensemble

is likely retained in the analysis and propagated forward in

the forecast. An important finding was that, in non-linear

regimes, the serial EnSRF could lead to the emergence of

outliers from the main ensemble that are mostly responsible

for keeping the variance predicted by the KF. The higher

order moments of the serial EnSRF ensembles presented

non-Gaussian values, and the rank histograms for the

verification of the truth were U-shaped, implying that

the truth and the analysis ensemble members could not

be considered statistically indistinguishable. Nonetheless,

there was no difference reported in the analysis root mean

squared error (RMSE) between the stochastic and the

deterministic EnKFs.

Using the EAKF in highly non-linear scenarios,

Anderson (2010) observed ensemble clustering (EC), a

phenomenon in which a M-member ensemble splits in an

outlier and a tight cluster of M�1 members. He found

that the EC may occur as a result of the disparity between

the non-linear expansion of the ensemble spread in the

forecast and the linear contraction of the ensemble spread

in the analysis. More precisely, non-linear expansion in the

forecast may push the outermost member further outwards

while a linear compaction in the analysis that is sufficient

to constrain the outlier may be larger than required for the

remaining members. Using other models, this study also

showed that the analysis RMSE of the EAKF increased

with ensemble size M due to the non-linear expansion in

the forecast. To address the EC, Anderson (2010) proposed

a rank histogram filter.

Another approach to alleviate the EC in EnSRF is

a periodic resampling of the ensemble (e.g. via boot-

strapping) as suggested by Lawson and Hansen (2004).

Leeuwenburgh et al. (2005) implemented the resampling

in the one-sided ETKF (Bishop et al., 2001) using a

random rotation of the transform matrix and called it

the EnSRF�. For temperature assimilation in an ocean

model, Leeuwenburgh et al. (2005) showed that the

EnSRF� outperformed the one-sided ETKF in terms of

the RMSE, with the higher order moments of the ensemble

closer to the Gaussian. There was a caveat, however,

in EnSRF�. The one-sided ETKF is not an unbiased

square root filter (Livings et al., 2008; Sakov and Oke,

2008) and neither is the EnSRF�. The problems associated

with the one-sided ETKF are illustrated in Sakov and Oke

(2008), who compared the performance of the (unbiased)

spherical-simplex ETKF (Wang et al., 2004) and an

unbiased randomly rotated ETKF. Using the 40-variable

Lorenz 1996 model (L96; Lorenz and Emanuel, 1998) with

different ensemble sizes and multiplicative covariance

inflation factors, Sakov and Oke (2008) found similar

performance for the both filters in terms of analysis RMSE

(see their Fig. 3). Their rotated ETKF, however, produced

ensembles with more Gaussian-like characteristics in terms

of higher order moments and flatter rank histograms in the

verification of the truth.

The objective of this study is to shed light to the issues

associated with EC in the EnSRFs. A particular focus is

placed on the notion that, once EC occurs, it sets in

and severely handicaps the performance of the EnSRF.

We dispel this notion by showing that EC is in general

a transient phenomenon and the EnSRFs quickly recover

after individual events of EC. We base our EnSRFs on the

unbiased ETKF (spherical-simplex ETKF: Wang et al.,

2004; LETKF: Hunt et al., 2007) because of its suscept-

ibility to EC by the choice of analysis ensemble spread to

be the closest to the background analysis ensemble spread

(Section 2). We introduce a second type of EnSRF that

aims to alleviate EC by adopting random rotations in the

ensemble transform matrix. To quantify degree of EC

evolving in time, we introduce a metric called clustering

degree (CD).

Our analysis starts with a univariate quadratic model

(Section 3) and moves onto more complex models: the

three-variable Lorenz 1963 (L63) model (Section 4) and a

medium complexity atmospheric general circulation model

known as SPEEDY (Molteni, 2003) where we discuss

localisation (Section 5). Through analysis and experiments,

we show advantages and disadvantages in both types of the

EnSRFs with or without random rotations; each appeals

to different situations and specific assimilation goals. Our

conclusions and summary are presented in Section 6.

2. Metric for ensemble clustering and choice of

the EnSRF methods

Starting with a univariate ensemble, we define clustering

degree (CD) as:

CD ¼ r2
M�1

r2
M

: (1)

The denominator of eq. (1) is the variance of the

M-member ensemble, while the numerator is the variance
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of the M�1-member ensemble that remains after removing

the outermost member of the original. By this definition,

CD spans from zero to one. If EC is present, most of the

variance comes from the outermost member (which for

this case can be labelled as an outlier) and hence CD will

tend towards zero. The average CD value of a ‘healthy’

(unclustered) ensemble depends on the ensemble size, and

it has less variation as this ensemble size increases. None-

theless, as our experiments suggest that small CD robustly

detect EC for any M.

For a multivariate case, this metric can be generalised to:

CD ¼ Trace PM�1ð Þ
Trace PMð Þ

: (2)

The denominator is the trace of the M-member-ensemble

covariance matrix, while the numerator is the trace of the

M�1-member-ensemble covariance matrix after removing

the outermost member. Equation (2) is adequate in the

multivariate case only when the variables have the same

units. If this condition is violated, one can use a proper

norm (e.g. an energy norm) when summing the variances

or one can perform the analysis separately for different sets

of state variables.

Having defined the metric for EC, we lay out our

strategy using two types of EnSRFs. The first type is the

one prone to EC. We choose symmetric ETKF (S-ETKF),

which is equivalent to the spherical-simplex ETKF (Wang

et al., 2004) as well as the LETKF (Hunt et al., 2007)

without the application of localisation. This form of ETKF

is unbiased and preserves the mean (Ott et al., 2004; Wang

et al., 2004). Moreover, S-ETKF retains the analysis

ensemble spread the closest to the original background

ensemble spread (Hunt et al., 2007). This property makes

S-ETKF suitable for this study because of its susceptibility

to EC. It also makes S-ETKF desirable because of its

ability to capture the ‘errors of the day’ through the KF

analysis. The second type is based on S-ETKF but designed

to alleviate EC. We thus apply a constrained random

rotation to the ensemble transform matrix in S-ETKF, in

such a way that ensemble mean is preserved and thus

address the bias issues (Livings et al., 2008; Sakov and

Oke, 2008). The resulting method is non-symmetric ETKF

(NS-ETKF). An essential difference between the two types

of ETKFs is that NS-ETKF cannot trace individual

ensemble trajectories to the past and thus loses one of

the benefits of EnSRFs (Anderson, 2001). In the case of

ETKFs, this means loss of traceability of ensemble weights.

Another significant difference is that NS-ETKF also loses

the ‘errors of the day’ information by resampling. Techni-

cal details of S-ETKF and NS-ETKF are provided in the

Appendix. To perform detailed analysis and compare the

results, all data assimilation experiments are carried out in

the identical twin setting. In following section, these meth-

ods are compared through the background (i.e. forecast)

and analysis RMSE, the third-order moment of the en-

semble (sample skewness) as defined in the Appendix of

Lawson and Hansen (2004) and the time evolution of

the CD.

3. Ensemble clustering in a simple non-linear

model

Following Anderson (2010), we consider the univari-

ate quadratic ordinary differential equation (ODE)

dx=dt ¼ xþ b x xjj . A forecast model based on the Euler

forward discretisation of this ODE is

xtþ1 ¼ xt þ D xt þ b xtj jxtð Þ; (3)

where D�0.05 is chosen as the time step. This model

exhibits the necessary non-linear expansion described in

Section 1 through the non-linear coefficient b. The system

described by eq. (3) has an unstable fixed point at the

origin, which we use as the truth, i.e. xt�0. Observa-

tions are made every two model steps unless otherwise

noted, by adding random Gaussian noise �N(0, 1). We

assimilate every time we observe. We vary the ensemble

size, M�{10, 20, 100} and the non-linearity coefficient,

b � [0,0.2], where Anderson (2010) used b�0.2. The initial

ensemble members are drawn uniformly from the interval

[�1, 1].

Figure 1 shows the time evolution of the analysis

ensemble for the case b�0.1 and M�10 with S-ETKF

(a) and NS-ETKF (b). Panel c shows CD: for S-ETKF,

CD smoothly decreases towards zero indicating EC, while,

for NS-ETKF, it changes abruptly at every analysis, but

the variation remains around a mean value.

Using S-ETKF, we study the effects of ensemble sizes

M�{10, 15, . . ., 100} and non-linearity coefficients

b�{0.02, 0.025, . . ., 0.7}. The results are presented in

Fig. 2. In panel a, we present the time evolution of CD

for combinations of three different values of both M and b.

EC occurs for any b�0; its emergence sets in earlier as b

increases. Moreover, EC takes place more gradually for

smaller M and more abruptly for larger M. In all cases,

EC seems to occur at the same time that depends solely

on b, indicating that this phenomenon is related to the

intrinsic non-linearity in the model dynamics. Moreover,

for a given b, the curves for different M seem to come

together around a small CD value, which we have

empirically estimated to be CDc:0.04 (indicated by a

horizontal line in the panel). For each combination of M

and b, we measure the time at which CD crosses below the

CDc threshold (we call this time tc). In panel b, we plot tc
as a function of b, with a line for each value of M. All lines

ENSEMBLE CLUSTERING IN DETERMINISTIC ENKF’S 3



are almost indistinguishable using log�log plot, while

y-intercepts slightly increase with M. This indicates that

the convergence rate to a clustered ensemble in this simple

prototypical model follows a power law: tc�Ab�g. The

coefficient A is related to the y-intercept of the log�log
plot and has a slight dependence on M. The exponent is

estimated to be g:�0.92. Further investigation of the

properties associated with this figure is beyond the scope of

this work.

As shown in Fig. 1, NS-ETKF successfully avoids EC

by resampling. To illustrate the point, we depict the update

process of both filters from background to analysis for each

Fig. 1. Data assimilation experiment with the model xtþ1 ¼ xt þ 0:05 xt þ b xt xtjjð Þ, observations every two model steps, and M�10 and

b�0.1. S-ETKF (panel a) presents EC soon after five time units while the NS-ETKF (panel b) does not. In panel (c), we quantify the

clustering degree (as defined in Section 2) of the ensemble obtained for both assimilation methods as time advances.

Fig. 2. Data assimilation experiment using S-ETKF with the model xtþ1 ¼ xt þ 0:05 xt þ b xt xtjjð Þ and observations every two model

steps. The effect of different values of non-linearity b and ensemble size M are explored. In panel (a), the time evolution of the CD metric is

shown. As expected, EC appears faster as the non-linearity increases, and this appears to be independent of the ensemble size. In panel (b),

we measure the time it takes for CD to get below CDc, this relationship follows a power law.
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one of the M�10 members in Fig. 3. To accelerate the

occurrence of EC, we take observations every five model

steps and b�0.2. For S-ETKF (panel a), the analysis

ensemble is chosen to be the closest to the background

ensemble (Hunt et al., 2007). Therefore, any deformation

introduced by the non-linear expansion in the forecast

will remain in the analysis; the separation of the outliner

member from the cluster cannot be stopped once it starts

in this simple model. By contrast, NS-ETKF (panel b)

effectively erases any deformation occurred during the

forecast by resampling at each analysis.

Rank histograms for the verification of the truth with

respect to the analysis ensemble were computed for both

methods (not shown). For S-ETKF, the truth very often

falls either outside the ensemble or between the outlier and

the cluster. For NS-ETKF, the histograms are generally

flat, evidence that the truth is statistically undistinguishable

for the ensemble. However, both methods estimate very

similar analysis means, leading to indistinguishable perfor-

mances in terms of RMSE.

The experiments presented so far seem to suggest that,

once EC sets in, it is irreversible and can imply a major

obstacle for an EnSRF. It is crucial to realise that non-

linearity in the simple univariate model (3) has been

maintained constant by b that is fixed in time. In higher-

dimensional models, intrinsic non-linearity is spatially and

temporally variable as the trajectory may visit different

regimes of the phase space. In the reminder of this paper,

we demonstrate that this variability of the non-linearity

can help revert the EC and thus the EC is a transient

phenomenon that occurs intermittently.

To introduce the variability of non-linearity in the

univariate model as simple as eq. (3), we let b change every

T model time steps, where T comes from a uniform

distribution �U(T0, 2T0). Every time a ‘cycle’ of length

T completes, a new b is drawn from N(0, 0.1); in this way,

�95% of the cycles have NbNB0.2. Hence, forecast model

dynamics experience different dynamical regimes for en-

semble spread near the truth: unstable expansion (b�0) or

stable contraction (bB0). Dynamics is quasi-linear for

NbN�0.

In panels a and b of Fig. 4, we show b in grey line (right

vertical axis) along with the CD of the S-ETKF in black

line (left vertical axis) for the interval t � [200, 900]. We

show the results for the cases T0�{50, 500} model steps in

these panels. By introducing the variability in non-linearity

of the forecast model, the S-ETKF no longer suffers from

irreversible EC. In panel a, around t:200 EC sets in due

to large positive values of b. EC persists until t:600 but

decays as the outlier returns to the rest of the ensemble as

shown in panel c. EC reemerges subsequently (not shown

in this panel), but it is again transient and subsides. In

general, it is an intermittent phenomenon.

In this simple model, EC can persistent over a long

period, although the introduction of the artificial vari-

ability in non-linearity eventually resolves the EC. In

higher-dimensional models with natural variability in

non-linearity, EC is less persistent as we demonstrate

in the next two sections.

4. Experiments with L63

L63 is a non-linear 3-variable model widely used to test

data assimilation schemes because of its challenging

properties near regime changes (e.g. Miller et al., 1994;

Evans et al., 2004; Kalnay et al., 2007). The system of non-

linear coupled ODEs describing its evolution is

_x 1ð Þ ¼ p x 2ð Þ � x 1ð Þ� �

_x 2ð Þ ¼ x 1ð Þ r� x 3ð Þ� �
� x 2ð Þ

_x 3ð Þ ¼ x 1ð Þx 2ð Þ � bx 3ð Þ

: (4)

Fig. 3. Update mechanisms for S-ETKF (panel a) and NS-ETKF (panel b) for the individual ensemble members. S-ETKF preserves the

structure from the background ensemble into the analysis ensemble. The NS-ETKF effectively scrambles the ensemble every time an

assimilation occurs. The model is xtþ1 ¼ xt þ 0:05 xt þ b xt xtjjð Þ, b�0.2, observations every five model steps, and M�10.
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The standard values for the parameters are p�10, r�28

and b�8/3, which result in a chaotic behaviour with two

regimes in a very well-known butterfly-shaped fractal

attractor in the phase space. To generate the nature run,

the model is integrated with the Runge�Kutta fourth-order

method (RK4) using a time step Dt�0.01 for 106 steps

after a short spin-up to put the trajectory on the attractor.

The observations are generated by adding a random noise

N(0, R�2I) to the nature run; all variables are observed.

Two types of observing systems are used by varying the

frequency of the observations: one with a short assimilation

window using frequent observations at every eight model

steps and the other with a longer window sing infrequent

observations at every 24 model steps. The short and long

assimilation windows correspond to the linear and non-

linear regimes for ensemble spread in the mode forecast

(Kalnay et al., 2007).
Using L63, we study the effect of the ensemble size M

with respect to the dimension of the model state N as well

as that of non-linearity in the forecast model on the

background ensemble spread by changing the assimilation

window length. We present results for two ensemble sizes

M�{3, 20}. ForM�3 with the rank-deficient background

covariances PM and PM�1 in eq. (2) due to M�1BN,

multiplicative covariance inflation Xb0Xb(1�d) is applied

with d�0.04 for the short assimilation window and

d�0.04 for the long assimilation window. These values

are close to the optimal values obtained in Kalnay et al.

(2007) and Amezcua (2012).

Figure 5 shows the CD for t � [1525, 1550]. The top

row illustrates the cases for the linear regime, while the

bottom row represents the cases within the non-linear

regime. For M�3 (left column), we observe very rapid

variations in CD for both S-ETKF (black line) and NS-

ETKF (grey line). Still, some instances of clustering (e.g.

t:1548 ) emerge in the non-linear regime for S-ETKF.

With large M (only the case M�20 is shown), there is a

clear difference in the CD between S- and NS-ETKFs. For

NS-ETKF, it varies abruptly (but around a mean value)

every time the assimilation is performed, but the variation

is smaller as M increases. For S-ETKF, the variations in

CD are slower and smoother; CD can reach low values in

both the linear and non-linear regimes, but it does so more

often in the non-linear regime. There are no cases of

irreversible collapse of the ensemble; when EC occurs, it is

only transient and not as persistent as with the simple

quadratic model. Figure 6 illustrates EC in the non-linear

regime with M�20 using S-ETKF. The top panel shows

the CD evolution for a longer time period t � [165, 200].

There is an indication of EC around t�190. The three

panels in the bottom row of this figure show the trajectories

for the truth (black line) and the analysis ensemble

members (grey lines) at three different instants with dif-

ferent CD values. The middle panels show the case with

EC, being evident in what seems to be a two-member

ensemble. This, however, does not prevent the ensemble to

revert the EC afterwards.

Why is EC less persistent in this model? In the univariate

quadratic model, EC occurs and decays with the varying

magnitude of the non-linear expansion and contraction

of the ensemble spread. In higher dimensional models,

not only the magnitude but also the direction changes

temporally and spatially. A way to study the characteristics

in the local perturbation growth is by using bred vectors

Fig. 4. Assimilation experiments with the model xtþ1 ¼ xt þ 0:05 xt þ bt xt xtjjð Þ. We allow the non-linear coefficient bt to vary as a piece-

wise function of time (grey line, right vertical axes). CD is represented by the black line and left vertical axes. The time intervals in which bt
is fixed are different for each panels: T0�50 for (a) and T0�500 for (b). Panel (c) shows the ensemble evolution for the time interval

t � [600, 850] of case (a); the reattachment of the outlier occurs in a natural way.
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(Toth and Kalnay, 1997). Evans et al. (2004) applied this

technique and showed different magnitudes of growth for

different regions of the attractor. Zhang et al. (in prepara-

tion) have recently extended this study and have illustrated

the change in direction as well.

Figure 7a shows statistical measures of both filters

for the linear (left column) and non-linear (right column)

regimes depending on the observation frequency, with

boxplots for the CD (top row) and analysis RMSE (bottom

row) for the two ensemble sizes. The black dots accom-

panying the boxplots represent the mean for each metric;

these values are also displayed in the figure. For a small

ensemble size, performance of S-ETKF and NS-ETKF is

practically the same (see Fig. 5). For a larger ensemble size,

differences arise. S-ETKF in general presents smaller CD

values, a sign that it is more prone to EC. For the linear

regime, both the background and analysis RMSEs have

a similar distribution with little difference in the mean for

S- and NS-ETKFs. For the non-linear regime, NS-ETKF

has less outliers in the ensemble spread, leading to smaller

mean RMSE. This is consistent with the finding by

Anderson (2010) that the mean analysis RMSE of the

EAKF increased for the larger ensemble size. One can

hypothesise if there is any relationship between the mean

CD value in the forecast and the analysis RMSE at the

end of that window.

Fig. 6. Experiments with L63, observations every 24 model steps and R=21. The evolution of the CD is shown in the top. Snapshots of

the phase space are presented for three time intervals with contrasting CD values, the one in the middle shows EC occurring.

Fig. 5. Time evolution of the CD for S-ETKF (black solid line) and NS-ETKF (grey-dashed line) from an assimilation experiment with

the L63 model. Two ensemble sizes (columns) are used in a linear regime (top row) and a non-linear regime (bottom row).

ENSEMBLE CLUSTERING IN DETERMINISTIC ENKF’S 7



Figure 7b presents the rank histograms for the verifi-

cation of the truth with respect to the analysis ensemble

for variable x(1). For M�3, there is no difference between

S- and NS-ETKF: all ensembles are over-dispersive. This

may be a result of the use of inflation. For M�20, the

S-ETKF has a U-shaped histograms, especially in the

non-linear regime. Using NS-ETKF, on the other hand,

produces flat rank histograms.

The results in this section show that NS-ETKF has a

better performance in the non-linear regime when M�N,

and this difference is more evident as M grows (experi-

ments were performed with larger ensemble sizes, and these

results are not shown). In practical applications, however,

usually MBBN and techniques such as localisation and

covariance inflation are needed to compensate for the

limited ensemble size. This is the focus of next section.

5. Results with more complex models and the

use of R-localisation

To investigate EC in more complex model, localisation

must be incorporated into the S-ETKF and NS-ETKF. R-

localisation � introduced for LETKF (Hunt et al., 2007) � is

a natural choice of the localisation scheme for the post-

multiplicative EnSRFs where transformation from back-

ground to analysis is performed in the ensemble space. In this

scheme, an independent analysis is carried out for every

single grid point using observations within a certain distance

and assuming that the observation error increases with the

distance to the grid point (see Greybush et al., 2011, for

details). For stability in the model forecast, it is impor-

tant that the analyses obtained in neighbouring grid points

vary smoothly. This was one of the reasons for the use

of symmetric square root in LEKF (Ott et al., 2004) and

LETKF (Hunt et al., 2007).

With R-localisation, S-ETKF becomes LETKF (Hunt

et al., 2007) and is denoted as S-LETKF in this study for

consistency. To implement R-localisation in NS-ETKF

while guaranteeing the smoothness among from one grid

to neighbouring grid, we impose a single, global random

transition matrix on S-LETKF performed at individual grid

points. We call this implementation as NS-LETKF. While

NS-LETKF can benefit from the resampling, there are

disadvantages associated with the loss of traceability of the

weight matrix (see also Section 2). In particular, a variety of

the schemes that help the S-LETKF enhance its perfor-

mance is not applicable to NS-LETKF. Such schemes

Fig. 7. Statistical summary of the experiment with L63. In part (a), the left column shows the results in the linear regime and the right

column in the non-linear regime. Boxplots for CD (top row) and analysis RMSE (bottom row) are shown for both S-ETKF and NS-

ETKF. The dots inside the boxplots represent the mean for each metric; the actual values displayed. In part (b), rank histograms for the

verification of the truth with respect to the analysis ensemble are presented for variable x(1).
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include quasi-outer-loop and running-in-place that improve

the accuracy of ensemble Kalman filtering under non-linear,

non-Gaussian perturbation growth (Yang et al., 2009;

Kalnay and Yang, 2010; Yang et al., in press).

Having localisation implemented, we carry out data

assimilation experiments using a model that is more

representative of those used in operational numerical

weather prediction, known as simplified parameterizations,

primitive-equation dynamics (SPEEDY), developed by

Molteni (2003) and adapted for data assimilation by

Miyoshi (2005). SPEEDY has a spectral primitive-equation

dynamic core and a set of simplified physical parameter-

isation schemes with horizontal spectral truncation at

30 wave numbers and seven vertical levels. The model is

formulated in s coordinates and calculates five field

variables: zonal wind u, meridional wind v, temperature

T, relative humidity q and surface pressure ps. The

geopotential height z for different pressure levels may be

obtained by interpolation.

The nature run for our experiments starts after a 1-yr

spin-up from state of rest and lasts 2 months (January and

February). The observations are taken every 6 h at all seven

vertical levels at horizontal positions that resemble a

realistic radiosonde observational network (Fig. 9b of

Miyoshi, 2011) by adding Gaussian random perturbations

to every variable with the following SDs: 1 m/s for u and v,

1 K for T, 10�3 Kgwater/Kgair for q and 1 hPa for ps. The

observation density is higher over continents than over the

oceans, and the Northern Hemisphere is better observed

than the Southern Hemisphere. Both EnSRFs use an

ensemble size M�20 and the R-localisation length scales

of l�500 km in the horizontal and lv�0.1ln p in the

vertical. We use the adaptive multiplicative covariance

inflation (Miyoshi, 2011), tailored for R-localisation by

estimating the time-evolving inflation parameter at each

gridpoint.

For the variables {u, v, T, q, z}, we compute two latitude-

weighted metrics separately at each vertical level both

globally and per region: NH (25N�75N), tropics (25S�
25N) and SH (75S�25S). These metrics are: analysis

RMSE and sample skewness of the analysis ensemble. No

noticeable difference in skewness or RMSE values is

observed for the variables {u, v, z}; the variables {T, q} do

present differences. The results for T are shown in Fig. 8.

The right panel shows the mean skewness value (along with

bars indicating 1 SD) for the ensembles generated by S- and

NS-LETKFs for the four geographic regions previously

indicated (rows) and for three levels of the atmosphere

(columns). S-LETKF tends to create asymmetric ensembles

in the tropics and the SH. These are poorly observed regions

in which non-linear behaviour can arise. Nonetheless, in

spite of these non-Gaussian ensembles, the analysis RMSE

values (left part of the plot) show no difference between S-

and NS-LETKFs. The same is true for q (not shown). We

plot rank histograms for the verification of the truth with

respect to the analysis ensemble for the variables at different

Fig. 8. Latitude weighted analysis RMSE (left) and analysis skewness (right) for the variable T computed per region (rows) for three

vertical levels (columns) in the SPEEDY model. The bars represent 1 SD of the metric around its mean. S-(L)ETKF can lead to asymmetric

ensembles (e.g. in the tropics in the lower and upper atmosphere), but there is no noticeable difference in its performance with respect to

NS-(L)ETKF in terms of analysis RMSE.
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pressure levels and for different regions (not shown). We do

not observe differences between the two methods, both lead

to under-dispersive ensembles.

6. Conclusions and discussion

In this work, we have studied EC that arises when using

EnSRFs in non-linear forecast models. It results from the

consecutive iteration of the non-linear expansion of the

ensemble spread in the forecast and the linear contraction

in the analysis. We have introduced a metric, CD (2),

to quantify and follow the behaviour of EC in time. Very

small values of this metric help detect the presence of EC.

One of our main goals has been to dispel the notion that

EC is an irreversible phenomenon that severely handicaps

EnSRFs.

We have based our EnSRFs on the unbiased ETKF

(spherical-simplex ETKF: Wang et al., 2004; LETKF:

Hunt et al., 2007) as a standard EnSF because of its

susceptibility to EC; the analysis ensemble spread is the

closest possible to the background ensemble spread, due to

the use of symmetric square root for the transform matrix

in the ensemble space. We call this EnSRF as S-ETKF in

this study. For comparison, we have introduced a second

type of EnSRF that aims to alleviate EC by resampling

the ensemble through random rotations of the transform

matrix while preserving the ensemble mean (i.e. unbiased).

It is called the NS-ETKF due to lack of symmetry in the

transition matrix. Extensions of S- and NS-ETKFs with

R-localisation are called S- and NS-LETKFs, respectively.

Using models of increasing complexity, we have assessed

the performance of S-(L)ETKF and that of NS-(L)ETKF

in the following aspects: (a) the accuracy of the ensemble

mean as best estimator of the truth in terms of background

and analysis RMSE, (b) the behaviour of higher order

moments of the ensemble, in particular sample skewness,

and (c) the statistical reliability of the ensemble with respect

to the truth as measured by rank histograms as function

of ensemble size M and the dimension of the system N.

In the linear regimes, the two filters have indistinguishable

performances. It is in the non-linear regimes, differences

arise as expected; the remaining of the text refers to this

case.

In terms of RMSE, the results of experiments with the

L63 show that differences are noticeable only when the

ensemble size becomes much larger than the number of

variables. The NS-ETKF has a lower mean RMSE because

a smaller number of cycles with very large RMSE appear,

but the general distribution of the RMSE is not very

different from that of S-ETKF as shown by boxplots. For

the SPEEDY model, the RMSE values obtained by the

two methods are indistinguishable for all variables even

in the poorly observed regions of the globe.

Our experiments show that S-(L)ETKF tends to shift

ensembles away from the Gaussian distribution in non-

linear regimes, consistent with the finding by Anderson

(2010). For the SPEEDY model using S-LETKF, this

tendency is clear especially for the tracer variables {T, q}

in the tropics and the SH, where the sample skewness

values are clearly different from zero. This, however, does

not lead to higher RMSE of S-LETKF values with respect

to that of NS-LETKF.

When verifying the truth against the analysis ensemble

in L63 when M�N, the rank histograms obtained from

NS-ETKF tend to be flat, while those obtained from S-

ETKF are not. While the truth tends to be statistically

indistinguishable from the NS-ETKF ensemble, it is not

the case for the S-ETKF ensemble. This is not the case

when M�N; in this case, we get over-dispersive ensembles

for both filters. For SPEEDY, using MBBN with

localisation and adaptive multiplicative inflation, the rank

histograms obtained by both filters have the same beha-

viour, viz. they show an under-dispersive ensemble. More-

over, persistence time in individual EC events becomes less

persevering for MBBN, i.e. the reversal occurs before EC

severely hinders S-LETKF performance.

While NS-(L)ETKF can benefit from the resampling

to stay away from EC and the ability to sustain the ensemble

spread statistically closer to Gaussian distribution, it lacks

advantages of S-(L)ETKF, i.e. access to useful algorithms

that enhance performance and ability to capture the ‘errors

of the day’. Overall our experiments show that EC is a

transient phenomenon and does not severely handicap

performance of S-(L)ETKF, a representative of standard

EnSRFs. We do not intend to assert that one filter is better

than the other; as a matter of fact, the conclusion would

be different depending on the choice of the focus. We

end this work echoing a conclusion from Lawson and

Hansen (2004), namely, that the key to handle different

filters is to understand their mechanisms, implications and

limitations.
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8. Appendix

A.1. S-ETKF and a NS-ETKF

In this work, we use an unbiased (Livings et al., 2008)

post-multiplicative EnSRF known as LETKF (Hunt et al.,

2007), equivalent to the spherical-simplex ETKF (Wang

et al., 2004) when no localisation is needed. Let x 2 <N be a

vector of state variables and y 2 <L be a vector of

observations; they are related through the observation

equation:

y ¼ Hxþ v; (5)

where H 2 <L�N is the observation matrix and v 2 <L

represents the observational error which is assumed
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�N(0, R), and R is usually assumed to diagonal. An

M-member ensemble is written as:

X ¼ x1jx2j � � � jxM½ � 2 <N�M : (6)

The sample mean can be computed as:

�x ¼ 1

M

XM

m¼1

xm 2 <N : (7)

The ensemble of perturbations can then be written as:

X ¼ x1 � �xjx2 � xj � � � jxM � �x½ � 2 <N�M : (8)

And the sample covariance can be calculated as:

P ¼ M � 1ð Þ�1XXT 2 <N�N : (9)

The S-ETKF obtains the analysis ensemble of perturba-

tions Xa by a post-multiplication of the background

ensemble of perturbations:

Xa ¼ XbWa: (10)

The matrix of weights Wa has to be obtained in a way such

that Pa has the value prescribed by the KF. In particular,

for the S-ETKF:

Wa ¼ C Iþ Cð Þ�1=2CT ¼ M � 1ð Þ~Pa
� �1=2

; (11)

where

CCCT ¼ eig
HXb
� �T

R�1 HXb
� �

M � 1

 !

; (12)

i.e. G is the matrix containing the eigenvalues of the

multidimensional ratio of ensemble covariance (projected

into observational space) and observational error covar-

iance, while C is the matrix with the corresponding

eigenvectors as columns. As indicated in eq. (11), Wa is

proportional to the symmetric square root of the analysis

covariance in ensemble space ~Pa. This solution minimises

the ‘distance’ between Wa and the identity matrix, thus

getting an Xa as close as possible as Xb (Ott et al., 2004).

The factor C(I�G)�1/2 in Wa is enough to guarantee the

fulfillment of the KF covariance equation. As a matter of

fact, the original (one-sided) ETKF (Bishop et al., 2001)

used the matrix of weights as Wa�C(I�G)�1/2. None-

theless, besides fulfilling the Kalman equation for covar-

iance, the analysis perturbations must be unbiased, i.e.

Xa1 ¼ 0; (13)

where 1 2 <M . The one-sided ETKF in general does

not produce analysis perturbations centered in zero, while

the symmetric solution Wa�C(I�G)�1/2CT (used in the

S-ETKF) does (Wang et al., 2004; Hunt et al., 2007)

(spherical-simplex ETKF: Wang et al., 2004; LETKF:

Hunt et al., 2007). This formulation fulfills the covariance

equation since C is orthonormal, i.e. CTC�I

A general non-symmetric ETKF can be written as

Wa ¼ C Iþ Cð Þ�1=2ST; (14)

where S can be any orthonormal matrix, but a non-

symmetric solution will be unbiased if S is such that W

contains 1 as an eigenvector. Instructions to construct this

matrix are listed next:

Generate a matrix with random entries

G ¼ g1; g2; � � � ; gM½ � 2 <M�M .

(1) Compute a matrix of perturbations

G ¼ g1 � g; g2 � g; � � � gM � g½ �, where g ¼M�1G1.

By construction G1�0.

(2) Perform the eigenvalue decomposition of the matrix

GTG�SLST. Since GTG is symmetric (and therefore

normal), S has orthonormal columns, i.e.

STS�SST�I. Moreover, all the eigenvalues in L

are non-negative.

(3) Sort the eigenvalues by magnitude, and order the

eigenvectors in S correspondingly. Since G 2 <M�M

and G1�0, lM�0 and SM�M�1/2
1. The elements

of L and S are L�diag([l1,l2,. . .,lM�1,0]),

S�[s1,s2,. . .,sM�1,M
�1/21].

A detailed proof of unbiasedness of this scheme both for

N�M (the usual case in applications) and M�N (an

unusual case, but the one we have used in the simple

univariate quadratic model in this work) can be found in

Chapter 3 of Amezcua (2012). We denominate a solution of

this form a NS-ETKF.

A note on R-localisation (Hunt et al., 2007) is important.

In this scheme, the filter independently calculates a local

matrix of weights wa
local 2 <M�M for each gridpoint; it

implies constructing X
a by sets of rows at a time, the size

of each set corresponding to the number of variables in

every gridpoint. For stability, it is important that the

analyses obtained in neighbouring grid points vary

smoothly. This is guaranteed automatically by S-LETKF

(see the explanation in Hunt et al., 2007, as LETKF),

but not by NS-LETKF. Hence, this method cannot be

applied directly with R-localisation. Nonetheless, once Xa

is completely calculated from local symmetric analyses (i.e.

using S-LETKF), it can be globally rotated. This version

of the NS-LETKF has no problems of divergence and can

benefit from the ensemble resampling but requires an extra

step.
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