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ABSTRACT

The main purpose of this study is to propose a hybrid localisation technique for the proper orthogonal

decomposition (POD)-based ensemble 4-D variational assimilation (PODEn4DVar) method with the aim of

facilitating its implementation. This hybrid localisation scheme takes full advantages of both the implicit and

explicit localisations and is relatively easy to be achieved by parallel programming. Besides, to strengthen its

performance, we also incorporate a square root analysis scheme into the PODEn4DVar instead of its original

one. The feasibility and effectiveness of the modified PODEn4DVar are demonstrated in a 2-D shallow-water

equation model with simulated observations. It is found that the PODEn4DVar performs robust and is capable

of outperforming the local ensemble transform Kalman filter (LETKF), its 4-D extension 4D-LETKF and

another En4DVar method under both perfect- and imperfect-model scenarios.
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1. Introduction

The 4-D variational data assimilation (4DVar) method

(e.g. Lewis and Derber, 1985; Courtier et al., 1994)

provides a useful tool for data assimilation, owing to two

attractive features: (1) the physical model can provide a

temporal smoothness constraint and (2) it has the ability to

simultaneously assimilate the observational data at multi-

ple times in an assimilation window. Generally speaking,

the emergence of the incremental method (Courtier et al.,

1994) and adjoint technique (e.g. Lewis and Derber, 1985;

Le Dimet and Talagrand, 1986; Courtier and Talagrand,

1987) brings about its successful applications in numerical

operational weather prediction at many operational

numerical weather forecast centres (e.g. Bormann and

Thepaut, 2004; Park and Zou, 2004; Caya et al., 2005;

Bauer et al., 2006; Rosmond and Xu, 2006; Gauthier et al.,

2007). Increasingly, 4DVar shows promising results in data

assimilation. However, 4DVar still faces numerous chal-

lenges in coding, maintaining and updating the

adjoint model of the forecast model, and it requires the

linearisation of the forecast model, especially when the

forecast model is highly non-linear and the model physics

contains parameterised discontinuities (Xu, 1996).

The ensemble Kalman filter (EnKF; e.g. Evensen, 1994,

2004; Houtekamer and Mitchell, 1998, 2001) is another

advanced solution to data assimilation. EnKF becomes

increasingly popular because of its simple conceptual

formulation and relative ease of implementation. Compared

with the traditional 4DVar, EnKF requires no derivation of

a tangent linear operator or adjoint equations, and no

integrations backward in time. Furthermore, the computa-

tional costs are affordable and comparable with other

popular and sophisticated assimilation methods such as the

4DVar in the viewpoint of its easy parallel computing. By

forecasting the statistical characteristics, EnKF provides

flow-dependent error estimates of the background errors

using the Monte Carlo method, but it lacks the temporal

smoothness constraint as that in 4DVar, since it is naturally

designed to incorporate sequential information only.

Large efforts have been devoted to seek to advance the

state-of-the-science in data assimilation by coupling 4DVar

with EnKF (e.g. Lorenc, 2003; Tian et al., 2008, 2011;

Zhang et al., 2009; Cheng et al., 2010), aiming at exploiting

the strengths of the two forms of data assimilation while
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simultaneously off-setting their respective weaknesses.

A hybrid method, proper orthogonal decomposition

(POD)-based ensemble 4-D variational assimilation

(PODEn4DVar) method, was proposed by Tian et al.

(2008, 2011) based on the Monte Carlo method and the

POD technique. In the PODEn4DVar, the POD technique

is applied to an ensemble of gridded 4-D observation

perturbations (OPs) sampled from perturbed integrations

of the forecast model at observational time levels to

construct the orthogonal base vectors. Consequently, under

the linear assumption between the model perturbations

(MPs) and OPs, the perturbation ensemble in the model

space is transformed in accordance with the POD trans-

formation to the ensemble OP subspace. It guarantees the

orthogonality (and thus independence) of the transformed

OPs and their corresponding MPs. Furthermore, it can

transform the original ensemble coordinate system into an

optimal one in the L2 norm (Ly and Tran, 2001, 2002). As a

result, the optimal MP and its corresponding OP can be

expressed by the linear combinations of the transformed

MPs and OPs, respectively, which substantially simplifies

the implementation of 4DVar. Furthermore, the forecast

ensemble, which provides flow-dependent error estimates

of the background errors, can be updated continuously

in an EnKF way (Evensen, 1994). More recently, based

upon the PODEn4DVar, we have exploited a WRF-

PODEn4DVar radar data assimilation system (manuscript

in preparation). The preliminary results from real-data

experiments suggest its potential performance for real

atmospheric assimilation: it provides a promising new

tool for data assimilation. Nevertheless, the experiments

also indicate that the PODEn4DVar suffers from high

computational costs due to its standard implicit localisa-

tion procedure. That seems to be particularly noticeable

and should be specially addressed.

A main purpose of this article is to describe an implemen-

tation for the PODEn4DVar method that is both relatively

easy to be achieved by parallel programming and computa-

tionally efficient. The emphasis here is to propose a hybrid

localisation technique for thePODEn4DVar (but not limited

to the PODEn4DVar method only), with the aim of

facilitating its implementation. The localisation technique

has been mainly developed in the EnKF community since it

originally arises from ensemble-based assimilation methods.

As a result, this article learns much from a number of EnKF

studies (e.g. Hunt et al., 2007). The proposed hybrid

localisation technique takes full advantages of both the

implicit and explicit localisations, which allow the analysis to

be done more efficiently as a parallel computation. Besides,

inspired by the large number of existing ensemble analysis

schemes, we also incorporate a square root ensemble analysis

scheme into the PODEn4DVar instead of the original

ensemble update implementation to mitigate its excessive

confidence to the analysis mean.

For completeness, we first review the PODEn4DVar

formulations and then incorporate a square-root ensemble

analysis scheme into this approach in Section 2. The

proposed hybrid localisation technique is described in

Section 3. It is followed by observing system simulation

experiments (OSSEs) for the evaluations of the PODEn4D-

Var in comparison to another ensemble-based 4DVar

(En4DVar) method (Liu et al., 2008), the local ensemble

transform Kalman filter (LETKF; Hunt et al., 2007) and its

4Dcase (4D-LETKF;HarlimandHunt, 2007).Finally, some

summary and concluding remarks are provided in Section 5.

2. The PODEn4DVar with a square-root

ensemble analysis scheme

By minimising the following incremental form of the

4DVar cost function, one can obtain an optimal increment

of the initial condition (IC), x0a, at the initial time:

Jðx0Þ ¼ 1

2
ðx0ÞTP�1

b ðx0Þ

þ 1

2
y0ðx0Þ � y0obs
� �T

R�1 y0ðx0Þ � y0obs
� �

;

(1)

where x? �x�xb is the perturbation of the background

field xb at t0:

y0obs ¼

y0obs;1
y0obs;2

..

.

y0obs;S

0

BBB@

1

CCCA
; (2)

y0 ¼ y0ðx0Þ ¼

ðy1Þ
0

ðy2Þ
0

..

.

ðySÞ
0

2

6664

3

7775
; (3)

ðykÞ
0 ¼ ykðxb þ x0Þ � ykðxbÞ; (4)

y0obs;k ¼ yobs;k � ykðxbÞ; (5)

yk ¼ Hk Mt0!tk
ðxÞ

h i
; (6)

and

R ¼

R1 0 � � � 0

0 R2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � RS

2

6664

3

7775
: (7)

Here, the superscript T stands for a transpose, b is the

background value, index k denotes the observation time,

S is the total number of observational time steps in the

assimilation window, Hk is the observation operator, and
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matrices Pb and Rk are the background and observational

error covariances, respectively.

The PODEn4DVar (Tian et al., 2011) starts from an

ensemble of N OPs y? : y?1,y?2,. . .,y?N, which are generated

by using the observation operator Hk, the forecast model

Mt0!tk
and the IC samples x? : x?1, x?2,. . .,x?N. The POD of

this OP matrix yields:

ðy0ÞT y0 ¼ VK2VT; (8)

and

Py ¼ y0V; (9)

where L is a diagonal matrix of the singular values of y?

and V is an orthogonal matrix.

According to the assumption of linear relationship

between the OPs and MPs [eq. (23) in Tian et al., 2011],

the MP matrix is transformed as follows:

Px ¼ x0V: (10)

Through the above POD transformations [eqs. (9) and

(10)], the original ensemble coordinate system is trans-

formed to an orthogonal and also an optimal one in the

L2 norm (Ly and Tran, 2001, 2002) in the PODEn4DVar,

which contributes a lot to its enhanced assimilation

performance.

In consequence, the optimal solution x0a and its corre-

sponding optimal OP y0a can be expressed by the linear

combinations of the POD-transformed MPs and OPs,

respectively, as follows:

x0a ¼ Pxb; (11)

and

y0a ¼ Pyb: (12)

Substituting eqs. (11) and (12) and the ensemble back-

ground covariance Pb ¼ PxPT
x

� �
=ðN � 1Þ

� �
into eq. (1), the

control variable becomes b instead of x?, and is expressed

explicitly in the cost function:

JðbÞ ¼ 1

2
ðN � 1Þ � bT PT

x PT
x

� ��1
Pxð Þ

�1Pxb

þ 1

2
Pyb� y0obs

� �T

R�1 Pyb� y0obs

� �
:

(13)

Through simple calculations (see Tian et al., 2011 for more

details), the solution to the increment of analysis is

simplified into the following form:

x0a ¼ Px ðN � 1ÞIþ PT
y R�1Py

h i�1

PT
y R�1y0obs: (14)

Making P�a ¼ ðN � 1Þ�Iþ PT
y R�1Py

h i�1

, the final 4DVar

analysis xa can be calculated as follows:

xa ¼ xb þ PxP�aPT
y R�1y0obs: (15)

As illustrated in Tian et al. (2011), eq. (15) shares some

similarity with the EnKF formulation in terms of the

matrix PxP�aPT
y R�1 ¼ K acting as a proxy of the Kalman

gain matrix as that in the EnKF analysis equation as long

as the PODEn4DVar is degenerated to the 3-D case

(PODEn3DVar). Under these circumstances, the relation-

ship between the MPs and OPs is therefore simplified as

y?�Hx?�H(xb�x?)�H(xb), which implies:

Py ¼ HPx: (16)

It is well known that in the EnKF:

Pa ¼ ðI� KHÞPf

where Pf [i.e. Pb in eq. (1)] and Pa are the background and

analysis error covariances, respectively. Since

Pf ¼ PxPT
x

� �
=ðN � 1Þ

� �
, we have:

Pa ¼ I� PxP�aPT
y R�1H

� � PxPT
x

N � 1

¼Px I� P�aPT
y R�1Py

� � PT
x

N � 1

¼PxP�a P�að Þ
�1�PT

y R�1Py

h i PT
x

N � 1

¼PxP�aðN � 1ÞI PT
x

N � 1

¼PxP�aPT
x

(17)

by means of the similar transformations adopted in Hunt

et al. (2007). On the other hand, P
a�[1/(N�1)]Xa(Xa)T,

where Xa is the analysis ensemble perturbation matrix,

thus:

Xa ¼ Px ðN � 1ÞP�a½ �ð1=2Þ
: (18)

The analysis ensemble perturbation matrix X
a can be

obtained by transforming the POD-transformed MPs Px

through a transform matrix T ¼ ðN � 1ÞP�a½ �ð1=2Þ
. This type

of ensemble analysis is known as an ensemble square root

scheme.

The coupling strategy between the PODEn4DVar and its

3-D case proposed in Tian et al. (2011) is further improved

in this study:

Firstly, the forecast model is initialised using the back-

ground fields xb at t0 and then integrated throughout the

assimilation window to obtain the 4-D background fields

x4D
b ¼ xb;0; xb;1; . . . ; xb;S

� �T
.

Secondly, the forecast ensembles Xb,k are obtained by the

model integration from the initial ensemble Xb,0 sequen-

tially over the same assimilation window. Thus, we can

constitute the 4-D ensemble MPs:

x04D ¼ ½Xb;0 � xb;0;Xb;1 � xb;1; . . . ;Xb;S � xb;S�
T
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and the 4-D ensemble OPs:

y04D ¼ H0ðXb;0Þ �H0ðxb;0Þ;H1ðXb;1Þ �H1ðxb;1Þ; . . . ;
�

HSðXb;SÞ �HSðxb;SÞ�
T
;

and then adopt the PODEn4DVar to produce the 4-D

balanced analysis mean X4D
b ¼ xa

0; x
a
1; . . . ; xa

Sð ÞT :
Finally, the 3-D analysis ensemble perturbations Xa

3D;k at

the kth time step are derived from the PODEn3DVar

ensemble update process by utilising the 3-D ensemble

MPs:

x03D;k ¼ ðXb;k � xb;kÞ
T

and their corresponding OPs:

y03D;k ¼ HkðXb;kÞ �Hkðxb;kÞ
� �T

:

Consequently, the forecast analysis ensembles Xa,k are

achieved through Xa;k ¼ xa
k þ Xa

3D;k for the next assimila-

tion cycle.

In this way, the PODEn4DVar is used to update

the ensemble mean by a 4DVar technique over each

assimilation window, while the PODEn3DVar is used

to update the ensemble perturbations in a 3DVar

fashion (and solved by a square-root technique) for each

observation time step included in the whole assimilation

window.

It should be noted that the formulations of the

PODEn4DVar are very similar with those of the 4D-

LETKF (see Hunt et al., 2007 for more details). Again, it

confirms the inherent relationship between 4DVar and

EnKF that has been indicated by Hunt et al. (2007): EnKF

is an equivalent procedure to accomplish the 3DVar with

flow-dependent background covariances under the normal

distribution assumption. Nevertheless, the PODEn4DVar

mainly differs from the 4D-LETKF significantly in the

following aspect: the use of the POD technique in

PODEn4DVar transforms the original ensemble coordi-

nate system into an optimal one in the L2 norm (Ly and

Tran, 2001, 2002), which finally leads to its enhanced

assimilation precision.

3. A hybrid localisation for the PODEn4DVar

An important issue in the ensemble-based method is

sampling errors, and a practical way to address this issue

is through a localisation (or inflation) technique, which

could ameliorate the contaminations resulting from inade-

quate sampling or the spurious long-range correlations

(Houtekamer and Mitchell, 2001). As demonstrated by

Hunt et al. (2007), localisation is generally done either

explicitly, considering only the observations from a region

surrounding the location of the analysis (e.g. Houtekamer

and Mitchell, 1998; Keppenne, 2000; Anderson, 2001;

Ott et al., 2004), or implicitly by multiplying with a

distance-dependent function that decays to zero beyond a

certain distance, such that observations do not affect the

model state beyond that distance (e.g. Houtekamer and

Mitchell, 2001; Hamill et al., 2001; Whitaker and Hamill,

2002). In Tian et al. (2011), the PODEn4DVar adopted the

implicit approach: the Schur product is applied to the

matrix K ¼ PxP�aPT
y R�1 to filter out the remote correlation

between the observation locations and model grids more

continuously, and the final analysis is calculated using the

formula:

xa ¼ xb þ q � PxP�aPT
y R�1

� �
y0obs; (19)

where the Schur product of two matrices having the same

dimension is denoted by A�B(C and consists of the

element-wise product such that ai,j�bi,j �ci,j. For providing
the formula of the filtering matrix, r, suppose Kx,i

(i�1,. . .,Lx, where Lx is the length of vector x?) and Ky,j

(j�1,. . .,Ly, Ly is the length of vector y?) are the model

states and the observational variables, respectively. Making

the horizontal and vertical distances between the spatial

locations of Kx,i and Ky,j as dh,i,j and dv,i,j, respectively,

then the elements of the matrix r can be calculated

according to:

qi;j ¼ C0

dh;i;j

dh;0

 !

� C0

dv;i;j

dv;0

 !

; (20)

where the filtering function C0 is defined as (Gaspari and

Cohn, 1999):

C0ðrÞ ¼
� 1

4
r5 þ 1

2
r4 þ 5

8
r3 � 5

3
r2 þ 1; 05r51

1
12

r5 � 1
2
r4 þ 5

8
r3 þ 5

3
r2 � 5rþ 4� 2

3
r�1; 1Br52

0; 2Br

8
><

>:
;

(21)

and dh,0 and dv,0 are the horizontal and vertical covariance

localisation Schur radii, respectively. To accomplish this

implicit localisation q � PxP�aPT
y R�1

� �
in eq. (19), one

should first compute the matrix K ¼ PxP�aPT
y R�1

� �
, which

is high-computationally expensive and not easily achieved

by parallel programming.

To alleviate this problem, we introduce a hybrid

localisation approach as follows.

Equation (15) can be rewritten as:

xa ¼ xb þ Px P�y

� �
y0obs; (22)

where P�y ¼ P�aPT
y R�1. It implies each element xa,i

(i�1,. . .,Lx) of xa can be obtained through:

xa;i ¼ xb;i þ Px;i P�y

� �
y0obs: (23)
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where Px,i is the ith row of Px and xb,i is the ith element of

xb. According to the filtering function [eqs. (19�20)], we
can find that only the observations, which are located in the

destined region (also see Fig. 1):

xa;i;h � 2dh;0 : xa;i;h þ 2dh;0; xa;i;v � 2dv;0 : xa;i;v þ 2dv;0

� �
(24)

(xa,i,h and xa,i,v are the horizontal and vertical coordinates

of xa,i, respectively), contribute to the final grid analysis

xa,i. As a result of this, only those observation grids in the

N�Ly matrix P�y remain and constitute the N�Ly,g {Ly,g is

the number of observation located in the region [eq. (24)]}

local observation matrix P�y;g, which accordingly leads to

the simplification of eq. (23):

xa;i ¼ xb;i þ Px;i P�y;g

� �
y0obs: (25)

We further implement the implicit localisation to eq. (25):

xa;i ¼ xb;i þ qi � Px;i P�y;g

� �
y0obs; (26)

which finally completes the formulations of the hybrid

localisation for the PODEn4DVar. ri is the filtering matrix

for the model grid of xb,i and its surrounding observation

locations. Careful comparisons between eqs. (19) and

(22�26) indicate that the two localisation schemes (i.e. the

implicit localisation and the hybrid one proposed in this

study) are actually equivalent: eqs. (23�26) jointly achieve

the same function as the standard implicit localisation [eq.

(19)]. The dimension of the local observation matrix P�y;g in

eqs. (25) and (26) is substantially lower than its counterpart

P�aPT
y R�1 of the original one P�y in eq. (19), by which a lot of

computational resources are thus released. In addition, the

implementation of the local analysis is apt to be coded in

parallelisation.

4. Evaluations within a shallow-water equation

model

4.1. Shallow-water equation model

In this section, the PODEn4DVar with the hybrid localisa-

tion is evaluated by OSSEs with a 2-D shallow-water

equation model (Qiu et al., 2007). The 2-D shallow-water

equations are formulated in the f-plane by:

@u

@t
¼ �u

@u

@x
� v

@u

@y
þ fv� g

@h

@x
; (27a)

@v

@t
¼ �u

@v

@x
� v

@v

@y
� fu� g

@h

@y
; (27b)

@h

@t
¼ �u

@ðh� hsÞ
@x

� v
@ðh� hsÞ

@y
� ðH þ h� hsÞ

@u

@x
þ @v

@y

� 	
:

(27c)

Here, f�7.272�10�5s�1 is the Coriolis parameter;

H�3000m is the basic-state depth; hs is the terrain height

and is defined as:

hs ¼ h0 sin
4px

Lx

 !

sin
py

Ly

 !" #2

(28)

where h0�250 m for the true model or h0�0 m for the

imperfect model, Lx�Ly�13200 km are the lengths of

two sides of the model domain, respectively, and the grid

spacing is d�Dx�Dy�300 km. The model domain is a

square with 45 � 45 grid points and its periodic boundary

conditions at x�0 and Lx as well as y �0 and Ly are

stipulated. The spatial derivatives are discretised by the

second-order central finite difference scheme. The local

time derivatives are discretised by using the two-step

backward difference scheme of Matsuno (1966) to ensure

the computation stability and restrain the effect of compu-

tational damping. The time step is Dt�360 s (�6min). The

model state vector is composed by the height h and the

horizontal velocity components u and v at the grid points.

The ‘‘true’’ state is produced by integrating the ‘‘true’’

model (h0�250m) with the following ICs at the very

beginning of the integration (60 h before the starting time

of the first data assimilation cycle):

h ¼ 360 sin
py

D

� 	
 �2

þ120 sin
2px

D

� 	
sin

2py

D

� 	
; (29a)

u ¼ �f �1g
@h

@y
and u ¼ �f �1g

@h

@x
at t ¼ �60 h: (29b)

The model-produced ‘‘true’’ fields at t�0 are therefore

achieved after 60 h integrations to the starting time of

the first assimilation cycle. The ‘‘observations’’ are gener-

ated every 3 h by adding random noises to the above

Fig. 1. Schematic diagram of the filtering matrix r.
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model-produced ‘‘true’’ fields at sparsely selected grids

spaced every 3d�900 km in the x- and y-directions.

4.2. Experimental setup

In all the following OSSEs, the imperfect background state

is produced by integrating the imperfect model (with

h0�0m) from t��60 h [with the geostrophically ba-

lanced condition provided by eq. (29)]. Therefore, this

background state is significantly different from the ‘‘true’’

state (not shown). Particularly, the spatially averaged root

mean square (RMS) errors (calculated as differences

between the model predicted background state and

the ‘‘true’’ state) are 23.4m, 1.53 and 2.58m s�1 for the

h-, u- and v-fields, respectively.

The performance of the modified PODEn4DVar is

examined in comparison to another En4DVar method

(Liu et al., 2008), the LETKF (Hunt et al., 2007) and its

4-D case (4D-LETKF; Harlim and Hunt, 2007). Never-

theless, wewill no longer involve the traditional 4DVar in the

following experiments since its comparisonwith the previous

version of PODEn4DVar (with no coupling strategy) has

been discussed in Tian et al. (2008): Presumably, mainly a

static background error covariance adopted in the standard

4DVar leads to its inferior performance. As aforesaid and

also evaluated by Tian et al. (2011), the coupling strategy is

really conducive to the improvement of assimilation perfor-

mance. In consideration of this, we also implemented the

proposed coupling strategy into both the En4DVar and the

4D-LETKF methods in our experiments. Thus, the two

methods used here can be regarded as the modified versions

of their original approaches. For the four assimilation

methods, the ‘weight’ covariance inflation technique

proposed by Zhang et al. (2004) is used to ‘relax’ or ‘weight’

the prior and update ensembles (the relaxation coefficient is

set to a�0.9). In all the OSSEs, the time length of the data

assimilation window is set to T�12 h. There are five

observational levels in each assimilation window and the

observational time interval is Dt�3 h. Simulated observa-

tions are available in both the height and wind fields on a

coarse grid and spaced every 3d�900 km in the x- and

y-directions. The observation errors are uncorrelated for

different variables anddifferent points in space and time.The

observation error standard deviations are 8m for h and

0.9m s�1 for u and v. In addition, other standard parameter

setups (also for the four assimilation methods) are the

ensemble sizeN�100 and the covariance localisation Schur

radius dh,0�dv,0�9.

4.3. Experimental results

Figure 2 compares the performance of the PODEn4DVar

with the En4DVar method, the LETKF and its 4-D case

(4D-LETKF) under the perfect-model assumption

(h0�250m for the truth, forecast and assimilation runs).

It shows that all the four methods behave considerably

satisfactory in terms of overall low RMS errors, which is

apparently attributed to the perfect-model assumption. The

PODEn4DVar is the best performer among the four

assimilation methods. It performs slightly better during

the first assimilation window (0�12 h) and, after that,

significantly better than the other three methods up to

the end of the whole assimilation process. In the first

assimilation window, the En4DVar shows almost identical

performance with the 4D-LETKF because of their nearly

same formulations except for the small differences in the

ensemble analysis schemes: the En4DVar uses the most

primitive ensemble analysis scheme while the 4D-LETKF

updates its ensemble by means of a transform matrix in a

square-root filter way (Hunt et al., 2007; Harlim and Hunt,

2007). Following this, under the perfect-model scenario, the

superiority of the square-root analysis scheme in the 4D-

LETKF beyond the primitive one adopted by the En4DVar

appears more noticeable, which leads to the 4D-LETKF’s

lower RMS errors for both the height and wind fields than

those of the En4DVar (Fig. 2a�b). In addition, the

assimilation results also indicate that both the En4DVar

and the 4D-LETKF perform substantially better than the

LETKF. Intuitively, such phenomena are not difficult to be

explained since the two former methods possess the basic

advantages of 4DVar that the LETKF does not have. That

is, they have the ability to simultaneously assimilate

multiple-time observational data, and the physical model

provides a temporal smoothness constraint. Moreover,

their background error covairances are flow dependent

and updated continuously since we have already upgraded

the two methods by the coupling strategy that is originally

adopted by the PODEn4DVar.

Another group of experiments with a severe model error

is also conducted using a different maximum terrain height

(h0�0m) from that used in the truth simulation

(h0�250m). The truth run is used for verification and for

generating observations. The experiment configurations are

exactly the same as those for the perfect-model case. Figure

3 compares the performance of the four approaches with the

imperfect forecast model (h0�0m). Notably, in the pre-

sence of model error, the advantage of the PODEn4DVar

over the other three methods becomes quite obvious,

especially from the beginning of the second assimilation

cycle to the end of the whole assimilation process. The same

conclusion can be also obtained through the comparisons of

their spatially mean RMS errors over the last assimilation

cycle: the RMS errors for the PODEn4DVar are smallest

for both the height and wind fields, respectively (only 6.94m

for the height and 0.90m s�1 for the wind). Since we have

upgraded the 4D-LETKF approach by incorporating the
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coupling strategy, the only difference between the 4D-

LETKF and our approach is whether the original ensemble

coordinate system is optimised through the POD transfor-

mation or not. The results demonstrate that the POD-

transformations adopted in the PODEn4DVar leads to its

superior performance compared with the 4D-LETKF,

especially under the imperfect-model assumption. The

RMS errors produced by the PODEn4DVar and the 4D-

LETKF methods averaged over the last assimilation cycle

are increased from 6.94 to 9.57m for the height and from

0.90 to 1.39m s�1 for the wind. Surprisingly, under the

imperfect scenario, the En4DVar generally outperforms the

4D-LETKF a little, even though it uses the most primitive

ensemble analysis scheme. Averaged over the last assimila-

tion cycle, the RMS errors produced by the En4DVar and

the 4D-LETKF methods are increased from 9.37 to

9.57m for the height and from 1.32 to 1.39m s�1 for the

wind.

To discuss the impacts of the ensemble size on

the PODEn4DVar assimilation results, four groups of

experiments for the imperfect model (h0�0m) using the

PODEn4DVar method are conducted with the ensemble

number N�90, 80, 70 and 60, respectively. Figure 4 shows

that there are small differences among the four groups of the

assimilationRMS errors with the ensemble numberN�100,

90, 80 and 70, respectively. However, if the ensemble size is

decreased to N�60, no convergence results are obtained

(not shown). These experiments indicate that the PO-

DEn4DVar can perform considerably robust as long as the

ensemble size is not too small.

As has been noted previously, the purpose of this study is

to alleviate the PODEn4DVar computational costs that are

partially resulted from its localisation process and to code it

by parallel programming easily without sacrificing any

assimilation precision. To verify their equivalency of the

implicit localisation and our hybrid one (actually the implicit

Fig. 2. Spatially averaged (a) height RMS error and (b) wind

RMS error for the four data assimilation methods [the

PODEn4DVar (solid line), En4DVar (long-dashed line), LETKF

(short-dashed line) and 4D-LETKF (dash-dot line)] without model

error (h0�250m), respectively.

Fig. 3. Spatially averaged (a) height RMS error and

(b) wind RMS error for the four data assimilation methods [the

PODEn4DVar (solid line), En4DVar (long-dashed line), LETKF

(short-dashed line) and 4D-LETKF (dash-dot line)] for the

imperfect model (h0�0m).
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one), we also compared the PODEn4DVar performances

with the hybrid localisation scheme (referred to as ‘‘Hybrid’’)

and the implicit one (referred to as ‘‘Implicit’’). Figure 5

demonstrates that the PODEn4DVar with the two localisa-

tion schemes (‘‘Hybrid’’ and ‘‘Implicit’’) can produce exactly

the same assimilation results. Furthermore, for the two

groups of experiments (both in serial programming), the

ratio of the computational costs for the two schemes

(‘‘Hybrid’’ and ‘‘Implicit’’) is about 0.93:1. Of course, this

conclusion is not absolute and case-dependent because the

scale of data assimilation varies greatly within different

numerical models.

Finally, to investigate the choice of the original ensemble

update method and the square root ensemble approach, we

also designed another group of experiments using the

PODEn4DVar with the original ensemble method (re-

ferred to as ‘‘Ori’’) and the square root ensemble one

(referred to as ‘‘New’’) with the imperfect-model scenario,

respectively. Figure 6 shows that the PODEn4DVar with

the original ensemble update approach performs slightly

worse than the square root ensemble case. Presumably, the

original analysis update scheme tends to give more

confidence to the analysis mean, which results in

the narrower ensemble spreads and thus its inferior

robustness.

5. Summary and concluding remarks

In this paper, the PODEn4DVar method proposed by Tian

et al. (2008, 2011) is first upgraded by exploiting a square-

root ensemble analysis scheme instead of its original one.

This analysis scheme adjusts the model ensemble perturba-

tions gradually by the PODEn3DVar (the 3D case of the

PODEn4DVar) in the assimilation window through the

proposed coupling strategy, which finally leads to its robust

performance. Furthermore, a hybrid localisation approach

is proposed with a view to alleviate the huge computational

costs mainly resulting from its (PODEn4DVar) spatial

Fig. 4. Spatially averaged (a) height RMS error and (b) wind

RMS error for the PODEn4DVar for the imperfect model

(h0�0m) with the ensemble number N�100, 90, 80 and 70,

respectively.

Fig. 5. Spatially averaged (a) height RMS error and (b) wind

RMS error for the PODEn4DVar with the hybrid localisation

scheme (referred to as ‘‘Hybrid’’) and the implicit one (referred to

as ‘‘Implicit’’) for the imperfect model (h0�0m).
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localisation procedure. This methodology utilises ideas

from both the implicit and the explicit localisation techni-

ques. Particularly, this hybrid localisation can allow the

analysis to be done more efficiently as a parallel computa-

tion. As far as the formulations are concerned,

the modified PODEn4DVar is somewhat similar to the

4D-LETKF (Hunt et al., 2007; Harlim and Hunt, 2007).

Nevertheless, two important characters (i.e. the POD-

transformations to the MPs and OPs and the coupling

strategy adopted in the PODEn4DVar) differentiate the

PODEn4DVar from the 4D-LETKF and also another

ensemble 4DVar method proposed by Liu et al. (2008),

distinctly.

The robustness and potential merits of the modified

PODEn4DVar are demonstrated by two sets of OSSEs

performed with a 2-D shallow-water model. For compar-

isons, the En4Var, LETKF and 4D-LETKF are also

adopted to conduct the same OSSEs under the same

conditions. The main results are summarised as follows:

The method is robust even when the forecast model

contains a significant bias error, and this is evaluated by the

persistent convergence of the assimilation when the perfect

model is replaced by the imperfect model.

The basic advantages of 4DVar imbedded in the three 4-

D assimilation methods (PODEn4DVar, En4DVar and

4D-LETKF) lead to their superior performance compared

to the LETKF.

The POD transformations conducted in the PODEn4D-

Var can transform its original ensemble coordinate system

into an optimal one in the L2 norm (Ly and Tran, 2001,

2002), which makes the PODEn4DVar approach the best

performer among the four assimilation methods involved in

the OSSEs, especially when the forecast model is imperfect.

The hybrid localisation scheme proposed in this study is

equivalent to the standard implicit one except for its easy

parallel programming and lower computational costs.

The results obtained in this paper are encouraging.

Furthermore, as explained in the introduction, we have

exploited a WRF-PODEn4DVar radar data assimilation

system based upon the proposed PODEn4DVar approach.

On the basis of the hybrid localisation scheme proposed in

this paper, parallel coding of the WRF-PODEn4DVar

radar data assimilation system is ongoing.
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