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ABSTRACT

In this paper we describe the results of various numerical simulations of sideways or horizontal convection.

Specifically, a two-dimensional Boussinesq fluid is both heated and cooled from its upper surface, but the walls

and the bottom of the tank are insulating and have no flux of heat through them. We perform experiments with

a range of Rayleigh numbers up to 1011, obtained by systematically reducing the diffusivity. We also explore

the effects of a nonlinear equation of state and of a mechanical force imposed on the top surface at a fixed

Rayleigh number. We find that, when there is no mechanical forcing, both the energy dissipation and the

strength of the circulation itself monotonically fall with decreasing diffusivity. At Rayleigh numbers greater

than 1010 the flow is unsteady; however, the eddying flow is still much weaker than the steady flow at smaller

Rayleigh numbers. At high Rayleigh numbers, the stratification and the mean circulation are increasingly

confined to a thin layer at the upper surface, with the layer thickness decreasing according to Ra�1/5. There is

no evidence that the flow ever enters a regime that is independent of Rayleigh number. Using a nonlinear

equation of state makes little difference to the flow phenomenology at a moderate Rayleigh number. The

addition of an imposed stress at the upper surface makes a significant difference in the flow. A strong, energy-

dissipating circulation can be maintained even at Ra �109, and the stratification extends more deeply into the

fluid than in the unstressed case. Overall, our results are consistent with the notion that in the absence of

mechanical forcing a fluid that is heated and cooled from above cannot maintain a deep stratification or a

strong sustained flow at high Rayleigh numbers, even if the interior flow is unsteady.

Keywords: horizontal convection, sideways convection, meridional overturning circulation, buoyant plume, gravity

current, horizontal density gradient

1. Introduction

Ever since the papers of Sandström (1908, 1916), there has

been interest, and perhaps some confusion, in the topic of

sideways or horizontal convection. On the basis of seemingly

general thermodynamic reasoning, Sandström argued that a

circulation could only be maintained if the heating in a fluid

is at a higher pressure than the cooling so that in hydrostatic

fluid the heating must be below the cooling. [Reviews and

more discussion are to be found in the studies of Vallis (2006)

andHughes andGriffiths (2008) and references therein.] The

implication for the meridional overturning circulation of the

ocean is apparent, for here the heating and cooling are at

approximately the same level. Nevertheless, the ocean does

have a deep overturning circulation, and resolving this

paradox has been the subject of many studies since then.

The application of Sandström’s ideas to the ocean

circulation is not wholly straightforward because he

considered a compressible gas whereas the ocean is, to a

good approximation, an incompressible Boussinesq liquid.

Furthermore Sandström’s arguments are heuristic rather

than rigorous. However, the Boussinesq nature of the

medium in fact makes it possible to put forward arguments

that have a firmer foundation. Thus, in a Boussinesq fluid

with a linear equation of state, it is easy to show that the

heating must be negatively correlated with height in order

to maintain a positive energy dissipation in a statistically

steady state. Paparella and Young (2002) further showed

that, for a Boussinesq fluid that is heated and cooled only

at its upper surface, the energy dissipation must go to zero

as the diffusivity goes to zero. Specifically, they showed

that o B kDb/H, where o is the energy dissipation, Db is the

maximum buoyancy difference at the surface, H is the

depth of the container and k is the diffusivity of buoyancy.

Thus, the flow is ‘non-turbulent’, in the limit (k, v)00, with

a fixed Prandtl number Pr �v/k where v is the viscosity,

and the energy dissipation vanishes with k. The essential

result has recently been extended by Nycander (2010) and

McIntyre (2010) to a nonlinear equation of state, staying in
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the Boussinesq framework. It should of course be explicitly

noted that the surface heat fluxes also go to zero as k00,

which indicates that the flow will be at rest since the driving

force of the system vanishes, and we discuss this point

further in Section 4.4. On the other hand, in the limit of

infinite Rayleigh number and finite k, the circulation may

of course be non-zero in some dimensional units. Further

physical interpretation of the mathematical theory pro-

vided by Paparella and Young (2002) can be found in

Scotti and White (2011).

None of the mathematical results of the above authors

are in any doubt, but they do not address what might be

called the phenomenology of the flow. Rossby (1998) had

earlier performed some numerical simulations of two-

dimensional horizontal convection in a box, forced by a

temperature gradient along the bottom surface and with

insulating walls and top surface. (There is an up-down

symmetry to the problem, so the set-up is equivalent to

forcing at the top.) He found that as Rayleigh number

increased the strength of the flow increased and the vertical

stratification was confined to an increasingly thin layer

near the bottom surface. Rossby (1965) also proposed

certain scaling relationships for the strength of the flow and

its vertical extent, but his simulations (Rossby, 1998)

lacked the resolution to properly test them.

In addition to numerical simulations, a number of

laboratory experiments of horizontal convection have

been performed (see Hughes and Griffiths, 2008, for a

summary). These experiments seem to indicate that an

interior flow is maintained at high Rayleigh numbers, but

their connection to the theoretical and numerical results

mentioned above remains unclear (a topic we return to in

the last paragraph of Section 6).

If a mechanical forcing is applied to the upper surface of

the fluid, thus providing a stress in a similar way to that

provided by the wind blowing over the ocean, then the

scaling of Rossby (1965) cannot be expected to apply and

the mathematical results of Paparella and Young (2002)

and their successors do not hold because the stress provides

another source of energy to the fluid. It is widely, but not

universally, believed that the wind blowing over the ocean

in conjunction with tidal forces provides the energy needed

to maintain a deep overturning, and a deep stratification, in

the ocean (Wunsch and Ferrari, 2004). Consistent with this

notion, Whitehead and Wang (2008) performed some

laboratory experiments using a rod to provide mechanical

mixing extending from top to bottom of the tank.

Beardsley and Festa (1972) and Tailleux and Rouleau

(2010) found that the addition of mechanical forcing made

significant differences to their numerical simulations.

With a goal of clarifying some of the issues raised above

we have performed a number of simulations of horizontal

convection, going to the highest Rayleigh number that is

possible for us. Our objective is to address the following

questions:

(1) In idealised horizontal convection with no mechan-

ical forcing, how does the phenomenology of the

flow change as the Rayleigh number increases due to

decreasing diffusivity? In particular:

� Does the scaling of Rossby hold for strength of

the circulation and thickness of the thermocline?

� Does the kinetic energy of the flow, as well as

the kinetic energy dissipation, decrease as diffu-

sivity decreases, and if so how?

� Is the flow steady or unsteady at high Rayleigh

number?

� Is the flow confined to the narrow layer near the

surface, or does it feel the depth of the container?

� Can a deep stratification be maintained at high

Rayleigh number?

(2) Are there qualitative differences in the circulation of

fluids with linear and nonlinear equations of state?

(3) What are the effects of a mechanical stress at the

surface?

One motivation of this study is to understand the dynamics

of horizontal convection by reducing the diffusivity from

eddy diffusion values to the molecular value. This is an

important problem for ocean general circulation models

where an eddy diffusion is widely used. To this end, we

perform idealised numerical simulations of horizontal

convection with increasing the Rayleigh number by redu-

cing the diffusivity systematically. We keep the other

external parameters (such as buoyancy forcing and geo-

metry) constant and focus on the effects of diffusivity. In

non-dimensional terms, the Rayleigh number is increased,

but the aspect ratio and Prandtl number are fixed.

This paper is organised as follows: the numerical model

and set-up of the numerical experiments are introduced in

Section 2. A brief summary about the energetics in the

horizontal convection is given in Section 3. The main

results are presented in Section 4 for the no-wind case and

Section 5 for the case with wind. Finally, we summarise and

conclude in Section 6.

2. Model set-up

Our numerical experiments use a two-dimensional (y�z)
non-hydrostatic stream function-vorticity model with

Boussinesq approximation (Il icak et al., 2008; Il icak and

Armi, 2010). With a linear equation of state model

equations are then:

@f

@t
þ Jðw; fÞ ¼ @b

@y
þ nr2f; (2.1)
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@b

@y
þ @vb

@y
þ @wb

@z
¼ jr2b; (2.2)

n ¼ � @w
@z
; w ¼ @w

@y
; f ¼ r2w; (2.3)

where z is the vorticity, c is the stream function, n and w

are the horizontal and vertical velocities and b is the

buoyancy. The density itself is given by q ¼ q0ð1� g�1bÞ
where r0 is the reference density and g is the gravitational

acceleration. We discuss the use of a nonlinear equation of

state in Section 4.5.

The Jacobian is given by Jða; bÞ ¼ ð@a=@yÞð@b=@zÞ�
ð@b=@yÞð@a=@zÞ. In the vorticity equation, this is discretised

using the Arakawa (1966) scheme to conserve both energy

and enstrophy, and eq. (2.1) is then advanced in time using

the Adams-Bashforth-3 method. The buoyancy transport

eq. (2.2) uses a piecewise parabolic method for advection

(Colella and Woodward, 1984), which minimises numerical

buoyancy diffusion. The Poisson equation [eq. (2.3)] is

solved directly using a Fast Fourier transform, and the

entire code is run in parallel. The horizontal and vertical

resolution vary depending on the Rayleigh number, with

the grid spacing sufficient to resolve the boundary layer at

the top with at least 10 grid points at any Rayleigh number.

At the highest Rayleigh numbers, we use approximately

1350�1350 grid points in the horizontal and vertical

directions.

The computational domain is a rectangular box with a

2:1 (horizontal to vertical) aspect ratio, nominally 20-m

long in the y-direction and 10-m deep in the z-direction

(although we will describe most results non-dimensionally).

Free slip and insulating (no buoyancy flux) boundary

conditions are employed for velocity and density fields,

respectively, at the left, right and bottom boundaries (i.e.

z �0, c�0 and @b=@n ¼ 0). We specify the buoyancy and

vorticity on the top (z�10m):

b0jtop ¼ bmax sin
2 py

20

� �
; (2.4)

fjtop ¼ ReðA0eixtÞ; (2.5)

wjtop ¼ 0: (2.6)

where �10m B y B 10 m, A0 and v are the magnitude

and frequency of the stress term, respectively. Equation

(2.4) provides a plume which potentially continuously

provides the abyss with dense fluid. The buoyancy bound-

ary condition is such that the plume forms at the centre of

the domain, away from any walls.

The calculations are characterised by three non-

dimensional parameters: the Rayleigh number, Ra �
DbmaxH

3=nj; the Prandtl number, Pr � n=j; and the aspect

ratio, a � H=L. We also use a non-dimensional time, t̂,

defined by t̂ � t=ðH2j�1Þ. The Prandtl number is an

important parameter in the horizontal convection. Previous

studies show that the flow is unsteady and more turbulent in

small Prandtl and high Rayleigh numbers (Paparella and

Young, 2002; Hughes and Griffiths, 2008). However, in all

experiments, we fix the Prandtl number at a value of 10 and

the aspect ratio at a value of 1/2 (Pr ¼ 10, a ¼ H=L ¼ 1=2).

The buoyancy is only forced by the surface temperature

which has a maximum of 15 8C at the top corners and a

minimum of 5 8C at the centre with a thermal coefficient of

bT ¼ 1:7� 10�4. Thus, the Rayleigh number is equivalently

written:

Ra � DbmaxH
3

nj
¼ DbmaxH

3

Pr j2
¼ gbTDTmaxH

3

Pr j2
: (2.7)

3. Energetics of horizontal convection

In this section, we briefly derive the kinetic and the

potential energy equations for later use. To obtain the

kinetic energy equation, we multiply eq. (2.1) by �c and

integrate over the domain (
ÐÐ
dydz). The Jacobian term

vanishes and we obtain:

dKE

dt
¼
ð

bw dA� n
ð

wr2f dA: (3.1)

where KE ¼
Ð
ðrwÞ2=2dA, w ¼ @w=@y and dA ¼ dy dz.

The first term on the right-hand side is the conversion from

potential energy to kinetic energy (C). The second term on

the right-hand side is the viscous dissipation or creating of

kinetic energy, D, and after integration by parts and

utilisation of either free slip or no-slip lateral boundary

conditions it may be written:

D ¼ n
@w

@z
f

 !top
bottom

�n
ð

f2 dA (3.2)

where the over bar denotes a horizontal integration. The

second term on the right-hand side gives the interior

viscous dissipation o. That is, the total interior viscous

dissipation of kinetic energy is:

hei ¼
ð

nf2 dA ¼ HLe: (3.3)

where o is the average dissipation. The first term on the

right-hand side of eq. (3.2) is a boundary source of energy

due to stress at the surface (the corresponding term

involving @2f=@y2 vanishes because of the lateral boundary

conditions). There is a contribution from the top surface

when a stress is applied f ¼ f0 ¼ A0eixt at the top. The

boundary energy source term due to the surface stress,

Swind, is thus:

Swind ¼ �n
ð

nf0 dy: (3.4)
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The potential energy equation can be derived as follows.

Combining the thermodynamic equation [eq. (2.2)] and a

kinematic equation for z (i.e. Dz=Dt ¼ w) gives:

@zb

@t
þ Jðw; zbÞ ¼ jzr2bþ wb: (3.5)

Integrating over the domain, the Jacobian term vanishes

and we obtain an equation for the rate of change of

potential energy, �
Ð

bz dA. That is:

dPE

dt
¼ �j

ð
zr2b dA�

ð
wb dA: (3.6)

where PE ¼
Ð

zbdA. The second term on the right-hand

side the conversion term, C, described above and the first

term is the potential energy production or source term, P.

After integrating by parts we obtain:

P ¼ �j z
@�b

@z

� �top
bottom

þj
ð
@b

@z
dz dy: (3.7)

where �b ¼
Ð

bdy. The first term on the right-hand side

vanishes because we may choose z�0 at the top and

@b=@z ¼ 0 at the bottom so that:

P ¼ j �bðtopÞ � �bðbottomÞ
� �

; (3.8)

In a statistically steady state with no surface stress, the

potential energy creation must equal the kinetic energy

dissipation, which immediately leads to the bound obtained

by Paparella and Young (2002):

hei ¼ P! e ¼ j

HL
�bðtopÞ � �bðbottomÞ
� �

5
j

H
Dbmax: (3.9)

where Dbmax is the maximum difference in buoyancy at the

surface. Note that the bound on the total energy dissipa-

tion, hei, is independent of the fluid depth.

If there is a stress on the upper surface (i.e. Swind 6¼ 0)

then the energetic balance is:

e ¼ j

H
�bðtopÞ � �bðbottomÞ
� �

� n

A

ð
nf0 dy: (3.10)

In this case, there is no obvious useful bound on the

interior kinetic energy dissipation.

4. Model results

We first give a qualitative description of the flow, and then

investigate the scaling of the thermocline depth and the

strength of the circulation change as a function of the

Rayleigh number. We then look at the effects of a

nonlinear equation of state and the effects of an imposed

stress on the top surface. We will use the adjectives ‘low’,

‘moderate’ and ‘high’ to refer to Rayleigh numbers of up to

105, 106�108 and 109 and above, respectively. We focus

on experiments with the Rayleigh numbers varying from

106 to 1011 listed in Table 1.

4.1. A descriptive overview of experiments

with no stress

The simulations are typically begun with the fluid at rest

and at a uniform temperature slightly warmer than the

lowest temperature to be applied, at the surface. As soon as

the upper boundary conditions are applied, a fast-growing

plume develops from the top surface. This plume reaches

the bottom and drives an energetic circulation that is

dependent on the geometry of the tank, forcing, dissipation

and initial state of the flow. Eventually, the flow settles

down into a steady state, or at least a statistically steady

state. We integrate forward until three criteria are satisfied.

First, the net heat flux
Ð

20
0 ðTzÞjz¼0 dy into the fluid must be

negligible. Second, the energetic terms must be in balance

when integrated over the box. Third, the integration should

be for at least as long as a diffusion time scale, H2=j, where
H is the tank height. In practice, this is by far the most

severe criterion and after integrations of this length, all the

budgets are well balanced, and the flow is manifest in a

steady state or statistically steady state. In dimensional

terms, we need to integrate 0.9, 2.8, 8.9, 28.4 and 89.7 d for

the simulations of the Rayleigh numbers 106, 107, 108, 109

and 1010, respectively. For the low Rayleigh numbers, we

integrated the numerical model for 15 computational days,

while moderate and high Rayleigh number experiments

needed approximately 150 d. The highest Rayleigh number

experiment Ra �1011 is started from final state of the

Ra �1010 experiment. A typical evolution of the terms in

the energy budget is shown in Fig. 1, with the generation,

Table 1. Experimental set-up for no-wind cases

Ra V (m2 s�1) k (m2 s�1) A0 (1 s
�1) Number of grid points in y, z

NoWind1 106 1.2907�10�2 1.2907�10�8 0 256�128

NoWind2 107 4.082�10�8 4.082�10�4 0 256�128

NoWind3 108 1.2907�10�8 1.2907�10�4 0 512�256

NoWind4 109 4.082�10�4 4.082�10�5 0 512�256

NoWind5 1010 1.2907�10�4 1.2907�10�5 0 800�512

NoWind6 1011 4.082�10�5 4.082�10�6 0 1350�1350
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conversion and dissipation terms eventually coming into a

good balance.

At the low Rayleigh numbers (Ra �103�105) the flow

evolves into a steady, strong and deep circulation extending

throughout the domain, similar to the circulation pre-

viously found by Rossby (1998). As the Rayleigh number

increases, the circulation becomes shallower and the

stratification becomes confined to a shallow layer near

the surface, generally consistent with the simulations of

Rossby (1998), Paparella and Young (2002) and Siggers

et al. (2004). (This boundary layer might be regarded as an

analogue of the diffusive component of the oceanic

thermocline, with a thickness decreasing as the Rayleigh

number increases.) At low and moderate Rayleigh number

the flow is very nearly absolutely steady, becoming

shallower as the Rayleigh number decreases. Indeed, at

moderate Rayleigh number the flow appears to be essen-

tially independent of the depth of vessel. The fluid below

the top boundary layer is virtually unstratified, and the

deep fluid is almost at rest.

Figure 2 shows time-averaged stream function and

density fields for Ra �106, 107 and 108. It can be clearly

seen that there is a sinking region in the middle of the tank

and a broad upwelling for the rest of the domain. One of

the most important features is that the strength of the

circulation decreases as the Rayleigh number increases (see

colour bar of Fig. 2a, c and e). At higher Rayleigh number

the centre of the convection cell is concentrated very close

Fig. 1. Energetics at Ra �107 (top) and Ra �1010 (bottom). Specifically, (a) evolution of the energy budget at Ra �107 with linear

equation of state. At the later stages of the integration, the kinetic energy dissipation, o, is equal to the conversion of potential energy to

kinetic energy (C) which in turn is equal to the generation of potential energy by the thermodynamic forcing, P. (b) o versus time for

experiments with different equations of state at Ra �107, and the upper bounds established by Paparella and Young (2002) and Nycander

(2010). (c) Same as (a) but at Ra �1010. (d) Same as (b) but only for linear equation of state. In all panels, the time is scaled by the diffusion

time, H2/k where H is the total depth of the domain and k is the diffusivity used in the experiment.
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to the centre of the tank, and a boundary layer is

established. Both density and stream function fields reveal

that the circulation moves to the top and the thermocline

thickness decreases as the Rayleigh number is increased

(Fig. 2b, d, and f). It is also clearly seen that the density in

the interior of the tank is nearly uniform. For the low and

moderate Rayleigh numbers, these results are consistent

with the previous studies (Rossby, 1998; Paparella and

Young, 2002).

At high Rayleigh number the circulation is increasingly

confined to the top of the tank (Fig. 3), with the strength of

the circulation and the thermocline thickness decreasing as

the Rayleigh number increases. The time-averaged flow

does not feel the bottom of tank at Rayleigh numbers of

109 and above, and the thermocline becomes very thin. At

Rayleigh numbers of 109 and lower, the flow is almost

absolutely steady, but as the Rayleigh number is further

increased to 1010 and higher, the flow becomes unsteady,

seemingly because of a fluid dynamic instability in

the descending plume, and eddying flow fills the domain

(Fig. 4). However, the unsteady flow is weak, and its kinetic

energy is less than that of the flow at lower Rayleigh

numbers. Furthermore, the stratification remains confined

to an extremely thin boundary layer near the upper surface,

and the deeper eddying flow takes place in an essentially

unstratified fluid. The flow is even more unsteady at

Ra �1011, although we have not integrated that experi-

ment for a full diffusion time.

4.2. Scaling for the no-stress experiments

We now test certain scaling arguments for different

Rayleigh number experiments and, in the following sub-

section, the degree to which various energetic inequalities

are satisfied. Rossby (1965) suggested that the stream

function and thermocline depth in the horizontal convec-

tion are the functions of the Prandtl and Rayleigh numbers,

specifically that:

w � Pr1=5Ra1=5j; ŵ ¼ w

j
� Pr1=5Ra1=5 (4.1)

Fig. 2. Time-averaged density field contours (left column) for and stream function (right column) for: (a) and (b) Ra �106; (c) and

(d) Ra �107, (e) and (f) Ra �108. At these Rayleigh numbers, the flow is almost steady, and snapshots are very similar.
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Fig. 3. As for Fig. 2, but for Rayleigh numbers of, from the top: Ra �109, Ra �1010, and Ra �1011. At Ra �1010 and Ra �1011, the

flow is unsteady.

Fig. 4. Snapshots of the density (left) and the stream function (right) fields of the Ra �1010 experiment.
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and

h � LPr�1=5Ra�1=5; ĥ ¼ h

L
� Pr�1=5Ra�1=5 (4.2)

where the hats denote non-dimensional values. For a fixed

Prandtl number, eq. (4.1) implies that the dimensional

stream function varies as Ra�3/10 since Ra is increased by

reducing the diffusivity.

Dimensional and non-dimensional maximum stream

function of the mean flow is plotted as a function of the

Rayleigh number shown in Fig. 5a. There is generally a

good agreement between the model results and suggested

scalings (black line in Fig. 5a) for the stream function. The

thermocline depth as a function of the Rayleigh number is

shown in Fig. 5b. The model results are also in good

agreement with the theoretical scaling, h � Ra�1=5 (dashed

line in Fig. 5b). The thermocline depth decreases mono-

tonically as the Rayleigh number is increased. Neither the

circulation strength nor the thermocline thickness shows

any indication of asymptoting to a value independent of the

Rayleigh number in any of the experiments we have

performed.

As shown in Fig. 6a, we plot both total kinetic energy and

the kinetic energy of the time mean flow as a function of the

Rayleigh number (the total kinetic energy is the time average

of the kinetic energy, including the eddying flow). For

Rayleigh numbers of 109 and below the flow is steady, but is

increasingly unsteady at higher Rayleigh number. Never-

theless, the kinetic energy of the eddying flow continues to

decrease with increasing Rayleigh number. The eddying

flow kinetic energy as a function of time is shown in Fig. 6c

for the Ra �109, Ra �1010 andRa �1011 cases. Note that,

although there is an unsteady eddying flow for the high

Rayleigh numbers, the stratification is confined to the very

shallow upper cell, and there is very little buoyancy injection

into the interior, which remains almost totally unstratified.

The Reynolds number also increases monotonically, albeit

slowly, with the Rayleigh number. Defining the Reynolds

number as Re ¼ UrmsH=n where Urms ¼
ffiffiffiffiffiffiffiffi
KE
p

, then in

Fig. 6b we see that as the Reynolds number increases

approximately as the one-quarter power of the Rayleigh

number.

4.3. Energy and buoyancy variance dissipation

The bound on the kinetic energy dissipation rate can be

written as:

e5
jDb

H
¼ j3RaPr

HL3
¼ Db3L3

RaPrH2

� �1=2

: (4.3)

That is, if the diffusivity is varied, the bound varies linearly

with the diffusivity itself and with the inverse half power of

the Rayleigh and Prandtl numbers.

Figure 7 shows the energy dissipation rate as a function

of the Rayleigh number in our experiments with varying

diffusivity, a linear equation of state and no wind.

The model results are smaller than the bound in all cases

(as they should be), and in fact scales in a similar fashion

as theoretical bound. There is no indication of any

anomalous scaling up to Rayleigh numbers of 1011.

Another bound for the horizontal convection is the

upper limit of the variance dissipation rate (v � jhjrbj2i)
provided by Siggers et al. (2004) and Winters and Young

(2009). They show that x is bounded from above by:

v � j1=3Db7=3
maxðPrHÞ

�1
B4:57H�1j2=3n�1=3b7=3

max

¼ 4:57H�1j1=3Pr�1=3Db7=3
max (4.4)

Thus, x should diminish at least as fast as k1/3 in the limit

k0 at the fixed Prandtl number. Our results are shown in

Fig. 5. (a) Non-dimensional stream function (ŵ ¼ w=j) and dimensional stream function versus Rayleigh number, (b) Thermocline

depth (h) versus Rayleigh number for no-wind experiments.
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Fig. 7b. The model results for x are considerably lower

than the theoretical upper bound. However, the buoyancy

variance decreases with k3/5 rather than k1/3.

4.4. Effect of increased diffusion near surface

We have shown that in the case of a uniform and small

diffusivity, the circulation is confined to the top, and the

strength of the circulation decreases with diffusivity.

However, in the real ocean there is a turbulent mixed layer

homogenised by the wind stress. In this mixed layer, the

effective diffusivity values are approximately two orders of

magnitude higher than the background value and the

buoyancy fluxes into the ocean are large, even though the

molecular diffusivity is small.

To emulate this mixed layer, we have performed two

additional simulations with non-uniform diffusivities. In

the first experiment, the dimensional diffusivity value at the

top 10% of the tank is k�4.082�10�4 and the diffusivity

at the rest of the tank is k�4.082�10�5m2 s�1. For the

second experiment, we increased the diffusivity to

4.082�10�3m2 s�1 at the top 10% of the tank. In both

cases, the enhanced diffusivity covers a depth larger than

the Rossby depth with the small diffusivity, but less than

the Rossby depth with the large diffusivity. These changes

allow, in principle, substantial surface fluxes. Our goal is

not to explore parameter space fully; rather, it is to see if

these changes lead to qualitative changes in the deep

circulation.

Time-averaged density fields are shown in Fig. 8a and c.

Evidently, the stratification at the top of the tank is

increased in both the cases, and the increased density

gradient at the top leads to larger available potential energy

(APE) in the system. This additional energy does drive a

Fig. 6. (a) The total kinetic energy of the flow for various values of the Rayleigh number is increased. Circles are the kinetic energy of

the time-mean flow, and stars are the time-averaged kinetic energy of the total flow, including eddying terms. (b) Reynolds number,

Re ¼ UrmsL=n ¼
ffiffiffiffiffiffiffiffi
KE
p

L=jPr, as a function of Rayleigh number. (c) Total kinetic energy as a function of time for the Ra �109, 1010

and 1011 cases. Time is scaled by the diffusion time, H2/k with k the diffusivity at Ra �1010.
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stronger and somewhat deeper circulation (Fig. 8b and d)

compared with the uniform diffusivity case (Fig. 3d).

However, even though the vertical extent of the circulation

increases, it still does not penetrate to bottom of the tank.

Of course, there remains the possibility that if we use a still

larger diffusivity at the top, there might be enough

energy and vertical velocity pumping to drive a deeper

circulation. A more complete exploration of this phenom-

ena is called for, but this is beyond the scope of the

present work.

4.5. Effect of equation of state

The Boussinesq equations are not limited to a linear

equation of state. More generally, the buoyancy equation

[eq. (2.2)] may be replaced by a thermodynamic equation of

the form:

Dh

Dt
¼ jhr2h;

Ds

Dt
¼ jsr2S (4.5a)

b ¼ bðh;S; zÞ (4.5b)

Fig. 7. (a) Mean dissipation rate (o) and non-dimensional dissipation rate (ê) versus Rayleigh number. (b) Buoyancy variance dissipation

rate (x) as a function of diffusivity, k.

Fig. 8. (a) Time-averaged density field contours (left column) for and stream function (right column) for: (a) and (b) j ¼ 4:082� 10�4 at

the top and j ¼ 4:082� 10�5 at the bottom of the tank; (c) and (d) j ¼ 4:082� 10�3 at the top and j ¼ 4:082� 10�5 at the bottom of the

tank.
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where u and S are semi-conservative tracers and eq. (4.5b)

is an equation of state. If the equation of state is of the

above form, and specifically is a function of z and not

pressure, then the adiabatic versions of these equations

[with ðjs; jhÞ ¼ 0] properly conserve an energy (or a

dynamic enthalpy) and, in the absence of salinity, potential

vorticity (Vallis, 2006; Young, 2010).

Nycander (2010) and McIntyre (2010) generalised the

non-turbulence results of Paparella and Young (2002) to

the nonlinear equation state given by Vallis (2006), namely:

b ¼ g bTð1� czÞðh� h0Þ þ
b�T
2
ðh� h0Þ

2 � bSðS � S0Þ þ
gz

c2
s

" #

(4.6)

where cs is the speed of sound. The terms proportional to

g and b�T describe the thermobaric effect and cabelling,

respectively. The above equation reduces to the linear

equation of state if g, b�T and bs are set to zero, and

the sound speed set to infinity. Nycander (2010) showed

that when the nonlinear equation state is employed,

the dissipation of kinetic energy is still bounded by the

diffusivity according to:

e5
j

H
gb̂TDT ; (4.7)

where b̂T ¼ bTð1þ cHÞ þ b�TTmax.

To explore whether the flow phenomenology is affected

by a nonlinear equation of state, we perform integration

with a nonlinear equation of state using the Rayleigh

number equal to 107 (i.e. j ¼ 4:082� 10�4 m2 s�1 in the

dimensional configuration). We rescale the z-dependence in

eq. (4.6) with the depth of the tank, so that the density

variation due to depth is similar to that of a 5000-m deep

ocean, and set bs�0 so that salinity has no effect. There is

also no wind forcing in these experiments. Figure 1a

shows the initial evolution of the energetic terms, defined

in Section 3, for the experiment with the linear equation

of state.

After the flow has equilibrated, the energy budget is

balanced. Furthermore, the dissipation rate is always under

the theoretical upper bounds, as is expected. Fig. 1b shows

the dissipation term (o) for the experiment with linear and

nonlinear equations of state after the flow is reached a

steady state. It can be seen that dissipation rates are very

close to each other in both experiments. Similarly, the

steady-state stream function and density fields for the two

experiments are shown in Fig. 9. There is a strong

circulation at the middle-upper side of the domain for

both experiments (Fig. 9a and c). As we expected, both

circulations are similar to each other in terms of magnitude

and vertical/horizontal structure. The thermocline is visible

for the linear equation of state experiment (Fig. 9b). On the

other hand, the flow is linearly stratified in Fig. 9d, but

solely because of the effect of nonlinear equation of state.

Overall, we conclude that the effect of nonlinear equation

of state is small, at least for moderate Rayleigh numbers,

and we have no reason to suppose that this result does

hold at high Rayleigh number. For this reason, we did

not explore the effects of a nonlinear equation of state

further.

Fig. 9. Time-averaged stream function fields at Ra �107 for (a) linear equation of state, (c) nonlinear equation of state. Time-averaged

density fields at Ra �107 for (b) linear equation of state, (d) nonlinear equation of state.
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5. Experiments with an imposed stress

We now investigate the effects of imposing a stress on the

top surface, roughly mimicking the effects of wind on the

ocean. We do this by applying a non-zero surface boundary

condition for the vorticity field, as in eq. (2.5). The forcing

is periodic in order not to simply impose a mean flow on

the system. The parameters of the forcing are the ampli-

tude, A0 and the frequency, v. We perform all experiments

at Ra �109. One of the natural frequencies in the problem

is the buoyancy frequency, N, which in turn is related to the

surface forcing, and a natural scaling for the amplitude is

the surface vorticity in the absence of wind forcing, which

we denote f0. With this in mind, we perform experiments at

three different frequencies: (1) x ¼ N0 ¼ ðDb=HÞ1=2 ¼ 0:04,

where Db is the difference in the imposed buoyancy

across the top surface; (2) x ¼ 5N0 ¼ 0:2 and (3)

x ¼ N0=5 ¼ 0:008. For each frequency we use four differ-

ent values that are chosen for A0 as the wind forcing

magnitude: (1) A0 ¼ f0 ¼ 0:16 which is the maximum

vorticity value in the steady-state no-wind simulation;

(2) A0 ¼ 1:0 � 6f0 which is considered as a strong forcing;

(3) A0 ¼ 0:0256 � f0=6 which is considered a weak forcing

(Table 2). For most experiments the stress is applied

uniformly over the entire upper surface. We have also

performed experiments in which the stress is varying

sinusoidally, that is with fj0 ¼ A0 sin ky expðixtÞ, but the

results do not change our conclusions.

In the cases with the weakest forcing (A0 ¼ f0=6), there

are no significant changes compared to the no-stress case,

although the depth to which the stream function pene-

trates, and the thermocline thickness, increases somewhat.

On increasing the magnitude of the vorticity at the surface

to A0 ¼ f0, the circulation becomes significantly deeper for

the x ¼ N0 and x ¼ N0=5 (Fig. 10b and d). However, the

high-frequency experiment (x ¼ 5N0) is similar to the no-

wind case, suggesting that the wind forcing does not have

enough time to penetrate downwards, and the induced

positive and negative values in the vorticity field effectively

cancel each other.

The fourth magnitude of A0 is equal to 0.433 which is

approximately 2:6f0. The effect of the magnitude of the

surface vorticity becomes still more significant when we

increase to strength of the forcing to A0�2.6z0. There are

now strong deep reaching circulations for both the v�N0

and v�N0/5 (Fig. 11b and d), and the magnitude of the

stream function is typically larger than the maximum

stream function in the no-wind case. The dense water is

sinking from the side walls instead of the middle of the tank

because the surface waters are pushed to the side bound-

aries where they are forced to sink. The water that does

sink to the bottom of the tank is no longer as cold as in the

no-stress case because it has insufficient time to take on

the temperature at the surface at the side walls. Thus, the

overall stratification (i.e. top to bottom temperature

difference) is generally smaller in the stressed case,

although the main thermocline, away from the main

plumes, is a little deeper (see Fig. 12 for an example). On

the other hand, the circulation for the high-frequency

(v�5N0) experiment does not reach bottom unlike the

other two experiments (Fig. 11f).

Finally, we compute the kinetic energy dissipation, the

buoyancy variance dissipation and the maximum stream

function. The kinetic energy dissipation rate is shown in

Fig. 13a for all cases with the wind forcing. The green star

and green circles display the dissipation rate in the no-wind

model result and the theoretical upper limit o corresponds

to Ra �109, respectively. Increasing the amplitude of the

boundary value of vorticity (A0) increases the dissipation

rate and allows the dissipation rates to be larger than the

theoretical limit in the unstressed case. In all the wind

experiments, the high frequency of the wind forcing leads

to smaller dissipation rates (black stars in Fig. 13a), and

this is because the flow does not have enough time to adjust

to the forcing and the forced circulation is weak. The

dissipation rates for the experiments with the natural

buoyancy frequency (v�N0) at A0�z0/6 and A0�z0 are

larger than the ones with smaller frequency v�N0/5. The

latter becomes larger than the former for amplitudes of

A0�2.5z0 and A0�6z0.
The buoyancy variance dissipation rates are shown in

Fig. 13b and results are similar to those for kinetic energy

dissipation rate. The green star dot is the control case with

no-wind forcing. The green diamond and circles are

approximate buoyancy variance (� j1=3b7=3
max=HPr) and the

theoretical upper limit (¼ 4:57j1=3b7=3
max=HPr1=3), respec-

tively. The buoyancy variance dissipation in the high-

frequency forcing is lower than the other two frequency

model results. Similar to the momentum dissipation rate,

the buoyancy dissipation rate is the largest in simulations

Table 2. Experimental set-up for wind cases

Ra A0 (1 s
�1) v (1 s�1)

Wind1 109 0.0256 N0�0.04

Wind2 109 0.0256 5N0�0.2

Wind3 109 0.0256 N0/5 �0.008

Wind4 109 0.16 N0�0.04

Wind5 109 0.16 5N0�0.2

Wind6 109 0.16 N0/5 �0.008

Wind7 109 0.432 N0�0.04

Wind8 109 0.432 5N0�0.2

Wind9 109 0.432 N0/5 �0.008

Wind10 109 1.0 N0�0.04

Wind11 109 1.0 5N0�0.2

Wind12 109 1.0 N0/5 �0.008
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with v�N0 at A0�z0/6 and A0�z0 and simulations with

v�N0/5 at A0�2.5z0 and A0�6z0. Although increase in

A0 leads to increase in x, all buoyancy variance dissipation

rates of wind experiments are, in fact, still below the

theoretical upper limit described by Winters and Young

(2009). Figure 13c shows the maximum non-dimensional

stream function, ŵ ¼ w=j, as a function of strength of the

surface vorticity. The maximum stream function values are

always higher than the one in the no-wind case, and the

strength of the circulation increases with larger surface

vorticity values.

Tailleux and Rouleau (2010) suggest that APE may be a

useful diagnostic, as APE production is directly propor-

tional to the strength of the overturning. They show that

mechanical stirring due to winds results in more diapycnal

mixing, higher APE and increased the strength of the

circulation. Motivated by their work, the APE values for

different cases are shown in Fig. 14. When we decrease the

diffusivity in the no-wind experiments, the thermocline

depth decreases and is increasingly confined to the top of

the tank, and this leads to a decrease in the APE as shown

in Fig. 14a. That is, as diffusivity decreases with zero

mechanical forcing so does the APE, and the deep

circulation diminishes. Consistently, both the APE and

the circulation strength can be increased by stronger

buoyancy forcing � that is, by imposing a larger tempera-

ture gradient at the surface leads. On the other hand, the

experiments with a surface stress show that the APE

increases with the strength of the wind. Warm water is

pushed to the bottom of the tank and a deeper thermocline

depth in the stressed experiments. This can be clearly seen

in the buoyancy profiles in Fig. 12.

6. Summary and conclusions

We have performed a variety of numerical simulations of a

Boussinesq fluid heated and cooled from above. We

performed experiments over a range of Rayleigh numbers

up to 1011, by decreasing diffusivity, with a linear and

nonlinear equation of state, and looked at the effects of

imposing a mechanical stress at the upper surface, some-

what akin to wind forcing on the ocean. The conclusions of

Fig. 10. Time-averaged density field contours for (a) A0�0.16, v�0.008; (c) A0�0.16, v�0.04 and (e) A0�0.16, v�0.2. Time-

averaged stream function contours for (b) A0�0.16, v�0.008; (d) A0�0.16, v�0.04 and (f) A0�0.16, v�0.2.
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this study are itemised below. Note that they strictly apply

only to a two-dimensional Boussinesq fluid in which

heating and cooling are applied at the top surface by way

of a Dirichlet boundary condition on buoyancy:

(1) With a linear equation of state the strength of the

circulation monotonically decreases as the diffusivity

decreases at fixed Prandtl number (here equal to 10).

There is no evidence that the flow ever becomes

independent of the Rayleigh number.

(2) At Rayleigh numbers up to 109 the equilibrated flow

is steady. At higher Rayleigh numbers the flow is

unstable, with eddying flow filling the domain.

However, the total kinetic energy (eddies plus mean

flow) and the kinetic energy dissipation still decrease

with decreasing diffusivity. Additional integrations

with different numerical schemes and at different

Prandtl numbers would be needed to understand the

robustness of lack of steadiness, and it does not

affect our other conclusions.

Fig. 11. Time-averaged density field contours for (a) A0�0.4213, v�0.008; (c) A0�0.4213, v�0.04 and (e) A0�0.4213, v�0.2. Time-

averaged stream function contours for (b) A0�0.4213, v�0.008; (d) A0�0.4213, v�0.04 and (f) A0�0.4213, v�0.2.

Fig. 12. Spatial and time-averaged buoyancy profile for the no-

wind case (solid line) and wind case (dashed line) with A0�0.16

and v�N0, away from the sinking region. The straight vertical

lines are the values at the bottom of the domain.
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(3) As the Rayleigh number increases, the stratification

and the time mean flow become increasingly con-

fined to a shallow layer near the surface, indepen-

dent of the depth of the tank. Even when the flow is

unsteady, the stratification is virtually all confined to

a shallow layer, as is the mean circulation. The deep

eddying circulation that arises at high Rayleigh

number takes in an unstratified region of fluid.

(4) The depth of the stratified layer appears to vary as

Ra�1/5 to a good approximation, as first suggested

by Rossby (1965).

(5) The buoyancy variance dissipation rate decreases

with decreasing diffusivity (k), and is well below the

bounds of Winters and Young (2009).

(6) The inclusion of a nonlinear equation of state makes

no substantial difference to the flow structures at a

Rayleigh number up to 107.

(7) The addition of a mechanical stress at the top

surface makes a substantial, qualitative difference

to the structure of the flow and to the stratification.

Specifically, (1) the stratification extends further into

the interior at small diffusivity; (2) a deep eddying

flow can be maintained, the strength of which

increases with the strength of the mechanical for-

cing, and which is sensitive to the frequency of the

forcing.

What do these results imply about fluids more generally

and about the circulation of the ocean? First, they are

generally consistent with what might be known as Sand-

ström’s effect (we prefer not to call it Sandström’s

theorem). That is to say, as the diffusivity becomes smaller

and smaller in a fluid heated and cooled from above, the

strength of the interior flow diminishes (even if it is

Fig. 13. (a) Mean dissipation rate (o) versus strength of the wind. (b) Buoyancy variance dissipation rate (x) as a function of strength of

the wind. (c) Maximum stream function ŵ ¼ w=j versus strength of the wind.
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unsteady) and the stratification is confined to an ever

thinner layer at the upper surface. As demanded by the

result of Paparella and Young (2002) the kinetic energy

dissipation is bounded by k, and our numerical results also

show that the kinetic energy itself and the deep stratifica-

tion also both diminish as the diffusivity diminishes. There

is no sustained deep mean flow at high Rayleigh number,

although there may be a continuing, albeit weak, eddying

flow at high Rayleigh number.

It should be noted that we increase the Rayleigh number

by decreasing the diffusivity and keep other parameters

fixed. One motivation for this is to better understand the

phenomenology of horizontal convection as we change the

diffusivity from eddy diffusion values to the molecular

value. This approach has two implications: (1) as the

diffusion decreases so do the dimensional surface fluxes,

thus there will be less APE in the system; (2) the system’s

energy dissipation depends on diffusivity, thus smaller

diffusion values lead to less dissipation and, if the scales

of the motion stay the same, a weaker circulation. If we

were to increase the Rayleigh number by increasing the

buoyancy forcing the dimensional stream function would

increase, as we would the APE and total dissipation in the

system. Of course, although the dimensional results depend

on many physical parameters, the non-dimensional results

from which all dimensional results can be derived depend

on only three non-dimensional numbers (Rayleigh, Prandtl

and aspect ratio).

The addition of a mechanical stress at the surface makes

a significant difference. It enables the stratification to

extend further into the fluid interior, deepening the

thermocline, and allows the mean flow to cross the

stratification. It is as if the mechanical forcing allows there

to be an ‘eddy diffusivity’, although given the unrealistic

nature of the imposed stress vis-à-vis the wind over the real

ocean we should not draw too strong an analogy between

our simulations and the wind-forced ocean. The addition of

an enhanced diffusivity at the top of the domain also makes

a difference to the circulation, but we note that such an

enhanced diffusivity would, in the real ocean, have its

origins in wind forcing. The effects of nonlinearity in the

equation of state are small in the experiments we have

performed, and although we cannot be definitive it seems

very unlikely that nonlinearities in the equation of state, or

the fact that seawater is not exactly Boussinesq, can make a

significant impact on the real ocean vis-a-vis the relevance

of horizontal convection.

If we were to take the speculative step of extrapolating

our results to the real ocean, we would conclude that the

effects of mechanical forcing (i.e. winds and tides) are

crucial to the maintenance of a deep stratification and to a

mean flow beneath the main thermocline. It may be that we

can still usefully think of the deep flow as being maintained

by the combined effects of buoyancy and mixing, as in the

classical picture, provided that we remember that the

mixing � the ‘eddy diffusivity’ � has its origins in the

wind and tides, as noted by Vallis (2006) and by Tailleux

and Rouleau (2010).

In spite of the seemingly unambiguous nature of our

numerical results, we do need to point out that various

experimental results (Hughes and Griffiths, 2008) and

others performed at the Australian National University in

Canberra (K. Stewart, A. Hogg, personal communication)

appear to tell a different story. The experiments seem to

indicate that a vigorous deep circulation can be maintained

in a fluid, with buoyancy forcing only at the surface, in

apparent contradiction with the numerical results we have

presented. There are many possible reconciliations of the

Fig. 14. (a) Available potential energy as a function of diffusivity, k. (b) Available potential energy versus strength of the wind.
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two classes of results, of which the following seems most

likely to us. (1) The two-dimensional nature of the

numerical experiments might give a misleading picture of

what happens in a real fluid. (2) The experimental results

have not reached a true equilibrium. (3) The surface fluxes

in the experimental results are not small, even with small

diffusivity, and this enables a deep circulation to be

maintained. (4) There would be no real contradiction, if

the experimental results and numerical results could be

quantitatively compared. Exploring these possibilities is an

important future task.
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