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ABSTRACT

We propose a data assimilation scheme that simultaneously produces the analyses for a global model and an

embedded limited-area model, considering forecast information from both models. The purpose of the

proposed approach is twofold. First, we expect that the global analysis will benefit from incorporation of

information from the higher resolution limited-area model. Second, our method is expected to produce a

limited-area analysis that is more strongly constrained by the large-scale flow than a conventional limited-area

analysis. The proposed scheme minimises a cost function in which the control variable is the joint state of the

global and the limited-area models. In addition, the cost function includes a constraint term that penalises large

differences between the global and the limited-area state estimates. The proposed approach is tested by

idealised experiments, using ‘toy’ models introduced by Lorenz in 2005. The results of these experiments

suggest that the proposed approach improves the global analysis within and near the limited-area domain and

the regional analysis near the lateral boundaries. These analysis improvements lead to forecast improvements

in both the global and the limited-area models.
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1. Introduction

We consider data assimilation in the scenario where

we have a global model and a limited-area model, which

more accurately represents some smaller scale processes,

defined in a subregion inside the global region. We aim

to produce analyses for both the global and the limited-

area models by a single data assimilation process using

information from both models. We hope that both the

global and the limited-area forecast accuracy will benefit

from estimating the initial state of the two models jointly.

Our proposed method, which we call the ‘joint-state

method’, is based on introducing an observation function

and a cost function that both depend on the joint state.

The minimiser of this cost function, which provides the

analysis for both models, can be found using either a

variational or a sequential algorithm. Our proposed

scheme would most likely be of potential interest for

centres where both global and limited-area forecasts and

analyses are prepared.

Similar previous attempts in the literature (Guidard and

Fischer, 2008; Dahlgren and Gustafsson, 2012) focused on

the narrower objective of propagating information from a

pre-computed global analysis into the limited-area data

assimilation process, not only through the lateral boundary

conditions but also by imposing a constraint on the limited-

area analysis of the large-scale features of the atmos-

pheric flow inside the limited-area domain. The motivation

for those efforts was the general experience of the numeri-

cal weather prediction centres that a limited-area analysis

provides a lower quality representation of the large-scale

features of the atmospheric flow (e.g. baroclinic waves) than

the host global analysis, which provides the lateral boundary

conditions for the limited-area model. This behaviour of the

limited-area analysis is usually explained by the effects of

aliasing the large-scale information contained in the ob-

servations on the shorter scales present in the limited-area

analysis; the inability of the limited-area analysis systems to

gainfully assimilate satellite radiance observations, due to
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the lack of efficient strategies for observation bias correction

in the limited-area setting; and the effects of ignoring the

observations outside the limited-area domain [a review of

the different techniques that have been considered by the

different authors for imposing a large-scale constraint based

on the global analysis on the limited-area analysis can be

found in Guidard and Fischer (2008)].

The new aspect of our approach is that the global

analysis is prepared simultaneously with the limited-area

analysis, that is, the limited-area model information can

affect the global analysis. As will be shown, this approach

leads to improvements, not only in the limited-area analysis

but also in the global analysis. To our knowledge, the only

data assimilation system that uses higher resolution model

information from an inner limited-area domain is the

Data Assimilation Research Testbed implementation of

the Weather Research and Forecasting Model (WRF/

DART; Anderson et al., 2009). In that system, the state

at a given location is represented by the highest resolution

nest available at that location and the analysis for the lower

resolution outer nests is obtained by an interpolation of

the higher resolution analysis to the lower resolution grid

of the outer nests (personal communication; Chris Snyder,

2012). Such analyses can be used as the initial conditions

of two-way nested limited-area weather forecasts, which

have been shown to have major benefits even for such chal-

lenging forecast problems as the prediction of the intensity

of tropical cyclones (Zhang et al., 2011). The algorithm

we propose could also be extended to prepare an analysis

for a limited-area system using multiple nests. The simple

approach used by WRF/DART can be considered a special

case of such an extension.

To test our global/regional assimilation technique, we

design a global/regional forecast system based on two ‘toy’

models proposed by Lorenz (2005). We obtain analyses

for the toy model system by finding the minimiser of

the cost function with the help of the Local Ensemble

Transform Kalman Filter (LETKF) algorithm, which was

proposed by Ott et al. (2004) and Hunt et al. (2007). The

LETKF algorithm, like other localisation methods, makes

use of the assumed locality of atmospheric interactions

and, on that basis, performs and combines analyses in

relatively small overlapping regions. This greatly facilitates

numerical data assimilation. While the ‘toy’ model system

that we use mimics the realistic situation in a way that is

overly simplified in many respects, it allows for a speedy

code development and the execution of a large number

of numerical experiments, which would not be possible

with a more realistic system. We note that the LETKF

scheme, similar to other ensemble-based data assimila-

tion schemes that have been successfully implemented on

operational models (e.g. Whitaker and Hamill, 2002),

was initially tested on the toy model called model 1 in

Lorenz (2005).

We compare the accuracy of the analyses and forecasts

obtained by our joint-state method and the accuracy of

the global and limited-area analyses and forecasts that

were obtained separately. Hereafter, we refer to the latter

approach as separate analysis method. We find that better

forecasts are produced using the joint-state method than the

separate analysis method. While this positive result with the

toymodel does not guarantee that our approach will work in

a realistic setting, we believe that it is sufficiently encoura-

ging to make the significant investment of effort required by

an implementation on a realistic system in the near future.

The organisation of the article is the following. Section 2

introduces the atmospheric toymodels that we use. Section 3

describes the data assimilation schemes by the joint-state

method and the separate analysis method. Section 4

describes how the regional model is coupled to the global

model at the boundaries of the subregion during the

integration phases of analysis cycles, and how we choose

some parameter values of the system. Section 5 compares

the results of our joint-state method to those of the

separate analysis method. Section 6 shows the dependence

of the analysis errors of our joint-state method on its

parameters, with and without model error. Section 7 gives

further discussion and summarises our conclusions.

2. True model, global model and regional model

Lorenz (2005) introduced three simple, spatially discrete,

one-dimensional models that have proven to be useful for

testing weather data assimilation methods. Here, we will

use Lorenz model 2 (which shows smooth propagating

waves) and the more refined Lorenz model 3 (which shows

small-scale activities on top of smooth waves). Lorenz

model 3 is the following equation for the evolution of a

scalar state variable Zn at spatial location n,

dZn=dt ¼ ½X ;X �K ;n þ b2½Y ;Y �1;n
þ c½Y ;X �1;n �Xn � bYn þ F ; (1)

where n is an integer, n�0, 1,. . ., N�1, t is time,

K, b, c and F are parameters, and a periodic boundary

condition (ZN�Z0) is used. The convention of index

counting starting from 0 is used throughout this article.

N-component vectors X and Y are defined as

Xn ¼
XI

i¼�I

0ða� bjijÞZnþi; (2)

Yn ¼ Zn � Xn; (3)

a ¼ ð3I2 þ 3Þ=ð2I3 þ 4IÞ; (4)
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b ¼ ð2I2 þ 1Þ=ðI4 þ 2I2Þ; (5)

where the prime notation on S? signifies that the first and

the last terms in the summation are divided by two, and I is

a parameter. The bracket of any two vectors X and Y is

defined as

½X ;Y �K;n ¼
XJ

j¼�J

0
XJ

i¼�J

0ð�Xn�2K�iYn�K�j

þ Xn�Kþj�iYnþKþjÞ=K2 (6)

when K is even, and S? is replaced by S when K is odd;

J�K/2 when K is even, and J�(K�1)/2 when K is odd.

Model 3 reduces to model 2 when I�1. In particular,

for I�1, eq. (2) yields Xn�Zn, which by eq. (3) implies

that Yn�0. Thus, after changing notation, n0m and

Zn0Zm, we obtain

dZm=dt ¼ ½Z;Z�K ;m � Zm þ F ; (7)

where m is used to denote a point on the coarser grid of the

global model. Lorenz (2005) defined 5 d to be the time unit

in the equations considering the damping time. We follow

this convention in this article.

We use Lorenz model 3 with parameter values N�960,

K�32, b�10, c�0.6, F�15 and I�12 to generate our

simulated true dynamics, and Lorenz model 2 with

N�240, K�8, F�15 for the global model defined at

every fourth grid point of the true model (n�0, 4, 8, . . .,

956). Thus, the grid points for eq. (7) occur at m�n/4,

where n�0, 4, 8, . . ., 956. Note that like Lorenz (2005) we

kept N/K to be 30 to make roughly 7 waves in both model 3

and model 2. We assume that, between analyses, eq. (7) for

Zm gives an approximation of the dynamical evolution of

Zn(t) at the grid points n�4m. When referring to locations

or lengths of regions, we use the coordinate system of the

true model throughout this article (n�0, 1, . . ., 959). For

the regional model, we define a subregion extending from

n�n0�240 to n�n1�720 grid and use Lorenz model 3

with the same parameter values as the true model. To

integrate this regional model, we must evaluate the bracket

quantities on the right hand side of eq. (1) defined by eq.

(6). For n too close to n0 (n1), this involves X, Y and Z

values at grid points outside the subregion, nBn0(n�n1).

Also, from eq. (2), Xn in the regional model (and hence also

Yn) depends on Zn? values in n?Bn0(n?�n1) if n is within a

distance I of n0 (n1). To evaluate these quantities, we use

estimates of the required values of Zn? obtained from linear

interpolation of the global values Zm onto the n-grid. These

interpolations essentially play the role of boundary condi-

tions for the regional model.

The spatiotemporal average of the ‘true’ state is about

2.75, whereas the spatiotemporal average of the global

model state is about 2.73. In addition, the spatiotemporal

average of the state of the regional model (coupled to the

global model) is about 2.83. (The global model bias is less

than 1%, whereas the regional model bias is less than 3%.)

These numbers suggest that we can expect model bias to

make only a small contribution to the state estimation

error, especially in the case of the global model. Thus, the

primary role of the state-update step of the data assimila-

tion will be to correct transient errors in the background.

3. Data assimilation

We selected 15 evenly spaced observation points starting

from n�0 (n�0, 64, 128, . . ., 896). Note that all the

observation points are at grid points defined in the global

model. We construct simulated observations by adding

random noise drawn from independent Gaussian distribu-

tions of standard deviation 1 to the true state values at the

observation points. The standard deviation 1 of the observa-

tional noise can be compared with the standard deviation 5.7

of the climatological distribution of the true state.

We compare two data assimilation methods. The first

method does data assimilation for the global model and the

regional model separately, whereas the second method,

which we call the joint-state method, forms a combined

state from the global model and the regional model and

does data assimilation on the combined state. The intuition

motivating our second method is that we expect the global

and the regional estimates will both benefit from informa-

tion exchange between them. We use LETKF for both

methods. See Hunt et al. (2007) for an explanation of

LETKF.

For the separate analysis method, we use LETKF

without much modification. For the global analysis, at

each grid point n�4m defined in the global model, we

define a local patch [n�s, n�s] of size 2s�1 regional grid

points, where for this article we use s�40. We use the

Ensemble Transform Kalman Filter (ETKF) to obtain an

analysis for the 2s/4�1�21 global state values in each

patch. This yields local patch analyses for each ensemble

member. As done by others (e.g. Hunt et al., 2007), we then

use these patch analyses to form the global analysis states

for each ensemble member by defining the value of the

global ensemble field at each point m�n/4 to be the

analysis state value of that ensemble member in the centre

of patch n�4m. For the regional analysis, at each grid

point n defined in the regional model, we define a local

patch, limiting the size near the two boundaries of the

subregion so that the local patch is defined only inside the

subregion, use ETKF and take the patch analysis value at
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grid point n. Thus, the global local patches always have size

2s�1, but the regional local patches have variable sizes

depending on n. For n located in the subregion and also far

away from the boundaries, the regional local patch has size

2s�1, whereas for n near the boundaries (n�s�n1 or

n�sBn0), the regional local patch is the intersection,

½n� s; nþ s� \ ½n0; n1�, and has a size less than 2s�1.

For the joint-state method, we use the same local patch

size, s�40. For each grid point n defined either in the

global model or in the regional model, we define a global

local patch and a regional local patch (where, as before, the

regional patch is the intersection, ½n� s; nþ s� \ ½n0; n1�,
which for some n�4m will be empty). For each such grid

point n, we define a vector xðnÞg by taking state values of the

global local patch and xðnÞr by taking state values of the

regional local patch, and we then form a local joint-state

vector x(n) by concatenating xðnÞg and xðnÞr , i.e.

xðnÞ ¼ xðnÞg

xðnÞr

� �
: (8)

We also form a local observation vector yðnÞo by taking

observations in the local patches (from grid point n�s to

n�s).

We seek an analysis that, in the subregion, combines the

global state, the regional state and the observations. It is not

possible to constrain all three fields to be close to each other

with a single quadratic term in the cost function that the

analysis minimises. Three-way coupling can be achieved in a

variety of ways; we choose to include a term that couples

a linear combination of the global and regional states to

the observations, and a term that couples the global and

regional states to each other. Specifically, we define a local

cost function J(n)(x(n)) for grid point n as follows,

J ðnÞðxðnÞÞ ¼ ðxðnÞ � x
ðnÞ
b Þ

T ðPðnÞb Þ
�1ðxðnÞ � x

ðnÞ
b Þ

þ yðnÞo �H ðnÞðxðnÞÞ
� �T

R�1 yðnÞo �H ðnÞðxðnÞÞ
� �

þ j GðnÞg ðxðnÞg Þ � GðnÞr ðxðnÞr Þ
h iT

� GðnÞg ðxðnÞg Þ � GðnÞr ðxðnÞr Þ
h i

;

(9)

where x
ðnÞ
b and P

ðnÞ
b are the local mean and the covariance

matrix of the background ensemble, respectively, and R is

the covariance matrix of the observation noise. H(n)(x(n)) is

a local observation operator defined as

H
ðnÞ
i ðxðnÞÞ ¼

ð1� kÞxg;jðiÞ þ k xr;jðiÞ; if n0 � jðiÞ � n1

xg;jðiÞ; otherwise;

� �
;

(10)

where j(i) is the observation location of the ith observa-

tion in the local patch, xg,j(i) is the global state value at

location j(i), and xr,j(i) is the regional state value at loca-

tion j(i). GðnÞg ðxðnÞg Þ is a vector that consists of the state

values of the global state at the grid points defined both

in the global and the regional local patches. Similarly,

GðnÞr ðxðnÞr Þ is a vector that consists of the state values of the

regional state at the grid points defined both in the global

and the regional local patches. Furthermore, k and l are

parameters. We remark that the WRF/DART approach

corresponds to the special case k�0 and l�1, with the

state in the outer nest replacing the state of the global

system. However, we found that when k�0, the global

state tends to diverge from the regional state in the middle

of the local region. To be effective, the value of k should

make the magnitude of the third term in the cost function

comparable to the other two terms. In this sense, we can

think of k as having units of an inverse variance, but in

practice we determine the value of k by tuning.

The cost function of Guidard and Fischer (2008) is similar

to ours, except that their control variable is the state of the

limited-area model instead of the joint state. An equally

important difference between their approach and ours is that

we determine the value of x(n) that minimises the cost

function J(n)(x(n)) with the LETKF algorithm (Hunt et al.,

2007), whereas they use an incremental variational ap-

proach. The advantage of the ensemble-based approach is

that it automatically accounts for the covariance between

the uncertainties in the estimates of the global and

the limited-area states, whereas the variational approach

requires making strong assumptions about the covariance.

The trade-off we take is that the estimate of all covariances,

including the covariances between the different components

of the limited-area state and between the different compo-

nents of the global state, are limited to the low-dimensional

state spanned by the ensemble perturbations in the ensem-

ble-based approach, whereas a variational approach can

seek the minimiser in a much higher dimensional space.

In general, if our technique were to be applied in an

operational setting, the grid points of the global and the

regional models within the subregion will not coincide.

In that case, to calculate the third term in J(n)(x(n)), an

interpolation from the grid points of the regional model to

the grid points of the global model or vice versa could be

employed before the values of the regional and the global

models are subtracted. Similarly, in an operational setting,

the observations are not at grid points, andH(n) would then

include interpolation, and R would include a representa-

tiveness error component (Lorenc, 1986).

4. Implementation of the joint-state method for

Lorenz models

We define a smoothed regional state for the initial condition

of the regional model for integration between analysis times
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as follows. After the analysis phase, we define spatial

transition intervals of length 10 starting from the bound-

aries and ending inside the subregion. We then modify

the regional analysis values in the transition intervals by

taking weighted linear averages of the global analysis values

and the regional analysis values. We do this to make the

transition between the global model and the regional model

smooth at the boundaries. A similar approach is often used

in the form of a ‘sponge region’ in limited-area models. For

n such that 05nB10, we modify the regional ensemble

members by

X r
k;n0þn  ðn=10ÞX r

k;n0þn þ ð1� n=10ÞX g
k;n0þn; (11)

X r
k;n1�n  ðn=10ÞX r

k;n1�n þ ð1� n=10ÞX g
k;n1�n; (12)

where X
g
k;nand X r

k;nare the values of the kth global and

regional ensemble members at grid point n, respectively.

The global state values are linearly interpolated to the fine

grid points of the regional model in this sponge region. The

subregion for the regional model is [n0, n1]�[240, 720].

After performing the above smoothing process, we

integrate each global and regional ensemble member for

6 h using a fourth-order Runge-Kutta method, dividing

6 h into 48 time steps. We integrate the global ensemble

members independent of the regional ensemble members.

For the integration of the regional ensemble members, we

use the necessary interpolated values of the corresponding

global ensemble members outside the subregion at each

Runge-Kutta time step to synchronise the global and the

regional model at the boundaries.

Before we tested the joint-state method and the separate

analysis method, we ran analysis cycles with 40 ensemble

members using the global and the regional models sepa-

rately and found that multiplicative covariance inflation

factors of 0.024 and 0.02 for the global and the regional

analyses, respectively, produce the lowest rms state esti-

mate errors. We henceforth use these values in our data

assimilations. For the joint-state method, we found that

l�0.9 and k�0.04 in eqs. (9) and (10) give relatively low

rms state estimate errors compared to other combinations

of values for l and k, and use these values for the joint-

state method in this section. Section 6 shows the parameter

dependence of the rms errors.

Finally, we assess the length scale of background error

correlations by calculating the climatological (time-

averaged) correlations of the background ensemble of the

joint-state method without localisation at each grid point

with respect to the middle grid point of the limited-area

domain. Fig. 1 shows the correlation values averaged

over 20 000 analysis cycles using 720 ensemble members

as a function of the grid point.

The blue and red curves show the correlation structures

of the global and the regional background ensembles,

respectively. The figure shows that the climatological cor-

relation length is similar for the two systems and is smaller

than the size of the limited-area domain. Based on the

correlation length of the figure, we use the local patch size

of 2�40�1 for the localisation.

5. Space dependence of the rms error

Among the effects that the joint-state method has relative to

the separate analysis method are: (1) the global analysis is

influenced by the comparison of the higher quality regional

background to the observations and (2) the regional analysis

is directly affected by observations outside the subregion

during the analysis cycle, not just via the coupling with the

global model during the forecast step. To assess separately

effect (1), we first tested the separate analysis method and

the joint-state method without boundaries. That is, we used

the whole region for both the global and regional models.

Thus, there is no coupling between the global model and the

regional model at the boundaries during the integration

phases. Then for the separate analysis method, the data

assimilation cycles for the two models are completely inde-

pendent, except that they use the same observations. For

the joint-state method, the coupling between the global and

regional models occurs only at the analysis phases. Figure 2

shows the rms errors of state estimates given by the means

of the ensemble members as a function of the grid point.

The values were averaged over 100 000 analysis cycles,

discarding the values of 1000 initial cycles. The green and the

purple colours correspond to the global and the regional

values obtained from the separate analysis method. The blue

and the red colours correspond to the global and the regional

values obtained from the joint-state method. Error minima

occur at the observation points. The figure shows that the
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Fig. 1. Correlations of the background ensemble of the joint-

state method without localisation as a function of the grid point.

Seven hundred and twenty ensemble members were used. The

values were averaged over 20 000 analysis cycles.
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two regional rms errors are almost the same, whereas the

global rms errors from the joint-state method are much

lower than the global rms errors of the separate analysis case

indicating that, as one would expect, the information from

the regional model substantially improved the estimate of

the global model.

Now, we take a subregion [n0, n1]�[240, 720] and

introduce coupling between the global model and the

regional model at the two boundaries during the integra-

tion phase. Figures 3(a) and 3(b) show the rms errors of

the analysis and of a 1-d forecast, respectively, using the

same colour scheme as in Fig. 2.

The two vertical dashed lines at grid points 240 and

720 indicate the boundaries of the subregion. As a baseline,

the additional black curves show the rms-error values in the

perfect model scenario in which the forecast model was

the true model (Lorenz model 3) which was used globally

throughout the entire space. We view this as setting a

standard for the best that could ever be done. These figures

show that the joint-state method performs better than the

separate analysis method for both global and regional

predictions. We note that the global forecast obtained from

the joint-state method is better than the corresponding

one from the separate analysis method even outside the

subregion. This can be explained by the fact that the better

global state estimates inside the subregion at the analysis

phases can make better forecasts outside the subregion

during the integration phases, and these better forecasts

outside the subregion can make the regional forecasts

better inside the subregion by providing better information

at the boundaries during the integration phases. We also

note that the global analysis improvements that result from

the use of the joint-state method are greater to the right of

the subregion than to its left. This is consistent with the fact

(Lorenz, 2005; Yoon et al., 2010) that, for these models,

waves (and hence the information they carry) have group

velocities that are predominantly rightward.

We also computed the rms analysis and forecast errors

by replacing temporal averaging by spatiotemporal aver-

aging over the global and in the limited-area domains for

the global system, and in the limited-area domain for the

regional system. For this error statistic, the joint-state
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Fig. 2. Rms analysis errors of the separate analysis and the

joint-state analysis using the whole region for both the global and

the regional models. In this and the subsequent figures, the rms

error values were averaged over enough cycles to give stable

values. In the case of present figure, the rms-error values were

averaged over 100 000 analysis cycles, discarding the values of 1000

initial cycles. The green and the purple colours correspond to the

global and the regional values obtained using the separate analysis

method. The blue and the red colours correspond to the global and

the regional values obtained using the joint-state method. The

purple and the red lines are close to each other.
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Fig. 3. Rms errors of (a) the analysis (b) 1 d forecast of the

separate analysis and the joint-state analysis. The colour scheme

is the same as in Fig. 2. The additional black curves show the

rms-error values when assimilations were done globally using the

true model (Lorenz model 3). The two vertical dashed lines at grid

points 240 and 720 indicate the boundaries of the subregion. The

rms-error values were averaged over 100 000 analysis cycles.
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method reduces the analysis error by 18% over the global

domain and by 24% in the limited-area domain for the

global analysis, and by 6% for the regional analysis. The

related error reductions for the ‘1 d’ forecast are, respec-

tively, 15%, 19% and 5%. These numbers suggest that

the global analysis and forecast benefit more than the

limited-area analysis and forecast from the joint-state

approach. In addition, the analysis improvement leads

to a ‘1 d’ forecast improvement that is only slightly smaller

in magnitude than the analysis improvement.

6. Parameter dependence of the rms error

We now investigate the k and l dependencies of the rms

errors, averaged over both space and time, of the analysis

ensemble mean. Figure 4 shows the global, regional and

combined rms errors as a function of k varying from 0.003

to 0.13 when l is fixed at 0.9. The global rms errors were

calculated at all the grid points of the global model. The

regional rms errors were calculated at all the grid points

of the regional model. The combined rms errors were

calculated over the subregion only, using the linear com-

bination in the observation operator eq. (10), applied to the

analysis means (with the global mean interpolated to the

regional model grid). The values were averaged over 40 000

analysis cycles discarding the first 1000 cycles. The figure

shows that the rms error has a broad minimum roughly

lying in the range 0.01BkB0.06. The regional ensemble

blew up during the forecast step before 40 000 cycles, when

k was less than 0.003.

Figure 5 shows the global and the regional rms errors

as a function of the analysis cycle when k�0, l�0.9

and when k�0.04, l�0.9 just before the forecast step

for regional ensemble with k�0 failed at cycle 314. By

this time, the global and regional states had become

decorrelated at the boundaries, and the regional model

integration diverged. The figure shows that the global rms

errors with k�0 are as bad as the rms errors when the

true state is estimated by a random climatological state,

suggesting that the introduction of the k-term in the cost

function is essential in the joint-state method.

Figure 6 shows the global and the regional rms errors as

a function of l varying from 0 to 1 when k is fixed at 0.04.

The figure shows that the rms errors decrease as l increases

in general, but this pattern is not clear when the range of l
is from 0.8 to 1.

Since the regional model is identical to the model

generating the ‘truth’ in our results thus far, it is not

surprising that values of l near 1 are optimal. To illustrate

that values of l significantly less than 1 can be advanta-

geous in the presence of model error, we consider a case

where the regional model has an error in the large-scale

forcing. We introduced such an error by using F�14 in

Lorenz model 3 for the regional model (compared with

F�15 used for the truth run). Figure 7 shows the global,

regional and combined rms errors as a function of k with

l�0.7. The figure shows that the minimum rms errors

occur around k�0.01.

Figure 8 shows the global, regional and combined rms

errors as a function of lwith k�0.01. The figure shows that

the minimum global, regional and combined rms errors
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occur around l�0.6, 1.0 and 0.6, respectively. This suggests

that in the presence of regional model error, using a linear

combination of the global and the regional model states as in

eq. (10) is better able to fit the observations than the regional

state alone (l�1) and results in better global analyses.

To investigate the robustness of our results on the

reduction of the rms analysis and forecast errors due to

the joint-state approach, which we presented at the end

of section 5, we compute the same statistics for the case

where model error is present. The reduction of the error is

10% over the global domain and 14% in the limited-area

domain for the global analysis, and 3% for the limited-area

analysis. The same numbers for the ‘1 d’ forecasts are,

respectively, 8%, 11% and 4%. While the presence of

model error leads to a reduction of the analysis and

forecast improvements, the general conclusions are the

same as for the model-error-free case: the error reduction is

larger for the global than the limited-area system and the

reduction in the ‘1 d’ forecast error is comparable to that

in the analysis (even slightly larger for the limited-area

system).

7. Discussion and conclusion

In this article, we formulated a joint-state method for

regional forecasting. Using simulations employing simple

models, we have numerically tested our method by com-

paring analysis and forecast results obtained using our

method with results obtained using a separate analysis

method. We found that the global analysis and forecast in

the whole region and the regional analysis and forecast in

the subregion are both noticeably improved when the joint-

state method is used compared to when the separate

analysis method is used. The improvements are larger for

the global than the limited-area system.

We also studied the k and l dependence of the rms error

from the joint-state method with and without a regional
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model error. We found that a value of k greater than 0 is

necessary to keep the global and regional states synchro-

nised. Our results suggest that values of l between 0.5 and

1 are most appropriate, and that values of l less than 1 can

be advantageous when there is error in both the global and

the regional models.

This work suggests several topics for future work. Most

important, will the encouraging results from experiments

using our Lorenz model set-up continue to apply when

tests on real situations are done? What are the benefits of

applying our coupled analysis scheme to situations with

multiple (perhaps overlapping) regional analyses? What is

the optimal formulation of the observation operator and

the constraint term in a realistic setting? In particular, how

should one handle an observation operator that is not a

simple linear interpolation in space (e.g. an observation

operator for a satellite radiance)? Is it beneficial to filter the

smaller scales from the states in the constraint terms,

similar to the approach of Guidard and Fischer (2008), or

to include only the vorticity components of the state vector,

similar to the approach of Dahlgren and Gustafsson

(2012)?
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