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ABSTRACT

In addition to conventional observations, atmospheric temperature and humidity profile data from the

Atmospheric Infrared Sounder (AIRS) Version 5 retrieval products are assimilated into the Weather Research

and Forecasting (WRF) model, using the local ensemble transform Kalman filter (LETKF). Although a naive

assimilation of all available quality-controlled AIRS retrieval data yields an inferior analysis, the additional

enhancements of adaptive inflation and horizontal data thinning result in a general improvement of numerical

weather prediction skill due to AIRS data. In particular, the adaptive inflation method is enhanced so that it

no longer assumes temporal homogeneity of the observing network and allows for a better treatment of the

temporally inhomogeneous AIRS data. Results indicate that the improvements due to AIRS data are more

significant in longer-lead forecasts. Forecasts of Typhoons Sinlaku and Jangmi in September 2008 show

improvements due to AIRS data.
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1. Introduction

Along with the recent increase of remote-sensing capabilities

from space, satellite data assimilation has been playing a

crucial role in numerical weather prediction (NWP). The

continual improvement in global satellite coverage has

helped advance global NWP, while the world’s operational

NWP centres have also made major efforts in research

and development on satellite data assimilation. The direct

assimilation of brightness temperature or radiances of

satellite sounding instruments was a milestone, but in

parallel, considerable efforts have been devoted to develop-

ing and improving the retrieval algorithms as an alter-

native approach to maximising the use of the sounding

instruments.

The Atmospheric Infrared Sounder (AIRS), on board

the Aqua spacecraft launched in May 2002 by the National

Aeronautics and Space Administration (NASA), is a

hyperspectral infrared sounder with 2378 channels covering

the thermal infrared spectrum from 3.7 to 15 mm (Aumann

et al., 2003). It is challenging to find an efficient and

effective way of using these O(1000)-channel data for NWP

compared with other sounder instruments such as the

Advanced Microwave Sounding Unit (AMSU)-A, which

has only 15 channels. Naive assimilation of brightness

temperature data from all 2378 channels is usually prohi-

bitive, mainly due to the cost of radiative transfer

computations for each profile and channel. Since the

2378 channels are mostly redundant for NWP, operational

systems thus far assimilate less than O(100) of selected

channels, mostly in clear-sky conditions, and have shown

significant improvement in global NWP (Le Marshall et al.,

2006; McNally et al., 2006). In this context, channel

selection plays an important role and has been studied

(e.g. Fourrié and Thépaut, 2003) based on an information

content analysis (e.g. Rodgers, 2000).

Alternatively, retrieval algorithms have been developed

to derive the best estimate of atmospheric profiles from

satellite sounder instruments. The most recent AIRS

Version 5 retrieval product (Susskind, 2007, 2011) contains

useful atmospheric profiles over partially cloudy areas in

addition to clear-sky areas (Susskind et al., 2003, 2006). In

full overcast conditions, no retrieval data are available.

Reale et al. (2008) pioneered using the AIRS Version 5

retrieval temperature data, without using humidity, and

reported significant positive impact on forecast skill with

the NASA global data assimilation system, the GEOS-5.

In addition, Reale et al. (2009) reported that the AIRS

Version 5 temperature data over partially cloudy areas
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played a crucial role in improving the analysis and forecast

of the Tropical Cyclone Nargis (2008).

In regional NWP, satellite data are expected to play

a less important role than in global NWP. This is partly due

to the representativeness of satellite sounding data, which

are typically available a few times a day with a footprint on

the order of a few tens of kilometres, which is too coarse to

resolve the evolution of mesoscale weather. In addition,

regional NWP usually focuses on populated areas, where a

variety of non-satellite observing systems exist, while global

NWP greatly benefits from satellite observations in data

sparse regions such as over the ocean. Yet Wu et al. (2006)

used the AIRS retrieval products over clear-sky areas for

regional data assimilation with the Pennsylvania State

University-National Center for Atmospheric Research

fifth-generation non-hydrostatic mesoscale model known

as MM5, a predecessor of the Weather Research and

Forecasting (WRF) model, and obtained better analysis of

the Saharan Air Layer, which contributed to better

capturing of the formation of Hurricane Isabel in 2003.

Advantages of using retrieved profile data in data

assimilation include its ease of implementation due to the

absence of radiative transfer computations in the observa-

tion operator. In addition to this technical advantage,

retrieval products crystallise the experience and knowledge

that specialists of the AIRS team have accumulated over

years of working toward the best possible use of the

O(1000) channels. Assimilating retrieval products could

automatically incorporate this intelligence.

However, there are difficulties of using retrievals, such as

unknown error correlations and their treatment in data

assimilation. Retrieved profiles are expected to have

significant error correlations, since satellite sounding

instruments observe vertically integrated values with sensi-

tivity to relatively wide atmospheric layers. Also, applying

the same retrieval algorithm to each profile may introduce

horizontally correlated errors due to possible systematic

errors in the retrieval process. Estimating and including

such error correlations in data assimilation are not trivial

and constitute one of the main reasons why the direct

assimilation of brightness temperature or radiances is the

choice of operational systems, since it is often considered to

be more reasonable to assume uncorrelated errors between

different channels. Miyoshi et al. (2012) found that

including observation error correlations explicitly in data

assimilation could help improve the analysis accuracy

significantly. However, in this study the observation error

correlations are assumed to be zero, as in many other

studies on satellite data assimilation.

Both temperature and humidity profile data from the

AIRS Version 5 retrievals are assimilated into the WRF

model (Skamarock et al., 2005), using the local ensemble

transform Kalman filter (LETKF, Hunt et al., 2007).

Miyoshi and Kunii (2012) developed the WRF-LETKF

system and assimilated real conventional observations

successfully in the case of Typhoon Sinlaku in 2008 in the

Northwestern Pacific. This study adds the AIRS data to

this system and investigates their impact, but does not

address the relative impact of AIRS in the presence of

other satellite sounders such as AMSU. To assimilate

AIRS data effectively, the adaptive inflation method

developed by Miyoshi (2011) is enhanced. Section 2

describes experiments and the enhanced adaptive inflation.

Section 3 presents the results of forecast improvements due

to AIRS data. Section 4 focuses on AIRS impact on

tropical cyclone forecasts. The final section deals with

summary and discussion.

2. Experiments and enhanced adaptive inflation

Miyoshi and Kunii (2012) performed experiments with the

WRF-LETKF system and obtained a stable performance

with realistic analyses compared with the National Centers

for Environmental Prediction (NCEP) operational final

analysis (FNL). This study employs the WRF-LETKF

system with essentially the same configurations. The

Advanced Research WRF (ARW) Version 3.2 is config-

ured with a 60 km resolution and a domain spanning

the Northwestern Pacific region (Fig. 1). The 40 vertical

model levels extend up to 10 hPa at the model top. The

experimental period starts on 6 August 2008, allowing

about a one-month spin-up for Typhoon Sinlaku, a storm

with its genesis in early September and that reached

maturity around 10�12 September before making landfall

in northern Taiwan on 13 September. Figure 1 shows the

best track of Sinlaku, provided by the Regional Specialized

Meteorological Center (RSMC) Tokyo � Typhoon Center

(refer to Japan Meteorological Agency 2008 for the

detailed description of Sinlaku). The ensemble size is fixed

at 40 members, and the localisation parameters are chosen

to be 400 km in the horizontal (�1460 km radius of

influence), 0.4 in the ln p vertical coordinate (�1.46 radius

of influence), and 3 h in time. The data assimilation cycle

interval is 6 h.

Variance inflation (Anderson and Anderson, 1999)

addresses the issue of variance underestimation, a typical

problem in ensemble Kalman filter applications to

NWP. The WRF-LETKF system can use two types of

inflation methods: fixed multiplicative inflation and

adaptive inflation (Anderson, 2007, 2009; Li et al., 2009;

Miyoshi, 2011). Daley (1992) and Desroziers et al. (2005)

derived the innovation statistics, which compare the

forecast-minus-observation departures D (i.e. innovations)

with forecast ensemble spread P and observation errors

R: intuitively, D�P�R. This mathematical descrip-

tion is not rigorous or precise but is good for intuitive
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illustration � refer to Daley (1992) and Desroziers

et al. (2005) for precise descriptions. Since the ensemble

Kalman filter generally tends to underestimate the fore-

cast ensemble spread P, usually D�P�R. To correct the

mismatch, P is inflated by a factor of a to satisfy ideally

D�aP�R. The fixed multiplicative inflation method

uses a tuned constant inflation factor a. Alternatively,

the adaptive inflation method estimates a adaptively using

the innovation statistics at each analysis step at each grid

point. To reduce the sampling noise at each step, the

estimate a is temporally smoothed, so that the adaptive

inflation factor adjusts slowly in time. In general, the

underestimation of the ensemble spread P is very sensitive

to the observing density. When the observations are dense

(i.e. many observations in a given area), the ensemble

spread is reduced excessively, that is, P becomes too

small. Therefore, adaptive inflation will strongly depend

on the observing density. The current adaptive inflation

method of Miyoshi (2011), implemented in the present

WRF-LETKF system, assumes temporal homogeneity

of observing networks. Since Miyoshi and Kunii (2012)

found that the adaptive inflation method generally out-

performed the fixed multiplicative inflation method with

this WRF-LETKF system, this study employs adaptive

inflation.

Two experiments are performed: one with the NCEP

PREPBUFR observation dataset (Keyser, 2010) and

the other with additional AIRS retrievals. We call the

experiment without AIRS data ‘CTRL’, and the one with

AIRS data ‘AIRS’. Both CTRL and AIRS experiments

use the same conventional observations from the NCEP

PREPBUFR data downloaded from the University Cor-

poration for Atmospheric Research (UCAR) online data

server. The NCEP PREPBUFR data include upper-air

soundings from radiosondes and dropsondes (ADPUPA),

surface stations (ADPSFC), ships and buoys (SFCSHP),

aircrafts (AIRCFT), and various types of remote sensing

of winds (PROFLR, VADWND, SATWND, SPSSMI,

QKSWND). The six-character codes of the observation

types are defined in the PREPBUFR Table 1.a (Keyser,

2010). Only the AIRS experiment uses the AIRS Version 5

retrieval data downloaded from the NASA webpage (http://

disc.sci.gsfc.nasa.gov/AIRS/data-holdings/). Among the

various AIRS retrieval products, the AIRS Level-2 retrieval

product based on AIRS and AMSU � AIRX2RET � is used

in this study. AMSU is on the same spacecraft and

collocated with AIRS and is included in the derivation of

the retrieval data. The retrieval data are available over both

land and ocean; Susskind et al. (2011) show that the

retrieval data are generally less accurate over land. Readers

interested in further details on the AIRS Version 5 retrieval

data are referred to Susskind et al. (2011). This dataset

includes 28 vertical levels, a subset of the more complete

AIRX2SUP product that has 100 levels and which is what

Reale et al. (2009) used. The retrieval product contains

‘best’ and ‘good’ quality flags; only the AIRS data
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Fig. 1. Computational domain and the best track of Sinlaku.
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with the ‘best’ quality are used in this study. The AIRS

data are assimilated in the LETKF system exactly in the

same manner as conventional observations, since each

retrieved profile datum has its own specific location (long-

itude, latitude, and pressure level), observed value, and

observation error standard deviation, and these are

exactly what the LETKF system requires for conventional

observations.

All quality-controlled AIRS retrieval data were initially

assimilated as additional profile observations. This naive

assimilation of AIRS retrievals was not successful mainly

due to the high spatial density of AIRS data (about a 45 km

resolution at nadir) relative to the model resolution (60 km)

and probably because of significant observation error

correlations between nearby profiles. The additional AIRS

data clearly degraded the analyses and forecasts, although

the data assimilation cycle performed stably. Therefore, a

simple thinning algorithm is applied, so that one out of nine

profiles is regularly selected for data assimilation. The

horizontal thinning helps reduce the data density to be

equivalent to a 135 km resolution, slightly more than twice

the 60 km model resolution, and this probably also helps

reduce the effect of the horizontal observation error

correlations. The average number of AIRS data is greatly

reduced from 140000 to be about 15000 per 6 h in the

Northwestern Pacific domain and is comparable to the

number of conventional observations (�22000 per 6 h).

However, assimilating the thinned AIRS data did not

improve the analysis, or even worse, degraded the analysis

significantly. A problematic behaviour was found in the

time series of the analysis ensemble spread, which showed

unrealistically large diurnal variations. This turned out to

be tied to the large difference of the number of observations

assimilated at 0000, 0600, 1200, and 1800 UTC. More

specifically, the average number of AIRS data assimilated

in the Northwestern Pacific domain was about 5000 per 6 h

at 0000 and 1200 UTC, versus about 26000 per 6 h at 0600

and 1800 UTC (with these numbers obtained after applying

the one-out-of-nine thinning). As previously mentioned,

the different number of observations suggests different

inflation factors at each time of day, but the adaptive

inflation method of Miyoshi (2011) assumes temporally

homogeneous observing networks and allows only slow

adjustments in time.

This temporal inhomogeneity of AIRS coverage moti-

vates and requires enhancing the adaptive inflation method.

 0600

12 18

 

  

 AIRS 
 SFCSHP 
 ADPUPA 
 AIRCFT 
 PROFLR 
× SATWND 
 VADWND 
 SPSSMI 
＋ QKSWND 

Fig. 2. Adaptive inflation fields (contours enhanced by shading) and assimilated observations (marked as described in the legend) at the

15th model level (�500 hPa) at 0000 (top left), 0600 (top right), 1200 (bottom left), 1800 (bottom right) UTC on 12 September 2008. The

legend shows the observing types with six-character codes as defined in PREPBUFR Table 1.a (Keyser, 2010), except for the closed circles

showing AIRS data.
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Kang et al. (personal communication) had a similar

problem with their observing systems simulation experi-

ments (OSSE) with simulated satellite data, and they

found that ‘leap-frogging’ the adaptive inflation estimates,

namely, defining separate inflation fields every 12 h, solved

the problem of the large diurnal variations of ensemble

spread and improved the analysis accuracy significantly.

In this study, since the observing locations are unique to

each time of the day, four different adaptive inflation fields

are defined, corresponding to each assimilation time of

0000, 0600, 1200 and 1800 UTC. After applying this

enhancement of adaptive inflation technique, the results

started to show improvement due to the addition of AIRS

data.

3. General verification results

The observing locations per 6-h period and the correspond-

ing adaptive inflation fields are shown in Fig. 2. Although

Fig. 2 shows a single date (12 September), other dates show

very similar patterns because the adaptive inflation fields

vary slowly in time and because both conventional and

AIRS observation locations are very similar on other dates.

At 0000 and 1200 UTC, the AIRS observations are located

only near the eastern boundary, where corresponding

inflation values are as large as 3.5 (i.e. 250% covariance

inflation). By contrast, significantly lower inflation is found

in the eastern area at 0600 and 1800 UTC. At all four times,

the largest inflation values appear in the northwestern
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respectively.
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quadrant near the Korean peninsula. Particularly larger

inflation values of over 5.0 (400%) appear at 0000 and 1200

UTC, when radiosonde observations (RAOB) are avail-

able. Although only a few RAOB are available at 0600 and

1800 UTC, AIRS data have good coverage over land,

making the inflation values nearly as large as those at

0000 and 1200 UTC.

Since AIRS data add a significant number of observa-

tions of temperature and humidity profiles, we first

investigate the analysis differences due to the inclusion of

AIRS data. Figure 3 shows mean differences and RMS

differences of the analyses of the CTRL and AIRS

experiments relative to the NCEP FNL. The NCEP FNL

is interpolated to the same 60 km grid of the WRF-LETKF

system prior to taking the differences. The temperature

analyses show cold biases due to AIRS data by about 0.5 K

around 300 hPa, although the RMS fit to NCEP FNL

shows no significant change due to AIRS data (Fig. 3a).

If we look at humidity analysis differences (Fig. 3b), the

RMS fit to NCEP FNL is significantly better at almost all

levels due to AIRS data. This is not surprising since NCEP

FNL assimilates AIRS radiances, and because AIRS data

are the significant source of humidity observations in

addition to RAOB. Fig. 3b also shows that AIRS data

bring generally dry biases, particularly at 400, 300, 250, and

100 hPa levels. Although the AIRS data have different

geographical distributions at 0000, 0600, 1200, and 1800

UTC, the horizontal patterns of the analysis differences

cannot be distinguished between different analysis times,

probably because the forecast-assimilation cycle results in

smooth transitions in time.

In order to assess the impact of AIRS data on forecasts,

72 h forecasts are verified relative to RAOB and NCEP

FNL. The NCEP FNL is interpolated to the same

60 km grid of the WRF-LETKF system prior to verifica-

tion. Here, deterministic 72 h forecasts are initiated

from the most probable ensemble-mean analyses. The

lateral boundary conditions for the 72 h forecasts are

provided by the NCEP Global Forecasting System (GFS)

forecasts in all experiments. An advantage of using NCEP

FNL as a reference is its spatial homogeneity, whereas

RAOB are mostly deployed from stations over land.

Fig. 5. Relative improvement (%) of RMSE due to AIRS data for (a) zonal wind, (b) meridional wind, (c) temperature, and (d) specific

humidity. The RMSEs are relative to radiosonde observations. The positive values (red) correspond to improvement due to AIRS data.

The green box corresponds to Fig. 4 (a). The number of observations used for the verifications at each level is about 600, except for

temperature and humidity at 1000 hPa which have about 300 observations.
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In addition, NCEP FNL is independent of the WRF-

LETKF cycle, whereas RAOB are assimilated in the WRF-

LETKF cycle. The root mean square errors (RMSE)

and mean errors are computed for 27 days from 1 to 27

September, which is comparable to the typical verification

period of operational developments of regional NWP

systems.

Figure 4 shows 72 h temperature forecast verifications,

indicating slight but consistent improvement due to AIRS

data in the middle to upper troposphere. In the lower

troposphere, we find very little impact due to AIRS data.

Similar vertical profile figures as Fig. 4 are obtained for

other variables and other forecast lead times. In order to

look at many forecast times in a single figure, relative

improvement is plotted by colour shading, so that a panel

of Fig. 4 is now a single column of coloured circles as

indicated by green boxes in Figs. 5 and 6. Here, the relative

improvement was defined as follows:

IMPROVEMENT %½ � ¼ RMSECTRL�RMSEAIRS

RMSECTRL

� 100:

Figures 5 and 6 show the verifications relative to RAOB

and NCEP FNL, respectively. The number of RAOBs used

for the verifications at each level is about 600, except for

temperature and humidity at 1000 hPa which have about

300 observations. When the surface pressure at the station

is below 1000 hPa, no temperature or humidity observa-

tions are available for verification. At the analysis time

(0 h forecast lead), the verifications relative to RAOB show

mostly negative impact due to AIRS data (Fig. 5). This

agrees with our expectations, since RAOB data are already

assimilated in CTRL, and additional AIRS data would

likely make the analysis fields closer to the AIRS data, and

therefore, away from RAOB. Consequently, if we verify the

analysis fields relative to RAOB, the additional AIRS data

would result in larger RMSE. As forecast time progresses,

we find generally more positive impacts due to AIRS data.

Humidity verifications show positive impact from the

beginning and will be discussed later.

The general tendency of more positive impacts of

AIRS data in longer-lead forecasts is also apparent in the

verifications relative to NCEP FNL (Fig. 6). Here, the lower

Fig. 6. Similar to Fig. 5, but the RMSEs are relative to NCEP FNL, and (d) shows relative humidity instead of specific humidity. The

green box corresponds to Fig. 4 (b).
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troposphere shows general improvement due to AIRS at

the analysis time (0 h forecast lead). Since NCEP FNL

assimilates AIRS radiances, adding AIRS data may make

the analyses closer to NCEP FNL. The advantage of

adding AIRS data appears much clearer when verified

relative to NCEP FNL than to RAOB, probably because of

the contribution from the large area over the ocean. Wind

fields are not observed by AIRS, but show significant

improvements in Fig. 6. This is generally true for the

verification relative to RAOB with respect to the meridional

wind (Fig. 5b), but this is not clear for the zonal wind

(Fig. 5a).

The humidity forecasts show general improvements both

in Figs. 5 (d) and 6 (d). This is encouraging since AIRS

data are a significant additional source of humidity

observations, whereas in the CTRL experiment RAOB

are almost the only source of humidity observations. The

fact that even at the analysis time the humidity fields

become closer to RAOB implies that the humidity fields in

the forecast-analysis cycle would be generally improved.

Namely, without AIRS data, the humidity fields may not

be constrained well due to limited humidity observations,

so that the additional AIRS data may constrain the

humidity analysis better and result in a better fit to

RAOB data. In fact, humidity verifications show consistent

improvements at almost all forecast lead times and relative

to both RAOB and NCEP FNL, with only a small number

of exceptions.

4. AIRS impact on tropical cyclone forecasts

The general improvements in longer-lead forecasts shown in

the previous section are more evident in tropical cyclone

forecasts. This is demonstrated by Fig. 7, in which a single

case of Sinlaku’s track forecasts shows much improvement

in longer-lead forecasts when using analyses that have

assimilated AIRS data. It is difficult to find improvement

in forecasts shorter than 36 h, but after that, the discrepancy

of the forecast tracks becomes more and more apparent.

Although Fig. 7 shows only a single case, the results are very

similar on other dates. In fact, on average over 28 initial

times during a week from September 8 to 14, we find

essentially the same result (Fig. 8). Although during the

initial 36-h forecasts the advantage of adding AIRS data is

not significant, it becomes more apparent in longer-lead

forecasts. Note that the model’s grid spacing is 60 km, so

that the average track error is less than the grid spacing up

to about 12 h forecasts. The improvement of the average

track error due to the addition of AIRS data reaches nearly

100 km in 72 h forecasts.

Sinlaku’s track forecasts shown in Fig. 7 would likely be

driven by the large-scale flow of the northwestern boundary

of the subtropical Pacific high. We find the corresponding

large-scale features in 500 hPa geopotential height fields

(Fig. 9). Up to the 36 h forecast, little difference is found

between CTRL and AIRS. However, for the 48 h forecast,

we find a noticeable difference in the northwestern edge of

the Pacific high; the 5880 m contour extends to the west in

AIRS, corresponding to the delayed recurvature of Sinlaku.

This suggests that AIRS data would have improved large

scales, which have slower response, perhaps explaining the

results that the AIRS impact was generally more apparent

in longer-lead forecasts. We note that the lateral boundary

conditions are identical in both AIRS and CTRL experi-

ments, so that the larger scales beyond what is represented

within the model domain must have come from the NCEP

GFS boundary conditions.

Sinlaku’s intensity forecasts are also substantially

improved by the assimilation of AIRS data. Apparently,

the 60 km resolution is too coarse to resolve Sinlaku’s

inner structure. Kunii et al. (2012) found that inner-core

observations were not useful at this resolution using the

WRF-LETKF system; this generally agrees with previous

studies (e.g. Aberson, 2008; Weissmann, et al. 2011). Yet,

Fig. 10 shows significant advantages of using AIRS data in

Sinlaku’s central pressure forecasts. Although the deep

structure of Sinlaku are not well captured, the forecasts

with AIRS data show better agreement with the best

track data, particularly the stronger stage before the

72h TC track

28N

27N BEST

26N

25N

24N

23N

121E 122E 123E 124E 125E 126E

Fig. 7. 72 h forecast tracks of Sinlaku, initialised at 0600 UTC

12 September 2008 for the CTRL (blue) and AIRS (red)

experiments. The black curve shows observed best track in the

same period. Closed and open circles show the central position

every 6 h.
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landfall in Taiwan, and the weakened stage after the

landfall, around 11 to 15 September.

For investigating the case-dependency of the above

results, similar verifications are examined for the case of

Typhoon Jangmi. Jangmi formed about 1000 km east of

the Philippines on 24 September 2008, developed consis-

tently at a relatively rapid rate for two days to reach its

minimum central pressure of 905 hPa on 27 September,

and made its landfall in Taiwan on 28 September. Figure

11 shows the comparison of the track and intensity

forecasts between AIRS and CTRL. Similarly to Sinlaku,

AIRS data show a positive impact on the track forecasts,

particularly for longer-lead forecasts after 48 h (Fig. 11a).

The 72 h track forecasts are improved by about 50 km on

average, almost one grid spacing. However, the improve-

ment of intensity forecast is unclear (Fig. 11b). In the

early stage of the development up to 25 September, AIRS

shows clear improvement of intensity forecasts. However,

after 26 September, when Jangmi develops its intensity

deeper than about 950 hPa, AIRS shows consistently

weaker typhoon forecasts than the CTRL. Further

discussion about intensity forecasts requires higher-resolu-

tion experiments, which are to be a subject of future

research.

5. Summary and discussion

This study showed that assimilation of both temperature

and humidity profile data from the AIRS Version 5

retrieval products using the WRF-LETKF system im-

proved regional NWP, particularly for humidity and in

longer-lead forecasts. Also, track forecasts of Typhoons

Sinlaku and Jangmi were substantially improved due to the

inclusion of AIRS data. In order to obtain these improve-

ments, additional developments of horizontal data thinning

and enhancing adaptive inflation played an essential

role. The improvements obtained in this study generally

agree with previous studies that showed improvement of

NWP skills due to AIRS data (Le Marshall et al., 2006;

McNally et al., 2006; Wu et al., 2006; Reale et al., 2008,

2009), and suggest the usefulness of AIRS data in regional

NWP.

Although this study employed a relatively low 60 km

resolution, the results showed a potential for improving the

intensity forecasts of Tropical Cyclones (TC). Typhoon

Sinlaku had the peak intensity of 935 hPa, and the addition

of AIRS data resulted in consistently improved intensity

forecasts, although, as expected, the 60 km resolution

yielded a systematically shallower typhoon. In the case of

Typhoon Jangmi, Jangmi had the even stronger peak

intensity of 905 hPa, and the additional AIRS data did

not improve intensity forecasts after Jangmi became deeper

than about 950 hPa. More cases are necessary to draw

general conclusions on what impact AIRS data may have
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(dashed) and AIRS (solid) experiments, averaged over 28 samples

from 8 to 14 September 2008.
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on TC intensity forecasts. Also, higher-resolution experi-

ments are essential to resolve mesoscale processes within

the TC inner structure, which would have an important

role in changing TC intensity. Such further investigations

remain the subject of future research.

Another limitation of this study is the absence of other

satellite sounder and imager data. This study focused on

the impact of AIRS retrieval data on top of conventional

observations. Operational NWP usually assimilates AMSU

and other sounder and imager instruments of different

spacecraft, so the impact of AIRS in the presence of these

other satellite data may be of interest to the operational

community. Adding more satellite data is an important

future extension of this study.

In the course of the developments in this study, three

major issues appeared and remain to be fully explored:

intelligent data thinning, treatment of observation error

correlations, and fundamental treatment of temporally

inhomogeneous observing networks. This study employed

a simple, regular selection of one out of nine observations.

This can be improved by either using adaptive observa-

tion strategies to select the most helpful locations (e.g.

Ochotta et al., 2005), or a super-observation strategy

which synthesises a super-observation by combining

multiple nearby observations (e.g. Lorenc, 1981). These

intelligent thinning methods are widely applicable to other

types of dense observations, and a number of previous

studies exist. Also, this study assumed uncorrelated

observation errors. As mentioned in introduction, proper

inclusion of observation error correlations in data assim-

ilation is an important issue that can lead to more wisely

using retrieval information. As for treating temporally

inhomogeneous observing networks, this study employed

an ad-hoc approach of ‘‘leap-frogging’’ of adaptive

inflation, following the success of Kang et al. (personal

communication). Fundamental theoretical development of

relaxing the assumption of temporally-fixed observing

networks in adaptive inflation is an important subject of

future research.

6. Acknowledgements

The authors thank Steven Greybush and other members

of the UMD Weather-Chaos Group, Oreste Reale of

NASA/GSFC, and Sharan Majumdar of University of

Miami for fruitful discussions. The NCEP PREPBUFR

observation data were obtained from the UCAR data

server, while several missing files were kindly provided by

Daryl Kleist of NCEP. This study was supported by the

Office of Naval Research (ONR) grant N000141010149

under the National Oceanographic Partnership Program

(NOPP).

 920

 930

 940

 950

 960

 970

 980

 990

 1000

 1010

08 10 12 14 16 18

C
en

tr
al

 p
re

ss
ur

e 
(h

P
a)

Date (Sep. 2008)

MSLP Forecasts of Sinlaku (2008)

BEST
CTRL
AIRS

Fig. 10. 72 h minimum central pressure forecasts of Sinlaku

of the CTRL (blue) and AIRS (red) experiments, each line

corresponding to different initial times (total 28 initial times from

8 to 14 September). The observed best track is shown by the

black line.

Fig. 11. Similar to Figs. 8 and 10, but for Typhoon Jangmi

(2008). (a) 72 h forecast track errors (km) averaged over 16

samples from 24 to 27 September, and (b) 72 h minimum central

pressure forecasts, each line corresponding to different initial times

(total 16 initial times from 24 to 27 September).

10 T. MIYOSHI AND M. KUNII



References

Aberson, S. D. 2003. Targeted observations to improve opera-

tional tropical cyclone track forecast guidance. Mon. Wea. Rev.

131, 1613�1628.
Anderson, J. L. 2007. An adaptive covariance inflation error

correction algorithm for ensemble filters. Tellus 59A, 210�224.
Anderson, J. L. 2009. Spatially and temporally varying adaptive

covariance inflation for ensemble filters. Tellus 61A, 72�83.
Anderson, J. L. and Anderson, S. L. 1999. A Monte Carlo

implementation of the nonlinear filtering problem to produce

ensemble assimilations and forecasts. Mon. Wea. Rev. 127,

2741�2758.
Aumann, H. H., Chahine, M. T., Cautier, C., Goldberg, M. D.,

Kalnay, E. and co-authors. 2003. AIRS on the Aqua mission:

Design, science objectives, data products, and processing

systems. IEEE Trans. Geosci. Remote Sens. 41, 253�264.
Daley, R. 1992. Estimating model-error covariances for applica-

tion to atmospheric data assimilation. Mon. Wea. Rev. 120,

1735�1746.
Desroziers, G., Berre, L., Chapnik, B. and Poli, P. 2005. Diagnosis

of observation, background and analysis-error statistics in

observation space. Quart. J. Roy. Meteor. Soc. 131, 3385�3396.
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