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ABSTRACT

A hybrid data assimilation approach combining nudging and the ensemble Kalman filter (EnKF) for dynamic

analysis and numerical weather prediction is explored here using the non-linear Lorenz three-variable model

system with the goal of a smooth, continuous and accurate data assimilation. The hybrid nudging-EnKF

(HNEnKF) computes the hybrid nudging coefficients from the flow-dependent, time-varying error covariance

matrix from the EnKF’s ensemble forecasts. It extends the standard diagonal nudging terms to additional

off-diagonal statistical correlation terms for greater inter-variable influence of the innovations in the model’s

predictive equations to assist in the data assimilation process. The HNEnKF promotes a better fit of an

analysis to data compared to that achieved by either nudging or incremental analysis update (IAU). When

model error is introduced, it produces similar or better root mean square errors compared to the EnKF while

minimising the error spikes/discontinuities created by the intermittent EnKF. It provides a continuous data

assimilation with better inter-variable consistency and improved temporal smoothness than that of the EnKF.

Data assimilation experiments are also compared to the ensemble Kalman smoother (EnKS). The HNEnKF

has similar or better temporal smoothness than that of the EnKS, and with much smaller central processing

unit (CPU) time and data storage requirements.

Keywords: ensemble Kalman filter (EnKF), nudging, hybrid data assimilation, error spikes, dynamic analysis,

Lorenz system

1. Introduction

Data assimilation combines the observations and the fore-

cast by a numerical weather prediction model to produce an

analysis. The analysis is considered as the best estimate of

the current state of the atmosphere. Thus, an important

objective of the data assimilation is to develop optimal

methods to assimilate the observations to provide the best

possible analysis and initialisation for the forecast model.

The ensemble Kalman filter (EnKF) is currently a

popular data assimilation method. The EnKF was first

proposed by Evensen (1994) in an oceanographic applica-

tion and has subsequently been implemented in atmos-

pheric applications (e.g. Houtekamer and Mitchell, 1998;

Anderson, 2001; Whitaker and Hamill, 2002). The EnKF

uses the statistical properties of an ensemble forecast to

estimate the flow-dependent background error covariances.

These flow-dependent background error covariances deter-

mine how an observation affects the model variables. Then,

a new analysis ensemble with the statistics to minimise

the analysis error is produced. By contrast, the three-

dimensional variational method (3DVAR; Sasaki, 1970;

Lorenc, 1986; Courtier et al., 1998), which assimilates

observations sequentially and is computationally efficient,

generally adopts a homogeneous and stationary back-

ground error covariance. The four-dimensional variational

method (4DVAR; Lorenc, 1986; Thepaut et al., 1993),

which finds the trajectory that best fits the past and present

observations, generally requires a tangent linear model and

adjoint model to estimate the actual flow-dependent error

structure. Therefore, the EnKF is becoming increasingly
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popular compared to 3DVAR and 4DVAR methods,

because it is able to efficiently compute the flow-dependent

background error covariances from an ensemble forecast

without requiring a tangent linear model and adjoint model

(e.g. Houtekamer and Mitchell, 1998; Fujita et al., 2007).

To combine the advantages of EnKF and variational

data assimilation methods, several hybrid data assimilation

schemes have been studied. For example, a hybrid EnKF�
3DVAR has been discussed by Hamill and Snyder

(2000), in which the background error covariances are a

linear combination of the stationary covariances used in

3DVAR and flow-dependent covariances computed from

a short-range ensemble forecast. A hybrid ensemble trans-

form Kalman filter (ETKF; Bishop et al., 2001)�3DVAR

has been proposed by Wang et al. (2008a, b). The hybrid

ETKF�3DVAR combines the ensemble covariances with

the static covariances used in 3DVAR, incorporates these

covariances during the variational minimisation by the

extended control variable method and maintains the

ensemble perturbations by the ETKF. An ensemble-based

4DVAR (En4DVAR), developed by Liu et al. (2008), uses

an ensemble forecast to provide the flow-dependent back-

ground error covariances and performs 4DVAR optimisa-

tion without tangent linear and adjoint models.

However, the EnKF is an intermittent data assimilation

approach, where observations are processed in small

batches intermittently in time. The intermittent nature of

the EnKF often causes discontinuities/error spikes around

the observation times (e.g. Hunt et al., 2004; Fujita et al.,

2007). Juckes and Lawrence (2009) reported similar ‘dis-

continuities’ in the forward and backward Kalman filter

analyses. Duane et al. (2006) also found that the Kalman

filter algorithm has some ‘desynchronisation bursts’ at

times of regime transitions between the Lorenz and

‘reversed Lorenz’ phases. Thus, the EnKF can produce

discontinuities between the forecast and the analysis

estimates. These discontinuities can introduce a shock at

the model restart stage and cause spurious high-frequency

oscillations and possibly lead to data rejection (Bloom

et al., 1996; Ourmieres et al., 2006). Also because of the

discontinuities, the ability of the EnKF to provide a time-

continuous and seamless analysis is not guaranteed.

A time-continuous, seamless meteorological field is

preferred in many applications, especially for use in

driving air-quality and atmospheric-chemistry models

(e.g. Stauffer et al., 2000; Tanrikulu et al., 2000; Otte,

2008a, b). Improved meteorological conditions and seam-

less meteorological background fields can also improve the

simulation of transport and dispersion (e.g. Deng et al.,

2004; Deng and Stauffer, 2006). Thus, it is hypothesised

here that if the EnKF could be applied gradually in time,

a dynamic analysis where data assimilation is applied

throughout a model integration period would be produced,

and the intermittent discontinuities and error bursts would

be reduced.

The discontinuous nature of the analysis increments

of the EnKF is recognised and discussed by Bergemann

and Reich (2010) using a Lorenz system. They proposed

a ‘mollified’ EnKF, which is able to damp the spurious

high-frequency adjustment processes caused by the dis-

continuous EnKF. They note that the term ‘mollification’

introduced by Friedrichs (1944) denotes families of

smooth functions that approach the Dirac delta function

as the width of the time window approaches zero. In the

‘mollified’ EnKF, each ensemble member assimilates the

observations by the continuous EnKF with a mollified

Dirac delta function at every time step within a time

window.

A hybrid nudging-EnKF (HNEnKF) is proposed here

with the same purpose as the mollified EnKF. The

HNEnKF applies the EnKF gradually in time by directly

combining the EnKF with nudging. Compared to the

mollified EnKF that calculates the nudging coefficients

from the background error covariance and observational

cost function at every time step and updates each ensemble

member gradually in time, the HNEnKF computes the

EnKF gain matrix once at the observation time and uses

this EnKF gain matrix over the nudging time window

within the nudging coefficients for one control member

only. Therefore, the HNEnKF proposed here is more

computationally efficient and may be more practical than

the mollified EnKF for more complex models.

Nudging, also known as Newtonian Relaxation, is a

continuous data assimilation method that relaxes the model

state towards the observations by adding artificial terms to

the prognostic equations (Hoke and Anthes, 1976). The

artificial terms are proportional to the difference between

the observations and the model state. Nudging is designed

to be applied at every time step, allowing the corrections

to be relatively small and applied gradually within a

time window around the observation times (Stauffer and

Seaman, 1990, 1994). Nudging has been used in many data

assimilation applications (e.g. Stauffer and Seaman, 1990,

1994; Stauffer et al., 1991; Seaman et al., 1995; Leidner

et al., 2001; Otte et al., 2001; Deng et al., 2004; Deng

and Stauffer, 2006; Schroeder et al., 2006; Dixon et al.,

2009; Ballabrera-Poy et al., 2009). However, it is typically

used with ad hoc nudging coefficients and spatial weight-

ing functions based on experience and experimentation.

Adjoint parameter-estimation approaches have also been

investigated using simple models to determine the optimal

coefficients (Zou et al., 1992; Stauffer and Bao, 1993).

When ensemble forecasts are available, the ensemble and

the EnKF may provide a more practical alternative for

determining the nudging coefficients.
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Similar to nudging, the incremental analysis update

(IAU; Bloom et al., 1996; Ourmieres et al., 2006; Lee

et al., 2006) and the ensemble Kalman smoother (EnKS;

Cohn et al., 1994; Evensen and van Leeuwen, 2000) are also

continuous data assimilation methods. The IAU method

incorporates the analysis increments into the model inte-

gration in a gradual manner as a state-independent forcing

term (Bloom et al., 1996). Comparatively, the nudging adds

a state-dependent forcing term into the model integration,

because the state variables used in the additional nudging

terms vary with time. Therefore, IAU does not consider the

changes to the difference between the observation and the

model state (the innovation) during the model integration.

Thus nudging rather than IAU is chosen here as a means of

applying the EnKF gradually in time.

The EnKS uses the EnKF solution as the first guess for

the analysis and applies future observations backwards in

time using the ensemble covariances. As an extension of

EnKF, the EnKS is a continuous data assimilation method,

and it uses an ensemble forecast to compute both the

spatial and temporal error covariances. Thus, we treat the

EnKS (Evensen and van Leeuwen, 2000; Whitaker and

Compo, 2002; Khare et al., 2008) as the ‘gold standard’

against which to measure the success of other data

assimilation methods as a benchmark.

The goal of this current study is to demonstrate that one

can combine the advantages of the EnKF approach to data

assimilation with the temporal smoothness of the contin-

uous nudging approach. The HNEnKF proposed here uses

nudging-type terms to apply the EnKF gradually in time in

order to minimise the insertion shocks. The HNEnKF also

has the ability to provide both the direction and the

coupling strength from the EnKF to the nudging approach.

Therefore, it is hypothesised that this hybrid combination

of data assimilation methods should perform better than

either method applied separately. To investigate the

hypothesis that a continuous and seamless analysis can

be produced if the EnKF is applied gradually in time, the

proof of concept of this HNEnKF is first undertaken

here in Part I using the Lorenz three-variable system

(Lorenz, 1963).

The Lorenz three-variable model has served as a test bed

for examining the properties of various data assimilation

methods when used in systems with strongly non-linear

dynamics (e.g. Evensen and van Leeuwen, 2000; Yang

et al., 2006; Chin et al., 2007; Auroux and Blum, 2008;

Pu and Hacker, 2009). The data assimilation techniques

force a slave simulation towards a master simulation that

represents the truth. This is similar to the approach taken

by Yang et al. (2006), who extended the nudging approach

from a single constant direction to a dynamically evolving

direction given by either the bred vector or the singular

vector when coupling the slave to the master. The coupling

strength (nudging coefficient) necessary to achieve syn-

chronisation between the slave and master simulations was

tested over a wide range of values (1�100), but without any
consideration of the relative size of the nudging term to the

physical terms in the model equations and the potential

creation of insertion noise. In this present study, several

different data assimilation approaches are applied to the

slave system. In addition to measuring the resulting error,

the smoothness of the slave system is also measured using a

new metric.

The general methodology of this HNEnKF is discussed

in Section 2. Section 3 describes the Lorenz three-variable

model system and the application of the HNEnKF in

this system. Section 4 introduces the evaluation plan and

performance metrics, and the experimental design is

discussed in Section 5. Section 6 presents and discusses

the results. Conclusions are summarised in Section 7.

The HNEnKF is further explored in a two-dimensional

shallow-water model in Part II (Lei et al., 2012). The

investigation of the HNEnKF in this two-part study will

set the stage for the implementation of HNEnKF in

the three-dimensional Weather Research and Forecasting

(WRF) model: its results will be presented in another paper

(accepted by Q. J. R. Meteorol. Soc.).

2. General methodology for the HNEnKF

approach

The evolution of a dynamical system can be represented as:

dx

dt
¼ f ðxÞ; (1)

where x and f are the state vector and dynamics function

of the system, respectively.

Given an observation yo, the analysis step of the EnKF

consists of the following update (Evensen, 1994):

xa � xf ¼ Kðyo �HxfÞ; (2)

where xf is the model forecast or background, xa is the

analysis, H is the observation operator that transforms

or interpolates the model forecast variable to the observa-

tion variable and location and K is the gain matrix of

the EnKF. This gain matrix is defined as:

K ¼ BHTðHBHT þ RÞ�1
; (3)

where B is the covariance matrix of background errors

and R is the covariance matrix of observation errors.

On the other hand, the basic form of a dynamical

data assimilation system using traditional nudging can be

written as:

dx

dt
¼ f ðxÞ þG � w � ðyo �HxÞ; (4)
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wherein the time derivative and model physics terms are

as in eq. (1), but a new term is added to relax or nudge

the model background towards the observations. In eq. (4),

G is the nudging magnitude matrix and w is the nudging

spatial-temporal weighting coefficient used to apply the

innovation (observation minus the model background,

yo �HX) in observation space and time to the model grid

cell and time step. The product of G and w is defined here

as the nudging coefficient matrix.
The traditional nudging data assimilation scheme uses a

nudging coefficient matrix with non-zero diagonal elements

and zero off-diagonal elements; thus, innovations from

one variable do not directly affect the others in the current

time step. The nudging term is also kept small compared

to the physical term, f(x), so that the model dynamics

still play a major role in the data assimilation. The nudging

coefficient matrix is often specified by experience and

experimentation (e.g. Stauffer and Seaman, 1994) to emu-

late the error covariance, the correlation in the error at the

observation location with that in a spatial region/temporal

window about the observation site/observation time.

Compared to the intermittent data assimilation scheme

EnKF, the HNEnKF method introduced here combines

the continuous data assimilation of nudging with the flow-

dependent weighting of EnKF to achieve a flow-dependent,

continuous and gradual data assimilation. The HNEnKF

builds the gain matrix of the EnKF into the nudging

magnitude matrix (Kalata, 1984; Painter et al., 1990),

which provides flow-dependent/time-dependent nudging

coefficients to the traditional nudging. In other words,

the HNEnKF achieves the analysis of the EnKF gradually

by combining it with nudging.

For the HNEnKF data assimilation scheme presented

here, the nudging magnitude matrixG in eq. (4) is a function

of the EnKF gain matrix. Since the nudging assimilates the

observed state gradually via the model tendency equations,

the EnKF gain matrix should be modified in order to be

applied to the nudgingmagnitude matrix. Thus, the nudging

magnitude matrix in the HNEnKF method takes the form:

G ¼ twK; (5)

where tw has the units of inverse time and must be made

a function of the nudging weighting coefficient w, in

order to spread the magnitude of the EnKF gain matrix

to every nudging time step. Thus, the definition of tw can

vary as long as its unit remains inverse time and it is a

function of the nudging weighting coefficient.

Specifically, in the Lorenz three-variable model system,

the nudging weighting coefficient w only varies in time

because the model state has no spatial extent. The Stauffer

and Seaman (1990) trapezoidal function, as shown in

Fig. 1, is used for this temporal weighting w. In Fig. 1,

t is the model time, to is the observation time and tN is

the half-period of the nudging time window. Given tN,

w and the time step Dt, the function tw in eq. (5) is defined

as the inverse of the sum of the nudging temporal weighting

coefficient in the half-period of the nudging time window:

tw ¼
1

Pto

t¼to�sN
w � Dt

: (6)

Thus, the nudging strength summed from the start of

nudging to the observation time equals the EnKF gain.

After the observation time, the nudging term, the product

of the nudging weights and the innovation, becomes

smaller in magnitude as the nudging temporal weighting

coefficient decreases, and the combined effects of the

model’s physical forcing and the data assimilation can

further reduce the innovation. Linear model tests confirm

that the nudging term decreases after the observation

time, and the total increment during the nudging time

window of the HNEnKF is less than 10% larger than that

of the EnKF (not shown).

Compared to traditional nudging, this HNEnKF

takes advantage of ensemble forecasts to obtain a flow-

dependent/time-dependent background error covariance

matrix that can be used to compute a flow-dependent/

time-varying nudging coefficient matrix. The HNEnKF

approach can also be used to extend the nudging magni-

tude matrix to include the inter-variable influence of

innovations via non-zero off-diagonal elements. This addi-

tional coupling between the observations and the multi-

variate state may lead to more accurate adjustment of the

background to observations than the traditional nudging

approach. Therefore, the HNEnKF is an advancement

beyond the current capabilities of traditional nudging.

3. Model description and methodology

for the Lorenz system

As a test bed for data assimilation, the non-linear

Lorenz three-variable model system offers the advantages

of computational simplicity and strong non-linear interac-

tions among variables (Lorenz, 1963). The model consists

Fig. 1. The temporal weighting function w of nudging, where t is

the model time, to is the observation time and tN is the half-period

of nudging time window (after Stauffer and Seaman, 1990).
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of three coupled and non-linear ordinary differential

equations:

dx

dt
¼ rðy� xÞ

dy

dt
¼ rx� y� xz

dz

dt
¼ xy� bz;

(7)

where the parameters are set to the standard values

that produce a chaotic regime: s�10, r�28, b�8/3

(Lorenz, 1963).

For the HNEnKF approach, the system [eq. (7)]

becomes:

dx

dt
¼ rðy� xÞ þ Gxx � w � ðxo � xÞ þ Gxy � w � ðyo � yÞ
þGxz � w � ðzo � zÞ

dy

dt
¼ rx� y� xzþ Gyx � w � ðxo � xÞ þ Gyy � w � ðyo � yÞ
þGyz � w � ðzo � zÞ

dz

dt
¼ xy� bzþ Gzx � w � ðxo � xÞ þ Gzy � w � ðyo � yÞ

þGzz � w � ðzo � zÞ;
(8)

where each G is an element in the nudging magnitude

matrix G in eq. (4). In the traditional nudging approach,

only the diagonal elements of the nudging magnitude

matrix are non-zero. In contrast, for the HNEnKF, all

elements of this matrix can be non-zero. Compared to

the adaptive nudging in Yang et al. (2006), here the EnKF

gain matrix is used to provide both nudging direction

and nudging strength.

The general procedures of the HNEnKF are shown

in Fig. 2. The ensemble state contains ensemble members

that are used to calculate the hybrid nudging magnitude

matrix. The nudging state is a single member that

assimilates observations by nudging with the hybrid nud-

ging coefficients. The method for creating the initial

conditions of the nudging state and ensemble state is

described in Section 5. Both the ensemble state and

nudging state are integrated forward until an observation

is available. The observations are denoted by the arrows.

When an observation is available, the EnKF gain matrix

K is first computed from the ensemble forecast of the

ensemble state, and then the hybrid nudging magnitude

matrix G(K, tw) is provided to the nudging state. The

nudging state then assimilates the observation via eq. (8)

using these hybrid nudging coefficients. The trapezoid

around the observation in the nudging state defines

the nudging time window. Meanwhile the ensemble state

assimilates the observation by the EnKF. After both the

nudging state and ensemble state finish assimilating the

observation at the observation time, the ensemble members

are shifted by the difference between the ensemble mean

and the nudging state. This results in a new ensemble state

centred on the nudging state. Thus, the ensemble spread

of the ensemble state has been updated by the EnKF,

and the ensemble mean of the ensemble state is defined to

be the same as that of the nudging state at the observation

time. Finally, both the ensemble state and the nudging state

are integrated forward simultaneously. This procedure

cycles when the next observation becomes available.

4. Evaluation plan and performance metrics

We are not aware of any previous studies that provide a

metric to quantitatively measure the discontinuities/error

Fig. 2. Schematic showing the procedures of the HNEnKF approach. The trapezoid around the observation denotes the temporal

nudging weighting function over the nudging time window.
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spikes resulting from the intermittent data assimilation

method EnKF. It is suggested here that the average root

mean square (RMS) error that is widely used in the data

assimilation literature should not be the only measure of

success because it may not reflect the model’s retention

of data following the assimilation. Thus, a new metric is

proposed here to quantitatively measure the error spikes/

discontinuities following data assimilation.

This metric, defined as the discontinuity parameter (DP),

is the average absolute value of the RMS error difference

over the observation times, where the RMS error difference

is the difference between the RMS error at one time step

before the observation time and that at the observation

time:

DP ¼ 1

M

X

i

RMSEi�1 �RMSEij j; (9)

where the RMSE denotes the RMS error, the subscript

i represents the time step when an observation is available

and M is the total number of the observation times.

As shown by eq. (9), the larger values of DP represent

the larger error spikes/discontinuities and stronger imbal-

ances caused by data assimilation. The DP of the EnKF

can be large if the EnKF makes strong and instantaneous

changes to the model state. The DP of the HNEnKF, on

the other hand, can be much smaller than that of the

EnKF if the HNEnKF effectively applies the EnKF

gradually in time during the nudging time window as

designed. Therefore, both the RMS error and DP will

be used to evaluate the data assimilation methods, since

the RMS error measures the success of a data assimila-

tion method to fit the observations, and the DP measures

the error spikes/discontinuities caused by a data assimila-

tion method.

5. Experimental design

The truth state is obtained by integrating the equations

in eq. (7) from a true initial value (1.508870, �1.531271

and 25.46091). Observation errors chosen randomly from

a Gaussian distribution with mean zero and variance 1.0

are added to the true state (the master) to obtain the

simulated observations. The signal to noise ratios1 of

variables x, y and z are 62.98, 81.38 and 72.75, respectively.

The observations of all three variables are available.

The observation frequency for data assimilation is one

per 25 time steps by default, and then it is varied to one per

10 and one per 50 time steps as sensitivity experiments.

Similarly, adding a random error to the true initial value

produces a simulated initial value to emulate the real

atmosphere, because the true initial value is unknown

in the real atmosphere. This simulated initial value is used

as the initial condition of the nudging state as shown in

Fig. 2. By adding random errors from a Gaussian

distribution with mean zero and variance 1.0 to the

simulated initial value, the initial values for an ensemble

are derived. Similarly, these initial values are used as the

initial conditions of the ensemble state as shown in Fig. 2.

The ensemble size is set to 100, because the performance of

the EnKF saturates quickly as the ensemble size increases

in the Lorenz three-variable model system (Chin et al.,

2007), and 100 members is the maximum ensemble size

used in the sensitivity study of EnKF to the ensemble

size in Pu and Hacker (2009). Experiments are first

performed using a perfect model assumption. Then, a

stochastic process following Evensen (1997) is added to

the model equations to simulate the model error. The

model error covariance is defined to be diagonal with

variances (2.00, 12.13 and 12.31) for the three equations in

eq. (7) (Evensen, 1997; Evensen and van Leeuwen, 2000).

Both the perfect and imperfect models are integrated in

time using a fourth-order Runge-Kutta time difference

scheme with a time step Dt�0.01. We found that using a

smaller time step of 0.001 does not change the results.

To eliminate the effects of start-up transients, the

slave Lorenz system from the simulated initial value and

the ensemble are integrated for 1000 time steps before

beginning to assimilate the observations as in Yang et al.

(2006). During the data assimilation phase, the EnKF,

EnKS, traditional nudging, IAU and HNEnKF are each

integrated for 3500 time steps. The first 500 time steps of

the data assimilation cycle are discarded similar to Yang

et al. (2006), and then the following 3000 time steps with

data assimilation are used for analysis.

The results in the 3000-step period set-up may vary

with initial conditions; therefore, a set-up consisting of

100 random initial conditions has also been designed

and performed. This set-up chooses 100 initial conditions

randomly from the first 1000 time step integration of the

true initial value, adds random errors with mean zero and

variance 1.0 to the randomly chosen 100 initial conditions,

respectively, and then assimilates observations by the

different data assimilation approaches for 1500 time steps

following each initial condition. The first 500 time steps

of data assimilation are again discarded, and then the

following 1000 time steps of data assimilation are used

for analysis.

The experimental design used for the 3000-step period

set-up and the 100 random initial conditions set-up with

both the perfect and imperfect models is shown in

Table 1. The Control (CTRL) integrates the model forward

without assimilating any observations. The following two

1The signal to noise ratio is the variance of the variable divided by

its observation error variance.
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experiments assimilate the observations by the EnKF and

EnKS, respectively. In the traditional nudging approach,

the diagonal elements of G are set to 10.0 (Yang et al.,

2006). The IAU method assimilates the observations using

the traditional IAU, in which the IAU interval is the same

as the analysis interval and the analysis increment is the

difference between the observation and the model forecast

(Bloom et al., 1996). The last two experiments assimilate

the observations by the HNEnKF with diagonal elements

(HNEnKF-D) and all elements of the hybrid nudging

magnitude matrix (HNEnKF-A), respectively. Experiment

HNEnKF-D is closer to the traditional nudging (Experi-

ment Nudging), since neither of them have inter-variable

influence of innovations via non-zero off-diagonal elements

of the nudging magnitude matrix. The average RMS errors

of the CTRL and the six data assimilation experiments

compared to the truth in the 3000-step period set-up are

calculated with all three variables at each time step. They

are similarly computed for the 100 random initial condi-

tions set-up that has a 1000-step period for each initial

condition. In addition, the new metric DP, which measures

the error spikiness, is also computed for the two set-ups.

6. Results

6.1. Comparison of the HNEnKF with and without

off-diagonal elements

The differences between the HNEnKF with only the

diagonal elements of the hybrid nudging magnitude matrix

and the HNEnKF with all elements of the hybrid nudging

magnitude matrix are first explored. The average RMS

errors of CTRL using no data assimilation, traditional

nudging and the two HNEnKF approaches during the

3000-step period using both the perfect and imperfect

model are shown in Fig. 3. The traditional nudging

and HNEnKF approaches produce much smaller average

RMS errors than the CTRL. Thus, the results of

CTRL will not be shown in the following discussions.

Compared to the HNEnKF with all elements of the hybrid

nudging magnitude matrix (Experiment HNEnKF-A), the

HNEnKF with only diagonal elements of the hybrid

nudging magnitude matrix (Experiment HNEnKF-D)

produces results closer to the traditional nudging. None-

theless, the HNEnKF-D has smaller average RMS errors

than the traditional nudging. This suggests that there is

some advantage to using flow-dependent/time-dependent

background error covariance from the ensemble forecast

to provide the nudging coefficients. Moreover, the

HNEnKF-A has even lower average RMS errors than the

HNEnKF-D. Thus, the effectiveness of the HNEnKF-A

to extend the nudging magnitude matrix to include

Table 1. Experimental design

Experiment name Experiment description

CTRL Assimilate no observations

EnKF Assimilate observations by EnKF

EnKS Assimilate observations by EnKS

Nudging Assimilate observations by traditional

nudging (diagonal terms only in

eq. (8) with nudging coefficients of 10)

IAU Assimilate observations by IAU

HNEnKF-D Assimilate observations by HNEnKF

with diagonal elements only of the

hybrid nudging magnitude matrix

HNEnKF-A (HNEnKF) Assimilate observations by HNEnKF

with all elements of the hybrid

nudging magnitude matrix
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Fig. 3. The average RMS errors for the 3000-step dynamic-

analysis period set-up for the control run without data assimila-

tion, traditional nudging and two kinds of HNEnKF approaches

described in Table 1 for (a) perfect model and (b) imperfect model.
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inter-variable influences via non-zero off-diagonal elements

is also demonstrated. This additional coupling from the

inter-variable (off-diagonal) statistics leads to more accu-

rate adjustment of background to the observation than

does the traditional nudging method.

To further demonstrate the effectiveness of the HNEnKF

using flow-dependent/time-dependent background error

covariance from the ensemble forecast to provide the

hybrid nudging coefficients, the average values of the

hybrid nudging coefficients of the two HNEnKF

approaches are shown in Fig. 4. The diagonal hybrid

nudging coefficients are smaller and within an order of

magnitude of the traditional nudging coefficients. For

Experiment HNEnKF-A (Fig. 4b), the diagonal nudging

coefficients are generally larger than the off-diagonal

ones, and the off-diagonal coefficients relating to z are

much smaller than those off-diagonal elements of x and y.

These findings are consistent with the results of Yang et al.

(2006). Also note that the off-diagonal terms can be negative

because they are not really nudging terms and because the

off-diagonal corrections do not directly involve the pre-

dictive variable of the equation. Thus, the utility of the

EnKF gain matrix to provide time-dependent information

to the hybrid nudging coefficients has been demonstrated.

From the discussions above, the HNEnKF schemes

have the flow-dependent/time-dependent hybrid nudging

coefficients computed from the ensemble forecast. The

HNEnKF-A experiment extends the nudging coefficients

to non-zero off-diagonal elements and produces smaller

average RMS error compared to HNEnKF-D. Therefore,

the focus will be on HNEnKF-A from this point forward,

and the HNEnKF-A experiment is denoted by HNEnKF

in the following sections.

6.2. Sensitivity of the data assimilation methods

to observation frequency

In addition to comparing the results from Experiment

HNEnKF to other data assimilation approaches in Experi-

ments Nudging, IAU, EnKF and EnKS, the sensitivity

of these data assimilation approaches to observation

frequency is studied. The comparisons among these data

assimilation approaches may vary due to different observa-

tion frequencies, since the ensemble spread has different

time scales to grow given the different observation fre-

quencies, and the nudging may have difficulties adjusting

to the evolving state with more frequent observations.

Higher-frequency observations can produce larger observa-

tional tendencies that may require the nudging coefficients

to be increased for the model to approach a faster evolving

observation, and this would violate the important assump-

tion that the nudging terms are relatively small and thus

impede the model adjustment process. The default obser-

vation frequency used in Section 6.1 is one per 25 time

steps. The other observation frequencies used here are

one per 10 time steps and one per 50 time steps. The effects

of the different data assimilation schemes (Table 1) with

different observation frequencies are investigated here

within the 3000-step period set-up.

Figure 5a shows the average RMS errors over all time

steps for each data assimilation method with different

observation frequencies under the perfect model assump-

tion. As discussed earlier, the average RMS error is not

the only measurement of success for a dynamic analysis,

because it may not best reflect the error spikes or temporal

smoothness of the data assimilation. As defined in

Section 4, the DP for this group of experiments is also

computed, and it is shown in Fig. 5b.
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Fig. 4. The average hybrid nudging coefficients in the 3000-step

period set-up in each equation for (a) experiment HNEnKF-D and

(b) experiment HNEnKF-A. The dashed line denotes the magni-

tude of the nudging coefficient used in the traditional nudging

approach.
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Experiment HNEnKF produces lower RMS errors than

Experiment Nudging and IAU for all three observation

frequencies, especially when the observation frequency is

one per 50 time steps. Thus, the use of flow-dependent/

time-dependent nudging coefficients appears to be helpful

in reducing the RMS error when the observations are

sparse in time. Although Experiment HNEnKF has some-

what larger RMS errors than Experiments EnKF and

EnKS, Experiment HNEnKF has closer and similar

values of DP to the EnKS and has much smaller values

of DP than the intermittent EnKF. The continuous data

assimilation experiments, EnKS, Nudging, IAU and

HNEnKF, have fewer/smaller discontinuities than the

intermittent data assimilation experiment EnKF. There-

fore, the HNEnKF combines the advantages of Nudging

and EnKF, because it produces smaller RMS errors than

the traditional nudging and has better values of DP than

the EnKF.

Figure 6 shows the average RMS error and DP for each

data assimilation method for the three different observa-

tion frequencies within the 3000-step period set-up using

an imperfect model (see Section 5). The IAU becomes

unstable after adding model errors; therefore, its results

are not shown. Bergemann and Reich (2010) also report

instability problems with their hybrid IAU method over

long data assimilation cycles. Experiment HNEnKF pro-

duces lower average RMS errors than traditional nudging,

which is similar to the result in the perfect model. The

HNEnKF produces similar average RMS errors to the

EnKF and EnKS when the observation frequency is one

per 10 time steps and one per 25 time steps, but some-

what larger average RMS error for one per 50 steps. One

reason that the HNEnKF has somewhat larger average

RMS error than the EnKF and EnKS with observation

frequency of one per 50 time steps may be: in this highly
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Fig. 5. The average performance metrics over the 3000-step

dynamic-analysis period set-up for the different data assimilation

methods described in Table 1 with various observation frequencies

of one per 10 time steps (OF10), one per 25 time steps (OF25) and

one per 50 time steps (OF50), under a perfect model assumption

for (a) RMS error and (b) DP. Smaller values are more desirable

for both metrics.
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Fig. 6. Same as Fig. 5, except for the imperfect model.
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non-linear Lorenz three-variable model system, the nud-

ging may not perform well when the system is at transi-

tions,2 since the model state may evolve too quickly to

be corrected by the gradual nudging forcing within the

nudging time window. However, as shown in Fig. 6b, the

HNEnKF has lower values of DP than the EnKF,

suggesting smaller discontinuities than the EnKF. More-

over, the HNEnKF has similar or even better DP than

the EnKS when the model is imperfect.

To ensure the EnKF and HNEnKF function properly,

the ensemble spread is compared to the forecast error in

the EnKF. The ensemble forecast spread and forecast

RMS error of the ensemble mean are computed at the

observation time but before assimilating the observation.

When the observation frequency is one per 25 time steps,

the ensemble spread and forecast error are computed

every 25 time steps, and their comparisons are shown

in Fig. 7. For both perfect and imperfect models, the

ensemble spread generally agrees with the forecast error,

although the ensemble spread has more variance with

the forecast error when the model error is introduced.

Generally, the ensemble spread is linearly correlated with

the forecast error and the slope of the ‘best-fit’ line is

approximately 1. Similar results are obtained for the other

observation frequencies (not shown). We conclude that

the ensemble spread provides a reasonable estimate of the

forecast error in the EnKF and HNEnKF experiments,

and, therefore, the EnKF functions with proper ensemble

spread.

As discussed in this section, with a perfect model the

HNEnKF produces smaller RMS errors than the tradi-

tional nudging, although it has somewhat larger RMS

errors than the EnKF. Moreover, the HNEnKF has much

smaller values of DP than the EnKF and closer values of

DP to the EnKS. When model error is introduced, the

HNEnKF produces similar RMS errors to the EnKF

except when the observation frequency is one per 50 time

steps, and it also has much lower values of DP than the

EnKF. Therefore, the HNEnKF is able to retain the

advantages of the EnKF and produce better temporal

smoothness, although it sometimes has somewhat larger

RMS errors than the EnKF.

6.3. Sensitivity of the data assimilation methods

to initial conditions

Results in Sections 6.1 and 6.2 are based on a 3000-step

period set-up as in Yang et al. (2006). However, the results

may vary over different periods and different initial

conditions. Therefore, a statistical set-up with 100 random

initial conditions is performed for both perfect and

imperfect models in this section as described in Section 5.

Tables 2 and 3 show the average RMS error and DP of

the different data assimilation schemes, with the default

observation frequency in the 100 random initial conditions

set-up for the perfect model experiment. As shown by

Table 2, Experiment HNEnKF under the perfect model

assumption produces smaller average RMS errors than

traditional nudging and IAU, but larger average RMS

errors than the EnKF and the EnKS. A paired Student’s t-

test is performed to examine if the average RMS errors are

significantly different among the data assimilation meth-

ods. The null hypothesis is that the two data assimilation

methods produce the same average RMS error. A p-value,

which is the probability of observing a value at least as

2The ‘‘transitions’’ mean the locations that are very sensitive to

error, where a small amount of error may lead the model state to a

different fixed point.
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Fig. 7. The ensemble spread and error of the 3000-step period

set-up using an observation frequency one per 25 time steps.

(a) Perfect model and (b) imperfect model.
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extreme as the test statistic under the null hypothesis, less

than 0.05 rejects the null hypothesis, indicating that the

average RMS error of the data assimilation method in the

row is significantly different from that of the data

assimilation method in the column. The results of the

paired Student’s t-test of the average RMS error are also

shown in Table 2. The differences among the data

assimilation methods are all significant. The Nudging,

IAU, HNEnKF and EnKS experiments have significantly

better DP than the intermittent data assimilation method

EnKF (Table 3). Moreover, the HNEnKF has slightly

better, but significantly different DP, than the EnKS as

shown in Table 3.

Tables 4 and 5 are the same as Tables 2 and 3, except

that the results are for the imperfect model. As mentioned

in Section 6.2, the IAU becomes numerically unstable when

model error is introduced, so its results are not shown. The

HNEnKF produces slightly smaller but significantly dif-

ferent average RMS error than either Nudging or EnKF,

although it has larger average RMS error than the EnKS

(Table 4). Moreover, Table 5 indicates that the HNEnKF

has much smaller values of DP than the EnKF and slightly

smaller but significantly different values of DP than the

EnKS, while the traditional nudging experiment (Nudging)

produces the best values of DP. Therefore, the results

obtained in the 100 random initial conditions set-up in this

section are generally consistent with those in the 3000-step

period set-up as discussed in Section 6.2. Moreover, the

results from this section based on the paired Student’s

t-test with a 95% confidence level demonstrate that the

conclusions from the 3000-step period set-up (Section 6.2)

are generally valid.

6.4. Nudging coefficients constraints

The underlying assumption for nudging, as stated by

Stauffer and Seaman (1990, 1994), is that the nudging

terms should be constrained to be smaller than the model’s

physical terms in order to retain the physical properties and

dynamic balance/inter-variable consistency of the system.

For this highly non-linear Lorenz three-variable model

system, the nudging terms may need to be larger when the

system is at transitions. The synchronisation of the master

(truth run) with the slave (model with coupling/nudging

terms) in Yang et al. (2006), using a coupling strength that

varies from 1 to 100, may violate this assumption. Thus, the

nudging coefficient constraints for the HNEnKF are

investigated further here.

Figure 8 shows the average ratios of the nudging terms

over the sum of the physical terms in each equation in the

3000-step period set-up of HNEnKF under the perfect

model assumption. The ratio of the y nudging term in the

y-equation is 0.13, which is slightly larger than 0.1 (an

order of magnitude difference in the magnitudes of the

nudging term and physical terms). The other nudging terms

have ratios smaller than 0.1.

Thus Experiment HNEnKF is generally able to make

small and effective innovations to the model background to

correct the model trajectory, as shown by the smaller

average RMS errors compared to the Experiment Nudging.

It can also minimise the insertion noise and produce

smaller (better) DP compared to the EnKF. Any nud-

ging-type approach, including our HNEnKF should con-

sider the magnitude of the nudging terms relative to the

Table 2. The average RMS error in the 100 random initial

conditions set-up for the data assimilation methods described in

Table 1 with the default observation frequency (one per 25 time

steps) for the perfect model

EnKF EnKS Nudging IAU HNEnKF

EnKF 0.84 � � � �
EnKS 0.48 � � �
Nudging 2.70 � �
IAU 1.66 �
HNEnKF 1.54

There is significant difference (�) and no significant difference (�).

Table 3. Same as Table 2, except for the DP

EnKF EnKS Nudging IAU HNEnKF

EnKF 0.74 � � � �
EnKS 0.20 � � �
Nudging 0.22 � �
IAU 0.20 �
HNEnKF 0.16

Table 4. Same as Table 2, except for the imperfect model

EnKF EnKS Nudging IAU HNEnKF

EnKF 2.73 � � �
EnKS 1.87 � �
Nudging 3.01 �
IAU

HNEnKF 2.64

Table 5. Same as Table 4, except for the DP

EnKF EnKS Nudging IAU HNEnKF

EnKF 2.96 � � �
EnKS 0.58 � �
Nudging 0.36 �
IAU

HNEnKF 0.50

AN HNENKF APPROACH TO DATA ASSIMILATION - PART I 11



physical forcing terms, so that dynamic balance and

consistency are retained in addition to reducing the RMS

errors compared to the truth state. Hollingsworth et al.

(1986) discussed a similar criterion, which requires the

magnitude of the analysis increment to be smaller than that

of the forecast increment.

6.5. Computational efficiency

The HNEnKF experiment is shown to produce similar or

slightly better average RMS errors to the EnKF for the

imperfect model but better DP than the EnKF in general. It

also produces similar or even better values of DP compared

to the gold standard EnKS. However, the EnKS is much

more CPU-intensive than the HNEnKF and also requires

greater storage proportional to the total number of analysis

times over which the statistics are to be applied. Although

all the EnKF, HNEnKF and EnKS experiments have an

ensemble forecast that is more expensive than a single

model run as used in Experiments Nudging and IAU, the

EnKS applies future observations backward to the initial

time, which adds even more computational cost for

calculating the temporal error correlations compared with

the EnKF and HNEnKF. This is also the reason that the

EnKS requires greater storage than the EnKF and

HNEnKF � the ensemble spread at each analysis time

(here every time step) needs to be stored and is used to

compute the temporal error correlations.

Table 6 shows the CPU time cost of the various data

assimilation schemes with the default observation fre-

quency in the 100 random initial conditions set-up. The

Nudging and IAU experiments have the smallest CPU time

cost, because they do not include an ensemble forecast. The

HNEnKF has similar CPU time cost to the EnKF, but

the EnKS has a CPU time cost more than 200 times that of

the EnKF and HNEnKF. Thus, the HNEnKF produces

somewhat larger average RMS error than the EnKS and

similar or better DP to the EnKS, but with substantially

reduced CPU time and storage costs.

7. Conclusions

A new HNEnKF data assimilation approach that produces

time-continuous, seamless dynamic analyses over a fixed

period is explored here using the Lorenz three-variable

system with both perfect and imperfect models. The

HNEnKF approach allows the EnKF to be applied

gradually in time via nudging-type terms. The flow-

dependent, time-varying error covariance matrix is used

to compute the nudging coefficients rather than using ad

hoc values derived from theory and experience. The

HNEnKF using all elements of the nudging magnitude

matrix produces better results than the HNEnKF using

only the diagonal elements of the nudging magnitude

matrix, because it allows for greater inter-variable influ-

ences from the data assimilation via the non-zero off-

diagonal elements of the nudging magnitude matrix.

The HNEnKF approach promotes a better fit to the data

compared to traditional nudging or IAU while also

minimising the error spikes or bursts created by intermit-

tent assimilation methods such as the EnKF. When model

error is introduced, the HNEnKF still produces lower

average RMS errors than the traditional nudging and

closer or better average RMS errors compared to the EnKS

and EnKF, respectively. The ensemble spread provides a

reasonable estimate of the forecast error in the EnKF and

HNEnKF experiments. The HNEnKF also produces better

DP than the EnKF and even better DP than the EnKS. The

EnKS, as the gold standard, is much more computationally

expensive and has larger storage requirements. The EnKS

requires more than 200 times more CPU time than the

EnKF and HNEnKF used in this study.

Although the HNEnKF is comparable in cost to the

EnKF, it offers a gradual, continuous assimilation of the

data with better inter-variable consistency, improved

temporal smoothness and reduced noise levels between

the observation times compared to the EnKF. The hybrid
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Fig. 8. The average ratios of the hybrid nudging terms in each

equation compared with the sum of the physical terms for the

3000-step period set-up for Experiment HNEnKF. The dashed line

denotes a ratio of 0.1, where the nudging term is an order of

magnitude smaller than the sum of the physical forcing terms.

Table 6. Total CPU time cost of different data assimilation

schemes with the default observation frequency in the 100 initial

conditions set-up

Experiment EnKF EnKS Nudging IAU HNEnKF

CPU time (s) 16 3414 4 5 16
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nudging terms in the HNEnKF are on average an order of

magnitude smaller than the physical terms in all three

equations. Any nudging-type approach should not use

nudging terms that are relatively large compared to the

physical forcing terms, so that dynamic balance and

consistency are retained in addition to reducing the RMS

errors compared to the truth state.

The advantages of the HNEnKF demonstrated in the

Lorenz three-variable system motivated us to further

explore this HNEnKF approach in a more realistic two-

dimensional shallow-water model system in Part II (Lei

et al., 2012). Building on the encouraging results obtained

from this two-part study using simplified models, we will

apply the HNEnKF to the three-dimensional WRF model.

The results will be presented in another paper (accepted by

Q. J. R. Meteorol. Soc.).
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