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ABSTRACT

A hybrid nudging-ensemble Kalman filter (HNEnKF) data assimilation approach, explored in the Lorenz

three-variable system in Part I, is tested in a two-dimensional shallow-water model for dynamic analysis and

numerical weather prediction. The HNEnKF effectively combines the advantages of the ensemble Kalman

filter (EnKF) and the observation nudging to achieve more gradual and continuous data assimilation

by computing the nudging coefficients from the flow-dependent, time-varying error covariances of the EnKF.

It can also transform the gain matrix of the EnKF into additional terms in the model’s predictive equations

to assist the data assimilation process. The HNEnKF is tested for both a wave case and a vortex case with

different observation frequencies and observation networks. The HNEnKF generally produces smaller root

mean square (RMS) errors than either nudging or EnKF alone. It also has better temporal smoothness than

the EnKF and lagged ensemble Kalman smoother (EnKS). The HNEnKF allows the gain matrix of the EnKF

to be applied gradually in time, reducing the error spikes commonly found around the analysis times when

using intermittent data assimilation methods. Therefore, the HNEnKF produces a seamless analysis with

better inter-variable consistency and dynamic balance than the intermittent EnKF.

Keywords: ensemble Kalman filter (EnKF), nudging, hybrid data assimilation, dynamic balance, insertion noise,

shallow-water model

1. Introduction

Data assimilation is critical for providing the best possible

analysis and improving model forecasts. The ensemble

Kalman filter (EnKF), first proposed by Evensen (1994),

has become a popular data assimilation method for atmo-

spheric applications (e.g. Houtekamer and Mitchell, 1998;

Anderson, 2001; Whitaker and Hamill, 2002), where it is

able to provide a flow-dependent estimate of the back-

ground error covariances used to determine the weights

of the observations within a data-assimilation analysis.

However, the EnKF, an intermittent data assimilation

scheme, performs a data-assimilation analysis at each

observation time and switches back to a standard model

integration between analysis times. This cycle of a model

integration period, analysis step and then another

model integration period often causes discontinuities/error

spikes around the observation times (e.g. Hunt et al.,

2004).

Discontinuities in the analyses produced by intermittent

data assimilation approaches may be related to dynamic

imbalances caused by intermittent insertion of observations

into the model background. In the EnKF study of Fujita

et al. (2007), the discontinuities of errors across the analysis

step are shown to occur when hourly surface observations

are assimilated into the model background. A logical

question is whether their reported root mean square

(RMS) wind errors, increasing through the 6-h assimilation

period, reflect in some way the enhanced divergence related

to gravity-wave activity caused by the hourly updates.

There are also discontinuities reported in the forward

and backward EnKF analyses as discussed in Juckes and

Lawrence (2009). Duane et al. (2006) also found the EnKF

algorithm to have some ‘desynchronisation bursts’ at times

of regime transitions between the Lorenz and ‘reversed

Lorenz’ phases.
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The intermittent spikes or bursts within a dynamic

analysis caused by the EnKF can have negative conse-

quences when the analyses are used for subsequent

numerical weather prediction (NWP) or other model-data

applications. Time-continuous, seamless meteorological

fields are important for diagnostic dynamic studies (e.g.

Monaghan et al. 2010; Rife et al., 2010) and especially

for air-quality and atmospheric-chemistry modelling (e.g.

Stauffer et al., 2000; Tanrikulu et al., 2000; Otte, 2008a, b).

The accumulated errors and discontinuities in the meteor-

ological fields may adversely affect atmospheric transport

and dispersion and source characterisation. Improved and

seamless meteorological conditions (wind, stability, con-

vective processes, boundary layer depth, etc.) can improve

the accuracy of atmospheric transport and dispersion

simulations (e.g. Deng et al., 2004).

To take advantage of the flow-dependent and time-

dependent error covariances of the EnKF while reducing its

intermittent assimilation noise, a hybrid nudging-ensemble

Kalman filter (HNEnKF) approach was proposed and

tested in the Lorenz three-variable system by Lei et al.

(2012), hereafter referred to as Part I. Our hypothesis is

that if the EnKF is applied gradually in time, a continuous

and seamless dynamic analysis can be produced. The

HNEnKF effectively combines the ensemble data assimila-

tion characteristics of the EnKF and the gradual, contin-

uous adjustments towards observations of the nudging to

achieve a temporally smoother data assimilation, resulting

in dynamic analyses with better inter-variable consistency

and dynamic balance.

Nudging, which has been widely used in NWP applica-

tions (e.g. Colle and Mass, 2000a, b; Deng et al., 2004;

Schroeder et al., 2006; Otte, 2008a,b; Ballabrera-Poy et al.,

2009; Dixon et al., 2009), is a continuous data assimilation

scheme designed to be applied during every time step of an

assimilation cycle, allowing small corrections to be made

gradually within a time window around the observation

times (Stauffer and Seaman, 1990, 1994). In addition to

directly modifying model fields towards observations,

nudging is also being used to modulate the model fields

according to the observations in an indirect way. Pleim and

Gillian (2009) nudged soil moisture and deep soil tempera-

ture according to the biases in 2-m air temperature and

relative humidity between the model and observation-based

analyses. Dixon et al. (2009) used latent heat nudging to

assimilate radar-derived surface precipitation rates and

cloud nudging to assimilate moisture fields derived from

satellite, radar and surface observations. Ballabrera-Poy

et al. (2009) used nudging to constrain the evolution of the

fast variables to their observations and the local ensemble

transform EnKF to initialise the slow variables, since the

spurious covariances from the fast variables degrade the

performance of the data assimilation. However, nudging is

often used with ad hoc nudging coefficients and spatial

weighting functions based on experience and experimenta-

tion (e.g. Stauffer and Seaman, 1990, 1994). To overcome

this drawback, parameter-estimation approaches have been

explored to optimally determine the nudging coefficients

(Zou et al., 1992; Stauffer and Bao, 1993), but they have

not been developed adequately for real-case applications.

We hypothesise that the HNEnKF offers a more practical

nudging-type solution for shallow water and more complex

mesoscale models by using the flow-dependent and time-

dependent weighting functions computed from the gain

matrix of the EnKF.

As introduced in Part I, the HNEnKF approach takes

advantage of the ensemble forecast to obtain a flow-

dependent/time-dependent background error covariance

matrix that can be used to compute flow-dependent and

time-varying nudging coefficients. The HNEnKF can also

extend the nudging magnitude matrix to include the inter-

variable influence of innovations via non-zero off-diagonal

matrix elements. This additional coupling between the

observations and the multivariate state is able to lead to

more accurate adjustment of the background to observa-

tions than the traditional nudging approach. Moreover, the

HNEnKF, using nudging-type terms to apply the EnKF

gradually in time, provides an analysis with better temporal

smoothness than that from the EnKF.

The HNEnKF data assimilation approach was first

evaluated in the Lorenz three-variable system in Part I,

because this model often has served as a test bed for

examining the properties of various data assimilation

methods in simple yet strongly non-linear dynamical

systems (e.g. Evensen and van Leeuwen, 2000; Yang

et al., 2006; Chin et al., 2007; Auroux and Blum, 2008;

Pu and Hacker, 2009). It was found that the HNEnKF

promoted a better fit of an analysis to data compared to

that produced solely by nudging. The HNEnKF provided a

continuous data assimilation with better inter-variable

consistency and improved temporal smoothness than that

of the EnKF, since it minimised the error spikes/disconti-

nuities created by the intermittent EnKF. Because the

HNEnKF showed encouraging results in the Lorenz system

as presented in Part I, its effectiveness is evaluated in a

more physically realistic model. Thus, the HNEnKF is

applied here in a two-dimensional (2-D) shallow-water

model, where the dynamic imbalances caused by the

insertion noise common in intermittent data assimilation

methods can be assessed more thoroughly. This work

serves as a logical next step for the HNEnKF before its

application to real data in a full-physics, three-dimensional

(3-D) mesoscale model such as the Weather Research and

Forecasting (WRF) model (Skamarock et al., 2008).

An observation system simulation experiment (OSSE) is

conducted here to explore the performance of the
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HNEnKF in the 2-D shallow-water model. A quasi-

stationary wave case and a moving vortex case are used

to compare nudging, EnKF and HNEnKF. Their sensitiv-

ities to observation frequency and observation network

(data density) are explored, because these attributes vary

across the real data atmospheric applications. An investi-

gation of the dynamic balance following data insertion is

conducted by calculating the evolution of the ageostrophic

wind in the analyses from the different data assimilation

methods. In this way, we are also able to quantitatively

assess the dynamic imbalance/discontinuities caused by

intermittent data insertion compared to continuous data

assimilation methods.

A fourth data assimilation method, the ensemble Kal-

man smoother (EnKS), which was considered the ‘gold

standard’ in Part I, is also applied here. The EnKS, an

extension of EnKF, uses the solution of the EnKF as a first

guess analysis and then applies later observations backward

in time using the ensemble variances (Evensen and van

Leeuwen, 2000). However, as discussed in Part I, the EnKS

is much more central processing unit (CPU)-intensive than

the EnKF and HNEnKF, and also requires much greater

storage proportional to the total number of analysis times

over which the statistics are to be applied. Thus, to reduce

the CPU and storage requirements of the EnKS, we use a

lagged version of the EnKS that assumes that the time

correlation in the ensemble statistics approaches zero over

a certain time interval. While still impractical for most

realistic meteorological applications, the EnKS provides a

benchmark for the methods described here.

The methodology of the HNEnKF is reviewed in

Section 2. Section 3 describes the model set-up and

experiment design, in which the model description, initial

conditions, simulated observations, verification data and

metrics and ensemble error covariance inflation and

localisation are presented. The results are discussed in

Section 4. Section 5 explores the dynamic balance and

temporal smoothness of the HNEnKF and EnKF analyses.

The computational efficiency of the data assimilation

methods is discussed in section 6. Conclusions are sum-

marised in section 7.

2. Methodology for the HNEnKF approach

To apply the EnKF continuously rather than only at the

analysis times, the HNEnKF approach combines the

EnKF (Evensen, 1994; Houtekamer and Mitchell, 1998)

and observation nudging (Stauffer and Seaman, 1990,

1994). A schematic of the HNEnKF approach is shown

in Fig. 2 of Part I. We start with an ensemble of N

background forecasts that will be updated by the EnKF

(called the ‘ensemble state’), and a single forecast that will

be updated by the hybrid nudging-type terms (called the

‘nudging state’). The following five steps are repeated for

each data assimilation cycle: (1) Compute the hybrid

nudging coefficients using the ensemble forecast via the

EnKF algorithm. (2) Integrate the nudging state by

continuously applying nudging with the hybrid nudging

coefficients. (3) Update each ensemble member of the

ensemble state using the EnKF. (4) Redefine the ensemble

mean to be the analysis of the nudging state by recentring

the ensemble around the nudging state at the observation

time while retaining the ensemble spread. (5) Integrate the

ensemble state and the nudging state forward to the next

observation time.

The nudging scheme adds non-physical relaxation terms

into the governing model equations. The full set of model

equations is then used to nudge the model state towards the

observation state gradually, as shown in eq. (1):

dx

dt
¼ f ðxÞ þG � ws � wt � ðyo �HxÞ; (1)

where x and f are the state vector and standard forcing

function of the system, respectively, yo is the observation

vector, H is the observation operator that transforms or

interpolates the model variable to the observation variable

and location, G is the nudging magnitude matrix and ws

and wt are the spatial and temporal nudging weighting

coefficients, respectively. The difference between the

observed and modelled states, yo�Hx, is called the

innovation. The coefficients ws and wt are used to map

the innovation, defined in observation space and time,

to the model grid cell and time step. The nudging

coefficient is defined here as the product of G, ws and wt.

The relative intensity with which an innovation of a

given variable affects the tendencies of the model’s

predictive variables is controlled by the elements of the

nudging magnitude matrix G. In most nudging applica-

tions, the innovation of a particular variable can influence

only the tendency of that variable; hence, only the diagonal

matrix elements are non-zero while all off-diagonal ele-

ments are zero. The non-zero diagonal elements are usually

specified by experience and experimentation (e.g. Stauffer

and Seaman, 1994). Here, the flow-dependent hybrid

nudging coefficients, computed from the ensemble forecast,

are elements of the EnKF gain matrix multiplied by a

function of the temporal nudging weighting coefficient.

The flow-dependent hybrid nudging coefficient is then

described by eq. (2):

G � ws ¼ twt
� K; (2)

where twt
is a function of the temporal nudging weighting

coefficient and K is the EnKF gain matrix.

The function twt
in eq. (2) has the units of inverse time

to make the units of the hybrid nudging coefficient inverse

time as required for nudging. The magnitude of the EnKF
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gain matrix is applied every time step within the nudging

time window to the innovation terms in the model

tendency equations. The function twt
used here is defined

as the sum of the temporal nudging weighting co-

efficient over half of the nudging time window, as

described by:

tw ¼ 1=
Xto

t¼to�sN

wt � Dt

 !
: (3)

In eq. (3), Dt is the time step, t is the model time, to is

the observation time and sN is the half-period of the

nudging time window. The temporal nudging weighting

coefficient wt is the same as that used in Part I, following

the trapezoidal function defined by Stauffer and Seaman

(1990).

As stated above, the K in eq. (2) is the EnKF gain

matrix, defined as:

K ¼ BHT HBHT þ R
� ��1

; (4)

where B is the covariance matrix of background errors,

H is the transformation or interpolation operator and

R is the covariance matrix of observation errors.

Thus, the HNEnKF method takes advantage of

ensemble forecasts and its flow-dependent background

error covariances to provide flow-dependent nudging

coefficients. It also extends the nudging magnitude matrix

from having non-zero diagonal elements and zero off-

diagonal elements to being a full non-zero matrix. The

effectiveness and added value of the HNEnKF with

non-zero off-diagonal elements compared to the HNEnKF

with diagonal elements only was demonstrated in Part I.

Therefore, the HNEnKF using the full non-zero matrix

from the EnKF will be applied and investigated further

here in the more realistic shallow-water model.

3. Model set-up and experimental design

The shallow-water model system is described in this

section, followed by a description of the initial conditions

for the wave case and vortex case used to investigate

the HNEnKF approach. The so-called truth states and

simulated observations for both cases are also presented,

along with the verification data and evaluation metrics.

A summary of the experiments and their design details

including the ensemble design and data assimilation para-

meter settings such as traditional nudging weights, radius

of influence, and EnKF error covariance localisation and

inflation are also presented.

3.1. Model description

The barotropic non-linear shallow-water equations with

the hybrid nudging-EnKF terms take the following form:

@u

@t
þ u

@u

@x
þ v

@u

@y
� fv ¼ �g

@h

@x
þ jr2uþ

Guu � wt � uo � uð Þ þ Guv � wt � vo � vð Þ þ Guh � wt � ho � hð Þ
@v

@t
þ u

@v

@x
þ v

@v

@y
þ fu ¼ �g

@h

@y
þ jr2vþ

Gvu � wt � uo � uð Þ þ Gvv � wt � vo � vð Þ þ Gvh � wt � ho � hð Þ
(5)

@h

@t
þ u

@h

@x
þ v

@h

@y
¼ �h

@u

@x
þ @v

@y

� �
þ jr2hþ

Ghu � wt � uo � uð Þ þ Ghv � wt � vo � vð Þ þ Ghh � wt � ho � hð Þ
0 5x 5L 0 5y 5D

where u and v are the velocity components in the x and

y directions, h is the depth of the fluid, g is the acceleration

of gravity, f is the Coriolis parameter, k is the diffusion

coefficient, L and D are the dimensions of the rectangular

domain of integration, and each G with subscripts u, v

or h is an element in the product of the nudging magnitude

matrix G and spatial nudging weighting coefficient ws in

eq. (1). The Coriolis parameter f is defined as constant

10�4 s�1 in an f-plane approximation. The diffusion

coefficient k is specified as 104 m2 s�1.

The shallow-water model equations (eq. 5) are integrated

forward on a C-grid (Arakawa and Lamb, 1977), which

is used by many mesoscale models including the WRF

model (Skamarock et al., 2008). The domain dimensions

L and D are set to 500 km and 300 km in the x and y

directions, respectively. The grid dimensions are 52�31

using 10-km grid spacing in both directions. A leapfrog

scheme with a time step of 30 s is used to integrate the

model forward in time. Model initial and lateral boundary

conditions are defined in the following section.

In the traditional nudging approach, only the diagonal

elements of the nudging magnitude matrix G (i.e. Guu, Gvv

and Ghh) in eq. (5) are non-zero. For the HNEnKF tested

here, all elements of this Gmatrix are non-zero as discussed

in Section 2 and as demonstrated in the Lorenz three-

variable model in Part I.

3.2. Case descriptions, initial conditions and lateral

boundary conditions

The HNEnKF is tested in 24-h simulations with 20

ensemble members for two cases: a quasi-stationary wave

(Case I) and a moving vortex (Case II). Reduced accelera-

tion of gravity g is used in the quasi-stationary wave
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case, and defined as 0.5 ms�2. The true initial condition of

Case I follows Grammeltvedt (1969) and Zhu et al. (1994).

The true initial height is given by:

hðx; yÞ ¼ H0 þH1 � tanh
9 � ðD=2� yÞ

2D

� �

þH2 � sech2 9 � ðD=2� yÞ
D

� �
� sin 2p

L

� �
;

(6)

where H0, H1 and H2 are set to 50.0 m, 5.5 m and 3.325 m,

respectively. The true initial wind field is derived from

the initial height field assuming geostrophy. The true initial

height and wind fields are shown in Fig. 1a. A large

phase error (p/4) is added into eq. (6) to create the initial

height field of the nudging state. The phase errors of the

ensemble members are created by adding random errors

with Gaussian distribution having zero mean and a

variance of p/4 added onto the phase error (p/4) of

the initial height of the nudging state. The initial winds of

the nudging state and the ensemble members are derived

from the initial height fields through the geostrophic

relationship.

Figure 1b shows the true initial condition of Case II.

The background mean height is 200 m, and the back-

ground uniform wind speed in the x direction is 10 ms�1;

and there is no mean flow in the y direction. A parabolic-

shaped height perturbation with a maximum value of

20 m and a length scale of �100 km is introduced in

the centre of the domain. The wind and height truth fields

are also geostrophically balanced initially.

The initial height fields of the nudging state and the

ensemble state are based on shape-preserving perturbations

to the truth state. For the nudging state, the true

perturbation centre is moved westward one grid point

and southward two grid points, and a random error of

Gaussian distribution with mean zero and variance 2.0

is added onto the maximum value of the truth and is

used to scale the parabolic-shaped height perturbation. The

initial height fields of the ensemble members have random

errors with Gaussian distribution with zero mean and

a variance of 2.0 multiplied by the grid spacing, placed

onto the perturbation centre of the initial nudging state.

Random errors with Gaussian distribution mean zero

and variance 2.0 are also superimposed on the maximum

value used to define the amplitude of the initial nudging

height perturbation field. The initial wind fields are also

derived from the initial height fields using the geostrophic

relationship in both the nudging and the ensemble state.

Note that the rank of the initial ensemble depends on

the initial perturbation; the perturbations used here were

only chosen to initialise an appropriate ensemble spread.

Periodic lateral boundary conditions are used at the

west�east boundaries in both cases. Case I has a free-slip

rigid wall boundary condition at the southern and northern

boundaries where the height and u components are defined

from the values one point inside the boundary. For Case II,

the tendencies of height and wind components are set to

zero at the south�north boundaries.

3.3. The truth state and simulated observations

Truth states for each case are generated by first integrating

a finer-scale model with grid spacing of 1 km, grid

dimensions of 511�301 and a time step of 1 s. For this

purpose, the model initial fields have no random or phase

errors. The simulated observations are then produced by

adding random errors with a Gaussian distribution with

zero mean and assumed variances onto the 1-km truth

fields. The simulated observations for Case I have var-

iances r2
u ¼ 0:5m2 s�2, r2

v ¼ 0:5m2 s�2 and r2
h ¼ 2:5 m2.

The variances of the simulated observations in Case II

are given by r2
u ¼ 2:0m2 s�2, r2

v ¼ 2:0m2 s�2 and

r2
h ¼ 20:0 m2. These variances are around 10% of their

mean values.

Four types of observation networks are tested in this

study. The first observation network (OBSN I) has only

one observation site, which is shown by the grey solid

square near the domain centre in Fig. 1a. Instead of having

the observation located right in the domain centre, random

displacements within one coarse grid cell are added to the

domain centre to produce the observation site. The second

observation network (OBSN II) consists of 19 observations

spaced 25 km apart along the centre latitude of the domain

(y�150 km), and shown by the grey diamonds in Fig. 1a.

This OBSN II is chosen as the default or baseline

observation network. The grey circles in Fig. 1a represent

the third observation network (OBSN III), which has 11

observations spaced 25 km apart in the north�south
direction off-centre and at x�150 km. The last observation

network (OBSN IV) combines the OBSN II and OBSN III

networks. The baseline configuration observations are

available every 3 h.

3.4. Verification data and metrics

The verification data, based on the 1-km truth model

simulation, is available at every grid point of the 10-km

coarse domain. For a given grid point on the coarse

domain, the verification value is the average of the

surrounding 10�10 grid points on the 1-km fine-scale

truth domain. The RMS errors of height and wind are

computed separately every minute. Because the signal

(amplitude) of the unforced wave or vortex is decreased

gradually over time by diffusion, the actual model RMS

error computed versus the truth field decreases with time.

Thus, a normalised RMS error is used here, which is

AN HNENKF APPROACH TO DATA ASSIMILATION - PART II 5



(b)

(a)

185

190 190 190

19
0

190
195 195

19
5

195

200 200 20
0 200

205 205 205

210 210 210

215 215 215

Initial condition

x (10km)

y 
(1

0k
m

)

5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

45 45 45

46 46

4647 47

47

4748 48

48

4849 49

49

4950
50

50
5051

51

51
5152

52

52
5253

53

53 53
54

54
54

55 55 55

Initial condition

x (10km)

y 
(1

0k
m

)

5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

Fig. 1. The truth initial height and wind fields. (a) Case I and observation networks and (b) Case II. The grey solid square in (a) denotes

the observation site of OBSN I (x�25.3, y�15.7), the grey diamonds show the observation sites of OBSN II (y�15) and the grey circles

indicate the observation sites of OBSN III (x�15). The OBSN IV includes both the grey diamonds (OBSN II) and grey circles (OBSN III).
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defined as the actual RMS error divided by the domain

standard deviation of the truth field.

However, as discussed in Part I, the RMS error is not the

only measure of success of a data assimilation technique,

because it may not reflect discontinuities or noise genera-

tion in the analysis caused by the data assimilation method.

Thus, a discontinuity parameter (DP) defined in Part I is

also used here. The DP is the average absolute value of the

RMS error difference in the analysis one time step (30 s)

before the observation time and that at the observation

time. Therefore, this measure is able to quantitatively assess

the magnitude of error spikes/discontinuities induced

following the data insertion.

3.5. Summary of experiments

As shown in Table 1, five basic experiments are conducted

in this study: (1) Control (CTRL), assimilating no observa-

tions; (2) Nudging, using traditional observation nudging

to relax the model state to the observations gradually with

a fixed nudging strength 10�4 s�1 and an isotropic

Cressman-type influence function defined by a radius of

influence (Stauffer and Seaman, 1994); (3) EnKF, assim-

ilating the observations using the EnKF; (4) HNEnKF,

assimilating the observations by the HNEnKF approach;

and (5) EnKS, assimilating the observations by the lagged

EnKS. Experiments CTRL and Nudging are single model

experiments, while Experiments EnKF, HNEnKF and

EnKS use an ensemble of model forecasts. Experiments

are conducted first for a baseline configuration using 3-

hourly observations and an observation network consisting

of an east�west line of observations spaced 25 km apart at

the central latitude (OBSN II). Observation frequencies of

hourly and 6-hourly and three other observation networks

(OBSN I, OBSN III and OBSN IV, see Section 3.3) are also

applied as sensitivity tests to the above baseline experi-

ments. The ensemble size is set to 20 for all experiments.

The radius of influence for the observation nudging used

in Experiment Nudging is specified to be the same as the

error covariance localisation length scale of Experiment

EnKF and HNEnKF defined further below. Both the

Nudging and HNEnKF experiments have a 2-h nudging

time window extending 1 h on each side of the observa-

tions. The trapezoidal temporal nudging coefficient func-

tion is defined by Stauffer and Seaman (1990) and applied

as in Part I. It has a maximum weight of 1.0 within the

centre half of the 2-h window, decreasing linearly to 0.0 at

the ends of the window.

For the ensemble-based data assimilation experiments,

to avoid filter divergence, the method suggested by Hamill

et al. (2001) is used to increase the background error

covariances somewhat by inflating the deviation of the

background members with respect to their mean by a small

amount (i.e. an inflation factor of 1.1 is used here). In

addition, an error covariance localisation method is used

following Houtekamer and Mitchell (2001), where a fifth-

order piecewise rational function (Gaspari and Cohn, 1999)

is used to scale the background error covariance. The error

covariance localisation parameter 2c [see eq. (4.10) of

Gaspari and Cohn (1999)] is set to 500 km, which is the

wavelength in Case I. Similarly, Case II has the error

covariance localisation parameter 2c set to 100 km, which

is the scale of the initial vortex.

Following Khare et al. (2008), error covariance inflation

is applied in the EnKS only to the prior estimates of the

EnKF, and it is also set to 1.1. For efficiency, a lagged

EnKS is applied here, which applies each observation

backward only to the previous observation time every 30

minutes.

4. Results

We begin by applying a baseline 24-h model dynamic

analysis assimilating 3-hourly observations from OBSN II

(east�west line of observations at central latitude) to the

wave case (Case I) and the moving vortex case (Case II)

described in Section 3.2. The performance of the HNEnKF

method is compared to that of the observation nudging and

EnKF applied separately, and also to the EnKS.

In subsequent subsections, we further investigate the

HNEnKF using a set of sensitivity tests by changing either

the observation frequency or the observation network from

the baseline configuration. The observation frequency

(OBSF) varies from 3-hourly observations (OBSF 3) in

the baseline to hourly observations (OBSF 1) and 6-hourly

observations (OBSF 6). The four types of observation

networks (OBSN) described in Section 3.3 are then tested.

4.1. Baseline results

Fig. 2 shows the normalised RMS errors of height and

wind for the set of experiments in Table 1 for the wave

Case I. Experiment Nudging fails to reduce the RMS error

of either the height or wind fields (see discussion further

below), while Experiment EnKF shows a significant error

reduction every 3 h when observations are assimilated as

evidenced by the strong RMS error decreases at the

observation times. However, a rapid increase in error is

evident soon after the observations are assimilated. This

pattern is consistent with the 6-h assimilation period results

in Fig. 1 of Fujita et al. (2007) using MM5 (Grell et al.

1994). It is also consistent with the presence of error spikes

around the observation times shown in the Lorenz system

results in Part I. By comparison, Experiment HNEnKF

combining the EnKF and the continuous nudging

approach shows the RMS error decreasing smoothly
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in time. The RMS errors of the HNEnKF experiment

are lower than those of the EnKF experiment almost

continuously after the first time the observations are

assimilated. The dark grey dash-dotted vertical lines 30

minutes apart from Experiment EnKS denote the improve-

ment in RMS error obtained by applying the next avai-

lable observation back to the previous observation time.

Since the next observation is applied backward only to the

previous observation time every 30 minutes, the normalised

RMS error of the EnKS is very similar to that of the
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Fig. 2. The normalised RMS error of Case I for Experiments CTRL (thin light grey solid line), Nudging (thick light grey solid line),

EnKF (dark grey solid line), HNEnKF (black dash-dotted line) and EnKS (dark grey dash-dotted line). The baseline configuration (OBSF

3 and OBSN II) is used for all of the data assimilation experiments. (a) Height field and (b) wind field.
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EnKF, where large error corrections are made when

observations are assimilated. Thus, the HNEnKF applied

here produces smaller RMS errors throughout the assim-

ilation period than either the EnKF or EnKS, and it also

produces smoother analyses in time than both the EnKF

and EnKS.

The normalised RMS errors of height and wind for

the moving vortex Case II are shown in Fig. 3. It is

interesting that the CTRL (using no data assimilation)

performs best for the height field from the first observation

time to the third observation time (Fig. 3a), followed by

Experiments Nudging and HNEnKF. Note that the values

for Experiments CTRL, Nudging and HNEnKF are from

single-model experiments while EnKF and EnKS represent

ensemble averages. Following the third observation time

(9 h), Experiment HNEnKF shows a clear RMS error

improvement in the height field over all the other data

assimilation schemes. The wind field (Fig. 3b), however,

responds more rapidly and decisively early in the simula-

tion period to the data assimilation methods. These results

suggest that the height field in Fig. 3a is likely to be

adjusting more to the wind-field forcing than to the height

observations directly. Unlike in Fig. 2b, Experiment

Nudging is able to reduce the wind RMS error gradually

in time compared to CTRL. As in the wave case of Fig. 2,

strong adjustments by the EnKF at the observation times

in Case II are seen in the wind field, and Experiment

EnKS has strong error corrections when observations are

assimilated. Similar to the wave case shown in Fig. 2b, the

HNEnKF approach has smaller wind RMS error than

the EnKF and EnKS, and it reduces the wind RMS error

smoothly in time with fewer and weaker discontinuities

compared to the EnKF and EnKS.

To explain why the observation nudging does not reduce

the RMS error in Case I (Fig. 2), but does decrease the

error in Case II (Fig. 3), the sums of nudging tendency

terms in each equation of eq. (5) are shown on the whole

domain for Experiments Nudging and HNEnKF at the

first observation time (3 h) for both Case I and Case II

(Fig. 4). Fig. 4a indicates that the sums of nudging

tendency terms from Experiment Nudging are quite

different from those of Experiment HNEnKF in Case I.

For instance, the sums in the u equation for Nudging are

positive on every grid point, but those of HNEnKF show

dipole patterns with positive and negative values. As

discussed before, HNEnKF reduces the RMS error suc-

cessfully while Nudging does not. Thus, the specified

nudging coefficients in Nudging do not appear to represent

the error correlations realistically in Case I. In Fig. 4b, the

sums of the nudging tendency terms in Nudging are more

similar to those of the HNEnKF in Case II. For example,

the sums of nudging tendency terms of Nudging in the

v equation have a negative maximum around grid point

(30, 15) and positive maximum around grid point (40, 14),

which are located close to those of the HNEnKF. Fig. 3b

shows both the Nudging and HNEnKF reducing the wind

RMS error, although HNEnKF has lower wind RMS error

than Nudging. Thus, the specified nudging coefficients in

Case II for Experiment Nudging are better able to capture

the more realistic error correlations computed by

HNEnKF. This demonstrates that nudging, used alone

with simple isotropic weighting, may have difficulty

adapting to the non-isotropic error structure often encoun-

tered in a simulation.

For the moving vortex Case II, the analyses of the

Truth, CTRL and the data assimilation experiments at

the end of simulation are shown in Fig. 5. The analysis of

the EnKS is not shown, since it is the same as that of

the EnKF at the end of simulation. Instead of having a

trough at around x�70 km, the CTRL for Case II has

a ridge there. The trough produced by the CTRL is

further east than the Truth and strengthens towards the

south. The HNEnKF produces the closest result to

the Truth regarding the phase, orientation and strength

of the trough, followed by the Nudging. The trough

produced by the EnKF is further east and meanders

from north to south rather than having a spatially

coherent north�south orientation as in the Truth. These

results are qualitatively consistent with those of the

normalised RMS error comparison shown in Fig. 3.

In both the wave Case I and the vortex Case II,

the baseline HNEnKF is able to produce smaller RMS

errors throughout the 24-h period than the other data

assimilation experiments (Nudging, EnKF and EnKS).

It also produces a smoother analysis in time than either

the EnKF or EnKS, because it has smaller discontinuities

around the observation times than the EnKF and EnKS.

Thus, the hybrid combination of nudging and the EnKF

produces a dynamic analysis with lower errors than the

nudging and EnKF applied separately.

Table 1. Experimental design

Experimental

name Experimental description

CTRL Assimilate no observations

Nudging Assimilate observations by observation

nudging with nudging coefficients of 10�4 s�1

EnKF Assimilate observations by ensemble Kalman

filter

HNEnKF Assimilate observations by hybrid

nudging-ensemble Kalman filter

EnKS Assimilate observations by lagged ensemble

Kalman smoother
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4.2. Sensitivity to observation frequency

In this section, the data assimilation methods are explored

with various observation frequencies or intervals using the

baseline OBSN II in both Case I and Case II, since the

performances of the data assimilation methods may vary

with different observation frequencies, and real observa-

tions typically have different frequencies. The baseline

observation frequency is every 3 h (OBSF 3), and observa-

tion frequencies of every 1 h (OBSF 1) and every 6 h

(OBSF 6) are now tested. In Fig. 6, the average RMS

error computed every minute and the DP computed
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Fig. 3. Same as Fig. 2, except for Case II.
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at every observation time for the height and wind fields for

wave Case I are shown. For each observation frequency,

Experiments HNEnKF, EnKF and EnKS have lower

average RMS errors than Experiment Nudging in both

the height and wind fields, since the specified constant

nudging coefficients poorly represent the error correlations

as discussed in Section 4.1. Experiment HNEnKF has the

lowest average height and wind RMS errors for all three

observation frequencies. Experiments HNEnKF and Nud-

ging have much smaller values of DP (fewer/smaller

discontinuities) than Experiments EnKF and EnKS in

both the height and wind fields for all three observation

frequencies, especially when observation frequencies are

every 3 h and every 6 h.
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The RMS error and DP for vortex Case II are shown in

Fig. 7. As discussed in Section 4.1, the specified nudging

coefficients for this case appear to better represent the error

correlations than those for Case I. Thus, the Nudging

experiment has similar average height RMS errors to

the HNEnKF (Fig. 7a), and similar or larger average

wind RMS errors than the HNEnKF (Fig. 7c). Experiment

HNEnKF produces lower average height RMS errors than
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the EnKF and EnKS for the three observation frequencies.

The HNEnKF has similar average wind RMS errors to the

EnKF and EnKS when observation frequencies are every 3

h and every 6 h, although it has larger average wind RMS

errors than the EnKF and EnKS when the observation

frequency is increased to 1 h. From Fig. 3b, the EnKF and

EnKS were found to have an advantage in their average

RMS errors through the first 3 h because of the ensemble

averaging compared to the single model used by Nudging

and HNEnKF, and this affects the average statistics over

the entire model period shown in Fig. 7. As in Fig. 7b, d,

the HNEnKF and Nudging show much smaller values of

DP (fewer/smaller discontinuities) than the EnKF and

EnKS in the height field (Fig. 7b) and wind field (Fig.

7d). These characteristics of the HNEnKF are attractive

for the diagnostic dynamic studies and research studies

using air-quality and atmospheric-transport and dispersion

modelling.

As mentioned in Section 3.5, the EnKS applies each

observation backward to the previous observation time

every 30 minutes. Then, to give the EnKS the greatest

advantage, the average RMS errors of the height and wind

fields can also be computed every 30 minutes. However, the

30-minute EnKS results are still similar to those presented

above (not shown). Thus, generally the HNEnKF is able to

produce lower average RMS error and improved (smaller)

values of DP than the EnKF and EnKS in Case I and Case

II regardless of the observation frequency.

The analyses of the Nudging, EnKF and HNEnKF of

Case II with OBSF 1 at the end of simulation are shown by

Fig. 8. Both the HNEnKF and Nudging produce similar

analyses to the Truth, while the trough produced by the

HNEnKF is closer in the north�south gradient to the Truth

than the Nudging. The height field from the ensemble mean

of the EnKF exhibits more short wave energy than that of

the Truth, HNEnKF and Nudging. The EnKF produces a
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Fig. 6. Height and wind RMS error and DP for Case I and Experiments Nudging, EnKF, HNEnKF and EnKS with different

observation frequencies. (a) The average height RMS error, (b) the average height DP, (c) the average wind RMS error and (d) the average
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weaker trough somewhat west than that of the Truth.

Comparison with Fig. 5 reveals that all data assimilation

experiments have improved analyses at the end of simula-

tion due to more frequent observations being assimilated.

4.3. Sensitivity to observation network

With the baseline 3-hourly observation frequency, the data

assimilation methods are now applied with the various

observation networks discussed in Section 3.3, in order to

simulate the real observation networks that have sparse

and dense data-density regions. Fig. 9 shows the average

values of RMS error and DP over the 24-h period for

Case I using the different observation networks for the data

assimilation experiments. Fig. 9a, c shows that Experiment

HNEnKF produces the smallest average RMS error in

both the height and wind fields for all four observation

networks. Fig. 9b, d indicates that the HNEnKF has the

smallest values of DP, which means the best temporal

smoothness of the dynamic analyses. The EnKF and EnKS

have much larger values of DP than both the Nudging and

HNEnKF. The EnKS usually has slightly smaller RMS

errors than the EnKF at the analysis steps due to future

observations being applied backward, and the lagged

EnKS applies the next observation backward every 30

minutes instead of every time step. This explains why the

EnKS has even larger values of DP than the EnKF. The

HNEnKF retains the benefits of the EnKF by using flow-

dependent and time-dependent error covariances that

effectively reduce the RMS error, and it also yields a

more seamless analysis by producing a smoother solution

in time with smaller/fewer discontinuities than the EnKF

by using nudging-type terms to apply the EnKF corrections

continuously in time.

Figure 10 shows the average values of RMS error and

DP for the moving vortex Case II when assimilating

observations from the different observation networks.

The HNEnKF produces the smallest average height and

wind RMS errors in OBSN II and OBSN IV. However in

OBSN I (for height and wind) and OBSN III (for wind),
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Fig. 7. Same as Fig. 6, except for Case II.
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the HNEnKF produces larger average RMS errors than

the EnKF and EnKS. This is likely because the error

reduction in the EnKF and EnKS mainly comes from

ensemble averaging, as shown in Fig. 3b in the first 3 h

when no observations are assimilated. In addition, the

observations in OBSN I and OBSN III play a much

reduced role compared to the larger number of observa-

tions along the direction of the mean flow in OBSN II and

OBSN IV. Obviously, the OBSN I and OBSN III networks

cannot detect the eastward moving vortex sufficiently.

Nonetheless, as shown in Fig. 10b,d, the HNEnKF still

has lower, more desirable DP than the EnKF and EnKS,

even with OBSN I and OBSN III.

The analyses of the Nudging, EnKF and HNEnKF of

Case II with OBSN IV at the end of simulation are shown

in Fig. 11. Regarding the phase, orientation and strength of

the trough, the HNEnKF produces the closest results to the

Truth, followed by the Nudging. The EnKF is unable to

produce a trough with coherent structure and orientation

similar to that of the Truth. Comparison to Fig. 5 indicates

that all data assimilation experiments have generally

similar analyses to those with OBSN II, while the

HNEnKF has better trough amplitude than that with

OBSN II. This is because the OBSN III added to OBSN II

to define OBSN IV cannot detect the eastward moving

vortex sufficiently; thus, the north�south line of observa-

tions in OBSN III does not provide much useful informa-

tion, and there is greater benefit from adding more

observations in time to the OBSN II east�west distribution
of observations (Fig. 8).
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Fig. 8. The height and wind fields of Case II at the end of the dynamic analysis for baseline configuration except using OBSF 1.

(a) Nudging, (b) EnKF and (c) HNEnKF.
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4.4. Relationship between ensemble spread

and forecast error

To ensure the EnKF and HNEnKF function properly, the

ensemble forecast spread is compared to the forecast error

of the ensemble mean. Instead of using scatterplots as in

Part I, we plot the range of the ensemble spread and

forecast error following Wang and Bishop (2003), because

the larger number of points and overstamps for these 2-D

model results make interpretation of scatterplots more

difficult. We start from a scatterplot of points for which the

abscissa of each point is given by the ensemble spread and

the ordinate by the forecast error for each grid point at

every analysis time. These points are then sorted in the

order of increasing ensemble spread, and then divided into

four equally populated bins. Then, the average values of

the ensemble spread and forecast error in each bin are

computed and plotted.

The relationships between the ensemble spread and

forecast error of each group of sensitivity experiments of

Case I and Case II are shown in Figs. 12 and 13,

respectively. Given different observation frequencies (Fig.

12a,b) and observation networks (Fig. 12c, d), we find that

the ensemble spread has an approximately linear correla-

tion to the forecast error with a slope somewhat larger than

1 in Case I for both height and wind fields. In Case II, we

again see the ensemble spread having an approximately

linear correlation to the forecast error given different

observation frequencies (Fig. 13a, b) and observation

networks (Fig. 13c, d). The slopes of the height field

are close to 1, while those of the wind field are somewhat

larger than 1. Therefore, for the two groups of sensitivity

experiments, the ensemble spread generally provides a

reasonable estimate of the forecast error. We emphasise

that these results are based on only two cases, and many

more cases are needed to truly assess the spread�error
relationship of an ensemble.
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Fig. 9. Height and wind RMS error and DP for Case I and Experiments Nudging, EnKF, HNEnKF and EnKS with different
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5. Analysis of dynamic balance following data

insertion

The motivation for developing the HNEnKF method is

that an improved analysis with greater temporal smooth-

ness and inter-variable consistency can be obtained if the

data are applied gradually and continuously within a model

using nudging-type terms that have been conditioned using

the error covariance matrix of the EnKF. These terms can

reduce dynamic imbalances and insertion shocks caused by

intermittent data assimilation approaches. A calculation of

the magnitude of the pressure tendencies or vertical

motions in a mesoscale model is often performed to analyse

the dynamic imbalances or noise introduced by the data

insertion (e.g. Chen and Huang, 2006). Here in the shallow-

water model, the evolution of the ageostrophic winds is

used to quantify the effects of data insertion on the model

balance.

To better investigate the impact of the data insertion on

the dynamic balance that takes place through the model

adjustment and induction processes due to few observation

systems providing both mass and wind data, we evaluate

the impact of assimilating only height observations or only

wind observations at the third hour. The baseline model

configuration using an east�west line of observations along
the mean flow (OBSN II) is applied here to both cases. The

magnitude of the ageostrophic winds is computed every

time step at each grid point for the truth state at 1-km

horizontal grid spacing and the data assimilation experi-

ments at 10-km grid spacing. The verification data

obtained by simply averaging the neighbouring 10�10 1-

km grid points from the truth to the 10-km grid are also

used to compute the ageostrophic winds (10km_VER). The

ageostrophic wind is the difference between the geostrophic

wind computed from the model (or verification data)

height field and the model (or verification data) wind field.

Then, the magnitude of the ageostrophic wind is averaged

over the domain.

Figure 14a shows the evolution of domain-averaged

ageostrophic wind speed in wave Case I when only height

observations are assimilated at the third hour. It is clearly

shown that the ensemble members using the EnKF (grey
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Fig. 10. Same as Fig. 9, except for Case II.
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lines) have dynamic imbalances/strong ageostrophic winds

following the data assimilation. The ensemble mean (black

line) also shows a discontinuity or noise burst after 3 h. By

comparison, Experiment HNEnKF (green line) has the

ageostrophic wind gradually evolving in time following

the data insertion, which qualitatively follows the truth

(blue line) and the 10km_VER but has a higher magnitude

(red line). The time evolution of the ageostrophic wind

following the data insertion represents the dynamic balance

effects of the data assimilation. The larger magnitudes

of the domain-averaged ageostrophic wind from the

data assimilation experiments, compared to the 1-km

truth, are mainly caused by coarser resolution effects,

as seen by comparing the truth (blue) to the 10km_VER

(red).

Figure 14b shows that when only wind observations

are assimilated at the third hour in the wave Case I,

a few ensemble members have a strong discontinuity

in the agesotrophic wind, but the noise burst in the

ensemble mean is not as obvious as when only height

observations are assimilated. By comparison of Fig. 14b

to Fig. 14a, the model adjustments appear to come

more from the height field observations at this time for

this case than the wind field observations. The HNEnKF

still shows the ageostrophic wind varying smoothly in

time, similar to when only height observations were

assimilated.

The domain-averaged ageostrophic wind in the vortex

Case II is shown in Fig. 15. When only height observations

are assimilated (Fig. 15a), the ensemble members of EnKF
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and their ensemble mean again have a strong discontinuity

in the ageostrophic wind. By comparison, the HNEnKF

shows a much smaller effect: the ageostrophic wind

decreases gradually following the data insertion, very

similar to that of the truth and 10km_VER. Similar to

Case I, the difference in the ageostrophic wind magnitude

between the data assimilation experiments and the truth

mainly comes from the grid resolution. When only wind

observations are assimilated (Fig. 15b), there are also

ageostrophic wind bursts in the ensemble members and

their ensemble mean, although the magnitudes of the

discontinuities are not as large as those obtained when

assimilating height observations only. The HNEnKF again

performs similarly to the truth and 10km_VER that have

the ageostrophic wind evolving gradually in time without

any large discontinuities.

Thus, the EnKF, an intermittent data assimilation

method, experiences larger dynamic imbalances and ageos-

trophic wind tendencies in the model state following the

observation time compared to the continuous HNEnKF

method. The HNEnKF is able to better maintain the

dynamic balance by gradually applying nudging-type terms
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Fig. 12. The range of ensemble spread and forecast error for the height and wind fields of the EnKF in Case I. (a) Height field with

different observation frequencies, (b) wind field with different observation frequencies, (c) height field with different observation networks

and (d) wind field with different observation networks.
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that have been computed using the error covariance matrix

of the EnKF, thus producing a more continuous and

seamless analysis in time.

6. Computational efficiency

As discussed in Part I, the EnKF, HNEnKF and EnKS

experiments utilise an ensemble forecast that is more

computationally expensive than a single model run as

used in Experiment Nudging. The EnKS is even more

CPU-intensive than the EnKF and HNEnKF and also

requires greater storage proportional to the total number of

analysis times over which the statistics are used. Similar to

Part I, the computational efficiency of these data assimila-

tion methods is discussed in this section.

Table 2 shows the CPU time cost of the various data

assimilation schemes using the baseline configuration.

The Nudging has the smallest CPU time cost, because it

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9(a) (b)

(c) (d)

spread (m)

er
ro

r 
(m

)

 

 

OBSF 1
OBSF 3
OSBF 6

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

spread (m/s)

er
ro

r 
(m

/s
)

 

 

OBSF 1
OBSF 3
OSBF 6

0 1 2 3 4 5 6
0

1

2

3

4

5

6

spread (m)

er
ro

r 
(m

)

 

 

OBSN I
OBSN II
OBSN III
OBSN VI

0 2 4 6 8 10 12
0

2

4

6

8

10

12

spread (m/s)

er
ro

r 
(m

/s
)

 

 

OBSN I
OBSN II
OBSN III
OBSN VI

Fig. 13. The same as Fig. 12, except for Case II.

Table 2. Total CPU time cost of different data assimilation

schemes with baseline configuration

Experiment Nudging EnKF HNEnKF EnKS

CPU time (s) 47 298 299 732
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Fig. 14. The domain-averaged ageostrophic wind computed for Case I for Experiments EnKF (each ensemble member in light grey, and

the ensemble mean in black), HNEnKF (green), and the 1-km Truth (blue) and the 10-km_VER (red). (a) assimilating height observations

only and (b) assimilating wind observations only.
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does not require an ensemble of forecasts. The HNEnKF

has similar CPU time cost to the EnKF, since both

involve an ensemble forecast. These results are consistent

with those of Part I. The EnKS has a CPU time cost

around 2.5 times that of the EnKF and HNEnKF.

We would expect smaller RMS error and DP of the

EnKS if it is operated as in Part I by applying future

observations backward to the initial time every time step.

The relative CPU time cost of EnKS is much smaller

here than that of Part I, because the more practical,

lagged EnKS used here only applies each observation

backward to the previous observation time every 30
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Fig. 15. Same as Fig. 14, except for Case II.
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minutes. The HNEnKF produces similar or better RMS

error and DP than the lagged EnKS, but with reduced

CPU time and storage costs.

7. Conclusions

The HNEnKF data assimilation approach, introduced in

Part I for the three-variable Lorenz system, is further

investigated here using a 2-D shallow-water model with a

20-member ensemble. The HNEnKF combines the advan-

tages of both the EnKF and nudging by applying the EnKF

gradually in time via nudging-type terms. The HNEnKF

uses the EnKF to provide flow-dependent and time-depen-

dent nudging coefficients and also includes non-zero off-

diagonal elements for better inter-variable influences from

the innovations.

A quasi-stationary wave case (Case I) and a moving

vortex case (Case II) are used to test the HNEnKF

method for dynamic analysis and NWP-type applications.

The HNEnKF in the baseline configuration (3-hourly

observations and OBSN II) generally reduces the RMS

errors through the 24-h period more than the nudging and

EnKF applied separately. Moreover, the HNEnKF retains

the benefits from the EnKF while using a continuous

assimilation to improve the model state gradually rather

than making strong corrections and discontinuities at

the analysis steps as with the intermittent EnKF assimi-

lation. Thus, it has smaller (better) values of the DP than

the EnKF. The HNEnKF also produces lower DP

(better temporal smoothness) than the reduced-cost lagged

EnKS. Moreover, the average RMS errors in the 24-h

HNEnKF simulations are comparable or lower than those

of the EnKS used in this study. The HNEnKF is

comparable in cost to the EnKF, and both the HNEnKF

and EnKF yield smaller CPU time and storage costs

than the EnKS.

Sensitivity experiments using different observation fre-

quencies (OBSF 1, OBSF 3 and OBSF 6) and observation

networks (OBSN I, OBSN II, OBSN III and OBSN IV) are

also performed. In general, the results found in the baseline

HNEnKF simulations for producing comparable or smal-

ler average RMS errors throughout the 24-h period and

smaller (better) values of DP than the EnKF and EnKS

around the analysis times are confirmed.

To ensure that the EnKF and HNEnKF function

properly, the ensemble spread is compared to the forecast

error for each group of sensitivity experiments. The

relationship between the ensemble spread and forecast

error of the ensemble mean is approximately linear with

slopes close to or somewhat larger than 1. Thus, the

ensemble spread provides a reasonable estimate of the

forecast error. Again we emphasise that many more cases

are needed to truly assess the spread�error relationship for

an ensemble and its effect on the ensemble-based data

assimilation methods, and calibration of the spread�error
relationship may also be needed (e.g. Kolczynski et al.,

2009, 2011).

The added value of the HNEnKF over the EnKF is

further investigated by analysing the effects of the data

assimilation methods on the model dynamic balance (i.e.

evolution of the ageostrophic winds) following the assim-

ilation of only wind data or only mass data. The EnKF,

as an intermittent data assimilation approach, has strong

discontinuities in the model state at the analysis times,

as shown by the bursts in the domain-averaged ageos-

trophic winds. By comparison, the HNEnKF, which

applies the error covariance information of the EnKF

gradually in time, produces a smooth evolution of the

ageostrophic wind, without any strong discontinuities

following the data insertion, more like the ageostrophic

wind in the truth and 10-km verification data. Thus, it is

demonstrated that the continuous HNEnKF produces

seamless analyses with a greater degree of dynamic balance

compared to the EnKF. Building on these encouraging

results in Parts I and II, we are now applying this

HNEnKF approach to real data in the 3-D WRF model,

and these results will be reported in another paper

(accepted by Quart. J. Roy. Meteor. Soc.).

The advantages of this continuous HNEnKF come

from the hybrid nudging technique applied to the single-

member nudging state. However, the ensemble state has

a similar insertion noise problem to the EnKF, because it is

updated by the intermittent EnKF. This imbalance in the

ensemble state may limit its ability to provide good hybrid

nudging coefficients to the nudging state. Thus, future

work should investigate decreasing the insertion noise in

members of the ensemble state on the performance of

the HNEnKF.

Future work will also explore the application of this

HNEnKF approach for improving forecasts, since the

HNEnKF was mainly investigated in dynamic-analysis

mode in Parts I and II. In a dynamic-forecast mode,

the HNEnKF could be used to better initialise and spin

up the subsequent forecasts. Both the nudging state and

ensemble state will be used together to assimilate real-time

observations during a pre-forecast period. The HNEnKF

will integrate the nudging state to the current forecast

initialisation time using the observations within this period

and the hybrid nudging coefficients from the EnKF.

The HNEnKF will then update the ensemble state from

the EnKF simultaneously. This forecast-analysis cycle can

be repeated in a real-time operational environment as the

observations become available within the pre-forecast

period.
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