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ABSTRACT

The performance of a new data assimilation algorithm called back and forth nudging (BFN) is evaluated

using a high-resolution numerical mesoscale model and simulated wind observations in the boundary layer.

This new algorithm, of interest for the assimilation of high-frequency observations provided by ground-based

active remote-sensing instruments, is straightforward to implement in a realistic atmospheric model. The

convergence towards a steady-state profile can be achieved after five iterations of the BFN algorithm, and

the algorithm provides an improved solution with respect to direct nudging. It is shown that the contribution

of the nudging term does not dominate over other model physical and dynamical tendencies. Moreover,

by running backward integrations with an adiabatic version of the model, the nudging coefficients do not

need to be increased in order to stabilise the numerical equations. The ability of BFN to produce model

changes upstream from the observations, in a similar way to 4-D-Var assimilation systems, is demonstrated.

The capacity of the model to adjust to rapid changes in wind direction with the BFN is a first encouraging

step, for example, to improve the detection and prediction of low-level wind shear phenomena through high-

resolution mesoscale modelling over airports.
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1. Introduction

Recent progress in mesoscale data assimilation has been

such that a number of weather centres run operationally

convective scale numerical models with grid mesh less

than 5 km (e.g. COSMO consortium, UK MetOffice,

Météo-France). These models are initialised by assimilating

both conventional and satellite observations, together with

dedicated data such as radial Doppler winds (Montmerle

and Faccani, 2009), radar reflectivities (Caumont et al.,

2010) or wind profiles from vertically pointing Ultra High

Frequency/Very High Frequency (UHF/VHF) radars.

However, the potential of these mesoscale data is not yet

fully exploited. For example, their spatial and temporal

distributions are thinned to avoid correlated observations

and spin-up problems. Radar reflectivity innovations are

converted into humidity profiles or diabatic heating rate

profiles before assimilation. Wind observations from UHF

radars are often not assimilated in the boundary layer due

to large discrepancies between measurements and model

counterparts. The increase in resolution of mesoscale

models below 1 km and the availability of new types of

ground-based active instruments with high temporal sam-

pling capabilities (microwave radiometers, water vapour

and wind lidars and cloud and wind radars) present new

challenges for data assimilation. Indeed, detection and

forecast of weather hazards (wind shears, wind bursts and

fog events) over sensitive areas such as airport runways

could be improved using such high-resolution numerical

systems, with obvious consequences in terms of security

and economy. The present study describes a preliminary

investigation in this area by assimilating, at a high-

frequency, low-level simulated UHF wind profiler

observations into a subkilometric mesoscale model.

Three main assimilation techniques are currently used

for operational mesoscale prediction models: three-

dimensional variational (3-D-Var), four-dimensional varia-

tional (4-D-Var) systems and nudging. The ensemble

Kalman filter is a promising data assimilation system that
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is used operationally with global models (e.g. Houtekamer

et al., 2005). This method is still under development for the

mesoscale but provides encouraging results with pre-

operational systems (e.g. Bonavita et al., 2010; Torn and

Hakim, 2008). In 3-D-Var systems, the time dimension

of observations is not accounted for. However, the Incre-

ment Analysis Update (IAU; Bloom et al., 1996) method

incorporates analysis increments as a continuous forcing

over a period of time, but these increments need to

be computed first by a data assimilation system. Four-

dimensional variational systems provide an analysis con-

sistent with the model dynamics and all observations over

a given time window. Nevertheless, the required linearisa-

tion of physical processes can be questionable at subkilo-

metre scale (e.g. cloud microphysics). Nudging schemes

are simpler to develop but rely on empirical coefficients

that are more difficult to optimally define for a particular

situation than background error covariance matrices

(Zou et al., 1992). An advantage of the nudging over

3-D-Var is that it accounts for model dynamics in order to

fit observations. Recently, Auroux and Blum (2005)

proposed a new nudging technique: back and forth nudging

(BFN). It consists of iterative model adjustments towards

the observations through a series of forward and back-

ward nudging integrations. Such a BFN method could be

applied to IAU, but it would require an assimilation system

(e.g. 3-D-Var) to compute the analysis increments. The

BFN algorithm aims at determining an optimal initial

condition by considering all available data over a time

window as is done by a 4-D-Var. Indeed, Auroux and

Blum (2008) found the BFN compared favourably against

4-D-Var with simple models (Lorenz model, Burgers

equations, shallow water model). One objective of our

study is to examine the BFN with a more realistic

numerical model: the atmospheric mesoscale model

Meso-NH (Lafore et al., 1998). In this preliminary

investigation, only simulated observations are considered

in order to control the solution where the BFN should

converge. We chose low-level wind observations to restrict

the relevant physical processes to turbulence in the

planetary boundary layer. Moreover, a number of numer-

ical simulations with Meso-NH at 500m resolution have

shown that this model has some skill in forecasting low-

level wind shear events, although not necessarily at the

proper location or the correct time (Bidet and Schwartz,

2006; Boilley et al., 2008). In a future study, we plan to

examine how the assimilation of wind profiler data could

allow Meso-NH to better predict these weather hazards.

In Section 2, the mesoscale model is presented together

with the BFN technique. Section 3 describes the experi-

mental design. Results from data assimilation and sensi-

tivity experiments are shown in Section 4. In particular, the

BFN is compared with the standard nudging technique.

Conclusions and perspectives from this study are provided

in Section 5.

2. Model and BFN algorithm

2.1. Description of the model

The numerical simulations are performed with the non-

hydrostatic Meso-NH model (Lafore et al., 1998) which is

based on the anelastic approximation with purely explicit

second-order accurate spatial and temporal discretisations.

The prognostic variables are the three wind components,

dry potential temperature, the mixing ratio of six different

classes of water and turbulent kinetic energy. The model

contains a comprehensive set of physical parameterisation

schemes to describe subgrid scale processes. In particular,

the turbulent flux computations use the Cuxart et al. (2000)

method, and can either be purely vertical or fully 3-D.

In the former case, the mixing length is given by the

Bougeault and Lacarrère (1989) formulation and in the

latter case by Deardorff (1972).

2.2. BFN algorithm

The BFN algorithm introduced by Auroux and Blum

(2005) consists of repeatedly performing forward and

backward integrations of the model with relaxation (or

nudging) terms, using opposite signs in direct and inverse

integrations, so as to make the backward evolution

numerically stable. The aim of the nudging term is to

assimilate data by constraining the model dynamical

tendencies to draw towards observations. After each

iteration (which consists of a forward integration followed

by a backward integration), an estimate of the initial

condition of the system is obtained. The forward and

backward integrations (with the relaxation terms) are

repeated until convergence is reached. This method allows

the model to find a trajectory over a given time window

that is both consistent with the dynamics and the avai-

lable observations. We refer to Auroux and Blum (2008)

for further details of the algorithm. The Meso-NH

equations for each prognostic variable X have been

modified to take into account the nudging towards

available observations, Yo:

@X

@t
¼ FðXÞ � 1

s

P
W 2

xyzt½HðXÞ � Yo�
P

Wxyzt

(1)

where F represents the dynamical and physical model

tendencies. The second term on the right-hand side is

the nudging term; the summation is over all observations.

The nudging time constant, t, determines the rate at

which the model variable converges towards observations.
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The observation operator, H, gives the model equivalent

of the observations (in our study, H is a simple spatial

interpolation scheme). Details about the spatial and

temporal weighting function, W, that spreads the observa-

tion departure [H(X) �Yo] back to the model space

are given in the next section. Nielsen-Gammon et al.

(2007) reported that ‘observation nudging’ is appropriate

when high-frequency observations are available or when

the analysis cannot resolve important features in the model

simulation. They also mention that the particular form

of the nudging weight (square value in the numerator)

suggested by Benjamin and Seaman (1985) reduces the

strength of the nudging when multiple observations affect

a given model point.

The backward nudging consists of integrating the model

equations backward in time starting from the state

obtained at the end of the forward model integration.

The backward equations of the model state eX with a

nudging term can be written:

@ eX

@t
¼ F 0ðeXÞ þ 1

s0

P
W 02

xyzt Hð eX Þ � Yo

h i

P
W 0

xyzt

(2)

The relaxation constant, t?, and the weighting function,W?,
can be different from values specified in the forward

integration. Indeed, Auroux and Blum (2008) recommend

using a t? smaller than t in order to stabilise the backward

integration when irreversible (dissipative) processes are

present in the model equations.

3. Experimental design

The objective of this study is to examine the suitability

of the BFN algorithm for a high-resolution numerical

atmospheric mesoscale model and high temporal frequency

observations, knowing that direct nudging schemes are

currently tested in that context (COSMO consortium;

Hug et al., 2010).

3.1. Domain and initial conditions

The initial conditions for the assimilation experiment are

obtained after 4 h of simulation in the following config-

uration. The experimental domain has been defined over

flat terrain without heat and water exchanges between the

surface and the atmosphere. The horizontal resolution is

500 m with 40 grid points in each direction. The domain

size was chosen large enough to avoid increments reaching

boundaries over the assimilation window. The vertical

resolution varies with height from 10m above the ground

to 800m in the stratosphere, with 60 levels in total. The

top of the model is at an altitude of 14 km. The resolution

in the boundary layer is such that 32 levels are located

below 2 km. The model time step has been set to 6 s.

The initial conditions are horizontally homogeneous, the

horizontal wind has a zonal direction and an intensity of

1m s�1 with a reduction in the boundary layer using a

log-shaped profile. The potential temperature is set equal

to the surface temperature (281K) below 1 km (neutral

stability) with a stable profile in the troposphere. The water

vapour mixing ratio is set to zero and moist physical

processes are not activated in the model. The normal

velocity component at the lateral boundaries is computed

using a wave-radiation open boundary condition proposed

by Carpenter (1982) with a phase speed value set to the

normal velocity. The tangential velocity and all the other

prognostic variables are extrapolated from the interior

at outflow conditions. Similarly, inflow conditions are

specified at the boundary from large-scale values. Given

the small size of the domain and the need to reach a

stationary solution when no data are assimilated, the effect

of the Earth’s rotation has been neglected. The vertical

diffusion scheme is the only physical process activated in

the model, and it uses the Bougeault and Lacarrère (1989)

mixing length formulation. This choice is justified by the

experimental design (observations in the lower troposphere

and a short temporal assimilation window). This simplified

model configuration allows to start an examination of

the influence of (dissipative) physical processes on the

BFN algorithm, without the full complexity of other

parameterisation schemes available in Meso-NH.

3.2. Data assimilation experiments

Backward integrations of atmospheric models have

already been performed in the context of digital filtering

initialisation (Lynch and Huang, 1992) and data assimila-

tion [quasi-inverse algorithm proposed by Kalnay et al.

(2000)]. In order to avoid computational blow-up, the

model can either be run adiabatically or the sign of the

dissipative terms can be changed. The solution proposed by

Auroux and Blum (2005) is to keep the model equations

unchanged, but to increase the weight of the nudging

term in the forcing tendencies [i.e. the factor t? defined in

eq. (2) should be much smaller than t defined in eq. (1)].

The current implementation of the BFN algorithm in

Meso-NH is such that in the backward integration all

physical processes are switched off. This approach allows

the use of the same time constant t in the direct and

retrograde integrations of the model. This choice has some

similarities with the incremental approach of variational

data assimilation (Courtier et al., 1994) which solves the

minimisation with a simplified linearised numerical model.

The weight Wxyzt of the nudging coefficient defined in

eq. (3) allows the influence of a given observation to be

distributed in space and time. It has the same role as the
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gain matrix in Kalman filters and variational assimilations.

It is a function of the difference in 3-D space and time

between the observation location and the grid point

location, and is expressed as the product of a horizontal

weightWxy, a vertical weightWz and a temporal weightWt:

Wxyzt ¼Wxy �Wz �Wt (3)

The horizontal weight is defined as a function of the distance

d between an observation and a model grid point with a

scale radiusRxy following an exponential correlation model:

Wxy ¼ exp � d2

R2
xy

 !

(4)

The same model as eq. 4 is used for the vertical weight,

with a scale radius Rz. The temporal weight Wt is defined

as a function of a time window half-width T. The weight

is defined as 1 when the model is within T=2 of

the observation time, 0 when it is beyond 1:5� T of the

observation time and a linear transition from 0 to 1

(or 1 to 0) when the model is between �1:5� T and

�0:5� T (or 0:5� T and 1:5T) of the observation time

(Fig. 1).

We have considered the assimilation of simulated

horizontal wind observations over an assimilation window

of 1 h. In order to mimic the vertical extent of data from

a UHF wind profiler, we have assumed that observations

are provided from 100 to 3000m above the surface, with

a temporal availability of 10min. In a first set of experi-

ments, a single profile located at the centre of the domain

with a constant direction (zonal wind) and intensity of

2m s�1 (except near the surface) is considered. These

experiments have been carried out to examine the conver-

gence of the BFN and its sensitivity to the various tunable

input parameters. In a second set of experiments, a steady

wind rotation is assimilated to demonstrate the capacity

of the BFN algorithm to improve the model simulation

of wind shear events.

Typical values of t vary between 1000 and 10 000 s

(Stauffer and Seaman, 1990). Stauffer and Seaman (1990)

argue that t should be similar in magnitude to the slowest

adjustment time scale of the relevant forcing tendencies F.

In the present experimental set-up, it has been set to 1000 s.

Similarly, the scale radius is set to Rxy�1500m on the

horizontal and to Rz�100m on the vertical. The sensitivity

of the results to these specifications is assessed below.

4. Numerical results

4.1. Observations with a constant wind

We first study the numerical convergence of the BFN algo-

rithm towards a simulated observation wind profile with

a westerly direction (i.e. uobs�2m s�1 and vobs�0m s�1)

located at the centre of the experimental domain. Observa-

tions are provided at each model level between 100 and

3000 m. We consider observations extracted at the end

of a reference 4-h simulation (considered as the truth)

initialised with a constant value of 2m s�1 above 1000m,

values decreasing towards 0 at the roughness length level

(z0�1 cm), following a log-shape profile. The vertical model

resolution is around 25m below 500m, which compares

well with the vertical resolution of a UHF wind profiler

(around 35m). Above 500m the vertical model resolution

becomes coarser with values around 200m at 3000 m.

The assimilation window is set to 1 h and the temporal

weight Wt is set to 1 (the model is continuously forced

towards the same observation profile), to examine the

behaviour of the BFN in a stationary regime (as if

the same wind profile was observed at each time step).

The horizontal size of the computational domain, the

location of the observed wind profile in the middle of the

domain and its intensity, together with the assimilation time

window, have been chosen such that the lateral boundary

conditions do not affect the behaviour of the nudging

scheme.

4.1.1. Convergence of the BFN. Figure 2 shows the

evolution of the mean absolute difference between the

zonal wind fields of two consecutives iterations, for all

Fig. 1. Evolution of the temporal weight Wt for two consecutive observations.
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the vertical levels concerned by the nudging and all the

horizontal grid points, for 10 BFN iterations. It shows that

during the five first iterations of the BFN, the difference

with the previous state is reduced by more than 90% while

the five following iterations only induce a gain of 2.5%.

For that reason the following experiments are limited to

five BFN iterations. Since the gain is limited from the fifth

iteration to the tenth, this set of iterations defines the

stationary regime of the BFN method.

We then define a global measure for the BFN conver-

gence that is a weighted root mean square error [RMSE(t)]

using the horizontal weight Wxy of the nudging coefficient:

RMSEðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

Wxy ðut � uobsÞ
2 þ ðvt � vobsÞ

2
h i

P
Wxy

v
u
u
t

(5)

where the summation is over all model grid points on the

horizontal and over all vertical levels between 100 and

3000m. This formulation gives a stronger weight to grid

points located close to the observations, as they are most

influenced by the nudging. Figure 3 shows the evolution of

the RMSE(t) over the assimilation window for five itera-

tions of the BFN. After one iteration, the direct nudging

has decreased the error by 0.23m s�1, with a fast decrease

Fig. 2. Evolution of the mean absolute difference between the zonal wind fields of two consecutive iterations, for all the vertical levels

influenced by the nudging and all the horizontal grid points, for 10 BFN iterations.

Fig. 3. RMSE between BFN iterations (five iterations) and the

true wind profile over the assimilation window (constant wind

observation). Each thick solid line represents a direct nudging

integration and each thin solid line represents a retrograde nudging

integration.
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during the first half of the period and a slower reduction

afterwards. The backward nudging contributes to a

further decrease of the error by 0.07m s�1. The following

iterations continue to reduce the value of RMSE(t) but

at a slower rate. After five iterations of the BFN, the

initial error has been reduced by 40%. Auroux (2008)

reported a similar convergence rate in a shallow water

model forced with perfect observations. It is encouraging

that the backward integration significantly reduces the

error remaining after each direct nudging integration, and

that the subsequent direct model integrations also generate

a more accurate solution. Except for the first direct

integration, the error minimum is obtained in the middle

of the assimilation window. This behaviour is consistent

with a strong constraint variational assimilation, where

the closest fit of a model solution to observations is found

at the mid-point of the assimilation window, and the

farthest fit occurs at the start and finish of the window

(Talagrand, 1999).

The error reduction in the zonal wind is examined

further at the observation point for an arbitrary altitude

(2000 m) above the boundary layer (Fig. 4). This diagram

shows the difference ðuobs � utÞ at the beginning and end of

each assimilation window (black bars), and also in the

middle (grey bars). One would expect the best fit to

observations for that particular location due to small

turbulence effects above the boundary layer and to the

horizontal scale radius centred on the observation location.

This is indeed the case in that the initial error of 1m s�1

is reduced to 0.38m s�1 after one BFN iteration (i.e. one

forward integration followed by a backward integration).

Each iteration brings a further reduction of the error.

Almost no changes can be noticed by the last iteration

(small reduction of 0.01m s�1), showing that the algorithm

has converged at that particular location. When examining

the error in the middle of the time window, it appears

that the model has reached the observed value of

2m s�1 after the second iteration. At the next iteration,

the model slightly overshoots the observation by 0.05m s�1

since the error has changed sign. Then, the error is slightly

reduced by the subsequent iterations. The overshooting

of the model at the observed location (Fig. 4) allows

the surrounding points to better fit the observation, as

shown in the evolution of the global RMSE(t).

Fig. 4. Observed minus modelled zonal wind at observation location during the BFN iterations (at an altitude of 2000m). Black bars

correspond to values at both ends of the assimilation window, and grey bars correspond to values at the middle of the assimilation window.

Vertical lines allow to distinguish between forward and backward model integrations.
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The effect on potential temperature of wind assimilation

is negligible. The maximum difference in potential tem-

perature field between initial time and after 10 iterations is

about 2.10�2 degrees.

4.1.2. Sensitivity to the nudging time scale. In order to

examine the contribution of the nudging term to the

dynamical model tendencies, the budget terms for the

momentum equations have been computed at each model

level, and integrated temporally every minute (10 model

time steps):

@qu

@t
¼ @qu

@t

� �

advx

þ @qu

@t

� �

advy

þ @qu

@t

� �

pres

þ @qu

@t

� �

turb

þ @qu

@t

� �

nudg

The subscripts ‘advx’, ‘advy’, ‘pres’, ‘turb’ and ‘nudg’

correspond, respectively, to the contributions of advection

along x, advection along y, pressure gradient, vertical

turbulent diffusion and nudging. The overline operator

represents the spatial and temporal averages of the

tendencies. Other budget terms are not examined here

because they represent a negligible contribution to the total

tendencies. The budget terms are examined for three values

of the nudging time scale t, 500, 1000 and 2500 s, at two

particular model levels within and above the boundary

layer (150 and 2000m). To examine the magnitude of the

individual terms, their absolute values are shown in

Fig. 5 for five iterations of the BFN. For all values of t,

except at the beginning of the first iteration, the nudging

term is rather small compared with the advection and

pressure terms. A rapid mass adjustment to wind changes

imposed by the nudging can be seen on the pressure term

at the beginning of the first iteration. The large initial

contribution of the pressure term which counterbalances

the nudging term decreases when t increases. With a value

of t�500 s, a stationary solution is obtained at the end

of the first BFN iteration, whereas with t�2500 s after

Fig. 5. Evolution of the budget terms (absolute values) from the zonal wind dynamical equations at two model levels (top row �
150m and bottom row �2000 m) for three values of the nudging time constant t (left column �500 s, middle column �1000 s and right

column �2500 s). The horizontal axis represents the time over the ten 1-h model integrations (five direct runs and five retrograde

runs in alternance). The existence of discontinuities for the turbulence term is the consequence of adiabatic backward integrations of

Meso-NH.
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five BFN iterations an increase of the advection terms

can still be noticed. As shown previously in Fig. 3, with

t�1000 s the stationary regime (defined in Section 4.1.1) is

reached after four BFN iterations. The rather large value of

the pressure gradient at the beginning of each model

integration highlights a model imbalance between the

wind and mass fields. This is the result of the method

used to integrate the model Meso-NH backwards. Instead

of setting the model time step to a negative value, the

wind components are inverted. Since the temperature and

pressure fields are not modified accordingly, an initial

adjustment process takes place during the first 2min of

each model integration. The fluctuations of the pressure

gradient tendencies during the first model time steps are

about 10% of the actual values (Fig. 5). Temperature and

wind output fields examined after 10min of model integra-

tion (not shown) did not reveal any sign of imbalance

(such as noise or gravity waves). The strength of this

imbalance is indeed related to the value of the nudging time

constant. If the imbalance could be an issue (e.g. for

less idealised meteorological situations), a solution would

be to increase the time constant t. Another option would

be to revise the strategy for the backward integration

of the model.

The above results show that regardless of the value of t

(between 500 and 2500 s), the nudging tendencies represent

a small contribution to the momentum budget except at the

beginning of the first model integration, started from an

equilibrium state. The BFN being an iterative technique,

a similar fit to observations can be reached for large values

of t when increasing the number of iterations. In the

following, the value of t�1000 s is kept since it allows

the nudging term to remain a small contribution to the

dynamical equations while achieving a rapid convergence

of the BFN technique.

4.1.3. Horizontal wind increments. Horizontal wind in-

crements produced by the BFN along the various iterations

are displayed at 2000m in Fig. 6. After the first forward

integration, a zonal wind increase of about 0.5m s�1 is

noticed downstream of the observation, and is extending

about 5 km eastwards. This spatial extent is consistent with

the imposed horizontal scale radius of 1500m. After the

first backward integration, this structure has intensified

and is located upstream of the observation location. After

four iterations, a dipole structure of the increments is

noticeable with two vortices generated North and South of

the observation, associated with slower westerly flows

corresponding to the model dynamical response to the

nudging term. Since only one observation is assimilated at

each model level, the increments reflect the horizontal

structure of ‘equivalent’ background error covariances

as in a variational data assimilation system. Their structure

is consistent with the simple 2-D formulation proposed

by Daley (1991), assuming an isotropic and completely

non-divergent flow. Indeed vertical velocity increments

produced during the BFN are small (about 1 cm s�1)

and restricted to levels with an observation available

(100 and 3000m). This simple experiment shows the

capacity of nudging to develop balanced wind increments

(Barwell and Bromley, 1988), using the model dynamics

and a homogeneous nudging weight Wxy. The dynamics

moves also the increments downstream of the observation.

When examining the increments of the zonal wind intensity

at the end of the first backward integration (Fig. 7), a

similar structure of increments is noticed, with larger

magnitude and a position upstream the observation loca-

tion. Such behaviour is typical of 4-D-Var assimilation

that allows increments at the beginning of the time window

to be created upstream of the observation when available

later in the time window, generating the so-called flow-

dependent structure functions (Rabier et al., 1998). The

westward propagation of this increment with a slight

modification in magnitude is clearly shown when examin-

ing its structure and location after the second forward

model integration. This explains why the RMSE is mini-

mum in the middle of the assimilation window, since the

largest corrections are located near the observation,

whereas before that time the maximum is upstream and

subsequently downstream.

4.1.4. Sensitivity to the vertical length scale Rz. Given

the horizontal size of the domain, the influence of the

horizontal radius Rxy has not been studied. Indeed, a

significantly larger value than 1500m would produce

increments close to the lateral boundaries of the domain,

requiring either a larger domain or a weaker mean flow

intensity. In practice, the value of Rxy should depend upon

the location of the instrument, with larger values over flat

areas than near coastlines or mountainous regions. It could

be derived from an ensemble of forecasts as it is done in

operational systems for the estimation of the background

error covariances.

On the other hand, we have examined the influence

of the vertical radius Rz. The value of 100m set in the

previous experiments has been reduced to 10m in a

sensitivity study. When Rz�10m, each simulated observa-

tion influences only one given level. Such an assumption is

probably reasonable for UHF wind profiler data which

have a vertical resolution around 35m, higher than that

of most numerical models. Since the observed wind profile

is uniform above 1000m the influence of Rz can only be

noticed below that level where the wind intensity varies

with height. Wind profiler instruments cannot provide
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useful data below around 100m. Therefore, it is interesting

to examine if an imposed vertical correlation of 100m

could be useful for retrieving near surface wind. The

evolution of the wind profile at observation location is

shown in Fig. 8, for two BFN experiments with Rz�10m

and Rz�100m. After one forward integration, with

Rz�10m a better adjustment is noticed above 100m since

each level is only influenced by the observation towards

which it should converge, whereas with Rz�100m each

model level also sees the influence of observations below

and above, imposing an implicit smoothing. Below 100m,

the lack of downward influence of the first observation

above the ground with Rz�10m leads to a slower wind

speed increase with respect to Rz�100m. In the first

backward integration, the nudging term, with Rz�100m

having a contribution down to the surface, allows the

profile to get closer to the observation. This is also the case

with Rz�10m above 100m. Below that level, the vertical

wind structure shows unrealistic features only in this

model integration. During the next forward integration,

the turbulence removes the spurious vertical gradients

noticed in the backward integration with Rz�10m, and

the resulting profile after 1 h is similar below 100m to

the one obtained with Rz�100m.

From the above results, it appears that the influence

of low-level observations down to the surface helps to

produce realistic model fields in areas where the physical

processes are important in the forward integration and

(a) (b)

(b) (d)

Fig. 6. Wind vector increments at 2000m during the BFN [first forward integration (a), first backward integration (b), fourth backward

integration (c) and fifth forward integration (d)]. Maximum vector represented on each graphic legend corresponds to 1.04m s�1. The ‘X’

corresponds to the observation location.
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switched off in the backward integration. On the other

hand, the fit to the observations is more difficult with

Rz�100m in regions with significant vertical gradients

(below 1000m). A possible solution to this problem would

be to keep a small vertical length scale radius for the

wind profiler observations and to include surface wind

observations.

4.1.5. Impact on short-range forecasts. To assess the

ability of the model to maintain the wind increase

produced by the assimilation of the observed profile,

forecast experiments were performed. The impact of the

BFN assimilation system is compared with the nudging

effect. For that purpose, three forecast experiments using

three different initial conditions were run. The first is

the reference experiment starting from initial time and

performed without data assimilation. The values obtained

at time t of this experiment are noted (utref, vtref).

The second forecast experiment starts from the model

solution obtained at the end of the assimilation window

after the direct nudging (equivalent to 0.5 BFN iteration).

The last forecast experiment uses the solution obtained

after the forward in time part of the fourth BFN iteration

(4.5 iterations) defined hereafter as (u0, v0). We define a

normalised improvement factor as:

IF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðuft � utrefÞ

2 þ ðvft � vtrefÞ
2

P
ðu0 � urefÞ

2 þ ðv0 � vrefÞ
2

s

Fig. 7. Same as Fig. 6 but for the zonal wind increments.

10 A. BOILLEY AND J.-F. MAHFOUF



where (uft, vft) is the wind field at time t of the second

(nudging) or third (BFN) forecast experiment. Figure 9

shows the evolution of IF over 4 h. As the domain is rather

small, the wind changes are mostly carried out of the domain

by advection through the eastern boundary. Moreover, the

western boundary maintains a constant value of uref, forcing

the model towards this state. Both simulations maintain the

initial value of IF during the first hour of the integration.

After that time a significant decrease in the improvement

factor is noticed, and it is reduced from 0.95 to 0.35 during

the next hour for the BFN. This corresponds to the time

when the area of maximum wind increase reaches the

eastward boundary of the domain. A much slower decrease

takes place afterwards. The direct nudging has a smaller

initial IF because it has produced smallerwind increases than

the BFN. Therefore, with a slower advection term, the

analysis increment is maintained within the experimental

domain over a longer period. The decrease is then slower

during the second hour of simulation, but the IF remains

lower for the direct nudging than for the BFN.
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Fig. 8. Influence of the vertical length scale Rz on zonal wind profiles at observation location during the first iterations of the

BFN. The dashed line indicates the observed profile, the solid line indicates the model profile from a nudging with Rz�10m, the dash-

dotted profile indicates the model profile resulting from a nudging with Rz�100m. Top left: profiles at initial time, top right: profiles

after one forward integration, bottom left: profiles after one backward integration, bottom right: profiles after the second forward

integration.
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4.2. Observations with a wind rotation

In order to examine the adjustment of the model initial state

towards a rapidly changing wind direction, as could occur

with low-level wind shear events, the previous westerly wind

observation profile of 2m s�1 has been progressively

rotated by 908 counterclockwise within an hour. A set of

seven observations sampled every 10min and starting at

initial time are ingested in the nudging scheme with a 5min

temporal window T. Figure 10 shows the evolution of the

horizontal wind at the end of forward and backward

integrations of the BFN. Starting from a uniform zonal

wind (Fig. 10a), the direct nudging leads to a southwesterly

wind at the observed location, and up to 5 km downstream

with a non-negligible increase in wind intensity (Fig. 10b). A

wind increase is also noticed South-West of the observa-

tions, which is compensated by a wind decrease in the

North-West and south-East regions near the observation.

After two BFN iterations (Fig. 10c), the region of westerly

wind with increased intensity at the observed location (at

time t�0) is surrounded by an area of southwesterly wind in

the lower left corner of the domain. This wind structure

reveals that, at the initial time, information on the wind

rotation present in ‘future’ observations is obtained by the

backward integration of the model. The next direct integra-

tion (Fig. 10d) intensifies and propagates the patterns

noticed at time t�0 westwards. At the observed location,

it can be seen that the wind has a more pronounced

southerly component than after the first direct nudging.

The spatial extent of the wind modification is about 5 km in

each direction, which is compatible with the horizontal scale

radius (1.5 km) and with the mean advection time

(4 kmh�1). The existence of stagnation areas close to the

observed location (northwestwards and southeastwards)

reveals that the nudging constraint does not prevent the

model dynamics from generating increments consistent with

its equations. The improvement factor IF computed during

a 4-h model forecast remains above 0.40 during the first

180min for the BFN which correspond to the maximum

value of the IF maintained for 80min for the direct nudging

(Fig. 11). The zonal wind component has increased less than

in the previous experiment (at the expense of meridional

wind changes), and there is a southwesterly dominant flow

in the central part of the domain (rather than a westerly

flow). As a consequence, increments generated during the

assimilation experiments are advected north-eastward and

then carried out of the domain, through the eastern

boundary, more slowly.

5. Conclusions and perspectives

The use of high temporally resolved ground-based observa-

tions (a few minutes) is still a challenge for current

operational Numerical Weather Prediction systems, since

it requires efficient data assimilation systems within high-

resolution numerical models. The present study makes

preliminary steps in this research area. A new data

assimilation technique, called BFN, proposed by Auroux

and Blum (2005) which fits a model trajectory to available

observations over a given time window through iterative

direct and backward integrations of a numerical model is

tested. The BFN has been examined with the atmospheric

numerical mesoscale model Meso-NH (Lafore et al., 1998).

This technique has similarities to 4-D-Var, but is much

simpler to implement. This method was successfully

examined with rather simple models, but not yet with

more realistic numerical models including diabatic

(irreversible) processes.

First, the BFN is implemented in Meso-NH and tested

against simulated observations in order to control its

behaviour. The model has been run at small horizontal

scale (500m), and over a short assimilation window (1 h),

using low-level wind profile data. It is shown that the

BFN is more efficient at correcting the model state than

direct nudging since it allows the observations to be seen

several times by the model trajectory. The backward

integrations allow the observation information to be

propagated upstream, whereas the direct nudging can

only propagate the information downstream. With a

single wind profile observation, it is shown that the

convergence of the BFN is reached in five iterations.

Fig. 9. Improvement factor (departure in RMS from the initial

state) during a 4-h forecast after a direct nudging and a BFN

(experiment with constant zonal wind).
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The contribution of the nudging term to the momentum

equations is examined and found to have a smaller

magnitude than advection terms, and of comparable

magnitude to the vertical diffusion tendencies. Despite

running the backward integration with an adiabatic

version of the model the convergence is not hampered,

even though spurious features have been observed near

the surface when no observations are assimilated below a

certain level. Finally, an experiment with a rotation of the

wind (908 in 1 h) demonstrated the ability of the BFN to

find a solution compatible with both the model equations

and the observations varying rapidly in time. Forecast

integrations subsequent to the analysis period have shown

that wind changes can be maintained in the model for

around 2 h, corresponding to the advection time through

the eastern lateral boundary of the domain.

It is planned to examine the behaviour of the BFN with

Meso-NH on real meteorological situations. The surround-

ings of the Nice airport are of particular interest because of

the availability of an operational wind profiler and

frequent low-level wind shear hazards. The initial condi-

tions will be taken from an operational atmospheric

analysis and surface conditions will be realistic (orography

and physiography). First, modelled profiles shifted in time

and considered as truth will be assimilated to determine the

coefficients to be applied for real conditions and then,

observed profiles will be assimilated with the BFN techni-

que. In both cases, particular attention will be paid to the

Fig. 10. Wind vector at 2000m during the BFN iterations with an observation having a 908 rotation in 1 h (from westerly to south-

erly direction). (a) At initial time, (b) after one forward integration, (c) after two backward integrations and (d) after three forward

integrations. Maximum vector represented on each graphic legend corresponds to 1.04m s�1. The ‘X’ corresponds to the observation

location.
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influence of the nudging term compared with model

tendencies. Indeed, the nudging relaxation and weighting

terms (responsible of the nudging term influence) include

the observations and guess errors as well as horizontal

correlation. During backward integrations on real cases,

the diffusion term will keep the same sign but tests could

be done with an inverted sign. With experiments involving

real cases, we would like to address the question if high

temporal data provided by a wind profiler can modify the

initial state of the numerical model to produce better

short-range forecasts (B3 h) of wind shear events. This is

important over strategic areas like airports, wind farms and

for air quality forecasts.
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