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ABSTRACT

We compare the GLAMEPS system, a pan-European limited area ensemble prediction system, with

ECMWF’s EPS over Belgium for an extended period from March 2010 until the end of December 2010.

In agreement with a previous study, we find GLAMEPS scores considerably better than ECMWF’s EPS. To

compute the economic value, we introduce a new relative economic value score for continuous forecasts. The

added value of combining the GLAMEPS system with the LAEF system over Belgium is studied. We conclude

that adding LAEF to GLAMEPS increases the value, although the increase is small compared to the

improvement of GLAMEPS to ECMWF’s EPS. As an added benefit we find that the combined GLAMEPS-

LAEF multi-EPS system is more robust, that is, it is less vulnerable to the (accidental) removal of one of its

components.
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1. Introduction

The last decade several mesoscale EPS systems have

been developed in Europe running over domains that

cover large parts of Europe. Without being exhaustive,

we list the following systems in Europe: the GLAMEPS

(Iversen et al., 2011), the ALADIN HUNEPS (Horányi

et al., 2011), LAEF (Wang et al., 2011a), SREPS

(Garcı́a-Moya et al., 2011), MOGREPS (Bowler et al.,

2008), the NORLAMEPS (Aspelien et al., 2011) and the

COSMO-LEPS (Montani et al., 2011). These EPS systems

are developed in the international collaborations of the

European Numerical Weather Prediction (NWP) consortia.

For instance, the ALADIN HUNEPS and the LAEF

system are developed in the ALADIN consortium and

the COSMO-LEPS in the COSMO consortium. The

GLAMEPS on the other hand is a collaboration between

researchers of the HIRLAM and the ALADIN consortium.

There is a lot of diversification between these systems.

First they run on different domains, which overlap each

other but never entirely. Secondly, the systems are based on

different limited area models, most of them developed

within the European NWP consortia. The SREPS, for

instance, uses five different models: HIRLAM (HIRLAM

Consortium), HRM (DWD), the UM (UKMO), MM5

(PSU/NCAR) and COSMO (COSMO Consortium),

whereas HUNEPS is exclusively based on the ALADIN

model.

At the RMI we have contributed to both the development

of GLAMEPS and LAEF, and thus the data produced by

both systems are currently available at the RMI, albeit in a

pre-operational mode, and the model domains of both

systems cover Belgium. Product development can thus be

based on the forecast data of both systems.

For specific applications one does not always need to have

the full data of the EPS over the whole domain. An example

is wind-energy applications, where only the output of the

wind is needed at the height of the wind turbine. Delivering

such data from all the members of different ensemble

systems, for such singular locations, does not require a

huge data set to be transferred, at least not compared to the

full sets representing the model states of the members.

Given that there already exist so many EPS systems

within the ALADIN and HIRLAM consortia, it seems

more advantageous for the RMI to use the available model

output of the existing models rather than to develop another

Belgian mesoscale EPS system, and, it seems, at the same

time, a more efficient use of resources to contribute to the

GLAMEPS and LAEF. Research is needed to study which

data to use and how to optimally use the data, in

combination with robustness studies. The present paper
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presents a first study of this. Here, we study only the data

from the GLAMEPS, LAEF and ECMWF EPS ensembles,

correct them using a simple bias correction, and combine

the ensembles by adding all the members together with

equal weight. More advanced forms of combining and

calibrating the ensembles and study of data from other

ensembles will be left to future publications.

The aim of the present paper was (1) to verify the quality

of the GLAMEPS system, (2) study the added economic

value when adding the LAEF model output to the

GLAMEPS and (3) study the robustness of the combined

system. By robustness we mean the following: suppose one

of both systems will operationally drop out, then what will

be the loss in quality/value for that particular run? In order

to calculate the economic value, we also introduce a new

relative economic value score suitable for ‘continuous’

forecasts (as opposed to forecasts for binary events). This

score is especially useful for users of weather forecasts that

are not interested in forecasting events, but rather are

interested in forecasting amounts, e.g. wind energy produ-

cers, electricity suppliers, etc.

The paper is organised as follows. In Section 2 we

describe the forecast and observation data used in this

paper. We then explain the method used to compute the

(relative) economic value in Section 3. The quality of the

GLAMEPS system is compared with ECMWF’s EPS in

Section 4. Next, we study the added value of the LAEF

system to GLAMEPS in Section 5, and investigate the

robustness of the combined system in Section 6. Finally,

Section 7 contains a summary of the paper with conclu-

sions and directions for future research.

2. Data and model descriptions

In this paper, we use forecast data from three different

ensemble prediction systems, namely ECMWF’s EPS,

GLAMEPS and LAEF, over the period 1 March 2010

until 29 December 2010. We describe each system in turn.

The EPS system from ECMWF (which we denote here

by ECEPS to avoid confusion with the generic use of the

term EPS) is a global system with a control and 50

perturbed members. Since 26 January 2010 it has a

horizontal resolution of 32 km. The system underwent a

significant upgrade on 24 June 2010 with the introduction

of Ensemble Data Assimilation (EDA) for the perturba-

tions (Buizza et al., 2008, 2010). A further upgrade of the

EPS occurred on 9 November 2010, see the ECMWF

website for detailed information.

The ALADIN-LAEF system (Wang et al., 2011a,

2011b), here denoted LAEF for short, is an operational

limited area EPS based on the ALADIN NWP model, and

uses ECEPS for initial conditions and lateral boundaries. It

has a horizontal resolution of 18 km, and has 17 members.

One member called the control is a downscaling (with a

version of the ALADIN model) of the ECEPS control

forecast, while the other 16 are the so-called perturbed

members. Their atmospheric perturbations are the result of

a breeding-blending technique. Small-scale perturbations

are generated using a breeding method with the ALADIN

model, and are then combined with the large-scale pertur-

bations of the first 16 ECEPS perturbed members. Surface

perturbations are also introduced for the 16 perturbed

members, using a Non-Cycling Surface Breeding Method

(Smet, 2009; Wang et al., 2010, 2011b). Finally, model

uncertainty is taken into account by using different

ALADIN physics configurations for each member; see

Wang et al. (2011a) for a detailed description of the

ALADIN model versions used.

GLAMEPS is a multimodel LAM-EPS. It combines

members from the ALADIN model and two versions of the

HIRLAM model with members interpolated from ECEPS.

A test version of this system was described in the study of

Iversen et al. (2011). Since March 2010, a pre-operational

version has been running twice daily. Compared to the test

version described in the study of Iversen et al. (2011), there

are a few notable differences:

� The initial and boundary conditions are taken

directly from ECEPS, not from the targeted global

EPS system EuroTEPS.

� The ALADIN and HIRLAM components of the

system each run 12 perturbed members and a

control. Combined with the ECEPS members

themselves (which are interpolated to the common

grid), this gives a total of 52 members (including the

control members in the ensemble).

� No calibration is applied to the member forecasts.

We denote the ALADIN component of GLAMEPS as

AladEPS here. It is a simple downscaling (without data-

assimilation) of the control and the first 12 perturbed

members of ECEPS, using a single version of the ALADIN

model, and therefore considerably less sophisticated than

the LAEF system. It has on the other hand a higher

resolution of 12.9 km. The two HIRLAM components are

denoted as HirEPS_K and HirEPS_S (as in the study of

Iversen et al. 2011); they use the HIRLAM model with two

different cloud physics parameterisations. The control run

of each model version is produced using the ECEPS control

and a 3DVar assimilation cycle, while the runs of the

12 perturbed members are simply a downscaling (without

data-assimilation) of the first 12 ECEPS perturbed mem-

bers with the two versions of the HIRLAM model. They

have a horizontal resolution of 12.8 km. Finally, the

ECEPS component of GLAMEPS simply consists of the

control and the first 12 members of ECEPS, and is denoted
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as ECEPS13 as a reminder that only 13 (of the 51) members

of ECEPS are a part of GLAMEPS.

The forecast data were compared against observations

coming from 10 standard stations in Belgium (see Fig. 1).

To create forecast data at the station locations we used a

bilinear interpolation for all the models. We only look at

2 m temperature T2m and 10 m wind S10m in this paper.

Because precipitation is of a more local nature, using a

combination of radar and rain gauge data as observations

is more appropriate. This will be left for a future

publication.

Because of differences in model height and station

height, other environmental specifics of the station loca-

tions not resolved in the model, and model imperfections,

there will be systematic biases present in the forecast data

when compared with the station observation data. A simple

28 d sliding bias correction was applied to the forecast data.

For each forecast date, run time, lead time and station, we

calculated the bias over the previous 28 d and subtracted it,

setting negative wind speeds to zero. This removes most of

the bias; in Fig. 2 you can see the remaining bias of the bias

corrected T2m and S10m for the 12 h run. Results for the 0 h

run are similar (not shown).

All scores in this paper are calculated using these bias

corrected data, averaged over the 10 stations and over the

forecast period 1 April 2010 until 29 December 2010 (with

observations used from 1 April 2010 until 31 December

2010). Even though significant changes occurred to the

ECEPS during this period, which might also impact

GLAMEPS and LAEF since they use ECEPS lateral

boundaries and initial conditions, these changes do not

have much impact on the results of this study. We have

calculated scores over the periods 1 April 2010 until 20

June 2010, 1 July 2010 until 31 October 2010 and 15

November until 29 December 2010, and did not find any

qualitative differences that would lead us to change our

conclusions. We therefore only show plots of scores

averaged over the whole verification period. Moreover,

because the results of the 0 h and 12 h run are very similar,

we show only results of the 12 h run. For a few cases

were the 0 h run gives some added information, we have

supplied supplemental figures as supporting information,

which can be viewed on the publisher’s website. Finally, we

have also calculated the scores using the raw data, i.e.

without doing the bias correction. We saw no qualitative

differences with the results of the bias-corrected data,

showing that none of the main results in the paper are a

result of the bias correction itself. We therefore only show

results using the bias corrected data in this paper.

Quantitatively, the bias correction brings the scores of

GLAMEPS and ECEPS somewhat closer together, because

ECEPS has a somewhat larger bias. Due to ECEPS lower

resolution, this is to be expected when you compare station

observations with interpolated model data. The bias

correction makes the comparison of models of different

resolution fairer.
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Fig. 1. Map of Belgium with latitude/longitude axes. Belgian weather stations used in this study are denoted with a dot, together with

their place name and their WMO number in parentheses.
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3. Method used to compute the economic value

(CREV)

Relative economic value is often calculated for binary

events, e.g. T2mB0 8C, S10m�5m s�1, etc., using the static

cost-loss model (Richardson, 2000, 2003; Zhu et al., 2002).

Instead, we calculate relative economic value for the

continuous variables directly, i.e. without choosing thresh-

olds, by using a continuous version of the static cost-loss

model. We refer the reader to the Appendix for a detailed

explanation. Instead of thresholds, a loss function has to be

specified. The relative (potential) economic value scores in

this paper are calculated using a loss function that is linear

in the absolute difference between forecast and observed

(actual) value:

Lossðxa; xf Þ ¼ cl jxf � xaj if xf � xa

ð1� clÞjxf � xaj if xf � xa

�
; (1)

where Loss is the loss function, xa and xf are the actual

(observed) values and predicted (forecast) values, respec-

tively, and cl parametrises the relative importance of over-

and under-forecasting errors. Here xf can be a determi-

nistic forecast, or the ensemble mean of an EPS system,

but it can also be an optimal value based on a

probabilistic weather forecast. Given a probability fore-

cast, one can derive a value xf that will minimise the loss

function. For the linear loss function in eq. (1), the

optimal xf are quantiles, i.e. one should choose xf such

that:

Prðxa > xf Þ ¼ cl ; (2)

assuming the probability forecasts are perfectly reliable.

Essentially this loss function was also used in the works of

Smith et al. (2001); Roulston et al. (2003); Pinson et al.

(2007) to study the economic value of weather forecasts in

the energy market.

Relative economic value of a forecast system is defined in

the usual way:

Vref ¼
hLossiref � hLossifc
hLossiref � hLossiperfect

; (3)

where Lossh i is the loss averaged over time or over several

locations, which a risk neutral decision maker will want to

minimise. Here Lossh ifc is the average loss of the forecast

system under study, while Lossh iref and Lossh iperfect are the

average loss of a reference forecast system and a perfect

forecast system, respectively. For the loss function in

eq. (1), we have Lossh iperfect¼ 0.

As reference (probability) forecasts we take a normal and

Weibull distribution for T2m and S10m respectively, with

mean and standard deviation of the distribution equal to the

monthly mean and monthly standard deviation of

the sample observations, respectively. We refer to this as

the sample climatology and denote the relative economic

value calculated as in eq. (3) with Vclim. The probability

forecasts of the models are constructed by estimating

quantiles from the model member forecasts, using the

quantile function in R, with the default ‘type 7’ method

(Frohne and Hyndman, 2009; R Development Core Team,

2009). For an ensemble of N (ordered) forecasts xi, with
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Fig. 2. BIAS of ensemble mean ECEPS (black full line), ensemble mean GLAMEPS (red dashed line) and ensemble mean LAEF (green

dotted line) for bias corrected T2m and S10m (run�12 h).
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i�1, . . ., N and x1 5 . . .5 xi5 . . .5 xN, the estimate for

the k-th q-quantile Qk/q is calculated as:

Qk=q ¼ x hb c þ ðh� hb cÞ x hb cþ1 � x hb c

� �
; (4)

with h ¼ ðN � 1Þk=qþ 1 and hb c the smallest integer not

greater than h. When h is an integer, the quantile estimate is

just the hth smallest forecast value. Otherwise it is a linearly

interpolated value.

We call the above score the ‘CREV’ score, as a short-

hand for Continuous Relative Economic Value score, since

it is a natural generalisation of the relative economic score

for binary forecasts to the continuous case. In the next

sections we calculate the (potential) CREV score for T2m,

and S10m by taking x a to be the T2m, and S10m as observed

in the 10 weather stations, and x f, the optimal forecast

value for the location of the weather stations, based on the

probability forecasts derived from the EPS.

4. Verification of GLAMEPS (over Belgium)

In this section we discuss some comparisons of ECEPS vs.

GLAMEPS. The difference with the previous results given

in the study of Iversen et al. (2011) lies in the much longer

verification period (10 months) and the focus on one

smaller verification domain (Belgium) instead of the whole

GLAMEPS domain. As mentioned before, we show only

the results of the 12 h run in this section, as the scores of the

0 h run are very similar. The results that we obtain are in

line with previous results obtained in the study of Iversen

et al. (2011). In general they show a clear improvement of

scores with GLAMEPS w.r.t. ECEPS.

In Fig. 3 we compare the root mean square error

(RMSE) of the ensemble mean forecasts of GLAMEPS

and ECEPS for T2m (top graph) and S10m (bottom graph),

for forecast lead times up to 42 h (the maximum range of

GLAMEPS during the test period). Quite clearly, the

RMSE of the ensemble mean of GLAMEPS is lower

than that of ECEPS, both for T2m and S10m. It may be seen,

however, that the difference starts to diminish as the

forecast range increases.

This convergence at longer forecast ranges is even more

visible in Fig. 4. There we compare the ratio of the RMSE

(as plotted in Fig. 3) with the spread (square root of the

ensemble variance around the mean). Ideally, this ratio

should be 1. A higher value means that the ensemble is

underdispersive. While both ECEPS and GLAMEPS are

underdispersive, the ratio for GLAMEPS is much closer to

one. At longer forecast ranges, the ratio of ECEPS comes

closer to that of GLAMEPS. This should not surprise us.

ECEPS is not aimed as much at short-term forecasts. The

singular vectors used in the perturbations of ECEPS are

optimised for a lead time of 48 h.

We next look at the Continuous Ranked Probability

Score (CRPS), which may be interpreted as an integration

of the Brier score over all possible threshold values. See, for

example, Hersbach (2000) for a definition and for the

decomposition of the CRPS into different components. As

shown in Fig. 5, the CRPS of GLAMEPS is significantly

lower than that of ECEPS. Especially for S10m we can see

that the difference decreases for longer forecast ranges.

There also seems to be a daily cycle in the score, which can

also be seen in the RMSE.
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Fig. 3. RMSE of ensemble mean ECEPS (black full line) and ensemble mean GLAMEPS (red dashed line), for bias corrected T2m and

S10m (run�12 h).
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As shown in the study of Hersbach (2000), the CRPS

may be decomposed into a reliability part and a resolution/

uncertainty part, also called the potential CRPS. This

decomposition is similar to the decomposition of the Brier

score. Figure 6 compares the reliability component of the

CRPS, while Fig. 7 compares the potential CRPS (that is,

the CRPS with the reliability component extracted).

These graphs show that the better CRPS of GLAMEPS,

especially at shorter forecast ranges, is mainly (but not

exclusively) due to improved reliability. We also see

that the reliability of ECEPS comes closer to that of

GLAMEPS at longer forecast ranges.

As a final verification score, we compare the potential

CREV scores. Potential in this context again means that it

is the score one could get if the system was made perfectly

reliable. For each cl, the potential CREV is calculated by

taking xf not the cl-quantile as in eq. (2), which would be

optimal if the system was perfectly reliable, but the quantile

that gives the highest CREV score. This is completely

analogous to how the potential (relative) economic value
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Fig. 4. Ratio of RMSE to spread ratio of ECEPS (black full line) and GLAMEPS (red dashed line) for bias corrected T2m and S10m

(run�12 h).
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score is calculated in the standard binary cost-loss scenario.

Figures 8 and 9 show the plot of potential CREV for lead

times of 24 and 42 h, respectively. Both the figures show a

clear improvement for GLAMEPS, but one may also see

that the difference with ECEPS is smaller at the longest

forecast range (42 h).

Using a block bootstrap technique we have also con-

structed 95% confidence intervals for the differences in

RMSE and CRPS. They show that there is a statistically

significant difference at the 5% level between the scores of

GLAMEPS and ECEPS; see Figs. 10 and 11.

5. Added value of LAEF and ECEPS to

GLAMEPS

In this section, we investigate whether adding LAEF and/

or ECEPS to GLAMEPS increases its value. We combine

the models in the simplest way possible, by just pooling all

members together and treating them as equally likely

members of a single ensemble. GLAMEPS already con-

tains the control and first 12 members of ECEPS. When we

add ECEPS to the GLAMEPS-LAEF ensemble, we only

add the ECEPS members that are not already included in
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Fig. 6. Reliability component of CRPS of ECEPS (black full line) and GLAMEPS (red dashed line) for bias corrected T2m and S10m

(run�12 h).
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ADDED ECONOMIC VALUE OF MULTI-EPS APPLICATIONS 7



the GLAMEPS ensemble. The GLAMEPS-LAEF ensem-

ble therefore contains 69 (�52�17) members, while the

ECEPS-GLAMEPS-LAEF ensemble consists of 107

(�51�13�69) members.

5.1. Added value LAEF to GLAMEPS

We find that overall LAEF adds value to GLAMEPS, both

for T2m and S10m. This can be seen for instance in the

CRPS score shown in Fig. 12 and its reliability component

in Fig. 13. Also potential CREV shows a small improve-

ment at most lead times (see e.g. Figs. 14 and 15). However,

the improvement is clearly small compared to the improve-

ment of GLAMEPS to ECEPS. Overall the improvement

seems to be a bit bigger for S10m than for T2m. It was

already noted in Iversen et al. (2011) that S10m ALADIN

forecasts are very good compared to other components

of GLAMEPS. Adding LAEF increases the weight of

ALADIN models in GLAMEPS. One can also see that for

T2m, the difference in CRPS mainly comes from an
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improved reliability, which comes at the cost of a slightly

reduced resolution at about half of the lead times. For

S10m, on the other hand, the difference in CRPS is mainly

due to an improved resolution. Even though the difference

between GLAMEPS and GLAMEPS-LAEF is small, we

think it cannot be discounted completely, as it is seen quite

consistently over all lead times. Moreover, the confidence

intervals show that the difference in CRPS between

GLAMEPS-LAEF and LAEF is statistically significant

at the 5% level, at most lead times, although not for all,

both for T2m and S10m; see Fig. 11. However, for the

differences in RMSE, which only compares the ensemble

means and not the whole probability distribution like

CRPS, the results are not statistically significant at the

5% level; see Fig. 10.

In Figs. 16 and 17, we compare LAEF with the AladEPS

component of GLAMEPS. Because LAEF contains 17

members, while AladEPS only contains 13 members, we

also plotted scores for LAEF13, which is a reduced version

of LAEF, consisting only of the control and the first 12
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Fig. 10. Confidence interval (95%) for the difference in RMSE of GLAMEPS vs. ECEPS (black full line with circle) and GLAMEPS-

LAEF vs. GLAMEPS (red dashed line with triangle) for bias corrected T2m and S10m (run�12 h).
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perturbed members of LAEF. The figures clearly show that

LAEF scores considerably better than AladEPS, which a

priori could be expected since LAEF is much more

sophisticated. Because the scores of LAEF13 are only

slightly worse than those of LAEF, we can conclude that

the better performance of LAEF compared to AladEPS is

indeed mainly due to LAEF being a more advanced system,

not due to the four extra members.

However, when we add the other components of

GLAMEPS, i.e. we compare GLAMEPS to GLAMEPS-

LAEF without the AladEPS component, and we now

see that both systems are much more similar in quality;

see Figs. 18 and 19. Because of the other models in

GLAMEPS, perhaps the weaknesses of AladEPS become

less important. It also suggests that the added value of

LAEF to GLAMEPS is in large part due to giving extra

weight to the ALADIN component in GLAMEPS, and

that a similar effect could be obtained by either increasing

the number of AladEPS members in GLAMEPS, or a form

of calibration that gives extra weight to the AladEPS
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Fig. 12. CRPS of GLAMEPS (black full line), GLAMEPS-LAEF (red dashed line) and ECEPS-GLAMEPS-LAEF (green dotted line)

for bias corrected T2m and S10m (run�12 h).

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42
0.00
0.01
0.02
0.03
0.04
0.05

lead time (h)

R
el

ia
b

ili
ty

T2m: 12h run (20100401−20101229, station(s):ALL)

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

lead time (h)

R
el

ia
b

ili
ty

S10m: 12h run (20100401−20101229, station(s):ALL)
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members in GLAMEPS. For instance a calibration using

Bayesian model averaging, BMA (Raftery et al., 2005),

might do this naturally. Another possibility is that the

positive effects of LAEF are masked by the other models,

and that increasing the weight of LAEF in GLAMEPS-

LAEF might make its benefits more pronounced. A more

detailed investigation of these issues is beyond the scope of

this paper and will be kept for a future publication. Finally,

note that CRPS and its reliability component are much

improved when we compare the scores of GLAMEPS

shown in Figs. 18 and 19 with the scores of AladEPS shown

in Figs. 16 and 17, showing that the other models in

GLAMEPS are good additions to the AladEPS.

5.2. Added value ECEPS to GLAMEPS-LAEF

We now investigate whether adding the remaining 38

ECEPS members not already contained in GLAMEPS
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Fig. 14. Potential CREV relative to (sample) climatology of GLAMEPS (black full line), GLAMEPS-LAEF (red dashed line) and

ECEPS-GLAMEPS-LAEF (green dotted line) for bias corrected T2m and S10m (run�12 h, lead time�24 h).

0.1 0.3 0.5 0.7 0.9

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

cl

V
_c

lim

T2m: 12h run 
20100401−20101229, station(s):ALL

0.1 0.3 0.5 0.7       0.9

0.25

0.30

0.35

cl

V
_c

lim

S10m: 12h run 
20100401−20101229, station(s):ALL

Fig. 15. Potential CREV relative to (sample) climatology of GLAMEPS (black full line), GLAMEPS-LAEF (red dashed line) and

ECEPS-GLAMEPS-LAEF (green dotted line) for bias corrected T2m and S10m (run�12 h, lead time�42 h).
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can add further value. For T2m, we find that ECEPS indeed

adds a little value, as can be seen for instance in the CRPS

score shown in Fig. 12, and potential CREV shown in Figs.

14 and 15. Reliability is also improved compared to

GLAMEPS at all lead times, but slightly worse than

GLAMEPS-LAEF at some lead times (see Fig. 13). On

the other hand, for S10m, we find that adding the remaining

ECEPS members tends to deteriorate the system, especially

in the first 24 h, see the CRPS score shown in Fig. 12, and

the potential CREV shown in Fig. 15. We think this is

mainly because adding more ECEPS members indirectly

decreases the weight of the ALADIN members in the

system, which were shown to be of higher quality than

the other GLAMEPS components for S10m forecasts in

the study of Iversen et al. (2011). At longer lead times,

we see that the effect of adding the remaining ECEPS

members becomes more positive. For the 12 h run, the S10m

forecast of ECEPS-GLAMEPS-LAEF at 42 h lead time
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Fig. 16. CRPS of LAEF (black full line), LAEF13 (red dashed line) and AladEPS (green dotted line) for bias corrected T2m and S10m

(run�12 h).
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even performs best; see e.g. Figs. 12 and 15. On the other

hand, for the 0 h run, adding the remaining ECEPS

members still has a small negative effect at 42 h lead

time, see Figs. S1 and S2 in the supporting information.

However, the effect is clearly a lot less negative than at

early lead times. This better performance of ECEPS with

lead time was already noticed in the previous section, where

we compared GLAMEPS with ECEPS.

Finally, from adding ECEPS to GLAMEPS-LAEF, we

learn that adding different ensembles together does not

necessarily increase the value of the system. The added value

of LAEF toGLAMEPS is thus not a trivial thing, i.e. not just

due to increasing the number of members in the ensemble.

6. Robustness

In this section we study the impact of removing one of the

components of the (multi-)EPS system, i.e. the robustness

of the system. We will study GLAMEPS and GLAMEPS-

LAEF.
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Fig. 18. CRPS of GLAMEPS (black full line) and GLAMEPS-LAEF without AladEPS (red dashed line) for bias corrected T2m and

S10m (run�12 h).
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Fig. 19. Reliability component of CRPS of GLAMEPS (black full line) and GLAMEPS-LAEF without AladEPS (red dashed line) for

bias corrected T2m and S10m (run�12 h).

ADDED ECONOMIC VALUE OF MULTI-EPS APPLICATIONS 13



6.1. Robustness of GLAMEPS

As we described in detail in Section 2, GLAMEPS has four

main components, an ALADIN component, denoted as

AladEPS, two HIRLAM components HirEPS_K and

HirEPS_S and an ECEPS component denoted as

ECEPS13, as a reminder that only the control and first

12 members of ECEPS are a part of GLAMEPS. In

operational applications, one of these components may

be subject to a failure and fall out (as one block).

For the T2m forecasts, we find that removing ECEPS13

has the biggest negative impact in all scores, with removal

of AladEPS being a close second, see Figs. 20�22 for the

CRPS and CREV scores of the 12 h run, and Figs. S3�S5
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Fig. 20. CRPS of GLAMEPS (black full line), GLAMEPS without AladEPS (red dashed line), GLAMEPS without ECEPS13 (green

dotted line), GLAMEPS without HirEPS_K (blue dash dotted line) and GLAMEPS without HirEPS_S (light blue big dashed line) for bias

corrected T2m and S10m (run�12 h).
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in the supporting information for the corresponding scores

of the 0 h run. Note that while in the CREV score of the

12 h run at 24 h lead time, a removal of AladEPS has the

biggest impact, this is not the case in the 0 h run, where a

removal of ECEPS13 has the biggest negative impact. Also

note that if a block falls out due to some operational

failure, it will fall out for all lead times. When looking at

the CRPS scores over all lead times (see top panel of Fig. 20

and Fig. S3 again), we think it is fair to say that a removal

of ECEPS13 has the biggest overall impact on T2m.

For the S10m forecasts, it should be no surprise given the

previous sections that a removal of AladEPS has the

biggest negative impact. See Figs. 20�22 for the CRPS

and CREV scores of the 12 h run, and supplemental Figs.
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Fig. 22. Potential CREV relative to (sample) climatology of GLAMEPS (black full line), GLAMEPS without AladEPS (red dashed

line), GLAMEPS without ECEPS13 (green dotted line), GLAMEPS without HirEPS_K (blue dash dotted line) and GLAMEPS without

HirEPS_S (light blue big dashed line) for bias corrected T2m and S10m (run�12 h, lead time�42 h).
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Fig. 23. CRPS of GLAMEPS-LAEF (black full line), GLAMEPS (red dashed line), GLAMEPS-LAEF without AladEPS (green dotted

line), GLAMEPS-LAEF without ECEPS13 (blue dash dotted line) and GLAMEPS-LAEF without HirEPS_K (light blue big dashed line)

and GLAMEPS-LAEF without HirEPS_S (pink big dash dotted line) for bias corrected T2m and S10m (run�12 h).
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S3�S5 for the corresponding scores of the 0 h run. Look-

ing at these figures, one might also notice that a removal of

one of the HIRLAM components sometimes seems to have

a beneficial effect. However, this is not consistently true for

all lead times, and the effect is small compared to a removal

of the most important component of the system. It might

be accidental or simply an indirect effect, by removing one

of the HIRLAM components, the most important compo-

nent of the system automatically gets more weight.

Probably not too much attention should be paid to it.

We think it is much more meaningful to look for the

component that has the biggest negative impact when

removed. In that case we get a clear consistent picture.

6.2 Robustness of GLAMEPS-LAEF

Let us now redo the exercise of the previous section on the

GLAMEPS-LAEF ensemble. When looking at the CRPS

plot for T2m shown in the top panel of Fig. 23, we see

clearly that over all lead times a removal of ECEPS13 has

the biggest negative impact, as was also the case for the

GLAMEPS ensemble. This can also be seen in the potential

CREV plots, left panels of Figs. 24 and 25. Comparing the

CRPS plot in the top panel of Fig. 23 with the CRPS plot

in the top panel of Fig. 20 we also see that the negative

impact of a removal of AladEPS is reduced. There is now

only one model that has a big impact over all lead times.

When we look at the S10m forecasts we see something

even more interesting. For CRPS now there is no single

model that has clearly the biggest negative impact on

removal (indicating the system is more robust), see Fig. 23.

Removing a single component gives negative impacts at

some lead times and positive at other lead times.

We conclude that adding LAEF makes GLAMEPS

more robust, especially for S10m. The negative impact of

a removal of AladEPS becomes considerably smaller,

because LAEF acts as a backup. There are now 2

ALADIN components and 2 HIRLAM components.

7. Summary and conclusions

We compared GLAMEPS 2 m temperature (T2m) and 10 m

wind speed (S10m) forecasts for Belgium with ECEPS (the

EPS of ECMWF) over a 10-month period (9 months for

the bias corrected data), using various verification scores,

and found GLAMEPS performed considerably better than

ECEPS. Reliability, CRPS, RMSE of ensemble mean and

the RMSE to spread ratio were all much better for

GLAMEPS, in agreement with the results of Iversen

et al. (2011). As could be expected, since GLAMEPS is

designed for the short-term and ECEPS more for the mid-

term, the difference between GLAMEPS and ECEPS

decreased with lead time. This was especially the case for

the reliability and RMSE to spread ratio. Our study differs

from those of Iversen et al. (2011) by the much longer
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verification period (10 months vs. 7 weeks) and the smaller

domain (Belgium vs. the full GLAMEPS domain).

We also introduced a new relative economic value

score for continuous variables (CREV), which is a natural

generalisation of the commonly used relative economic

value for binary forecasts (Richardson, 2000, 2003; Zhu

et al., 2002). It has the advantage that no thresholds have to

be chosen (to reduce the forecast to a binary event), and

could be used for various applications where users are not

interested in binary events, but rather in forecasting

amounts. For instance in the energy market, it can be

used to estimate the relative economic value of weather

forecasts for wind power forecasting (Roulston et al., 2003;

Pinson et al., 2007) and (temperature dependent) energy

demand (Smith et al., 2001). The results of potential

CREV agreed with the more traditional verification scores

and showed GLAMEPS has considerably more potential

relative economic value than ECEPS.

We then studied whether adding the LAEF and ECEPS

system to GLAMEPS could further improve the forecasts.

Both for T2m and S10m we found that LAEF did add value

to GLAMEPS. Even though the improvement was small

compared to the improvement of GLAMEPS over ECEPS,

we found the difference in CRPS score to be statistically

significant at the 5%level for most lead times, although not

all. Further adding ECEPS to the GLAMEPS-LAEF

ensemble gave mixed results. For T2m there was overall

still a little improvement, although it was less clear than the

improvement of GLAMEPS-LAEF over GLAMEPS, but

for S10m the scores deteriorated, especially in the first 24 h.

We suspect this is mainly because adding more ECEPS

members automatically decreases the weight of the

ALADIN models in the ensemble, which were shown to

be of higher quality than the other GLAMEPS components

for the S10m forecasts in Iversen et al. (2011).

Finally, we investigated the robustness of the

GLAMEPS and GLAMEPS-LAEF ensemble, i.e. the

impact of a removal of one of its components (e.g. due to

some operational failure) on the value of the ensemble.

This led to the conclusion that adding LAEF to

GLAMEPS would, in addition to the (possibly) increased

value, also lead to a more robust system. Although the

added value of LAEF was not significant at all lead times,

the fact that it also leads to a more robust system, and that

LAEF is more sophisticated than AladEPS in GLAMEPS,

suggest that using LAEF together with GLAMEPS where

both are available should be considered. Moreover, even

though the added value of LAEF to GLAMEPS turned out

to be small for the T2m and S10m forecasts over Belgium,

given that LAEF is more sophisticated than AladEPS, it

might lead to more value for other meteorological vari-

ables, e.g. precipitation, for extreme event forecasting,

and/or over other geographical areas than Belgium. On

the other hand, we also found that while LAEF scores

considerably better than AladEPS, the difference between

the two models becomes a lot smaller when the other

components of GLAMEPS are added. When the other

models in GLAMEPS are added, the weaknesses of
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Fig. 25. Potential CREV relative to (sample) climatology of GLAMEPS-LAEF (black full line), GLAMEPS (red dashed line),

GLAMEPS-LAEF without AladEPS (green dotted line), GLAMEPS-LAEF without ECEPS13 (blue dash dotted line) and GLAMEPS-

LAEF without HirEPS_K (light blue big dashed line) and GLAMEPS-LAEF without HirEPS_S (pink big dash dotted line) for bias

corrected T2m and S10m (run�12 h, lead time�42 h).
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AladEPS compared to LAEF become less important. We

suspect that the added value of LAEF to GLAMEPS is

in large part due to giving more weight to the ALADIN

models in GLAMEPS, especially in the S10m case. Produ-

cing more AladEPS members or increasing the weight

of AladEPS, perhaps using BMA (Raftery et al., 2005),

might therefore be another way to increase the value of

GLAMEPS. On the other hand, it might also be possible

that some of the positive effects of LAEF are masked

by the other GLAMEPS models. In this case, increasing

the weight of LAEF in aGLAMEPS-LAEF ensemble might

be beneficial. These are interesting directions for future

research.

The present study should also be extended for all

available EPS data over Belgium. For instance it is use-

ful to set up a product based on EPS, GLAMEPS,

LAEF, HUNEPS, and SREPS, since most of these

model are somehow developed in the context of the two

ALADIN and HIRLAM consortia. In addition more

research is needed to determine the best way of combin-

ing and calibrating different LAM-EPS systems. Finally,

we plan to look into the verification of precipitation

using a combination of radar and rain-gauge data over

Belgium.
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Appendix A: Relative economic value for

continuous variables (CREV)

Usually, relative economic value scores of weather models

are calculated by looking at binary events, e.g. rain vs. no

rain, T2mB08C, etc. This means certain threshold values

have to be chosen to reduce continuous weather vari-

ables to binary events. However, such an approach is

not appropriate when no natural threshold is possible.

For instance, production of wind energy does not depend

on one single threshold value of wind speed. In such

situations, it is also possible to define a relative economic

value score for the continuous variables directly, i.e.

without choosing thresholds, by specifying a loss function

instead.

In general, weather dependent decisions will have an

impact on the income I of the decision maker’s company.

We can write the income as:

I ¼ I0 � Lossðxa; xf Þ ; (A.1)

where xa and xf are the actual and forecast values of some

variable x, Loss is the loss of income that depends on xf and

xa, and I0 is the part that is independent of the forecast values

xf and therefore not relevant for weather-dependent deci-

sions. For simplicity, we have assumed that the income only

depends on one weather-dependent variable1 and we also

assume that xa is identical to the observed value, i.e. we do

not take observation errors into account. The predicted

value xf can be a value from a deterministic forecast or for

instance the ensemble mean of an EPS system, which

typically is how unsophisticated users will use the weather

forecasts. However, when the decision maker has a reliable

(EPS) probability forecast available and knows his/her loss

function, he/she can also calculate an optimised value based

on the probability density function (pdf) qðxÞ of a prob-

ability forecast and use it as xf instead. In this way, he/she

will benefit more from the information in the EPS forecasts

than when he/she just uses the ensemble mean, and in fact

maximises his/her benefit of the forecast information. When

the relative economic value of an EPS system is calculated in

the literature, it is commonly with this sophisticated user in

mind, and so also in this paper.

How the optimised value xf should be calculated depends

on the goals of the decision maker. A risk-neutral decision

maker will want to minimise the expected loss EðLossÞ,
while a risk-averse decision maker might for instance be

more interested in limiting the maximum loss over some

period. In this paper, as in most of the literature, we assume

the decision maker is risk-neutral. Given a probabilistic

weather forecast, the decision problem is then to find the

value of xf that will minimise EðLossÞ. In this section, we

also always assume that a probabilistic forecast is reliable,

i.e. that xa is a random sample from the pdf qðxÞ.
As usual, we can define a relative economic value Vref:

Vref ¼
hLossiref � hLossifc
hLossiref � hLossiperfect

; (A.2)

where, hi signifies an average over many forecasts, e.g. a

certain time period or several locations. The average loss of

the forecast system under study is denoted here with

Lossh ifc, while Lossh iref and Lossh iperfect are the average

loss of a reference forecast system and a perfect forecast

1This is not as restrictive as it may look. For instance, while energy

demand depends on several weather variables (temperature, cloud

cover, wind speed,. . .), the object of forecast interest is still only

one variable, namely the energy demand.
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system, respectively. Note that when we calculate Vref

explicitly in this paper, we always use sample climatology

(see Section 3 for details) as reference forecast system, and

we then refer to Vref as Vclim (hence the y-axis label on Figs.

8, 9, 14, 15, 21, 22, 24 and 25).

When xa and xf are binary variables (e.g. xa; xf 2 f0; 1g),
the loss function Loss (xa,xf ) is essentially unique, deter-

mined by three parameters which we suggestively call C, L

and Lm, for reasons that will become apparent now in the

following. The general loss function for binary variables

can then be written as:

Lossðxa; xf Þ ¼ ðL� CÞdxa�xf ;1 þ Cdxf�xa ;1þ
ðLm � CÞdxfþxa ;2

¼ L½ð1� clÞdxa�xf ;1 þ cldxf�xa ;1þ

ðLm

L
� clÞdxfþxa ;2� ; ðA:3Þ

with cl ¼ C=L, and 0BCBLmBL. This is the familiar

static cost-loss model for binary forecasts (Richardson,

2000, 2003; Zhu et al., 2002), with C the cost of taking

protective action, L the loss when the event happens and no

protective action is taken, and Lm the mitigated loss when

the event happens and protective action is taken. The loss

function shown in eq. (A.3) can be put in the form of a

contingency table (see Table 1). Note that it is more

common to have L instead of L�C, and Lm instead of

Lm�C in the contingency table. One will then usually call

it the ‘expense’ matrix instead of the ‘loss’ matrix. Because

one will always have at least an expense C when the event

happens, even if one has a perfect forecast, this part of the

expense is actually independent of the forecast values, and

we have therefore not included it in the loss function

Lossðxa; xf Þ but in I 0 in our formulation. The difference

between the average expense and the average loss is just a

constant shift sC with s the base rate (frequency of sample

climatology). This constant shift cancels out in the calcula-

tion of relative economic value Vref using eq. (A.2), and

does also not influence the decision-making process.

Given a probability forecast q�Pr(xa�1), the expected

loss for any chosen value xf is:

EðLossÞðxf Þ
¼ q Lossðxa ¼ 1; xf Þ þ ð1� qÞLossðxa ¼ 0; xf Þ ; (A.4)

where we assume that the forecasted probability q is

reliable. Minimising this leads to the well-known conclu-

sion that the decision maker should choose xf�1 if:

Prðxa ¼ 1Þ > cl

1� Lm=Lþ cl
¼ C

L� Lm þ C
: (A.5)

When xa and xf are continuous variables, there are an

infinite amount of possible loss functions. The rela-

tive (potential) economic value scores dealt in this

paper are calculated using a loss function that is linear in

the absolute difference between forecast and observed

value(s):

Lossðxa; xf Þ ¼ L
cl jxf � xaj if xf � xa

ð1� clÞjxf � xaj if xf � xa

�
; (A.6)

with the dimensionless cl parametrising the relative

importance of over- and under-forecasting errors, and L

an overall size factor that determines how much (mone-

tary) income is actually lost in absolute terms. The

appropriate value of cl should be determined in the

decision maker’s company, where one should investigate

the loss due to forecast errors. The supplier of weather

forecasts will keep cl variable and usually show the

(relative) value for all cl to accommodate all possible

users. The overall size factor L on the other hand will

cancel out when calculating Vref using eq. (A.2), and will

also not influence the decision of a risk-neutral decision

maker. It will therefore not be needed to determine the

relative economic value of (EPS) weather forecasts in this

setting, and will not be relevant to us.

This loss function was used (in a somewhat disguised

form) as a simple decision-making model for wind energy

producers in the study of Roulston et al. (2003) and

Pinson et al. (2007), and for electricity demand forecast-

ing in Smith et al. (2001). It is one of the most simple

non-trivial loss functions for continuous variables, and

has the advantages that Vref again only depends on one

parameter cl, similar to the binary case where Vref only

depends on a�C/(C+L�Lm), and that the optimal

decision value xf can again be determined analytically.

For these reasons, we consider the relative economic

value score in eq. (A.2) with loss function as in eq. (A.6)

to be a natural generalisation of the relative economic

value score for binary forecasts to the continuous case,

and we refer to it as the Continuous Relative Economic

Value score, or CREV score for short.

Given a pdf qðxÞ, the expected mean loss as a function of

the chosen xf is:

EðLossÞðxf Þ ¼
ð1
�1

Lossðx; xf ÞqðxÞdx : (A.7)

Table 1. Loss matrix (contingency table) of the static binary cost-

loss model.

Protective action No protective action

Event happens Lm�C L�C

Event does not happen C 0
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The optimal value for x f can then be calculated using basic

calculus:

d

dxf
EðLossÞðxf Þ ¼L

d

dxf
�cl

ðxf

�1
xqðxÞdx

"

þ ð1� clÞ
ð1

xf

xqðxÞdxþ cl xf

ðxf

�1
qðxÞdx

� ð1� clÞxf

ð1
xf

qðxÞdx

�
¼ L cl �

ð1
xf

qðxÞdx

� �
;

(A.8)

which shows xf should be chosen such that:

Prðxa > xf Þ ¼
ð1

xf

qðxÞdx ¼ cl : (A.9)

For instance, if cl�0, only ‘under-forecasting’ (xa > xf ) is

penalised. It is then optimal to choose xf big enough such

that this will never happen. The condition (A.9) is also

consistent with the well-known fact that the median

forecast minimises the MAE.
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Muñoz, D. and co-authors. 2011. Predictability of short-range

forecasting: a multimodel approach. Tellus. 63A, 550�563. DOI:

10.1111/j.1600-0870.2010.00506.x.

Hersbach, H. 2000. Decomposition of the continuous ranked

probability score for ensemble prediction systems. Wea

Forecasting. 15, 559�570. DOI: 10.1175/1520-0434(2000)015

B0559:DOTCRP�2.0.CO;2.

Horányi, A., Mile, M. and Szũcs, M. 2011. Latest developments

around the ALADIN operational short-range ensemble predic-

tion system in Hungary. Tellus. 63A, 642�651. DOI: 10.1111/

j.1600-0870.2011.00518.x.

Iversen, T., Deckmyn, A., Santos, C., Sattler, K., Bremnes, J. and

co-authors. 2011. Evaluation of GLAMEPSa proposed multi-

model EPS for short range forecasting. Tellus. 63A, 513�530.
DOI: 10.1111/j.1600-0870.2010.00507.x.

Montani, A., Cesari, D., Marsigli, C. and Paccagnella, T. 2011.

Seven years of activity in the field of mesoscale ensemble

forecasting by the COSMO-LEPS system: main achievements

and open challenges. Tellus. 63A, 605�624: DOI: 10.1111/j.1600-

0870.2010.00499.x.

Pinson, P., Chevallier, C. and Kariniotakis, G. N. 2007. Trading

wind generation from short-term probabilistic forecasts of wind

power. IEEE Trans. Power Sys. 22 (3), 1148�1156. DOI:

10.1109/TPWRS.2007.901117.

Raftery, A. E., Gneiting, T., Balabdaoui, F. and Polakowski, M.

2005. Using Bayesian model averaging to calibrate forecast

ensembles. Mon. Wea. Rev. 133, 1155�1174. DOI: 10.1175/

MWR2906.1.

R Development Core Team. 2009. R: A Language and Environment

for Statistical Computing. R Foundation for Statistical Comput-

ing, Vienna, Austria. ISBN 3-900051-07-0, Online at: http://

www.R-project.org

Richardson, D. S. 2000. Skill and relative economic value of the

ECMWF ensemble prediction system. Quart. J. Royal Meteor.

Soc. 126, 649�667. DOI: 10.1002/qj.49712656313.

Richardson, D. S. 2003. Chapter 8: economic value and skill. In:

Forecast Verification. A Practitioner’s Guide in Atmospheric

Science (eds. I. T. Jolliffe and D. B. Stephenson). Wiley and

Sons Ltd., Chichester, pp. 165�187.
Roulston, M. S., Kaplan, D. T., Hardenberg, J. and Smith, L. A.

2003. Using medium-range weather forecasts to improve the

value of wind energy production. Renewable Energy. 28, 585�
602. DOI: 10.1016/S0960-1481(02)00054-X

Smet, G. 2009. Surface perturbation in LAEF. 31 pp. Online at:

http://www.rclace.eu/?page�40

Smith, L. A., Roulston, M. S. and von Hardenberg, J. 2001. End

to end ensemble forecasting: towards evaluating the economic

value of the Ensemble Prediction System. ECMWF Tech.

Memo. 336, 29.

Wang, Y., Bellus, M., Smet, G. and Weidle, F. 2011b. Use of the

ECMWF EPS for ALADIN-LAEF. ECMWF Newsletter 126,

18�22.
Wang, Y., Bellus, M., Wittmann, C., Steinheimer, M., Weidle, F.

and co-authors. 2011a. The Central European limited-area

ensemble forecasting system: ALADIN-LAEF. Quart. J. Royal

Meteor. Soc. 137, 483�502. DOI: 10.1002/qj.751

Wang, Y., Kann, A., Bellus, M., Pailleux, J. and Wittmann, C.

2010. A strategy for perturbing surface initial conditions in

LAMEPS. Atmos. Sci. Lett. 11, 108�113. DOI: 10.1002/asl.260.

Zhu, Y., Toth, Z., Wobus, R., Richardson, D. and Mylne, K.

2002. The economic value of ensemble-based weather forecasts.

Bull. Ameri. Meteor. Soc. 83, 73�83. DOI: 10.1175/1520-0477

(2002)083B0073:TEVOEB �2.3.CO;2.

20 G. SMET ET AL.

http://stat.ethz.ch/R-manual/R-devel/library/stats/html/quantile.html
http://stat.ethz.ch/R-manual/R-devel/library/stats/html/quantile.html
http://www.R-project.org
http://www.R-project.org
http://www.rclace.eu/?page=40
http://www.rclace.eu/?page=40
http://www.rclace.eu/?page=40
http://www.rclace.eu/?page=40

