

2014 Annual Meeting October 22-25, 2014

Bioengineering Innovations to Catalyze Affordable Health Care

Henry B. Gonzalez **Convention Center** San Antonio, Texas

Advancing Human Health and Well Being

8201 Corporate Drive, Suite 1125 Landover, MD 20785-2224 Phone: 301-459-1999 Fax: 301-459-2444 Web: www.bmes.org

BMES Staff

Edward L. Schilling, III Executive Director

Doug Beizer Communications Director Michele S. Ciapa, MPH, CHES

Education Director Jennifer Edwards

Membership Director

Valerie A. Kolmaister Operations and Finance Director

Debra Tucker, CMP Meetings Director

Terry Young BMES Career Connections Director

Elizabeth DaSilva Student Affairs Manager

Leticia Marquez Meetings Manager and Registrar

Lori Saskiewicz Membership Assistant

Betse Lyons Administrative Assistant

Media Contact

Doug Beizer doug@bmes.org, 410 -814-9564

Future BMES Annual Meetings

October 7-10, 2015 Tampa, Florida

October 5-8, 2016 Minneapolis, Minnesota

October 11-14, 2017 Phoenix, Arizona

October 17-20, 2018 Atlanta, Georgia

October 16-19, 2019 Philadelphia, Pennsylvania

October 14-17, 2020 San Diego, California

October 6-9, 202 I Orlando, Florida

BMES Officers

President Gilda Barabino, PhD The City College of New York

Incoming President Richard T. Hart, PhD The Ohio State University

Secretary David A.Vorp, PhD University of Pittsburgh

Treasurer Jennifer West, PhD Duke University

Publications Board Chair Frank C. P. Yin, MD, PhD Washington University in St. Louis

Finance Committee Chair Raphael C. Lee, MD, ScD, FACS The University of Chicago

BMES Board of Directors

2011-2014 Directors Martine LaBerge, PhD Clemson University

Kristina Ropella, PhD Marquette University

Christine Schmidt, PhD University of Florida

Joyce Wong, PhD Boston University

2012-2015 Directors Ravi Bellamkonda, PhD Georgia Institute of Technology

Kristen Billiar, PhD Worcester Polytechnic Institute

Scott L. Diamond, PhD University of Pennsylvania

Jane Grande-Allen, PhD Rice University

2013-2016 Directors Ed Botchwey, PhD Georgia Institute of Technology

Deborah Leckband, PhD University of Illinois, Urbana-Champaign

Cato Laurencin, MD, PhD University of Connecticut

William Reichert, PhD Duke University

Student Representative Rebecca Scott Purdue University SOCIAL MEDIA: BMES 2014

Please share your comments, photos & videos!

facebook

www.facebook.com/BMESociety

twitter

@BMESociety Please use the hashtag #BMES2014

www.youtube.com/BMESociety

You Tube

BMES 2014

Educating Leaders, Thinkers and Entrepreneurs

clemson.edu/coes/bioe

Table of Contents

BMES Leadership & Staff1
Sponsors
Welcome
Meeting Chairs
Plenary Sessions Pritzker Distinguished Lecture Medical Devices SIG. 9 NIH - NIBIB Lecture 10
Special Plenary 11 Rita Schaffer Memorial Lecture 12 Diversity Lecture 13
Exhibits & Poster Session Floorplan
General Information
Presenter Information
Program Highlights51
Luncheons
Additional Meetings
Hosted Receptions
Student and Early Career Programs
2014 Award Recipients
Track Chairs & Reviewers
Convention Center Floorplan
Program at a Glance

Scientific Program

THURSDAY

Platform Sessions Th-1 (Thursday 8:00-9:30am)
Platform Sessions Th-2 (Thursday 2:00-3:30pm)
Platform Sessions Th-3 (Thursday 4:30-6:000pm)
Poster Sessions – Thursday 93-124
FRIDAY
Platform Sessions Fri-1 (Friday 8:00-9:30am)
Platform Sessions Fri-2 (Friday 1:45-2:45pm)
Platform Sessions Fri-3 (Friday 3:00-4:00pm)
Poster Sessions – Friday142-173
SATURDAY

Platform Sessions Sat-1 (Saturday 8:00am-9:30am)1	74-181
Platform Sessions Sat-2 (Saturday 1:30-3:00pm)	82-188
Platform Sessions Sat-3 (Saturday 3:15-4:45pm)	89-193
Poster Sessions – Saturday	95-210

2014 BMES ANNUAL MEETING

Mobile App

GO TO EITHER THE APPLE OR ANDROID **STORE AND SEARCH FOR:**

Mira Mobile

> Download the free app

Select BMES2014 from the list of available meetings

Browse the program by date or session type . Search keywords Search author list Add presentations to a custom itinerary Click a link to show where a presentation is on a map of the convention center

AUTHOR INDEX

Available on the Mobile App Available at http://submissions.miracd.com/bmes2014/itinerary Copies also available at the registration desk.

BMES 2014 ANNUAL MEETING SPONSORS

Thank you for our sponsors' generous support:

PLATINUM

School of Biomedical Engineering and Sciences

GOLD

SILVER

Thank you to our other supporters:

Grants have been provided by the National Institute of Biomedical Imaging and Bioengineering and the National Science Foundation for the BMES 2014 Annual Meeting.

National Institute of Biomedical Imaging

BMES 2014 MEETING WELCOME

Gilda A. Barabino, PhD

BMES President

Dean, Grove School of Engineering The City College of New York

ELCOME TO THE 2014 ANNUAL MEETING of the Biomedical Engineering Society! Our Annual Meeting is the premier event for the Society and the field of biomedical engineering. This year's theme, "Bioengineering Innovations to Catalyze Affordable Health Care," encompasses the breadth of research and education biomedical engineers are involved in toward advancing human health and well being. I urge you to take full advantage of the excellent technical program, plenaries, special events and myriad opportunities for professional development and networking.

The President's Address on the State of the Society will be given at the plenary on Thursday morning and will provide attendees the opportunity to learn about future directions for the Society including new initiatives enabled by our generous \$1 million gift from the Coulter Foundation announced at last year's meeting.

BMES 2014 marks the continuation of long-standing traditions and newly established programs to illuminate innovations, recognize achievements, celebrate diversity and develop future biomedical engineers. Coulter College, a training program focused on the translation of biomedical innovations, is partnering with BMES for the third consecutive year. During Coulter College teams participate in a two-and-a-half day workshop focusing on preparing students for translational work.

Capitalizing on the success of the last two year's sessions dedicated to health disparities, this year's session, "Diversity, Health Disparities and Affordable Healthcare" offers to help better inform the broader BME community about health disparities and inequities—and the role biomedical engineers can play in combating them. The session will provide a context for examining health disparities in translational research and discuss historical examples of differential medical treatment and civil rights infringements based on race and ethnicity. Emphasis will be placed on achieving enhanced and affordable healthcare through engineering technologies. BMES 2014 marks the third year of our partnership with NIH NIBIB to deliver the NIBIB Lecture and the DEBUT Awards and our second year of partnering with NSF. This year's BMES-NSF session, "Research in Biomedical Engineering and Grant Writing" will showcase NSF-funded research and researchers, foster collaboration and idea exchange, familiarize participants with NSF funding mechanisms, and provide strategies for preparing competitive grant proposals (in particular, NSF CAREER grant applications).

Our three Special Interest Groups: Cellular and Molecular Bioengineering (CMBE), Medical Devices, and Advanced BioManufacturing (ABioM) will all hold business meetings during the conference. The Medical Devices SIG will conduct a Thursday afternoon Plenary session entitled "Computational Modeling and Simulation for Medical Devices" and the ABioM will convene a special session on Saturday morning on "Advanced Biomanufacturing: Application towards the Next Generation Therapies and Diagnostics." Formal and informal career development opportunities are abundant throughout the meeting starting with a slate of student and early career sessions on career pathways available Thursday and Friday.

We are now over 7,000 members strong and the involvement of our members at the meeting and throughout the year enables us to continue our unprecedented growth and development. Special thanks are due to Conference Chair, John A. White, and Program Chair, Susan Margulies, BMES Staff, NSF, NIH, Coulter Foundation, our sponsors and our meeting attendees. My very best wishes to you for an enjoyable and productive meeting!

Gilda A. Barabino, PhD

BMES President

BMES 2014 MEETING WELCOME

John A. White, PhD

Annual Meeting Chair, BMES 2014 Annual Meeting

USTAR Professor of Bioengineering University of Utah

ELCOME TO THE 2014 ANNUAL MEETING of the Biomedical Engineering Society. We are excited to host you, for the first time, in San Antonio, one of the most vibrant and fastest-growing cities in the United States. Our goal is that you learn a great deal, network with your colleagues, and have a great time.

This is the second year that the meeting has been hosted and managed professionally, rather than by a university host. As the meeting has grown in size and impact, the wisdom of this new management model has become increasingly apparent. The logistics and fund-raising have run quite smoothly, mainly due to the efforts of the superb BMES staff, including Meetings Director Debby Tucker, Executive Director Ed Schilling, and Communications Director Doug Beizer.

At the heart of our Annual Meeting is the program. We have been extraordinarily fortunate this year to have Dr. Susan Margulies (University of Pennsylvania) as Program Chair. Susan's dedication to the Society, attention to detail, work ethic, and interpersonal skills are second to none. We received valuable advice at every stage of program planning from our Senior Advisory Board: Dr. Mauli Agrawal, UTSA; Dr. Peter Katona, George Mason University; Dr. John Linehan, Northwestern University; Dr. Kenneth Lutchen, Boston University; Dr. Rebecca Richards-Kortum, Rice University; and Dr. Paul Yock, Stanford University. I also wish to thank the 2014 Track Chairs. They met a number of challenges and deadlines with promptness, efficiency, and good humor.

This year's meeting has some new twists. To improve the experience and recognition of poster presenters, we have added dedicated morning and afternoon sessions for each poster presenter, as well as session chairs for poster sessions. We have also added poster awards, based on reviewers' scores.

I strongly encourage you attend each of our excellent plenary talks. Let me highlight two fantastic speakers whose identities have already been determined. Our Pritzker Distinguished Lecturer is James Collins of Boston University, a founder of the field of synthetic biology. Our plenary speaker on Friday afternoon is Stephen Oesterle, Senior Vice President for Medicine & Technology at Medtronic, who will share his knowledge about how engineering innovation improves the cost and quality of health care.

Finally, take some time to enjoy friendly San Antonio. Our venue is right next to the San Antonio Riverwalk, a cool oasis of restaurants, bars, and shops. The Bash this year will be held at the nearby, unique, and unforgettable Buckhorn Saloon and Museum / Texas Rangers Museum.

Enjoy the meeting!

John A. White, PhD Annual Meeting Chair

Susan Margulies, PhD

Program Chair, BMES 2014 Annual Meeting

George H. Stephenson Professor Department of Bioengineering University of Pennsylvania

ELCOME TO THE 2014 BMES MEETING! Together with our 42 track chairs who represent a diverse set of BMES members from industry and academia, we have introduced many initiatives this year to enhance the quality of the science presented, value of the meeting to attendees and presenters, and engagement of the BMES membership in the planning and execution of the meeting. We welcome your feedback on these features.

The Chairs of our nineteen traditional tracks overhauled and updated the abstract submission topics, informed by the 86 suggestions submitted by BMES members for state-of-the art and interdisciplinary sessions. We are also grateful for the tireless effort of over 300 BMES members who volunteered to review and/or chair oral and poster sessions, actively partnering with the track chairs, John White and myself to improve and expand BMES 2014. With over 2274 abstracts submitted to the general program, and 385 abstract submitted to the undergraduate research program BMES 2014 is one of our largest meetings to date!

This year we have a record-breaking 861 oral presentations in 161 platform sessions, and 1635 posters!

To help attendees find the most relevant science at the meeting, the program now includes secondary track designations to guide attendees to related scientific sessions across all of our traditional tracks. Similarly, the posters are now arranged by scientific theme, to allow viewers to locate all the posters on a topic in a single location, regardless of the track. Be sure to consult the color-coded poster session maps in the program to guide your exploration of the posters.

To expand the scientific exchange in the poster sessions, posters are now up for the entire day, with two dedicated, unopposed opportunities to talk with the authors. This year, we have introduced poster session chairs who will attend both viewing sessions, and lead walk-about discussions of the posters. To recognize the outstanding science presented in our poster sessions, we have introduced the Reviewer's Choice awards, awarded to those posters deemed of the highest quality in each track (top 5%) by the reviewers.

We encourage you to attend the many special events at the meeting, including plenary lectures, student activities, career development presentations, networking events, informational sessions about federal funding opportunities, cutting edge education technology presentations, featured speakers on our meeting theme, and dedicated special scientific presentation sessions organized by the BMES special interest groups (SIGs). Refer to the Program-at-a-Glance to find those events that are of interest to you.

John White and I are deeply grateful to the tireless effort of Debby Tucker and Michele Ciapa who work long hours to transform the meeting from a concept to a reality. Ed Schilling the BMES National Meetings Committee, and the BMES leadership have been very supportive of our many new features at this meeting. We extend our sincere appreciation to our Track Chairs who contributed their time, effort, and creativity to design an engaging and inclusive program. Finally, I am especially grateful to John White for his personal and professional partnership on the many programming aspects of BMES 2014.

It has been my pleasure and privilege to introduce many innovations this year at BMES 2014 – please stop me at the meeting or contact me with your feedback!

Susan Margulies, PhD

Program Chair, BMES 2014 Annual Meeting

BMES ROBERT A. PRITZKER DISTINGUISHED LECTURE

Pritzker Distinguished Lecturer:

James J. Collins, PhD

Howard Hughes Medical Institute Department of Biomedical Engineering & Center of Synthetic Biology, Boston University Wyss Institute for Biologically Inspired Engineering, Harvard University

THURSDAY, OCTOBER 23, 2014 10:30AM LILA COCKRELL THEATRE, HENRY B. GONZALES CONVENTION CENTER

Life Redesigned: The Emergence of Synthetic Biology

SAMPLE TIC BIOLOGY IS BRINGING TOGETHER engineers, physicists and biologists to model, design and construct biological circuits out of proteins, genes and other bits of DNA, and to use these circuits to rewire and reprogram organisms. These re-engineered organisms are going to change our lives in the coming years, leading to cheaper drugs, rapid diagnostic tests, and targeted therapies to attack "superbugs". In this talk, we highlight recent efforts to create synthetic gene networks and programmable cells, and discuss a variety of synthetic biology applications in biocomputing, biotechnology and biomedicine.

James J. Collins is a William F. Warren Distinguished Professor, University Professor, Professor of Biomedical Engineering, Professor of Medicine and Director of the Center of Synthetic Biology at Boston University. He is also a core founding faculty member of the Wyss Institute for Biologically Inspired Engineering at Harvard University, and an Investigator of the Howard Hughes Medical Institute. His research group works in synthetic biology and systems biology, with a particular focus on using network biology approaches to study antibiotic action, bacterial defense mechanisms, and the emergence of resistance. Professor Collins' patented technologies have been licensed by over 25 biotech, pharma and medical devices companies, and he has helped to launch a number of companies, including Sample6 Technologies, Synlogic and EnBiotix. He has received numerous awards and honors, including a Rhodes Scholarship, a MacArthur "Genius" Award, an NIH Director's Pioneer Award, a Sanofi-Institut Pasteur Award, as well as several teaching awards. Professor Collins is an elected member of the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the American Academy of Arts & Sciences, and a charter fellow of the National Academy of Inventors.

BMES Special Interest Group: Medical Devices – Computational Modeling and Simulation for Medical Devices

THURSDAY OCTOBER 23, 2014 6:15PM - 7:30PM LILA COCKRELL THEATRE HENRY B. GONZALES

Computer Modeling and Simulation for Medical Devices

HE BMES MEDICAL DEVICE Special Interest Group was formed in 2014 as a forum for medical device biomedical engineering interests. The initial focus, Computational Modeling and Simulation for Medical Devices, brings together people from the medical device and simulation software industries and academic, clinical and other researchers to share scientific findings. Today, there are limited models that are shared publically therefore limited common understanding of simulation results and discussion of their interpretation. We aim to provide a symposium for modeling and simulation for medical devices to promote best methods, identify credible boundary and system conditions, share interpretation of simulation results, and encourage future discovery. We focus on applications of modeling and simulation that advance the design, evaluation and production of medical devices. This Special Session at the BMES Annual Meeting will introduce the Medical Devices SIG and explore how modeling and simulation can play a role in:

- ensuring the safety and effectiveness of medical devices,
- speeding the translation of academic models to clinical application,
- improving the regulatory evaluation process providing credible methods to evaluate medical devices.

SESSION CHAIR:

Walt Baxter, Medtronic Co-Chair, BMES-FDA Frontiers in Medical Devices Conference

SPEAKERS:

Modeling and Simulation for Medical Devices: An FDA Perspective Donna Lochner, FDA Co-Chair, BMES-FDA Frontiers in Medical Devices Conference

Translation of Modeling & Simulation Tools from Research to R&D/Clinical Applications Anthony Petrella, Colorado School of Mines

Use of Computational Modeling in the Development of Aortic Stent Grafts and Early Clinical Feasibility Studies Ben Wolf, Medtronic, Endovascular Therapies

Ensuring Models and Simulations are Credibility for Regulatory Decision Making Tina Morrison, FDA

NIH NIBIB LECTURE

NIH National Institute of Biomedical Imaging and Bioengineering Lecture:

David Kaplan, PhD

Stern Family Professor of Engineering Professor and Chair, Department of Biomedical Engineering Professor, Department of Chemical Engineering Director, Bioengineering and Biotechnology Center, Tufts University

FRIDAY, OCTOBER 24, 2014 10:30AM LILA COCKRELL THEATRE HENRY B. GONZALES CONVENTION CENTER

Silk Biomaterials – The New Silk Road

HE FIELD OF BIOMATERIALS AND TISSUE ENGINEERING has emerged in terms of scientific and translational impact over the past few decades by embracing intersections between engineering, materials science, biology and medicine. We have focused our efforts on biopolymer engineering to understand structure-function relationships, with studies on self-assembly, biomaterials engineering, tissue engineering and regenerative medicine. Structural proteins, including collagens, elastins, resilins and silks have been our focus, with a particular emphasis on the study of silk-based biomaterials in regenerative medicine, from fundamental studies of the biochemistry, molecular biology and biophysical features of these fibrous proteins to their impact on stem cell functions and complex tissue formation. Tissue engineering and regenerative medicine emerge though control of biomaterials structure-function relationships and 3D tissue co-culture systems to establish and study human tissues in the laboratory and in animal systems.

David Kaplan is a biomedical engineer who has studied biomaterials for his entire career. His group focuses on biopolymers and their engineering for new biomaterials, covering fundamental questions to translational goals. He is the inaugural endowed Stern Professor of Engineering and has been chair of the Department of Biomedical Engineering since its founding in 2002. His B.S. was from SUNY Albany and his PhD from SUNY Syracuse and Syracuse University. His group has published over 600 peer reviewed papers, and generated more than 50 patents that have led to seven startup companies and new FDA approved medical devices.

He has directed the NIH P41 Tissue Engineering Resource Center (TERC) since 2004, a program involving Tufts University and Columbia University. He serves on the editorial boards of numerous journals and is the inaugural Editor in Chief of ACS Biomaterials Science and Engineering. He has received a number of awards for teaching, was Elected Fellow of the American Institute of Medical and Biological Engineering, received the Columbus Discovery Medal and the Society for Biomaterials Clemson Award for contributions to the literature.

Professor Kaplan also holds faculty appointments in the School of Medicine, the School of Dental Medicine, the Department of Chemistry and the Department of Chemical and Biological Engineering at Tufts University. He also has a university professor appointment at Soochow University in China and fosters joint research between institutions. He has an extensive network of collaborators around the world that providing complementary expertise and opportunities for synergistic studies and student exchanges.

SPECIAL PLENARY SESSION | FRIDAY

Stephen Oesterle, MD

Senior Vice President for Medicine & Technology Medtronic

FRIDAY, OCTOBER 24, 2014 5:15PM - 6:15PM LILA COCKRELL THEATRE HENRY B. GONZALES CONVENTION CENTER

Converging Low Power Microelectronics, IT and Communication Technologies into Implantable Medical Devices

EDTRONIC IS ONE OF THE WORLD'S largest medical device companies. With more than 50,000 employees, it operates in 140 countries, delivering medical products to more than

10 million people each year. Medtronic must continue to innovate while delivering effective products for less cost. The challenge of developing medical devices for the more than 4 billion people who today have no access to care is immediate. The incorporation of low power and flexible microelectronics into implantable medical devices has substantially broadened applications for these devices while allowing for less invasive delivery and reduced complications. Cardiac pacemakers have been reduced in dimension by magnitudes; the potential to deliver a wafer scale pacemaker will soon be realized. Implantable and wearable physiologic sensors will facilitate remote management of the devices and the patients who use them. Convergence of information and communication technologies into medical devices will catalyze Medtronic's vision to distribute health care to billions of patients who have minimal access to affordable care. Chronic diseases such as heart failure, diabetes and hypertension can be better managed with implanted and wearable microelectronics and adaptive closed loop algorithms. It all starts and ends with engineers.

Stephen N. Oesterle, MD joined the company in 2002 as Senior Vice President for Medicine and Technology. In this role, Steve provides executive leadership for Medtronic scientific research, formation of technological strategies and continued development of strong cooperative relationships with the world's medicinal communities, technical universities, financial institutions and emerging medical device companies.

Previously, Steve served as Associate Professor of Medicine at the Harvard University Medical School and as Director of Invasive Cardiology Services at Massachusetts General Hospital, Boston. A teacher and innovator in the field of cardiac catheterization, he has also developed and directed interventional cardiology programs at Good Samaritan Hospital, Los Angeles; at Georgetown University; and at Stanford University.

Steve is a 1973 *summa cum laude* graduate of Harvard College and received his doctorate from Yale University in 1977. He completed his internship and residency at Massachusetts General Hospital and also served a fellowship in interventional cardiology at Stanford.

RITA SCHAFFER MEMORIAL LECTURE

BMES 2014 Rita Schaffer Memorial - Young Investigator Lecturer:

Kimberly M. Stroka, PhD

Postdoctoral Fellow in the Konstantopoulos Lab Johns Hopkins University

SATURDAY, OCTOBER 25, 2014 10:30AM LILA COCKRELL THEATRE HENRY B. GONZALES CONVENTION CENTER

New Paradigms for Cell Migration in Confined Microenvironments

ELL HOMEOSTASIS AND DIVERSE processes, including migration, are tightly regulated by cell volume. In vivo, metastatic tumor cells must navigate complex, heterogeneous microenvironments when migrating through tissues, including longitudinal tracks formed by anatomic structures. Intriguingly, we have discovered that the classical model of cell migration on two-dimensional substrates (relying on actin polymerization, cell adhesion to the substrate, and myosin II-mediated contractility) does not apply to metastatic tumor cells migrating through three-dimensional confined spaces. We therefore hypothesized that an alternate mechanism based on cell volume regulation via ion channels and aguaporins drives cell migration in these confined microenvironments, where cells must deform in order to squeeze through physically restrictive spaces. Using a multidisciplinary approach that integrates microfabrication techniques, molecular biology, live cell imaging, and theoretical modeling based on physics, we have discovered an "Osmotic Engine Model" of cell migration, which demonstrates that osmotically-driven water flow regulates cell migration in confined microenvironments. Importantly, our theoretical model predicts many key non-intuitive experimental results. Collectively, this study represents a new paradigm for cell migration in confined microenvironments and elucidates ion pumps and aquaporins as new molecular targets that may be exploited for future development of cancer therapeutics.

BMES established this award in 2000 to honor Rita M. Schaffer, former BMES Executive Director. Rita's gift of her estate, along with contributions from her family, friends, and associates, has enabled BMES to create the Rita Schaffer Young Investigator Award, which includes the Rita Schaffer Memorial Lecture.

KIMBERLY M. STROKA is a postdoctoral fellow at Johns Hopkins University in the Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology. In January 2015 she will begin her appointment as Assistant Professor at the University of Maryland, College Park in the Fischell Department of Bioengineering. Dr. Stroka received her B.S. summa cum laude in Physics in 2006 from Denison University. She received her Ph.D. in Bioengineering in 2011 from the University of Maryland-College Park while working with Helim Aranda-Espinoza. In her PhD work, Dr. Stroka developed a novel hydrogel-based in vitro model in order to evaluate the effects of blood vessel stiffening on endothelial cell biomechanics, leukocyte mechanosensing, and leukocyte transmigration, during a normal immune response and in the context of cardiovascular disease. In Dr. Stroka's postdoctoral work in the lab of Konstantinos Konstantopoulos, she has integrated microfabrication, molecular biology, live cell imaging, and theoretical modeling in order to uncover a new mechanism by which metastatic tumor cells migrate through confined microenvironments. This work was recently published in Cell.

Dr. Stroka's postdoctoral and predoctoral work has been supported by numerous highly competitive fellowships, including an NIH NRSA F32 postdoctoral fellowship (2013-present), NIH T32 postdoctoral fellowship (2012-2013), NIH NRSA F31 predoctoral fellowship (2010-2011), and NSF Graduate Research Fellowship (2006-2009). Dr. Stroka was also recently awarded the Burroughs Wellcome Career Award at the Scientific Interface (2014-2019) for her proposal on engineering blood-brain barrier mechanobiology in the context of tumor cell metastasis. She is the recipient of 9 different awards for travel to national and international conferences (2008-2011).

BMES DIVERSITY AWARD LECTURE

Diversity Lecture:

Naomi Chesler, PhD

Vice Chair of Biomedical Engineering University of Wisconsin-Madison

SATURDAY, OCTOBER 25, 2014 11:15AM LILA COCKRELL THEATRE HENRY B. GONZALES CONVENTION CENTER

The Power of Privilege – Using Our Strengths to Overcome Our Weaknesses in Diversity and Inclusivity

HE CURRENT POOL of biomedical engineers is not diverse enough to solve the complex health and medical technology problems facing our society today. In the undergraduate experience, being part of a diverse classroom and community leads to increased student engagement in learning and greater gains in critical thinking, problem solving and self-confidence. Also, motivation to consider multiple perspectives, which is an important skill in teamwork, increases with diversity, as does productivity and innovation. Therefore, increasing the diversity of our discipline will have concrete and significant benefits for the current and future biomedical engineering workforce.

Often, the most visible and vocal proponents of increased diversity and inclusivity are members of under-represented groups. While biomedical engineering has a higher percentage of women than almost any other engineering discipline, most senior leaders in biomedical engineering both in industry and academia are members of the majority. Thus, in order to improve and enhance the diversity and inclusivity of our discipline, I propose we use these strengths – our many majority members – and their privilege. In particular, I challenge our community to use the power of privilege to promote inclusive excellence and thereby improve critical thinking and problem-solving, teamwork and innovation in biomedical engineering.

NAOMI C. CHESLER IS PROFESSOR and Vice Chair of Biomedical Engineering at the University of Wisconsin-Madison. Her research accomplishments are in the areas of cardiovascular biomechanics and engineering education. Her broad contributions to the physical, biological and social sciences have been recognized by courtesy appointments in the Departments of Mechanical Engineering, Medicine, Pediatrics and Educational Psychology at UW-Madison. One key foundation for this wide-ranging impact was her liberal arts education from Swarthmore College, where she earned a BS in engineering (general). She then obtained an MS in Mechanical Engineering from MIT and a PhD in Medical Engineering from the Harvard-MIT joint program in Health Sciences and Technology.

Dr. Chesler's biomechanics research seeks to improve cardiovascular health through the integration of mechanical engineering, vascular biology and imaging tools, to advance knowledge in these fields, and to educate the next generation of leaders in cardiovascular engineering and science. In particular, her lab (vtb.bme.wisc.edu) strives to better understand and prevent ventricular failure by focusing on three aspects of physiology and pathophysiology: ventricular function, blood flow dynamics, and changes in the large and small artery structure and function. She publishes her findings in this area regularly in biomedical and mechanical engineering journals as well as physiology journals and is a recipient of the NSF CAREER Award and funding from the Whitaker Foundation, the American Heart Association and the NIH both independently and collaboratively.

Dr. Chesler also investigates mentoring and curricular change strategies for improving the recruitment and retention of women and underrepresented minorities in engineering. Her scholarly contributions in this area have been published in the Journal of Engineering Education, *Journal of Women and Minorities in Science and Engineering, Advances in Engineering Education* and also the BMES flagship journal *Annals of Biomedical Engineering.* She is an integral part of the Epistemic Games Group at UW-Madison (edgaps. org), which is funded by the NSF to design and implement engineering epistemic games for first-year curricula with integrated mentoring and assessment.

She is a Fulbright Scholar, fellow of the American Society of Mechanical Engineers and prior recipient of the Denice D. Denton Emerging Leader Award from the Anita Borg Institute for Women and Computing. She was recently named a Vilas Distinguished Achievement Professor at UW-Madison and is honored to receive the BMES Diversity Award.

Frontiers in Medical Devices Conference

Innovations in Modeling and Simulation

Using Modeling and Simulation at Different Stages in the Total Product Life Cycle

May 18-20, 2015 Washington DC

The College Park Marriott Hotel and Conference Center at the University of Maryland

The Biomedical Engineering Society and the US Food and Drug Administration have formed a partnership to co-host the BMES/ FDA Frontiers in Medical Devices Conference, a meeting for researchers, engineers, clinicians and other professionals in the fields of designing, building and using medical devices.

A Call for Abstracts is Open!

Papers, presentations and posters highlighting the meeting's theme "Using Modeling and Simulation at Different Stages in the Total Product Life Cycle" are being sought.

www.bmes.org/meddevicesabstracts

Keynote Speakers

Dr. Marco Viceconti, Executive Director of the INSIGNEO institute for in silico medicine and Chair of Biomechanics in the Department of Mechanical Engineering at the University of Sheffield.

BMES Medical Devices

SPECIAL INTEREST GROUP

Dr. Scott Hollister, Professor of Biomedical Engineering and Mechanical Engineering and Associate Professor of Surgery at the University of Michigan.

Conference Tracks

Model Foundations for Device Design Ideation Neils Kuster, IT'IS Foundation

Concept Development and Design Optimization Art Erdman, University of Minnesota

Modeling for Robust Design Thor Bezier, University of Auckland

Design Verification and Validation Anita Bestelmeyer, Becton, Dickinson and Company

Patient Specific Design Matthew Debeule, FEops

Discussion Panel: How Good is Good Enough? *Tina Morrison, US Food and Drug Administration*

Integration of Modeling with Clinical Studies *Tarek Haddad, Medtronic, Inc.*

Modeling and Device Commercialization *Charley Taylor, HeartFlow*

Please visit www.bmes.org/meddevicessig for additional information about the meeting.

Visit the S Booth at BMES!

Visit **Booth #116** and get your FREE 2014 meeting essentials like luggage tags, pens, and more! Discover how you can get involved with the APS' award-winning programs and services, including career resources, extensive awards programs, exciting education programs, diverse membership, exceptional scientific meetings, prestigious publications, and innovative advocacy resources. <u>www.the-aps.org</u>

education

- Society & section awards
- Teaching & student awards

Fellowships & grants

Gain access to all APS journals

online & Legacy Content

EDUCATION—Check out the new Life Science Teaching Resource Community

Benefit from K-12, undergraduate, graduate/professional, & continuing education programs

careers

- Use free teaching & learning resources
- Participate in the professional skills training courses
- Engage in the diversity programs

MEETINGS—Join us for the 2015 Meetings and Conferences

- Plan for Experimental Biology 2015, March 28-April 1 in Boston, Massachusetts
- Attend the 2015 APS Conference: 14th International Conference on Endothelin:
- Pathophysiology and Therapeutics, September 2-5, 2015 in Savannah, Georgia
- Sponsor a meeting

MEMBERSHIP—Undergraduate student membership is \$10 and Graduate membership is \$15 Receive free essential color figures

- Jump start or develop your career & join the APS
- Get discounted meeting registration
- Serve on sections and committees
 - Join specialized listservs and chapters

PUBLICATIONS—NEW APSselect article collection website

- APSselect offers a monthly collection of the "best of the best" original research articles from the APS journals http://apsselect.physiology.org
- View our 15 highly cited, peer-reviewed journals including the new Physiological Reports open-access, online-only journal
 - Use the APS Legacy Content & Journals Digital Library at <u>www.physiology.org</u>
 - Submit your manuscripts—reviewed quickly and published online within days of acceptance
 - Sign up for free eTOCs, CiteTrack, RSS Feeds, and Podcasts
 - Read The Physiologist and eNews Update to stay abreast of physiology and society affairs

SCIENCE POLICY—Online Advocacy Resources Your voice in Washington on

- Research funding
- Animal research issues
- Follow on Twitter at twitter.com/SciPolAPS or @SciPolAPS

meetings

the-aps.org/store

ne-aps.org

ience polic

□ POSTERS												
515 516 517 518 519 520 521 514 513 512 511 510 509 508 501 502 503 504 505 506 507	542 541 540 539 538 537 536 529 530 531 532 533 534 535 528 527 526 525 524 523 522	552 551 550 549 548 543 544 545 546 547	567 568 569 570 571 572 573 566 565 564 563 562 561 560 553 554 555 556 557 558 559	580 579 578 577 576 575 574	608 607 606 605 604 603 602 595 596 597 598 599 600 601	622 621 620 619 618 617 616 609 610 611 612 613 614 615	636 635 635 633 635 631 630 623 624 625 626 627 628 629	650 649 648 647 646 645 644 637 638 639 640 641 642 643	664 663 662 661 660 659 685 651 652 653 654 655 656 657	678 677 676 675 674 673 672 665 66 66 668 669 670 671	688 687 686 685 684 679 680 681 682 683	702 701 700 699 698 697 696 689 690 691 692 693 694 695
635 633	636 634 632	537	536 4 534 4 532 4	37 35. 33_	436 337 434 335 432 333		336 237 334 235 332 233		236 234	137 135 133	<u> 34</u> 32	
631 627 625	628 626	529 527	4	27	428 329 426 327		University of Illinois at Urbana- Champaign 227	,	228 226	129	130 126 124	
623 621	622	523	522 4 520 4	23 21	422 323 420 321		322 223 320 221		222	123	122	
617	616	517	516 4 514 4	17	BMES Booth		316 217 314 215	5	216	117	116	
611	610	511	Georgia Te Emory Un Peking Un	ech iv. iv.	410 311		University of Florida 20	9	210	111	110	
605 603	604	505 503	504 4 502 4	05	404 303 402 303		304 205 302 203		204	105	104	
601	600	501	500 4	01 EN	400 30		300 201		200	101	100	
R	EGISTF	RATIO	N		INAL							

REFRESHMENT BREAKS

BOOTH **# 634**

AIP Publishing

I 305 Walt Whitman Road, Suite 300 Melville, NY 11747 Phone: 516-576-2279 Email: mgross@aip.org Web: www.journals.aip.org

AIP Publishing is a scholarly publisher in the physical and related sciences that provides a comprehensive collection of highly cited peer reviewed journals. AIP Publishing's portfolio of 17 journals includes prestigious titles such as Applied Physics Letters, Journal of Applied Physics and The Journal of Chemical Physics. http://journals.aip.org

BOOTH **# 116**

American Physiological Society

9650 Rockville Pike Bethesda, MD 20814 Phone: 301-634-7246 Email: webmaster@the-aps.org Web: www.the-aps.org

The American Physiological Society (APS) is a nonprofit devoted to fostering education, scientific research, and dissemination of information in the physiological sciences. The Society was founded in 1887 with 28

ARIZONA STATE UNIVERSITY

school of biological and health systems engineering sbhse.engineering.asu.edu

Cutting-edge discoveries in

biomedical imaging, biosensors and bio-instrumentation, molecular, cellular and tissue engineering, neural/rehabilitation engineering, and synthetic biology and systems bioengineering

Faculty and students at the School of Biological and Health Systems Engineering in the Ira A. Fulton Schools of Engineering are designing the future of medicine, physiology and biology.

Learn more about our growing community of world-class faculty at sbhse.engineering.asu.edu

visit us at booths 415 and 417

members and now has over 10,500 members worldwide. Discover how you can benefit from the APS award-winning programs and services, including career resources, extensive awards programs, exciting education programs, diverse membership, exceptional scientific meetings, prestigious publications, and innovative advocacy resources.

BOOTHS # 415/417

Arizona State University

SCHOOL OF BIOLOGICAL AND HEALTH SYSTEMS ENGINEERING

P.O. Box 879709

Tempe, AZ 85287-9709 Phone: 480-965-3028 Email: sbhse@asu.edu Web: engineering.asu.edu/sbhse

The mission of the School of Biological and Health Systems Engineering at ASU is to create novel solutions to improve human health through research, education, and service to the community. The faculty in SBHSE has a wide range of research expertise with strengths in the following research areas: imaging, biosensors and instrumentation, molecular, cellular and tissue engineering, neural and rehabilitation engineering, synthetic biology and systems bioengineering.

BOOTH # 517

Binghamton University

DEPARTMENT OF BIOENGINEERING

4400 Vestal Parkway East Binghamton, NY 13902 Phone: 607-777-5238 Email: gmahler@binghamton.edu Web: www.binghamton.edu/bioengineering/grad

The Binghamton University Department of Bioengineering provides a state-of-the-art, affordable education. We train the next generation of biomedical engineers, cultivate leaders, and foster entrepreneurship through the integration of engineering principles, the physical sciences, and biology towards better disease prevention, diagnostics, treatment, and health care systems.

BOOTH **# 500**

Biomomentum Inc.

970 Michelin Street, Suite 200 Laval, Quebec H7L 5C1 Canada Phone: 450-667-2299 Email: info@biomomentum.com Web: www.biomomentum.com

Biomomentum commercializes the Mach-1[™], a configurable mechanical tester capable of performing compression, tension, shear, and torsion for precise characterization of cartilage and soft materials. The Mach-1[™] is the only tester that can automatically map the mechanical properties of an entire sample's surface in 3D. Biomomentum also offers biomechanical testing services.

BOOTH # 527

BIOPAC Systems, Inc.

42 Aero Camino Goleta, CA 93117 Phone: 805-685-0066 Email: info@biopac.com Web: www.biopac.com

Complete data acquisition and analysis solutions for biomedical engineering applications. BIOPAC is trusted by thousands of labs and cited in over 18,000 scientific articles. Wireless and wearable solutions: Mobita 32-CH, BioNomadix ECG, EEG, EMG, EOG, NICO, GSR, Pulse, Resp., and more! Powerful AcqKnowledge software has automated analysis and customizable display.

BOOTH # 529

Boston University

BIOMEDICAL ENGINEERING

44 Cummington Mall Boston, MA 02215 Phone: 617-353-2805 Email: christen@bu.edu Web: www.bu.edu/bme

The Boston University Department of Biomedical Engineering is one of the largest and oldest departments of its kind in the country. We attract exceptional students to our BS, MEng, MS and PhD degree programs, which are known for their highly quantitative approach. We have strengths in numerous research areas including biomechanics, neural engineering, biomedical optics, respiratory dynamics, tissue engineering, biomaterials and synthetic biology. We boast a wealth of research resources, and have strong ties with the BU School of Medicine, and other top medical research centers in the Boston area.

BOOTH # 228

Brown University

CENTER FOR BIOMEDICAL ENGINEERING

171 Meeting Street Providence, RI 02912 Phone: 401-863-6778 Email: bme@brown.edu Web: www.brown.edu/bme

The Center for Biomedical Engineering at Brown University features an interdisciplinary approach in four complementary research areas: Neuroengineering, biosensors/bioplatforms, mechanobiology, and tissue engineering/regenerative medicine. The program offers BS, MS, and PhD degrees and is distinguished by its research and strong collaborative connections between academic science/engineering, clinical medicine, and industry.

BOOTH # 334

Cambridge University Press

32 Avenue of the Americas New York, NY 10013 Phone: 212-924-3900 Email: jmurphy@cambridge.org Web: www.cambridge.org/us/academic

Visit the Cambridge University Press booth to save 20% on books including: Willams' Essential Biomaterials Science, Agrawal et al.'s Introduction to Biomaterials, Biomaterials and Regenerative Medicine edited by Ma, Saltzman's Biomedical Engineering, Yock et al.'s Biodesign 2nd Edition. If you have book ideas, please speak with editor Dr. Michelle Carey.

BOOTH # 436

Carnegie Mellon University

5000 Forbes Avenue Pittsburgh, PA 15213 Phone: 412-268-6222 Email: yuliwang@andrew.cmu.edu Web: www.bme.cmu.edu

The Department of Biomedical Engineering at Carnegie Mellon is built upon a long tradition of interdisciplinary research across departmental borders. Its decades-old research program emphasizes a collaborative network that balances four synergistic areas: basic engineering principles of living cells and tissues, engineering tools for biomedical research, interface between living and artificial materials, and clinical applications of biomedical engineering. Training programs encourage students to expand their vision and prepare them for a wide range of careers from academic research in basic sciences, to engineering entrepreneurship, to medical care.

BOOTH **# 300**

Case Western Reserve University

DEPARTMENT OF BIOMEDICAL ENGINEERING

309 Wickenden Building 10900 Euclid Avenue Cleveland, OH 44106-7207 Phone: 216-368-4094 Email: bmedept@case.edu Web: http://bme.case.edu/

The Department of Biomedical Engineering at Case Western Reserve University offers distinctive programs ranging from the B. S. degree through the Ph.D. degree, including our innovative M.D./Ph.D. degree, M. D./M.S. degree, and our Biomedical Entrepreneurship program. Cutting-edge research thrusts include: biomaterials and tissue engineering, neural engineering and neuroprostheses, biomedical imaging and sensing, transport and metabolic engineering, biomechanics, and targeted therapeutics.

BOOTH #611

CD-adapco

60 Broad Hollow Road Melville, NY 11747 Phone: 671-629-3132 Email: lenny.odonnell@cd-adpco.com Web: www.cd-adapco.com

BOOTH # 405

CellScale Biomaterials Testing

3B- 572 Weber Street N. Waterloo, Ontario N2L 5C6 Canada Phone: 519-342-6870 Email: caleb@cellscale.com Web: www.cellscale.com

CellScale manufactures biomaterial and mechanobiology test systems. Our mechanical test systems are specifically designed for biomaterials testing and incorporate temperature-controlled media baths, image capture and analysis software, and a range of gripping mechanisms. Our cell culture systems enable mechanically active environments in 2D or 3D.

BOOTH # 501

Cincinnati Sub-Zero

12011 Mosteller Road Cincinnati, OH 45241 Phone: 513-772-8810 Email: adoviak@cszinc.com Web: www.cszmedical.com

Cincinnati Sub-Zero has been delivering patient temperature management systems since 1963. Our complete line of products includes therapeutic heating/cooling therapy units and warming/cooling blankets.

BOOTH **# 329**

The City College of New York

BIOMEDICAL ENGINEERING

160 Convent Avenue, T401 New York, NY 10031 Phone: 212-650-6707 Email: pcupid@ccny.cuny.edu Web: bme.ccny.cuny.edu

The City College of New York – the founding college of CUNY. Founded in 1847, it has produced nine Nobel Prize winners and ranks seventh in the number of alumni who have been elected to the National Academy of Sciences. The Biomedical Engineering Department was established in 2002. BME at CCNY: Biomaterials/nanotechnology; Cardiovascular Engineering; Musculoskeletal Biomechanics; and Neural Engineering.

BOOTH # 237

Clemson University

DEPARTMENT OF BIOENGINEERING

301 Rhodes Research Center Clemson, SC 29634-0905 Phone: 864-656-7276 Email: mariam@clemson.edu Web: www.clemson.edu/ces/bioe

Adding 30,000 sqft of research labs and innovation space for business partnership, our newest facility is CUBEInC, Clemson University Biomedical Engineering Innovation Campus, where student-faculty-clinician teams develop and test emerging technologies. Our continuing commitment to excellence in undergraduate and graduate education assures degree market value and stimulates economic development.

EXHIBITS

BOOTHS # 502 / 504 Columbia University

DEPARTMENT OF BIOMEDICAL ENGINEERING

351 Engineering Terrace 1210 Amsterdam Avenue New York, NY 10025 Phone: 212-854-6196 Email: bme@columbia.edu Web: www.bme.columbia.edu

The Department of Biomedical Engineering at Columbia University offers biomedical engineering education and research through undergraduate B.S. to Ph.D. and M.D./Ph.D. degree programs. Our department provides a surprising mix of the intellectual atmosphere of an Ivy League institution and the sense of community of a small college enriched by the diversity of New York City.

BOOTHS # 401 / 403

Cornell University

DEPARTMENT OF BIOMEDICAL ENGINEERING

101 Weill Hall Ithaca, NY 14853 Phone: 607-255-2573 Email: bh42@cornell.edu Web: www.bme.cornell.edu

Biomedical Engineering at Cornell University focuses on interdisciplinary research to achieve a quantitative understanding of human biology at all spatial and temporal scales with the goal of improving human health. The Department has a close relationship with Weill Cornell Medical College and its associated hospitals in New York City, including an "Immersion Term" during which all Ph.D. students spend 7 weeks in a clinical experience at the Medical College. Cornell University is a comprehensive university with outstanding programs of teaching and research in all areas of human inquiry which has its main campus at Ithaca in the Finger Lakes Region of upstate New York. A new Engineering campus is opening in New York City located on a site less than 20 minutes from the Medical College which will catalyze further growth in the Department's interactions with the Medical College and hospitals. The Biomedical Engineering Department has close collaborations with a wide variety of other departments in Ithaca, especially with those in the Colleges of Engineering, Veterinary Medicine, Agriculture and Life Sciences, Arts and Sciences, and Human Ecology

BOOTH # 133

Covidien

15 Hampshire Street Mansfield, MA 02048 Phone: 508-261-8000 Web: www.covidien.com

Covidien is a \$10 billion global healthcare products leader dedicated to innovation and long-term growth. We create innovative medical solutions for better patient outcomes and deliver value through clinical leadership and excellence. Please come visit a few of our team members at Booth #133 to see hands-on examples of some of our energy-based surgical products, learn about our other product families, obtain information on joining our team via internships and full-time careers, and much more.

BOOTH # 121

CRC Press

6000 Broken Sound Parkway NW Suite 300 Boca Raton, FL 33487 Phone: 561-361-6000 Email: orders@crcpress.com Web: www.crcpress.com

NE\

CRC Press - Taylor & Francis is a premier publisher in biomedical engineering textbooks, professional manuals, reference works, journals, and electronic databases. Please visit our booth to peruse our titles, receive special convention discounts, and pick up copies of our journals. Talk to us about being a CRC Press Author!

BOOTH **# 603**

Duquesne University

BIOMEDICAL ENGINEERING

600 Forbes Avenue 307 Libermann Hall Pittsburgh, PA 15212 Phone: 412-396-2661 Email: viatorj@duq.edu Web: www.duq.edu/bme

We will be promoting the new Biomedical Engineering Program at Duquesne University. We will also introduce the BME/BSN program, a five year curriculum that results in bachelor's degrees in engineering and nursing, providing the graduate with technical knowledge and clinical experience.

Joint Undergraduate Program in

FOR FALL 2015! BIOMEDICAL ENGINEERING AND NURSING (BME-BSN)

Duquesne University's Biomedical Engineering Program and School

of Nursing will launch a program that combines the sought-after credentials of bachelor of science degrees in both biomedical engineering (BME) and nursing (BSN), becoming the first academic institution in the U.S. and globally to offer this dual degree to undergraduates.

DUQUESNE Learn more by visiting www.duq.edu/bme-bsn | bme@duq.edu | 412.396.6222 UNIVERSITY Connect with us 🔐 💟

Launch Your Technica Leadership Career

Edwards

wai

Full-time engineering development program for high-caliber new grads

Ready for an innovative and meaningful career? Interested in applying your talents to solve complex challenges that will save lives?

Then there's never been a better time to join Edwards Lifesciences, the global leader in the science of heart valves and hemodynamic monitoring. You'll thrive in our formal engineering development program, which combines a summer networking and educational program with ongoing personal mentorship, technical peer support, and senior management collaboration and guidance. It's the ideal foundation for launching your career.

Find out more about our Internships and New Grad Programs at Edwards.com/University

A number of engineering backgrounds are welcome, including biomedical, mechanical, chemical, electrical, packaging, industrial, materials, manufacturing, quality and engineering management. You should be on track to earn a B.S. or M.S. in engineering as well as have a 3.0 GPA and proof of U.S. citizenship or permanent residency authorization.

Edwards Lifesciences, and the stylized E logo are trademarks or service marks of Edwards Lifesciences Corporation.© 2014 Edwards Lifesciences Coporation. All rights reserved.

Edwards Lifesciences USA | Switzerland | Japan | China | India | Australia | Brazil edwards.com

Engineering New Grad Programs

We offer program participants two unique technical engineering tracks in our Irvine, California and Draper, Utah locations.

Technical Development Program

This 18-month, full-time, broad-spectrum rotational program offers four handson work rotations that deliver multi-product exposure across all businesses and functions.

University Engineering Program

Gain a highly-focused specialization in one of four business units: Cardiac Surgery Systems, Critical Care, Heart Valve Therapy, or Transcatheter Heart Valves.

Edwards

BOOTH # 311

Edwards Lifesciences

One Edwards Way Irvine, CA 92614 Phone: 949-756-4258 Email: univrelations@edwards.com Web: www.edwards.com

Edwards Lifesciences is the global leader in the science of heart valves and hemodynamic monitoring. Driven by a passion to help patients, the company partners with clinicians to develop innovative technologies in the areas of structural heart disease and critical care monitoring that save and enhance lives.

BOOTH # 516

Engineering World Health

The Prizery, Suite 200 302 East Pettigrew Street Durham, NC 27701 Phone: 919-682-7788 Email: info@ewh.org Web: www.ewh.org

Engineering World Health is an NGO that works with the BME community to improve healthcare delivery in developing world hospitals. We build local capacity to manage and maintain medical equipment, make repairs, and develop low-cost technologies. Visit our booth to learn about making a lasting impact on developing world health care!

A STREET

Part of a new series offered in association with The American Ceramic Society, tailored to working professionals in the engineering and healthcare fields with an interest in bioceramics.

BOOTH # 304

EnvisionTEC

15162 S. Commerce Drive Dearborn, MI 48120 Phone: 313-436-4300 Email: northamerica@envisiontec.com Web: http://www.envisiontec.com

EnvisionTEC has been selling the 3D-Bioplotter® for over 12 years. The 3D-Bioplotter® was developed for the 3D printing of biomaterials, includ ing cells, and is not only an excellent research tool, but also a manufacturing tool with high accuracy and reproducibility. It is open to allow the usage of any customer chosen material, including cells, making it ideal for material scientists in research and industry alike. It is available in a Developer Series, aimed at academia, and a Manufacturer Series, aimed at industry and advanced research. EnvisionTEC has close to 12 years experience in the field of Tissue Engineering with this system having been used in numerous *in vitro* and *in vivo* experiments, resulting in close to one hundred scientific publications. The 3D-Bioplotter® has found a home in universities, research centers, and hospitals the world over where leading researchers in a wide variety of fields are working towards bioprinting solutions.

BOOTH # 514

FASEB

9650 Rockville Pike Bethesda, MD 20814 Phone: 301-634-7930 Email: cadams@faseb.org Web: www.faseb.org/marc

FASEB MARC (Maximizing Access to Research Careers) Program provides a variety of activities to support the training of students, postdoctorates, faculty and researchers from underrepresented groups who are engaged in the biomedical and behavioral sciences research and training.

We offer faculty/mentor with students and poster/platform presenter travel awards for scientific meetings (National and regional) and FASEB Science Research Conferences. We also sponsor career/leadership development and grantsmanship training seminars and workshops.

DISCOVER. DESIGN. DEVELOP. DELIVER.

Home to remarkable students, cutting-edge research, and award winning faculty, the Department of Biomedical Engineering at Florida International University is #1 in workforce development in the State of Florida at the Bachelor's, Master's, and Ph.D. degree levels.

As a WH Coulter Foundation endowed department, translational research is an integral part of our mission to produce valuable innovations that enhance health care and hold the promise of greatly improving people's lives.

f 🔓 in 🔠

BOOTH # 608

Florida Institute of Technology

150 W. University Blvd. Melbourne, FL 32901 Phone: 321-674-8382 Email: tregan@fit.edu Web: www.fit.edu/continuing-edu

Florida Tech presents its cutting-edge online certificate program in Biomedical Engineering. Overseen by esteemed BME scientist Larry Hench, our program provides a comprehensive educational background for undergraduate, master's, and doctoral-level learners. Course content includes: biomaterials, devices, tissue engineering, socio-economic issues, best practices, and the ethics of reconstructive and regenerative medicine.

BOOTH # 233

Florida International University

BIOMEDICAL ENGINEERING DEPARTMENT

10555 West Flagler Street EC 2610 Miami, FL 33174 Phone: 305-348-1409 Email: yqian@fiu.edu Web: www.bme.fiu.edu

The Coulter Foundation endowed Department of Biomedical Engineering at Florida International University in Miami is the only program with doctoral, masters and accredited bachelors among all of the public universities in the State of Florida and amongst the Hispanic and Minority serving universities in the nation. Multiple undergraduate and graduate scholarships support research and entrepreneurship. Senior Design projects are extensively industry sponsored and the MS professional track includes courses in management. New faculty hires, revised doctoral curriculum and extensive links with the Colleges of Medicine, Nursing & Health Sciences and Arts & Sciences allow research focus in Engineered Tissue Model Systems, Diagnostic Bioimaging and Sensor Systems, and Therapeutic and Reparative Neurotechnology.

BOOTH # 609

George Mason University

DEPARTMENT OF BIOENGINEERING

4400 University Drive Fairfax,VA 22030 Phone: 703-993-5769 Email: bioeng@gmu.edu Web: http://bioengineering.gmu.edu

Located in the Washington DC metropolitan area, George Mason University's Department of Bioengineering offers unique research and educational experience with collaborative opportunities with nearby national laboratories, institutes, and clinical facilities. The BS program earned accreditation from ABET in 2012 offers two concentrations: Biomedical Signals & Systems and Bioengineering Healthcare Informatics. The Bioengineering PhD program will begin in January 2015 and is currently accepting applications from outstanding prospective students. The department has 12 primary faculty members with \$6.4M of active research in areas ranging from biomedical imaging, nanotechnology, neural engineering, and data-driven biomechanics.

BOOTH **# 423**

George Washington University

SCHOOL OF ENGINEERING & APPLIED SCIENCES 801 – 22nd Street, NW, Room 608 Washington, DC 20052 Phone: 202-994-5934 Email: dghoover@gwu.edu Web: http://www.seas.gwu.edu/bme

The graduate program in biomedical engineering at the George Washington University offers a unique combination of small class sizes, engaged faculty, and cutting edge research. Areas of research include medical imaging instrumentation, therapeutic ultrasound, image analysis, microfluidics, biosensors, and electrophysiology. The Department of Biomedical Engineering offers both M.S. and Ph.D. degrees in Biomedical Engineering. Our new Science and Enginering Hall will open winter 2014 directly across the street from the GW School of Medicine and Health Sciences which gives our faculty and students direct access to real world medical problems. In addition, our location in the heart of the nation's capital affords our students and faculty unparalleled access to world class research facilities in a number of government laboratories including the National Institutes of Health and the Food and Drug Administration.

BOOTH **# 409**

The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech / Emory University & Peking University 313 Ferst Drive

Atlanta, GA 30332-0535 Phone: 404-385-0124 Email: info@bme.gatech.edu Web: www.bme.gatech.edu

The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University is inventing the future of healthcare, with breakthrough research in Pediatric Bioengineering, Immunoengineering, Neuroengineering and Cardiovascular engineering. Our programs are consistently ranked among the highest in the nation. BME at Georgia Tech and Emory University is home to five NIH training grants and innovative initiatives that build entrepreneurial confidence in our students. Unique to Georgia Tech and Emory is the BioID Master's program, which focuses on real world training in product development and clinical experience to transform unmet biomedical and clinical needs into practical, usable technologies and products. With world class faculty and new initiatives in research and learning, BME at Georgia Tech/Emory is the go-to place for all those who want to actively shape the world and invent the future of health care!

BOOTH # 100

Hamamatsu Corporation

360 Foothill Road Bridgewater, NJ 08807 Phone: 908-231-0960 Email: usa@hamamatsu.com Web: www.hamamatsu.com

Hamamatsu Corporation is the North American subsidiary of Hamamatsu Photonics K.K. (Japan), a leading manufacturer of devices for the generation and measurement of infrared, visible, and ultraviolet light. We offer low-light detectors, image sensors, light sources, and cameras (sCMOS, CCD, and EM-CCD) for biomedical applications.

BOOTH # 332

Houston Methodist Research Institute

6670 Bertner Street, MGJ Bldg. 9.019 Houston, TX 77030 Phone: 713-441-7267 Email: aswright@houstonmethodist.org Web: www.houstonmethodist.org

Houston Methodist Research Institute's mission of leading medicine is grounded in a commitment to translational and interdisciplinary research

MS or Post-Master's Certificate in Applied Biomedical Engineering and education. Our mission is to innovate in health care technology and train current and future clinicians and translational researchers from around the world in cutting edge health care advances.

BOOTH # 114

IEEE Engineering in Medicine and Biology Society

445 Hoes Lane Piscataway, NJ 08854 Phone: 732-465-6460 Email: emb-exec@ieee.org Web: www.embs.org

Johns Hopkins Engineering

Online and On-Site Part-Time Graduate Programs

ONLINE COURSES AVAILABLE

#**1** RATED BEST JOB IN AMERICA BY CNNMONEY

<u>divers</u>ity

STUDENT BACKGROUNDS INCLUDE MECHANICAL, CHEMICAL, AND AEROSPACE ENGINEERING

LEARN MORE AT EP.JHU.EDU/ABE.

100 Y f in X+

For online education state authorization information, visit ep.jhu.edu/oesa

WHITING SCHOOL of ENGINEERING Engineering for Professionals JOHNS HOPKINS

BOOTH **# 601**

IFS – Interactive Flow Studies

Billings, MT Phone: 612-810-2727 Email: mokcay@gmail.com Web: www.interactiveflows.com

Research and Educational Systems for Biomedical Engineers. Setup or upgrade your laboratory with our state of the art instruments. More information at www.interactiveflows.com

BOOTH # 520

iWorx Systems Inc.

62 Littleworth Road Dover, NH 03820 Phone: 603-742-2492 x12 Email: billm@iworx.com Web: www.iworx.com

iWorx introduces the HK-ELVIS Human Physiology/ Bioinstrumentation Teaching Kit. HK-ELVIS includes a 4 channel NI-ELVIS compatible breadboard with 2 transducer channels and 2 biopotential channels as well as the transducers, sensors and electrodes required to support a comprehensive suite of lab exercises. All transducers are also compatible with NI myDAQ.

BOOTH **# 600**

Izumi International

I Pelham Davis Circle Greenville, SC 29615 Phone: 864-288-8001 Email: us-sales@izumiinternational.com Web: www.izumiinternational.com

Izumi International, Inc. designs and builds customized automated system and robotics for laboratories and R&D facilities. Izumi also integrates dispensing systems for the highest quality and highest precision dispensing in applications where conventional dispensing systems would not work. The vast range of dispensers and accessories make Izumi the one stop shop for all of your dispensing needs. Izumi will be demonstrating the new Aerojet non-contact dispenser, enabling world's fastest jet dispensing of mid-high viscosity liquids for 3D Bioprinting applications.

 \bigcirc

STUDENTS.

Interested in a career in academia, the medical device industry, or consulting? Prepare for any of these through **graduate programs** offered by **Marquette University**:

M.S. in Biomedical Engineering Ph.D. in Biomedical Engineering

 Major research areas include imaging, rehabilitation engineering, robotics, modeling and computation, visualization and cardiovascular technologies

M.S. in Healthcare Technologies Management (Marquette University & The Medical College of Wisconsin)

- Unique 12 month program combines business, technology, and healthcare
- Prepares graduates for career advancement and management positions with medical device companies, hospitals, and healthcare consulting firms

M.E. in Biomedical Engineering (non-thesis)

Ph.D. in Functional Imaging (Marquette University & The Medical College of Wisconsin)

• Cutting-edge MR, MEG, CT and SPECT technologies; emphasizes clinical applications

Be The Difference

Visit us at Booth

433

For more information, visit

marquette.edu/engineering/hctm or marquette.edu/engineering/bien

Biomedical and Nanomedical Technology Publications

ASME Press Concise Monograph Series

- Ultrasonic Methods for Measurement of Small Motion and Deformation of Biological Tissues for Assessment of Viscoelasticity by Hideyuki Hasegawa and Hiroshi Kanai
- Photodynamic Therapy Mediated by Fullerenes and their Derivatives by Michael R. Hamblin et al.
- GFP Whole Cell Microbial Biosensors: Scale-up and Scale-Down Effects on Biopharmaceutical Processes by Frank Delvigne et al.
- Biocompatible Nanomaterials for Targeted and Controlled
 Delivery of Biomacromolecules
 by D. Kapoor and S. Dhawan
- Impedimetric Biosensors for Medical Applications Current Progress and Challenges

by Jo V. Rushworth, et al.

- Nanomaterials in Glucose Sensing by K. Burugapalli, N. Wang, J. Trzebinski, W. Song and A. Cass
- Chitosan and Its Derivatives as Promising Drug Delivery Carriers by M. Prabaharan
- Silica Nanoparticles as Drug Delivery System for Immunomodulator GMDP by E.V. Parfenyuk, N.A. Alyoshina, Yu.S. Antsiferova, N.Yu. Sotnikova
- Nanoparticles and Brain Tumor Treatment by Gerardo Caruso, M.D., et al.
- Mobile Wearable Nano-Bio Health Monitoring Systems with Smartphones as Base Stations
 - by Vijay K. Varadan and Linfeng Chen

ASME Conference Proceedings

- International Mechanical Engineering Congress and Exposition (IMECE)
- Frontiers in Medical Devices (BIOMED)
- International Conference on Nanochannels, Microchannels, and Minichannels (ICNMM)
- International Manufacturing Science and Engineering Conference (MSEC)
- Global Congress on NanoEngineering for Medicine and Biology (NEMB)
- Summer Bioengineering Conference (SBC)
- Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS)

GET MORE INFORMATION

DISCOUNTS ARE AVAILABLE FOR PACKAGE PURCHASES

Contact Warren Adams Phone: 973-244-2223 Email: asmedigitalcollection@asme.org Web: asmedigitalcollection.asme.org

ASME Journals

- Journal of Biomechanical Engineering
- Journal of Fluids Engineering
- Journal of Materials and Technology
- Journal of Medical Devices
- Journal of Micro and Nano-Manufacturing
- Journal of Nanotechnology in Engineering and Medicine

BOOTHS # 102

Johns Hopkins Engineering for Professionals

6810 Deerpath Road, Suite 100 Elkridge, MD 21075 Phone: 410-516-2300 Email: kschapp@jhu.edu Web: ep.jhu.edu

The Johns Hopkins Engineering for Professionals Applied Biomedical Engineering (ABE) program gives practicing scientists the opportunity to enhance their skills in engineering so that they can solve today's most critical problems in biology and medicine. Drawing from Johns Hopkins University's acclaimed expertise in biomedical research and medical care, program faculty are able to impart real-world knowledge to their students—who are themselves notable professionals from diverse fields all over the world. The ABE program allows students to earn a M.S. degree in applied biomedical engineering through evening, weekend, and online courses, when work working professionals have time.

BOOTH # 400 / 402

Johns Hopkins University

DEPARTMENT OF BIOMEDICAL ENGINEERING

720 Rutland Avenue Traylor 406 Baltimore, MD 21205 Phone: 410-614-4280 Email: hlan I@jhmi.edu Web: www.bme.jhu.edu

Ph.D. Program - An intellectually stimulating environment and the nurturing spirit of collegiality extend throughout the program which is consistently ranked #1 in the US and has a long history of ground-breaking and innovative research and discovery. Research areas include bioinformatics and computational biology; cardiovascular systems; cell and tissue engineering; computational modeling; medical imaging; molecular and cell systems; and systems neuroscience. MSE Program - The master's degree program in the Department of Biomedical Engineering is designed for students who wish to pursue careers in research and development, academics (PhD or MD/PhD), or medicine. Students are given exposure to specialized biomedical engineering courses and participate in supervised research projects. CBID MSE Program - The Center for Bioengineering Innovation and Design is a translational research center that offers an intensive one-year master's program that focuses on development and commercialization of medical devices that solve important clinical problems.

BOOTHS # 620 / 622

Korea Institute of Science and Technology (KIST)

Hwarangno 14-gil 5, Seongbuk-gu Seoul 136-791 Republic of Korea Phone: +82-2-958-6087 Email: choi@kist.re.kr Web: www.kist.re.kr

The Biomedical Research Institute at KIST is Korea's leading medical research agency. Making important discoveries that improve health and save lives, we invite you to learn more about our institute and research

accomplishments. We will also be providing interviewing opportunities to prospective students, postdocs, and scientists through our research staff.

BOOTH **# 628**

Louisiana Tech University

BIOMEDICAL ENGINEERING

818 Nelson Avenue #10157 / BMEB 103 Ruston, LA 71272 Phone: 318-257-4420 Email: ahill@latech,edu

Web: www.latech.edu/biomedical-engineering

Are you looking for a graduate program in a research university with small classes and friendly faculty? Please talk to us! Our research areas include neural engineering/neuroscience; nanotechnology/applied biotechnology; biosensors; advanced optical imaging; and cell, molecular and tissue engineering. Plus we have clinical partners in epilepsy, TBI and cancer treatment.

BOOTH # IOI

Malvern Instruments/NanoSight

117 Flanders Road Westborough, MA 01581 Phone: 508-768-6400

Email: Thomas.Guenette@malvern.com Web: www.malvern.com

Malvern supports better characterization/control of proteins/ macromolecules. Charge, size, mass, molecular weight, polydispersity are critical parameters, measured using: Zetasizer, dynamic/static light scattering for size, molecular weight, protein charge; NanoSight Nanoparticle Tracking Analysis, particle-by-particle characterization; Viscotek SEC, molecular weight/ structure; Sysmex FPIA-3000, size/shape analysis of aggregates/ subvisible particles; Viscosizer 200, particle size, concentration, formulation viscosity.

BOOTH # 433

Marquette University

P.O. Box 1881 Milwaukee, WI 53201 Phone: 414-288-6059 Email: jay.goldberg@mu.edu Web: www.mu.edu

Healthcare Technologies Management Program (Marquette University and the Medical College of Wisconsin): Unique graduate curriculum combines business, technology, and healthcare to prepare engineers for management positions with medical device companies, hospitals, and healthcare consulting firms. Full time students can earn the MS degree in Healthcare Technologies Management in one year. The graduate program in biomedical engineering at Marquette University offers MS, ME, and PhD degrees in Biomedical Engineering. Research opportunities are available in areas such as rehabilitation engineering, neurosystems, cardiovascular and pulmonary medicine, imaging, biomechanics, orthopedics, and others. The program is recognized for strong industry ties and research collaborations with the Medical College of Wisconsin, Froedtert Hospital, Children's Hospital of Wisconsin, Zablocki VA Medical Center, and Shriner's Hospital (Chicago).

BOOTH # 309

Mayo Graduate School

BIOMEDICAL ENGINEERING & PHYSIOLOGY Mayo Clinic Rochester 200 First Street, SW, SMH J04-184 Rochester, MN 55905 Phone: 507-255-8544 Email: kingsleyberg.shirley@mayo.edu Web: www.mayo.edu/,gs/programs/phd/biomedical-engineering

The Mayo Graduate School, part of the Mayo Clinic, offers a graduate program leading to the Ph.D. and M.D./Ph.D. with an educational background and laboratory experience that prepares them for careers as independent research investigators. The Graduate Program in Biomedical Engineering & Physiology has a long, rich history at Mayo with a tradition of translational research that spans interdisciplinary boundaries and routinely connects the engineering and physical sciences to the biological sciences and clinical practice. The Graduate Program in Biomedical Engineering & Physiology offers a wide range of research opportunities from basic discovery science to clinical research. Students are provided the necessary quantitative tools to become leaders in diverse fields of biomedical sciences.

BOOTH # 117

McGill University

DEPARTMENT OF BIOENGINEERING

817 Sherbrooke Street West, Room 270 Montreal, Quebec H3A 0C3 Canada Phone: 514-398-7138 Email: adminoffice.bioeng@mcgill.ca Web: www.mcgill.ca/bioengineering

McGill University is a leading research-intensive academic institution in Canada. The Department of Bioengineering (Faculty of Engineering) aims to maintain McGill's international reputation of excellence in research and teaching. The Department has a graduate program co-administered with the Department of Biomedical Engineering (Faculty of Medicine) and is developing an undergraduate program.

BOOTH **# 422**

Morgan & Claypool Publishers

1537 Fourth Street, Suite 228 San Rafael, CA 94901 Phone: 415-785-8003 Email: info@morganclaypool.com Web: www.morganclaypool.com

Morgan & Claypool is a leading digital publisher of books in biomedical and tissue engineering. All titles are brief, focused treatments of core topics in teaching and research, perfect for beginning or advanced students, practicing researchers, and faculty. Stop by our booth and talk to us about getting access to our online collection, or about becoming an author. Visit us online at www.morganclaypool.com/r/bme.

BOOTH # 226

National Institute of Biomedical Imaging and Bioengineering

31 Center Drive, Room 1C14 Bethesda, MD 20892 Phone: 301-496-9208 Email: coneyjohnsons@mail.nih.gov Web: http://www.nibib.nih.gov

The mission of the National Institute of Biomedical Imaging and Bioengineering (NIBIB) is to improve human health by leading the development and accelerating the application of biomedical technologies. The Institute is committed to integrating the physical and engineering sciences with the life sciences to advance basic research and medical care. Stories of exciting research breakthroughs are told through video and web content at www.nibib.nih.gov. In addition to funding research, NIBIB supports a broad range of training programs from undergraduate to post-doctoral students. These programs are designed to support researchers throughout the career continuum, increase the number of clinician-scientists, and enhance the participation of underrepresented populations in biomedical imaging and bioengineering research.

BOOTH # 123

New Jersey Institute of Technology

DEPARTMENT OF BIOMEDICAL ENGINEERING

Fenster Hall – 6th Floor 323 Dr. Martin Luther King Blvd. Newark, NJ 07102 Phone: 973-596-5268 Email: treena.arinzeh@njit.edu Web: http://biomedical.njit.edu/academics/index.php

Biomedical engineering is the youngest engineering department at the New Jersey Institute of Technology (NJIT) and offers bachelor's, master's and doctoral degrees. The program has grown rapidly and today NJIT is among the top producers of biomedical engineering degrees in the region. In addition to the bachelor's program, the graduate programs are also a significant part of the department's total educational offerings. NJIT's master's program is the second largest nationally. Our doctoral program was ranked by the National Research Council 26th out of 76 nationally in curriculum quality and student accomplishment. We have a strong research program with expertise in neural and neuromuscular engineering, and tissue engineering/regenerative medicine.

BOOTH # 115

The New York Times

613 South Avenue Weston, MA 02493 Phone: 781-890-2661 Email: kelly@ontheavenuemarketing.com Web: www.nytimes.com

BOOTH # 632

North Carolina A&T State University

CHEMICAL, BIOLOGICAL AND BIOENGINEERING DEPARTMENT

 1601 E. Market Street

 McNair Hall 341

 Greensboro, NC 27411

 Phone:
 336-285-2653

 Email:
 sbknisle@ncat.edu

 Web:
 http://www.ncat.edu/academics/schools-colleges1/coe/cbbe/index.html

NC A&T's Bioengineering BS and MS degree programs, the first at an HBCU, prepare students to address problems at the forefront of biomedical engineering through education and advanced research. Programs emphasize the bioengineering practice and research in biomaterials, biomechanics, tissue engineering and biosensors with musculoskeletal, drug delivery and cardiovascular applications.

BOOTH # 404

Northwestern University

2145 Sheridan Road Evanston, IL 60026 Phone: 847-467-2369 Email: s-olds@northwestern.edu Web: www.bme.northwestern.edu

With cutting-edge research in Biomaterials and Regenerative Medicine, Imaging and Biophotonics, and Neural Engineering, Northwestern University BME attracts top faculty and students alike. Research takes place on the main campus in Evanston and on the medical school campus in downtown Chicago.

BOOTH # 236

The Ohio State University

DEPARTMENT OF BIOMEDICAL ENGINEERING

270 Bevis Hall, 1080 Carmack Road Columbus, OH 43210 Phone: 614-292-7152 Email: senitko.1@osu.edu Web: www.bme.osu.edu

Offering B.S., M.S., Ph.D., and M.D./Ph.D. degrees with research in biomechanics/biotransport; biomaterials; bioimaging; tissue engineering; biomedical devices, and micro/nanotechnology at state-of-the-art facilities including The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Institute for Materials Research, Comprehensive Cancer Center, and Nationwide Children's Hospital of Columbus.

BOOTH # 421

Pennsylvania State University

205 Hallowell Building University Park, PA 16801 Phone: 814-865-1407 Email: mjs436@engr.psu.edu Web: www.bme.psu.edu

The Penn State Department of Biomedical Engineering and the Intercollege Graduate Degree Program in Bioengineering are proud to offer B.S., M.S. and Ph.D. degrees. Our mission is to educate students to become world-class engineers who contribute to social and economic development through innovative solutions to problems in medicine and the life sciences. The graduate program offers strong integration with many other disciplines to increase the breadth of our uniquely trained faculty and specialized facilities, enable cutting-edge research in fundamental biology, medical device design, and disease diagnosis, with a goal to translate discovery from academia to society. Come by for a visit. We look forward to meeting you!

BOOTHS # 408 / 410

Purdue University

WELDON SCHOOL OF BIOMEDICAL ENGINEERING

206 S. Martin Jischke Drive West Lafayette, IN 47907-2032 Phone: 765-494-2995 Email: weldonbmegrad@purdue.edu Web: www.purdue.edu/bme

The Weldon School of Biomedical Engineering at Purdue is undergoing significant programmatic and faculty growth to meet the rising demands of the medical device and biotechnology industries. Opportunities abound in our expanding graduate programs, signature areas of research, and entrepreneurial partnerships. Ask us about our unique specialty programs in Regulatory Affairs for Medical Devices and Biomedical Entrepreneurship. We offer seven major tracks to a graduate degree, including a Professional MS Program. All qualified graduate students are fully funded.

BOOTH # 522

Rensselaer Polytechnic Institute

 I 10 8th Street, BMED JEC7049

 Troy, NY
 I2180

 Phone:
 518-276-6548

 Email:
 bme@rpi.edu

 Web:
 www.bme.rpi.edu

Rensselaer Polytechnic Institute is the nation's oldest technological research university and home to one of the oldest biomedical engineering departments. Educating outstanding academics, industry leaders and research scientists. Research is centered on Biomolecular Science and Engineering, Biomedical Imaging, Musculoskeletal Engineering, Neural Engineering, Systems Biology and Biocomputation, and Vascular Engineering (bme.rpi.edu).

BOOTHS # 535 / 537

Rice University

DEPARTMENT OF BIOENGINEERING

6100 Main Street Houston,TX 77005-1892 Phone: 713-348-5869 Email: bioeng@rice.edu Web: www.bioengineering.rice.edu

Rice University's Department of Bioengineering is a top-tier teaching and research institution with graduate programs that lead to an MBE, PhD, or a joint MD/PhD with Baylor College of Medicine. Situated next to the Texas Medical Center, we offer education and research opportunities in biomaterials and drug delivery, biomedical imaging and diagnostics, cellular and bimolecular engineering, computational and theoretical bioengineering, systems and synthetic biology, and tissue engineering and biomechanics.

BOOTH # 222

Rutgers University

599 Taylor Road Piscataway, NJ 08854 Phone: 848-445-4500 Email: langrana@rci.rutgers.edu Web: http://biomedical.rutgers.edu

The Rutgers Department of Biomedical Engineering (BME) is a vibrant and dynamic enterprise of scholarship, learning, and technology development. Located in the heart of New Jersey's "Cure Corridor", BME offers a remarkably diverse array of opportunities for undergraduate, graduate, and postgraduate training and research in molecular systems bioengineering, biomaterials and tissue engineering, bionanotechnology, biomechanics, rehabilitation engineering, and biomedical imaging.

College of Engineering

http://engineering.temple.edu/bioengineering

Temple's Bioengineering Department officially started back in 2012 with Master's and PhD students. The undergraduate curriculum commenced in the Fall of 2013. Departmental financial support options are available for students. Temple U., in addition, started a Presidential Fellowship program for graduate and undergraduate students. Faculty expertise includes regenerative tissue engineering, neuroengineering, biomechanics, biomaterials, molecular engineering, spectroscopy, and microscopy. We have a strong emphasis on interdisciplinary research, leveraging strategic initiatives and institutional strengths in Medicine, Pharmacy, and Oncology. BOOTH **# 137**

Secant Medical, Inc.

700 W. Park Avenue Perkasie, PA 18944 Phone: 877-774-2835 Email: inquiries@secantmedical.com Web: www.secantmedical.com

Secant Medical provides advanced biomaterials and biomedical textile structures to the medical device industry. We partner with clients to design, develop, and manufacture high-performance biomedical structures for a variety of applications. We're committed to the future of regenerative medicine and actively engage in research partnerships to advance next-generation biomaterial technology.

BOOTH # III

Springer

233 Spring Street New York, NY 10013 Phone: 212-460-1500 Email: exhibits-ny@springer.com Web: www.springer.com

Springer is proud to be the publisher of Annals of Biomedical Engineering, Cellular & Molecular Bioengineering and Cardiovascular Engineering and Technology. Visit our booth to explore our full range of print and electronic publications in Biomedical Engineering.

BOOTH # 129

Stanford Bioengineering

443 Via Ortega Stanford, CA 94305-4125 Phone: 650-723-8632 Email: bioengineering@stanford.edu Web: bioengineering.stanford.edu

BOOTH # 120

Stevens Institute of Technology

Castle Point on Hudson Hoboken, NJ 07030 Phone: 201-216-5000 Email: anastasia.greene@stevens.edu Web: www.stevens.edu/sit/

As one of the nation's leading research universities, Stevens displays a unique pedagogical model that includes productive research programs with world-class facilities. Graduate students can choose from 22 PhD programs and 43 master's programs. All Stevens students benefit from a distinguished faculty displaying exacting scientific, academic and entre-preneurial standards.

BOOTH # 335

Temple University

COLLEGE OF ENGINEERING / BIOENGINEERING

1947 N. 12th Street Philadelphia, PA 19122 Phone: 215-204-3404 Email: bioengineering@temple.edu http://engineering.temple.edu/bioengineering Web:

Temple's Bioengineering Department officially started back in 2012 with Master's and PhD students. The undergraduate curriculum commenced in the Fall of 2013. Departmental financial support options are available for students. Temple U., in addition, started a Presidential Fellowship program for both graduate and undergraduate students. Faculty expertise includes cellular and regenerative tissue engineering, neuroengineering, biomechanics, biomaterials, molecular engineering, spectroscopy, and microscopy. We have a strong emphasis on interdisciplinary collaborations and translational research, leveraging strategic initiatives and institutional strengths in Medicine, Pharmacy, and Oncology.

BOOTH # 305

Texas A & M University

DEPARTMENT OF BIOMEDICAL ENGINEERING 3120 TAMU College Station, TX 77843-4462 Phone: 979-845-2312 bmengradadvisor@tamu.edu Email: http://engineering.tamu.edu/biomedical Web:

The Department of Biomedical Engineering at Texas A&M University offers an opportunity to participate in ground-breaking research in sensing and imaging, optics, orthopedic biomechanics, biomaterials, tissue engineering and more. The department's award-winning faculty members have strong collaborations with medical and veterinary schools as well as industry. Offering graduate degree options at the master's (M.S., M.Eng., M.Eng./MBA) and doctoral (Ph.D. & D.Eng.) levels, this program provides an exceptional academic experience.

The Department of Biomedical Engineering

School of Engineering

School of Medicine

A BARAMA AT BIRMINGHAM

Knowledge that will change your world

•

- **Biomedical Implants & Devices**
- Cardiac Electrophysiology
- Multiscale Computational Biology
- **Tissue Engineering & Regenerative Medicine** Biomaterials, Biomechanics & Drug Delivery
- **Biomedical Imaging & Optics** •

Booth #320

Degree Programs

- Ph.D.
- M.D./Ph.D. & D.M.D./Ph.D.
- Master's of Science
- Master's in BME with a Certificate in Technology **Commercialization and Entrepreneurship**

www.eng.uab.edu/bme

BOOTHS # 426 / 428

Tufts University

BIOMEDICAL ENGINEERING

4 Colby Street Medford, MA 02155 Phone: 614-627-2580 Email: bme@tufts.edu Web: www.engineering.tufts.edu/bme

Biomedical Engineering at Tufts University draws from core disciplines such as engineering, biology, computer science, physics, chemistry, and physiology, emphasizing an interdisciplinary approach to research and education. Strong emphasis is placed on interactions with faculty in Arts and Sciences and the professional schools. The Tissue Engineering Resource Center (TERC) was initiated in August of 2004 as a Resource Center supported through the National Institutes of Health P41 program. The core themes in the Center focus on functional tissue engineering achieved through a systems approach—integrating cells, scaffolds and bioreactors to control the environment *in vitro* for translation *in vivo*.

BOOTH **# 605**

Tulane University

500 Lindy Boggs Bldg. New Orleans, LA 70118 Phone: 504-314-2926 Email: bmen-info@tulane.edu Web: www.bmen.tulane.edu

Tulane's Biomedical Engineering Department is located in the diverse cultural mecca of New Orleans and has been established since 1977. Degrees offered range from B.S. to Ph.D., and research includes biomechanics, biotransport, regenerative medicine, biomaterials and devices. Collaboration with the School of Medicine and numerous other centers are available and abounding.

Department of Bioengineering UNIVERSITY OF COLORADO DENVER | ANSCHUTZ MEDICAL CAMPUS

http://engineering.ucdenver.edu/BIOE

APPLYING ENGINEERING SOLUTIONS TO HEALTH-RELATED PROBLEMS

Bioengineering at University of Colorado Denver | Anschutz Medical Campus: a comprehensive bioengineering education on a world-class medical campus where students get hands-on experience with faculty, clinicians, and industry professionals.

Degrees offered: BS, MS, PhD

Dual degrees: MD/PhD, MS/MBA, MD/MS

Research areas:

Cardiovascular biomechanics and hemodynamics Diabetes Imaging

Biophotonics

Rehabilitation engineering and assistive technology Neuromuscular control and neuroscience engineering Spinal and orthopedic biomechanics Vascular surgery and interventional radiology Polymers and drug delivery Biomedical entrepreneurship

BOOTH # 336

The University of Akron

DEPARTMENT OF BIOMEDICAL ENGINEERING

302 Buchtel Common Akron, OH 44325-0302 Phone: 330-972-6650 Email: bmegrad@uakron.edu Web: bme.uakron.edu

The Department of Biomedical Engineering at The University of Akron offers two graduate degree programs: a master's degree in engineering with a biomedical specialization and a Ph.D. in engineering. These programs have an individualized curricular approach, designed in coordination with each student's career plans. BME faculty are engaged in a variety of research areas, including but not limited to, instrumentation, biomaterials, biomechanics, and tissue engineering. Our faculty have active collaborations both on campus and with researchers in regional health care institutions and biomedical industry. We encourage interdisciplinary interactions to promote vibrant research activities and to provide an exceptional scholarly atmosphere for learning. The BME Department currently has 17 full-time and joint faculty, including 8 recent hires, 3 endowed chairs, and 2 CAREER award recipients.

BOOTH # 320

The University of Alabama at Birmingham

DEPARTMENT BIOMEDICAL ENGINEERING

1825 University Boulevard, SHEL 801C Birmingham, AL 35294-2182 Phone: 205-996-6936 Email: minrob@uab.edu Web: www.eng.uab.edu/bme

The Biomedical Engineering (BME) Graduate Program at The University of Alabama at Birmingham offers Master's and PhD degrees. The BME Department has a joint status in the School of Engineering and School of Medicine with a strong record of interdisciplinary research in biomaterials, biomechanics, biomedical imaging, cardiac electrophysiology, computational biology, tissue engineering and regenerative medicine. The BME Graduate Program has over 60 primary and secondary faculty training students to develop the next generation of technologies. BME graduates find employment in universities, health care, medical devices, pharmaceuticals, and regulatory agencies.

BOOTH # 322

The University of Arizona

BIOMEDICAL ENGINEERING / GIDP PROGRAM

P.O. Box 21240 Tucson, AZ 85721 Phone: 520-629-9134 Email: bmedgidp@email.arizona.edu Web: www.bme.arizona.edu

The University of Arizona's Biomedical Engineering Graduate Interdisciplinary Program offers opportunities to integrate engineering, mathematics, biology, and medicine in a collaborative multi-disciplinary environment with over 60 faculty mentors. Proximity to Medicine, and Health Sciences Colleges facilitates cutting-edge translational research in specialties such as cardiovascular engineering, imaging, nanotechnology, computational modeling and entrepreneurship.

BOOTH # 610

University of Arkansas

COLLEGE OF ENGINEERING

3189 Bell Engineering CenterFayetteville, AR 72701Phone:479-575-4667Email:slperry@uark.eduWeb:www.engr.uark.edu

The Biomedical Engineering Program at the University of Arkansas offers MS and PhD degrees. Our active faculty has research programs in: Organ Regeneration; Cell and Molecular Imaging; Nanobiotechnology; Molecular Genetics and Cell Biology in Disease Prevention; Biomaterials; Tissue Engineering; and Vaccine and Immunotherapy Delivery Systems. Stop by our booth and learn how well qualified students can earn \$10,000 to \$20,000 per year on top of standard assistantship stipends!

BOOTH # 636

University of California, Berkeley

306 Stanley Hall #1762 Berkeley, CA 94720-1762 Phone: 510-642-5833 Email: kkurpins@berkeley.edu Web: http://bioeng.berkeley.edu/

The Department of Bioengineering at the University of California, Berkeley will be showcasing its novel research and academic programs including BS, MEng (Master of Engineering), MTM (Master of Translational Medicine), and PhD degrees. Come visit the UC Berkeley booth to speak with representatives and learn more about the department.

BOOTH # 337

The University of California at Davis

DEPARTMENT OF BIOMEDICAL ENGINEERING

One Shields Avenue Davis, CA 95616 Phone: 530-752-1033 Email: jcyhu@ucdavis.edu Web: www.bme.ucdavis.edu

With 33 primary faculty and a graduate group of ~70 faculty, BME at UC Davis combines exceptional teaching with state-of-the-art research to prepare students for careers in academics and industry. Come learn about our programs in bioinformatics, biomechanics, cellular and molecular systems, imaging, synthetic biology, and tissue engineering and regenerative medicine.
BOOTH # 302

University of California, Irvine

3120 Natural Sciences II Irvine, CA 92697-2715 Phone: 949-824-9196 Email: csurp@uci.edu Web: www.bme.uci.edu

The UCIrvine Department of Biomedical Engineering's mission is to inspire engineering minds for the advancement of human health. Engineering focus areas include biomedical photonics/optoelectronics, biomedical nano- and microscale systems/fabrication, biomedical computation/modeling, and tissue engineering. These technology areas intersect with clinical areas of focus such as cardiovascular disease, the nervous system, cancer, and ophthalmology. Included in these opportunities are major campus research centers at the Beckman Laser Institute (biophotonics), the Edwards Lifesciences Center for Advanced Cardiovascular Technology, the Chao Family Comprehensive Cancer Center, the Integrated Nanosystems Research Facility, the Laboratory of Fluorescence Dynamics, and the Micro/nano Fluidics Fundamentals Focus Center. UCI is located in Orange County, home to more than 300 medical device companies.

BOOTH # 104

University of California, Riverside

DEPARTMENT OF BIOENGINEERING

900 University Avenue Riverside, CA 92521 Phone: 951-827-4303 Email: BIG@engr.ucr.edu Web: www.bioeng.ucr.edu

The Department of Bioengineering, established in 2006, is the fastest growing department at the Bourns College of Engineering. The research vision is to build strength from expertise in biochemistry, biophysics, biology, and engineering to focus on critical themes that impact bioengineering. The mission of the Department of Bioengineering at the University of California, Riverside focuses on two interrelated themes: 1) advancing bioengineering research, and 2) preparing future leadership in bioengineering and related fields. Our unique interdisciplinary graduate program and ABET-accredited undergraduate program both combine building a solid fundamental foundation in biological science and engineering while simultaneously developing diverse communication skills for our students. Bioengineering Interdepartmental Graduate Program (BIG) provides additional training in analytical, computational and laboratory skills in the most advanced quantitative bioengineering research. The result is a rigorous but exceptionally interactive and welcoming educational training for Bioengineering students leading towards B.S, M.S. and Ph.D. degrees.

BOOTH **# 536**

University of Colorado Denver | Anschutz Medical Campus

DEPARTMENT OF BIOENGINEERING

12700 E. 19th Avenue, Research 2 Building Room 6018, MS 8607 Aurora, CO 80045 Phone: 303-724-5893 Email: bioengineering@ucdenver.edu Web: www.ucdenver.edu/bioengineering

Located on a medical campus, we are integrated with world-class hospitals and the nationally ranked CU School of Medicine. In addition to traditional undergraduate and graduate degrees, we offer a dual MS-MBA, MD-MS and MD-PhD. Our students work with top faculty and researchers on projects that range from basic research to clinical applications and commercialization of medical technologies through our entrepreneurship pathway.

BOOTH # 626 University of Connecticut

BIOMEDICAL ENGINEERING

260 Glenbrook Road, Unit 3247 Storrs, CT 06269 Phone: 860-486-0163 Email: lisae@engr.uconn.edu Web: www.bme.uconn.edu

The ABET-accredited Undergraduate program and the long-standing MS/ PhD Program in Biomedical Engineering at the University of Connecticut are now under the auspices of the Biomedical Engineering Department, which spans the School of Engineering (Storrs) and the Schools of Medicine and Dental Medicine (Farmington), offering our students ready access to cutting-edge research and outstanding faculty members/ practitioners on both campuses. We also offer one of the few Clinical Engineering Internship programs (MS) in the country.

BOOTH # 235

University of Delaware

BIOMEDICAL ENGINEERING 125 E. Delaware Avenue

Newark. DE 19716 Phone: 302-831-2120 Email: delliott@udel.edu Web: www.bme.udel.edu

University of Delaware Biomedical Engineering offers undergraduate and graduate programs and we welcome intellectually motivated, creative, and diverse individuals who wish to benefit from our educational and research programs. Our research programs cross the following areas: Biomolecular Engineering, Cellular Engineering & Systems Biology; Tissue Engineering, Biomaterials & Drug Delivery; Rehabilitation Engineering & Neuroengineering; Biomechanics; Bioimaging, Bio-computing & Bioelectronics.

EXHIBITS

BOOTH # 209

University of Florida

DEPARTMENT OF BIOMEDICAL ENGINEERING 1275 Center Drive Biomedical Sciences Building JG-56 P.O. Box 116131 Gainesville, FL 32606 Phone: 352-273-9222 Email: info@bme.ufl.edu Web: www.bme.ufl.edu

UF BME is made possible by the vision and generosity of Dr. J. Crayton Pruitt and his family. Since its inception in 2002, the department continues to excel in interdisciplinary research that merges engineering with biology and medicine. The department offers both a graduate program and an undergraduate program (2012 inaugural class), with particular strengths in Neural Engineering, Imaging and Medical Physics, Biomaterials and Tissue Engineering, and Biomechanics and Modeling. In the past year, the department has grown to 21 faculty and will continue that growth up to 25-30. UF BME is one of only a few departments in the nation to be co-localized with a top-ranked medical school, veterinary school, and dental school. The department is also uniquely positioned to contribute to clinical translation of biomedical technologies because of the outstanding resources for entrepreneurship and commercialization in the Gainesville area.

BOOTH # 434

University of Houston

DEPARTMENT OF BIOMEDICAL ENGINEERING 3605 Cullen Blvd. Houston,TX 77024 Phone: 832-842-8887 Email: tchen23@uh.edu Web: www.bme.uh.edu

Our main goal is to develop leadership in academia, government, and industry nationally and globally. The importance of global scientific, social, and cultural interaction and the demands of the dynamic, ever-changing global healthcare economy have been strongly emphasized in our undergraduate and graduate programs. The research in the graduate program focuses on three main areas, neural, cognitive, and rehabilitation engineering, biomedical imaging, and bionanoscience.

EXHIBITS

ENGINEERING AT ILLINOIS

YOUR VISION

ENDOWED CHAIRS AND PROFESSORSHIPS IN BIOENGINEERING

Bioengineering is revolutionizing 21st century healthcare worldwide. But to have the greatest impact, the best minds have to work together across a variety of fields. At the University of Illinois at Urbana-Champaign, that interdisciplinary attitude and the desire to deliver safe, effective, affordable medical technologies drive us. They've led to breakaway work in imaging, biosensing, cellular mechanics, and biophysics. Now we're expanding our team. Thanks to the \$100 million Grainger Engineering Breakthroughs Initiative, we're creating more than 35 new endowed professorships and chairs in Bioengineering and other fields. If you're ready to drive the future of Bioengineering, Illinois is the place for you.

GraingerInitiative.engineering.illinois.edu

EXHIBITS

BOOTH # 221

University of Illinois at Chicago

 851 S. Morgan Street, Room 28

 Chicago, IL
 60607-7052

 Phone:
 312-996-5225

 Email:
 jlin13@uic.edu

 Web:
 www.bioe.uic.edu

One of the first degree granting and accredited Bioengineering programs in the nation, since 1965 UIC Bioengineering offers B.S, M.S, Ph.D., M.D./ M.S. and M.D./Ph.D. programs that emphasize translational research and innovative training that can include clinical immersion and industry-linked interdisciplinary medical product development. The Richard and Loan Hill Department of Bioengineering is led by core faculty who collaborate with leading faculty in five major academic medical centers in Chicago - including UIC, home of the largest medical school in the country.

U-M BME provides leadership in education, training and cutting-edge research by translating science and engineering to solve important challenges in medicine and life sciences to the benefit of humanity.

U-M BME is a joint department between the top-ranked U-M College of Engineering and top-ranked U-M Medical School that fosters collaboration between engineers and physicians to accelerate discovery of healthcare technology.

With the support of the Wallace H. Coulter Translational Research Partnership Program, U-M BME embraces the translation of research into lifesaving technologies.

🍑 @UMBME

MICHIGAN ENGINEERING

f facebook.com/umbme

MEDICAL SCHOOL

BOOTH # 227

University of Illinois at Urbana-Champaign

DEPARTMENT OF BIOENGINEERING

1304 W. Springfield Avenue Room 1270 Digital Computer Laboratory Urbana, IL 61801 Phone: 217-333-1867 Email: bioengineering@illinois.edu Web: www.bioengineering.illinois.edu

The Graduate Program in the Department of Bioengineering at the University of Illinois at Urbana-Champaign provides students with educational and research experiences that integrate the sciences of biology and medicine with the practices and principles of engineering. Areas of focus include Bioimaging; Bio-Micro/Nanotechnology; Molecular, Cellular & Tissue Engineering; Computational Bioengineering; and Synthetic Bioengineering. The department offers studies leading to the Master of Science in Bioengineering and the Doctor of Philosophy in Bioengineering. Beginning in Fall 2015, a professional master's degree in Bioinstrumentation also will be available. Opportunities also exist for specializing in computational science and engineering or in energy and sustainability engineering via the Computational Science and Engineering (CSE) Option and the Energy and Sustainability Engineering (EaSE) Option. And highly gualified Bioengineering students enroll in the Medical Scholars Program (MD/PHD), which integrates the study of medicine with a doctoral degree in Bioengineering.

BOOTH # 432

University of Iowa

1402 Seamans Center Iowa City, IA 52242 Phone: 319-335-5632 E-mail: bme.engineering@uiowa.edu Web: www.engineering.uiowa.edu/bme

The University of Iowa Department of Biomedical Engineering offers graduate research programs in the following research areas: Biomedical Imaging, Biomaterials, Cardiovascular Biomechanics, Bioinformatics, Musculoskeletal Biomechanics, Tissue Engineering and Cellular Analysis. The Department is located close to a tertiary-care teaching hospital, and near the Colleges of Dentistry, Medicine, Nursing, and Public Health. Iowa City is ranked number 4 in the Top 10 College Destinations (AIER), is a UNESCO City of Literature, and is a Top 100 Adventure City (NatGeo Adventure). Stop by our booth for more information.

BOOTH # 327

University of Kansas

BIOENGINEERING GRADUATE PROGRAM

1520 West 15th, Room I, Eaton Hall Lawrence, KS 66045 Phone: 785-864-5258 E-mail: bioe@ku.edu Web: www.bio.engr.ku.edu

KU Bioengineering is an exciting and dynamic place. Our curriculum is broad and flexible, embracing the interdisciplinary nature of the field. With six tracks; Bioimaging, Bioinformatics, Biomolecular, Biomedical Product Design & Development, Biomechanics & Neural, and Biomaterials & Tissue; and a collaboration with the University of Kansas Medical Center, students customize their education and create a niche of research before they enter the job market.

BOOTH # 223 University of Maryland

FISCHELL DEPARTMENT OF BIOENGINEERING 2330 Jeong H. Kim Building College Park, MD 20742 Phone: 301-405-7426 Email: bioe-grad@umd.edu or bioe-undergrad@umd.edu Web: http://www.bioe.umd.edu

Faculty and students in the Fischell Department of Bioengineering at UMD are committed to making a difference in human health care through education, research, and invention. We have exciting collaborations with the FDA, NIH-NCI, UMB Pharmacy and Medicine, and Children's National Medical Center and offer programs leading to the BS, M.Eng., MS/MD, MD/PhD and PhD degrees.

PITT GRADUATE PROGRAM IN BIOENGINEERING

One of our distinctive strengths in interdisciplinary research is our relationship with Pitt's School of Medicine and Schools of the Health Sciences, as well as with the McGowan Institute for Regenerative Medicine. Bioengineering is also deeply embedded within clinical research at University of Pittsburgh Medical Center, one of the top ranked hospital networks in the country. Faculty have laboratories within clinical departments, which allow graduate students to apply engineering principles directly to patient care in bench-to-bedside settings.

Most importantly for our graduate students, Pitt is an urban campus in one of the most livable cities in the world. Its world-class research institutions, corporate headquarters, public amenities, healthcare, low cost of living and relative safety have earned Pittsburgh accolades from *Forbes, Kiplingers, National Geographic, The Economist*, and *US News & World Report*. Both the University and the City provide the perfect match for an outstanding graduate school environment.

PLEASE VISIT engineering.pitt.edu/bioengineering

for a detailed description of graduate program information including our admissions process and various research focus areas.

EXHIBITS

EXHIBITS

BOOTH **#333**

University of Memphis University of Tennessee Health Sciences Center

BIOMEDICAL ENGINEERING

330 Engineering Technology Building Herff College of Engineering Memphis, TN 39152-3210 Phone: 901-678-3733 Email: eckstein@memphis.edu Web: www.memphis.edu/bme

The UM/UT Joint Graduate Program offers M.S. and Ph.D. degrees in biomedical engineering with research specialization in biomaterials, tissue engineering, drug delivery, biomechanics, biomedical sensors, electrophysiology, and bioimaging. Emphasis in these disciplines is in dental/orthopedics, computational models (pulmonary, coronary, and muscoskeletal), sensor nano/microfabrication, and image processing and analyses.

BOOTH # 435

University of Miami

DEPARTMENT OF BIOMEDICAL ENGINEERING

1251 Memorial Drive, MEA #219A Coral Gables, FL 33146-0621 Phone: 305-284-2445 Email: oozdamar@miami.edu Web: www.bme.miami.edu

Our undergraduate and graduate programs leading to the B.S., 5 year B.S./M.S, M.S and Ph.D. degrees provide graduates with the analytical and design skills required to solve problems at the interface of engineering and life sciences. Special features of our program include small class size, very strong ties with the University of Miami Miller School of Medicine, high level of student-faculty interaction, and a high percentage of undergraduate student participation in research and professional activities. The research areas of our Faculty include biomedical imaging, optics and lasers; neural engineering, biosignals and instrumentation; and biomechanics, biomaterials and tissue engineering.

BOOTH # 301

University of Michigan

DEPARTMENT OF BIOMEDICAL ENGINEERING

IIII Carl A. Gerstacker Building 2200 Bonisteel Blvd. Ann Arbor, MI 48109-2099 Phone: 734-763-5290 E-mail: sbitzer@umich.edu Web: www.bme.umich.edu

The University of Michigan Department of Biomedical Engineering provides an outstanding educational experience for engineers in biomedical engineering and develops future leaders in the field. The program's primary emphasis is on biomedical engineering fundamentals, while allowing students to personalize their curriculum to prepare them for a wide variety of careers including biomedical engineering, law, medicine, and business.

BOOTH **# 511**

University of Minnesota

DEPARTMENT OF BIOMEDICAL ENGINEERING 312 Church St. SE 7-105 Nils Hasselmo Hall Minneapolis, MN 55455 Phone: 612-624-8396 E-mail: bmengp@umn.edu Web: www.umn.edu/bme

The Department of Biomedical Engineering at the University of Minnesota is physically located at the intersection of the medical school, engineering, and physical sciences, and in the heart of LifeScience Alley (home to Medtronic, Boston Scientific, St. Jude Medical, Covidien, plus 500 other FDA-registered medtech companies). Research conducted by the faculty spans the full spectrum, with particular depth in cardiovascular/neural engineering, cell/tissue engineering, cancer bioengineering, and biomedical imaging/optics.

The Department of Bioengineering at UT Arlington offers research and scholarship opportunities in

- Tissue Engineering
- Medical Imaging
- Biomechanics

To learn more, click on "Future Students" at uta.edu/bioengineering

BOOTH # 135

University of North Carolina at Chapel Hill and NC State University

137 MacNiber Hall Chapel Hill, NC 27599 Phone: 919-966-8088 Email: vberg@email.unc.edu Web: www.bme.unc.edu

The Joint Department of Biomedical Engineering is an academic department co-located at the University of North Carolina at Chapel Hill and NC State University and was established on December 1, 2003, linking the School of Medicine at UNC-CH to the College of Engineering at NC State. The graduate program offers joint MS and PhD degrees in Biomedical Engineering. The department has administrative offices on both campuses (NCSU: 4130 Engineering Building III; UNC-CH: 152 MacNider Hall).

BOOTHS # 614 / 616 **University of Pittsburgh**

DEPARTMENT OF BIOENGINEERING 300 Technology Drive Pittsburgh, PA 15219 Phone: 412-624-6445 Email: ngm8@pitt.edu

Web: engineering.pitt.edu The University of Pittsburgh Department of Bioengineering conducts world-class research and is home to faculty and students at both the graduate and undergraduate level who have won both nationally and internationally recognized awards. The department also has a close affiliation with the renowned University of Pittsburgh School of Medicine.

A Closely Knit Community

Nestled into Utah's Wasatch Mountain range, the Department of Bioengineering's new home (foreground) is located between the University Hospital & School of Medicine (upper left) and the College of Engineer Campus (just to the right out of frame) providing a clinically immersive engineering experience that is unique among BME training programs. Did you know that the Department of Bioengineering is one of the oldest and yet fastest growing Biomedical training programs in the nation. We rank 7th nationally in median h-index for core faculty as determined by google scholar. With over 125 faculty our research strengths span every inch of Clinical medicine. Not to mention that we are surrounded by unprecedented natural beauty. Learn more about us at: http://www.bioen.utah.edu/

EXHIBITS

BOOTH # 323

University of Rochester

DEPARTMENT OF BIOMEDICAL ENGINEERING

204 Robert E. Georgen Hall Rochester, NY 14627 Phone: 585-273-2353 Email: judith.principe@rochester.edu Web: www.bme.rochester.edu

The Graduate Program in Biomedical Engineering at the University of Rochester provides training at the Masters and Doctoral level. Multiple active centers and affiliated groups offer collaborative research in Biomedical Optics; Neuroengineering; Biomechanics; Medical Imaging; Biomaterials, Nanotechnology and Cell & Tissue Engineering. With access to over 50 laboratories on the River Campus and the adjacent Medical Center, students can tailor their own interdisciplinary and translational training experience. We also offer an MS program focused on Medical Technology & Innovation, including a clinical practicum and full-year design experience.

BOOTH # 515

University of Southern California (USC)

VITERBI SCHOOL OF ENGINEERING

3650 McClintock Ave, OHE 106 Los Angeles, CA 90089 Phone: 213-740-0119 Email: fujioka@usc.edu Web: http://viterbi.usc.edu/gapp

The USC Viterbi School of Engineering's top 10 ranked graduate program offers Master's and Doctoral programs in a wide range of disciplines. Learn more about our unique programs, including Biomedical Engineering, Medical Imaging, Neuroengineering, Medical Devices and Wireless Health Technology at viterbi.usc.edu/gapp.

BOOTHS # 503 / 505

University of Tennessee - Knoxville

1512 Middle Drive 414 Dougherty Engineering Bldg Knoxville, TN 37996 Phone: 865-974-5115 Email: mabeinfo@utk.edu Web: http://mabe.utk.edu

The department of Mechanical, Aerospace and Biomedical Engineering at the University of Tennessee offers B.S., M.S., and Ph.D. degrees in Biomedical Engineering. Graduate level research in Biomedical Engineering are organized as interdisciplinary and across departmental and college boarders through the Institute of Biomedical Engineering (iBME). In iBME, faculty from the College of Engineering, the Graduate School of Medicine, the College of Veterinary Medicine, and the College of Education, Health, and Human Sciences work collaboratively to teach a wide variety of courses and perform research in seven major thrust groups. Current thrust groups include Healthcare Engineering and Bioinformatics, Systems Modeling and Simulation, Medical Sensors and Devices, Biomechanics, Multi-Scale Imaging, Systems Biology and Molecular Medicine, and Biomaterials and Regenerative Medicine.

BOOTH **# 217**

University of Texas Arlington BIOENGINEERING DEPARTMENT

500 UTA Blvd., Suite 226 Arlington, TX 76010 Phone: 817-272-2249 Email: cbradfield@uta.edu Web: www.uta.edu/bioengineering

The Bioengineering Department at the University of Texas Arlington offers several research and scholarship opportunities for students interested in Biomaterials & Tissue Engineering, Bioinstrumentation, Biomechanics, and Medical Imaging. Graduate students also have the option of earning a joint graduate degree with The University of Texas Southwestern Medical Center at Dallas. Undergraduate students are strongly encouraged to learn more about our new Undergraduate Program in Biomedical Engineering at UT Arlington. Please visit our booth at the exhibit to learn more!

BOOTHS # 214 / 216

The University of Texas at Austin

DEPARTMENT OF BIOMEDICAL ENGINEERING

107 W. Dean Keeton, C0800 Austin, TX 78712 Phone: 512-475-8623 Email: sbixby@mail.utexas.edu Web: www.bme.utexas.edu

The University of Texas at Austin's Biomedical Engineering Department educates the next generation of biomedical engineers by offering B.S., M.S., and Ph.D. degrees. Scholars and students build interdisciplinary knowledge in areas such as bioinformatics, biomechanics, biomedical imaging and instrumentation, cellular and biomolecular engineering, and computational biomedical engineering, among others.

BOOTHS # 532 / 534

University of Texas at San Antonio

One UTSA Circle, AET 1.102 San Antonio, TX 78249 Phone: 210-458-7084 Email: anson.ong@utsa.edu Web: http://engineering.utsa.edu/BME

The UTSA-UTHSCSA Joint Graduate Program in Biomedical Engineering provides a unique environment and state-of-the-art facilities for training of the next generation biomedical engineers, with academic tracks being offered based on segments of biomedical engineering and/or areas of clinical emphasis. A truly joint graduate program administered by both UTSA and UTHSCSA, students are mentored by clinicians, engineers, and/or scientists and are trained to display an in-depth understanding of the concepts that are necessary for critically judging the scientific literature and innovation, for formulating novel hypotheses and/or designing experimental protocols, critically interpreting their results, and contributing to the biomedical field.

DISCOVER. INNOVATE. ACHIEVE.

Graduate students in WPI's Biomedical Engineering Department collaborate with scientists and engineers across disciplines, seeking breakthroughs in regenerative medicine, innovations in bioinstrumentation, and advances in healthcare.

Graduates have gone on to rewarding careers at major medical and biomedical research centers across academia, government, and the medical device industry.

Visit WPI's table in the exhibit hall

wpi.edu/+gradbme

BOOTH **# 437**

University of Toronto

INSTITUTE OF BIOMATERIALS & BIOMEDICAL ENGINEERING

Rosebrugh Building, 1645 College Street, Room 407 Toronto, Ontario M5S 3G9 Canada Phone: 416-946-8019 Email: comm.ibbme@utoronto.ca Web: www.ibbme.utoronto.ca

Collaboration shapes innovation at the University of Toronto's Institute of Biomaterials & Biomedical Engineering (IBBME). Spanning three faculties (Applied Science & Engineering, Medicine and Dentistry) and ten major hospitals, IBBME's unique biomedical and clinical engineering research programs deliver world-class, real world education for students of Canada's top-ranked University.

BOOTH **#523**

University of Utah

DEPARTMENT OF BIOENGINEERING

SCIENTIFIC COMPUTING & IMAGING (SCI) INSTITUTE

3226 Sorenson Molecular Biotechnology Building (SMBB) 36 S. Wasatch Drive, Room 3226 Salt Lake City, UT 84112 Phone: 801-581-8528 Web: www.bioen.utah.edu and www.sci.utah.edu/

The Department of Bioengineering and the SCI Institute are internationally recognized for research in biomaterials, drug delivery, neuroengineering, othropedics, cardiovascular medicine, visualization, scientific computing, and image analysis, respectively. Together they offer BS, MS, and PhD training opportunities in a world class vacation destination located at the base of the Wasatch Range. The highly entrepreneurial and interdisciplinary environment is distinguished by its strong collaborative connections between clinical medicine, engineering and industry; a place where researchers can work and play hard.

BOOTH # 109

University of Virginia

DEPARTMENT OF BIOMEDICAL ENGINEERING

P.O. Box 800759 Charlottesville,VA 22908 Phone: 434-924-5101 Email: bme-dept@virginia.edu Web: http://bme.virginia.edu

Join a vibrant network of engineers, clinicians, basic scientists and entrepreneurs. U. Virginia Biomedical Engineering offers a rare blend of Engineering and Medicine, with an exceptionally supportive, collaborative training environment for translational research and the basic sciences. UVA: Explore, Discover, Invent.

BOOTH # 303

University of Washington

DEPARTMENT OF BIOENGINEERING 3720 15th Avenue NE Box 355061 Seattle, WA 98195 Phone: 206-685-2000 Email: bioeng@uw.edu Web: http://depts.washington.edu/bioe/index.html

Please visit the University of Washington at booth 303 to discover how we are inventing the future of medicine. Our faculty and students are eager to talk to you!

BOOTH # 108

Valtronic

29200 Fountain Pkwy Solon, OH 44139 Phone: 440-349-1239 Email: info@valtronic.com Web: www.valtronic.com

BOOTH **# 210**

Vanderbilt University

DEPARTMENT OF BIOMEDICAL ENGINEERING

VU Station B, Box 351631 Nashville,TN 37235 Phone: 615-343-1099 Email: tina.shaw@vanderbilt.edu Web: engineering.vanderbilt.edu/BiomedicalEngineering.aspx

VU BME bridges Vanderbilt's engineering, basic science departments, and its renowned medical center; an ideal location for engineering research at the interface of technology and medicine. Research strengths include image-based technologies, nanobiotechnology, biophotonics, modeling, biomaterials, bioregenerative engineering, bioMEMs. VU BME stimulates high impact research and provides unique educational opportunities.

BOOTH # 127

Virginia Commonwealth University 401 W. Main Street

Richmond,VA 23284 Phone: 804-828-7956 Email: biomedicalengr@vcu.edu Web: biomedical.engr.vcu.edu

"Located on a thriving urban campus, VCU Biomedical Engineering has strong ties with the VCU Medical Center, School of Medicine, School of Dentistry, and Massey Cancer Center, and offers degrees at the Bachelor's, Master's, and Doctoral level. Research specialties include mechanobiology, regenerative medicine, orthopaedic biomechanics, rehabilitation engineering, and biomaterials."

BOOTHS # 200 / 202 / 204 / 201 / 203 / 205

Virginia Tech-Wake Forest University

SCHOOL OF BIOMEDICAL ENGINEERING & SCIENCE

VT-WFU SBES: 317 Kelly Hall (MC0298) Blacksburg,VA 24061 Phone: 540-231-8191 E-mail: headbiomed@vt.edu Web: www.sbes.vt.edu

The Virginia Tech—Wake Forest University, School for Biomedical Engineering and Sciences offers MS, PhD, MD/PhD, and DVM/PhD degrees. We have 76 biomedical engineering faculty with active research programs in tissue engineering, imaging, biomechanics, medical physics, nano-medicine, & nanobioengineering, neuroengineering, translational oncology, cardiovascular engineering, and other emerging fields.

BOOTH # 321

Washington University in St. Louis

DEPARTMENT OF BIOMEDICAL ENGINEERING

One Brookings Drive, Box 1097 St. Louis, MO 63130 Phone: 314-935-6164 Email: bme@seas.wustl.edu Web: http://bme.wustl.edu/

In partnership with our world-class medical school, our department emphasizes interdisciplinary training from top-notch faculty. Our main research areas are biomaterials and tissue engineering; cardiovascular engineering; imaging; molecular, cell and systems engineering; and neural engineering. Our department has more than 75,000 sq. ft. of state-ofthe-art facilities. We offer BS, MS, MS/MBA, PhD and MD/PhD degrees.

BOOTHS # 314 / 316

Wayne State University

818 W. Hancock Detroit, MI 48201 Phone: 313-577-1345 Email: nmurthy@wayne.edu Web: www.bme.wayne.edu

The Biomedical Engineering Department at Wayne State University offers BS, MS, PhD and MD/PhD degrees. It is involved in some of the newest ground breaking research in the field. From the use of biomaterials to aid in the regeneration of nerves and the tailoring of these materials to optimize cellular response, to the use of advanced human modeling to study the biomechanics of impact injuries, and the study of sports related injuries and prevention of these injuries, Wayne State will play a major role in the development of new standards to better the quality of human life. Our past research has led to improvement in the standards of the automotive industry, better safer equipment for our soldiers, and a better understanding of injury biomechanics to help prevent and repair damage from these injuries.

BOOTH # 215

Whitaker International Program

809 United Nations Plaza New York, NY 10017 Phone: 212-984-5442 Email: saltaf@iie.org Web: www.whitaker.org

The Whitaker International Program provides funding to emerging U.S.based leaders in biomedical engineering, with a goal of building international bridges. Grant projects – including research, coursework, public policy work – are intended to enhance both the recipient's career and the BME field. Administered by the Institute of International Education.

BOOTH # 420

Worcester Polytechnic Institute

100 Institute Road Worcester, MA 01609 Phone: 508-831-5301 Email: bme-web@wpi.edu Web: www.wpi.edu/+gradbme

Graduate students in WPI's Biomedical Engineering (BME) Department collaborate with scientists and engineers across disciplines, seeking breakthroughs in regenerative medicine, innovations in bioinstrumentation, and major steps forward in healthcare. Whether in the classroom or the lab, the focus remains squarely on solving real-world problems. BME graduates have gone on to rewarding careers at major medical and biomedical research centers across academia, government, and the medical device industry.

BOOTH # 234

Yale University

BIOMEDICAL ENGINEERING

55 Prospect Street New Haven, CT 06511 Phone: 203-432-4262 Email: deanna.lomax@yale.edu Web: www.seas.yale.edu/bme

The booth will be staffed with graduate representatives and faculty from the department of Biomedical Engineering at Yale. The faculty and graduate representative will aim to describe the program to interested visitors and answer any questions regarding the program requirements and admissions process.

SOMETHING NEW

R

1b

6.

2

0

0

0

School of Biomedical Engineering and Sciences

www.sbes.vt.edu

Meeting Location

Henry B. Gonzales Convention Center

200 East Market Street San Antonio, TX 78205 (210) 207-8500

Marriott Rivercenter | *co-headquarters* 101 Bowie Street San Antonio, TX 78205 (210) 223-1000

Marriott Riverwalk | *co-headquarters* 889 East Market Street San Antonio, TX 78205 (210) 224-4555

Registration

Paid registration is required for admission to all meeting functions including scientific sessions, posters, exhibits, breaks and the BMES BASH at the Buckhorn Saloon & Museum. BMES cancellation policy may be found on any registration form. Any applicable refunds will be issued post-meeting. Substitutions are permitted with written permission from the original registrant. Additional social event tickets including the Celebration of Minorities in BME Luncheon, and the Women in BME Luncheon are separate and above BMES meeting registration.

On-Site Registration Hours

Wednesday, October 22 Thursday, October 23 Friday, October 24 Saturday, October 25 11:00am – 7:00pm 7:00am – 6:00pm 7:00am – 6:00pm 7:00am – 2:00pm

Exhibits

Exhibit Hall A, Henry B. Gonzales Convention Center

Exhibits are located in the Exhibit Hall A in the Henry B. Gonzales Convention Center. Exhibits will be open:

9:30am – 5:00pm
9:30am – 5:00pm
9:30am – 1:30pm

BMES Presenter Information Platform Presentations

Each technical session room will be equipped with a PC-compatible computer with a USB port and PowerPoint along with an LCD projector, screen and a lectern with microphone.

During the half hour before your session begins, please upload your presentation onto the computer using a memory stick or flash drive. Because of the potential difficulty transferring some Mac files to PC format, we encourage you to avoid use of animation if there is a question about transferability.

Please do not try to connect your own laptop. Please note, it will not be possible to provide special equipment. Any additional equipment will need to be supported by the presenter. Although BMES has paid for WiFi throughout the convention center during the Annual Meeting, there will not be specific dedicated hard-wired internet access in the meeting rooms.

Sessions chairs should keep sessions on the listed schedule so attendees can move back and forth among sessions. In most cases, presentations should be done in twelve minutes, allowing three minutes for questions and answers and transition to the next speaker.

Poster Presentations

Posters will be presented Thursday, Friday and Saturday. Posters are to be displayed all day on assigned day. Authors must be present during specified viewing with authors as listed in Scientific Program:

Thursday	9:30-10:30am and 3:30-4:30pm
Friday	9:30-10:30am and 4-5pm
Saturday	9:30-10:30am

All posters will be in the Exhibit Hall A in the Henry B. Gonzales Convention Center. Posters are numbered with a card corresponding to the numbers assigned in the program.

Speaker Ready Room

Registration Area, Exhibit Hall A, Henry B. Gonzales Convention Center

In the BMES Speaker Ready Room you will find cables, LCD projector and screen to practice your presentation. Please bring your own laptop.

Wednesday, October 22	11:00am – 5:00pm
Thursday, October 23	7:00am – 5:00pm
Friday, October 24	7:00am – 5:00pm
Saturday, October 25	7:00am – 2:30pm

PROGRAM HIGHLIGHTS

Program Highlights

Don't Miss These Events

WEDNESDAY, October 22 Meet the Faculty Candidate Forum

3:30pm - 5:30pm

West Registration Hall, Henry B. Gonzales Convention Center

The "Meet-the-Faculty Candidate" poster session provides a great opportunity for faculty, recruiters, and Department Chairs to speak directly with current graduate students and postdoctoral researchers who are seeking faculty positions.

The BMES 2014 Annual Meeting MEET THE FACULTY CANDIDATE FORUM was only open to those who are actively on the market for the 2014-2015 recruiting cycle. Candidates submitted for consideration in August. The accepted candidates' CVs can be viewed at www.bmes.org.

WEDNESDAY, October 22 Welcome Reception

5:30pm - 7:00pm Grotto, River Level, Henry B Gonzales Convention Center Light refreshments will be served. All registrants are invited to attend.

THURSDAY, October 23

BMES State of the Society Address & Fellows Induction

10:30am Lila Cockrell Theatre, Henry B. Gonzales Convention Center

Please join us for a dialogue with BMES President Gilda Barabino and other leaders of the Society.

Refreshment Breaks

Please note your meeting registration includes morning and afternoon refreshments breaks on Thursday, Friday and Saturday. All refreshment breaks will be in the Exhibit Hall.

Thursday afternoon refreshment break sponsored by

🕀 Medtronic

Friday afternoon refreshment break sponsored by

Bioengineering AT ILLINOIS Engineering For Life UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

BMES Bash at Buckhorn Saloon & Texas Rangers Museum

7:00pm - 10:00pm 318 E. Houston Street San Antonio TX 78205 (210) 247-4000

The Buckhorn Museum features wildlife specimens from all over the world; including fish from the seven seas, animals from every continent and strange animal oddities which have been collected for over 100 years! The exhibit halls are comprised of over 520 species of wildlife—many of which are record holders. Look for your school's mascot. **The school posting the largest number of Twitter pictures with their mascot will win a prize**.

Connected to the Buckhorn, The Texas Ranger Museum features hundreds of authentic Texas Ranger artifacts including automatic handguns, shotguns, badges and more. The museum also features a recreation of San Antonio at the turn of the century in Ranger Town. The town includes a replica Buckhorn Saloon, a jail cell, blacksmith and a replica of the 1934 Ford V8 Deluxe—the famous Bonnie & Clyde getaway car.

Shuttle buses will run continuously from 6:30pm -10:00pm between the Marriott Rivercenter and the BMES Bash. Buses will be staged at the Commerce Street exit of the hotel.

LUNCHEONS

THURSDAY, October 23 Celebration of Minorities in BME Luncheon*

12:30-1:45pm Ballroom A, Henry B. Gonzales Convention Center *additional registration and \$25 ticket required

This is the fifth year of this event hosted by the BMES Diversity Committee to create a community and network within the Society fostering support and professional development of minorities in BMES at all levels. Everyone is invited to attend, as diversity only increases when all groups play a part. The luncheon complements the Diversity Award lecture on Saturday and the Women in BME Luncheon on Friday.

This year's lead speaker is Provost Lisa Firmin. Provost Firmin is the Associate Provost for Faculty and Student Diversity and Recruitment at The University of Texas at San Antonio. In this role, she coordinates efforts between Academic and Student Affairs to attract a high quality, diverse student population. Additionally, she works at the strategic level to address faculty diversity and placement goals.

FRIDAY, October 24 Women in BME Luncheon*

12:15pm - 1:30pm

Ballroom A, Henry B. Gonzales Convention Center *additional registration and \$25 ticket required

Speakers:

"Innovations and the Road to Commercialization" Zoraida P. Aguilar, PhD, MS, CTO/President, *Zystein, LLC*

"Trading Tenure for Translation" Kevin D. Nelson, PhD, Founder & CSO *TissueGen, Inc.*

Additional Panelists:

Subashini Asokan, PhD, Technology Licensing Associate, *The* University of Texas at San Antonio

Athanassios Sambanis, PhD, Program Director, Biomedical Engineering Chemical, Bioengineering, Environmental, and Transport Systems Division, *National Science Foundation*

Professor, School of Chemical & Biomolecular Engineering, *Georgia* Institute of Technology

Translation is within Your Reach

Too often our individual or team successes are summarized in publications and fail to reach the community we hope to impact. At this luncheon, we will showcase two outstanding scientists, Drs. Aguilar and Nelson, who embraced opportunities in entrepreneurship. They will share key lessons in fundraising, product development, and business planning. Drs. Asokan and Sambanis will answer questions on technology licensing and federal funding opportunities. Translating your next big idea may not be as far off as you think. Come meet the speakers and ask questions about your next step towards translation.

Women in BMES activities have made a visible impact at the meeting, creating a forum for exchange across disciplines, between industry and academia, and between senior leaders in the field and junior faculty, trainees, and students.

Women in BME Luncheon Sponsored by

ADDITIONAL MEETINGS

Additional Meetings

Wednesday, October 22

BMES Board of Directors Meeting 8:30am – 4:30pm Convention Center, Room 102 AB Organizer: Gilda Barabino

AIMBE Board of Directors Meeting

11:00am - 4:00pm Convention Center, Room 003AB **Organizer:** Milan Yager

AIMBE Council Meeting

3:00pm – 4:00pm Convention Center, Room 003AB **Organizer:** Milan Yager

Annals of Biomedical Engineering - Editorial Board

7:00pm - 10:00pm Marriott Rivercenter, Conference Rooms 13/14 Organizer: Christina Dzikowski

Council of Chair Dinner & Meeting

6:15pm - 9:00pm Marriott Rivercenter, Room Organizer: John Troy

Thursday, October 23

BMES National Meetings Committee Meeting

7:00am - 8:00am Convention Center, Room 003A **Organizer:** Christine Schmidt

BMES Diversity Committee Meeting 7:00am - 8:00am Convention Center, Room 003B

Organizer: Michele Ciapa

Cellular and Molecular Bioengineering – Editorial Board

12noon – 1:30pm Marriott Rivercenter, Conference Rooms 13/14 Organizer: Christina Dzikowski

Medical Devices SIG Business Meeting 12:45pm – 1:45pm Convention Center, Room 003A Organizer: Leticia Marquez

BMES Membership Committee Meeting

1:30pm - 2:30pm Convention Center, Room 003A Organizer: Jennifer Edwards

Friday, October 24

2015 BMES Annual Meeting Committee Meeting 7:00am - 8:00am *Convention Center, Room 003A* Organizer: Steve George

ABioM SIG Business Meeting

7:00am - 8:00am Convention Center, Room 102AB **Organizer:** Kaiming Ye

BMES Education Committee

7:00am - 8:00am Convention Center, Room 003B **Organizer: Michele Ciapa**

CMBE SIG Business Meeting

12:00noon - 1:30pm Convention Center, Room 003B Organizer: Cheng Dong

BMES International Affairs Committee Meeting

1:30pm - 2:30pm Convention Center, Room 003A Organizer: Jennifer Edwards

BMES Industry Affairs Committee Meeting

4:00pm - 5:00pm Convention Center, Room 003A Organizer: Jennifer Edwards

Saturday, October 25

BMES Student Affairs Committee Meeting 12:30pm - 1:30pm Convention Center, Room 003A Organizer: Elizabeth DaSilva

BMES Board of Directors Meeting & New Board Orientation

1:00pm - 3:30pm Convention Center, Room 102AB **Organizer: R**ich Hart

Hosted Receptions

Marriott Rivercenter and Marriott Riverwalk Thursday, October 23

Individual organizations have set their own times for their private receptions. Please consult your invitation for the specific time. Generally receptions are from 8:00-9:30pm.

Arizona State University

Travis Room, Marriott Marriott Riverwalk

Biomedical Engineering Opportunities in India

Alamo F, Marriott Riverwalk

Clemson University Conference Room Rm 11, Marriott Rivercenter

Cornell University Alamo C, Marriott Riverwalk

Duke University Conference Room Rm 12, Marriott Rivercenter

Florida International University Conference Room 15, Marriott Rivercenter

Georgia Institute of Technology Salon KL, Marriott Rivercenter

Johns Hopkins University Salon C, Marriott Rivercenter

Rensselaer Polytechnic Institute Alamo D, Marriott Riverwalk **Rice University** Salon D, Marriott Rivercenter

University of Akron Conference Room Rm 1, Marriott Rivercenter

University of California Berkeley Conference Room Rm 17, Marriott Rivercenter

University of California Irvine Alamo E, Marriott Riverwalk

University of California Los Angeles Conference Room Rm 7. Marriott Rivercenter

University of California, San Diego Conference Room Rm 18, Marriott Rivercenter

University of Illinois at Chicago Conference Room, Rm 2 Marriott Rivercenter

University of Illinois at Urbana-Champaign Salon J, Marriott Rivercenter

University of Pennsylvania Conference Room Rm 13-14, Marriott Rivercenter

University of Pittsburgh Conference Room Rm 3-4, Marriott Rivercenter

University of Rochester Alamo B, Marriott Riverwalk **University of Southern California** *Alamo A, Marriott Riverwalk*

University of Texas Austin Salon E, Marriott Rivercenter

University of Texas at San Antonio Atrium, Marriott Rivercenter

University of Utah Conference Room Rm 8, Marriott Rivercenter

University of Virginia Conference Room Rm 5, Marriott Rivercenter

University of Washington Salon I, Marriott Rivercenter

University of Wisconsin Madison Salon B, Marriott Rivercenter

Vanderbilt University *Riverview, Marriott Riverwalk*

Whitaker International Reception Conference Room 16, Marriott Rivercenter

Save the dates!

CAREER | CONNECTIONS

2015 Biomedical Engineering Career Conferences

WBECC 2015 Western Biomedical Engineering Career Conference UC San Diego - La Jolla, CA Spring 2015

SEBECC 2015

Southeast Biomedical Engineering Career Conference Durham Convention Center - Durham, NC Friday, October 23, 2015

Attend the 2015 BME career conferences to:

- Learn about BME Career opportunities
- Network with employers and students/alumni of BME programs in and around the region
- Showcase ongoing research at BME programs
- Present your poster abstract
- > Tour a BME department
- Get advice from experienced professionals on how to advance your career
- Have your resume reviewed, critiqued and edited

For more information and updates: www.bmes.org/careerevents/ terry@bmes.org Or call: (301) 459-1999 Career Connections is a career development resource of:

CAREER AND PROFESSIONAL DEVELOPMENT SESSIONS

The career and professional development sessions offer career guidance for job seekers ranging from entry level to experienced professionals. The sessions will highlight both traditional and alternative careers available to BMEs.

Thursday, October 23

What Do Biomedical Engineers Actually Do? What Are the Specialization Areas? 9:00am - 10:30am

Convention Center, Room 103A

This session will begin with the facilitator describing what a biomedical engineer is; what they do, where they work, what positions they hold, what projects they work on, and what their career prospects are. Our panelists who have backgrounds in various specialty areas will share their educational backgrounds, career pathways, detailed experiences, and insights. In addition, you will have an opportunity to ask our panelists questions to help guide you on your own career path. At the end of this session, you will have a clearer understanding of what biomedical engineers actually do and possibly even know how you'll fit in.

How to Get Your First Job I:30pm - 2:45pm

Convention Center, Room 103A

Whether you are searching for your first job or you're a young professional eager for a change, this session will show you the RIGHT way to job search. Avoid the mistakes and excuses that sabotage your chance to WIN a job in today's competitive market. Are you sending out tons of résumés and getting no responses? Are you worried about interviewing? Fasten your seatbelts for an instructional session from a career coach and ex-Microsoft hiring manager! You will leave this session with the skills you need to conduct your job search more effectively and land that job sooner.

sponsored by BIOE

Networking Effectively —Social Media & Face-to-Face 3:15pm - 4:30pm

Convention Center, Room 103A

Do you feel awkward about networking? Do you just want to hide in the corner at events? Are you nervous about contacting a senior professional you don't know via LinkedIn? Ever been tongue-tied trying to describe what type of job you are looking for? Ever wonder how best to sell yourself to someone who doesn't understand biomedical engineering? You're not alone. Fifty percent of the world is made up of introverts! Because networking is a requirement for getting and excelling in a job today, this workshop will guide you through the steps to face networking head-on. You will leave this session with the skills to connect with total strangers, make an impact, and get the results you are hoping for. You will also gain an understanding of when and how to use social media, email, and the telephone for networking.

Resume Review and Critique

Have your resume reviewed and critiqued by career professionals and take away writing tips.

Thursday, October 23 2:00pm - 4:00pm

Friday, October 24

2:00pm - 4:00pm

Convention Center, Room Room 102AB

Mock Interview Demonstration 5:00pm - 6:15pm

Convention Center, Room 103A

If you don't ace the interview, you won't get the job! It's way more than just making a good first impression. As with every skill you've ever learned, you have to learn the techniques and then prepare, prepare, prepare. Sure, there are books and YouTube videos on interviewing, but this high-energy session is interactive and you will see firsthand what happens in a great interview (and a not-so-great interview). Seeing it live will help you perfect your technique while getting the coaching you need. Learn what interviewers are looking for, the dos and don'ts, what defines a strong candidate, and how to prepare for an interview. Come and get a powerful handout you will use again and again!

STUDENT & EARLY CAREER PROGRAMS

Friday, October 24

BMES Student Chapter Outstanding Chapter Best Practices 8:30am - 9:30am

Convention Center, Room 103A

This workshop will feature the BMES Student Chapter from San José State University (awarded the BMES Outstanding Student Chapter Award), along with the BMES Student Chapter from The Ohio State University (awarded the Commendable Achievement Award). The workshop will provide information on chapter best-practices, allowing students to ask questions, exchange ideas and implement goals for the upcoming year.

BMES Student Chapter— Outreach and Mentoring Best Practices 9:30am - 10:30am

Convention Center, Room 103A

This workshop will feature the BMES Student Chapter from the University of California, Davis (awarded the BMES Outstanding Mentoring Award) and the BMES Student Chapter from the University of Pennsylvania (awarded the BMES Outstanding Outreach Award). The workshop will provide information on chapter best-practices, allowing students to ask questions, exchange ideas and implement goals for the upcoming year.

Owning Your Career & Using Mentors 1:30pm - 2:30pm

Convention Center, Room 103A

Take control of your career! Whether you are employed or searching for a job, this session will provide a structured "roadmap" to help you develop and execute a short-term career plan. Learn actionpacked steps to get started with and apply a new approach throughout your career. In addition, this session will teach you how to build a mentorship base. Who should your mentors be? Learn your role as the "mentee" and what to expect from your mentors. These are tips you will be able to implement successfully right away. Remember: nobody cares about your career more than you do; you owe it to yourself to learn new ways to get ahead!

STUDENT CHAPTER TABLES

Stop by the Student Chapter Booths inside the Registration area in Exhibit Hall A to see what's going on "on campus"!

Cornell University

LeTourneau University

Louisiana Tech University

Purdue University

San Jose State University

Stony Brook University

University of California, Davis

University of Illinois at Urbana-Champaign

University of North Carolina, Chapel Hill

University of Tennessee – Knoxville

University of Texas, Austin

University of Wisconsin – Madison

Vanderbilt University

Virginia Commonwealth University

Virginia Tech/Wake Forest University

www.bmes.org/MBECCI4 registration

CAREER | CONNECTIONS

Biomedical Engineering Society 2014 Midwest Biomedical Engineering Career Conference

Hosted by Wayne State College of Engineering

November 7, 2014

McGregor Conference Center Detroit, MI

Visit the 2014 MBECC website at www.bmes.org/MBECC14

- More information about the conference
- A full list of activities
- Sponsorship and exhibit opportunities

Career Connections is a career development resource of:

- Have your resume reviewed, critiqued and edited
- > Be mentored by practicing bioengineers
- Hear how to improve your BMES student chapter
- **NETWORK**
- > Topics covered:
 - Biomedical Industry Careers
 - Clinical and Academic Careers
 - Alternative Careers
 - Marketing Yourself for Your First Job
 - BME Entrepreneurship and Translational Research
 - Bridging Research to Career: Safety and Injury Biomechanics
 - Bridging Research to Career: Imaging and Image Analysis
 - Bridging Research to Career: Tissue Engineering/Nanotechnology

Alpha Eta Mu Beta (AEMB) Programs

Alpha Eta Mu Beta Annual Grand Meeting

Thursday, October 23 4:00pm - 5:30pm

Convention Center, Room 002AB

Session Co-chairs: Dominic E. Nathan PhD, Rupak Dua, PhD, Stephanie Naufel, MS, Rachel Hanks, BS, Rafeed Chaudhury, BS, Marcia A. Pool, PhD and Anthony McGoron PhD.

At this annual grand meeting, members representing chapters nationwide will come together to discuss important contemporary events relating to AEMB. (Attendance is mandatory for all AEMB members). This year we will be holding national elections. If you would like to learn more about AEMB or start a new chapter at your school, please consider attending this session and speaking to any of the national officers.

Alpha Eta Mu Beta Reception

(Invitation Only)

Thursday, October 23

6:00pm - 8:00pm

The Annual AEMB reception will be held at The Republic of Texas Restaurant (429 E Commerce St San Antonio, TX 78205).

Session Co-chairs: Rupak Dua, MS, Rafeed Chaudhury, BS, Stephanie Naufel, MS, Rachel Hanks, BS, Marcia Pool, PhD and Dominic E. Nathan, PhD. We will be presenting the national awards and charters for new chapters during this session. Furthermore, this session is a networking opportunity to meet with other fellow members from AEMB chapters, representatives from industry and academia. This session is open to all AEMB student and faculty members, however tickets are required. For tickets, please contact aemb@alphaetamubeta.org

Ethics in Tissue-Biomaterials Engineering (Annual Alpha Eta Mu Beta Ethics Session)

Friday, October 24

9:00am - 10:00am

Convention Center, Room 002AB

Session Chairs: Anson Joo L. Ong, PhD and Rupak Dua, PhD

Tissue-biomaterials interactions have always been in the mind of researchers when focusing on developing or modifying biomaterials and tissue engineering constructs for optimal properties. These newly developed or modified materials are often evaluated in cell culture systems or in animal models. As a result, ethical issues related to biomaterials and tissue engineering research needs to be considered during their testing phase. Ethical concerns in pre-clinical

testing have always involved the types of tissues or cells used. Selfregulated oversights have been provided at institutions to ensure compliance of the US federal law and to oversee animal care and use within the institutions. As funding is also shifting from federal agencies to the biomedical industries, other potential ethical concerns have also emerged, including conflict of interest between the industry and the researchers. These conflicts are often managed by the investigator's institution. As such, it is imperative that researchers are aware of the moral and ethical concerns prior to embarking on their experimental designs.

Alpha Eta Mu Beta (AEMB), the National Biomedical Engineering Honor Society, is committed to promoting ethics in the field of biomedical engineering. This year, AEMB is honored to host Anson Joo L. Ong, Ph.D. is currently the USAA Distinguished Professor and Chairman for the Department of Biomedical Engineering at the University of Texas at San Antonio. He is also the Program Director for the Joint Graduate Program in Biomedical Engineering as well as an Adjunct Professor in the Department of Comprehensive Dentistry at the University of Texas Health Science Center at San Antonio. Aside from his current academic appointments, Dr. Ong is also the Associate Editor for the Journal of Biomedical Materials Research, Part B. He received his bachelor's degree from the University of Iowa in 1987, and his M.S. and Ph.D. from the University of Alabama at Birmingham in 1990 and 1994, respectively.

Dr. Ong's primary research interests focus the modification and characterization of the implant biomaterials surfaces for dental and orthopedic applications, modification of tissue engineered ceramic scaffolds, protein-biomaterials interactions, and bone-biomaterials interactions. His work has been funded by the National Institute of Health, National Science Foundation, the Whitaker Foundation, Implant Dentistry Research and Education Foundation, Academy of Prosthodontics, American Association for Dental Research, and US Army, as well as numerous biomedical industries. Dr. Ong has authored/co-authored over 100 articles published in refereed journals and over 200 conference abstracts. In addition, he has given invited lectures and keynote lectures at national and international meetings, served as a manuscript reviewer for several biomedical engineering related scientific journals, and continues to serve as a grant reviewer for the National Institutes of Health, National Science Foundations, Department of Defense, and other international funding agencies. Dr. Ong has served on numerous committees in professional societies, including the Society for Biomaterials, Biomedical Engineering Society, and the International Association for Dental Research. He is currently on the editorial board of several biomedical related journals and was the Past Program Chair for the Society for Biomaterials and the Past President of the Implantology Research Group in the International Association for Dental Research.

Understanding Why Congress Doesn't Fund Research

Friday, October 24 I:30pm - 3:00pm

Convention Center, Room 002AB

Session Chair: Teresa Murray, PhD

How will sequestration budget cuts impact the biomedical In halls of Congress. Widespread agreement exists about the role of R&D in the success of the America's most innovative corporations. However, many view government models of discovery from NASA to public university research labs as obsolete and costly superstructures in today's dot com marketplace. What happened to the case for public exploration and discovery and why shouldn't the private sector be trusted to find the cure for Grandma's dementia or Mark's brain tumor? Long-time Washington political insider, former lobbyist, Administration appointee, and AIMBE's Executive Director, Milan Yager, will reveal the hidden truth about why Congress doesn't fund needed medical research. Discover three secrets to making a winning case for federal funding for medical and biological research. Learn practical steps to successfully getting your point across to a member of Congress. Find out how to brand your university lab as a leader in the race to cure cancer, reduce obesity, or manage chronic disease. Arm yourself with the strategies for changing the policy landscape; it might provide the key to funding for your next discovery.

This session features a panel of experts who routinely communicate with Congress, anchored by Milan Yager, Executive Director, American Institute for Medical and Biological Engineering. We will have a lively, moderated discussion after the panelists' presentations. We particularly encourage students and early career members to participate, but all are welcome to attend.

AIMBE represents the top 2% of medical and biological engineers from industry, government, universities and clinical practice. AIMBE is the leading voice for public policy supporting medical and biological engineering innovation to improve public health. AIMBE staff and fellows regularly meet with key administration officials, Congress, and monitor trends in public policy impacting the field. AEMB members represent the top BME students across the US. Starting in 2006, we have sponsored the Student Ethics Session training future BMEs to evaluate the broader impacts of emerging biomedical innovations. Last year, we initiated the first student public policy session at BMES with our co-sponsor, AIMBE.

Whitaker International Program: Funding Opportunity for Young Biomedical Engineers

Friday, October 24 8:00am - 9:30am

Convention Center, Room 204A

The Whitaker International Program, founded in 2005 provides funding to emerging U.S.-based leaders in biomedical engineering to conduct a study and/or research project, with the underlying objective of building international bridges. Grant projects—including research, coursework, and public policy work—are intended to enhance both the recipient's public career and the BME field. The goal of the Whitaker Program is to assist the development of professional leaders who are not only superb scientists, but who will advance the profession through an international outlook. The Whitaker Program has three sub-programs: Fellows and Scholars Program, Summer Program, and an Undergraduate Program. For more information, including program details, the online application and deadlines, visit: http://www.whitaker.org.

1. Sabeen Altaf (Session Chair)

Senior Program Manager, Science and Technology Programs Institute of International Education

2. Sandra Baker

Whitaker International Fellow, 2013-14 Host Institution: Institute of Bioengineering of Catalonia Title: Development of a multi-photon microscopy system for measuring traction forces during in vivo aniogenesis

3. David Bradway

Whitaker International Scholar, 2012-13 Host Institution: Technical University of Denmark Title: Cardiovascular velocity vector imaging: real-time processing and pre-clinical trials

4. Cassandra Harn

Whitaker International Fellow, 2012-13 Host Institution: Bionnovate Ireland Title: An opportunity in innovation training in medical device development and how it has directed my future

5. Samantha Paulsen

Whitaker International Fellow, 2012-13 Host Institution: ETH Zurich Title: Optimizing bioreactor and blood vessel geometries for improved mass transport using computational fluid dynamics

6. Justine Roberts

Whitaker International Scholar, 2013-14 Host Institution: University of New South Wales Title: The design of bio-synthetic, heparin-poly (vinyl alcohol) hydrogels for wound healing applications

Whitaker International Program: Fellows, Scholars & Summer Programs

Grants For Biomedical Engineering Study or Research Abroad

The Whitaker International Program provides young biomedical engineers, and those in a related field, the opportunity to expand their geographic and academic horizons.

Potential activities to pursue overseas include:

- conducting research at an academic institution or with a corporation
- interning at a policy institute
- studying for a post-baccalaureate degree
- pursuing post-doctoral work

For more information, including program details, application requirements, and the online application, visit our website.

ACTIVITIES

A Whitaker International grant experience will ideally advance your career, while also advancing the goal of increased international collaboration in BME.

Activities could include:

Type of Awards:

- Fellows Award: one year award after receiving your bachelor's degree.
- Scholars Award: for post-doctoral work.
- Summer Award: for BME coursework or research towards your Master's or Ph.D. degree.

Phone: +212-984-5442 **www.whitaker.org** INSTITUTE OF

Institute of International Education, 809 United Nations Plaza, New York, NY 10017 www.whitaker.org

Cellular and Molecular Bioengineering

Congratulates the 2014 CMBE Young Innovators!

September 2014 issue, edited by David Mooney, Cynthia Reinhart-King and David Schaffer

Lauren Black Tufts U. Adam Feinberg Carnegie Mellon Tom Gaborski Rochester Inst. Tech. Pamela Kreeger U. Wisconsin Jan Lammerding Cornell U. Allen Liu U. Michigan David Merryman Vanderbilt U.

Kathryn Miller-Jensen Yale U. Keith Neeves Colorado School of Mines Krishanu Saha U. Wisconsin Ankur Singh Cornell U. Junghae Suh Rice U. Hossein Tavana U. Akron

See the Young Innovators present their work on Sat., October 25, 2014

- Become a 2015 CMBE Young Innovator! Next competition is underway.
- Accepted authors will be invited to present their work in a special twopart platform session at the 2015 BMES Annual Meeting.
- To be eligible, candidates must be BMES members and hold a position at the Assistant Professor level or equivalent.
- Self nominations should include manuscript title with 200-word abstract, and a 2-page NIH-style biosketch, emailed to mike.king@cornell.edu.

Key Dates for 2015 Young Innovators issue: Nomination Deadline: November 15, 2014 Abstract Acceptance: December 15, 2014 Manuscript Submission: February 15, 2015 Print Publication: September 2015

2014 BMES AWARDS RECIPIENTS

2014 Awards Recipients

One of the more important — and most enjoyable — tasks of the Society is to recognize contributions to the intellectual and professional development of the field of biomedical engineering. On behalf of the awards committee we would like to thank all the members who submitted nominations and provided letters of support and for the high quality of their nominees. Congratulations to the following award winners.

Robert A. Pritkzer Distinguished Award Lecture James Collins, PhD Boston University

NIBIB Lecture

David Kaplan, PhD Tufts University

Rita Schaffer Young Investigator Award Lecture Kimberly Stroka, PhD Johns Hopkins University

Diversity Award Lecture Naomi Chesler, PhD

University of Wisconsin-Madison

Annals of Biomedical Engineering (ABME) Awards

Most Downloaded Article Ann Biomed Eng. 2013 May;41(5):873-82. doi: 10.1007/s10439-012-0731-0 Brain Injury Prediction: Assessing the Combined Probability of Concussion Using Linear and Rotational Head Acceleration Steven Rowson, Stefan Duma

Most Cited Article

Ann Biomed Eng. 2013 Jan;41(1):68-77. doi: 10.1007/s10439-012-0630-4 Cationic Nanoparticles have Superior Transvascular Flux into Solid Tumors: Insights from a Mathematical Model Triantafyllos Stylianopoulos, Konstantinos Soteriou, Dai Fukumura, Rakesh K. Jain

BMES Extended Abstracts: Design and Research Awards:

Graduate Students Lauren Barney University of Massachusetts, Amherst

Justin Lo Massachusetts Institute of Technology

Yekaterina Miroshnikova University of California San Francisco

Fatemeh Mokhtari Wake Forest University

Andrew Warren Massachusetts Institute of Technology

Undergraduate Students Gregory Danchik Bucknell University

Daniel Greenshields Lawrence Technological University

Malvi Hemani Johns Hopkins University

Veronica Ibarra Illinois Institute of Technology

Rene Olivares-Navarrete Virginia Commonwealth University

Gireesh Reddy Virginia Commonwealth University

Simone Siegel The University of Texas at Austin

BMES Student Chapter Awards

2014 Outstanding Achievement Award BMES Student Chapter at San Jose State University

2014 Commendable Achievement Award BMES Student Chapter at the Ohio State University

2014 Outreach Program Award BMES Student Chapter at University of Pennsylvania

2014 Outstanding Mentoring Award BMES Student Chapter at University of California, Davis

2013 Fleetest Feet Award BMES Student Chapter - Virginia Tech/Wake Forest University 53 Students – 117,580 Miles

2014 TRACK CHAIRS

Bioinformatics and Systems Biology

Kevin Janes University of Virginia Kristen Naegle

Washington University

Biomaterials

Rebecca Carrier Northeastern University

Elizabeth Cosgriff-Hernandez Texas A&M University

Biomechanics

Alesha Castillo Stanford University Jonathan Vande Geest

University of Arizona Beth Winkelstein

University of Pennsylvania

Biomedical Engineering Education

Matt Glucksberg Northwestern University Ann Saterbak

Rice University

Biomedical Imaging and Optics

Doug Noll University of Michigan

Andrew Tsourkas University of Pennsylvania

Cancer Technologies

Cynthia Reinhart-King Cornell University Carlos Rinald University of Florida

Cardiovascular Engineering

Danny Bluestein Stony Brook University

Milica Radisic University of Toronto

Cellular and Molecular Bioengineering

Chris Jacobs Columbia University Deborah Leckband

University of Illinois Melody Swartz

Ecole Polytechnique Federale de Lausanne

Device Technologies and Biomedical Robotics

Tamara Baynham Ingenuity Medical Device Res Mike McShane Texas A&M University

Drug Delivery

Debra Auguste City College of New York, CUNY Lola Eniola-Adefeso University of Michigan

Nano to Micro Technologies

Catherine Klapperich Boston University James Tunnell

University of Texas Maribel Vazquez City College of New York, CUNY

Neural Engineering

Kevin Otto Purdue University Christine Schmidt University of Florida

New Frontiers and Special Topics

Tejal Desai UC San Francisco Ranu Jung Florida International University -

Orthopedic and Rehabilitation Engineering

Wendy Murray Northwestern University Jeff Weiss University of Utah

Respiratory Bioengineering

William Federspiel University of Pittsburgh

Samir Ghadial Ohio State University

Stem Cell Engineering

Steven George UC Irvine Shyni Varghese UC San Diego

Tissue Engineering

Edward Botchwey Georgia Institute of Technology

Nenad Bursac Duke University

Nicolas L'Heureux Cytograft

Translational Biomedical Engineering

Eben Alsberg Case Western Reserve University

Joyce Wong Boston University

Undergraduate Research (REU)

William Guilford University of Virginia Kristine Ropella Marquette University

Thank you to our reviewers for their time and effort:

BIOINFORMATICS, COMPUTATIONAL AND SYSTEMS BIOLOGY

Amy Brock Benjamin Cosgrove Michael Fenn Stacey Finley Heather Hayenga Princess Imoukhuede Kevin Janes Kyung Kim Tamara Kinzer-Ursem Kathryn Miller-Jensen Kristen Naegle Sriram Neelamegham Joseph Palladino lason Papin Shavn Peirce leff Saucerman Cheemeng Tan Jun Wang

BIOMATERIALS

Jorge Almodovar Natalie Artzi Gary Bowlin Jeffrey Capadona Hao Cheng Beata Chertok Youngjae Chun Tzahi Cohen-Karni Michael Davis Cole DeForest Meng Deng Erik Dreaden Craig Duvall Adam Ekenseair Lindsay Fitzpatrick John Frampton Akhilesh Gaharwar Gargi Ghosh Ryan Gilbert Anjelica Gonzalez Jordan Green Mariah Hahn Michael Heffernan Rebecca Heise Gregory Hudalla Jeffrey Jacot Christopher Jewell Srivatsan Kidambi Matt Kipper Joydip Kundu Elizabeth Loboa Hongyan Ma Ashwin Nair George Pins Smitha Rao

Michael Regnier Jai Rudra Alisha Sarang-Sieminski Vassilios Sikavitsas Agneta Simionescu Dan Simionescu Wei Tan Joe Tien Mark Van Dyke Scott Verbridge Yun Wang Jeff Wolchok Janet Zoldan

BIOMECHANICS

Animesh Agarwal Taby Ahsan B. Rita Alevriadou Kyle Allen Yahia Al-Smadi Natalie Artzi Aaron Baker Janet Barzilla Lauren Black III loel Boerckel Joel D Bumgardner Hung Cao Alesha Castillo Hao Cheng Tzahi Cohen-Karni John Cotton Jennifer Currey Eric Darling Rafael Davalos Michael Davis Cole DeForest Meng Deng Jaydip Desai Zachary Dooley Stefan Duma Eno Ebong Vittoria Flamini Akhilesh Gaharwar F. Scott Gayzik Craig Goergen Esther Gomez Anjelica Gonzalez Teja Guda Heather Hayenga Heath Henninger Yi Hong Marc Horner Roland Kaunas Mehmet Kaya Spencer Lake Christopher Lemmon Amy Lerner Jun Liao Alan Litsky Elizabeth Loboa

David Long Arash Mahboobin Robert Mauck Stuart Mitchell Jiro Nagatomi Jin Nam Sriram Neelamegham Keith Neeves Syam Nukavrapu Grace O'Connell Rachael Oldinski Joseph Palladino Anthony Passerini Amit Pathak **Robert Peattie** Yi-Xian Qin Michael Regnier David Rubenstein Edward Sander leff Saucerman Danial Shahmirzadi Agneta Simionescu Anita Singh Nathan Sniadecki loel Stitzel Liping Tang W Robert Taylor Lian Tian Joe Tien Mark Van Dyke Ionathan Vande Geest Pamela VandeVord Leo Wan **Rebecca** Willits Huidan (Whitney) Yu li Zhang Wujie Zhang Chao Zhong

BIOMEDICAL ENGINEERING EDUCATION

lameel Ahmed Robert Allen **Timothy Allen** Jenny Amos Essy Behravesh Paul Benkeser Franklin Bost Eric Brey Dan Cavanagh Judy Cezeaux Naomi Chesler Jennifer Currey John Desjardins Colin Drummond Donna Ebenstein Chris Geiger Matthew Glucksberg Craig Goergen

Jay Goldberg Richard Goldberg William Guilford Shelly Gulati Brian Helmke Jennifer Kang-Mieler Mehmet Kaya loe LeDoux Amy Lerner Rob Linsenmeier Angie Louie Jean-Michel Maarek Sundararajan Madihally Robert Malkin Mansoor Nasir Ruth Ochia Grace O'Connell Lars Olson Raquel Perez-Castillejos Marcia Pool lames Rains Renata Ramos Alisha Sarang-Sieminski Ann Saterbak Agneta Simionescu Anita Singh Saion Sinha Jim Sweeney Alyssa Taylor Kurt Thoroughman Willis Tompkins loe Tranguillo Conrad Zapanta Wujie Zhang

BIOMEDICAL IMAGING AND OPTICS

Zhiliang Cheng Beata Chertok Bernard Choi David Cormode Bruce Damon Amber Doiron Timothy Duong Mario Fabiilli Michael Fenn Debadyuti (Rana) Ghosh Craig Goergen Javier Jo Efstathios Karathanasis Mehmet Kaya Vikram Kodibagkar Stephen LaConte Aaron Mohs Nozomi Nishimura Doug Noll Walter O'Dell B. Hyle Park Kaushik Parthasarathi Ramesh Raghupathy

ABSTRACT REVIEWERS

Mahsa Ranji Brad Sutton Daniel Thorek Ken Tichauer Andrew Tsourkas Omid Veiseh Tilo Winkler Jing Yong Ye Baohong Yuan

CANCER TECHNOLOGIES

Natalie Artzi Amy Brock Beata Chertok Rafael Davalos Emily Day Michael Fenn **Rohan Fernandes** Cyrus Ghajar Gargi Ghosh Esther Gomez Samir Iqbal Javier Jo Srivatsan Kidambi Pilnam Kim Michael King Joseph Kinsella Vikram Kodibagkar Konstantinos Konstantopoulos Piyush Koria Nastaran Kuhn James Lai Woo Lee Christopher Lemmon Wei I i Wenge Liu Jennifer Munson Mehdi Nikkhah Shelly Peyton Manu Platt Smitha Rao Cynthia Reinhart-King Carlos Rinaldi Keyue Shen Adrian Shieh Vassilios Sikavitsas Liping Tang Ken Tichauer Madeline Torres-Lugo Scott Verbridge Sihong Wang Yun Wu Edmond Young **Baohong** Yuan Wujie Zhang

CARDIOVASCULAR ENGINEERING

Taby Ahsan

B. Rita Alevriadou Jorge Almodovar Natalie Artzi Aaron Baker Janet Barzilla Lauren Black III Nenad Bursac Gulden Camci-Unal Stuart Campbell Hung Cao Alesha Castillo Naomi Chesler Bernard Choi Youngiae Chun Thomas Claiborne Daniel Conway Guohao Dai Michael Davis Adam Engler Vittoria Flamini Steven George Craig Goergen Anjelica Gonzalez Yi Hong Marc Horner Tzung Hsiai Patrick Hsieh Jeffrey Jacot Javier Jo Mehmet Kaya Srivatsan Kidambi Hyunjoon Kong Sándor J. Kovács Jun Liao Shu Liu David Long Sundararajan Madihally Arash Mahboobin Gretchen Mahler Gil Marom Stuart Mitchell Jonathan Mynard Sriram Neelamegham Keith Neeves Mehdi Nikkhah Joseph Palladino Anthony Passerini Abhijit Patwardhan **Robert Peattie** Iulie Phillippi Manu Platt Raj Prabhu Milica Radisic Michael Regnier David Rubenstein Michael Sacks Chander Sadasivan Alisha Sarang-Sieminski Narine Sarvazyan Jeff Saucerman

Saravan Kumar Shanmugavelayudam Jawaad Sheriff Agneta Simionescu Dan Simionescu Craig Simmons Saion Sinha Joao Soares Kevin Soucy Wei Tan Charles Taylor W Robert Taylor Lian Tian Mark Van Dyke Sara Vasconcrelos Sihong Wang Zhijie Wang Saami Yazdani Wei Yin Huidan (Whitney) Yu Ji Zhang

CELLULAR AND MOLECULAR BIOENGINEERING

Michael Davis Tara Deans Junsang Doh Lindsay Fitzpatrick John Frampton Jason Gleghorn Heather Hayenga Brian Helmke Jeffrey Hubbell Gregory Hudalla Sha Jin Roland Kaunas Tamara Kinzer-Ursem Konstantinos Konstantopoulos Piyush Koria James Lai Nic Leipzig Allen Liu Shu Liu David Long Hongyan Ma Robert Mauck Teresa Murray Jiro Nagatomi Sriram Neelamegham Kaushik Parthasarathi Anthony Passerini Julie Phillippi Michelle Previtera Anand Ramasubramanian Michael Regnier Jeff Saucerman Keyue Shen Adrian Shieh **Richard Sinden** John Slater Junghae Suh Melody Swartz Leo Wan

Jun Wang Peter Yingxiao Wang Yun Wang

DEVICE TECHNOLOGIES AND BIOMEDICAL ROBOTICS

Animesh Agarwal James Antaki Lemont Baker Tamara Baynham Lissett Bickford Hung Cao J-C Chiao Youngjae Chun Jennifer Currey Rafael Davalos Jaydip Desai Arielle Drummond Juan Hincapie Marc Horner Samir Igbal Juan Jiménez Matt Kay Mehmet Kaya Massoud Khraiche Wen Ko Jeffrey La Belle James Lai Jinseok Lee Janie Mandrusov Keefe Manning Mike McShane Stuart Mitchell Mansoor Nasir Dominic Nathan Chris Pulliam James Rains Arthur Ritter Chander Sadasivan Sergey Shevkoplyas Kevin Soucy Sihong Wang Paul Yoo Bailin Zhang John Zhang Weiying Zhao

DRUG DELIVERY

Jorge Almodovar Debra Auguste Lauren Black III Amy Brock Beata Chertok J-C Chiao Youngjae Chun Rhima Coleman Daniel Conway Guohao Dai Michael Davis Emily Day Tara Deans

ABSTRACT REVIEWERS

Erik Dreaden Craig Duvall Mario Fabiilli Akhilesh Gaharwar Gargi Ghosh Jason Gleghorn Anjelica Gonzalez Iordan Green lianjun Guan Mariah Hahn lered Haun Tamara Kinzer-Ursem Hyunjoon Kong Konstantinos Konstantopoulos Wenge Liu Manu Platt Narasimhan Rajaram Anand Ramasubramanian Kathryn Whitehead Saami Yazdani Kaiming Ye Wei Yin Edmond Young Yang Yun Lijie Grace Zhang

NANO AND MICRO TECHNOLOGIES

Kyle Allen Shyam Aravamudhan Natalie Artzi Hung Cao Hao Cheng Beata Chertok J-C Chiao Youngjae Chun **Rohan Fernandes** Elain Fu Thomas Gaborski Akhilesh Gaharwar Jason Gleghorn SJ Claire Hur Samir Igbal Salman Khetani Massoud Khraiche Srivatsan Kidambi Devrim Kilinc Jungkyu (Jay) Kim Pilnam Kim YongTae Kim Wei Li Elizabeth Loboa Xiaolong Luo Sundararajan Madihally Stuart Mitchell Aaron Mohs Mansoor Nasir Keith Neeves Narasimhan Rajaram Anand Ramasubramanian Smitha Rao Daniel Ratner Jai Rudra

Erkin Seker

Saravan Kumar Shanmugavelayudam Keyue Shen Sergey Shevkoplyas Saion Sinha John Slater Nathan Sniadecki Leo Wan Jun Wang Sihong Wang Shannon Weigum Yun Wu Woon-Hong Yeo Edmond Young Lijie Grace Zhang Chao Zhong Pavel Zrazhevskiy

NEURAL ENGINEERING

Shyam Aravamudhan Randolph Ashton Hung Cao Jeffrey Capadona I-C Chiao Jaydip Desai Jaimie Dougherty Lisa Flanagan John Frampton Ryan Gilbert Matthew Johnson Jennifer Kang-Mieler Mehmet Kaya Massoud Khraiche Srivatsan Kidambi Devrim Kilinc Srinivas Kota Teresa Murray Dominic Nathan Kevin Otto Chris Passaglia Matthew Schiefer Erkin Seker Anita Singh Sarah Stabenfeldt Katherine Steele Deanna Thompson Stuart Tobet Mark Van Dyke Pamela VandeVord Stephanie Willerth **Rebecca** Willits

NEW FRONTIERS AND SPECIAL TOPICS

James Abbas Taby Ahsan Shyam Aravamudhan Beata Chertok Elain Fu Jason Gleghorn Ranu Jung James Lai Chenzhong Li Susan Lin Tan Liu Stuart Mitchell Ashwin Nair Nozomi Nishimura Anand Ramasubramanian Matthew Reilly Saravan Kumar Shanmugavelayudam Sergey Shevkoplyas Dan Simionescu Nathan Sniadecki Leo Wan Jun Wang Chao Zhong Pavel Zrazhevskiy

ORTHOPEDIC AND REHABILITATION ENGINEERING

Animesh Agarwal Andrew Anderson Don Anderson Silvia Blemker Larry Bonassar **Robert Bowles** Stephanie Bryant Joel D Bumgardner John Cotton Eric Darling Tara Deans Kyle Allen Dawn Elliott F. Scott Gayzik Heath Henninger Christopher Hernandez Clark Hung Matthew Johnson leffrey La Belle Spencer Lake William Ledoux Amy Lerner **Gregory** Lewis Lucas Lu Wendy Murray Rachael Oldinski James Rains Robert Sah Katherine Saul Lori Setton Katherine Steele Joel Stitzel

Karen Troy Pamela VandeVord Diane Wagner Jeffrey Weiss Lise Worthen-Chaudhari Lijie Grace Zhang

RESPIRATORY BIOENGINEERING

Said Audi

Jason Bates Konstantin Birukov William Federspiel Marcel Filoche Donald Gaver F. Scott Gayzik Samir Ghadiali Jason Gleghorn Rebecca Heise Geoff Maksym Celeste Nelson Kaushik Parthasarathi Carrie Perlman Arthur Ritter Bela Suki Daniel Weiss **Tilo Winkler**

STEM CELL ENGINEERING

Taby Ahsan Randolph Ashton Lauren Black III Stuart Campbell Rhima Coleman Guohao Dai Tara Deans Thomas Gaborski Akhilesh Gaharwar Tzung Hsiai Jeffrey Jacot Robert Mauck lin Nam Syam Nukavrapu Julie Phillippi Eduardo Silva Deanna Thompson Gregory Underhill Leo Wan Stephanie Willerth Janet Zoldan

ABSTRACT REVIEWERS

TISSUE ENGINEERING

Kyle Allen Deirdre Anderson Shyam Aravamudhan Natalie Artzi Randolph Ashton Samira Azarin Brendon Baker Lauren Black III Gary Bowlin Joel D Bumgardner Gulden Camci-Unal Stuart Campbell Rhima Coleman Guohao Dai Eric Darling Michael Davis Tara Deans Meng Deng Craig Duvall Mario Fabiilli Lindsay Fitzpatrick John Frampton Akhilesh Gaharwar Jason Gleghorn Anjelica Gonzalez Sheila Grant

Jianjun Guan Teja Guda Mariah Hahn Rebecca Heise Yi Hong Tzung Hsiai Patrick Hsieh Rita Issa Jeffrey Jacot Sha Jin **Roland Kaunas** Salman Khetani Srivatsan Kidambi Megan Killian Pilnam Kim YongTae Kim Matt Kipper Hyunjoon Kong Piyush Koria Joydip Kundu Nic Leipzig Jun Liao Elizabeth Loboa Maureen Lynch Hongyan Ma Sundararajan Madihally Gretchen Mahler Robert Mauck

Peter McFetridge Stuart Mitchell Jennifer Munson Jiro Nagatomi Ashwin Nair Jin Nam Hung Nguyen Mehdi Nikkhah Syam Nukavrapu Grace O'Connell Rachael Oldinski Rene Olivares-Navarrete Emmanuel Opara **Robert Peattie** Raquel Perez-Castillejos Julie Phillippi George Pins Michael Regnier David Rubenstein Wajeeh Saadi Alisha Sarang-Sieminski Scott Sell Blanka Sharma Vassilios Sikavitsas Eduardo Silva Agneta Simionescu Dan Simionescu Joao Soares

Patricia Soucy Sarah Stabenfeldt Wei Tan Liping Tang Deanna Thompson Joe Tien Stuart Tobet Gregory Underhill Mark Van Dyke Scott Verbridge Leo Wan Sihong Wang Yun Wang Zhijie Wang Stephanie Willerth **Rebecca** Willits Kaiming Ye Lijie Grace Zhang Wujie Zhang Chao Zhong lanet Zoldan

CONGRATULATIONS TO THE BMES 2014 CLASS OF FELLOWS

BETH WINKELSTEIN, PHD University of Pennsylvania

CHENG ZHU, PHD Georgia Institute of Technology

DEBORAH LECKBAND, PHD University of Illinois

DONALD GAVER, PHD Tulane University

GUILLERMO AMEER, PHD Northwestern University

HANJOONG JO, PHD Georgia Institute of Technology **ROBERT SAH, MD, SCD** University of California, San Diego

SONG LI, PHD University of California, Berkeley

TEJAL DESAI, PHD University of California, San Francisco

BMES Fellow status is awarded to members who demonstrate exceptional achievements and experience in the field of biomedical engineering, and a consistent record of membership and participation in the Society.

PROGRAM

NOTES

TODAY'S HIGHLIGHTS

PLATFORM SESSIONS Thurs-18:00am - 9:30am See pages 71-77, HBGCC

EXHIBIT HALL OPEN 9:30am - 5:00pm HBGCC, Exhibit Hall A

POSTER SESSION9:30am - 5:00pmSee pages 93-124 , HBGCC, Exhibit Hall APoster Viewing with Authors9:30am - 10:30am& Refreshment Break

PLENARY SESSION

10:30am - 12:15pm HBGCC, Lila Cockrell Theatre State of the Society Fellows Presentation Gilda Barabino, PhD

Robert A. Pritzker Distinguished Lecture LIFE REDESIGNED: THE EMERGENCE OF SYNTHETIC BIOLOGY James Collins, PhD

Celebration of Minorities 12:30pm - 1:45pm in BME Luncheon Additional ticket purchase required HBGCC. Ballroom A

PLATFORM SESSIONS Thurs-2 2:00pm - 3:30pm See pages 78-84, HBGCC

Poster Viewing with Authors 3:30pm - 4:30pm & Refreshment Break HBGCC, Exhibit Hall A

PLATFORM SESSIONS Thurs-3 4:30pm - 6:00pm See pages 85-91, HBGCC

PLENARY SESSION

6:15pm - 7:30pm

Computational Modeling and Simulation for Medical Devices HBGCC, Lila Cockrell Theatre

Hosted Receptions–Marriott Rivercenter and Marriott Riverwalk See page 62 for list

THURSDAY, October 23, 2014

8:00 AM - 9:30 AM PLATFORM SESSIONS - THURS - 1

Track: Tissue Engineering, Cardiovascular Engineering

OP-Thurs-I-I - Room 001A

Blood Vessel Tissue Engineering

Chairs: Kent Leach, Peter McFetridge

8:00AM

Human Tissue-Engineered Blood Vessels for *In Vitro* Drug Response Testing

C. FERNANDEZ¹, R. YEN¹, W. REICHERT¹, AND G. TRUSKEY¹ ¹Duke University, Durham, NC

8:15AM

Pericyte-Derived Matrix Alters Endothelial Cell Angiogenic Properties and Inflammatory Function P. SAVA¹, I. COOK¹, B. WALKER¹, AND A. GONZALEZ¹ ¹Yale University, New Haven, CT

8:30AM

Dynamically-Perfused Multi-Scale Vascular Network Created within Thick Hydrogel using 3D Bio-Printing Technology V. LEE¹, P. VINCENT², S-S. YOO³, AND G. DAI¹

¹Rensselaer Polytechnic Institute, Troy, NY, ²Albany Medical College, Albany, NY, ³Brigham and Women's Hospital, Harvard Medical School, Boston, MA

8:45AM

Fabrication of Highly Vasoreactive and Robust Tissue Engineered Vascular Media Using Doxycycline Treatment: Implication for Vascular Tissue Engineering

V. BAJPAI¹, P. MISTRIOTIS¹, Z. CHAMANZAR¹, R. CARPENTER¹, AND S. ANDREADIS¹ ¹SUNY Buffalo, Amherst, NY

9:00AM

Accelerating Cellular Spheroid Fusion Using Magnetic Forces to Fabricate a Vascular Tissue

T. OLSEN¹, M. CASCO¹, D. SIMIONESCU¹, R. VISCONTI², AND F. ALEXIS¹ ¹Clemson University, Clemson, SC, ²Medical University of South Carolina, Charleston, SC

9:15AM

Acellular Small Diameter Vascular Graft Evaluated In a Pre-clinical Animal Model

M. KOOBATIAN¹, R. SMITH¹, S. ROW¹, S. ANDREADIS¹, AND D. SWARTZ¹ ¹State University of New York at Buffalo, Amherst, NY

Track: Tissue Engineering, Stem Cell Engineering OP-Thurs-I-2 - Room 001B

Microfabrication and 3D Printing for Tissue Engineering

Chairs: Adam Feinberg, Akhilesh Gaharwar

8:00AM

3D Printed Biological Machines Powered by Skeletal Muscle

C. Cvetkovic¹, R. Raman¹, M. Rich¹, R. Swetenburg², B. Williams¹, S. Stice², H. Kong¹, T. Saif¹, and R. Bashir¹

¹University of Illinois at Urbana-Champaign, Urbana, IL, ²The University of Georgia, Athens, GA

8:15AM

Hierarchical Assembly for Guided Morphogenesis of Scaffold-free Tissues K. STEVENS¹ AND S. BHATIA¹ 'Massachusetts Institute of Technology, Cambridge, MA

8:30AM

PLATFORM

Rapid Formation of Multicellular Spheroids with Controllable Microenvironment in Microfluidics-Generated Double Emulsion Droplets and Its Applications in Tissue Engineering H. CHAN¹ AND K. LEONG¹

¹Duke University, Durham, NC

8:45AM

3D Printing Facilitated Scaffold-free Tissue Unit Fabrication Y. TAN¹, D. RICHARDS¹, AND Y. MEI¹,²

¹Clemson University, Charleston, SC, ²Medical University of South Carolina, Charleston, SC

9:00AM

3D Printing of Complex Biological Scaffolds Using Freeform Reversible Embedding of Suspended Hydrogels (FRESH)

T. HINTON¹ AND A. FEINBERG¹ ¹Carnegie Mellon University, Pittsburgh, PA

9:15AM

Robotic Microcontact Printing (R- CP) J. MCNULTY¹, T. KLANN¹, G. KNIGHT¹, M. SALICK¹, L-S. TURNG¹, AND R. ASHTON¹ ¹University of Wisconsin Madison, Madison, WI

Track: Biomaterials, Tissue Engineering OP-Thurs-I-3 - Room 006A

Biomaterial Scaffolds I

Chairs: Dan Simionescu, Jai Rudra

8:00AM Invited

Biomaterials Track Overview

R. CARRIER¹ ¹Northeastern University, Boston, MA

8:15AM

Osseointegration Capability of Direct Metal Laser Sintered Titanium Implants With Unique Surface Characterization: An *In Vitro* and *In Vivo* Evaluation

S. HYZY¹, D. COHEN¹, R. CLOHESSY¹, A. CHENG²,³,⁴, B. BOYAN¹,², AND Z. SCHWARTZ¹,⁵ ¹Virginia Commonwealth University, Richmond, VA, ²Georgia Institute of Technology, Atlanta, GA, ³Ernory University, Atlanta, GA, ⁴Peking University, Beijing, China, People's Republic of, ⁵University of Texas Health Science Center, San Antonio, TX

8:30AM

Effect of Capillary Action on Bone Regeneration in Micro-Channel Ceramic Scaffolds

Y. KIM¹, M-H. HONG², C. BAE³, Y. KIM⁴, K. KIM⁴, AND D. OH⁵ ¹Trinity School, New York, NY, ²Columbia University, New York, NY, ³Chonnam National University, Gwangju, Korea, Republic of, ⁴Kyung Hee University, Yongin, Korea, Republic of, ⁵Columbia Unoversity, New York, NY

8:45AM

Elastomeric and Mechanically Stiff Nanocomposites for Bone Tissue Engineering

P. KERATIVITAYANAN¹ AND A. GAHARWAR¹ ¹Texas A&M University, College Station, TX

9:00AM

Solid Freeform Fabrication of Biomaterials Scaffolds via Photopolymerization of High Internal Phase Emulsions

N. SEARS¹, J. ROBINSON¹, M. WHITELY¹, AND E. COSGRIFF-HERNANDEZ¹ ¹Texas A&M University, College Station, TX

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

9:15AM

Enabling Surgical Placement of Hydrogels Through Achieving Paste-Like Rheological Behavior Prior to Crosslinking

E. BECK¹, B. LOHMAN¹, S. KIEWEG¹, S. GEHRKE¹, C. BERKLAND¹, AND M. DETAMORE¹ ¹University of Kansas, Lawrence, KS

Track: Biomaterials OP-Thurs-I-4 - Room 006B

Bioinspired and Self Assembling Biomaterials I

Chairs: George Pins, Jordan Green

8:00AM

Suppression of Osteoarthritis via Molecular Engineering of an Aggrecan Mimetic

A. PANITCH¹, C. GOERGEN¹, G. BREUR¹, P. SNYDER¹, N. VAZQUEZ-PORTALATIN¹, AND S. SHARMA¹

¹Purdue University, WEST LAFAYETTE, IN

8:30AM

Harnessing Cellular-Derived Forces to Control the Synthesis and Alignment of Novel ECM Materials

J. SCHELL¹, B. WILKS¹, X. CAO², V. SHENOY², AND J. MORGAN¹ ¹Brown University, Providence, RI, ²University of Pennsylvania, Philadelphia, PA

8:45AM

Glycosylated Peptide Nanofibers to Modulate Galectin Bioactivity

A. RESTUCCIA¹, Y. TIAN², J. COLLIER³, AND G. HUDALLA¹ ¹University of Florida, Gainesville, FL, ²Illinois Institute of Technology, Chicago, IL, ³University of Chicago, Chicago, IL

9:00AM

RNA Localization to Phospholipid Membranes with Nucleolipids N. KAMAT¹ AND J. SZOSTAK¹

¹Harvard University and Massachusetts General Hospital, Boston, MA

9:15AM

Injectable Oxidation-Responsive Fibrillar Assemblies are Processed by CDIIc+ Populations in Skin

C. BRUBAKER¹, D. BONNER¹, E. PHELPS¹, AND J. HUBBELL¹ ¹Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland

Track: Drug Delivery, Nano to Micro Technologies OP-Thurs-I-5 - Room 006C

Nano/Micro Drug Delivery

Chairs: Craig Duvall, Jered Haun

8:00AM

Glucose-Responsive Insulin Delivery by Biomimetic Synthetic Vesicles Z. Gu¹, W. TAI¹, J. DI¹, R. MO¹, AND V. SUBRAMANIAN¹

¹University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC

8:15 AM

Nanostructured Polycaprolactone Thin Films For Enhanced Ocular Drug Delivery

J. KIM¹, C. FOX², AND T. DESAI³

¹UCB-UCSF Graduate Program in Bioengineering, San Francisco, CA, ²Pharmaceutical Sciences and Pharmacogenomics Graduate Program in UCSF, San Francisco, CA, ³Department of Bioengineering and Therapeutic Sciences in UCSF, San Francisco, CA

8:30AM

Nanostructured Mucoadhesive Microparticles for Their Enhanced Retention in Gastrointestinal Tract

C. PARK¹, B. HUH¹, M. PARK¹, S. LEE¹, H. HONG¹, AND Y. CHOY¹ ³Seoul National University, Seoul, Korea, Republic of

8:45AM

A Dendrimer/Lipid Gene Delivery System for Ocular Gene Therapy

D. SUN¹, H. MAENO¹, A. MALAMAS¹, G. YU¹, T. MAEDA¹, A. MAEDA¹, K. PALCZEWSKI¹, AND Z-R. LU¹

¹Case Western Reserve University, Cleveland, OH

9:00AM

Novel Electrospun Gelatin/insulin Formulation for Transbuccal Insulin Delivery

L. XU¹, N. SHEYBANI¹, S. REN¹, G. BOWLIN², W. YEUDALL¹, AND H. YANG¹ ¹Virginia Commonwealth University, Richmond, VA, ²University of Memphis, Memphis, TN

9:15AM

Transport Studies of Nanoscale Bacteria Enabled Autonomous Drug Delivery Systems (NanoBEADS) in an *In-vitro* Tumor Model M. TRAORE¹ AND B. BEHKAM¹ 'Virginia Tech, Blacksburg, VA

Track: Biomechanics, Cellular and Molecular Bioengineering

OP-Thurs-I-6 - Room 006D

Cell Biomechanics I

Chairs: Elizabeth Loboa, Christopher Lemmon

8:00AM

Nanotopography Modulated Nuclear Deformation

X. YU¹, A. BRUCE¹, R. MEZAN¹, L. WANG², P. FULAY¹, Y. ROJANASAKUL¹, AND Y. YANG¹ ¹West Virginia University, Morgantown, WV, ²The National Institute for Occupational Safety and Health, Morgantown, WV

8:15 AM

Platelet Mechanosensing on Collagen-Conjugated Substrates

M. KEE¹, Y. QIU¹, D. MYERS¹,², R. TRAN¹, Y. SAKURAI¹,², AND W. LAM¹,² ¹Georgia Institute of Technology, Atlanta, GA, ²Emory University, Atlanta, GA

8:30AM

Vascular Smooth Muscle Cell Behavior on Patterned PDMS Substrates

R. CHEN¹ AND D. DEAN¹ ¹Clemson University, Clemson, SC

8:45AM

Impact of Membrane Cholesterol on Monocyte Biomechanics A. SAHA¹ AND A. RAMASUBRAMANIAN¹

¹University of Texas at San Antonio, San Antonio, TX

9:00AM

Membrane Deformation and Bioeffects in Single Cells Produced by

High Strain-Rate Loading Associated with Tandem Bubble Interaction F. YUAN¹, C. YANG¹, Y. ZHANG¹, G. SANKIN¹, AND P. ZHONG¹ ¹Duke University, Durham, NC

9:15AM

Dynamic Traction Forces of Spreading and Adherent Human Neutrophils

S. HENRY¹, C. CHEN², J. CROCKER¹, AND D. HAMMER¹ ¹University of Pennsylvania, Philadelphia, PA, ²Boston University, Boston, MA

Track: Cancer Technologies

OP-Thurs-I-7 - Room 007A

Cancer Mechanobiology

Chairs: Michael King, Christopher Lemmon

8:00AM Invited

Advancing Convergence and Innovation in Cancer Research: National Cancer Institute Center for Strategic Scientific Initiatives (CSSI) E. GREENSPAN¹, M. BERNY-LANG¹, AND J. LEE¹ ¹National Cancer Institute, NIH, Bethesda, MD

8:15 AM

Nuclear Limits to 3D Migration and Survival

D. DISCHER¹

¹University of Pennsylvania, Philadelphia, PA

8:30AM

Matrix-Stiffness-Dependent Upregulation Of MTI-MMP Promotes An Invasive Epithelial Phenotype

S. CAREY¹, K. MARTIN¹, AND C. REINHART-KING¹ ¹Cornell University, Ithaca, NY

8:45AM

Loss of Giant Obscurins Alters Breast Epithelial Cell Mechanobiology K. STROKA¹, M. SHRIVER², B. WONG¹, K. KONSTANTOPOULOS¹, AND A. KONTROGIANNI-KONSTANTOPOULOS² ¹Johns Hopkins University, Baltimore, MD, ²University of Maryland, Baltimore, Baltimore, MD

9:00AM

Extracellular Matrix Stiffness Protects Carcinoma Cells from Sorafenib via JNK Signaling

T. NGUYEN¹, M. SLEIMAN¹, T. MORIARTY¹, W. HERRICK¹, AND S. PEYTON¹ ¹University of Massachusetts Amherst, Amherst, MA

9:15AM

Contractility as a Biophysical Signature of Metastasis for Primary Human Colon Cancer Cells

M. ALI¹, K. TANGELLA², D. RAMKUMAR², AND T. SAIF³ ¹University of Illinois, Champaign, IL, ²Provena Covenant Medical Centre, Urbana, IL, ³University of Illinois at Urbana-Champaign, Urbana, IL

Track: Cardiovascular Engineering OP-Thurs-I-8 - Room 007B

Hemodynamics and Vascular Mechanics I

Chairs: Daniel Bluestein, Keith Neeves

8:00AM

Platelet Thrombin Generation Under Flow W. YIN¹, K. BOND¹, V. NGO¹, AND D. RUBENSTEIN¹ 'Stony Brook University. Stony Brook, NY

8:15 AM

Stress-induced Platelet Activation Potential in Abdominal Aortic Aneurysms K. Hansen', A. Arzani', and S. Shadden'

K. HANSEN', A. ARZANI', AND S. SHADDEN' 'University of California, Berkeley, CA

8:30AM

Stiff Substrates Enhance Monocyte Recruitment from Flow

J. MACKAY¹ AND D. HAMMER¹ ¹University of Pennsylvania, Philadelphia, PA

8:45AM

PLATFORM

Simvastatin Ameliorates Substrate Stiffness Dependent Endothelial Dysfunction

M. LAMPI¹, C. FABER¹, J. HUYNH¹, J. JONES¹, N. NISHIMURA¹, AND C. REINHART-KING¹ ¹Cornell University, Ithaca, NY

9:00AM

Refrigerated Platelets Respond to Physiologic Inhibitors, Evidence That Cold-Induced Activation Is Unlikely to Result in Disseminated Intravascular Coagulation

K. REDDOCH¹, H. PIDCOKE², A. CAP², AND A. RAMASUBRAMANIAN¹ ¹The University of Texas at San Antonio, San Antonio, TX, ²US Army Institute of Surgical Research, Fort Sam Houston, TX

9:15AM

Fibrin Generation and Transthrombus Pressure Gradients Regulate Thrombin Mediated Clot Growth

R. MUTHARD¹ AND S. DIAMOND¹ ¹University of Pennsylvania, Philadelphia, PA

Track: Cellular and Molecular Bioengineering OP-Thurs-I-9 - Room 007C

Cell Adhesion

Chairs: Sriram Neelamegham, Eric Boder

8:00AM

When Affinity Is not Enough: Strong Ideal Bonds with the Gate Mechanism

W. THOMAS¹, O. YAKOVENKO¹, AND K. JOHNSON¹ ¹University of Washington, Seattle, WA

8:15AM

Kinetic Properties govern Mucin 16 (MUC16) and Podocalyxin (PODXL) adhesion to E- and L-selectins in Shear Flow

D. SHEA1, K. STEBE2, AND K. KONSTANTOPOULOS1,3,4,5

¹Johns Hopkins University, Baltimore, MD, ²Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, ³Johns Hopkins Institute for NanoBioTechnology, Baltimore, MD, ⁴Johns Hopkins Physical Sciences-Oncology Center, Baltimore, MD, ⁵Johns Hopkins Center of Cancer Nanotechnology Excellence, Baltimore, MD

8:30AM

ST3Gal-4 is the Primary (2,3) Sialyltransferase Regulating the Biosynthesis of E-, P- and L-selectin Ligands in Human Leukocytes

S. NEELAMEGHAM¹, N. MONDAL¹, A. BUFFONE JR.², AND J. LAU² ¹State University of New York at Buffalo, Buffalo, NY, ²Roswell Park Cancer Institute, Buffalo, NY

8:45AM

Allosteric Regulation of Cadherin-mediated Intercellular Adhesion by Inside-out Signaling

D. LECKBAND¹, N. SHASHIKANTH¹, J. NEWHALL¹, Y. PETROVA², M. SPANO², AND B. GUMBINER²

¹University of Illinois, Urbana, IL, ²University of Virginia College of Medicine, Charlottesville, VA

9:00AM

Catch Bond In TCR-CD3 Interaction C. GE1 AND C. ZHU1

¹Georgia Institute of Technology, Atlanta, GA

9:15AM

An ECM Fibronectin Matricryptic Site Contributes To Mechanosignaling In Endothelial Cells Under Flow W. OKECH¹, D. HOCKING¹, AND I. SARELIUS¹

¹University of Rochester, Rochester, NY

P = Poster Session **OP** = Oral Presentation = Reviewer Choice Award

Track: Cellular and Molecular Bioengineering, **Biomechanics**

OP-Thurs-I-I0 - Room 007D

Mechanotransduction I

Chairs: Brenton Hoffman, Nic Leipzig

8:00AM

α -Catenin Cytomechanics: Role in Cadherin-Dependent Adhesion and Mechanotransduction

J. WU¹, A. BARRY¹, H. TABDILI¹, I. MUHAMED¹, N. SHASHIKANTH¹, G. GOMEZ², A. YAP², C. GOTTARDI³, J. ROOIJ⁴, N. WANG¹, AND D. LECKBAND¹

¹University of Illinois at Urbana-Champaign, Urbana, IL, ²University of Queensland, St. Lucia, Brisbane, Australia, 3Northwestern University, Chicago, IL, 4University Medical Center Utrecht, Utrecht, Netherlands

8:15 AM

Cyclic Anisotropic Strain Mediates TGF β Activation in a Time-Dependent Manner by Potentiating SMAD2 and RhoA

L. PAGNOZZI¹ AND J. BUTCHER¹ ¹Cornell University, Ithaca, NY

8:30AM

Cellular Tension Regulates TGF eta Signaling Through Discrete Spatial Organization Of TGF β Receptors

J. RYS¹, C. DUFORT², M. BAIRD³, M. DAVIDSON³, AND T. ALLISTON² ¹UC Berkeley - UCSF, San Francisco, CA, ²UCSF, San Francisco, CA, ³Florida State University, Tallahassee, FL

8:45AM

Tissue Mechanics in Glioma Aggression

Y. MIROSHNIKOVA¹, J. PHILLIPS¹, K. LOBO¹, H. LAKLAI¹, T. MCKNIGHT¹, AND V. WEAVER¹ ¹UCSF, San Francisco, CA

9:00AM

Determining Force Sensitive Protein-Protein Interactions in Focal Adhesions

A. LACROIX¹ AND B. HOFFMAN¹ ¹Duke University, Durham, NC

9:15AM

Rationally-Designed FRET-based Molecular Tension Sensors A. LACROIX¹ AND B. HOFFMAN¹

¹Duke University, Durham, NC

Track: Nano to Micro Technologies, **Translational Biomedical Engineering** OP-Thurs-I-II - Room 008A

BioMEMS I

Chairs: James Tunnell, Catherine Klapperich

8:00AM Invited Nano to Micro Technologies Track Overview C. KLAPPERICH¹ ¹Boston University, Boston, MA

8:15 AM Invited

High-throughput High-content Developmental Biology and Neurogenetics H. LU¹ ¹Georgia Institute of Technology, Atlanta, GA

8:45AM

A Microdevice for Simultaneous Applications of Topographic Cues and Cyclic Tensile Strains to Live Cells Q. WANG¹, K. WEI¹, AND Y. ZHAO¹ ¹Ohio State University, Columbus, OH

9:00AM

An Ultrathin Flexible Carbon Nanotube Microelectrode Array for Neural Recording and Stimulation

W. YI¹, Z. FENG¹, C. ZHOÙ¹, J. CAVANAUGH¹, C. CHEN¹, AND M-C. CHENG¹ ¹Wayne State University, Detroit, MI

9:15AM

Nanomagnetic Actuation: Remote Control of Cell Signaling

J. DOBSON¹, A. MONSALVE¹, B. HU², AND A. EL HAJ² ¹University of Florida, Gainesville, FL, ²Keele University, Stoke on Trent, United Kingdom

Track: Nano to Micro Technologies, Cellular and Molecular Bioengineering OP-Thurs-1-12 - Room 008B

Microfluidic Platforms I

Chairs: Xiaolong Luo, Edmond Young

8:00AM

Microfluidic Platforms Overview M. VAZQUEZ The City College of New York (CUNY), New York, NY

8:15 AM

A Chemotaxis-Based Microfluidic Sorting Platform

S. SUH¹, M. TRAORE¹, AND B. BEHKAM¹ ¹Virginia Tech, Blacksburg, VA

8:30AM

Spontaneous Neutrophil Migration Patterns in Burn Patients during Sepsis

C. JONES^{1,2,3}, M. MOORE¹, L. DIMISKO^{1,2}, A. ALEXANDER¹, A. IBRAHIM¹, B. HASSELL², R. TOMPKINS¹, S. FAGAN¹, AND D. IRIMIA^{1,2,3}

¹Massachusetts General Hospital and Harvard Medical School, Boston, MA, ²BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Boston, MA, ³Shriners Hospital for Children, Boston, MA

8:45AM

Shear-free Microfluidic Platform for the Chemotaxis and Rapid Labeling of Cells

H. Chung¹, C. Chan¹,², T. Khire¹, G. Marsh¹, A. Clark¹, R. Waugh¹, and J. McGrath¹

¹University of Rochester, Rochester, NY, ²Simpore Inc., West Henrietta, NY

9:00AM

Nanowire Electrophysiology For Cell Sorting And Screening

A. BELL¹, D. VERCOSA¹, AND J. ROBINSON^{1,2} ¹Rice University, Houston, TX, ²Baylor College of Medicine, Houston, TX

9:15AM

A Standing Surface Acoustic Wave (SSAW)-based Cell Co-culture Platform

S. LI¹, F. GUO¹, Y. CHEN¹, X. DING¹, P. LI¹, C. CAMERON¹, AND T. HUANG¹ ¹The Pennsylvania State University, University Park, PA

Track: Device Technologies and Biomedical Robotics, New Frontiers and Special Topics OP-Thurs-1-13 - Room 201

Implantable Devices and Implantable Electronics

Chairs: Rafael Davalos, Lemont Baker

8:00AM Invited

Overview of Development and Commercialization of Implantable Vagus Nerve Stimulation Systems M. MORRIS¹ 'Cyberonics, Inc., Houston, TX

-,---,--,

8:30AM

Liquid Crystal Polymer (LCP)-based Device Packaging for Auditory and Visual Prostheses S. KIM¹, J. KIM¹, AND J. JEONG¹

¹Seoul National University, Seoul, Korea, Republic of

8:45AM

Compensating For Tissue Changes In Ultrasonic Transcutaneous Energy Transfer Systems

H. VIHVELIN¹, J. LEADBETTER¹, J. BROWN¹, AND R. ADAMSON¹ ¹Dalhousie University, Halifax, NS, Canada

9:00AM

Reconfigurable Analog-to-Digital Converter for Implantable Bioimpedance Monitoring T. RANDALL¹, I. MAHBUB¹, F. QUAIYUM¹, AND S. ISLAM¹ ¹University of Tennessee, Knoxville, Knoxville, TN

9:15AM

Surface Plasmon Resonance Imaging of Materials that Reduce Staphylococcus aureus Contamination P. ABADIAN¹ AND E. GOLUCH¹ ¹Northeastern University, Boston, MA

Track: Biomechanics, Neural Engineering OP-Thurs-1-14 - Room 103B

Head Injury

Chairs: Stefan Duma, Beth Winkelstein

8:00AM Invited

Biomechanics Track Overview S. MARGUILES¹ ¹University of Pennsylvania, Philadelphia, PA

8:15 AM

Blast Induced Neurotrauma Leads To Changes In The Epigenome Z. BAILEY¹, S. SAJJA¹, W. HUBBARD¹, E. EREIFEJ¹, AND P. VANDEVORD¹ ¹Virginia Polytechnic Institute and State University, Blacksburg, VA

8:30AM

Brain Deformation, Structural Damage, and Biochemical Alterations in Mild Blast-Induced TBI in Rats

N. Race^{1,2}, M. Walls¹, S. Vega-Alvarez¹, S. Song¹, A. Kim¹, T. Zhang¹, G. Kuziel¹, Y. Gu¹, B. Ziaie¹, and R. Shi¹

¹Purdue University, West Lafayette, IN, ²Indiana University School of Medicine, Indianapolis, IN

8:45AM

Blast Injury Augments Pro-inflammatory Phenotype in Rat Hippocampus

M. WATERS¹, S. SAJJA², P. VANDEVORD¹, AND M. VAN DYKE¹ ¹Virginia Polytechnic Institute and State University, Blacksburg, VA, ²Johns Hopkins School

of Medicine, Baltimore, MD

9:00AM

TBSS Analysis of White Matter Changes related to Head Impacts in High School Football

N. BAHRAMI¹, E. DAVENPORT¹, C. WHITLOW¹, J. URBAN¹, Y. JUNG¹, M. ESPELAND¹, D. ROSENBAUM¹, C. VAUGHAN², G. GIOIA², A. POWERS¹, J. STITZEL¹, AND J. MALDJIAN¹ ¹Wake Forest University School of Medicine, Winston Salem, NC, ²Children's National Medical Center, Washington, DC

9:15AM

High Intensity Sound Wave Transduction from the Ear Canal to Middle Ear R. GAN¹, D. NAKMALI¹, AND Z. YOKELL¹ ¹University of Oklahoma, Norman, OK

Track: Bioinformatics, Computational and Systems Biology OP-Thurs-I-I5 - Room 202A

Single Cell, Heterogeneity, Noise

Chairs: Kyung Kim, Jun Wang

8:00AM Invited

Paracrine Signaling Reduces Cell-to-Cell Heterogeneity and Amplifies Macrophage Response to TLR4 Stimulation

Q. XUE¹, Y. LU¹, M. EISELE¹,², N. KHAN¹, R. FAN¹, AND K. MILLER-JENSEN¹ ¹Yale University, New Haven, CT, ²University of Stuttgart, Stuttgart, Germany

8:30AM

Systematic Analysis of Drug-Induced Adaptive Response in Melanoma M. FALLAHI-SICHANI¹, N. MOERKE¹, M. NIEPEL¹, T. ZHANG¹, N. GRAY¹, AND P. SORGER¹ ¹Harvard Medical School, Boston, MA

8:45AM

Nonlinear Biochemical Signal Processing via Noise Propagation

K. KIM¹, H. QIAN¹, AND H. SAURO¹ ¹University of Washington, Seattle, WA

9:00AM

Fluorescent In-Situ Sequencing of Single-Cells by Sequential Fish A. COSKUN¹ AND L. CAI¹

¹Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA

9:15AM Single-Cell Analysis for Predicting Tumor Structure J. WANG¹

SUNY Albany, Albany, NY]

Track: Orthopaedic and Rehabilitation Engineering, Biomechanics OP-Thurs-I-16 - Room 202B

Skeletal Muscle Mechanics

Chairs: Silvia Blemker

8:00AM Invited

Opportunities in Biomedical Engineering for Solving Clinical Problems Associated with Skeletal Muscle Health S. BLEMKER¹ 'University of Virginia, Charlottesville, VA

P = Poster Session OP = Oral Presentation Q = Reviewer Choice Award

76 BMES 2014

8:15 AM

Brachioradialis Muscle Volume and Pinch Force Following Tendon Transfer

W. MURRAY¹, K. SAUL², M. JOHANSON³, G. GOLD⁴, AND V. HENTZ⁴ ¹Northwestern University, Chicago, IL, ²North Carolina State University, Raleigh, NC, ³VA Palo Alto Health Care System, Palo Alto, CA, ⁴Stanford University, Palo Alto, CA

8:30AM

Muscle Progenitor Cell Regenerative Capacity in the Torn Rotator Cuff G. Meyer¹, A. Farris², E. Sato³, J. Lane³, S. Ward³, and A. Engler³

¹Washington University in St. Louis, St. Louis, MO, ²The University of Kansas, Lawrence, KS, ³UCSD, La Jolla, CA

8:45AM

The Role of Dystrophins on Force Transmission in Skeletal Muscle C. Zhang' and Y. Gao'

¹Cornell University, Ithaca, NY

9:00AM

Spatial Distribution and Clustering of Fatty Infiltration Following Rotator Cuff Tear in the Elderly K SAUL¹ A SANTAGO² AND M VIDT²

N. SAUL', A. SANTAGU', AND M. VIDI' ¹North Carolina State University, Raleigh, NC, ²Wake Forest School of Medicine, Winston-Salem, NC

9:15AM

Eccentric Contractions in Gait Lead to Selective Muscle Degeneration in Duchenne Muscular Dystrophy X. HU¹, S. PEIRCE¹, AND S. BLEMKER¹

¹University of Virginia, Charlottesville, VA

Track: Biomedical Imaging and Optics, Translational Biomedical Engineering OP-Thurs-I-I7 - Room 203A

Applied Biomedical Imaging Techniques

Chairs: Debadyuti (Rana) Ghosh, Vikram Kodibagkar

8:00AM

Photoacoustic Monitoring to Stratify Photodynamic Therapy Response in Glioblastoma

S. MALLIDI¹, K. WATANABE², D. TIMERMAN¹, AND T. HASAN¹ ¹Harvard Medical School, Boston, MA, ²Canon USA Inc, Boston, MA

8:15 AM

Chemical Imaging in Assessment of Diseases: Fourier Transform Infrared Imaging Accurately Determines Cardiac Transplant Rejection S. TIWARI¹,², V. REDDY³, J. RAMAN³, AND R. BHARGAVA¹,²

¹University of Illinois at Urbana Champaign, Urbana, IL, ²Beckman Institute for Advanced Science and Technology, Urbana, IL, ³Rush University Medical Center, Chicago, IL

8:30AM

Laser Speckle Imaging To Detect Pulsatile Flow In The Teeth C. REGAN¹, B. YANG¹, K. MAYZEL¹, P. WILDER-SMITH¹, AND B. CHOI¹ ¹University of California, Irvine, Irvine, CA

8:45AM

In vivo Ultrasound and Functional Photoacoustic Imaging of the Development of Birth Defects

C. BAYER¹, B. WLODARCZYK¹, G. LUKE¹, R. FINNELL¹, AND S. EMELIANOV¹ ¹The University of Texas at Austin, Austin, TX

9:00AM

Dual-Modality Approach with Rod-Shaped Viral Nanoparticles for Targeting and Treatment of Thrombosis

A. $\dot{W}\text{en}^1,$ Y. $W\text{ang}^2,$ K. Jiang^1, A. Yang^1, H. Gao², X. Yu¹, D. Simon², and N. Steinmetz¹

¹Case Western Reserve University, Cleveland, OH, ²Case Cardiovascular Center, Cleveland, OH

9:15AM

Targeted Gold Nanoparticles For Contrast-Enhanced Detection of Breast Microcalcifications

L. COLE¹, T. VARGO-GOGOLA², AND R. ROEDER¹ ¹University of Notre Dame, Notre Dame, IN, ²Indiana University School of Medicine - South Bend, South Bend, IN

Track: Biomedical Engineering Education (BME) OP-Thurs-1-18 - Room 203B

Innovations in BME Education

Chairs: Naomi Chesler, Conrad Zapanta

8:00AM

Integrating Improvisational Acting and Inventive Problem Solving in Biomedical Engineering

J. ANTAKI¹ AND J. ZELL² ¹Carnegie Mellon University, Pittsburgh, PA, ²Steel City Improv, Pittsburgh, PA

8:15 AM

Incorporating Anatomical Modeling with 3D Printing into the Biomedical Curriculum

J. MACDONALD¹ AND S. SHARMA¹ ¹DeVry Univeristy, Chicago, IL

8:30AM

Ethics in Engineering Education K. Reyer¹, M. Cantwell¹, P. Lam¹, R. Rafferty¹, and K. Billiar¹

¹Worcester Polytechnic Institute, Worcester, MA

8:45AM

Immediate Feedback on Computer Code Improves Problem Success E. GREENWALD¹ AND J. SAUCERMAN¹ ¹University of Virginia, Charlottesville, VA

9:00AM

Unique Hospital and Patient-based Design Course Encompassing STEM Interactive Learning Activities

E. HARDY^{1,2,3}, W. NEWSTETTER², AND W. LAM^{1,2,3} ¹Emory University, Atlanta, GA, ²Georgia Institute of Technology, Atlanta, GA, ³Children's Healthcare of Atlanta, Atlanta, GA

9:15AM

"Boot Camp" Training In Cellular Bioengineering To Accelerate Research Immersion For REU Participants

D. SHREIBER¹, P. MOGHE¹, AND C. ROTH¹ ¹Rutgers, The State University of New Jersey, Piscataway, NJ

Track: Translational Biomedical Engineering, Device Technologies and Biomedical Robotics OP-Thurs-I-I9 - Ballroom A

Biomedical Products and Devices

Chairs: Mehdi Nikkhah, Robert Mauck

8:00AM Invited

Invention and Innovations with Aspirin: From Willow Bark to PolyAspirin

K. UHRICH¹

¹Rutgers, The State University of New Jersey, Piscataway, NJ

8:30AM

Field Validation of a Mobile Phone Microscope as a Screening Tool for Oral Cancer in India

A. SKANDARAJAH¹, C. REBER¹, P. GURPUR², A. JENNIFER³, G. PALADINI⁴, M. KOLLEGAL², L. LADIC⁵, AND D. FLETCHER¹

¹University of California, Berkeley, Berkeley, CA, ²Siemens, Bangalore, India, ³Christian Medical College, Vellore, India, ⁴Siemens, Princeton, NJ, ⁵Siemens, Tarrytown, NY

8:45AM

A Novel ROS Responsive Polymer Based Lab-on-a-Chip Sensor for Detection of Circulating Lipid Hydroperoxides

K. ARAN¹, J. PAREDES¹, A. ACHARYA¹, J. YAU¹, D. LIEPMANN¹, AND N. MURTHY¹ ¹University of California Berkeley, berkeley, CA

9:00AM

On-demand Biofilm-removal Urinary Catheter

V. LEVERING¹, Q. WANG¹, P. SHIVAPOOJA¹, X. ZHAO¹, AND G. LÓPEZ¹ ¹Duke University, Durham, NC

9:15AM

Cold Platelets Demonstrate Superior Clotting Properties Compared To Standard-Of-Care At Room Temperature

P. NAIR¹, K. REDDOCH¹, C. NGUYEN¹, H. PIDCOKE², A. CAP², AND A. RAMASUBRAMANIAN¹

¹University of Texas at San Antonio, San Antonio, TX, ²U.S Army, San Antonio, TX

Professional Integrity Workshop: Best Practices for Publishing Your Work (Authorship)

(Pre-Registration Required)

8:00am - 9:30am

Henry B. Gonzalez Convention Center, Room 102AB

BMES, Alpha Eta Mu Beta (AEMB) National BME Honor Society and the American Physiological Society (APS) are hosting a professional development workshop designed for early career students who plan to publish their research and want to learn best practices in publication ethics. The topic of this year's session is Authorship. Join us to discuss best practices for deciding authorship, revising authorship order, resolving authorship disputes, and utilizing available resources to publish your work with confidence. This session material is based upon work supported by the National Science Foundation to APS/BMES/SBE under Grant No. SES-1238368.

THURSDAY, October 23, 2014

2:00 PM - 3:30 PM PLATFORM SESSIONS - THURS - 2

Track: Tissue Engineering

OP-Thurs-2-I - Room 001A

Tissue Engineering of Models for Study of Disease and Drug Discovery

Chairs: Elizabeth Loboa, Roland Kaunas

2:00PM

Modeling Genetic Hypertrophic Cardiomyopathy *In Vitro* with Isogenic, Engineered Cardiac Micro-Tissues

N. HUEBSCH¹, M. MANDEGAR¹, P. LOSKILL², Z. MA², L. JUDGE¹, J. YOO¹, A. SHEEHAN¹, A. TRUONG¹, N. DEVISHAR², J. WANG², P. LIZARRAGA¹, P-L. SO¹, K. HEALY², AND B. CONKLIN¹

¹Gladstone Institute of Cardiovascular Disease, San Francisco, CA, ²University of California, Berkeley, Berkeley, CA

2:15PM

Molecular and Functional Roles of Cardiac Fibroblasts in Pressureoverload Induced Heart Failure

Y. LI¹, H. ASFOUR¹, L. MAO¹, H. ROCKMAN¹, AND N. BURSAC¹ ¹Duke University, Durham, NC

2:30PM

A Retinoic Acid-Enhanced Human Blood-Brain Barrier Coculture Model from Scalable Cell Sources

E. LIPPMANN¹, A. AL AHMAD¹, S. AZARIN¹, S. PALECEK¹, AND E. SHUSTA¹ ¹University of Wisconsin, Madison, WI

2:45PM

Bioengineered Livers as a Model to Study Cancer Metastasis

E. MORAN¹,², B. GASTON¹, P. BAPTISTA¹, J. SPARKS³, D. RUDERMAN⁴, S. MUMENTHALER⁴, P. MACKLIN⁴, AND S. SOKER¹,²

¹Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, ²Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, NC, ³Miami University, Oxford, NC, ⁴University of Southern California, Los Angeles, CA

3:00PM

An Osteochondral Microphysiological System To Study The Pathogenesis Of Osteoarthritis And The Effect Of Hormonal Exposure

R. GOTTARDI¹,², L. HANG¹, T. LOZITO¹, P. ALEXANDER¹, K. CLARK¹, E. SEFTON³, T. WOODRUFF³, AND R. TUAN¹

¹University of Pittsburgh, Pittsburgh, PA, ²Ri.MED Foundation, Palermo, Italy, ³Northwestern University, Chicago, IL

3:15PM

Long Term In Vitro Culture of Mature White Adipose Tissue

R. ABBOTT¹, R. WANG¹, K. BURKE¹, AND D. KAPLAN¹ ¹Tufts University, Medford, MA

P = Poster Session OP = Oral Presentation 2 = Reviewer Choice Award

78 BMES 2014

Track: Tissue Engineering, Biomaterials OP-Thurs-2-2 - Room 001B

Scaffolds and Surfaces for Tissue Engineering I

Chairs: Meng Deng, Craig Duvall

2:00PM

Microcryogels As Injectable 3-D Cellular Microniches For Site-directed And Augmented Cell Therapy Y. Du¹, W. LIU¹, AND Y. LI¹

¹Tsinghua University, Beijing, China, People's Republic of

2:15PM

Hydrogel-based, Microstructural Building Blocks for Fabricating Scaffolds that Support Organized Tissues Formation in 3D L-H. HAN¹, X. TONG¹, AND F. YANG¹,²

¹Stanford University School of Medicine, Stanford, CA, ²Stanford University, Stanford, CA

2:30PM

Generating an Off-the-Shelf *In Vivo* Cell Capture System on a Decellularized Biomaterial using Modified Antibodies for Venous Valve Replacement

D. ANDERSON¹, J. GLYNN¹, D. PAVCNIK¹, AND M. HINDS¹ ¹Oregon Health & Science University, Portland, OR

2:45PM

Gold Nanoparticle-Collagen Templates Enhance Stability and Cell Infiltration in an *In Vivo* Study

S. GRANT¹, J. ZHU², AND D. GRANT¹ ¹University of Missouri, Columbia, MO, ²EternoGen, LLC, Columbia, MO

3:00PM

PEGDA Microencapsulated Insulin-Secreting Cells Accelerate Wound Closure

A. AIJAZ¹, R. FAULKNOR¹, F. BERTHIAUME¹, AND R. OLABISI¹ ¹Rutgers, The State University of New Jersey, New Brunswick, NJ

3:15PM

Capture of VEGFR-expressing Stem Cells under Flow

R. SMITH JR.¹, M. KOOBATIAN¹, D. SWARTZ¹, AND S. ANDREADIS¹,² ¹State University of New York, University at Buffalo, Buffalo, NY, ²Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY

Track: Biomaterials OP-Thurs-2-3 - Room 006A

Therapeutic and Theranostic Biomaterials I

Chairs: Elizabeth Loboa, Smitha Rao

2:00PM

A Novel Thermoresponsive Polydiolcitrate for Transcatheter Arterial Embolization Therapy

J. YANG¹, S-K. LEE², M. NIEKRASZ², A. CHANG², B. SHAH², AND G. AMEER¹,³ ¹Northwestern University, Evanston, IL, ²University of Chicago, Chicago, IL, ³Feinberg School of Medicine, Chicago, IL

2:30PM

Silver Nanoparticle-Embedded Polymersome Nanocarriers for the Treatment of Antibiotic-Resistant Infections

B. GEILICH¹ AND T. WEBSTER¹ ¹Northeastern University, Boston, MA

2:45PM

Polyanhydride Nanoparticle Delivery Platform Enables Enhanced Killing of Filarial Worms

A. BINNEBOSE¹, R. MARTIN¹, S. HAUGHNEY¹, B. NARASIMHAN¹, AND B. BELLAIRE¹ 'lowa State University, Ames, IA

3:00PM

Dialysis-like Treatment of Sepsis Through Cleansing Pathogens from the Blood Stream using Functionalized Polysulfone Hollow Fibers

T. DIDAR¹, A. WATTERS¹, D. LESLIE¹, J. KANG¹, M. CARTWRIGHT¹, A. GRAVELINE¹, A. WATERHOUSE¹, M. SUPER¹, AND D. INGBER¹ ¹Wyss Institute at Harvard University, Boston, MA

3:15PM

Tunable Staged Release Of Therapeutics From Layer-By-Layer Coating With Clay Interlayer Barrier

J. MIN^{1,2}, R. BRAATZ¹, AND P. HAMMOND^{1,2} ¹MIT, Cambridge, MA, ²Koch Institute of Integrative Cancer Research, Cambridge, MA

Track: Biomaterials, Cellular and Molecular Bioengineering

OP-Thurs-2-4 - Room 006B

Biomaterials for Controlling Cell Environment I

Chairs: Mariah Hahn, Blanka Sharma

2:00PM

Magneto-Active Dynamic Screening for Drug Discovery A. LISELLA¹, A. EL HAJ¹, AND J. DOBSON²

¹Keele University, Stoke on Trent, United Kingdom, ²University of Florida, Gainesville, FL

2:15PM

A Mechanistic Investigation Of How A Decorin Mimic Controls Intimal Hyperplasia

R. SCOTT¹ AND A. PANITCH¹ ¹Purdue University, West Lafayette, IN

2:30PM

Spatiotemporal Control of Stem Cell Fate via Photoreversible Protein Patterning of Hydrogels

C. DEFOREST¹,² AND D. TIRRELL² ¹University of Washington, Seattle, WA, ²California Institute of Technology, Pasadena, CA

2:45PM

3D Spatially Organized PEG-based Hydrogels as an Aortic Valve Coculture Model to Study Valve Disease

D. PUPERI¹, L. BALAOING¹, J. WEST², AND J. GRANDE-ALLEN¹ ¹Rice University, Houston, TX, ²Duke University, Durham, NC

3:00PM

Spatiotemporal Delivery of Growth Factors to Hepatocytes via Polyelectrolyte Multilayers

C. LIN¹, K. BALLINGER¹, M. KIPPER¹, AND S. KHETANI¹ ¹Colorado State University, Fort Collins, CO

3:15PM

Modulating Sub-cellular Processing of Single Wall Carbon Nanotubes by Controlling Dispersing Agent B. HOLT¹, K. DAHL¹, AND M. ISLAM¹

¹Carnegie Mellon University, Pittsburgh, PA

Track: Drug Delivery, Tissue Engineering OP-Thurs-2-5 - Room 006C

Drug Delivery in Tissue Engineering I

Chairs: Anjelica Gonzalez, Rhima Coleman

2:00PM

Ultra-Thin Polymer Coatings for Sustained Localized RNA Interference to Improve Diabetic Wound Healing

S. CASTLEBERRY¹, B. ALMQUIST¹, AND P. HAMMOND¹ ¹Massachusetts Institute of Technology, Cambridge, MA

2:15PM

Controlled Release Through Physical Collagen Modification mediated by Collagen Mimetic Peptides M. URELLO', M. SULLIVAN', AND K. KIICK'

¹University of Delaware, Newark, DE

2:30PM

Controlled Release of TGF β Receptor II Inhibitor to Control Cardiac Fibrosis Z. FAN', M. FU', Z. LI', X. LI', Y. XU', AND J. GUAN'

¹The Ohio State University, Columbus, OH

2:45PM

Growth Factors Engineered for Super-affinity to the Extracellular Matrix Enhance Tissue Healing

M. MARTINO¹, P. BRIQUEZ², E. GUC², F. TORTELLI², W. KILARSKI², S. METZGER², J. RICE³, G. KUHN⁴, R. MULLER⁴, M. SWARTZ², AND J. HUBBELL² ¹Osaka University, Osaka, Japan, ²EPFL, Lausanne, Switzerland, ³Tennessee Tech University, Cookeville, TN, ⁴ETHZ, Zurich, Switzerland

3:00PM

Sustained Release and Bioactivity of Antibiotics from Keratin Hydrogels In Vitro and in a Porcine Wound Model

D. ROY^{1,2}, R. HALL³, L. BURNETT², S. TOMBLYN², R. CHRISTY¹, AND J. SAUL³ ¹U.S. Army Institute for Surgical Research, Fort Sam Houston, TX, ²KeraNetics, LLC, Winston-Salem, NC, ³Miami University, Oxford, OH

3:15PM

Local Delivery of Aspirin-Triggered Resolvin D1 for Inflammation Modulation in Regenerative Medicine C. POWELL¹ AND E. BOTCHWEY¹

¹Georgia Institute of Technology, Atlanta, GA

Track: Biomechanics, Cellular and Molecular Bioengineering

OP-Thurs-2-6 - Room 006D

Cell Biomechanics II

Chairs: Deborah Leckband, Jiro Nagatomi

2:00PM

Cyclic Stress-Relaxation Paradigm Causes Cell Stiffening H. BABAHOSSEINI¹, J. STROBL¹, AND M. AGAH¹

¹Virginia Tech, Blacksburg, VA

2:15PM

Mechanosensing of Shear Stress Requires VE-cadherin Tyrosine 658 D. CONWAY¹ AND M. SCHWARTZ²

¹Virginia Commonwealth University, Richmond, VA, ²Yale University, New Haven, VA

2:30PM

Progesterone Alters the Mechanobiology of Primary Human Cervical Fibroblasts

V. SHUKLA¹, M. SCHICKEL¹, D. KNISS¹, AND S. GHADIALI¹ ¹The Ohio State University. Columbus, OH

2:45PM

Activation of IGFI-RUNX2 Pathway Reveals Changes in Cellular Phenotype in Non-Syndromic Forms of Craniosynostosis. Z. AL-REKABI^{1, 2}, A. LEONARD¹, S. PARK², J. GUSTAFSON², C. CLARKE², M. CUNNINGHAM^{1,2}, AND N. SNIADECKI¹ ¹University of Washington, Seattle, WA, ²Seattle Children's Research Institute, Seattle, WA

3:00PM

Heterogeneity of Infarct Collagen Orientation Emerges In Silico Based on Long-range Cell Interaction

W. RICHARDSON¹, A. ROUILLARD², AND J. HOLMES¹

¹University of Virginia, Charlottesville, VA, ²Icahn School of Medicine at Mount Sinai, New York, NY

3:15PM

Mechanical Origins of Axial Rotation in Chick Embryos

Z. CHEN¹, Q. GUO², E. DAI¹, N. FORSCH¹, AND L. TABER¹ ¹Washington University in St. Louis, St. Louis, MO, ²Fuzhou University, Fuzhou, China, People's Republic of

Track: Cancer Technologies OP-Thurs-2-7 - Room 007A

Tumor Microenvironment I

Chairs: Konstantinos Konstantopoulos, Vassilios Sikavitsas

2:00PM Invited

The NCI's Provocative Questions Initiative: Program Overview and Evaluation Efforts

M. BERNY-LANG¹, J. LEE¹, AND E. GREENSPAN¹ ¹National Cancer Institute, NIH, Bethesda, MD

2:15PM

Suicide Gene-Engineered Stromal Cells Reveal a Dynamic Regulation of Cancer Metastasis

K. SHEN1, S. LUK1, J. ELMAN1, R. MURRAY1, M. YARMUSH1,2, AND B. PAREKKADAN1,3 ¹Harvard Medical School and Massachusetts General Hospital, Boston, MA, ²Rutgers University, Piscataway, NJ, ³Harvard Stem Cell Institute, Cambridge, MA

2:30PM

Macrophage-released TNF α and TGF β Synergistically Enhance Cancer Cell Migration Directedness via the Induction of MMP-1 in Cancer Cells

R. LI¹ AND R. KAMM¹ ¹Massachusetts Institute of Technology, Cambridge, MA

2:45PM

A 3D Microphysiological System of Tumor Tissue for Realistic Therapeutic Modeling

A. SOBRINO GREGORIO¹, D. PHAN¹, S. GEORGE², AND C. HUGHES¹,² ¹University of California, Irvine, Irvine, CA, ²The Edwards Lifesciences Center for Advanced Cardiovascular Technology, Irvine, CA

3:00PM

Speed Matters: Cadherin-II Expressing Cancer Cells Hijack Fibroblasts for High-speed Invasion

Z. GU^{1,2}, E. TONKOVA², Y-H. HSU³, S. ALEXANDER³, Z. HAN³, M-C. HUNG³, P. FRIEDL³, K. KONSTANTOPOULOS¹, AND M. BRENNER²

¹Johns Hopkins University, Baltimore, MD, ²Harvard Medical School, Boston, MA, ³The University of Texas MD Anderson Cancer Center, Houston, TX

3:15PM

Matrix Stiffening Primes Increased Permeability in Tumor Vasculature in Response to Pro-Tumorigenic Extracellular Cues

D. LAVALLEY¹, B. MASON¹, J. HUYNH¹, AND C. REINHART-KING¹ ¹Cornell University, Ithaca, NY

P = Poster Session **OP** = Oral Presentation = Reviewer Choice Award

Track: Cardiovascular Engineering OP-Thurs-2-8 - Room 007B

Hemodynamics and Vascular Mechanics II

Chairs: Shu Liu, B. Rita Alevriadou

2:00PM

Flow Alters Genome-wide DNA Methylation, Regulating Endothelial Ggene Expression and Atherosclerosis

J. DUNN¹, H. QIU¹, S. KIM¹, D. JJINGO², R. HOFFMAN¹, C. KIM¹, I. JANG¹, D. SON¹, D. KIM¹, C. PAN², Y. FAN², K. JORDAN², AND H. JO¹ ¹Georgia Institute of Technology & Emory University, Atlanta, GA, ²Georgia Institute of

Technology, Atlanta, GA

2:15PM

Atypical Mechanosensitive MicroRNA-712 Derived From Pre-

ribosomal RNA Induces Endothelial Inflammation and Atherosclerosis S. KUMAR¹, D. SON¹, W. TAKABE¹, C-W. NI¹, C. KIM¹, I. JANG¹, N. ALBERTS-GRILL¹, AND H. JO2

¹Emory University, Atlanta, GA, ²Georgia Tech and Emory University, Atlanta, GA

2:30PM

Association Between RV-PA Functional Phenotype and NT-proBNP in Pediatric Pulmonary Hypertension

V. KHEYFETS^{1,2}, J. DUNNING^{1,2}, U. TRUONG², D. IVY², K. HUNTER^{1,2}, AND R. SHANDAS^{1,2} ¹University of Colorado Denver, Aurora, CO, ²Children's Hospital Colorado, Aurora, CO

2:45PM

Effects of Age on the Mechanical Properties and Structural Characteristics of the Human Femoropopliteal Arteries

A. KAMENSKIY¹, I. PIPINOS¹, N. PHILLIPS¹, Y. DZENIS², AND J. MACTAGGART¹ ¹University of Nebraska Medical Center, Omaha, NE, ²University of Nebraska-Lincoln, Lincoln, NE

3:00PM

Artery Remodeling under Axial Twist in Three Day Organ Culture G. WANG^{1, 2}, A. VOORHEES¹, Y. XIAO¹, Z-L. JIANG², AND H-C. HAN^{1, 2} ¹University of Texas at San Antonio, San Antonio, TX, ²Shanghai Jiaotong University, Shanghai, China, People's Republic of

3:15PM

Structural Remodeling of the Bovine Aorta During Pregnancy S. WELLS¹, A. PROSTERMAN¹, A. MACKENZIE¹, AND C. VAN IDERSTINE¹ ¹Dalhousie University, Halifax, NS, Canada

Track: Cellular and Molecular Bioengineering -OP-Thurs-2-9 - Room 007C

Cell Adhesion and the Extracellular **Matrix Interactions**

Chairs: Michael Smith, Jennifer Munson

2:00PM

A High-Throughput Array to Assess Dynamic, Intracellular Signaling Responses to Biomaterial-Mediated Adhesive and Mechanical Cues S. SEIDLITS¹, B. PEÑALVER BERNABÉ², S. SHIN², L. BROADBELT², AND L. SHEA² ¹University of California Los Angeles, Los Angeles, CA, ²Northwestern University, Evanston, IL

2:15PM

Altered Biological Properties Result from Bond Breakage within Mechanically Stressed Fibronectin Fibers

B. HUBBARD¹, J. BUCZEK-THOMAS¹, M. NUGENT², AND M. SMITH¹ ¹Boston University, Boston, MA, ²University of Massachusetts, Lowell, Lowell, MA

2:30PM

Local ECM Alignment Directs Initial Cell Spreading To Promote Cell Migration In 3D

S. CAREY¹, Z. GOLDBLATT¹, AND C. REINHART-KING¹ ¹Cornell University, Ithaca, NY

2:45PM

Analysis of the Cytoskeleton and Mechanics of Migrating Cells in Engineered 3D Extracellular Matrix

C. CHOI^{1,2}, B. TRAPPMANN^{1,2}, S. ALIMPERTI^{1,2}, D-H. NGUYEN³, S. STAPLETON³, AND C. CHEN^{1,2}

¹Boston University, Boston, MA, ²Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, ³University of Pennsylvania, Philadelphia, PA

3:00PM

Fibronectin Mechanics and Signaling in Epithelial to Mesenchymal Transition

L. GRIGGS¹, M. ZHAO¹, R. MALIK¹, L. ELMORE¹, AND C. LEMMON¹ ¹Virginia Commonwealth University, Richmond, VA

3:15PM

Focal Adhesion Complex Activity is Important for the Maintenance of Chondrogenic Phenotypes H. SHIN¹, M. LEE¹, J. CHOUNG¹, AND J. SHIN¹

¹KAIST, Daejeon, Korea, Republic of

Track: Cellular and Molecular Bioengineering, Biomechanics

OP-Thurs-2-10 - Room 007D

Mechanotransduction II

Chairs: Alesha Castillo, Nathan Sniadecki

2:00PM

Primary Cilia Under Ultrasound

G. BUDHIRAJA¹ AND A. SUBRAMANIAN¹ ¹University of Nebraska, Lincoln, NE

2:15PM

Molecular Targeting and Localized Mechanochemical Stimulation of ErbB Receptors with Fe-Au Nanorods

D. KILINC¹, A. LESNIAK¹, S. RASHDAN², D. GANDHI¹, A. BLASIAK¹, P. FANNIN³, A. VON KRIEGSHEIM¹, W. KOLCH¹, AND G. LEE¹ ¹University College Dublin, Dublin, Ireland, ²University of Bahrain, Manama, Bahrain, ³Trinity College Dublin, Dublin, Ireland

2:30PM

Sideways Microscopy for Viewing Nuclear Deformation

K. BEICKER¹, M. FALVO¹, E. O'BRIEN III¹, AND R. SUPERFINE¹ ¹University of North Carolina at Chapel Hill, Chapel Hill, NC

2:45PM

Endothelial Cell Aging Elevates Traction Forces and Permeability

T. CHEUNG¹, J. YAN¹, J. HUANG¹, F. YUAN¹, AND G. TRUSKEY¹ ¹Duke University, Durham, NC

3:00PM

Investigation of T Cell Mechanosensing Using Microfabricated Elastomer Pillars

W. JIN¹, K. BASHOUR¹, AND L. KAM¹ ¹Columbia University, New York, NY

3:15PM

The Effects Of Intermittent And Incrementally Increasing Strain Amplitude Cyclic Stretching On Collagen Production In Fibrin-Based Engineered Cardiovascular Tissues

J. SCHMIDT¹ AND R. TRANQUILLO¹ ¹University of Minnesota, Minneapolis, MN

Track: Nano to Micro Technologies

OP-Thurs-2-II - Room 008A

BioMEMS II

Chairs: Rafael Davalos, Erkin Seker

2:00PM

Track Etched Magnetic Micropores to Efficiently Sort Rare Pathogens from Large Volume, Unprocessed Clinical and Environmental Samples M. MULUNEH¹, W. SHANG¹, AND D. ISSADORE¹ ¹University of Pennsylvania, Philadelphia, PA

2:15PM

Multiplexed Free-standing Nanowire Transistor Bioprobe for Intracellular Recording: A General Fabrication Strategy

Q. QING¹, L. XU², Z. JIANG², AND L. MAI³ ¹Arizona State University, Tempe, AZ, ²Harvard University, Cambridge, MA, ³Wuhan University of Technology, Wuhan, China, People's Republic of

2:30PM

A Microdevice For Studying Intercellular Electromechanical Transduction In Adult Cardiac Myocytes X. ZHANG¹ AND Y. ZHAO¹ ¹Ohio State University, Columbus, OH

2:45PM

Measuring the Growth Rate of Cancerous Human Breast Cells E. CORBIN¹ AND R. BASHIR¹

¹University of Illinois Urbana-Champaign, Urbana, IL

3:00PM

Microfluidic Blood Sorting For Improved Blood Quality Over Prolonged Storage

S. HUANG¹, H. HOU¹, T. KANIAS², J. SERTORIO², H. CHEN³, M. GLADWIN², AND J. HAN¹ ¹*MIT, Cambridge, MA*, ²*University of Pittsburgh, Pittsburgh, PA*, ³*Harvard School of Public Health, Boston, MA*

3:15PM

A Cell-based Fluid Shear Sensor S. VARMA¹ AND J. VOLDMAN¹

¹Massachusetts Institute of Technology, Cambridge, MA

Track: Nano to Micro Technologies, Cellular and Molecular Bioengineering OP-Thurs-2-12 - Room 008B

Microfluidic Platforms II

Chairs: John Slater, Jungkyu (Jay) Kim

2:00PM

Vortex-assist Electroporation for Combinatorial Drug Screenings D. VICKERS¹ AND S. HUR¹

¹Rowland Institute at Harvard University, Cambridge, MA

2:15PM

Aqueous Two-Phase System-Mediated Antibody Micropatterning for Multiplex Protein Biomarker Detection

J. FRAMPTON^{1,2}, J. WHITE², A. SIMON², M. TSUEI², S. PACZESNY³, AND S. TAKAYAMA² ¹Dalhousie University, Halifax, NS, Canada, ²University of Michigan, Ann Arbor, MI, ³Indiana University, Indianapolis, IN

2:30PM

A Microfluidic Virus Capture and Sensing Device for HIV Viral Load Measurements

G. DAMHORST¹, J. KOOIMAN¹, R. CHAVES¹, M. SOBIERAJ¹, T. GHONGE¹, AND R. BASHIR¹

¹University of Illinois at Urbana-Champaign, Urbana, IL

2:45PM

KS-Detect: A Solar-Powered Smartphone-Based System for Diagnosing Kaposi's Sarcoma in Resource-Limited Settings

L. JIANG¹, A. GARDNER¹, Z. LU¹, G. AKAR², E. CESARMAN², AND D. ERICKSON¹ ¹Cornell University, Ithaca, NY, ²Weill Cornell Medical College, New York, NY

3:00PM

Cell Affinity Chromatography And Electrical Measurements To Detect Cancer Cells In Microfluidics

M. ISLAM¹, M. BELLAH¹, Y-T. KIM¹, AND S. IQBAL¹ ¹University of Texas at Arlington, Arlington, TX

3:15PM

Microfluidic Protein Encapsulation in Monodisperse Drug-based Polymer Microspheres

W. YU¹, M. ZHENG¹, J. ZAHN¹, AND K. UHRICH¹ ¹Rutgers University, Piscataway, NJ

Track: Device Technologies and Biomedical Robotics, Cardiovascular Engineering

OP-Thurs-2-13 - Room 201

Cardiovascular Devices: Intelligent Design Using Computations and Experiments

Chairs: Keefe Manning, James Antaki

2:00PM

The Long and Strange Trip from Bench to Bedside: Lessons Learned from the Pediaflow Magnetically Levitated Rotodynamic Blood Pump J. ANTAKI¹

¹Carnegie Mellon University, Pittsburgh, PA

2:30PM

Cardiovascular Devices: From the Bench and Computer to the Bedside/Bassinet A. YOGANATHAN¹ 'Georgia Institute of Technology, Atlanta, GA

2:45PM

Cardiovascular Devices: From the Bench and Computer to the Bedside/Bassinet A. YOGANATHAN¹ 'Georaia Institute of Technology, Atlanta, GA

Georgia institute or recritiology, Atlanta

3:00PM

Design Methodology for Blood Pumps

K. MANNING^{1,2}, C. SIEDLECK^{1,2}, S. DEUTSCH¹, AND G. ROSENBERG^{1,2} ¹The Pennsylvania State University, University Park, PA, ²Penn State Hershey Medical Center, Hershey, PA

3:15PM

CFD-Based Multi-Objective Modeling of Artificial Lung Devices J. ZHANG¹, Z. CHEN¹, B. GRIFFITH¹, AND Z. WU¹

¹University of Maryland School of Medicine, Baltimore, MD

P = Poster Session
 OP = Oral Presentation
 2 = Reviewer Choice Award

Track: Biomechanics, Orthopaedic and Rehabilitation Engineering OP-Thurs-2-14 - Room 103B

Spine Biomechanics

Chairs: John Cotton, Teja Guda

2:00PM

Biomechanical Effects of Age-related Changes in Cartilaginous Endplates Morphology on Lumbar Discs M. HUSSAIN¹ AND C. DEGEER¹ ¹Logan University, Chesterfield, MO

2:15PM

Characterization of Cortical Bone Thickness Changes in the Thoracic Skeleton with Age and Gender

S. LYNCH¹, A. WEAVER¹, AND J. STITZEL¹ ¹Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Winston-Salem, NC

2:30PM

Laxity Of The Lumbar Spine

N. BATTAGLIA¹, M. MAHFOUZ^{1,2}, R. KOMISTEK^{1,2}, AND C. CARR¹ ¹University of Tennessee, Knoxville, TN, ²Institute of Biomedical Engineering, Knoxville, TN

2:45PM

A Finite Element Model of *In Vivo* Lumbar Facet Capsular Ligament Motion Based on Fluoroscopic Data from Healthy Subjects A. CLAESON¹ AND V. BAROCAS¹

¹University of Minnesota, Minneapolis, MN

3:00PM

Effect Of Implant Design And Material On Subsidence Following Dynamic Loading of Intervertebral Devices

A. VALDEVIT¹, P. ULLRICH², M. GALLAGHER³, AND J. SCHNEIDER³ ¹Stevens Institute of Technology, Hoboken, NJ, ²NeuroSpine Center of Wisconsin, Appleton, WI, ³Titan Spine, LLC, Mequon, WI

3:15PM

Machine Learning Predicts Degenerative Pathology

N. BATTAGLIA¹, M. MAHFOUZ¹,², R. KOMISTEK¹,², AND C. CARR¹ ¹University of Tennessee, Knoxville, TN, ²Institute of Biomedical Engineering, Knoxville, TN

Track: Bioinformatics, Computational and Systems Biology

OP-Thurs-2-15 - Room 202A

Multiscale Modeling

Chairs: Stacey Finley, Heather Hayenga

3:00PM Invited

Agent Based Model for Predicting Angiogenic Sprout Frequency and Location in 3D Culture J. WALPOLE¹, J. CHAPPELL², J. CLUCERU², F. MAC GABHANN³, V. BAUTCH², AND S. PEIRCE¹

¹University of Virginia, Charlottesville, VA, ²University of North Carolina Chapel Hill, Chapel Hill, NC, ³Johns Hopkins University, Baltimore, MD

2:30PM

A Whole-body PKPD Model for Multimodal Reversal of Cardiotoxicity by Intravenous Lipid Dispersions B. AKPA¹

¹University of Illinois at Chicago, Chicago, IL

2:45PM

Multiscale Model of Lung Inflammation

R. PIDAPARTI¹, R. HEISE², R. COOPER², T. ROLLE², AND A. REYNOLDS² ¹University of Georgia, Athens, GA, ²Virginia Commonwealth University, Richmond, VA

Modeling Blood Flow Control in the Kidney

A. FORD VERSYPT¹, J. ARCIERO², L. ELLWEIN³, E. MAKRIDES⁴, AND A. LAYTON⁵ ¹Oklahoma State University, Stillwater, OK, ²Indiana University-Purdue University Indianapolis, Indianapolis, IN, ⁹Virginia Commonwealth University, Richmond, VA, ⁴Brown University, Providence, RI, ⁵Duke University, Durham, NC

3:15PM

Comprehensive Computational Analysis of Tissue Remodeling in the Rat Brain After Traumatic Injury

K. GRAMA¹, M. MEGJHAN¹, Y. LU¹, B. ROYSAM¹, J. REDELL², P. DASH², AND D. MARIC³ ¹University of Houston, Houston, TX, ²University of Texas Health Science Center at Houston, Houston, TX, ³National Institute of Neurological Disorders and Stroke, Bethesda, MD

Track: Orthopaedic and Rehabilitation Engineering, Biomedical Imaging and Optics OP-Thurs-2-16 - Room 202B

Musculoskeletal Imaging

Chairs: Andrew Anderson , Jeff Weiss

3:00PM Invited

3D Dual Echo Steady State (DESS) MRI Accurately Quantifies Acetabular Cartilage Thickness

C. Abraham¹, N. Bangerter², L. McGavin¹, C. Peters¹, A. Drew¹, C. Hanrahan¹, and A. Anderson¹

¹University of Utah, Salt Lake City, UT, ²Brigham Young University, Provo, UT

2:15PM

Impaired Muscular Loading During Post-natal Growth Leads to Altered Structure of the Developing Murine Hip

C. FORD¹, S. THOMOPOULOS¹, AND M. KILLIAN¹ "Washington University, St Louis, MO

2:30PM

Near Infrared Optical Imaging of Bone Cell Activity and Skeletal Drug Delivery

K. KOZLOFF¹

¹University of Michigan, Ann Arbor, MI

2:45PM

Can Extended Field-of-View Ultrasound Imaging Be Used to Measure Differences in Upper Extremity Fascicle Lengths?

C. Nelson^{1,2}, J. Dewald¹, and W. Murray^{1,2,3}

 1 Northwestern University, Chicago, IL, 2 Rehabilitation Institute of Chicago, Chicago, IL, 3 Edward Hines, Jr. VA Hospital, Hines, IL

3:00PM

Use of Portable Ultrasound to Measure Dynamic Motion of Cervical Spine *Ex-Vivo* and *In-Vivo*

M. ZHENG¹,², A. MASOUDI², D. BUCKLAND²,³, T. SZABO¹, AND B. SNYDER²,⁴ ¹Boston University, Boston, MA, ²Beth Israel Deaconess Medical Center, Boston, MA, ³Massachusetts Institute of Technology, Cambridge, MA, ⁴Boston Children's Hospital, Boston, MA

3:15PM

Contrast-enhanced Characterization of Intervertebral Disc Degeneration using Equilibrium Partitioning of an Ionic Contrast Agent Micro Computed Tomography (EPIC)-µCT

T. MAERZ¹, K. KRISTOF¹, M. NEWTON¹, O. MOTOVYLYAK¹, J. FISCHGRUND¹, D. PAKR¹, AND K. BAKER¹

¹William Beaumont Hospital, Royal Oak, MI

Track: Biomedical Imaging and Optics OP-Thurs-2-17 - Room 203A

Molecular Probes I

Chairs: Aaron Mohs, Efstathios Karathanasis

2:00PM

Stabilized Paramagnetic Porousliposomes Z. CHENG¹, C. ASPINWALL², AND A. TSOURKAS¹ ¹University of Pennsylvania, philadelphia, PA, ²University of Arizona, Tucson, AZ

2:15PM

Genetically Encoded MRI Sensor of ATP

G. SUN¹, A. MUKHERJEE², X. ZHANG², D. SCHAFFER¹, AND M. SHAPIRO² ¹University of California, Berkeley, Berkeley, CA, ²California Institute of Technology, Pasadena, CA

2:30PM

Single-Molecule Tracking Using Different Fluorescent Labels C. LIU¹, Y-L. LIU¹, E. PERILLO¹, Q. ZHUANG¹, AND H-C. YEH¹ ¹University of Texas at Austin, Austin, TX

2:45PM

Development of ROS Ratiometic Optical Nanoprobes for *In Vivo* Imaging of Wound Inflammation J. ZHOU¹, H. WENG¹, A. NAIR¹, W. HU², AND L. TANG¹

¹University of Texas at Arlington, Arlington, TX, ²Progenitec, Arlington, TX

3:00PM

An Activatable Nanoparticle Probe for Molecular Imaging of Protease Activity by Dual Energy CT

J. ASHTON¹, C. BADEA², AND J. WEST¹ ¹Duke University, Durham, NC, ²Duke University Medical Center, Durham, NC

3:15PM

An EDB Fibronectin Specific Peptide Probe for Molecular Imaging of Cancer EMT

Z. HAN¹, M. GUJRATI¹, Z. ZHOU¹, X. SHI¹, AND Z. LU¹ ¹Case Western Reserve University, Cleveland, OH

Track: Biomedical Engineering Education (BME) OP-Thurs-2-18 - Room 203B

Teaching in a Flipped Classroom

Chairs: Matthew Glucksberg, Donald Gaver

2:00PM

Integration of Video Demonstrations into an Undergraduate Tissue Culture Laboratory Course A. SATERBAK¹, B. GHOSN¹, AND M. WETTERGREEN¹ *'Rice University, Houston, TX*

2:15PM

Implementation and Assessment of Flipped Classroom Paradigm in Biomedical Engineering Course

J-M. MAAREK¹, A. AYIOTIS¹, AND G. RAGUSA¹

¹University of Southern California, Los Angeles, CA

2:30PM

Expected and Unexpected Barriers to Learning in a Flipped Biotransport Course

S. WILLIAMS-DUNCAN¹ AND B. HELMKE¹ ¹University of Virginia, Charlottesville, VA

2:45PM

Efficacy of Simple, Flipped Classroom Techniques in Biomedical Engineering Education: Comparative Analysis of Traditional and Flipped Biofluid Mechanics Course

¹University at Buffalo, State University of New York, Buffalo, NY

SPECIAL SESSION

2:00 PM – 6:00 PM *Room 004*

BMES-NSF Special Session on Research in Biomedical Engineering and Grant Writing

(Pre-Registration Required)

BMES and the National Science Foundation (NSF) will convene a special session focusing on innovative research in biomedical engineering and grant writing. The session will bring together NSF Bioengineering and Engineering Healthcare grantees, young investigators, junior and senior faculty, post-doctoral fellows and graduate students for idea exchange and networking related to conducting and funding cutting-edge research in BME. The session will showcase NSF funded research and researchers, foster collaboration and idea exchange, familiarize participants with NSF funding mechanisms, and provide strategies for preparing competitive grant proposals, in particular, NSF CAREER grant applications. The research areas where the NSF Biomedical Engineering Program supports fundamental and transformative research will also be discussed. Participants at all levels will gain an increased awareness of NSF funded research, a better understanding of NSF funding opportunities and how to prepare successful grant applications, and a chance to establish new relationships leading to future collaborations. This material is based upon work supported by the National Science Foundation under Grant No. CBET - 1444074.

SPECIAL SESSION 2:00 PM - 3:30 PM

Room 204A

Overcoming Challenges and Obstacles for Clinical Translation: From Bench to Bedside

The panel session will cover a broad range of issues related to translating research findings to the clinic. The four panelists are at different stages of the process and have different approaches to addressing clinical unmet needs. Each panelist will describe their experiences and decision making processes to stimulate discussion with the audience regarding strategies on how to overcome barriers for translation.

PANELISTS:

ED DAMIANO (BOSTON UNIVERSITY)

"A Bionic Pancreas for Type I Diabetes Management"

Inspired by his son's diabetes, Dr. Damiano has developed the world's first fully autonomous bihormonal bionic pancreas, which is currently in clinical trials. Damiano hopes to complete clinical trials by the end of 2016 and submit the device for FDA approval by 2017.

MAURIS N DESILVA (NAVAL MEDICAL RESEARCH UNIT SAN ANTONIO) "Novel Strategies for Prevention of Infections Post Cranioplasty"

Dr. DeSilvays research focuses on novel prophylactic strategies for postoperative infections following cranioplasty to treat traumatic head injuries such as those seen in the recent conflicts in Iraq and Afghanistan.

CATHERINE KLAPPERICH (BOSTON UNIVERSITY) "Low Cost Diagnostics for Cancer and Infectious

Disease"Dr. Klapperich has developed several technologies for minimally instrumented diagnostics. Her technology is the basis for a new startup company Micro Analysis Integration (Los Angeles, CA).

CHRISTINE SCHMIDT (UNIVERSITY OF FLORIDA)

"Regenerating Nerve Tissue and Managing Scar Tissue in Wound Healing"

Dr. Schmidt's development of decellularized nerve tissue (licensed and utilized in AxoGen (Alachua, FL) Inc.'s AVANCE[™] nerve graft) has impacted thousands of patients who suffer from peripheral nerve injuries. Dr. Schmidt's technology is also the basis for a start-up company Alafair Biosciences (Austin,TX) that develops cross-linked polysaccharide hydrogel films to address postsurgical adhesions.

Sponsored by

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

4:30PM - 6:00PM PLATFORM SESSIONS Thurs-3 2014 OCTOBER 23 THURSDAY

THURSDAY, October 23, 2014

4:30 PM - 6:00 PM PLATFORM SESSIONS - THURS - 3

Track: Tissue Engineering, Biomaterials OP-Thurs-3-1 - Room 001A

Hepatic, Pancreatic, Digestive and Renal Tissue Engineering

Chairs: Salman Khetani, Sundararajan Madihally

4:30PM

Encapsulation of Beta Cells Within Ligand Functionalized Scaffolds Improve Insulin Secretion Function

S. KIZILEL¹, T. BAL¹, AND G. CINAY¹ ¹KOC University, Istanbul, Turkey

4:45PM

CD31 Antibody Conjugation Improves Re-endothelialization of Acellular Kidney Scaffolds for Whole Organ Engineering

I. K0¹, M. ABOLBASHARI¹, J. HULING¹, J. ZAMBON¹, C. KIM¹, G. ORLANDO¹, M. MORADI¹, T. ABOUSHWAREB¹, J. JACKSON¹, A. ATALA¹, AND J. YOO¹ ¹Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC

5:00PM

Long Term Co-culture Strategies for Primary Hepatocytes and Liver Sinusoidal Endothelial Cells

S. BALE¹, I. GOLBERG¹, R. JINDAL¹, W. MCCARTY¹, M. LUITJE¹, M. HEGDE¹, A. BHUSHAN¹, O. USTA¹, AND M. YARMUSH¹

¹Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Burns Hospital, Boston, MA

5:15PM

Dynamic Interplay of Flow and Collagen Stabilizes Primary Hepatocytes in a Microfluidic Platform

A. BHUSHAN^{1,2}, M. HEGDE^{1,2}, R. JINDAL^{1,2}, S. BALE^{1,2}, W. MCCARTY^{1,2}, I. GOLDBERG¹, B. USTA^{1,2}, AND M. YARMUSH^{1,2}

¹Massachusetts General Hospital, Boston, MA, ²Harvard Medical School, Boston, MA

5:30PM

A 3D Microfluidic Human Liver-on-a-chip as a Physiological Model of Liver Acinus

A. BHUSHAN^{1,2}, R. JINDAL^{1,2}, L. PRODANOV^{1,2}, S. BALE^{1,2}, M. HEGDE^{1,2}, W. MCCARTY^{1,2}, I. GOLDBERG¹, B. USTA^{1,2}, AND M. YARMUSH^{1,2} ¹Massachusetts General Hospital, Boston, MA, ²Harvard Medical School, Boston, MA

5:45PM

A Biomimetic PEG Hydrogel to Create Liver-Specific Vasculature and Evaluate Hepatocyte Bioactivity

H. BEARAT¹, S. HIGBEE², AND J. WEST¹ ¹Duke University, Durham, NC, ²Rice University, Houston, TX

Track: Tissue Engineering, Biomaterials OP-Thurs-3-2 - Room 001B

Scaffolds and Surfaces for Tissue Engineering II

Chairs: Joseph Freeman, Edward Botchwey

4:30PM

Micro-Patterning Directional ECM Cues in Hydrogel-based Scaffolds for Cardiac Tissue Engineering Q. JALLERAT¹ AND A. FEINBERG¹ ¹Carnegie Mellon University, Pittsburgh, PA

4:45PM

Towards Controlling Chondrogenesis using Novel Thermo-Sensitive Hydrogels

O. BARUTI¹, L. BONASSAR², AND J. MENDENHALL¹

¹Morehouse College, Atlanta, GA, ²Cornell University, Ithaca, NY

5:00PM

Development of a Hyaluronic Acid-Laminin Hydrogel to Increase Neural Stem Cell Response to SDF-I α

C. ADDINGTON¹, C. MILLAR-HASKELL¹, J. HEFFERNAN¹, R. SIRIANNI², AND S. STABENFELDT¹

¹Arizona State University, Tempe, AZ, ²St. Joseph's Hospital and Medical Center, Phoenix, AZ

5:15PM

Poly(thioketal) polymers and their use in the formation of hydrophobic and hydrophilic cell-degradable tissue engineering scaffolds

J. MARTIN¹, M. GUPTA¹, J. PAGE¹, F. YU¹, J. DAVIDSON¹, S. GUELCHER¹, AND C. DUVALL¹

¹Vanderbilt University, Nashville, TN

5:30PM

Fabrication Of Poly(ϵ -caprolactone) Scaffolds With Nanofibrous Chitosan Networks

X. JING^{1,2}, T. CORDIE^{1,3}, M. SALICK^{1,4}, AND L-S. TURNG^{1,2}

¹Wisconsin Institutes for Discovery, University of Wisconsin, Madison, WI, ²Department of Mechanical Engineering, University of Wisconsin, Madison, WI, ³Department of Biomedical Engineering, University of Wisconsin, Madison, WI, ⁴Department of Engineering Physics, University of Wisconsin, Madison, WI

5:45PM

Synthesis and Cell Attachment Evaluation of Hybrid Materials with Peptide-Synthetic Polymer-Silica

Y. HIRANO¹, A. HATTORI¹, A. TERADA¹, AND S. FUJII² ¹Kansai University, Suita, Japan, ²Osaka Institute of Technology, Osaka, Japan

Track: Biomaterials OP-Thurs-3-3 - Room 006A

Therapeutic and Theranostic Biomaterials II

Chairs: Srivatsan Kidambi, Aaron Baker

4:30PM

Engineering a Multipurpose "Virus Trap and Safety Net" Microbicide S. ANIAGYEI¹ AND J. STEINBACH¹

¹University of Louisville, Louisville, KY

5:00PM

Syndesomes-Based Therapeutic for Enhanced Wound Healing in Diabetic Mice

S. DAS¹, G. SINGH¹, M. MARTINEZ¹, A. DUNN¹, AND A. BAKER¹ ¹University of Texas, Austin, Austin, TX

5:15PM

Photo-Carbon Monoxide Releasing Molecules within Electrospun Meshes for Engineering Vascular Grafts

E. MICHAEL¹, N. ABEYRATHNA¹, K. BIRTHARE¹, Y. LIAO¹, AND C. BASHUR¹ ¹Florida Institue of Technology, Melbourne, FL

5:30PM

Incorporation of the Anti-Cancer Agent Tannic Acid Into Biomaterials Used For Breast Reconstruction

H. SHAH¹, J. PARK¹, B. INSKEEP¹, T. NGOBILI¹, K. BURG¹, AND B. BOOTH¹ ¹Clemson University, Clemson, SC

5:45PM

Multifunctional Unimolecular Micelles Loaded With the Anti-cancer Drug Aminoflavone for Triple Negative Breast Cancer Therapy G. CHEN¹, A. BRINKMAN²,³, N. SHERER², W. XU²,³, AND S. GONG¹,⁴

¹Materials Science Program and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, ²McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, ³Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Madison, WI, ⁴Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI

Track: Biomaterials, Cellular and Molecular Bioengineering OP-Thurs-3-4 - Room 006B

Biomaterials for Controlling Cell Environment II

Chairs: Janet Zoldan, Meng Deng

4:30PM

Interplay of Material Stiffness and Protein Tethering in Mechanically Based Differentiation

A. ENGLER¹,²

¹UC San Diego, La Jolla, CA, ²Sanford Consortium for Regenerative Medicine, La Jolla, CA

4:45PM

Dynamic Modulation Of Myofibroblast/Osteoblast Differentiation And Biomechanical Remodeling By Valve Interstitial Cells By Initial Tissue Stiffness

B. DUAN¹, Z. YIN², L. HOCKADAY¹, R. MAGIN², AND J. BUTCHER¹ ¹Cornell University, Ithaca, NY, ²University of Illinois at Chicago, Chicago, IL

5:00PM

Physical Stabilization for the Viable Preservation of Whole Blood

K. Wong¹, R. Sandlin¹, T. Carey¹, A. Khankhel¹, A. Shank¹, J. Walsh¹, D. Irimia¹, S. Maheswaran¹, D. Haber¹, S. Stott¹, and M. Toner¹

¹Massachusetts General Hospital, Harvard Medical School, Charlestown, MA

5:15PM

Characterization of Mechanical/Chemical Properties of Calcium Responsive Composite Hydrogels and Assessment of Astrocytic Response

C. MCKAY1, C. JOHNSON1, R. POMRENKE1, N. SCHAUB1, E. DESIMONE1, J. MCLANE1, L. LIGON1, AND R. GILBERT1

¹Rensselaer Polytechnic Institute, Troy, NY

5:30PM

Engineered Fibrillar Microenvironments for the Study of Mesenchymal Stem Cell Mechanosensing

B. BAKER¹, B. TRAPPMANN¹, A. NAIR², I. KIM², J. BURDICK², V. SHENOY², AND C. CHEN¹ ¹Boston University, Boston, MA, ²University of Pennsylvania, Philadelphia, PA

5:45PM

Dynamic Photo-Tunable Hydrogels for Temporal Control of Stiffness R. STOWERS¹ AND L. SUGGS¹

¹University of Texas at Austin, Austin, TX

OP-Thurs-3-5 - Room 006C Drug Delivery in Tissue Engineering II

Track: Drug Delivery, Tissue Engineering

Chairs: Piyush Koria, Joel D Bumgardner

4:30PM

Modeling Local Drug Delivery Near Orthopaedic Implants

M. GIERS¹, R. MCLEMORE², A. MCLAREN², AND M. CAPLAN¹ ¹Arizona State University, Tempe, AZ, ²Banner Good Samaritan Medical Center, Phoenix, AZ

4:45PM

Ultrasonic and Physical Characterizations of Acoustically Responsive Scaffolds

A. MONCION¹, K. ARLOTTA¹, O. KRIPFGANS¹, P. CARSON¹, J. FOWLKES¹, AND M. FABIILLI¹ ¹University of Michigan, Ann Arbor, MI

.

5:00PM

Synthesis of Cell Penetrating Peptides (CPPs) for Drug Delivery Applications G-W. JIN¹, F. GHASEMI TAHRIR¹, W. MA¹, G. CIDONIO¹, AND W. SUH¹

¹Temple University, Philadelphia, PA

5:15PM

Growth Factor Delivery Through Synthetic Fibrin-Mimetic Matrix Promotes Wound Healing

P. BRIQUE2¹, M. MARTINO², AND J. HUBBELL¹ ¹Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, ²Osaka University, Osaka, Japan

5:30PM

Long Term Doxycyccline Release to Prevent Infection and MMP Mediated Cellular Invasion in Implantable Biomaterials.

E. RIVERA-DELGADO¹ AND H. VON RECUM¹ ¹Case Western Reserve University, Cleveland, OH

5:45PM

Delivery of siRNA from Fibrin Hydrogels for mRNA Knockdown of the BMP-2 Antagonist Noggin

C. KOWALCZEWSKI¹,² AND J. SAUL¹

¹Miami University, Oxford, OH, ²Virginia Tech-Wake Forest University, Winston-Salem, NC

Track: Biomechanics, Cardiovascular Engineering OP-Thurs-3-6 - Room 006D

Heart Valve Biomechanics

Chairs: Jiro Nagatomi, Yi Hong

4:30PM

Quantification and Simulation of the Mechanical Roles of Collagen and Elastin in Mitral Valve Leaflets

W. ZHANG¹, C. CARRUTHERS², J. LIAO³, AND M. SACKS¹

 $^{\rm 1}$ University of Texas at Austin, Austin, TX, $^{\rm 2}$ Medtronics, Pittsburgh, PA, $^{\rm 3}$ Mississippi State University, Starkville, MS

4:45PM

Biomechanical Analysis of Transcatheter Valve Migration in Patient-Specific Models

M. BIANCHI¹, T. CLAIBORNE¹, G. MAROM¹, R. GHOSH¹, D. BLUESTEIN², M. POON³, M. MUSANI⁴, E. FELDMANN⁴, L. GRUBERG⁴, H. FERNANDEZ⁴, AND J. TAYLOR JR.⁴ ¹Stony Brook University, StonyBrook, NY, ²Stony Brook University, Stony Brook, NY, ³Stony Brook Medicine, StonyBrook, NY, ⁴Stony Brook Medicine, Stony Brook, NY

Bending Properties Of Porcine Mitral, Tricuspid, Aortic, And Pulmonary Valve Leaflets

B. BRAZILE¹, B. WANG¹, G. WANG¹, R. BERTUCCI¹, R. PRABHU¹, S. PATNAIK¹, J. BUTLER¹, A. CLAUDE¹, E. BRINKMAN-FERGUSON¹, L. WILLIAMS¹, AND J. LIAO¹ 'Mississippi State University, Mississippi State, MS

5:15PM

An Inverse Modeling-Based Diagnostic Tool for Heart Valves Leaflets Biomechanical Properties

A. AGGARWAL¹ AND M. SACKS¹ ¹University of Texas at Austin, Austin, TX

5:30PM

Image-based Immersed Boundary/Finite Element Model of the Human Mitral Valve

X. MA¹, H. GAO¹, N. QI², C. BERRY¹, B. GRIFFITH³,⁴, AND X. LUO¹ ¹University of Glasgow, Glasgow, United Kingdom, ²University of Glasgow, glasgow, United Kingdom, ³University of North Carolina at Chapel Hill, Chapel Hill, NC, ⁴University of North Carolina School of Medicine, Chapel Hill, NC

5:45PM

Turbulent Eddy Properties from CFD and Hemolysis Re-examined M. OZTURK¹, E. O'REAR III¹, AND D. PAPAVASSILIOU¹

¹University of Oklahoma, Norman, OK

Track: Cancer Technologies OP-Thurs-3-7 - Room 007A

Tumor Microenvironment II

Chairs: Adrian Shieh, Michelle Berny-Lang

4:30PM

Combining Peripheral Vaccination with Microenvironment Immunomodulation: A Two-Pronged Approach for Cancer Immunotherapy

P. PRADHAN¹, J. LELEUX¹, J. LIU¹, H. QIN², L. KWAK², AND K. ROY¹ ¹Georgia Institute of Technology, Atlanta, GA, ²M. D. Anderson Cancer Center, Houston, TX

4:45PM

Contact Inhibition of Locomotion in a Fibrillar-like Microenvironment D. $\mathsf{MiLaNO^1}$ and A. $\mathsf{ASTHAGIRI^1}$

¹Northeastern University, Boston, MA

5:00PM

3D Glioma Platform for Therapy-Resistant Cell Targeting Using High Frequency Electric Fields

J. IVEY¹, M. SANO², I. NAKANO³, R. DAVALOS¹, AND S. VERBRIDGE¹ ¹Virginia Tech, Blacksburg, VA, ²Stanford University School of Medicine, Stanford, CA, ³Ohio State University, Columbus, OH

5:15PM

Integrin Expression and Phenotype Predict Breast Cancer Metastasis L. BARNEY¹, E. DANDLEY², L. JANSEN¹, AND S. PEYTON¹

¹University of Massachusetts, Amherst, Amherst, MA, ²North Carolina State University, Raleigh, NC

5:30PM

Malignant Melanoma Cells Assemble a Tumor Biofilm That Promotes Survival and Resistance in Response to Drug Treatment

A. Afasizheva', Y. Kotobuki', H. Tillman', W. Vieira', K-L. $\mathsf{Fung^1},\,\mathsf{E}.\,\mathsf{Chen^2},\,\mathsf{and}\,\mathsf{K}.\,\mathsf{Tanner^1}$

¹National Cancer Institute, Bethesda, MD, ²Columbia University, Stony Brook, NY

5:45PM

Bioreactor-derived Fluid Flow Promotes Epithelial-to-Mesenchymal Transition in Breast Cancer Cells

K. FUH¹, B. KOOISTRA¹, R. SHEPHERD¹, AND K. RINKER¹ ¹University of Calgary, Calgary, AB, Canada

Track: Cardiovascular Engineering, Biomechanics OP-Thurs-3-8 - Room 007B

Cardiovascular Flow Modeling in Health and Disease

Chairs: Robert Peattie, Wei Yin

4:30PM

CFD Analysis of Cerebral Sidewall Aneurysm Hemodynamics

J. LINDSAY¹, P. NAIR¹, H. BABIKER¹, J. RYAN¹, AND D. FRAKES¹ ¹Arizona State University, Tempe, AZ

4:45PM

Computational Analysis of Low-Porosity Stent Effects on Idealized Sidewall Aneurysms

D. DEJEU¹, P. NAIR¹, H. BABIKER¹, J. RYAN¹, AND D. FRAKES¹ ¹Arizona State University, Tempe, AZ

5:00PM

High Resolution Immersed Boundary-finite Element Models of the Native and Prosthetic Aortic Root

V. FLAMINI¹, A. DEANDA², AND B. GRIFFITH³

¹New York University Polytechnic School of Engineering, Brooklyn, NY, ²New York University School of Medicine, New York, NY, ³University of North Carolina at Chapel Hill, Chapel Hill, NC

5:15PM

Aortic Blood Flow Simulations in Turner Syndrome Patient and Agematched Control

W. STODDARD¹, G. MYLAVARAPU¹, E. GUTMARK¹, AND I. GUTMARK-LITTLE² ¹University of Cincinnati, Cincinnati, OH, ²Cincinnati Children's Hospital Medical Center, Cincinnati, OH

5:30PM

Determining the Influence of Aneurysm Geometry and Location on Flow through a Carotid Bifurcation

E. PALLARES¹, S. KUDERNATSCH¹, S. NIDADAVOLU², AND D. PETERSON¹ ¹University of Connecticut Health Center, Farmington, CT, ²CD-adapco, Melville, NY

5:45PM

A Unified Computational Tool for Patient-Specific Hemodynamics ---from radiological images to *in vivo* flow structure in human arteries

H. Yu¹, Z. Wang², C. Zhang³, N. Chen¹, A. Sawchuk 4 , Y. Zhao², Y. Cheng³, and M. Dalsing 4

¹Indiana University-Purdue University Indianapolis, Indianapolis, IN, ²Kent State University, Kent, OH, ³Wuhan University, Wuhan, China, People's Republic of, ⁴School of Medicine, Indiana University, Indianapolis, IN

Track: Cellular and Molecular Bioengineering -OP-Thurs-3-9 - Room 007C

Cell Interactions with the Extracellular Matrix

Chairs: Mehdi Nikkhah, Adrian Shieh

4:30PM

Hydrogels with Tunable Stress Relaxation Properties to Regulate Stem Cell Fate

O. Chaudhuri¹, L. Gu², D. Klumpers², M. Darnell², S. Bencherif², J. Weaver², N. Huebsch³, and D. Mooney²

¹Stanford University, Stanford, CA, ²Harvard University, Cambridge, MA, ³UCSF gladstone Institute, San Francisco, CA

4:45PM

Orthogonal patterning of matrix stiffness and ligand density for highthroughput stem cell mechanobiology

A. RAPE¹, M. ZIBINSKY¹, N. MURTHY¹, AND S. KUMAR¹ ¹University of California, Berkeley, Berkeley, CA

BMES 2014 87

Relationship Between Basement Membrane Development and Sarcomerogenesis on Single Cardiomyocyte H. YANG¹, T. BORG², AND B. GAO¹

¹Clemson University, Clemson, SC, ²Medical University of South Carolina, Charleston, SC

5:15PM

Platelets Use Glycoprotein Ib-IX-V Complex to Squeeze Tight onto VWF

S. FEGHHI¹, A. MUNDAY², W. TOOLEY¹, S. RAJSEKAR¹, J. LOPEZ¹,², AND N. SNIADECKI¹ ¹University of Washington, Seattle, WA, ²Puget Sound Blood Center, Seattle, WA

5:30PM

Mechanical Signaling in Keratinocyte Colony Formation

H. ZARKOOB¹, J. SELBY¹, S. PONNALURI¹, K. MESSINGHAM¹, J. FAIRLEY¹, AND E. SANDER¹

¹University of Iowa, Iowa City, IA

5:45PM

Mechanical Analysis of Rat Trabecular Meshwork

J. HUANG¹, L. CAMRAS¹, AND F. YUAN¹ ¹Duke University, Durham, NC

Track: Cellular and Molecular Bioengineering, Bioinformatics, Computational and Systems Biology OP-Thurs-3-10 - Room 007D

Engineering Cells and Pathways via Synthetic and Systems Biology

Chairs: Karmella Haynes, Feilim Mac Gabhann

4:30PM

Epigenetic Engineering of Human Cells with DNA-packing Actuators and Sensors

K. HAYNES¹, C. HOM¹, B. DAMADZADEH¹, AND D. BARCLAY¹ ¹Arizona State University, Tempe, AZ

4:45PM

Targeting HBV DNA With CRISPR/Cas Leads to cccDNA Destruction in Infected Cells

V. RAMANAN¹, D. COX¹, A. Shlomal², R. Schwartz¹, C. Rice², F. Zhang¹,³, and S. Bhatia¹,⁴,⁵

¹Massachusetts Institute of Technology, Cambridge, MA, ²The Rockefeller University, New York, NY, ³Broad Institute, Cambridge, MA, ⁴Brigham and Women's Hospital, Boston, MA, ⁵Howard Hughes Medical Institute, Cambridge, MA

5:00PM

Synthetic Chromatin-Based Transcriptional Logic, Spatial Genomic Regulation, And Memory

A. KEUNG¹, C. BASHOR¹, S. KIRIAKOV², J. COLLINS^{1,3}, AND A. KHALIL² ¹Boston University/HHMI, Boston, MA, ²Boston University, Boston, MA, ³Wyss Institute for Biologically Inspired Design, Boston, MA

5:15PM

Protocells as a Platform for Bottom-up Synthetic Biology

J. SUN1, J. TOWNSON2, Y-S. LIN2, B. KAEHR3, C. BRINKER2, Y. WANG4, AND E. JAKOBSSON1

¹University of Illinois at Urbana Champaign, Urbana, IL, ²University of New Mexico, Albuquerque, NM, ³Sandia National Lab, Albuquerque, NM, ⁴University of California San Diego, La Jolla, CA

5:30PM

Novel Divalent Aptamer Assembly For Controlled VEGF Receptor Activation

V. RAMASWAMY¹, A. MONSALVE¹, B. DOLLINGER¹, J. DOBSON¹, AND J. ALLEN¹ ¹University of Florida, Gainesville, FL

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

5:45PM

Quantifying the Dynamics and Spatial Organization of TGF β receptors with Single Particle Tracking Photoactivated Localization Microscopy C. DUFORT¹, J. Rys², M. BAIRD³, M. DAVIDSON³, AND T. ALLISTON¹

¹UCSF, San Francisco, CA, ²UC Berkeley - UCSF, San Francisco, CA, ³Florida State University, Tallahassee, FL

Track: Nano to Micro Technologies, Translational Biomedical Engineering OP-Thurs-3-11 - Room 008A

Paper Fluidics

Chairs: Jungkyu (Jay) Kim, Daniel Ratner

4:30PM

Simultaneously Concentrating And Detecting Biomarkers On Paper R. CHIU¹, E. JUE¹, A. YIP¹, A. BERG¹, S. WANG¹, A. KIVNICK¹, P. NGUYEN¹, AND D. KAMEI¹ ¹UCLA, Los Angeles, CA

5:00PM

Paper-based Assay for Point-of-care Quantification of HbS Content in Blood of Sickle Cell Disease Patients

N. PIETY¹, X. YANG¹, B. DINU², A. GEORGE², AND S. SHEVKOPLYAS¹ ¹University of Houston, Houston, TX, ²Baylor College of Medicine, Houston, TX

5:15PM

Paper-Based Diagnostic for Influenza A Detection

C. HOLSTEIN¹, S. BENNETT¹, E-M. STRAUCH¹, A. CHEVALIER¹, E. FU², D. BAKER¹, AND P. YAGER¹

¹University of Washington, Seattle, WA, ²Oregon State University, Corvallis, OR

5:30PM

Purification and Concentration of Nucleic Acids in Porous Membranes for Point-of-Care Applications

S. BYRNES¹, J. BISHOP¹, L. LAFLEUR¹, J. BUSER¹, B. LI², C. OLSEN², B. LUTZ¹, AND P. YAGER¹

¹University of Washington, Seattle, WA, ²GE Global Research Center, Niskayuna, NY

5:45PM

Bacterial Cell Filtration, Amplification, and Detection in Paper Matrices for Molecular Diagnostics at the Point of Care J. LINNES¹, C. ELLENSON¹, AND C. KLAPPERICH¹

¹Boston University, Boston, MA

Track: Nano to Micro Technologies, Cellular and Molecular Bioengineering OP-Thurs-3-12 - Room 008B

Microfluidic Platforms III

Chairs: Anand Ramasubramanian, Leo Wan

4:30PM

Influence of Microfluidic Geometry on Micro-droplet formation

S. Gulati¹, W. Good¹, K. Vijayakumar², W. Tamayo¹, X. Niu³, J. Edel², and A. deMello⁴

¹University of the Pacific, Stockton, CA, ²Imperial College London, London, United Kingdom, ³University of Southampton, Southampton, United Kingdom, ⁴ETH Zürich, Zürich, Switzerland

4:45PM

MECs: Microfluidic "Building Blocks" for Custom Bioinstruments

D. HILL¹, L. ANDERSON¹, C. HILL¹, AND W. GROVER¹ ¹University of California, Riverside, Riverside, CA

Inertial Focusing in Curved Channels: Towards Precision Biofluid Processing

J. MARTEL¹ AND M. TONER¹ ¹Massachusetts General Hospital, Charlestown, MA

5:15PM

Using Nanoporous Silicon Nitride Membranes as Electro-osmotic Pumps and Nanofluidic Transistors K. SMITH¹ AND J. MCGRATH ¹University of Rochester, Rochester, NY

5:30PM

On-chip Fingerprinting Surface Enhanced Raman Scattering (SERS) Spectra Of Living Cells Via Ag@ZnO Nanocomplex Fabricated By **Optothermal Effect** Y. XIE¹ AND T. HUANG

¹The Pennsylvania State University, University Park, PA

5:45PM

Flexible Microfluidic Device with Microporous Walls for Perfusion Cell Culture

C. CHAN1, V. GORAL2, M. DEROSA2, T. HUANG1, AND P. YUEN2 ¹Pennsylvania State University, University Park, PA, ²Corning Incorporated, Corning, NY

Track: Device Technologies and Biomedical Robotics **OP-Thurs-3-13 - Room 201**

Medical Device Technologies

Chairs: Kevin Soucy, Chander Sadasivan

4:30PM

Laser Stenting of Injectable Biodegradable Elastomers for Cardiovascular Disease

J. YANG¹, M. ALBAGHDADI², M. KIBBE², AND G. AMEER^{1,2,3} ¹Northwestern University, Evanston, IL, ²Northwestern University, Chicago, IL, ³Feinberg School of Medicine, Chicago, IL

4:45PM

Inferior Vena Cava Strut Perforation Leads to Further Strut Perforation

J. DOWELL¹, J. CASTLE¹, M. SCHICKEL², G. GUY¹, X. YANG¹, AND S. GHADIALI¹,² ¹Wexner Medical Center, The Ohio State University, Columbus, OH, ²The Ohio State University, Columbus, OH

5:00PM

Physiological Assessment and Recharging for a Fetal Pacemaker A. VEST¹ AND G. E. LOEB¹

¹University of Southern California, Los Angeles, CA

5:15PM

Toxin Clearance In A Compact Hemodialysis Device Enabled By Ultrathin Nanomembranes

D. JOHNSON¹ AND J. MCGRATH ¹University of Rochester, Rochester, NY

5:30PM

Membrane Separation As Novel Solution For CO 2 Removal in Anesthesia Circuits

F. WILFART¹, D. ROACH¹, J. HAELSSIG¹, AND M. SCHMIDT¹ ¹Dalhousie University, Halifax, NS, Canada

5:45PM

Effects of a Biventricular, Non-Blood Contacting Transmural Cardiac Assist Device on Aortic Pressure and Pulmonary Artery Pressure in an Acute Failure Model

E. HORD¹, C. BOLCH², E. TUZUN³, AND J. CRISCIONE¹

¹Texas A&M University, College Station, TX, ²CorInnova, Inc., College Station, TX, ³Texas A&M Institute for Preclinical Studies, College Station, TX

Track: Biomechanics

OP-Thurs-3-14 - Room 103B

Methods for Assessing Injury and Injury Risk

Chairs: Joel Stitzel, Andrew Kemper

4:30PM

Head Injury Risk In Oblique Frontal Motor Vehicle Crashes R. CHEN¹ AND H. GABLER¹ ¹Virginia Tech, Blacksburg, VA

4:45PM

Assessment of Angular Rate Sensors to Measure Rotational Head Acceleration during Impact Testing S. ROWSON¹, R. DANIEL¹, B. COBB¹, AND S. DUMA¹

¹Virginia Tech, Blacksburg, VA

5:00PM

Methods for Studying Brain Motion During Head Impact in a Gottingen Minipig Model

A. HERMUNDSTAD¹, E. FIEVISOHN¹, P. VANDEVORD¹, C. UNTAROIU¹, AND W. HARDY¹ ¹Virginia Polytechnic and State University, Blacksburg, VA

5:15PM

Rotational Moment Of Inertia Improves Predictions Of Axonal Injury L. ATLAN¹, S. SULLIVAN¹, AND S. MARGULIES¹ ¹University of Pennsylvania, Philadelphia, PA

5:30PM

Injury Risk Curves for Specific Injuries and Body Regions in Frontal Motor Vehicle Crashes

A. WEAVER¹, K. SWETT², J. TALTON², R. BARNARD², S. SCHOELL¹, AND J. STITZEL¹ ¹Wake Forest University Center for Injury Biomechanics, Winston-Salem, NC, ²Wake Forest University School of Medicine, Winston-Salem, NC

5:45PM

Simulation of Pressure Wave Transmission in Human Ear with Viscoelastic Tympanic Membrane Model T. HAWA1 AND R. GAN1

¹The University of Oklahoma, Norman, OK

Track: Bioinformatics, Computational and Systems Biology OP-Thurs-3-15 - Room 202A

Cell Regulatory Circuits

Chairs: Amy Brock, Princess Imoukhuede

4:30PM Invited

A Spatiotemporal microRNA Circuit Controlling Cancer Stem Cell Division X. SHEN¹ AND P. BU¹

¹Cornell University, Ithaca, NY

5:00PM

Gene Regulatory Networks in Mesendoderm Differentiation of Human Embryonic Stem Cells

R. CARPENEDO¹,² AND W. STANFORD²,³

¹Ottawa Hospital Research Institute, Ottawa, ON, Canada, ²University of Ottawa, Ottawa, ON, Canada, 3 Ottawa Hospital Research Institute, Ottawa, Canada

5:15PM

A Dynamic Regulatory Circuit in Single Breast Epithelial Cells and Basal-like Premalignancies

C-C. WANG¹, S. BAJIKAR¹, L. JAMAL¹,², K. ATKINS¹, AND K. JANES¹ ¹University of Virginia, Charlottesville, VA, ²UC San Diego, La Jolla, CA

5:30PM

A Logic-Based Model of Cardiac Fibroblast Signaling Predicts Switch-Like Behavior

A. ZEIGLER¹, W. RICHARDSON¹, J. HOLMES¹, AND J. SAUCERMAN¹ ¹University of Virginia, Charlottesville, VA

5:45PM

Mechanistic Insights into Early Endoderm Differentiation of Human Embryonic Stem Cells using Systems Level Analysis of Signaling Interactions

S. MATHEW¹, S. SUNDARARAJ¹, H. MAMIYA¹, AND I. BANERJEE^{1,2}

¹University of Pittsburgh, Pittsburgh, PA, ²McGowan Institute for Regenerative Medicine, Pittsburgh, PA

Track: Orthopaedic and Rehabilitation Engineering, Tissue Engineering OP-Thurs-3-16 - Room 202B

Structure-Function Relationships in Musculoskeletal Tissues

Chairs: Dawn Elliott ,Virginia Ferguson

4:30PM Invited

Multiscale Mechanical Testing of Intact and Notched Tendon to Quantify Shear Load Transfer Between Collagen Fibrils S. SZCZESNY¹ AND D. ELLIOTT²

¹University of Pennsylvania, Philadelphia, PA, ²University of Delaware, Newark, DE

4:45PM

Relating Tribological Function of Cartilage to Pproperties and Structure D. BURRIS¹ AND A. MOORE¹

¹University of Delaware, Newark, DE

5:00PM

Elastin Dominates Extracellular Matrix Mechanics in Ligament

H. HENNINGER¹, W. VALDEZ¹, S. SCOTT¹, AND J. WEISS¹ ¹University of Utah, Salt Lake City, UT

5:15PM

Reverse Engineering of the Osteochondral Interface

V. FERGUSON¹, B. HARLEY², AND S. BRYANT¹ ¹University of Colorado at Boulder, Boulder, CO, ²University of Illinois at Urbana-Champaign, Urbana Champaign, IL

5:30PM

Elastin Deficiency Corresponds to Dose-Dependent Reduction in Tendon Mechanics

M. ESPINOSA¹, Q. WU¹, I. STOILOV¹, R. MECHAM¹, AND S. LAKE¹ ¹Washington University in St. Louis, St. Louis, MO

5:45PM

Strain Transfer from Tissue to Cells in Meniscus is Dependent on Maturity and Microstructure

W. HAN¹, S-J. HEO¹, T. DRISCOLL¹, L. SMITH¹, R. DUNCAN², R. MAUCK¹, AND D. ELLIOTT²

¹University of Pennsylvania, Philadelphia, PA, ²University of Delaware, Newark, DE

Track: Biomedical Imaging and Optics OP-Thurs-3-17 - Room 203A

Molecular Probes II

Chairs: Zhiliang Cheng, Amber Doiron

4:30PM

Hyaluronic Acid Derived Nanoparticles with Activatable Fluorescence for Image-Guided Tumor Surgery

A. MOHS^{1,2,3}, T. HILL¹, S. KELKAR¹, F. MARINI^{2,3}, AND E. LEVINE³ ¹Wake Forest - Virginia Tech School of Biomedical Engineering and Sciences, Winston-Salem, NC, ²Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, ³Comprehensive Cancer Center of Wake Forest University, Winston-Salem, NC

4:45PM

Magneto-Acoustic Micro-platform for Gene Delivery and Image-Based Prediction of Therapeutic Response B. CHERTOK¹

¹University of Michigan, Ann Arbor, MI

5:00PM

Sortase-Tag Expressed Protein Ligation (STEPL): Combining Protein Purification and Site-Specific Bioconjugation Into a Single Step R. WARDEN-ROTHMAN' AND A. TSOURKAS' 'University of Pennsylvania, Philadelphia, PA

5:15PM

Synthesis of Various MnF2 Nanostructures with Single-Band Red Emission

Z. BAI¹ AND N. HASHEMI¹ ¹Iowa State University, Ames, IA

5:30PM

Treatment of Cancer Micrometastasis Using a Chain-like Nanoparticle

P. PEIRIS¹, A. ABRAMOWSKI¹, R. TOY¹, L. BAUER¹, E. DOOLITTLE¹, W. SCHIEMANN¹, K. GHAGHADA², M. GRISWOLD¹, AND E. KARATHANASIS¹ ¹Case Western Reserve University, Cleveland, OH, ²Texas Children's Hospital, Houston, TX

5:45PM

Gold Core Polyphosphazene Nanospheres as Biodegradable Contrast Agents for Computed Tomography

R. CHEHELTANI¹, P. CHHOUR¹, M. AKHTER¹, R. EZZIBDEH¹, C. BLUNDELL¹, P. NAHA¹, V. FERRARI¹, H. ALLCOCK², AND D. CORMODE¹

¹University of Pennsylvania, Philadelphia, PA, ²Pennsylvania State University, University Park, PA

Track: Biomechanics, Orthopaedic and Rehabilitation Engineering OP-Thurs-3-18 - Room 204A

Orthopaedic Biomechanics

Chairs: Sriram Balasubramanian, Spencer Lake

4:30 PM - 4:45 PM

Statistical Shape Modeling of Cortical Bone Thickness in Patients with Femoroacetabular Impingement

P. ATKINS¹, P. MUKHERJEE¹, S. SINGLA¹, S. ELHABIAN¹, M. HARRIS¹, J. WEISS¹, R. WHITAKER¹, AND A. ANDERSON¹ ¹University of Utah, Salt Lake City, UT

4:45PM

Nano-mechanical Variation of Orthogonal Directions in Normal and Osteoporotic Cortical Bone

K. GROVER¹, M. HU¹, L. LIN¹, AND Y. QIN¹ ¹Stony Brook University, Stony Brook, NY

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

Determine Proteoglycan Content of Articular Cartilage Using Indentation Test and a Nonlinear Inhomogeneous Triphasic Model X. CHEN¹, B. ZIMMERMAN¹, L. RUGGIERO¹, AND X. LU¹

¹University of Delaware, Newark, DE

5:15PM

Point-of-Failure Prediction in a High-Energy Femoral Neck Fracture Model

G. FEUER¹, R. PIVEC¹, S. HOSSAIN¹, S. SAHA¹, AND C. PAULINO¹ ¹SUNY Downstate, Brooklyn, NY

5:30PM

Bone Fragment Motion with Lag and Locking Volar Plate Fixation of Distal Radius Fractures

A. EBERHARDT¹, C. WISE¹, T. MARSHALL¹, J. SCHWERTZ¹, AND N. CHAUDHARI ¹ ¹University of Alabama at Birmingham, Birmingham, AL

5:45PM

Biomechanical Comparison of Two Schatzker Type II Tibial Split Depression Repairs

P. BROWN¹, M. DAVIS¹, J. YANIK², M. LANGFITT³, S. SAUNDERS³, E. CARROLL³, AND J. STITZEL¹

¹WFU-VT School of Biomedical Engineering and Sciences, Winston Salem, NC, ²Wake Forest University School of Medicine, Winston Salem, NC, ³Wake Forest Baptist Medical Center, Winston Salem, NC

Track: Biomedical Engineering Education (BME) OP-Thurs-3-19 - Room 203B

Effective Use of Technology in the BME Classroom

Chairs: Ann Saterbak, Damir Khismatullin

The purpose of the special session is to disseminate best practices around using the wide range of available technology to support and enhance student learning for biomedical engineering education. Technology includes innovative tools for hands-on and experiential learning; mathematical modeling tools; simulation and visualization tools; personal response systems (i.e., clickers); mobile applications; videos during, before or after class, including a flipped classroom model; social media; and others. The session will include speakers, technology demonstrations, and a panel. This special session is hosted by the BMES Education Committee and will follow the Thursday afternoon BMES Education track abstract-driven platform session focusing on teaching in a flipped classroom.

SPEAKERS:

RICHARD HART, PHD, Chair, Department of Biomedical Engineering, The Ohio State University

CATHY WICKS, Texas Instrument

NAOMI CHESLER, PhD, University of Wisconsin-Madison

KURT THOROUGHMAN, PhD, Associate Professor, Department of Biomedical Engineering, Washington University in St. Louis **4:00 PM – 7:30 PM** Convention Center, Ballroom A

Korea-US Joint Workshop in Biomedical Engineering

The goal of the Joint Workshop between the Korean Society of Medical and Biological Engineering (KOSOMBE) and BMES is to promote cooperation, collaboration and networking between the two societies and their members.

4:00-5:10PM INVITED ORALS SESSION I

Chairs: Jungwook Shin (Inje Univ. Pusan, Gyeongsangnam-do, Korea) James Moon (Univ. Michigan, Ann Arbor, MI, USA)

4:00PM

Introductory Remarks

HANJOONG JO, Georgia Tech and Emory University, Atlanta, GA, USA 4:05PM

Dynamic Nanocarriers for Biologic Drug Delivery

PATRICK S. STAYTON, University of Washington, Seattle, WA, USA 4:20PM

Tissue Regeneration and Drug Delivery using in situ forming Hydrogels

KI DONG PARK , Ajou University, Suwon, Gyeonggi-do, Korea

4:35PM

Big Image Data Analytics to Predict Stem Cell Fate MICHAEL CHO, University of Illinois in Chicago, Chicago, IL, USA

4:50PM

Prohealing Multifunctional Endothelium Mimicking Nanomatrix

HO-WOOK JUN, University of Alabama, Birmingham, AL, USA

5:00PM

Nano-Engineering of 3D Complex Tissues with Controllable Architecture and Function DEOK-HO KIM, University of Washington, Seattle, WA, USA

5:10-6:00PM POSTER SESSION

6:00-7:10 INVITED ORAL SESSION 2

Chairs: Luke Lee (UC Berkeley, Berkeley, CA, USA) Minho Kim (Kent State Univ.Kent, OH)

6:00PM

Microfluidic Assays for Cells, Tissues, and Artificial Organs

JE-KYUN PARK KAIST, Daejeon, Chungcheongnam-do, Korea

6:15PM Microsystems for Shaping and Sensing Cell ALEXANDER REVZIN, UC Davis, Davis, CA, USA

6:30PM

Activatable Nanoprobes For Molecular Imaging ICK CHAN KWON KIST, Seoul, Korea

6:45PM

Synthetic Virology: Reprogramming Viruses Into Controllable Nanodevices JUNGHAE SUH, Rice University, Houston, TX, USA

7:00PM

Shape Memory External Supports For Vascular Grafting

HAK-JOON SUNG, Vanderbilt University, Nashville, TN, USA

7:10-7:30PM Closing Remarks & Announcements KWIWON CHOI , KIST, Seoul, Korea

Í
C
$\overline{\mathcal{D}}$
5
2
P

REFRESHMENT BREAKS

REFRESHMENT BREAKS

-]	20	21	40	4	60	19	80	18	100	ē	120	121	42	4 	160	191	180	181	200	201	220	221	240	241	260	261	280	281	300	
2	9	22	39	42	59	62	79	82	66	102	611	122	139 П	142	159	162	179	182	661	202	US 219	222	239	242	259	262	279	282	259	
ω	8	23	38	43	58	63	78	83	98	ຄ	81	123		143	158 58	163	178	183	198	203	218	223	238	243	258	263	278	283	298	
4	17	24	37	44	57			84	97	1 04	117	124	I37	144	I57	164	ME	184	197	204	217	224	237	244	257			284	297	
л	16	25	36	45	56 X	65	EVI 76	85	96	105	911	125	36	I45	156	165		185	AN	205	KE	225	ECT 236	245	256	265	276	285	296	
6	15	26	OR 35	46	55 D	99	CES	98	95	801	= 15	126	135	146	155	991		981	D 195	206	215	226	235	4	255	266	275	286	295	
7	4	27	34 34	47	54	67	74	87	94	107	I 4	127	I34	147	154	167	CS 174	187	194	207	AL 214	227	11C 234	247	254	267	274	287	294	
8	ы	28	33	48	53	89	73	88	33	ŝ	ΠJ	128	337	148	153	891	173	881	193	208	213	228	233	248	253	268	273	288	293	
و	12	29	32	49	52	69	72	68	92	601	112	129	132	149	G 152	691	172	681	192	209	212	229	232	249	252	269	272	289	3 10 292	
5	=	30	31	50	51	70	71	90	16	5	Ξ	130	ភ្ម	150	151	170	171	061	161	210	211	230	231	250	251	270	271	290	291	
																OR														
															X															
301	312	313	324	325	336	337	348	349	360	36]	372	373	384	385	396	397	408	409	420	421	.432	433	444	445	456	457	468	469	480	
302	3	314	.323	326	335	338	347	350	359	362	371	374	383	386	395	398	407	40	.419	422	43 ∎	434	443	.446	455	458	467	470	479	
. 303	310	315	. 322	327	. 334	339	346	35 I	358	363	370	375	382	387	394	. 399	406	<u></u>	. 418	423	430	435		. 447	454	459	466	471	478	
. 304	309	316	321	328	. 333	340	345	352	357	364	369	376	381	388	393	400	405	412	417	424	CT 429	436	C 44 C	. 448	ND	460	465	472	477	
. 305	308	317	320	329	.332	341	344	353	356	365	368	377	380	389	392	401	404	413	416	425	428	437		449	452	461	464	473	476	
. 306	307	318	319	330	33	342	. 343	354	355	366	367	378	379	390	391	402	403	4	415	426	427	438	. 433	450	45	465	463	474	475	
<u> </u>		-1		Ξ.				Ξ.	Γ.	• I		~1		Ξ.	_			-1		•.]		~.		Ξ.		1		Ξ.	L.	

REFRESHMENT BREAKS 608 607 595 596 552 551 543 544 609 610 702 701 689 690 650 649 637 638 515 516 528 529 567 185 622 623 665 679 514 513 542 553 554 555 566 636 664 889 501 502 651 652 580 579 594 593 592 591 590 582 541 677 527 565 621 635 089 530 568 569 570 571 *TECHZ* 624 663 687 66 APPROA П 550 549 545 546 540 539 538 578 577 576 686 685 684 681 682 683 503 512 511 510 583 597 598 606 635 633 676 675 674
 700
 699
 698

 691
 692
 693
 564 563
 648
 647
 646
 645
 644

 639
 640
 641
 642
 643
 X 653 654 655 517 518 519 526 525 524
 540
 539
 538
 537
 536

 531
 532
 533
 534
 535
 611 612 613 620 619 618 625 626 662 661 660 66 MA U 556 605 584 585 O ົດ 504 505 668 669 Þ 604 599 548 547 562 ÖG ZG 557 627 ြို့ Þ Z G 0 603 602 600 601 673 672 670 671 617 616 614 615 697 696 694 695 509 508 506 507 523 522 520 521 575 574 572 573 589 588 586 587 561 560 558 559 63 | 630 628 629 659 685 E S 656 657

らどうしょうのら

636 537

-Ть

536 437

436 337 336 237 236

137

9:30AM - 5:00PM POSTER SESSION Thurs 2014 OCTOBER 23 THURSDAY

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

THURSDAY, October 23, 2014

9:30 AM - 5:00 PM POSTER SESSIONS - THURS

Device and Sensors: P-Th-I to P-Th-I24

Tissue Engineering: Regeneration and Rehabilitation: P-Th-125 to P-Th-167

Musculoskeletal Injury and Mechanics: P-Th-168 to P-Th-231

Multiscale Models and Biomechanics: P-Th-232 to P-Th-269

Bioinformatics: P-Th-270 to P-Th-296 and P-Th-476 to P-Th-480

Cancer: P-Th-301 to P-Th-334

Drug Delivery: P-Th-335 to P-Th-388

Tissue Engineering: P-Th-391 to P-Th-407

Cellular and Molecular Function: P-Th-409 to P-Th-470

Emerging Technologies, Approaches and Materials: P-Th-501 to P-Th-620

Imaging: P-Th-621 to P-Th-662

BME Education: P-Th-663 to P-Th-692

Track: Bioinformatics, Computational and Systems Biology

Algorithms for Computational and Systems Biology

Chairs: Michael Fenn, Kristen Naegle

P-Th-281 RVD2:A Variant Detection Model For Heterogeneous Next-generation Sequencing Data Y. HE¹ AND P. FLAHERTY¹ "Worcester Polytechnic Institute, Worcester, MA

P-Th-282

The Use of Kernel PCA For The Channelization Of The Hotelling Model Observer G. WEN^{1,2} AND M. MARKEY^{1,2} ¹The University of Texas at Austin, Austin, TX, ²The University of Texas MD Anderson Cancer Center, Houston, TX

P-Th-283

Nonlinear Model Development and Optimization of Glucose Affinity Sensors L. REIS¹ AND E. GUILBEAU¹

¹Louisiana Tech University, Ruston, LA

P-Th-284

Computational Saliency Maps of Medical Images to Predict Radiologists' Gaze Fixations

F. PECEN¹, G. WEN¹,², T. GANAPATHI¹, D. VINING², T. HAYGOOD², AND M. MARKEY¹,² ¹University of Texas at Austin, Austin, TX, ²University of Texas MD Anderson Cancer Center, Houston, TX

P-Th-285

A Neural Network based Human Platelet Calcium Calculator trained by Pairwise Agonist Scanning M. LEE¹ AND S. DIAMOND¹ ¹University of Pennsylvania, Philadelphia, PA

P-Th-286

Identifying MRI Markers On Newly Diagnosed Glioblastoma Multiforme To Distinguish Patients With Long And Short Term Survival J. PATEL¹, P. PRASANNA¹, P. TIWARI¹, AND A. MADABHUSHI¹ ¹Case Western Reserve University, Cleveland, OH

Track: Bioinformatics, Computational and Systems Biology

Dynamics of Biological Systems

Chairs: Chun-Chao Wang, Janet Barzilla

P-Th-287

Belief Propagation in Genotype-Phenotype Networks J. MOHARIL¹, P. MAY¹, D. GAILE¹, AND R. HAGEMAN BLAIR¹ ¹State University of New York-University at Buffalo, Buffalo, NY

P-Th-288

Characterizing Collagen Network Mechanics And Cell-Mediated Remodeling Using An Agent-Based Model J. REINHARDT¹ AND K. GOOCH¹ ¹The Ohio State University, Columbus, OH

P-Th-289

Spatial Organization in Molecularly-Tethered Lipid Bilayers S. ABEL¹ ¹University of Tennessee, Knoxville, TN

P-Th-290

Key Features of the Gut Microbiome Revealed by Topological and Dynamic Network Analysis

M. BIGGS¹, S. STEINWAY², J. PAPIN¹, AND R. ALBERT³ ¹University of Virginia, Charlottesville, VA, ²Pennsylvania State College of Medicine, Hershey, PA, ³Pennsylvania State University, University Park, PA

P-Th-291

A Model for Metabolism in Ischemic Cardiomyocytes

A. MCDOUGAL¹, D. SOSNOVIK², AND C. DEWEY¹ ¹Massachusetts Institute of Technology, Cambridge, MA, ²Massachusetts General Hospital, Boston, MA

THURSDAY | OCTOBER 23 | 2014 POST

POSTER SESSION Thurs 9:30AM – 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-292

Mechanistic Characterization of the Thioredoxin System in the Removal of Hydrogen Peroxide V. PANNALA¹ AND R. DASH¹

¹Medical College of Wisconsin, Milwaukee, WI

P-Th-293

Cathepsin Cannibalism Reduces Collagen And Elastin Degradation In Matrix Remodeling

M. FERRALL¹ AND M. PLATT¹ ¹Georgia Institute of Technology and Emory University, Atlanta, GA

P-Th-294

Nucleotide and Phosphate Regulation of Mitochondrial Oxidative Phosphorylation

J. BAZIL¹, F. VAN DEN BERGH¹, D. BEARD¹, R. WISEMAN², AND K. VINNAKOTA¹ ¹University of Michigan, Ann Arbor, MI, ²Michigan State University, East Lansing, MI

P-Th-295

Strategic Priming with Several Antigens Yields Multiple Memory Paradigms C. ZIRALDO¹, C. GONG¹, D. KIRSCHNER¹, AND J. LINDERMAN¹ ¹University of Michigan, Ann Arbor, MI

P-Th-296

Comparison of New Agent-Based Model to a Classical Discrete Model of Angiogenesis

M. KELLY-GOSS¹, B. CORLISS¹, C. PELLAND¹, AND S. PEIRCE-COTTLER¹ 1 University of Virginia, Charlottesville, VA

Track: Bioinformatics, Computational and Systems Biology

Multiscale Modeling

Chairs: Shayn Peirce, Ashlee Ford Versypt

P-Th-270

Mathematical Model of Protein Delivery Within the Urinary Bladder S. SMITH¹, S. RAVINDRANATHAN¹, K. NGUYEN¹, AND D. ZAHAROFF¹ ¹University of Arkansas, Fayetteville, AR

P-Th-271

The Influence of Glycosaminoglycan Distribution in Collagen on Its Mechanical Property Y. BI¹, P. PATRA¹, AND X. XIONG¹ ¹University of Bridgeport, Bridgeport, CT

P-Th-272

Mathematical Modeling and Experimental Validation of Cancer Cell Migration in a Three-Dimensional Tumor Matrix S. BOUKHRIS¹ AND Y. FENG¹ 'The University of Texas at San Antonio, San Antonio, TX

P-Th-273

Mixture Theory Data Reduction for Cerebral Blood Flow Predictions I. GOULD¹ AND A. LINNINGER¹

¹University of Illinois at Chicago, Chicago, IL

P-Th-274

A Multiscale Adhesive Dynamics Model to Study the Interaction of Neutrophils with the Endothelium

A. ROCHELEAU¹, R. SUMAGIN², AND M. KING¹ ¹Cornell University, Ithaca, NY, ²Emory University, Atlanta, GA

P-Th-275

Development of a Simplified and Computationally Efficient Human Body Finite Element Model

D. SCHWARTZ¹,², D. MORENO¹,², J. STITZEL¹,², AND S. GAYZIK¹,² ¹Wake Forest School of Medicine, Winston Salem, NC, ²Virginia Tech – Wake Forest University Center for Injury Biomechanics, Winston Salem, NC

P-Th-276

An *In Silico* Multi-Compartment Model of VEGF165 and VEGF165b in Peripheral Arterial Disease G. CHEN¹, L-H. CHU¹, B. ANNEX², AND A. POPEL¹

¹Johns Hopkins University, Baltimore, MD, ²University of Virginia, Charlottesville, VA

P-Th-277

Characterization and Comparative Analysis of the Kinetics of Cardiac Cytosolic and Mitochondrial Malate Dehydrogenase Isoforms S. DASIKA¹, K. VINNAKOTA¹, AND D. BEARD¹ 'University of Michigan, Ann Arbor, MI

P-Th-278

Simulation of Dependence of Radiative Energy Transport on Tissue Optical Properties

S. MILLER¹ AND K. MITRA¹ ¹Florida Institute of Technology, Melbourne, FL

P-Th-279

Influence of Transport in the Glomerular Mesangium S. HUNT¹, Y. SEGAL¹, K. DORFMAN¹, AND V. BAROCAS¹ ¹University of Minnesota, Minneapolis, MN

P-Th-280

Evaluating the Consistency of Cardiomyocyte Self-assembly

N. DREW¹, D. BALDO¹, AND A. GROSBERG¹ ¹University of California, Irvine, Irvine, CA

Track: Bioinformatics, Computational and Systems Biology

Signaling Systems Analysis

Chairs: Kathryn Miller-Jensen, Jeff Saucerman

P-Th-476

Regulation of Store-Operated Calcium Entry in Endothelial Flow-Induced Nitric Oxide Production

T. MUZOREWA¹, D. JARON¹, D. BUERK¹, AND K. BARBEE¹ ¹Drexel University, Philadelphia, PA

P-Th-477

Feedback From IGFBP2 to HIF1α Determines Glioblastoma Progression K. LIN¹, A. LIAO¹, AND A. QUTUB¹ *'Rice University, Houston, TX*

P-Th-478

Intracellular T Cell Signaling: Experimental And Computational Tools For A Frequency Response Analysis Approach

A. KNISS¹, L. CHINGOZHA², H. LU¹,², AND M. KEMP¹ ¹Georgia Institute of Technology and Emory University, Atlanta, GA, ²Georgia Institute of Technology, Atlanta, GA

P-Th-479

Spatial Differentiation Patterns Evaluated Via Rules Governing Intercellular Communication

C. GLEN^{1,2}, T. C. MCDEVITT^{1,2}, AND M. L. KEMP^{1,2} ¹Georgia Institute of Technology, Atlanta, GA, ²Emory University, Atlanta, GA

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-480

Quantitative Modeling of the Alternative Pathway of the Complement System Activation D. MORIKIS¹, R. GORHAM¹, AND N. ZEWDE¹

¹University of California, Riversdie, Riverside, CA

Track: Bioinformatics, Computational and Systems Biology, New Frontiers and Special Topics

Systems Approaches to Therapy and Therapeutics

Chairs: Cheemeng Tan, Mohammad Fallahi-Sichani

P-Th-569 🤶

In silico Development of Complement System Biomarkers

R. GORHAM JR.¹ AND D. MORIKIS¹ ¹University of California, Riverside, Riverside, CA

P-Th-570

High Bacterial Burden And Sub-optimal Antibiotic Concentrations Result In Failed TB Treatment

E. PIENAAR¹, N. CILFONE¹, P. LIN², V. DARTOIS³, J. MATTILA⁴, R. BUTLER⁵, J. FLYNN⁴, D. KIRSCHNER¹, AND J. LINDERMAN¹

¹University of Michigan, Ann Arbor, MI, ²University of Pittsburgh Medical Center, Pittsburgh, PA, ³The State University of New Jersey, Neward, NJ, ⁴University of Pittsburgh, Pittsburgh, PA, ⁵Adventist University of Health Sciences, Orlando, FL

P-Th-571

PADPIN: Protein-Protein Interaction Networks of Angiogenesis, Arteriogenesis, and Inflammation in Peripheral Arterial Disease L-H. Chu I, B.Annex2, J. Bader I, and A. Popel I

I Johns Hopkins University, Baltimore, MD, 2University of Virginia, Charlottesville, VA

P-Th-572

Psychometric Analysis of Alzheimer's Disease Assessment Scale N.Verma I, 2 and M. Markey I, 3

I The University of Texas at Austin, Austin, TX, 2NeuroTexas Institute, St. David's HealthCare, Austin, TX, 3The University of Texas MD Anderson Cancer Center, Houston, TX

P-Th-573

A Mechanistic Model of Chimeric Antigen Receptor (CAR) T Cell Activation

J. ROHRS¹, P. WANG¹, AND S. FINLEY¹ ¹University of Southern California, Los Angeles, CA

P-Th-574

Quantitative Analysis of Hemodynamics in a Novel Standardized Geometry Reveals Inconsistencies between Newtonian and Non-Newtonian Constitutive Models

J. WEDDELL¹, J. KWACK¹, A. MASUD¹, AND P. IMOUKHUEDE¹ ¹University of Illinois at Urbana-Champaign, Urbana, IL

P-Th-575

Cytoskeletal Fingerprinting of Human Stem Cell Populations to Reduce Heterogeneity

A. PAUL¹, K. DANIELSON¹, AND M. CHO¹ ¹University of Illinois at Chicago, Chicago, IL

Track: Bioinformatics, Computational and Systems Biology, Cellular and Molecular Bioengineering

Understanding Molecular Functions from Systems and Computational Approaches

Chairs: Kevin Janes, Jason Papin

P-Th-409

Integrated Network Analysis of CD133+ Colon Cancer Stem Cell K-Y. CHEN¹, X. LIU¹, P. BU¹, C-S. LIN¹, N. RAKHILIN¹, J. LOCASALE¹, AND X. SHEN¹ ¹Cornell University, Ithaca, NY

P-Th-410

Principal Component Analysis of the Regulation of Osteoclastogenesis by Salubrinal and Guanabenz

A. CHEN¹, K. HAMAMURA², N. TANJUNG², AND H. YOKOTA² ¹Purdue University, West Lafayette, IN, ²Indiana University Purdue University Indianapolis, Indianapolis, IN

P-Th-411

Mechanistic Insights into Major Human Muscular Diseases

S. GUPTA¹, S-M. KIM¹, Y. WANG¹, A. DINASARAPU², AND S. SUBRAMANIAM¹ ¹University of California, San Diego, La Jolla, CA, ²University of Florida, Gainesville, FL

P-Th-412

Meta-analysis for Identifying Gene Expression Patterns in Head and Neck Cancer

C. KADDI¹, S. MISHRA¹, AND M. WANG¹ ¹Georgia Institute of Technology, Atlanta, GA

P-Th-413

System Characterization of microRNAs in the Mouse Model of Peripheral Arterial Disease

C. CHEN¹, L-H. CHU¹, B. ANNEX², AND A. POPEL¹ ¹Johns Hopkins University, Baltimore, MD, ²University of Virginia, Charlottesville, VA

P-Th-414

Reverse Engineering of Genome-Scale Biological Networks in MCF-7 Breast Cancer Cell Line

R. THIAGARAJAN¹, D. WU², J. BAZIL¹, S. KRON², AND D. BEARD¹ ¹University of Michigan Medical School, Ann Arbor, MI, ²The University of Chicago, Chicago, Illinois, Chicago, IL

P-Th-415 🙎

Identification and Characterization of the Monoclonal Antibodies Comprising the Serological Response to Seasonal Influenza Vaccines

J. LEE', D. BOUTZ', C. VOLLMERS², B. DEKOSKY¹, A. HORTON¹, G. IPPOLITO¹, E. MARCOTTE¹, S. QUAKE², AND G. GEORGIOU¹

¹University of Texas at Austin, Austin, TX, ²Stanford University, Stanford, CA

P-Th-416

Genital Tract Inflammation Perturbs Mucosal Integrity Proteins: Implications for HIV Susceptibility

K. ARNOLD¹, A. BURGENER²,³, K. BERSIE², L. DUNPHY¹, K. SHAHABI⁴, J. KWATAMPORA⁵, J. KIMANI²,⁵, R. KAUL⁴, D. LAUFFENBURGER¹, AND L. MCKINNON⁶ ¹Massachusetts Institute of Technology, Cambridge, MA, ²University of Manitoba, ¹Massachusetts ¹Massachusett, Massachusett, Massachusett, ¹Massachusett,

Winnipeg, MB, Canada, ³National Microbiology Lab, Winnipeg, MB, Canada, ⁴University of Toronto, Toronto, ON, Canada, [§]University of Nairobi, Nairobi, Kenya, [®]Centre for the AIDS Programme of Research in South Africa, Durban, South Africa

P-Th-417

Linking Magnetic Relaxation to Protein Folding

P. LIU¹, R. KULWIN¹, AND R. LEE¹ ¹University of Chicago, Chicago, IL

POSTER SESSION Thurs 9:30AM – 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

Track: Biomaterials

Intelligent/Multifunctional Biomaterials

Chairs: Meng Deng, Wei Li

P-Th-585

Characterization of a Multi-functional Hydrogel Tissue Adhesive Containing Chitosan

L. SANDERS¹, K. WEBB¹, T. MEFFORD¹, AND J. NAGATOMI¹ ¹Clemson University, Clemson, SC

P-Th-586

Collecting of Circulating Tumor Cells with Biocompatible/thermoresponsive PMEA analogous surfaces

T. ORUI¹, K. SATO¹, T. HOSHIBA¹, AND M. TANAKA¹ ¹Yamagata University, Yonezawa, Japan

P-Th-587

Recombinant Spider Silks for Delivery of Therapeutic Nucleic Acids

O. TOKAREVA^{1,2}, D. GLETTIG¹, R. ABBOTT¹, AND D. KAPLAN¹ ¹Tufts Unoversity, Medford, MA, ²Massachusetts Institute of Technology, Cambridge, MA

P-Th-588

Shape-Controlled Synthesis of Degradable Polymeric Microfibers Z. BAI', F. SHARIFI', AND N. HASHEMI' 'lowa State University, Ames, IA

P-Th-589

Characterization Of Poly-Dimethylsiloxane As a Non-hermetic Micropackaging Material For Chronic Implantable Microsystems D. SUN¹, L. SHEM¹, P. WANG¹, C. ZORMAN¹, P. FENG¹, AND W. KO¹ ¹Case Western Reserve University, Cleveland, OH

P-Th-590

Self-Cleaning, Mechanically Robust Membranes for Implanted Glucose Biosensors

A. MEANS¹, R. FEI¹, J. GEORGE¹, J. PARK¹, A. ABRAHAM¹, G. COTE¹, AND M. GRUNLAN¹ ¹Texas A&M University, College Station, TX

P-Th-591

Click-Chemistry Based Molecularly Responsive Hydrogel as Biodegradable Scaffolds for 3D Cell Culture

R. NAVARRO¹, K. BEAVEN¹, J. MCKENZIE¹, R. HALL¹, K. KNUTSON¹, AND T. BETANCOURT¹ ¹Texas State University, San Marcos, TX

Track: Biomaterials, Nano to Micro Technologies

Micro and Nanostructured Materials

Chairs: Meng Deng, Wei Li

P-Th-592

Dependence of Nanostructures on Surface Energy for the Enhanced Differentiation and Maturation of Osteoblastic Lineage Cells on Microrough Titanium Surfaces

E. LOTZ¹, R. OLIVARES-NAVARRETE¹, S. HYZY¹, S. BERNER², Z. SCHWARTZ^{1,3}, AND B. BOYAN^{1,4}

¹Virginia Commonwealth University, Richmond, VA, ²Institut Straumann AG, Basel, Switzerland, ³University of Texas Health Science Center at San Antonio, San Antonio, TX, ⁴Georgia Institute of Technology, Atlanta, GA

P-Th-593

Microfabricated Nanoporous Gold Coatings Promote Cortical Cell Type-Dependent Surface Attachment

C. CHAPMAN¹, H. CHEN¹, M. STAMOU¹, M. BIENER², P. LEIN¹, AND E. SEKER¹ ¹University of California, Davis, Davis, CA, ²Lawrence Livermore National Laboratory, Livermore, CA

P-Th-594

Biological Nanowires: Silver-mediated Base Pairing for Conductivityenhanced DNA/ single Ion Intercalation Chains in (microbial) DNA

E. TOOMEY¹, S. VECCHIONI², M. CAPECE³, N. Le¹, A. RAY³, A. GREENBERG³, G. WESSEL¹, AND L. ROTHSCHILD⁴

¹Brown University, Providence, RI, ²Columbia University, New York, NY, ³Stanford University, Stanford, CA, ⁴NASA Ames Research Center, Mountain View, CA

P-Th-595

Bio-inspired Hybrid Nanosack for Pancreatic Islet Transplantation in the Omentum

P. HWANG ¹, D-J. LIM¹, A. TAMBRALLI¹, S. GILBERT¹, L. TIAN¹, A. SHALEV¹, AND H-W. JUN¹ ¹University of Alabama at Birmingham, Birmingham, AL

P-Th-596

Antibacterial Effect and Osteogenetic Properties of TiO2 nanotubes Incorporated with ZnO

W. LIU^{1,2}, P. SU³, S. CHEN⁴, Z. ZHANG⁴, H. LIU³, AND T. WEBSTER¹ ¹Northeastern University, BosTON, MA, ²Capital Medical University, Beijing, China, People's Republic of, ³Beijing University of Technology, BEIJING, China, People's Republic of, ⁴Capital Medical University, BEIJING, China, People's Republic of

P-Th-597

Impact of Hirschsprung's Disease on the Barrier Properties of Colonic Mucus

T. CARLSON¹, H. YILDIZ¹, A. GOLDSTEIN², AND R. CARRIER¹ Northeastern University, Boston, MA, ²Massachusetts General Hospital, Boston, MA

P-Th-598

Nanoparticle-Protein Separations with Nanoporous Silicon Nitride Membranes

J. WINANS¹, J-P. DESORMEAUX², S. WAYSON¹, T. GABORSKI³, T. KHIRE¹, C. STRIEMER², AND J. MCGRATH¹

¹University of Rochester, Rochester, NY, ²SiMPore, West Henrietta, NY, ³Rochester Institute of Technology, Rochester, NY

P-Th-599

Overcoming CARPA while Stopping Internal Bleeding with Hemostatic Nanoparticles

D. HICKMAN¹, A. SHOFFSTALL¹, R. GROYNOM¹, E. SHOFFSTALL¹, AND E. LAVIK¹ ¹Case Western Reserve University, Cleveland, OH

P-Th-600

Towards Safer Nanomaterials: Investigating Endothelial Cell Mechanical Properties and Barrier Function

Y. LIU¹ ¹Binghamton University, Binghamton, NY

P-Th-601

Metal Binding Properties of Adeno-associated Virus with Hexahistadine Capsid Functionalization

J. ZHAO¹, C. DEMPSEY¹, A. NIXON¹, AND J. SUH¹ ¹Rice University, Houston, TX

P-Th-602

Three-dimensional All-carbon Scaffolds for Stem Cell Maintenance G. LALWAN¹, A. GOPALAN¹, M. D'AGATI¹, M. RAO¹, J. SCHNELLER¹, AND B.

STHARAMAN¹ 'Stony Brook University, Stony Brook, NY

P-Th-603

Selenium Nanoparticle Coatings for Alteration in Cancer Cell Activity M. STOLZOFF¹ AND T. WEBSTER¹ 'Northeastern University, Boston, MA

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

9:30AM - 5:00PM POSTER SESSION Thurs 2014 OCTOBER 23 HURSDAY

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-604

Fabrication of Novel In Situ Crosslinked Carbon Nanomaterial Thin Films for Biomedical Applications

S. PATEL¹, G. LALWANI¹, AND B. SITHARAMAN¹ ¹Stony Brook University, Stony Brook, NY

P-Th-605

Considerations for Solvent Retention in Electrospun Fibers N. SCHAUB¹, E. FRANZE¹, AND R. GILBERT¹ ¹Rensselaer Polytechnic Institute, Troy, NY

P-Th-606

Facile Fabrication and Hydrophilic/hydrophobic Patterning of an Electrospun poly(methyl methacrylate) Cellular Filter

L. LEE¹, C. NGUYEN¹, A. SHARMA¹, B. TAUSSIG¹, S. RAO¹, V. LIN¹, AND J-C. CHIAO¹ $^{\prime}UT$ Arlington, Arlington, TX

P-Th-607

Mechanically Stable And Smart Titania Nanotubes On Ti-V Bone Implant Alloys

S. PATEL¹ AND T. SHOKUHFAR¹,² ¹Michigan Technological University, Houghton, MI, ²University of Illinois at Chicago, Chicago, IL

Track: Biomaterials, Translational Biomedical Engineering

Therapeutic and Theranostic Bomaterials

Chairs: Hitesh Handa, Michael Fenn

P-Th-576

An Amnion-based Barrier Membrane For Guided Bone Regeneration In Dental Implant Application

W. Ll¹, B. WANG², G. MA¹, B. BRAZILE³, AND J. LIAO³ ¹Dalian Medical University, Liaoning, China, People's Republic of, ²Northwestern University, Chicago, IL, ³Mississippi State University, Mississippi State, MS

P-Th-577

Improved Serum Stability of Collagen Mimetic Peptides Through Structure Modification

D. SMITH¹, L. BENNINK¹, AND S. YU¹ ¹University of Utah, Salt Lake City, UT

P-Th-578

Bioabsorabable Bone Plates Enabled with Local, Sustained Delivery of Alendronate

M. Park¹, W. Hur², M. Kim¹, S. Choi¹, S. Lee¹, C. Park¹, H. Min¹, T. Choi¹, and Y. Choy¹

¹Seoul National University, Seoul, Korea, Republic of, ²Seoul National University Hospital, Seoul, Korea, Republic of

P-Th-579

Hematological Effects of Graphene Nanoribbons J. FANG¹, S. CHOWDHURY¹, AND B. SITHARAMAN¹

J. FANG', S. CHOWDHURY', AND B. STIHARAMAN ¹SUNY Stony Brook University, Stony Brook, NY

P-Th-580

Transepithelial Transport of PAMAM Dendrimers Across Isolated Intestinal Tissue

D. HUBBARD¹, H. GHANDEHARI¹, AND D. BRAYDEN² ¹University of Utah, Salt Lake City, UT, ²University College Dublin, Dublin, Ireland

P-Th-581

Passivation of pNIPAM Nanogels through Surface Hydrolysis Mediated PEGylation

A. BLANCHARD¹, J. PETERS², S. VERGHESE², AND N. PEPPAS² ¹University of Texas at Austin, Rockwall, TX, ²University of Texas at Austin, Austin, TX

P-Th-582

Iron Oxide Nanoflakes for Hyperthermia and Magnetic Resonance Imaging A. CERVADORO¹,², M. CHO¹, J. KEY¹, C. COOPER³, C. STIGLIANO¹, S. ARYAL¹, A. BRAZDEIKIS⁴, J. LEARY³, AND P. DECUZZI¹ ¹Houston Methodist Research Institute, Houston, TX, ²Politecnico di Torino, Torino, Italy, ³Purdue University, West Lafayette, NJ, ⁴University of Houston, Houston, TX

P-Th-583

Effect of Magnesium and Other Alloying Elements on Endothelial Cells

N. ZHAO¹, J. MA¹, AND D. ZHU¹ ¹North Carolina A&T State University, Greensboro, NC

P-Th-584

Influence of Ionizing Radiation on Medical Device Materials

S. COOKE¹, D. MELEASON², S. MANGE², S. MYERS², AND A. WHITTINGTON¹ ¹Virginia Polytechnic Institute and State University, Blacksburg, VA, ²Lewis Gale Medical Center, Salem, VA

Track: Biomaterials

Biomaterials – Other

Chairs: Vassilios Sikacitsas, Daniel Alge

P-Th-608 🙎

Cell Selection through the Attachment on PMEA Analogs with Different Intermediate Water Contents

T. HOSHIBA¹, K. SATO¹, AND M. TANAKA¹ ¹Yamagata University, Yonezawa, Japan

P-Th-609

Development of an *In Vitro* Model for Single Species and Mixed Fungal-Bacterial Biofilms on Titanium Dental Implants

D. MONTELONGO¹, A. SRINIVASAN ¹, A. RAMASUBRAMANIAN¹, AND J. LOPEZ-RIBOT¹ ¹The University of Texas at San Antonio, San Antonio, TX

P-Th-610

Improving Properties of In Situ Forming PLGA Implants via ${\rm Poly}(\beta$ -amino ester) and Hydroxyapatite Additives

P. FISHER¹, T. MILBRANDT¹, Z. HILT¹, AND D. PULEO¹ ¹University of Kentucky, Lexington, KY

P-Th-611

Evaluation and Control of Alginate Microbead Stability for Islet Encapsulation

V. IBARRA¹, A. APPEL¹, S. SOMO¹, M-H. CHENG², S-W. KAO², M. ANASTASIO³, A. GARSON³, E. OPARA⁴, AND E. BREY¹

¹Illinois Institute of Technology, Chicago, IL, ²Chang Gung Memorial Hospital, Linkou, Taiwan, ³Washington University, St.Louis, MO, ⁴Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC

P-Th-612

Maintenance of Liver Function via Hepatocyte Morphology Regulation on Blood-compatible Polymers

T. OTAKI¹, T. HOSHIBA¹, AND M. TANAKA¹ ¹Yamagata University, Yonezawa, Japan

P-Th-613

Increased Cellular Neurogenesis on Graphene Substrate

J. LEE¹, A. LIPATOV¹, L. HA¹, A. SINITSKII¹, AND J. LIM¹ ¹University of Nebraska-Lincoln, Lincoln, NE

P-Th-614

Adhesion and Proliferation of Stem Cells on Polymers with Different Intermediate Water Contents

E. NEMOTO¹, T. HOSHIBA¹, K. SATO¹, AND M. TANAKA¹ ¹Yamagata University, Yonezawa, Japan

THURSDAY | OCTOBER 23 | 2014 POSTER SESSION Thurs 9:30AM – 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-615

Enhancement of Citrate-Based Biodegradable Elastomer through the Application of Click Chemistry B. JAHANSHAHI¹, J. GUO¹, AND J. YANG¹

¹Pennsylvania State University, state college, PA

P-Th-616 LKBI and MO25 Demonstrate Significant Interaction with Myofilament Protein

M. LOPEZ-PIER¹, J. KONHILAS¹, AND S. BEHUNIN¹ ¹University of Arizona, Tucson, AZ

Track: Biomechanics, Orthopaedic and Rehabilitation Engineering

Clinical, Rehabilitation and Sports Biomechanics

Chairs: Katherine Steele, Noah Rosenblatt

P-Th-190

Study of the Urethral Support Function in Women with a Computational Modeling Approach Y. PENG¹ AND Y. ZHANG¹ 'University of Houston, Houston, TX

P-Th-191

Gait Analysis For Early Fall Prediction

L. PETKU¹, A. ALSAMARAE¹, AND M. NASIR¹ ¹Lawrence Technological University, Southfield, MI

P-Th-192

Fragile X-Associated Tremor/Ataxia Syndrome - A Case Study

J. LEE¹, R. IMAMURA¹, N. MERRIER², AND S. SHIMADA² ¹CSU Sacramento, Sacramento, CA, ²Biomechanical Consultants of CA, Davis, CA

P-Th-193

Sensitivity of Lumbopelvic Rhythm to Risk Factors of Low Back Pain M. VAZIRIAN¹, A. AGARWAL¹, B. KOCH¹, R. TROMP¹, AND B. BAZRGARI¹

IM. VAZIRIAN', A. AGARWAL', B. KOCH', R. TROMP', AND B. BAZRGA ¹University of Kentucky, Lexington, KY

P-Th-194

Gender Differences In How Older Adults Regulate Angular Momentum During Stair Descent

K. SINGHAL¹, J. KIM², J. CASEBOLT², S. LEE², K-H. HAN², AND Y-H. KWON² ¹University of North Texas Health Science Center, Fort Worth, TX, ²Texas Woman's University, Denton, TX

P-Th-195

Effect of Sagittal Imbalance and Compensatory Mechanisms on Postural Stability in Spinal Deformity Patients M. PALIWAL¹, N. GROSLAND¹, AND S. MENDOZA¹

M. PALIWAL', N. GROSLAND', AND S. MENDOZA' ¹University of lowa, lowa City, IA

P-Th-196 🧝

Effects of Visual Feedback Distortion on Gait Speed S-J. KIM¹, M. OGILVIE¹, N. SHIMABUKURO¹, AND T. STEWART¹ ¹California Baptist University, Riverside, CA

P-Th-197

Lateral Trunk Position Can Increase Risk of Elbow Injury in Collegiate Baseball Pitchers

M. SOLOMITO¹, E. GARIBAY¹, J. WOODS¹, S. OUNPUU¹, AND C. NISSEN¹ ¹Connecticut Children's Medical Center, Farmington, CT

P-Th-198

Biomechanical Evaluation of Knee Movements During Skilled and Unskilled Golf Swing

A. CHOI¹, H. KIM¹, AND J. MUN² ¹The University of Texas Health Science Center at Houston, Houston, TX, ²Sungkyunkwan University, Suwon, Korea, Republic of

P-Th-199

Subject Ability To Accurately Characterize G's In Relation To Activities Of Daily Living

W. LEE¹, S. PERUMAL¹, B. PATEL¹, AND K. KONNAIYAN¹ ¹University of South Florida, Tampa, FL

P-Th-200

Quantitative Analysis of Dummy Headform Shape for Impact Testing with Football Helmets

B. COBB¹, A. MACALISTER¹, T. YOUNG¹, A. KEMPER¹, S. ROWSON¹, AND S. DUMA¹ ¹Virginia Tech-Wake Forest University, Blacksburg, VA

P-Th-201

Regulation of Horizontal Reaction Forces Across Clubs During the Golf Swing

T. PETERSON¹, P. REQUEJO¹,², H. FLASHNER¹, AND J. MCNITT-GRAY¹ ¹University of Southern California, Los Angeles, CA, ²Rancho Los Amigos National Rehabilitation Center, Downey, CA

P-Th-202

Stress And Strain Analysis on L4-L5 Lumbar Spine While Performing Sit-Ups. A. SYED¹, R. MOHAMMED¹, B. MOHAMMED¹, W. MOHAMMED¹, AND Y. AL-SMADI¹ 'Texas A&M University-Kingsville, Kingsville, TX

P-Th-203

Pneumatic Muscle Actuator Use in Leg Extension Exercise E. DILLER¹, B. RINEHART¹, J. ALLEN¹, T. MERRELL¹, D. REYNOLDS¹, AND C. PHILLIPS¹

¹Wright State University, Dayton, OH

P-Th-204

Hip Biomechanics of Ballet Dancers in Closing First, Third and Fifth Position A. LOPEZ¹, S. CAREY¹, AND M. MORRIS¹ ¹University of South Florida, Tampa, FL

P-Th-205

Hockey Skating Kinematics and the Effect of Skate Design

R. TIDMAN¹, L. LAMBERT², D. CRUIKSHANK²,³, AND B. SILVER-THORN¹ ¹Marquette University, Milwaukee, WI, ²DC Hybrid Skating, Milwaukee, WI, ³Easton Hockey, Van Nuys, CA

P-Th-206

Human Motion Analysis While Climbing Cliff

S. JULAKANTI¹, A. MOHAMMED¹, S. MOHAMMED¹, AND Y. M AL-SMADI¹ $^{\rm T}Cexas$ A&M University, Kingsville, TX

P-Th-207

Inverse Dynamic and Kinetic Analysis of Seated Leg Curl Exercise V. Nekkanti¹, P. Murugesu¹, R. Mamidi¹, R. Tondapu¹, D. Patel¹, and Y. M. Al-Smadi¹

¹Texas A&M University Kingsville, Kingsville, TX

P-Th-208

Dynamic and Kinetic Analysis of a Human Body During Push-Ups

D. JOY¹, R. PATEL¹, H. SHEKHAWAT¹, B. AYODELE¹, P. MURUGESU¹, D. PATEL¹, AND Y. M. AL-SMADI¹

¹Texas A&M University Kingsville, Kingsville, TX

P-Th-209

Musculoskelatal Simulation of Archery A. REDDY¹, N. KILANII¹, A. SHAH¹, AND Y. M. AL-SMADI¹ ¹Texas A&M University- Kingsville, Kingsville, TX

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

9:30AM - 5:00PM POSTER SESSION Thurs 2014 | OCTOBER 23 | THURSDAY

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-210

Age-Related Lower-Extremity Muscle Fatigue During A Moderate-Intensity Cycling Exercise

K. STRATTON¹, K. MOMENI¹, AND P. FAGHRI¹ ¹University of Connecticut, Storrs, CT

P-Th-211

Comparison of Neuromuscular Activity during the Lateral Step Task in Younger and Older Adults

T. BEJARANO¹, A. THOTA¹, D. BRUNT¹, AND R. JUNG¹ ¹Florida International University, Miami, FL

Track: Biomechanics

Injury Biomechanics

Chairs: Jennifer Currey, Yahia Al-Smadi

P-Th-212

A Computational Method for Analyzing Military Boot Designs at Blast Conditions

R. BERTUCCI¹, R. PRABHU¹, S. CLARK¹, M. HORSTEMEYER¹, J. LIAO¹, AND L. WILLIAMS¹ ¹Mississippi State University, Starkville, MS

P-Th-213

Comparison Of Head Impact Accelerations Based On Ground Cover Of Playgrounds

G. DANCHIK¹, C. DIDOMENICO¹, AND E. KENNEDY¹ ¹Bucknell University, Lewisburg, PA

P-Th-214

Sub-rupture Trauma of Blast Overpressure J. HERNANDEZ¹ '*UTSA, Houston, TX*

P-Th-215

Intracranial Deformation Sensor for Blast-Induced Traumatic Brain Injury

S. SONG¹, A. KIM¹, T. ZHANG¹, N. RACE¹,², Y. GU¹, R. SHI¹, AND B. ZIAIE¹ ¹Purdue University, West Lafayette, IN, ²Indiana University School of Medicine, Indianapolis, IN

P-Th-216

Evaluation of Human Body and Anthropomorphic Test Device (ATD) Injury Responses to Underbody Blast (UBB) Events

C. WEAVER¹, K. DANELSON¹, AND J. STITZEL¹ ¹Wake Forest University, Winston-Salem, NC

P-Th-217

Injury Simulation In Vivo in Diabetic Foot

H. RANU¹ ¹American Orthopaedic Biomechanics Research Institute, Atlanta, GA

P-Th-218

Quantitative Analysis of Biomechanical Data with Random Measurement Error

B. COBB¹, S. ROWSON¹, AND S. DUMA¹ ¹Virginia Tech-Wake Forest University, Blacksburg, VA

P-Th-219

Quantification of Toy Sword Kinematics with Male and Female Pediatric Volunteers

S. BEEMAN¹, S. ROWSON¹, AND S. DUMA¹ ¹Virginia Tech - Wake Forest University, Center for Injury Biomechanics, Blacksburg, VA

P-Th-220

Stress State and Strain Rate Dependency in Porcine Lung Parenchyma C. MAHAFFEY¹, B. WEED¹, S. PATNAIK¹, J. LIAO¹, R. PRABHU¹, AND L. WILLIAMS¹ ¹Mississippi State University, Starkville, MS

P-Th-221

A Computational Model of the Porcine Eye

R. WATSON^{1,2}, W. GRAY¹, R. GLICKMAN^{1,3}, B. LUND⁴, W. SPONSEL^{1,5}, AND M. REILLY¹ ¹UTSA, San Antonio, TX, ²BRC, San Antonio, TX, ³UTHSCSA, San Antonio, TX, ⁴USAISR, San Antonio, TX, ⁵UIW, San Antonio, TX

P-Th-222

Lateral Impact and Injury Tolerance of the Lumbar Spine N. MERRIER¹ AND S. SHIMADA¹ *Biomechanical Consultants of California Davis, CA*

P-Th-223

Probability of Fall Due To Trip Hazard Via Computer Simulations H. CHITTAM¹, K. DAS¹, B. PAVAN¹, AND W. LEE¹

¹University of South Florida, Tampa, FL

P-Th-224

Fundamental Limitation of Conventional Helmets in Mitigating Injury K. LAKSARI¹, H. SHI¹, L. WU¹, E. ORTEGA², AND D. CAMARILLO¹

¹Stanford University, Stanford, CA, ²East Side College preparatory school, Stanford, CA

P-Th-225

Influence of Age and Gender on Lateral Cervical Impact Response and Injury Tolerance

N. MERRIER¹ AND S. SHIMADA¹ ¹Biomechanical Consultants of California, Davis, CA

P-Th-226

Identification of Trauma-Related Biomarkers Following Torsional Indirect Traumatic Optic Neuropathy (TITON)

B. ASEMOTA¹, R. GLICKMAN¹,², AND M. REILLY¹

¹University of Texas San Antonio, San Antonio, TX, ²University of Texas Health Science Center at San Antonio, San Antonio, TX

P-Th-227

Blast Induced Traumatic Brain Injury: Detection Through Immunocytochemistry and MALDI

K. JONES¹, B. LUND², R. GLICKMAN³, W. SPONSEL⁴, W. GRAY⁵, AND M. REILLY⁶ ¹University of Texas at San Antonio, San Antonio, TX, ²USAISR Ft. Sam Houston, San Antonio, TX, ³Ophthalmology, University of Texas Health Science Center at San Antonio, San Antonio, TX, ⁴Biomedical Engineering University of Texas at San Antonio; Visual Science, Rosenberg School of Optometry, University of the Incarnate Word; WESMD Professional Associates; Primary Investigator with the Australian Research Council Centre of Exccellence in Vision Science (ACEVS), San Antonio, TX, ⁶Geologial Sciences, University of Texas at San Antonio, San Antonio, TX

P-Th-228 🔵

Response of Isolated Whole Human Lungs in Compression: Effect of Loading Rate

A. KEMPER¹, A. SANTAGO¹, J. STITZEL¹, J. SPARKS¹, AND S. DUMA¹ ¹Virginia Tech - Wake Forest University, School of Biomedical Engineering and Sciences, Blacksburg, VA

P-Th-229

The Effect of Acoustic Pollution on Marine Mammals

S. CLARK^{1,2}, R. BERTUCCI^{1,2}, J. LIAO^{1,2}, R. PRABHU^{1,2}, AND L. WILLIAMS^{1,2} ¹Mississippi State University, Starkville, MS, ²Center for Advanced Vehicular Systems, Starkville, MS

P-Th-230

Determination of Empirical Relations Between Shock Tube Geometry and Pressure Profiles

A. ROBBINS¹, P. ANUMOLU¹, R. VAN LOON², AND M. MORENO¹ ¹Texas A&M University, College Station, TX, ²Swansea University, Swansea, United Kingdom

P-Th-231

Minimum Time to Collision at Braking from the 100-Car Naturalistic Driving Study

J. MONTGOMERY¹, K. KUSANO¹, AND H. GABLER¹ ¹Virginia Tech, Blacksburg, VA

4 POSTER SESSION Thurs 9:30AM – 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

Track: Biomechanics

Multiscale Modeling in Biomechanics

Chairs: Rebecca Heise, Stuart Campbell

P-Th-258

Analysis of Toe-In Gait Modification for Patients with Knee Osteoarthritis T. SCHLOTMAN¹, P. SHULL², AND J. REINBOLT¹

¹The University of Tennessee, Knoxville, TN, ²²Shanghai Jiao Tong University, Shanghai, China, Shanghai, China, People's Republic of

P-Th-259

Viscoelasticity of Tau Proteins Leads to Strain Rate-Dependent Breaking of Microtubules during Axonal Stretch Injury: Predictions from a Mathematical Model

POSTER ESSION H. 10

H. AHMADZADEH¹, D. SMITH¹, AND V. SHENOY¹ ¹University of Pennsylvania, Philadelphia, PA

P-Th-260

Multi-Scale Finite Element Modeling of Human Tympanic Membrane in Normal and Diseased Ears S. JIANG¹, X. WANG¹, AND R. GAN¹ ¹University of Oklahoma, Norman, OK

P-Th-261

A Multiscale Framework for Simulation of Hemodynamics in a Patient-Specific Coronary Artery Bypass Graft Surgery A. B. RAMACHANDRA¹, A. KAHN¹, AND A. MARSDEN¹

¹UCSD, La Jolla, CA

P-Th-262

Development of Age and Sex-Specific Thorax Finite Element Models S. SCHOELL¹, A. WEAVER¹, AND J. STITZEL¹

¹Virginia Tech- Wake Forest University Center for Injury Biomechanics, Winston-Salem, NC

P-Th-263

Use of Simplified Vehicle Finite Element Models to Assess Occupant Injury in Crash Reconstructions

J. GAEWSKY^{1,2}, C. WEAVER^{1,2}, A. WEAVER^{1,2}, K. DANELSON^{1,2}, AND J. STITZEL^{1,2} ¹Virginia Tech - Wake Forest University Center for Injury Biomechanics, Winston-Salem, NC, ²Wake Forest School of Medicine, Winston-Salem, NC

P-Th-264

Microstructure-Sensitive Investigation of Age-Related Changes in Pediatric Long Bone

D. CHRISTE¹, S. REDDY², A. KONTSOS¹, AND S. BALASUBRAMANIAN² ¹Drexel University, Philadelphia, PA, ²Drexel University, School of Biomedical Engineering and Health Systems, Philadelphia, PA

P-Th-265

Building Three-Dimensional Statistical Shape Models of Human Liver Y-C. Lu¹ AND C. UNTAROIU¹

¹Virginia Tech and Wake Forest University, Blacksburg, VA

P-Th-266

Development Of An Atlas-Based Finite Element Head Model

L. MILLER¹, J. URBAN¹, E. LILLIE¹, AND J. STITZEL¹ ¹Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, NC

P-Th-267

A Multiscale Approach For The Simultaneous Analysis Of Continuum And Micro-FE Models

J. JOHNSON¹ AND K. TROY¹ ¹Worcester Polytechnic Institute, Worcester, MA

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

100 BMES 2014

P-Th-268

POPC Phospholipid Bilayer Failure Under Strip Biaxial Stretching Using Molecular Dynamics

M. MURPHY¹, M. HORSTEMEYER¹, S. GWALTNEY¹, J. LIAO¹, L. WILLIAMS¹, AND R. PRABHU¹

¹Mississippi State University, Mississippi State, MS

P-Th-269

Volume Decrease of Schlemm's Canal in an FEA Model of Elevated IOP in the Human Eye R. WILKES' AND M. REILLY'

¹University of Texas at San Antonio, San Antonio, TX

Track: Biomechanics, Orthopaedic and Rehabilitation Engineering

Musculoskeletal Biomechanics

Chairs: Rita Issa

P-Th-168

Response of Trabecular Bone to Elevated Loading Frequencies H. SIDOTI¹, A. RITTER¹, AND A. VALDEVIT¹ ¹Stevens Institute of Technology, Hoboken, NJ

P-Th-169

Characterization of a Multi-Strain Profile for Cellular Mechanotransduction Studies

J. KING¹, K. SHAH¹, P. SETHU², AND M. SAUNDERS¹ ¹The University of Akron, Akron, OH, ²The University of Alabama at Birmingham, Birmingham, AL

P-Th-170

Loading And Zoledronic Acid Protect Against Disuse-Induced Bone Strength Loss In The Femoral Neck

J. BREZICHA¹, R. BOUDREAUX¹, S. LENFEST¹, A. NARAYANAN², S. BLOOMFIELD¹, AND H. HOGAN¹

 $^1 {\rm Texas}$ A&M University, College Station, TX, $^2 {\rm Texas}$ A&M Health Science Center, College Station, TX

P-Th-171

Development and Characterization of a Pure Uniaxial Microloading Device for Biologic Testing

J. KING¹, D. HAYES¹, J. MCPHERSON¹, S. YORK¹, AND M. SAUNDERS¹ ¹The University of Akron, Akron, OH

P-Th-172

Assessment of Total Shoulder Arthroplasty Glenoid Stability During Simulated Rocking Horse Motion

S. HELMS¹, G. COLBATH², J. GAGLIANO³, R. HAWKINS², L. PIETRYKOWSKI¹, A. BARRETT¹, B. PRZESTRZELSKI¹, AND J. DESJARDINS¹ ¹Clemson University, Clemson, SC, ²Steadman Hawkins, Greenville, SC, ³Steadman Hawkins, Denver, CO

P-Th-173

Laserectomy of the Human Spinal Disc to Relieve Low-back Pain - A Technique

H. RANU¹

¹American Orthopaedic Biomechanics Research Institute, Atlanta, GA

P-Th-174

Cadaveric Thumb-tip Forces Produced by Extrinsic and Intrinsic Muscles are More Sensitive to Joint Angles than Muscle Moment Arms and Bone Lengths J. TOWLES¹ AND V. HENTZ²

¹University of Wisconsin-Madison, Madison, WI, ²Stanford University, Redwood City, CA

9:30AM – 5:00PM POSTER SESSION Thurs 2014 OCTOBER 23 THURSDAY

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-175

Osteocytes' Response to Mechanical Loading Supports Breast Cancer Cell Growth and Migration Y-H. MA¹ AND L. YOU¹

¹University of Toronto, Toronto, ON, Canada

P-Th-176

Bisphosphonate Treatment During Initial Unloading Protects Against Bone Loss for Second Unloading

S. LENFEST¹, J. BREZICHA¹, R. BOUDREAUX¹, C. SCHAEFER¹, S. BLOOMFIELD¹, M. ALLEN², AND H. HOGAN¹

 $^{\rm 1}{\rm Texas}$ A&M University, College Station, TX, $^{\rm 2}{\rm Indiana}$ University School of Medicine, Indianapolis, IN

P-Th-177

Tribology of IL-1 Stimulated Cartilage Explants: Restoration of Chondroprotection by rhPRG4

K. LARSON¹, K. ELSAID², B. FLEMING¹, T. SCHMIDT³, AND G. JAY¹ ¹Brown University, Providence, RI, ²MCPHS University, Boston, MA, ³University of Calgary, Calgary, AB, Canada

P-Th-178

Development and Validation of Finite Element Model of a 16-Year Old Osteo-Ligamentous Thoracic Spine P. HADAGALI¹ AND S. BALASUBRAMANIAN¹

¹Drexel University, Philadelphia, PA

P-Th-179

Mechanical Characterization of Gough Island Mice Femora D. GERBER¹, C. HABEN¹, C. VINYARD², AND M. SAUNDERS¹

¹University of Akron, Akron, OH, ²Northeast Ohio Medical University, Rootstown, OH

P-Th-180

Comparing Cartilage T2 Relaxation Times and Joint Contact Pressures of Normal and Injured Wrists

I. CHAPPELL¹, P. LEE², T. MCIFF², E. TOBY², AND K. FISCHER¹,² ¹University of Kansas, Lawrence, KS, ²University of Kansas Medical Center, Kansas City, KS

P-Th-181

The Biomechanical Effect of Stabilizing Material for Dynamic Compression Plate on Human Cadaveric Humerous V. NGUYEN¹ AND H. VO¹

¹Mercer University, Macon, GA

P-Th-182

Determination of the Mechanical Properties of the Porcine Temporomandibular Joint Disc in Unconfined Compression at Slow Strain

Rate R. MORTIMER¹, J. LOWE¹, AND A. ALMARZA¹

¹University of Pittsburgh, Pittsburgh, PA

P-Th-183

Mapping Biomechanical Properties of Mice Articular Surfaces Using Indentation: Preliminary Results

J-F. Lavoie^{1,2}, S. Sim^{3,4}, A. Moreau^{2,5}, C-É. Aubin^{5,6}, E. Quenneville⁷, M. Garon⁷, and M. Bushmann³

¹CHU Ste-Justine/Université de Montreal, Montreal, QC, Canada, ²Universite de Montreal, Montreal, QC, Canada, ³Polytechnique Montreal, Montreal, QC, Canada, Montreal, QC, Canada, ⁴Biomomentum, Laval, QC, Canada, ⁵CHU Ste-Justine Research Center, Montreal, QC, Canada, ⁶Polytechnique Montreal, Montreal, QC, Canada, ⁷Biomomentum Inc, Laval, QC, Canada

P-Th-184

Computational Modeling of Wound Healing Based on Continuum Mixture Theory

M. Rahman I, J. Zhou2, A. Nordquist I, and Y. Feng I

¹UNIVERSITY OF TEXAS, SAN ANTONIO, TX, ²UNIVERSITY OF TEXAS, AUSTIN, TX

P-Th-185

An Experimental and Theoretical Model of Simplified Childbirth A. BAUMER¹, A. LEHN¹, J. GROTBERG², AND M. LEFTWICH¹

¹The George Washington University, Washington, DC, ²University of Michigan, Ann Arbor, MI

P-Th-186

Mathematical Rendering of Trabecular Bone: Orientation Distribution of Trabeculae

A. MORSHED¹, J. WANG², X. GUO², AND X. WANG¹ ¹University of Texas at San Antonio, San Antonio, TX, ²Columbia University, New York City, NY

P-Th-187 🤶

Effect of Osteoactivin on the Mechanical Properties of Mouse Bone D. HAYES¹, K. NOVAK², F. SAFADI², AND M. SAUNDERS¹

¹University of Akron, Akron, OH, ²Northeast Ohio Medical University, Rootstown, OH

P-Th-188

Biomechanical Effects Of Angled Screw Placement On The Fixation Stability Of Long Bone Shaft Fractures B. NGUYEN¹ AND H. VO¹ 'Mercer University, Macon, GA

P-Th-189

Mathematical Analysis Of The Fatigue Failure Of An Intramedullary Rod Distal Locking Screw

D. BAILEY¹, J. KADLOWEC¹, AND D. BRENNAN² ¹Rowan University, Glassboro, NJ, ²Rowan University, Rowan University, NJ

Track: Biomedical Engineering Education (BME)

Biomedical Engineering Education

Chairs: John Desjardins, Craig Goergen

P-Th-663

A New Model For Introductory Biomedical Engineering Education Emphasizing Clinical Innovation

S. SRIDHAR¹, M. DOSHI¹, S. SRIDHAR², A. NGUYEN¹, N. PENDYALA¹, N. JAMALI¹, AND V. PIZZICONI¹

¹Arizona State University, Tempe, AZ, ²University of Arizona College of Medicine - Phoenix, Phoenix, AZ

P-Th-664

Service Learning Projects to Engage Students in Biomedical Engineering at a School which Does Not Offer a Biomedical Engineering Degree

J. REY1, O. LEDEZMA1, D. WON1, J. CASTANEDA1, A. NABILSI1, E. ORELLANA1, AND M. MO^1

¹California State University Los Angeles, Los Angeles, CA

P-Th-665

A Comprehensive Meta-analysis of Skeletal Muscle Architecture Performed by Undergraduate BME Course

C. PELLAND¹, B. ⁴²⁸⁰¹, M. ⁴²⁸⁰¹, K. VIRGILIO¹, J. MILLER¹, J. GOETSCHIUS¹, L. SLATER¹, G. NORTE¹, A. STERN¹, AND S. BLEMKER¹

¹University of Virginia, Charlottesville, VA

P-Th-666

Multiphysics Simulation of the Krogh Tissue Cylinder System for Undergraduate Education D. CASTAÑEDA¹ AND B. HAWKINS¹

¹San Jose State University, San Jose, CA

P-Th-667

Creating a World Class Institute for Biomedical Engineering and Nano-Biomedicine in Saudi Arabia

H. RANU¹, A. ALMEJRAD¹, AND K. AL-IBRAHIM¹ ¹University of Hail, Hail, Saudi Arabia

THURSDAY | OCTOBER 23 | 2014 POSTER SESSION Thurs 9:30AM – 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-668

Establishment of an Interdisciplinary Biomedical Engineering Programme In Nigeria: Preliminary Observations From The University Of Lagos A. OSUNTOKI¹, O. OLAWALE¹, E. AJIBOLA¹, C. ESEZOBOR¹, AND S. NWANERI¹ ¹University of Lagos, Lagos, Nigeria

P-Th-669

A Tutoring Program for First Semester BME Students D. GAITAN-LEON¹, P. NAVAS¹, AND J. BRICENO¹ ¹Universidad de los Andes, Bogota, Colombia

P-Th-670

A Model for a Successful Collaborative Capstone Design Course

M. ODEN¹, E. RICHARDSON¹, G. WOODS¹, A. DICK¹, AND M. O'MALLEY¹ ¹Rice University, Houston, TX

P-Th-671

Best Practices in Teaching Entrepreneurship to Bioengineers: An Evaluation of Two New Overseas Medical Entrepreneurship Fellowship Programs Based in Ireland and Denmark G. SMITH¹

¹Arizona School of Dentistry and Oral Health, Mesa, AZ

P-Th-672

Preliminary Experience in Flipping Biothermodynamics

J. PATZER II¹, R. CLARK¹, AND M. BESTERFIELD-SACRE¹ ¹University of Pittsburgh, Pittsburgh, PA

P-Th-673

Inquiry-Based Education of Fluid Mechanics Principles Using Hemodynamics A. ROCHELEAU¹, C. WILSON², S. ARCHER¹, AND M. KING¹ ¹Cornell University, Ithaca, NY, ²Southside High School, Elmira, NY

P-Th-674

The DEN (Design and Entrepreneurship Network): A Multi-disciplinary Program to Develop and Apply Entrepreneurship Experiences for BME Students

B. PRZESTRZELSKI¹ AND J. DESJARDINS¹ ¹Clemson University, Clemson, SC

P-Th-675

Using Discussion Boards to Improve Student Professionalism and Field Knowledge

M. POOL¹, C. PEAK², J. HALE², AND A. SIEVING² ¹University of Illinois at Urbana-Champaign, Urbana, IL, ²Purdue University, West Lafayette, IN

P-Th-676

Design and Development of a Laser-CT:A Medical Imaging Training System J. FANG¹, M. LUPP¹, AND W. ZHAO¹ ¹University of Miami, Coral Gables, FL

P-Th-677

Using iBooks and iTunesU for a Sophomore-Level Class: Numerical Simulations in BME R. HART¹ 'The Ohio State University, Columbus, OH

P-Th-678

How Broad Should Biomedical Engineering Educational Programs Be? P. JOHANSEN¹

¹Aarhus University, Aarhus N., Denmark

P-Th-679

Effects of Audience Response Systems on Student Attendance and Participation C. GOERGEN¹ ¹Purdue University, West Lafavette, IN

P = Poster Session
 OP = Oral Presentation
 @ = Reviewer Choice Award

P-Th-680

Using Social Media to Communicate Science to the Public: A Case Study of Science Sunday R. BOWLES^{1,2}

¹Duke University, Durham, NC, ²ScienceSunday, Durham, NC

P-Th-681

Inquiry Based Additive Manufacturing: Bridging the Gap Between Advanced Techniques and the Classroom

J. JONES¹, E. SHARPSTEEN², C. SCHAFFER¹, AND N. NISHIMURA¹ ¹Cornell University, Ithaca, NY, ²Onondaga High School, Onondaga, NY

P-Th-682

A Novel Online/Onsite Lab Course in Biomedical Engineering Practice and Innovation

E. LOGSDON¹, A. MAYBHATE¹, AND E. HAASE¹ ¹Johns Hopkins University, Baltimore, MD

P-Th-683 🙎

The DREAM in Teaching Computational Molecular Systems Biology K. NAFGLE¹

¹Washington University in St Louis, St Louis, MO

P-Th-684

CANCELLED BY AUTHOR

P-Th-685

Developing a Transmedia Archival Exhibit for Artificial Hearts: Genuine Stories

A. CHANG¹, M. HAN¹, E. STATHAM¹, S. IGO², AND J. GRANDE-ALLEN¹ ¹Rice University, Houston, TX, ²Houston Methodist DeBakey Heart & Vascular Institute, Houston, TX

P-Th-686

A BME based Inquiry Module: Gelatin and Chemical bonding for Healing a Wounded Soldier

S. IYER¹, J. SAROKA², S. ARCHER¹, AND Y. GAO¹ ¹Cornell University, Ithaca, NY, ²Lansing High School, Lansing, NY

P-Th-687

Effective Engagement of Inquiry Based Learning in the K-12 Science Classroom: An Ex Ovo Chick Culture for the Study of Ethanol on Embryonic Development C. GREGG¹, J. BROWNE², S. ARCHER¹, AND J. BUTCHER¹ ¹Cornell University, Ithaca, NY, ²Binghampton City School District, Binghamton, NY

P-Th-688

Breast Tissue Engineering Module for Girl Scout STEM Career Enrichment Event

S. Rowlinson I, W. Bridges I, and K. Burg I ¹Clemson University, Clemson, SC

P-Th-689

Designing a K-12 Outreach Activity: Newton's Laws of Motion V. ALPHONSE¹, S. BEEMAN¹, AND S. DUMA¹ ¹Virginia Tech - Wake Forest University Center for Injury Biomechanics, Blacksburg, VA

P-Th-690

Introducing Biomedical Engineering to a K-8 Audience using a Scalable, Hands-On Biomaterial Testing and Design Module T. DORSEY¹

¹Rensselaer Polytechnic Institute, Troy, NY

9:30AM – 5:00PM POSTER SESSION Thurs 2014 OCTOBER 23 THURSDAY

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-691 🙎

Research-Intensive Community to Create a Large-Scale, Low-Cost Undergraduate Research Program

R. DONGAONKAR¹, R. STEWART¹, AND C. QUICK¹ ¹Michael E. DeBakey Institute, Texas A&M University, College Station, TX

P-Th-692 Early Virtual Design Experience Enhances Relevance of Courses in BME Curriculum

M. CAPLAN¹, D. FRAKES¹, J. LA BELLE¹, AND V. PIZZICONI¹ ¹Arizona State University, Tempe, AZ

Track: Biomedical Imaging and Optics, Device Technologies and Biomedical Robotics

Diagnostic Devices and Biosensors

Chairs: Elizabeth Vargis

P-Th-70

Optical Skin Perfusion Monitor for Correction of Circulating Indocyanine Green Concentration Measured with a Skin Probe

Y-H. PENG¹ AND J-M. MAAREK¹ ¹University of Southern California, Los Angeles, CA

P-Th-7I

Enhanced Interferometric Detection of Individual Nanorods for Multiplexed Sensitive Molecular Assays D. SEVENLER¹, G. DAABOUL¹, R. ADATO¹, AND S. UNLU¹ ¹Boston University, Boston, MA

P-Th-72

A Colorimetric Quantification Method For Immunochromatographic Assays J. PARK¹

¹Kyungil University, Gyeongsan-si, Korea, Republic of

P-Th-73

Rapid, Single-step, Droplet-based Bacterial Assay on a Nanofibrous Substrate A. NICOLINI¹, C. FRONCZEK¹, AND J-Y. YOON¹ 'The University of Arizona, Tucson, AZ

P-Th-74

Optical Detection of Clot Contractile Forces

N. TAPARIA¹, L. TING¹, A. SMITH¹, AND N. SNIADECKI¹ ¹University of Washington, Seattle, WA

P-Th-75

Chemical Signal Amplification for Paper-Based Assays for Influenza A Detection K. ABE¹ AND P. YAGER¹ ¹University of Washington, Seattle, WA

P-Th-76

Multi-branched Gold Nanoparticles For The Detection Of EGFR On The Surface Of Esophageal Epithelial Cells Using Surface Enhanced Raman Scattering

J. JOHNSTON¹, E. TAYLOR¹, R. GILBERT¹, AND T. WEBSTER¹ ¹Northeastern University, Boston, MA

P-Th-77

Visual Detection of Akt-mTOR-HIF-I Signaling Pathway in Living Cell Using the Hairpin DNA Modified Gold Nanoparticle Beacon S. LI¹ AND Y. GU¹

¹China Pharmaceutical University, Nanjing, China, People's Republic of

P-Th-78

Novel Device to Diagnose Otitis Media Using Spectroscopy and Digital Imaging K. LONGO¹, D. PETERSON, PHD, MS¹, AND T. VALDEZ, MD²

University of Connecticut Health Center, Farmington, CT, ²Connecticut Children's Medical Center, Hartford, CT

P-Th-79

Reduced Field Curvature with Curved Sample Chamber in Wide Field-of-View Fluorescence Imaging for Point-of-Care CD4 Test M. SHOURAV¹, M. KIM¹, AND J. KIM¹ 'Kookmin University, Seoul, Korea, Republic of

Track: Biomedical Imaging and Optics

Imaging Applications

Chairs: Walter O'Dell

P-Th-621 🙎

Identifying PET/MRI Parameters for Early Treatment Response in Renal Cell Carcinoma

J. ANTUNES¹, S. VISWANATH², A. SHER², N. AVRIL², AND A. MADABHUSHI¹ ¹Case Western Reserve University, Cleveland, OH, ²Case Western Reserve University, CLEVELAND, OH

P-Th-622 🙎

Hyperspectral Imaging of Cardiac Ablation Lesions

D. GIL¹, L. SWIFT¹, R. MAZHARI¹, AND N. SARVAZYAN¹ ¹The George Washington University, Washington, DC

P-Th-623

Automatic Quantification of Endothelial Nitric Oxide Levels in a Microvessel with and without Tumor Cell Adhesion

J. WEI¹, L. ZHANG¹, AND B. FU¹ ¹The City College of the City University of New York, New York, NY

P-Th-624

Measurement of Cardiomyocyte Contractility Parameters in Biomimetic Microenvironment Using Image Registration J. TEO¹, N. ALWAHAB¹, AND N. CHRISTOFOROU¹ ¹Khalifa University, Abu Dhabi, United Arab Emirates

P-Th-625

A Multimodal Noninvasive Medical Imaging Phantom Material: Mechanical and Imaging Properties B. BELMONT¹, W. Ll¹, AND A. SHIH¹ 'University of Michigan, Ann Arbor, MI

P-Th-626

A Multi-Modality Imaging Approach to Generate a CAD Dataset of the 5th Percentile Female for Modeling Applications M. DAVIS¹, J. STITZEL¹, AND F. GAYZIK¹ ¹Wake Forest University - Virginia Tech Center for Injury Biomechancis, Winston Salem, NC

P-Th-627

Numerical FSI Simulations of Acoustic Radiation Force Impulse on Human Aortas with Atherosclerotic Plaque

H. LI¹, K. LIN¹, AND D. SHAHMIRZADI¹ ¹Stevens Institute of Technology, Hoboken, NJ

P-Th-628

See page 92 for Poster floor plan

Optical Spectroscopy and Narrowband Imaging for Improved Identification of the Parathyroid Glands

L. HIGGINS¹, T. DAVIDOV², AND M. PIERCE¹

¹Rutgers, The State University of New Jersey, Piscataway, NJ, ²Robert Wood Johnson University Hospital, New Brunswick, NJ

THURSDAY | OCTOBER 23 | 2014 POSTER SESSION Thurs 9:30AM – 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-629

Studying Thermo-Mechanical Effects of Pulsed Laser Irradiation on Tissues M. ${\sf GANGULY}^1$ and K. ${\sf MITRA}^1$

¹Florida Institute of Technology, Melbourne, FL

Track: Biomedical Imaging and Optics

Image Processing and Analysis

Chairs: Tilo Winkler

P-Th-630

Image Processing Algorithm for Automated Grading of Vitreous Haze

C. PASSAGLIA¹, E. STEVENSON¹, E. GREENBERG¹, D. RICHARDS¹, AND B. MADOW¹ ¹University of South Florida, Tampa, FL

P-Th-63 I Prediction Model Using

Prediction Model Using Clinical and MRI-based Features for Pelvic Organ Prolapse Diagnosis

S. ONAL¹, S. LAI-YUEN², P. BAO², A. WEITZENFELD², AND S. HART² 'Southern Illinois University – Edwardsville, Edwardsville, IL, ²University of South Florida, Tampa, FL

P-Th-632

Filtered Back-Projection With A Precise Weighting Function For Photoacoustic Image Reconstruction H. HUANG¹, G. BUSTAMANTE¹, R. PETERSON¹, AND J. YE¹

¹University of Texas at San Antonio, San Antonio, TX

P-Th-633

Automatic Initialization of 2D/3D Medical Image Registration Using A Hybrid Classifier

J. WU¹, E. ABDEL FATAH¹, AND M. MAHFOUZ¹ ¹The University of Tennessee, Knoxville, TN

P-Th-634

Organ-Wide Multiscale Vessel filtering for Cerebral Vasculature Modeling C-Y. HSU¹, B. SCHNELLER¹, AND A. LINNINGER¹ ¹University of Illinois at Chicago, Chicago, IL

P-Th-635

The Use of Stochastic Resonance to Improve Detectability in CT Images N. ZWEIFEL¹, R. STRAHLE¹, S. SCHEIDEGGER¹, R. FUCHSLIN¹, AND S. RHODES²

¹Zurich University of Applied Sciences, Winterthur, Switzerland, ²Grand Valley State University, Grand Rapids, MI

P-Th-636

Automation of Microcapsule Evaluation and Characterization for Use in Islet Transplantation

R. KRISHNAN¹, M. ALEXANDER¹, K. CHAN¹, A. WOLCOTT¹, C. FOSTER III¹, AND J. LAKEY¹ ¹University of California Irvine, Orange, CA

P-Th-637

Guidewire Enhancement Using a Multi-stage Order Statistic Filter in Digital X-ray Fluoroscopy

Y. JIANG¹ ¹University of Central Oklahoma, Edmond, OK

P-Th-638

Electron Microscopy Image Restoration and Resolution Improvement using an Example-based Super-Resolution Algorithm

S. HASHEMI AMROABADI', S. KHAYYER², A. QUACH², H. FAROOQ², A. BARGRIZ FARSHI², AND S. BEHESHTI²

¹University of Toronto, Toronto, ON, Canada, ²Ryerson University, Toronto, ON, Canada

P-Th-639

Laser Diffraction Imaging of Bacteria

K. KONNAIYAN¹, A. LAM¹, D. COVERT¹, AND A. SEBUKA¹ ¹University of South Florida, Tampa, FL

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

P-Th-640

Quantifying Biological Functions Using Fluorescent Dyes in 3D Spheroids E. LEARY¹ AND J. MORGAN¹ ¹Brown University, Providence, RI

P-Th-641

Automated Quantification of Caudal Vein Plexus in Zebrafish to Study Vascular Disruptors

C. HANS¹, C. MCCOLLUM¹, M. BONDESSON¹, J-A. GUSTAFSSON¹, S. SHAH¹, AND F. MERCHANT¹

¹University of Houston, Houston, TX

P-Th-642

Surface Data of the Human Body Acquired Using Long Range Three Dimensional Laser Scanners

D. SCHWARTZ^{1,2}, N. HRISTOV³, AND F. GAYZIK^{1,2}

¹Wake Forest University School of Medicine, Winston-Salem, NC, ²Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Winston-Salem, NC, ³Center for Design Innovation, Winston-Salem, NC

Track: Biomedical Imaging and Optics

Magnetic Resonance Imaging

Chairs: Stephen LeConte

P-Th-643

Enhanced Delivery and Imaging of Neurotherapeutics via US, MRI, SPECT and Acoustically Activated Nanoparticles

M. VALDEZ¹, E. YOSHIMARU¹, S. YUAN¹, A. HALAWANI¹, P. INGRAM¹, T. MATSUNAGA¹, R. WITTE¹, L. FURENLID¹, AND T. TROUARD¹ ¹University of Arizona, Tucson, AZ

P-Th-644

Nephrotoxicity Assessment of A Novel Graphene-Based Magnetic

Resonance Imaging Contrast Agent in Chronic Renal Failure Rodent Models S. LEE', J. TOUSSAINT', S. KANAKIA', S. CHOWDHURY', W. MOORE', K. SHROYER', AND B. SITHARAMAN'

¹Stony Brook University, Stony Brook, NY

P-Th-645

Array Coil for Carbon-13 MRS at 7 Tesla

J. Rispoli', I. Dimitrov²,³, S. Cheshkov², S. Ogier¹, C. Malloy², S. Wright¹, and M. McDougall¹

¹Texas A&M University, College Station, TX, ²University of Texas Southwestern Medical Center, Dallas, TX, ³Philips Medical Systems, Cleveland, OH

P-Th-646

Temporal SNR of Myocardial ASL does not Increase with Improved Spatial Consistency of Background Suppression

T. JAO¹, H. DO¹, AND K. NAYAK¹ ¹University of Southern California, Los Angeles, CA

P-Th-647

Adapting ¹H Receivers for Multi-Nuclear MRS by Frequency Translation S. OGIER¹, N. HOLLINGSWORTH¹, J. RISPOLI¹, M. MCDOUGALL¹, AND S. WRIGHT¹ ¹Texas A&M University, College Station, TX

P-Th-648

Mathematical Modeling of Multiply Connected Structures for Elastographic Imaging

B. SCHWARTZ¹, Z. YIN¹, AND R. MAGIN¹ ¹University of Illinois at Chicago, Chicago, IL

P-Th-649

Preparation of Cationic Macrocyclic Ligand for MR Imaging of Cartilage K. NWE¹

¹University of Pennsylvania, Philadelphia, PA

9:30AM - 5:00PM POSTER SESSION Thurs 2014 | OCTOBER 23 | THURSDAY

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-650

Nanomanufacturing of Targeted Rod- and Spherical Shaped Viral Nanoparticle MRI Contrast Agents for *In Vivo* Detection of Atherosclerotic Plagues in Mice

M. BRUCKMAN¹, L. RANDOLPH¹, A. VANMETER¹, K. JIANG¹, E. SIMPSON², L. LUYT², X. YU¹, AND N. STEINMETZ¹

 $^{\rm t}{\rm Case}$ Western Reserve University, Cleveland, OH, $^{\rm 2}{\rm The}$ university of western ontario, London, ON, Canada

P-Th-651

Improving Low-SNR Perfusion and Inflammation MRI with a Constrained Model-Based Reconstruction

S. FIELDEN¹, L. ZHAO¹, M. WINTERMARK¹, A. KLIBANOV¹, B. FRENCH¹, F. EPSTEIN¹, AND C. MEYER¹

¹University of Virginia, Charlottesville, VA

P-Th-652

Design of Interpolymer Complex-Superparamagnetic Iron Oxide Nanoparticles (IPC-SPIOs) with Potential for MR Molecular Imaging E. YOO¹

¹Binghamton University (SUNY), Binghamton, NY

P-Th-653

Classifying Head-Impact Related Changes in Brain Connectivity after a Single Season of High School Football: A Support Vector Machine Recursive Feature Elimination Approach

F. Mokhtari', E. Davenport', J. Urban', C. Whitlow', S. Natarajan², J. Stitzel', and J. Maldjian'

¹Wake Forest University, Winston Salem, NC, ²Indiana University, Bloomington, IN

P-Th-654

Optimization of Oxygen Extraction Fraction in MRI Human Brain Using Augmented Lagrangian Joint Estimation

N. BAHRAMI¹, M. JOHNSTON¹, AND Y. JUNG²

¹Wake Forest University, Winston Salem, NC, ²Wake Forest University School of Medicine, Winston Salem, NC

Track: Biomedical Imaging and Optics

Molecular Probes

Chairs: Beata Chertok

P-Th-655

Two Photon Excitation Spectra of Proteolytic Beacons - A Preliminary Study

D. HASKETT¹, U. UTZINGER¹, D. MCGRATH¹, O. MCINTYRE², AND J. VANDE GEEST¹ ¹University of Arizona, Tucson, AZ, ²Vanderbilt University, Nashville, TN

P-Th-656

Development of Fibrin-Targeting Paramagnetic Nanoparticles for Brain Injury Applications

K. RUMBO¹, V. BHARADWAJ¹, V. KODIBAGKAR¹, AND S. STABENFELDT¹ 'Arizona State University, Tempe, AZ

P-Th-657

Investigating the Response of the Family of NIR aza-BODIPY-based Fluorescent Dyes to Microenvironmental Changes

B. SAREMI^{1,2}, M. WEI^{1,2}, V. BANDI³, Y. LIU^{1,2}, B. CHENG^{1,2}, F. D'SOUZA³, K. NGUYEN^{1,2}, Y. HONG^{1,2}, AND B. YUAN^{1,2}

¹University of Texas at Arlington, Arlington, TX, ²The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, ³University of North Texas, Denton, TX

P-Th-658

NIR Lead Sulfide Quantum Dots Targeted to Vascular Endothelial Growth Factor Receptor 2 for Colorectal Cancer Imaging

J. CARBARY¹, J. BARTON¹, AND U. UTZINGER¹ ¹University of Arizona, Tucson, AZ

P-Th-659

Fast Imaging of Cancer Receptor Expression using Zwitterionic Tracers X. XU¹, R. PATIL¹, H. CHOI², AND K. TICHAUER¹

¹Illinois Institute of Technology, Chicago, IL, ²Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA

P-Th-660

Prussian Blue Nanoparticles For Multimodal Imaging Of Pediatric Brain Tumors

M. DUMONT¹, S. YADAVILLI¹, R. SZE^{1,2}, J. NAZARIAN^{1,2}, AND R. FERNANDES^{1,2} ¹Children's National Health System, Washington, DC, ²George Washington University, Washington, DC

P-Th-661

Discoidal Polymeric Nanoconstructs For Multimodal Cancer Imaging

J. KEY¹, A. PALANGE¹, S. ARYAL¹, C. STIGLIANO¹, AND P. DECUZZI¹ ¹Houston Methodist Research Institute, Houston, TX

P-Th-662

Progressive Tumor Accumulation of Positron Emitting Magnetic Nanoconstructs

S. ARYAL¹, J. KEY¹, C. STIGLIANO¹, D. LEE¹, AND P. DECUZZI¹ ¹Houston Methodist Research Institute, Houston, TX

Track: Cancer Technologies

Engineering of Cancer

Chairs: Amit Pathak, Srivatsan Kidambi

P-Th-301

Extracellular Mechanical Cues Drive Vinculin Mediated PI3-kinase Signaling to Enhance Cell Invasion in 3D

M. RUBASHKIN¹, L. CASSEREAU¹, R. BAINER¹, C. DUFORT¹, Y. YUI¹, G. OU¹, M. PASZEK¹,², M. DAVIDSON³, Y-Y. CHEN¹, AND V. WEAVER¹ ¹University of California - San Francisco, San Francisco, CA, ²Cornell University, Ithaca, NY,

"Oniversity of California - San Francisco, San Francisco, CA, "Cornell University, Ithaca, N1, "Florida State University, Tallahassee, FL

P-Th-302

3D Printing Biomimetic Bone Model for *In Vitro* Study of Breast Cancer Bone Invasion

W. ZHU¹ AND L. ZHANG¹ ¹The George Washington University, Washington, DC

P-Th-303

Differential Response to Matrix Rigidity Correlates with Aggressive Phenotype of Breast Cancer Cells

J. LI¹, Y. WU¹, M. AL-AMEEN¹, AND G. GHOSH² ¹University of Michigan Dearborn, Dearborn, MI, ²University of Michigan, Dearborn, Dearborn, MI

P-Th-304

Adding a Temperature-dependent Time Delay Improves the Accuracy of Arrhenius Models of Cell Death J. PEARCE¹

¹Univ. of Texas at Austin, Austin, TX

P-Th-305

Elucidating Brain Tumor-Niche Interactions In 3D Using Biomimetic Hydrogels C. WANG¹, X. TONG¹, AND F. YANG¹

¹Stanford University, Stanford, CA

P-Th-306

Engineered High-throughput Cellular Models of Prostate Cancer Resistance, Dormancy and Relapse using Novel Antibiotic Hydrogels T. GRANDHI¹, T. POTTA², J. FAUST¹, AND K. REGE¹

¹Arizona State University, Tempe, AZ, ²Marlyn Nutraceuticals, Tempe, AZ

THURSDAY | OCTOBER 23 | 2014

POSTER SESSION Thurs 9:30AM – 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-307

Hydrogel-based Multicellular Cancer Spheroid Models for Drug Screening Applications

S. ZUSTIAK¹, A. ASHRAF¹, A. BRANYI², AND Y. KIM² ¹Saint Louis University, St Louis, MO, ²University of Alabama, Tuscaloosa, AL

P-Th-308

Cell Spheroids As Microscopic Models for Macroscopic Problems M. JOYCE¹ AND A. BROCK¹

¹The University of Texas at Austin, Austin, TX

P-Th-309

Superior Methods To Examine Bone Tumor And Host Tissue Interactions Using Micro-Gravity Bioreactors

A. TONDON¹, C. HAASE¹, R. REESE¹, C. DODSON¹, C. GREGORY², AND R. KAUNAS¹ ¹Texas A&M University, College station, TX, ²Institute for Regenerative Medicine, Texas A&M Health Science Center, Temple, TX

P-Th-310

A Murine Model for Breast Microcalcifications in Radiographically Dense Mammary Tissue

L. COLE¹, T. VARGO-GOGOLA², AND R. ROEDER¹ ¹University of Notre Dame, Notre Dame, IN, ²Indiana University School of Medicine - South Bend, South Bend, IN

P-Th-311

Three-dimensional Microfluidic Co-culture Model of the Bone Marrow Microenvironment for the Study of Acute Lymphoblastic Leukemia A. BRUCE¹, R. EVANS¹, R. MEZAN¹, K. MARTIN¹, L. GIBSON¹, AND Y. YANG¹ ¹West Virginia University, Morgantown, WV

P-Th-312

Effect of Methylcellulose on Breast Cancer Cellular Spheroid Biomechanics J. RODRIGUEZ-DEVORA¹, A. DESAI¹, N. NOSOUDI¹, AND D. DEAN¹ ¹Clemson University, Clemson, SC

P-Th-313

Extracellular Matrix Stiffness Differentially Regulates Cell Population Dynamics And Drug Response of Myeloid Leukemias J-W. SHIN¹ AND D. MOONEY¹

¹Harvard University, Cambridge, MA

P-Th-314

A 3D *in vitro* Tumor Spheroid Model to Study Spatial Variation of Protein Expression in Cancers

S. RAO¹, P. KARANDE¹, AND P. UNDERHILL¹ ¹Rensselaer Polytechnic Institute, Troy, NY

P-Th-315

Melanoma Induces Endothelial Junction Disruption By Co-opting Endothelial Cell Contractility

V. ARAGON SANABRIA¹, S. POHLER¹, E. GOMEZ¹, AND C. DONG¹ ¹The Pennsylvania State University, University Park, PA

P-Th-316 🧕

Tissue-Engineered Models of Tumor-Vascular Interactions

P. DELNERO¹, S. VERBRIDGE², Y. ZHENG³, B. KWEE¹, A. STROOCK¹, AND C. FISCHBACH¹ ¹Cornell University, Ithaca, NY, ²Virginia Tech-Wake Forest University, Blacksburg, VA, ³University of Washington, Seattle, WA

P-Th-317

A High Throughput Platform for Assaying Cancer Cell Adhesion under Physiologic Flow

A. SHEARER¹, V. LE¹, C. SPRUELL¹, S. NANDI¹, M. CREIXELL¹, AND A. BAKER¹ ¹University of Texas at Austin, Austin, TX

Track: Cancer Technologies, New Frontiers and Special Topics

Nanotechnologies for Cancer

Chairs: Rohan Fernandes, Beata Chertok

P-Th-318

A Nanoparticle-Based Combination Chemotherapy Delivery System for Enhanced Tumor Killing by Dynamic Rewiring of Signaling Pathways

S. MORTON¹, M. LEE¹, Z. DENG¹, E. DREADEN¹, E. SIOUVE¹, K. SHOPSOWITZ¹, N. SHAH¹, M. YAFFE¹, AND P. HAMMOND¹ ¹*MIT, Cambridge, MA*

P-Th-319

Characterization of Novel Chitosan/Polyelectrolyte Nanoparticles M. MERTZ¹, B. KOPPOLU¹, AND D. ZAHAROFF¹

¹University of Arkansas- Fayetteville, Fayetteville, AR

P-Th-320

Drugging Metastatic and Locally-Disseminated Solid Tumors Using RNAi Combination Chemotherapy

E. DREADEN¹, Y. KONG¹, M. YAFFE¹, AND P. HAMMOND¹ ¹MIT - Koch Institute for Integrative Cancer Research, Cambridge, MA

P-Th-321

Efficacy Of Active Targeting Nanodevice For Anticancer Drug Delivery To Breast Cancer Cells

A. SATSANGI^{1,2}, S. ROY¹, R. SATSANGI³, R. VADLAMUDI¹, AND J. ONG² ¹University of Texas Health Science Center at San Antonio, San Antonio, TX, ²University of Texas at San Antonio, San Antonio, TX, ³RANN Research Corporation, San Antonio, TX

P-Th-322

Gold Nanoparticle Mediated Antigen and Adjuvant Delivery for Cancer Immunotherapy

J. MATTOS ALMEIDA¹, A. LIN¹, E. FIGUEROA¹, A. FOSTER², AND R. DREZEK¹ ¹Rice University, Houston, TX, ²Bellicum Pharmaceuticals, Houston, TX

P-Th-323

Improving Efficiency and Reliability of Nanoparticle Amplification for Molecular Cancer Diagnostics

M. RAHIM¹, R. KOTA¹, AND J. HAUN¹ ¹University of California Irvine, Irvine, CA

P-Th-324 🙎

Superparamagnetic Iron Oxide Nanoparticle Actuation Decreases Astrocyte Viability

N. SCHAUB¹, D. RENDE¹, Y. YUAN¹, R. GILBERT¹, AND D-A. BORCA-TASCIUC¹ ¹Rensselaer Polytechnic Institute, Troy, NY

P-Th-325

Polymeric Micelle as a Drug and Gene Delivery Carrier for Spinal Cord Tumor S-J. GWAK¹, J. NICE¹, B. GREEN¹, AND J. LEE¹

¹Department of Bioengineering, Clemson University, Clemson, SC

P-Th-326

The Effect of Surface Functionalization and Temperature on Nanoparticle Penetration into Tumor Spheroids

A. NAGESETTI 1 , D. ESTUMANO², H. ORLANDE², M. COLAÇO², G. DULIKRAVICH 1 , AND A. MCGORON 1

¹Florida International University, Miami, FL, ²Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

P-Th-327

Folate-targeted MMP-cleavable Nanobeacons:Toward Imaging Delivery in Solid Tumors

I. MCFADDEN¹, J. DUAN¹, B. FINGLETON¹, T. GIORGIO¹, AND J. MCINTYRE¹ ¹Vanderbilt University, Nashville, TN

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

9:30AM - 5:00PM POSTER SESSION Thurs 2014 OCTOBER 23 | THURSDAY

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-328

Isolation of Circulating Tumor Cells Using Electrospun Nanofibers Integrated Lab-on-a-Disc

C-J. KIM¹, V. SUNKARA¹, J. PARK¹, AND Y-K. CHO¹ ¹Ulsan National Institute of Science and Technology, Ulsan, Korea, Republic of

P-Th-329

Conductive Polymer-Based Nanostructures for Photothermal Ablation of Cancer: Synthesis and In Vitro Evaluation

T. CANTU¹, K. WALSH¹, V. PATTANI², J. TUNNELL², J. IRVIN¹, AND T. BETANCOURT¹ ¹Texas State University, San Marcos, TX, ²The University of Texas at Austin, Austin, TX

P-Th-330

Optimizing Nanoparticle Transport in Tumour Extracellular Matrix: Towards Patient Specific Targeting

C. SARSONS¹, K. TEREFE¹, E. SYKES², Q. DAI², J. CHEN², J. ROCHELEAU², D. HWANG², D. CRAMB¹, G. ZHENG², W. CHAN², AND K. RINKER¹

¹University of Calgary, Calgary, AB, Canada, ²University of Toronto, Toronto, ON, Canada

P-Th-331

[60]Fullerenes Combined With Radiofrequency Exposure Cause Cell Death in HCC Through Apoptosis

P. GEHLOT¹,², Y. MACKEYEV², AND S. CURLEY²

¹University of Michigan, Michigan, MI, ²MD Anderson Cancer Center, Houston, TX

P-Th-332

Novel Magnetic Calcium Phosphate Nanoparticles for Cancer Treatment X. CHENG¹ AND J. SALCIDO¹,²

¹Southwest Research Institute, San Antonio, TX, ²University of Texas at San Antonio, San Antonio, TX

P-Th-333

Electrospun Fibers as a Platform for T Cell Expansion.

S. DE LEO1, D. BOGDANOWICZ1, P. CHUANG1, A. DANG1, H. LU1, AND L. KAM1 ¹Columbia University, New York, NY

P-Th-334

Nanoparticle Charge Influences Serum Protein Adsorption, Circulation Time, and Biodistribution

A. BOHORQUEZ¹, K. COURT², L. SANTIAGO², M. LATORRE², E. MORA³, E. JUAN², M. TORRES-LUGO², AND C. RINALDI¹

¹University of Florida, Gainesville, FL, ²University of Puerto Rico, Mayaguez, Mayaguez, PR, ³University of Puerto Rico Comprehensive Cancer Center, San Juan, PR

Track: Cardiovascular Engineering

Cardiac Electrophysiology and Mechanics

Chairs: Charles Taylor, Milica Radisic

P-Th-232 👱

Assessment of Ventricular Function in Zebrafish Heart Regeneration by Interfacing Surface Electrical Conduction with Intracardiac Hemodynamics N. JEN1, J. LEE1, H. CAO1, B. KIM2, K. SHUNG2, AND T. HSIAI1 ¹UCLA, Los Angeles, CA, ²USC, Los Angeles, CA

P-Th-233

Optically Mapping the Effects of Light-Activated Norepinephrine Release from Cardiac Sympathetic Neurons

A. WENGROWSKI¹, X. WANG¹, S. TAPA¹, D. MENDELOWITZ¹, AND M. KAY¹ ¹The George Washington University, Washington, DC

P-Th-234

Experimental Investigation On Spatial Dynamics Of Bifurcation To Alternans In Paced Rabbit Hearts

K. KULKARNI¹, R. VISWESWARAN¹, S. TAN¹, X. ZHAO², AND E. TOLKACHEVA¹ ¹University of Minnesota, Minneapolis, MN, ²University of Tennessee, Knoxville, TN

P-Th-235

Wireless Recording of Arterial Pulses

W. SHI1, C. NGUYEN1, AND J-C. CHIAO1 ¹University of Texas at Arlington, Arlington, TX

P-Th-236

Border-collision Bifurcation of Calcium Cycling Dynamics in Cardiac **Myocytes**

X. ZHAO¹ AND E. TOLKACHEVA² ¹University of Tennessee, Knoxville, TN, ²University of Minnesota, Minneapolis, MN

P-Th-237

Optical Mapping of Beating Heart

H. ZHANG¹, K. IIJIMA¹, P. ESTEP¹, L. RAJU¹, G. WALCOTT¹, AND J. ROGERS¹ ¹University of Alabama at Birmingham, Birmingham, AL

P-Th-238

Quantitative Analysis of Electrophysiological Ventricular Heart Failure Cell Model in ID Tissue

M. ELSHRIF¹, E. CHERRY¹, AND P. SHI¹ ¹Rochester Institute of Technology (RIT), Rochester, NY

P-Th-239

The Long and Short of It

A. GREER-SHORT¹ AND S. POELZING¹ ¹Virginia Tech Carilion Research Institute, Roanoke, VA

P-Th-240

Non-Invasive Image-Based Assessment of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes

C. HEYLMAN¹, R. DATTA¹, Y. KUROKAWA¹, D. TRAN¹, B. CONKLIN², E. GRATTON¹, AND S. GEORGE

¹University of California, Irvine, Irvine, CA, ²Gladstone Institutes, San Francisco, CA

P-Th-241

Classification of Atrial Fibrillation and Sinus Rhythm with a Gaussian Mixture Model

T. LYE¹, V. IYER², AND C. HENDON¹ ¹Columbia University, New York, NY, ²Columbia University Medical Center, New York, NY

P-Th-242

The Emission Isosbestic Point of Di-4-ANEPPS as a Function of Excitation Wavelength in Myocardium

H. ZHANG¹, J. POWELL¹, R. DENSMORE¹, G. WALCOTT¹, AND J. ROGERS¹ ¹University of Alabama at Birmingham, Birmingham, AL

P-Th-243

Non-invasive Holter Monitor Suit for Recording Electrocardiograms in Conscious, Unanesthitized, Behaving Mice

J. MARMERSTEIN¹, K. HOLZEM¹, AND I. EFIMOV¹

¹Washington University in St. Louis, St. Louis, MO

P-Th-244

Visible Light Absorbance Spectroscopy of Excised Perfused Hearts Reveals Increased Myocardial and Mitochondrial Oxygenation with Perfluorocarbon Perfusate

R. JAIMES III¹, S. KUZMIAK-GLANCY¹, R. COVIAN², A. WENGROWSKI¹, B. GLANCY², R. BALABAN², AND M. KAY

¹The George Washington University, Washington, DC, ²National Institutes of Health, Bethesda, MD

P-Th-245

Effects of Acellular Microheterogeneities on Macroscopic Impulse Conduction in Regimes of Normal and Reduced Excitability

H. ASFOUR¹, S. VERMA¹, C. HENRIQUEZ²,³, AND N. BURSAC¹ ¹Duke University, Durham, NC, ²Duke University, Durham NC, NC, ³Duke University, Durham, NC

POSTER SESSION Thurs 9:30AM – 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-246

Efficient Modeling of Three-Dimensional Cardiac Bidomain with Model Order Reduction D. VU^{1} AND K. NG^{1}

¹New Mexico State University, Las Cruces, NM

P-Th-247

The Mechanism of Reentry in an Inhomogeneous Sheet of Ventricular Myocardium

S. KANDEL¹ AND B. ROTH¹ ¹Oakland University, Rochester, MI

P-Th-248

Linking Between Cardiac trabeculation Development and Wall Shear Stress with 4-Dimenstional Single Plane Illumination Microscopy

J. LEE¹, P. FEI¹, H. XU², C-M. HO¹, J. KUO², N. CHI³, AND T. HSIAI¹ ¹University of California, Los Angeles, Los Angeles, CA, ²University of Southern California,

¹University of California, Los Angeles, Los Angeles, CA, ²University of Southern California, los angeles, CA, ³University of California, San Diego, La Jolla, CA

P-Th-249

Metabolic Model of Right Ventricular Dysfunction under High Afterload and Hypoxia

M. LEE¹, B. FALIKS², C. SCIPIONE², K. KOCH², A. VO³, AND K. COOK⁴ ¹Mackay Memorial Hospital, HsinChu branch, Hsinchu City, Taiwan, ²University of Michigan, Ann Arbor, MI, ³Northwestern University, Chicago, IL, ⁴Carnegie Mellon University, Pittsburah, PA

P-Th-250

Synchronization of Mechanically Coupled Cardiomyocytes on Thin Films B. WILLIAMS¹ AND T. SAIF¹

¹University of Illinois at Urbana-Champaign, Urbana, IL

P-Th-251

Validation of Finite Element Models of Cardiac Structure and Kinematics via CINE, Displacement-Encoded, and Diffusion MRI.

A. GOMEZ¹, C. WELSH¹, S. MERCHANT¹, AND E. HSU¹ ¹University of Utah, Salt Lake City, UT

P-Th-252

Effects Of Engineered SDF-1a On Infarcted Myocardium Under Dynamic Loading Conditions

A. TRUBELJA¹, B. FREEDMAN¹, J. MACARTHUR, JR¹, M. HAST¹, J. SARVER², J. COHEN¹, W. HIESINGER¹, P. ATLURI¹, AND Y. WOO³

¹University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, ²Drexel University, Philadelphia, PA, ³Stanford University School of Medicine, Stanford, CA

P-Th-253

Quantification of Left Ventricular Pressure and Contractility as a Means to Assess Bisphenol A Cardiac Toxicity

D. BROOKS¹, M. KAY¹, AND N. POSNACK¹ ¹George Washington University, Washington, DC

P-Th-254

Sarcomere-length Variations During In-vitro Sarcomerogenesis

Z. WANG¹, H. YANG¹, T. BORG², AND B. GAO¹ ¹Clemson University, Clemson, SC, ²Medical University of South Carolina, Charleston, SC

P-Th-255

New Concept for Measuring the Forces in Mitral Valve Annuloplasty Rings

S. NIELSEN SKOV^{1,2}, D. MATHILDE RØPCKE¹, A. W. SIEFERT³, C. ILKJÆR¹, M. JUAN TJØRNILD¹, A. YOGANATHAN³, H. NYGAARD¹, S. LYAGER NIELSEN¹, AND M. JENSEN³ ¹Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark, ²Department of Engineering, Faculty of Science and Technology, Aarhus University, Aarhus, Denmark, ³Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA

P-Th-256

Modulation of Mechanical Response of Micropatterned Cardiomyocytes Using Atomic Force Microscopy

N. NAGARAJAN¹, V. VYAS¹, Y. KUTES¹, B. HUEY¹, AND P. ZORLUTUNA¹ ¹University of Connecticut, Storrs, CT

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

P-Th-257

Stress Production in Locally Organized, Globally Disorganized Cardiac Tissues M. KNIGHT¹ AND A. GROSBERG¹

¹University of California, Irvine, Irvine, CA

Track: Cellular and Molecular Bioengineering

Cell Adhesion and Motility

Chairs: Leo Wan, Kapil Pant

P-Th-418

The Effect of Exogenous Zinc Concentration on the Migration of Osteoblast-like and Osteosarcoma Cells

D. RAMMELKAMP¹, K. DORST¹, E. FARQUHAR²,³, M. CHANCE²,³, AND Y. MENG¹ ¹Stony Brook University, Stony Brook, NY, ²Case Western Reserve University, Cleveland, OH, ³National Synchrotron Light Source, Upton, NY

P-Th-419

Molecular Model of Actin-Myosin Energy Landscapes Based on Non-Linear Cross-Bridge Stiffness

S. MIJAILOVICH¹, M. PRODANOVIC^{1,2}, M. SVICEVIC³, R. GILBERT¹, AND B. STOJANOVIC³ ¹Northeastern University, Boston, MA, ²Illinois Institute of Technology, Chicago, IL, ³University of Kragujevac, Kragujevac, Yugoslavia

P-Th-420

Uncovering Cell-type Specific Plasticity in Contact Guidance Efficiency J. WANG¹, J. PETEFISH¹, A. HILLIER¹, AND I. SCHNEIDER¹

J. WANG', J. PETERSH', A. HILLIER', AND I. SCHNEIDER' 'lowa State University, Ames, IA

P-Th-421

Dynein Arm Mutations Modify the Effects of Increased Viscous Forces on the Flagellar Waveform

K. WILSON¹, O. GONZALEZ¹, S. DUTCHER¹, AND P. BAYLY¹ ¹Washington University in St. Louis, St. Louis, MO

P-Th-422

A Perinuclear Actin Cap Mediates Tight Coupling Between Nucleus and Cell Migration

D-H. KIM^{1,2} AND D. WIRTZ^{1,2} ¹Johns Hopkins Physical Sciences – Oncology Center, Baltimore, MD, ²Johns Hopkins University, Baltimore, MD

P-Th-423

Investigation of the Role of ECM Mimicking Biophysical Cues and Biochemical Cueson Single Cell Migration

A. KIM¹, M. TRAORE¹, E. SMITH¹, A. MYERS¹, A. NAIN¹, AND B. BEHKAM¹ ¹Virginia Tech, Blacksburg, VA

P-Th-424

Tubulin Modification Regulates The Motility Of Axonemal Dynein

J. ALPER^{1,2}, F. DECKER², B. AGANA^{1,2,3}, AND J. HOWARD^{1,2} ¹Yale University, New Haven, CT, ²Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany, ³Missouri State University, Springfield, MO

P-Th-425

Superparamagnetic Iron Oxide Nanoparticle-labeled Cells for Magnetically Directed Cell Motility

D. SOTTO¹, C. JREIGE¹, AND G. BAO¹ ¹Georgia Institute of Technology, Atlanta, GA

P-Th-426

Signal Enhancing Effect of Serum on the Spontaneous Activity of Chick Forebrain Neuron Culture on a Microelectrode Array

X. YANG¹, S. KUANG¹, AND B. GAO¹ ¹Clemson University, Clemson, SC

session Th

9:30AM - 5:00PM POSTER SESSION Thurs 2014 OCTOBER 23 THURSDAY

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-427

How Actomyosin Contraction Contributes to Cancer Cell Migration in Full Confinement - A Poroelasticity-based Model

J. WRIGHT¹ AND C-J. CHUONG¹ ¹University of Texas at Arlington, Arlington, TX

P-Th-428

Microtubules Stabilize Cell Polarity By Mediating The Localization Of Rear Signals

J. ZHANG¹, W-H. GUO¹, AND Y-L. WANG¹ ¹Carnegie Mellon University, Pittsburgh, PA

P-Th-429

Chemotactic Migration of Clustered Central Nervous System Progenitor Cells

S. MCCUTCHEON¹, J. UCHENNA², M. VAZQUEZ¹, AND S. REDENTI² ¹The City College of New York, New York, NY, ²Lehman College, New York, NY

P-Th-430

The Organ-Specific Migratory Response of Prostate Cancer

L. LEE¹, S. BEAN¹, S. LOH¹, S. RAO¹, V. LIN¹, AND J-C. CHIAO¹ ¹UT Arlington, Arlington, TX

P-Th-431 🧕

Role of Neutrophils in the On-set of Systemic Vaso-occlusion in the Blood of Sickle Cell Disease Patients M. JIMENEZ¹ AND P. SUNDD¹ ¹University of Pittsburgh, Pittsburgh, PA

P-Th-432

 H_2O_2 -Upregulated RAGE on A β -Induced Oxidative Pathway and Membrane Phase Changes in bEnd.3 Cells

C. EST¹, H. WANG¹, AND J. LEE¹ ¹University of Missouri-Columbia, Columbia, MO

P-Th-433

Activation of CD11c Primes Foamy Monocytes for Recruitment on VCAM-1 Under Shear

G. FOSTER¹, H. WU², AND S. SIMON¹ ¹University of California Davis, Davis, CA, ²Baylor College of Medicine, Houston, TX

P-Th-434

The Role Of The Glycocalyx In Leukocyte Adhesion To Endothelial Cells In Vitro

K. MCDONALD¹, S. COOPER², AND R. LEASK¹ ¹McGill University, Montreal, QC, Canada, ²McGill University, Montreal, Canada

P-Th-435

A Strategy for Human Tissue Self-Organization that is Robust to Heterogeneous and Changing Cell-Cell Interactions

A. CERCHIARI¹, J. GARBE², M. TODHUNTER³, N. JEE³, K. BROADERS³, M. THOMSON³, M. LABARGE², T. DESAI³, AND Z. GARTNER³ ¹UC Berkeley - UCSF, San Francisco, CA, ²Lawrence Berkeley National Laboratory, Berkeley, CA, ³UCSF, San Francisco, CA

P-Th-436

Assessing Inhibitory Capability of Zosteric Acid and Sodium Benzoate on Mouse and Human Fibroblast Cell Attachment and Proliferation

D. PARAJULI¹ AND B-M. ZHANG NEWBY¹ ¹The University of Akron, Akron, OH

P-Th-437

Bioinspired Microfluidic Assay for *In Vitro* Modeling of Leukocyte-Endothelium Interactions

G. LAMBERTI¹, B. PRABHAKARPANDIAN², C. GARSON², A. SMITH², K. PANT², B. WANG³, AND M. KIANI¹

¹Temple University, Philadelphia, PA, ²CFD Research Corporation, Huntsville, AL, ³Widener University, Philadelphia, PA

P-Th-438

Investigating Electrotaxis of the Non-Transformed MCF-10A Mammary Epithelial Cell Line M. LALLI¹ AND A. ASTHAGIRI¹ 'Northeastern University, Boston, MA

Track: Cellular and Molecular Bioengineering

Mechanotransduction

Chairs: Taby Ahsan, Lauren Black III

P-Th-439

Non-Invasive Measurement of Interstitial Fluid Pressure In Microscale Gels and Tissues O. OZSUN¹, R. THOMPSON¹, J. TIEN¹, AND K. EKINCI¹

¹Boston University, Boston, MA

P-Th-440

Effects Of Substrate Stiffness On Direct Reprogramming From Fibroblasts To Neurons

S. WONG^{1,2}, J. SOTO^{1,2}, J. CHU¹, AND S. LI^{1,2} ¹University of California, Berkeley, Berkeley, CA, ²University of California, San Francisco, San Francisco, CA

P-Th-441 🤶

Crosstalk of Physiological Mechanical Cues in Endothelial Cell Signaling D. ZHOU¹, F. BORDELEAU¹, J. KOHN¹, A. ZHOU¹, B. MASON¹, M. MITCHELL¹, M. KING¹, AND C. REINHART-KING¹ ¹Cornell University, Ithaca, NY

P-Th-442

Patterned Mechanical Stiffening of PEG Hydrogels by NIR laser

Y. CHOI¹,², K. HRIBAR², M. ONDECK², A. ENGLER², AND S. CHEN² ¹University of Sydney, St Leonards, Australia, ²University of California, San Diego, La Jolla, CA

P-Th-443

Emerging Determinants of Cytosolic Calcium Homeostasis in the Sheared Endothelium

C. SCHEITLIN¹,², J. JULIAN¹,², AND R. ALEVRIADOU¹,² ¹The Ohio State University, Columbus, OH, ²Davis Heart & Lung Research Institute, Columbus, OH

P-Th-444

TLR4 is Involved in Mechanosensin

M. PREVITERA^{1,2} AND A. SENGUPTA¹ ¹New Jersey Neuroscience Institute at JFK Medical Center, Edison, NJ, ²Seton Hall

University, Edison, NJ

P-Th-445

Matrix Rigidity Mediates Myofibroblast Activation by Controlling MRTF-A Signaling

J. O'CONNOR¹ AND E. GOMEZ¹ ¹The Pennsylvania State University, University Park, PA

P-Th-446

Metastatic Cancer Mechanical Tropsim Is Controlled By Cytoskeletal Tension

D. MCGRAIL¹, Q. KIEU¹, J. IANDOLI¹, AND M. DAWSON¹ ¹Georgia Institute of Technology, Atlanta, GA

P-Th-447

A Prestress Dependent Mechanotransduction Connecting Adhesive Receptors

I. MUHAMED¹, J. WU¹, X. KONG¹, N. WANG¹, AND D. LECKBAND¹ ¹University of Illinois Urbana Champaign, urbana, IL

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-448

Syndecan-I Mediates Endothelial Shear Mechanotransduction Response and Inflammatory Phenotype

P. VOYVODIC¹, E. WILLIAMS¹, R. LIU¹, D. MIN¹, AND A. BAKER¹ ¹The University of Texas at Austin, Austin, TX

P-Th-449

Determining the Relationship Between Protein Deformation and Protein Dynamics in Focal Adhesions

K. ROTHENBERG¹ AND B. HOFFMAN¹ ¹Duke University, Durham, NC

P-Th-450

Antiplatelet Drug Efficacy Under Dynamic Device-Related Shear Conditions

J. SHERIFF¹, P. TRAN², L. VALERIO³, R. GHOSH¹, W. BRENGLE², E. ZHANG¹, M. HUTCHINSON², D. BLUESTEIN¹, AND M. SLEPIAN²,⁴,

¹Biomedical Engineering, Stony Brook University, Stony Brook, NY, ²Biomedical Engineering, University of Arizona, Tucson, AZ, ³Bioengineering, Politecnico di Milano, Milan, Italy, ⁴Sarver Heart Center, University of Arizona, Tucson, AZ, ⁵Stony Brook University, Stony Brook, NY

P-Th-451

Force Generation During Primary Human Macrophage Migration on **Compliant Surfaces**

L. HIND¹, M. DEMBO², AND D. HAMMER¹ ¹University of Pennsylvania, Philadelphia, PA, ²Boston University, Boston, MA

P-Th-452

Fluid Flow Affects Vascular Endothelial Cell Drug Response

L. TAMEZ¹, R. SHEPHERD¹, K. FUH¹, S. BARANZINI², R. MOORE¹, AND K. RINKER¹ ¹University of Calgary, Calgary, AB, Canada, ²University of California San Francisco, San Francisco, CA

P-Th-453

Enhancement of Glycocalyx Mediated Endothelial Mechanotransduction Using Drug-Loaded Nanoparticles

H. HOMAYONI¹, M. CHENG¹, R. KUMAR², S. SRIDHAR², T. WEBSTER¹, AND E. EBONG¹ ¹Department of Chemical Engineering, Northeastern University, Boston, MA, ²Department of Physics, Northeastern University, Boston, MA

P-Th-454

PORI Geometry Sensing of Nanofiber Diameter Regulates RacI Activity and Osteoblast Differentiation

A. HIGGINS¹ AND J. BROWN¹

¹The Pennsylvania State University, University Park, PA

P-Th-455

"Effects of Clinically Relevant Mechanical Forces on Vascular Smooth Muscle Cells Under Hyperglycemia: An In Vitro Dynamic Disease Model"

V. CHAWLA¹, A. SIMIONESCU¹, E. LANGAN III², AND M. LABERGE¹ ¹Clemson University, Clemson, SC, ²Greenville Health System (GHS), Greenville, SC

P-Th-456

Imaging Cellular and Molecular Stretch in an in vivo Cellular Tube Using Filamin::stFRET.

J. BOUFFARD¹, A. ASTHAGIRI¹, AND E. CRAM¹ ¹Northeastern University, Boston, MA

P-Th-457

Accelerations at Sonic Frequencies Mimic Thyroid Epithelial Cells Response to TSH

A. WAGNER¹, I. TITZE^{1,2}, AND E. SANDER¹ ¹University of Iowa, iowa city, IA, ²University of Utah, Salt Lake City, UT

P-Th-458

A Role for ER Stress in the Modulation of VCAM-I Expression by Shear Stress and Dietary Lipoproteins

K. BAILEY¹, Y. WANG¹, G. FOSTER¹, S. SIMON¹, AND A. PASSERINI¹ ¹University of California, Davis, Davis, CA

P = Poster Session **OP** = Oral Presentation = Reviewer Choice Award

Track: Cellular and Molecular Bioengineering

Cellular and Molecular Bioengineering -Other

Chairs: Julie Phillippi, Anand Ramasubramanian

P-Th-459

Pancreatic β cell function and Mass in Pubertal Hyperinsulinemia

J. FAUST¹, I. MALENICA¹, M. DOSHI¹, R. STEPANEK¹, J. BROWER¹, K. SWEAZEA¹, M. CAPLAN¹, AND R. HERMAN¹

¹Arizona State University, Tempe, AZ

P-Th-460

High Spatio-temporal ERK Activity in Response to Mechano-chemical Stimuli in Rat Mesenchymal Stem Cells

A. DHARMARAJAN¹, M. FLOREN², AND W. TAN² ¹University of Colorado at Boulder, Louisville, CO, ²University of Colorado at Boulder, Boulder, CO

P-Th-461

On-Chip Multi-Frequency Current Mode Lock-in Amplifier for Impedance Sensing

N. MCFARLANE¹ AND J. GU¹ ¹University of Tennessee, Knoxville, TN

P-Th-462 👱

Kupffer Cell Mediated Cardiovascular Disease Development

D. RUBENSTEIN¹ AND W. YIN¹ ¹Stony Brook University, Stony Brook, NY

P-Th-463

Dictyostelium Phenylalanine Hydroxylase Is Activated by Its Substrate Phenylalanine

H. KIM¹, Y. PARK², Y. KIM³, Y. YANG³, Y. KANG¹, S. PARK¹, J. SHIN¹, Y. KIM¹, AND J-W. SHIN1,3,4

¹Department of biomedical engineering, Inje university, Gimhae-si, Korea, Republic of, ²Department of biological sciences, Inje university, Gimhae-si, Korea, Republic of, ³Department of health science and technology, Inje university, Gimhae-si, Korea, Republic of, ⁴Cardiovascular and Metabolic Disease Center /Institute of Aged Life Redesign/UHRC, Inje University, Gimhae-si, Korea, Republic of

P-Th-464

Proliferative Signals in Gradients of Soluble Growth Factors E. GONG¹ AND A. ASTHAGIRI¹

¹Northeastern University, Boston, MA

P-Th-465

Microfluidic Assay of Hemophilic Blood Clotting: Distinct Deficits in Platelet and Fibrin Deposition at Low Factor levels

T. COLACE¹, P. FOGARTY¹, K. PANCKERI¹, R. LI¹, AND S. DIAMOND¹ ¹University of Pennsylvania, Philadelphia, PA

P-Th-466

A Rapid UV/Vis Spectroscopy Method for Detecting Protein-Centered Radicals using DMPO

B. HOLLINS¹

¹Louisiana Tech University, Ruston, LA

P-Th-467 🙎

Loss of Endothelial Surface Glycocalyx in Early Sepsis

J. FAN1, W. YEN1, M. ZENG1, J. CHEN2, B. RATLIFF2, J. TARBELL1, M. GOLIGORSKY2, AND B. FU1

¹The City College of the City University of New York, New York, NY, ²New York Medical College, Valhalla, NY

P-Th-468

Phospholipase A2 in A β clearance by microglia

L. DONG¹, C. EST¹, K. HENDERSON¹, AND J. LEE¹

¹University of Missouri-Columbia, Columbia, MO

9:30AM - 5:00PM POSTER SESSION Thurs 2014 OCTOBER 23 THURSDAY

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-469

Fibronectin Decreases Fibroblast Migration After Electrical Stimulation S. SNYDER¹ AND R. WILLITS¹ 'University of Akron, Akron, OH

P-Th-470 Increased Sphingomyelinase Activity in Sickled Red Blood Cells during Sickle Cell Disease Y. ZHANG¹, A. AWOJOODU¹, AND A. LANE¹

¹Georgia Institute of Technology, Atlanta, GA

Track: Device Technologies and Biomedical Robotics, Translational Biomedical Engineering

Biomedical Sensors & Actuators

Chairs: Samir Iqbal, Tony Akl

P-Th-40

The Design and Implementation of a 4 DOF Robotic Manipulator for Automated Venipuncture M. BALTER¹ AND A. CHEN¹

¹Rutgers University, Piscataway, NJ

P-Th-41

Acoustic Manipulation of Protein Microcrystals for X-ray Crystallography F. Guo¹, J. FRENCH², P. LI¹, Z. MAO¹, N. YENNAWAR¹, AND T. HUANG¹

¹Penn state university, state college, PA, ²Stony Brook University, Stony Brook, NY

P-Th-42

Measurement of Blast Reflected & Incident Overpressures with the Blast Gauge $^{\rm TM}\,$ System

G. LEE¹, U. DA SILVA², M. OSTERTAG³, M. KENYON³, K. ALLPRESS⁴, G. KATSELIS⁴, D. BORKHOLDER³, ⁵, AND G. KAMIMORI¹

¹Walter Reed Army Institute of Research, Silver Spring, MD, ²Naval Medical Research Center, Silver Spring, MD, ³BlackBox Biometrics, Inc., Rochester, NY, ⁴Defence Science and Technology Organisation, Edinburgh, Australia, ⁵Rochester Institute of Technology, Rochester, NY

P-Th-43

On Site Thermoelectric Cooling Device for Therapeutic Applications W. HEJL¹, J. LEE¹, N. BABARIA¹, S. KOSHNEVIS¹, AND K. DILLER¹ ¹University of Texas at Austin, Austin, TX

P-Th-44

Reducing Motion Artifact From Driver's PPG Using On-line Empirical Mode Decomposition

K. LEE¹, C. PARK¹, H. KIM², S. KIM², AND B. LEE¹

¹Gwangju Institute of Science and Technology, Gwangju, Korea, Republic of, ²Hyundai Motor Group, Hwaseong, Korea, Republic of

P-Th-45

A Novel Wearable Cardioverter-Defibrillator for Increased Patient Compliance

S. SUBRAMANIAN¹, P. KANG¹, C-M. SO¹, M. CHEN¹, T. LAM¹, C. ROMANCZYK¹, Q. SALDITCH¹, AND A. PREMKUMAR¹ 'Johns Hopkins University, Baltimore, MD

P-Th-46

An Auditory Feedback Study on the Object Localization and Tracking System

N. MANTE¹, G. MEDIONI¹, A. TANGUAY¹, AND J. WEILAND¹ ¹University of Southern California, Los Angeles, CA

P-Th-47

Conducting Polymer PEDOT Nanofibers for Sensitive Detection of Glucose

G. YANG¹, K. KAMPSTRA¹, AND M. ABIDIAN¹ ¹Pennsylvania State University, State College, PA

P-Th-48

Development of A Rapid and Label-free Affinity Sensor for On-site Biomolecular Detection H. CUI¹, C. CHENG¹, Q. YUAN¹, J. WU¹, AND S. EDA¹ ¹University of Tennessee, Knoxville, TN

P-Th-49 🙎

Bioimpedance Analysis Detects Lower Leg Muscle Atrophy in Patients with Charcot-Marie-Tooth Disease

J. WOODS¹, M. SOLOMITO¹, AND E. GARIBAY¹ ¹Connecticut Children's Medical Center, Farmington, CT

P-Th-50

Monitoring Phospholipase A2 Activity Using Gd-encapsulated Phospholipid Liposomes

Z. CHENG¹ AND A. TSOURKAS¹ ¹University of Pennsylvania, philadelphia, PA

P-Th-5I

An Organic Light-Emitting Diode for Oxygen Sensing Based on Phosphorescence Lifetime

Y. ANDO¹, Y. YANAGISAWA¹, AND K. TSUKADA¹ ¹Keio University, Yokohama, Japan

P-Th-52

Fluorescence Quenching by Varying Sized Gold Nanorods for Multiplexed Plasmonic Biochip

Y. WANG¹ AND L. TANG¹ ¹University of Texas at San Antonio, San Antonio, TX

. . .,

P-Th-53

Study Interactions Of FvTox I With Synthetic Peptides Using A Label-free Biosensor And Molecular Simulations

B. ZHANG¹, B. WANG², A. MORALES¹, J. TAMEZ-VELA¹, J. SCUDDER¹, M. BHATTACHARYYA², AND J. YE¹

¹University of Texa at San Antonio, San Antonio, TX, ²Iowa State University, Arnes, IA

P-Th-54

Readout Circuitry for Monitoring Temperature Variations in Biological Fluids

F. QUAIYUM¹, L. TAYLOR¹, S. PULLANO², I. MAHBUB¹, A. FIORILLO², C. BRITTON¹, AND S. KAMRUL ISLAM¹

¹University of Tennessee Knoxville, Knoxville, TN, ²University Magna Græcia of Catanzaro, Catanzaro, Italy

P-Th-55

Ratiometric Nanocapsule Sensors Fabricated From Sacrificial ${\rm CaCO}_{\rm 3}$ Nanoparticles

A. BISWAS¹, A. NAGARAJA¹, AND M. MCSHANE¹ ¹Texas A&M University, College StationTX

P-Th-56

A Reconfigurable Bio-Impedance Sensing Platform With Array-Based Detection Algorithm for 3D Tissue Characterization and Delineation C. KIM¹, C. ZHU¹, J. ZHANG², AND H. WANG¹

¹Georgia Institute of Technology, Atlanta, GA, ²University of Kentucky, Lexington, KY

P-Th-57

Paper-based Biosensor for Colorimetric Detection of PSA Biomarker A. DREW¹ AND H. KWON¹¹ANDREWS University, Berrien Springs, MI

P-Th-58

A SERS Sensing System based on Encapsulation of Gold Nanoparticles in Microporous Alginate Hydrogels

Y-H. YOU¹, A. LIU¹, J. ROBERTS¹, AND M. MCSHANE¹ ¹Texas A&M University, College Station, TX

P-Th-59

Differential Immuno-Capture Assay to Electrically Enumerate Blood Cells U. HASSAN¹, G. DAMHORST¹, T. GHONGE¹, O. SONOIKI¹, L. ORLANDIC², B. REDDY¹, AND R. BASHIR¹ ¹University of Illinois at Urbana Champaign, Urbana, IL, ²University Laboratory High School, Urbana, IL

THURSDAY | OCTOBER 23 | 2014

POSTER SESSION Thurs 9:30AM – 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-60

Surface Engineering for Aptamer-Based Chemical Sensors

R. HARWELL¹, G. BARKER¹, H. MARKS¹, G. COTÉ¹, G. JACKSON², AND M. PISHKO¹ ¹Texas A&M University, College Station, TX, ²Base Pair Biotechnologies, Pearland, TX

P-Th-61 🧕

A Study of Nano-scale Coatings on Planar Gold Microelectrodes for **Bioimpedance Measurements**

V. SRINIVASARAGHAVAN¹, J. STROBL¹, D. WANG¹, J. HEFLIN¹, AND M. AGAH¹ ¹Virginia Tech, Blacksburg, VA

P-Th-62

A Photodiode-Integrated Microfluidic Bioreactor for Real-Time pH Monitor of Organs-on-Chip

Y. ZHANG^{1,2,3}, N. SHAMS^{1,2,3}, M. DOKMECI^{1,2,3}, AND A. KHADEMHOSSEINI^{1,2,4} ¹Harvard Medical School, Cambridge, MA, ²Brigham and Women's Hospital, Boston, MA, ³Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, ⁴Wyss Institute for Biologically Inspired Engineering, Boston, MA

P-Th-63

In Vitro and In Vivo Evaluation of Copolymer Hydrogels as Enzyme-based Luminescence Glucose Sensors

R. UNRUH¹, S. NICHOLS², N. WISNIEWSKI², AND M. MCSHANE¹ ¹Texas A&M University, College Station, TX, ²PROFUSA, Inc., South San Francisco, CA

P-Th-65

Enhanced Electrical Label-Free Detection of Pathogens Through Isothermal DNA Amplification Using True Dual-Gated ISFETs

C. DUARTE-GUEVARA¹, F-L. LAI², C. CHENG², B. REDDY¹, E. SALM¹, V. SWAMINATHAN¹, Y-S. LIU², AND R. BASHIR¹

¹UIUC, Urbana, IL, ²TSMC, Hsinchu, Taiwan

P-Th-66

Development of Fructose Dehydrogenase-Ferrocene Redox Polymer Films for Biosensor and Biofuel Cell Applications

J. CHEN¹, D. BAMPER¹, D. GLATZHOFER¹, AND D. SCHMIDTKE¹ ¹University of Oklahoma, Norman, OK

P-Th-67

Microelectronic Point-Of-Care Diagnostics For Early Phase Rickettsial Infections

W. ZHANG¹, K. PATEL¹, K. MACALUSO², AND A. RADADIA¹ ¹Louisiana Tech University, Ruston, LA, ²Louisiana State University, Baton Rouge, LA

P-Th-68

Specific Surface Termination of Nano-textured ZnO for Label-free Electrochemical Bio-sensing

R. MUNJE¹, S. MUTHUKUMAR¹, M. JACOBS¹, B. QUADRI¹, AND S. PRASAD¹ ¹University of Texas at Dallas, Richardson, TX

P-Th-69

Graphene-Based Biofet for Real-time Sensing

A. RADADIA¹ AND B. HOU¹ 1Louisiana Tech University, Ruston, LA

Track: Device Technologies and Biomedical Robotics, Cardiovascular Engineering

Cardiovascular Devices, Implantable **Devices and Implantable Technologies**

Chairs: Dominic Nathan, Mehmet Kaya

P-Th-I

A Thin Film Pressure Transducer for Intravascular Blood Pressure Sensing P. STARR^{1,2}, K. BARTELS^{2,3}, M. AGRAWAL², AND S. BAILEY^{1,2}

¹University of Texas Health Science Center at San Antonio, San Antonio, TX, ²University of Texas at San Antonio, San Antonio, TX, 3Southwest Research Institute, San Antonio, TX

P = Poster Session **OP** = Oral Presentation Reviewer Choice Award

P-Th- 2

Design and Characterization of an Endovascular Mechanical Thrombectomy Device

J. SZAFRON¹, A. MUSCHENBORN¹, AND D. MAITLAND¹ ¹Texas A&M University, College Station, TX

P-Th-3

Design and Characterization of a Resistively Heated Shape Memory Polymer Micro-Release Device

L. NASH¹, M. WIERZBICKI¹, AND D. MAITLAND¹ ¹Texas A&M University, College Station, TX

P-Th-4

Thermal Evaluation of Bipolar Radiofrequency Ablation for Treatment of **Resistant Hypertension**

L. HOBBS¹, L. SHAW KLEIN², W. GRANDE², AND G. GDOWSKI¹ ¹University of Rochester, Rochester, NY, ²Micropen Technologies, Honeoye Falls, NY

P-Th-5

Simulation of Cooling Preservation Systems for Human Hearts Destined for Transplantation

A. ABDOLI¹, G. DULIKRAVICH¹, C. BAJAJ², D. STOWE³, AND M. JAHANIA⁴ ¹Florida International University, Miami, FL, ²University of Texas at Austin, Austin, TX, ³Medical College of Wisconsin, Milwaukee, WI, ⁴Wayne State University, Detroit, MI

P-Th-6

Impact of Bifurcation Stenting on Endothelial Shear Stress

H. CHEN1, I. MOUSSA2, C. DAVIDSON3, AND G. KASSAB4

¹Indiana Univ. Purdue Univ., Indianapolis, IN, ²University of Texas Health Science Center, San Antonio, TX, 3Northwestern University, Chicago, IL, 4IUPUI, Indianapolis, IN

P-Th-7

Finite Element Analysis Of A Double Opposed PLLA Helical Stent Expansion And Arterial Wall Interaction

T. WELCH¹, S. VEERAMREDDY¹, J. WANG¹, A. NUGENT¹, AND J. FORBESS¹ ¹UT Southwestern Medical Center of Dallas, Dallas, TX

P-Th-8

Long-Term Implant Evaluation of Non-hermetic Micropackage Technology

P. WANG¹, S. MAJERUS¹, J. ANDERSON¹, M. DAMASER², C. ZORMAN¹, AND W. KO¹ ¹Case Western Reserve University, Cleveland, OH, ²Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH

P-Th-9

A Multilayer PDMS Microchannel Scaffold for Efficient IHC Analysis and Neural Interfacing

E. IBARRA¹, B. KIM¹, B. GARZA¹, R. LUNA¹, AND Y. CHOI¹ ¹University of Texas – Pan American, Edinburg, TX

P-Th-10

A Polymer-based Depth-type Neural Probe with Four Sided Contacts

S. SHIN¹, S. LEE¹, J. JEONG¹, S. AHN¹, J. KIM¹, K. EOM¹, J. PARK¹, C. KOH², H-C. SHIN², AND S. KIM

¹Seoul National University, Seoul, Korea, Republic of, ²Hallym University, Gangwon, Korea, Republic of

P-Th-II

Ultrasonic Dry Coupling Through Tissue

J. NORMAN¹, J. LEADBETTER¹, H. VIHVELIN¹, J. BROWN¹, AND R. ADAMSON¹ ¹Dalhousie University, Halifax, NS, Canada

P-Th-12

A Low Power Implantable Glucose Monitoring System

I. MAHBUB¹, T. RANDALL¹, F. QUAIYUM¹, AND S. ISLAM¹ ¹University of Tennessee, Knoxville, TN

P-Th-13

Biofabrication of Implantable Microfabricated Biotransducers for Dual Sensing of Glucose and Lactate

A. GUISEPPI-ELIE^{1,2}, O. KARUNWI^{1,2}, F. ALAM^{1,2}, AND M. GAILLARD^{1,2} ¹Clemson University, Clemson, SC, ²Center for Bioelectronics, Biosensors and Biochips (C³B), Anderson, SC

9:30AM - 5:00PM POSTER SESSION Thurs 2014 | OCTOBER 23 | THURSDAY

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-I4

Reversible and Photo-Activated Artificial Iris

F. SHAREEF¹, S. SUN¹, M. KOTECHA¹, D. AZAR¹, AND M. CHO¹ ¹University of Illinois at Chicago, Chicago, IL

P-Th-15

Parylene-based EC-MEMS Patency Sensor for Detection of Hydrocephalus Shunt Obstruction

B. KIM¹, C. LEE¹, L. YU¹, AND E. MENG¹ ¹University of Southern California, Los Angeles, CA

P-Th-16

Implementation of a Primitive Neural Stimulator with Simulated Post-Synaptic and Action Potentials

A. PARODI¹ AND J-W. CHOI¹ ¹Louisiana State University, Baton Rouge, LA

Track: Device Technologies and Biomedical Robotics

Medical Device Development and Computational Models

Chairs: Rafael Davalos, Sergey Shevkoplyas

P-Th-17

Preclinical Development and Mechanical Testing of a Load Transfer Implant (LTI) for Knee Joint Arthroplasty

C. BERGERSON¹, Z. PAULSON¹, C. DAVIS¹, L. SONOQUI¹, J. HUNT², AND M. MORENO¹ ¹Texas A&M University, College Staion, TX, ²⁴Web, Frisco, TX

P-Th-18

Finite Element Analysis of Bore-Cone Taper Junctions in Modular Total Knee Replacements

J. HERNANDEZ¹, K. SNETHEN¹, AND M. HARMAN¹ ¹Clemson University, Clemson, SC

P-Th-19

Preventing Pedicle Probe Injuries During Spinal Fusion Surgeries A. ANNADANAM¹, R. GADDIPATI¹, L. HERRERA¹, B. ISAACS¹, E. XIE¹, C. ANDREWS¹, A. MALLA¹, AND E. SCHWARZ¹

¹Johns Hopkins, Baltimore, MD

P-Th-20

Lift Walker: Developing an Inexpensive and Lightweight Stand-Assist Device

T. RIST¹, C. BATEMAN¹, J. BARRETTA¹, J. FLORES¹, J. GALLOWAY¹, M. KASSNER¹, J. BUMGARDNER¹, H. LIN¹, T. TAN¹, AND R. MULVANY² ¹The University of Memphis, Memphis, TN, ²The University of Tennessee Health Science Center, Memphis, TN

P-Th-21

A Design of a Multi-degree Freedom Patient Platform for IGRT

F. ZHANG¹, L. SUN¹, S. KUANG¹, S. YU¹, AND Y. FENG¹ ¹Soochow University, SuZhou, China, People's Republic of

P-Th-22

Hand Held Force Magnifier for Microsurgery M. LUO¹, R. LEE¹, C. WONG¹, R. KLATZKY², AND G. STETTEN^{1,2} ¹University of Pittsburgh, Pittsburgh, PA, ²Carnegie Mellon University, Pittsburgh, PA

P-Th-23

Venipuncture with Vibrated Needle Yields Lower and Less Variable Corticosterone Levels in Rats

R. CLEMENT¹, Z. KRIEGER¹, E. UNGER², S. CAVIGELLI³, R. SHEEHAN¹, R. BAGWELL¹, AND M. MULVIHILL¹

¹Actuated Medical, Inc., Bellefonte, PA, ²Lebanon Valley College, Annville, PA, ³Pennsylvania State University, University Park, PA

P-Th-24

The Development Of A Dynamic Adaptive Driving Simulator S. TUDOR¹, S. CAREY¹, AND R. DUBEY¹

¹University of South Florida, Tampa, FL

P-Th-25

Micro Magnetic Resonance Relaxometry for Label-free, Rapid Malaria Diagnosis

W. PENG¹, C. NG¹, T. KONG¹, L. CHEN¹, T. LOH², P. PREISER¹,³, AND J. HAN ^{1,4} ¹Singapore-Massachusetts Institute of Technology Alliance For Research And Technology(SMART), Singapore, Singapore, ²National University of Hospital, Singapore, Singapore, ³Nanyang Technological University, Singapore, Singapore, ⁴Massachusetts Institute of Technology, Cambridge, MA

P-Th-26

Computational Model of Light Propagation in Skin and Subcutaneous Blood Vessels for Vein Imaging Devices

R. POLSKI¹ AND H. KWON¹ ¹Andrews University, Berrien Springs, MI

'Andrews University, Berrien Springs,

P-Th-27

Model And Method Of Extravasation Detection

J. KANTOR¹, M. LASCH², AND Y. FENG¹ ¹University of Texas at San Antonio, San Antonio, TX, ²University of Texas at San Antonio, Schertz, TX

P-Th-28

Analyzing Lysed Whole Blood via "Microfluidic Drifting" Based Flow Cytometery Chip"

A. NAWAZ¹, R. NISSLY¹, P. LI¹, L. WANG², Y. SHARIFF³, AND T. HUANG¹ ¹Pennsylvania State University, State College, PA, ²Ascent Bio-Nano Technologies, State College, PA, ³Taibah University, Madina, Saudi Arabia, Madina, Saudi Arabia

P-Th-29

Standing Surface Acoustic Wave (SSAW) Based Multi-parametric Microflow Cytometer

Y. CHEN¹, S. Ll¹, P. Ll¹, A. NAWAZ¹, L. WANG², Y. SHARIFF³, AND T. HUANG¹ ¹Penn state university, State College, PA, ²Ascent BioNano Inc., State College, PA, ³Taibah University, Madina, Saudi Arabia

P-Th-30

A Wireless Sensor for Wound Strain Monitoring Using Laser Patterning on a Commercial Dressing

R. RAHIMI¹, M. OCHOA¹, AND B. ZIAIE¹ ¹Purdue University, West lafayette, IN

P-Th-31

Investigation of Wall Effects for Particle Viscometer

A. BOTTING¹, A. PLUMBER¹, G. BUSTAMANTE¹, AND J. YE¹ ¹University of Texas at San Antonio, San Antonio, TX

P-Th-32

Interdigitated Electrode To Treat Micro-Metastases By High-Frequency Irreversible Electroporation

D. SWEENEY¹, E. LATOUCHE², P. ROBERTS², E. SCHMELZ², AND R. DAVALOS¹ ¹Virginia Tech-Wake Forest University, Blacksburg, VA, ²Virginia Tech, Blacksburg, VA

P-Th-33

Mossbauer Studies of Rechargeable Na-ion Batteries for Medical Applications.

H-Y. HAH¹

¹University of Tennessee Space Institute, Tullahoma, TN

P-Th-34

Designing a Low-Cost Otoscope for Developing Countries Using a Nontraditional Power Source

S. ROBB¹, D. WELLS¹, J. LEIPHEIMER¹, D. CESARIO¹, N. STONE¹, AND B. CAMPBELL¹ ¹Robert Morris University, Moon Township, PA

THURSDAY | OCTOBER 23 | 2014

POSTER SESSION Thurs 9:30AM – 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-35

Design and Construction of a Blood Glucose Meter for Use in Nigeria A. ZUBAIR¹, E. EBERE-DINNIE¹, AND A. COKER¹ ¹University of Ibadan, Ibadan, Nigeria

P-Th-36

Design and Construction of a Portable Low Cost Electrical Safety Analyzer for Biomedical Devices A. ZUBAIR¹, O. IBE¹, AND A. COKER¹ ¹University of Ibadan, Ibadan, Nigeria

P-Th-37

Device for Aid in Neonatal and Infant Resuscitation

M. HEMANI¹, B. GU¹, B. KIM¹, T. LAM¹, AND A. CRUZ¹ ¹Johns Hopkins University, Baltimore, MD

P-Th-38

Development Of A Predictive Maintenance GUI For Medical Linear Accelerators

C. NGUYEN¹,², C. ABLE², A. BAYDUSH², AND M. MUNLEY¹,² ¹Virginia Tech - Wake Forest School of Biomedical Engineering and Sciences, Winston Salem, NC, ²Wake Forest School of Medicine, Winston Salem, NC

P-Th-39

ECG Signal Transmission Through GSM Voice Channel

S. DEHGHANOJAMAHALLEH¹, B. PLISKOW¹, AND M. KAYA¹ ¹Florida Institute of Technology, Melbourne, FL

Track: Drug Delivery, New Frontiers and Special Topics

Responsive and Targeted Drug Delivery

Chairs: Jeffrey Capadona, Jill Steinbach

P-Th-335

pH-Responsive P(IA-co-NVP) Hydrogels for the Oral Delivery of High Isoelectric Point Proteins M. KOETTING¹, A. ZHANG¹, AND N. PEPPAS¹

¹The University of Texas at Austin, Austin, TX

P-Th-336

Tumor-Targeted Magnetic Nanoparticles for Thermo-Controlled Drug Release

J. CAMINERO¹ AND M. DOMENECH¹ ¹University of Puerto Rico at Mayaguez, Mayaguez, PR, Puerto Rico

P-Th-337 🧕

Controlled Release of Lipoplexes using Acoustic Droplet Vaporization M. PILON¹, C. WILSON¹, D. JONES¹, R. FRANCESCHI¹, AND M. FABIILLI¹ ¹University of Michigan, Ann Arbor, MI

P-Th-338

pH-Responsive Polymeric Particulate Systems for Micronutrients Fortification of Salt X. XU¹, R. LANGER¹, AND A. JAKLENEC¹

¹Massachusetts Institute of Technology, Cambridge, MA

P-Th-339

Development of pH-Responsive Hydrogel Carriers for Oral Vaccine Delivery

L. SHARPE¹, Y. KHAIRANDISH¹, AND N. PEPPAS¹ ¹The University of Texas at Austin, Austin, TX

P-Th-340

Anti-Cancer Drug Delivery With DNA Nano-Ball

W. SUN¹,², R. MO¹,², AND Z. GU¹,² ¹The University of North Carolina at Chapel Hill, Chapel Hill, NC, ²North Carolina State University, Raleigh, NC

P-Th-341

Optimization of pH-Responsive Hydrogels for Delivery of HMW Proteins S. HORAVA¹ AND N. PEPPAS¹ ¹The University of Texas at Austin, Austin, TX

P-Th-342 🤶

Ultrasound-triggered Disruption and Self-healing of Reversibly-crosslinked Hydrogels for Drug Delivery and Enhanced Chemotherapy

N. HUEBSCH^{1,2}, C. KEARNEY^{1,2}, X. ZHAO^{1,2}, J. KIM^{1,2}, C. CEZAR^{1,2}, Z. SUO¹, AND D. MOONEY^{1,2}

¹Harvard University, Cambridge, MA, ²Wyss Institute for Biologically Inspired Engineering, Cambridge, MA

P-Th-343

Temperature-sensitive Nanoparticles for Lung Cancer Treatment J. MENON^{1,2}, K. VU¹, D. NGUYEN^{1,2}, AND K. NGUYEN^{1,2} ¹University of Texas at Arlington, Arlington, TX, ²University of Texas Southwestern Medical

P-Th-344

Center at Dallas, Dallas, TX

 $\label{eq:constraint} \begin{array}{l} \mbox{Modeling the Effect of Oleic Acid Absorption on Bioavailable Griseofulvin} \\ \mbox{Concentration} \end{array}$

Y. YEAP¹ AND R. CARRIER¹ ¹Northeastern University, Boston, MA

P-Th-345

MMPs-responsive Release of SiRNA from 4-arm PEG-siRNA Conjugate

¹Kangwon National University, Chuncheon, Korea, Republic of

P-Th-346

Single Molecule Mechanics of Peptide-condensed DNA: Dynamic Regulation by pH and Zn2

A. LEE¹, A. KARCZ¹, R. AKMAN¹, T. ZHENG¹, S. KWON¹, S-T. CHOU¹, S. SUCAYAN¹, L. TRICOLI¹, J. HUSTEDT¹, J. KAHN¹, A. MIXSON², AND J. SEOG¹ ¹University of Maryland, College Park, MD, ²University of Maryland School of Medicine, Baltimore, MD

P-Th-347

Ultrasound-Triggered Noninvasive Regulation of Blood Glucose Levels Using Microgels Integrated with Insulin Nanocapsules

J. DI¹, Y. JING², AND Z. GU¹
¹University of North Carolina at Chapel Hill | North Carolina State University, Raleigh, NC,
²North Carolina State University, Raleigh, NC

P-Th-348

Development of Multi-Functional Core-Shell NPs for Targeted Lung Cancer Dual Therapy

J. MENON¹, A. KURIAKOSE¹, E. HERNANDEZ², L. GANDEE², S. ZHANG², M. TAKAHASHI², Z. ZHANG², D. SAHA², AND K. NGUYEN¹

¹University of Texas at Arlington, Arlington, TX, ²University of Texas Southwestern Medical Center, Dallas, TX

P-Th-349

Developing a Targeted Oral Drug Carrier Using a Layer-by-Layer Chitosan and Alginate Enteric Coating

G. MOSLEY¹, S. CHENG¹, K. CHEN¹, AND D. KAMEI¹ ¹UCLA, Los Angeles, CA

P-Th-350

Modeling Release Behaviors Of Stimuli-Responsive Polyelectrolyte Multilayer Films

J. MIN^{1,2}, R. BRAATZ¹, AND P. HAMMOND^{1,2} ¹MIT, Cambridge, MA, ²Koch Institute of Integrative Cancer Research, Cambridge, MA

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

9:30AM - 5:00PM POSTER SESSION Thurs 2014 OCTOBER 23 THURSDAY

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-351

Development of "Smart" Particles Based on DNA-Crosslinked Hydrogels for Drug Delivery

R. DANSO¹, K. ABDELRAHMAN¹, AND T. BETANCOURT¹ ¹Texas State University, San Marcos, TX

P-Th-352

Iron Oxide Nanoparticles-Embedded Polymeric Microgels for Magnetic Responsive Drug Delivery

B. SUNG¹, H. YAN¹, S. SHAFFER¹, C. KIM¹, AND M-H. KIM¹ ¹Kent State University, Kent, OH

P-Th-353

Enhanced Colorectal Drug Delivery Using Hypotonic Enema Formulations K. MAISEL¹, T. MOENCH², C. HENDRIX¹, R. CONE¹, L. ENSIGN¹, AND J. HANES¹ ¹Johns Hopkins University, Baltimore, MD, ²ReProtect Inc., Baltimore, MD

P-Th-354

Development of a Material Platform for Hypoxia-Targeted Gene Delivery J. MADRIGAL¹, S. REZVANI¹, A. KOUBEISSI², K. BOUHADIR², AND E. SILVA¹

¹University of California Davis, Davis, CA, ²American University of Beiruit, Beirut, Lebanon

P-Th-355

Determining the Specificity of a Multivalent Polymeric Antigen-Specific Immunotherapy for Multiple Sclerosis

B. Hartwell¹, J. Sestak¹, B. Sullivan¹, D. Moore¹, H. Shinogle¹, T. Siahaan¹, and C. Berkland¹

¹University of Kansas, Lawrence, KS

P-Th-356

Genipin Releasing Suture Coatings For Reducing The Occurrence Of Suture Pull-Out Through Damaged Connective Tissue

S. SUNDARARAJ¹, P. SLUSAREWICZ ¹, AND T. HEDMAN¹,²

¹Orthopeutics L.P., Lexington, KY, ²University of Kentucky, Lexington, KY

P-Th-357

Targeting Metastatic Prostate Cancer Using Engineered Ligands

K. MAYLE¹, R. CHIU¹, S. WANG¹, K. DERN¹, A. WU¹, A. MASON², AND D. KAMEI¹ ¹University of California Los Angeles, Los Angeles, CA, ²University of Vermont, Burlington, VT

P-Th-358

Targeted Liposomes Containing Superoxide Dismutase and Fasudil Reduces Chronic Symptoms in PAH Rats

N. GUPTA¹, C. WOODS², E. NOZIK-GRAYCK², AND F. AHSAN¹ ¹Texas Tech University Health Sciences Center, Amarillo, TX, ²University of Colorado Denver, Aurora, CO

P-Th-359

Nanoparticle-mediated Therapies for Pediatric Brain Diseases

E. NANCE¹, F. ZHANG¹, M. MISHRA¹, S. PRAMODH-KAMB HAMP ATI¹, K. RANGARAMANUJAM¹, AND S. KANNAN¹ ¹Johns Hopkins University, Baltimore, MD

P-Th-360

EGF-Conjugated Dendrimers For Local, Sustained And Targeted Delivery Of Chemotherapeutic Drugs For Treatment Of Breast Cancer

N. OLIVA-JORGE¹, E. EDELMAN¹,², AND N. ARTZI¹,²

¹MIT, Cambridge, MA, ²Brigham and Women's Hospital, Harvard Medical School, Boston, MA

P-Th-361

Evaluating Effects Of Convection And Diffusion On A Gadolinium Tracer In Convection-Enhanced Delivery

J. FOO¹, C. SCHAFFER¹, AND W. OLBRICHT¹ ¹Cornell University, Ithaca, NY

P-Th-362

Biophysical simulation of targeted nanoparticle adhesion dynamics to optimize delivery M. WANG¹ AND J. HAUN¹ 'UC Irvine. Invine. CA

P-Th-363

A Smart Capsule with GI Tract Location Specific Payload Release W. YU¹, R. RAHIMI¹, M. OCHOA¹, AND B. ZIAIE¹ ¹Purdue University, West Lafayette, IN

P-Th-364

Functionalized Particle Adhesion Depends on Bifurcation Angle

G. LAMBERTI¹, A. SMITH², M. KIANI¹, B. PRABHAKARPANDIAN², AND K. PANT² ¹Temple University, Philadelphia, PA, ²CFD Research Corporation, Huntsville, AL

P-Th-365

Liposome-Conjugated Monoclonal Antibody Lability to Ultraviolet Sterilization Introduced by Lysyl Residue Derivatization M. KLEGERMAN¹, E. GOLUNSKI¹, AND D. MCPHERSON¹

¹University of Texas Health Science Center - Houston, Houston, TX

P-Th-366

Characterization of the *In Vitro* Interactions of a Liver Cancer-Specific Aptamer

M. SUTTON¹, E. BARNES¹, S. MITCHELL¹, T. BETANCOURT¹, AND S. WEIGUM¹ ¹Texas State University, San Marcos, TX

P-Th-367

Magnetic Field-enhanced Cell Uptake of Doxorubicin-loaded Magnetic Nanoparticles for Tumor Treatment

I. VENUGOPAL¹, S. PERNAL¹, H. ENGELHARD², AND A. LINNINGER¹ ¹University of Illinois at Chicago, Chicago, IL, ²University of Illinois College of Medicine at Chicago, Chicago, IL

P-Th-368

Electrokinetically Assisted Targeted Drug Delivery System For *In-vitro* Drug-cell Interaction Studies

R. TARUVAI KALYANA KUMAR¹, A. WANGZHOU¹, D. KINNAMON¹, AND S. PRASAD¹ ¹University of Texas at Dallas, Richardson, TX

P-Th-369

Controlled Dual Release of Dexamethasone Sodium Phosphate and Dexamethasone from Electrospun Membranes for Prevention of Peritoneal Adhesion

C. MA¹, C. XIONG², AND X. LIU¹ ¹Baylor College of Dentistry, Dallas, TX, ²University of Chinese Academy of Sciences, Chengdu, China, People's Republic of

Track: Nano to Micro Technologies, Biomaterials

BioMEMS, Tissue and Organs on a Chip, Cell Behavior in Micro/Nano Devices, Paperfluidics

Chairs: Maribel Vazquez, Lance Kam

P-Th-530

Use of Physiologically-Based in vitro Models of the Gastrointestinal Tract to Study TiO_2 and SiO_2 Nanoparticle Interactions with Mineral Absorption Z. GUO¹, E. TAKO², AND G. MAHLER³

¹Binghamton University, Binghamton, NY, ²Plant, Soil and Nutrition Laborator, Agricultural Research Services, U.S. Department of Agriculture, Ithaca, NY, Ithaca, NY, ³Binghamton Univsersity, Binghamton, NY

THURSDAY | OCTOBER 23 | 2014

POSTER SESSION Thurs 9:30AM – 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-531

Development of a Perfusable 3D Tumor Platform to Study Nanoparticle Transport

M. DEWITT¹, R. NEWSOME², A. PEKKANEN¹, AND N. RYLANDER¹,² ¹Virginia Tech-Wake Forest, Blacksburg, VA, ²Virginia Tech, Blacksburg, VA

P-Th-532

3D Microfluidic Device to Study the Neurotrophic Effect of Mesenchymal Stem Cells for Enhanced Human Neural Stem Cell Differentiation K. YANG¹, H-J. PARK¹, J. KIM¹, S. HAN², S. CHUNG², AND S-W. CHO

¹Department of Biotechnology, Yonsei University, Seoul, Korea, Republic of, ²School of Mechanical Engineering, Korea University, Seoul, Korea, Republic of

P-Th-533

Development of a Novel, Physiologically and Anatomically Realistic in vitro Pediatric Blood Brain Barrier on a Chip

S. DEOSARKAR¹, B. AUGELI¹, P. PANDIAN², B. KRYNSKA¹, AND M. KIANI¹ ¹Temple University, Philadelphia, PA, ²CFD Research Corporation, Huntsville, AL

P-Th-534

Gelatin Electrospun Nanofibrous Composite for use in Organ-on-a-chip **Microfluidics**

A. NICOLINI¹ AND J-Y. YOON¹ ¹The University of Arizona, Tucson, AZ

P-Th-535

A Novel In Vitro Blood Brain Barrier Platform for Preliminary Drug Studies C. HOVELL¹, G. BARABINO², L. TAITE¹, AND Y. KIM¹

¹Georgia Institute of Technology, Atlanta, GA, ²City College of New York, New York, NY

P-Th-536 👱

Biomimetic Modifications to Microfluidic Silk Spinning

D. LI1, D. BACKMAN1, M. JACOBSEN1, N. RIM1, D. KAPLAN2, AND J. WONG1 ¹Boston University, Boston, MA, ²Tufts University, Medford, MA

P-Th-537 🙎

Three-Compartment Microfluidic Device For Generating Heterogeneous Shear Stress Pattern

X. ZHANG¹ AND Y. ZHAO¹ ¹Ohio State University, Columbus, OH

P-Th-538

BioMEMS Device Intergrated With CNxCNT Membrane For Blood Plasma Extraction

Y-T. YEH¹, N. PEREA-LOPEZ¹, M. TERRONES¹, AND S. ZHENG¹ ¹The Pennsylvania State University, University Park, PA

P-Th-539

Development of a Cell-Based Model of the Ocular Fundus within a Microfluidic Device

H. KAJI1, S. ITO1, K. NAGAMINE1, M. NISHIZAWA1, N. NAGAI1, AND T. ABE1 ¹Tohoku University, Sendai, Japan

P-Th-540

Human Induced Pluripotent Stem Cell Derived 3D Cardiac Tissue Model for Drug Screening

A. MATHUR¹, P. LOSKILL¹, K. SHAO¹, S. HONG¹, N. MARKS¹, L. LEE¹, B. CONKLIN², AND K. HEALY

¹University of California, Berkeley, Berkeley, CA, ²University of California, San Francisco, San Francisco, CA

P-Th-541

Study of Renal Function in a Kidney-on-a-chip with Curved Geometry

S. YU¹, Y. KIM¹, J. PARK¹, W. LEE-KWON¹, Y-K. CHO¹ AND J. KIM¹ ¹Ulsan National Institute of Sicence and Technology, Ulsan, Korea, Republic of

P = Poster Session **OP** = Oral Presentation Reviewer Choice Award

P-Th-542

An Arrayed Microfluidic Hanging Drop System for EB Formation and Culture

H-W. WU¹ AND H. CHIA-HSIEN¹ ¹National Health Research Institutes, Miaoli County, Taiwan

P-Th-543

The Effect of Fluid Perfusion on Human Umbilical Vein Endothethial Cell **Tube Formation**

C, CHAN¹, V, GORAL², P, YUEN², AND T, HUANG ¹Pennsylvania State University, University Park, PA, ²Corning Incorporated, Corning, NY

P-Th-544

A Microfluidic Device to Model Active and Passive Transport Functions of the Human Kidney

C. SAKOLISH¹, J. COHEN¹, M. REISS¹, AND G. MAHLER¹ ¹Binghamton University, Binghamton, NY

P-Th-545

Do Substrate Cleaning Methods Affect Cellular Response?

B. KIRKLAND¹, K. HAFNER¹, M. KENNEDY¹, AND D. DEAN¹ ¹Clemson University, Clemson, SC

P-Th-546

Microstructured Multi-Well Plate for Three-Dimensional Packed Cell Seeding and Culture

V. GORAL¹, S. AU², R. FARIS¹, AND P. YUEN¹ ¹Corning Incorporated, Corning, NY, ²Massachusetts General Hospital, Charlestown, MA

P-Th-547

Detection of Neural Responses Using The In Vitro Chip-Based Human Investigational Platform (iCHIP)

H. ENRIGHT¹, E. MUKERJEE¹, N. FISCHER¹, S. FELIX¹, W. MCNERNEY¹, J. OSBURN¹, F. QIAN¹, A. CHANG¹, S. BAKER¹, E. WHEELER¹, K. KULP¹, J. ZHANG², G. PAGE², P. MILLER², A. GHETTI², AND S. PANNU¹

¹Lawrence Livermore National Lab, Livermore, CA, ²Anabios, Inc, San Diego, CA

P-Th-548

Engineering Microchip Modules for Monitoring Vascular Permeability Y. SEI1 AND Y. KIM1

¹Georgia Institute of Technology, Atlanta, GA

P-Th-549

Monolithic Droplet Generator and Microarray for Screening Islet Beta Cells Z, ZHAO1, R, LIU1, D, HU1, AND J, LO

¹University of Michigan-Dearborn, dearborn, MI

P-Th-550

Microengineered Biomimetic Liver Sinusoids-on-a-Chip for Drug Toxicity Studies

Y. KIM¹ AND Y-K. CHO ¹

¹Ulsan National Institute of Science and Technology, Ulsan, Korea, Republic of

P-Th-551

Quantitative Analysis of CCL19-induced Chemotaxis of Human Dendritic Cells in 3D Microenvironment

H HWANG¹ C SHIN¹ J PARK¹ Y DO¹ AND Y-K CHO¹ ¹Ulsan National Institute of Science and Technology, Ulsan, Korea, Republic of

P-Th-552

Metabolism-Induced Toxicity Screening on a Micropillar/Microwell Chip Platform Using THLE-2 Cells Expressing Combinations of Drug Metabolizing Enzymes

S. KWON1, D. LEE2, B. KU2, D. CLARK3, J. DORDICK1, AND M-Y. LEE4 ¹Rensselaer Polytechnic Institute, Troy, NY, ²Samsung Electro-Mechanics Co, Suwon, Korea, Republic of, ³University of California at Berkeley, Berkeley, CA, ⁴Cleveland State University, Cleveland, OH

P-Th-553

A Microfluidic System to Study the Effects of Mechanically Loaded Osteocytes on Osteoclastogenesis and Recruitment

K MIDDLETON¹ AND L YOU

¹University of Toronto, Toronto, ON, Canada

9:30AM – 5:00PM POSTER SESSION Thurs 2014 OCTOBER 23 THURSDAY

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-554

Chemotactic Gradients to Induce Photoreceptor Transplantation S. MISHRA¹, J. UNACHUKWU², S. REDENTI², AND M. VAZQUEZ¹

¹City College of New York, New York, NY, ²The Graduate School and University Center, City University of New York, New York, NY

P-Th-555

Modeling Spiral Oxygen Gradient for Simultaneous Hypoxic Stimulation and Cell Respiration Monitoring

M. ZHOU¹, K. MILLIMAN¹, Z. ZHAO¹, M. WANG¹, J. LO¹, AND N. CHAKRABORTY¹ ¹The University of Michigan-Dearborn, Dearborn, MI

P-Th-556

Microvasculature Mimetic Device to Model Physiological Barrier Properties in Sepsis

T. KHIRE¹, L. SALAS ESTRADA¹, R. WAUGH¹, AND J. MCGRATH¹ ¹University of Rochester, Rochester, NY

P-Th-557

Single Cell, High Efficiency Analysis of Rare T cell Response using a Magnetic Sieving Device

J. LEE¹, M. DUSTIN², AND L. KAM¹ ¹Columbia University, New York, NY, ²The University of Oxford, Oxford, United Kingdom

P-Th-558

A Microfluidic Oxygen Landscape Device Demonstrates Modulation of Hypoxic Signaling via Crosstalk between Normoxic and Hypoxic Endothelial Cells

M. REXIUS¹, D. EDDINGTON¹, AND J. REHMAN¹ ¹University of Illinois at Chicago, Chicago, IL

P-Th-559

Unidirectional Electrical Pulses For Cell Alignment In A Closed Microfluidic Chamber

D. LOUFAKIS¹, Z. CAO¹, S. MA¹, D. MITTELMAN¹,², AND C. LU¹ ¹Virginia Tech, Blacksburg, VA, ²Virginia Bioinformatics Institute, Blacksburg, VA

P-Th-560

Rapid Bacteria Capture In Capillary-driven Microfluidic Device

A. OLANREWAJU¹ AND D. JUNCKER¹ ¹McGill University, Montreal, QC, Canada

P-Th-561 CANCELLED BY AUTHOR

P-Th-562

Optimizing the Aspect Ratio of PLGA Nano-grooves for Controlling Cell Division Axis and Migration

Y-H. SU¹,², P-C. CHIANG¹, L-J. CHENG¹,³, C-H. LEE^{1,4}, N. SWAMI², AND C-F. CHOU¹ ¹Academia Sinica, Taipei, Taiwan, ²University of Virginia, Charlottesville, VA, ³Oregon State University, Corvallis, OR, ⁴National Yang-Ming University, Taipei, Taiwan

P-Th-563

Single Wall Carbon Nanotube Interactions with F-actin B. HOLT¹, M. ISLAM¹, AND K. DAHL¹

¹Carnegie Mellon University, Pittsburgh, PA

P-Th-564

Investigation of the Format-dependent Spatial Distribution of Binding in a Malaria Antigen Assay; Implications for Higher-sensitivity Detection

T. LIANG¹, G. FRIDLEY¹, P. YAGER¹, AND E. FU¹,² ¹University of Washington, Seattle, WA, ²Oregon State University, Corvallis, OR

P-Th-565

Nonplanar Three-Dimensional Paper Microfluidic Circuits Constructed with Patterned Adhesive

B. KALISH¹ AND H. TSUTSUI¹ ¹University of California, Riverside, Riverside, CA

P-Th-566

Concentrating a Urinary Tuberculosis Biomarker by Heated Evaporation on a Paper Microfluidic Device

S. WONG¹, M. CABODI¹, AND C. KLAPPERICH¹ ¹Boston University, Boston, MA

P-Th-567

Predicting Wicking in Wax-bound Paper Microfluidic Channels C. CASTRO¹, C. ROSILLO¹, AND H. TSUTSUI¹ ¹University of California, Riverside, Riverside, CA

P-Th-568 🤶

Modeling Drug Clearance and Drug-Drug Interactions in Long-Term Engineered Human Liver Cultures C. LIN¹, J. SHI², A. MOORE², AND S. KHETANI¹

¹Colorado State University, Fort Collins, CO, ²Hepregen Corporation, Medford, MA

Track: Neural Engineering, Device Technologies

session

Neural Engineering I: BCI, Devices, and Rehab

Chairs: Lisa Flanagan, Jaydip Desai

and Biomedical Robotics

P-Th-80 🤶

Non-invasive Brain-Computer Interface for Prosthetic Control T. CALLAHAN¹, A. RITTER¹, AND T. SIGLER¹ 'Stevens Institute of Technology, Hoboken, NJ

P-Th-81

Chronic CNS Recording Studies in an Aged Rat Model M. CHRISTENSEN¹, N. NOLTA¹, AND P. TRESCO¹ ¹University of Utah, Salt Lake City, UT

P-Th-82

Investigation of the Neuroinflammatory Response to Antioxidant-Releasing Mechanically-Compliant Implants

J. NGUYEN^{1,2}, K. BUCHANAN^{1,2}, M. JORFI³, E. FOSTER³, C. WEDER³, AND J. CAPADONA^{1,2}

¹Case Western Reserve University, Cleveland, OH, ²Louis Stokes Cleveland VA Medical Center, Cleveland, OH, ³University of Fribourg, Marly, Switzerland

P-Th-83

Detection of Early Alzheimers Disease Using Nonlinear State Space Reconstruction of EEG

J. McBride¹, X. Zhao¹, N. Munro², G. Jicha³, F. Schmitt³, R. Kryscio³, C. Smith³, and Y. Jiang³

¹University of Tennessee, Knoxville, TN, ²Oak Ridge National Laboratory, Oak Ridge, TN, ³University of Kentucky, Lexington, KY

P-Th-84

Exploring Differences in Concentration Levels While Playing Games A. COPEMAN¹ AND B. CAMPBELL¹

¹Robert Morris University, Moon Township, PA

P-Th-85

Open Vs. Closed Loop EEG-Based Control Using Binaural Stimulation C. BEAUCHENE¹ AND A. LEONESSA¹

¹Virginia Tech, Blacksburg, VA

P-Th-86

Peripheral Sensory Feedback to Improve Gait with a Feline Hindlimb Prosthesis

H. PARK¹, B. PRILUTSKY¹, AND S. DEWEERTH¹ ¹Georgia Institute of Technology, Atlanta, GA

THURSDAY | OCTOBER 23 | 2014

POSTER SESSION Thurs 9:30AM – 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-87

Stability and Sub-chronic Biocompatibility of Carbon Nanotube Fiber Microelectrodes

F. VITALE¹, S. SUMMERSON¹, B. AAZHANG¹, C. KEMERE¹, AND M. PASQUALI¹ ¹Rice University, Houston, TX

P-Th-88

neuroPG: Open Source Software For Optical Pattern Generation And Data Acquisition

B. AVANTS¹, D. MURPHY¹, J. ROBINSON¹, AND J. DAPELLO² ¹Rice University, Houston, TX, ²Hampshire College, Amherst, MA

P-Th-89

A Study on NMDA Dose-Response Effect on Chick Forebrain Neuron Culture on an MEA

X. YANG¹, S. KUANG¹, AND B. GAO¹ ¹Clemson University, Clemson, SC

P-Th-90 Development of Electrical Switch System for Desynchronizing Abnormal Neural Activity D. KIM¹, H. JUNG¹, AND Y. NAM¹

¹KAIST, Daejeon, Korea, Republic of

P-Th-91

Novel Micropatterns on a Microelectrode Array Using Agarose Hydrogel for Neural Network Design N. HONG¹, S. JOO¹, AND Y. NAM¹ ¹KAIST, Daejeon, Korea, Republic of

P-Th-92

Fabrication and Evaluation of Brain Drug Delivery Microdevices J. SY¹, K. SPENCER¹, R. LANGER¹, AND M. CIMA¹ ¹Massachusetts Institute of Technology, Cambridge, MA

P-Th-93

Reinforcement of Platinum Black Structure Through Polydopamine Incorporation R. KIM¹ AND Y. NAM¹

1KAIST, Daeleon, Korea, Republic of

P-Th-94

Simply Fabricated Protruding Microelectrode Array using Liquid Crystal Polymer (LCP)

J. JEONG¹, C. KIM¹, S. AHN¹, G. KIM¹, T. GWON¹, J. SEO¹, AND S. KIM¹ ¹Seoul National University, Seoul, Korea, Republic of

P-Th-95

Improving the Performance of Intracortical Microelectrodes via Structural Modifications and Biochemical Intervention Strategies

H. LEE¹, J. GAIRE¹, M. MCDERMOTT¹, J. ZHANG¹, K. OTTO¹, AND K. OTTO¹ ¹Purdue University, West Lafayette, IN

P-Th-97

A Quantitative Tool For Identifying The Epileptogenic Zone Using Network **Connectivity Analysis**

J. GURISKO¹, R. BOSSEMEYER¹, S. RHODES¹, P. FISHBACK², AND K. ELISEVICH³ ¹Grand Valley State University, Grand Rapids, MI, ²Grand Valley State University, Allendale, MI, ³Spectrum Health System, Grand Rapids, MI

P-Th-98

Nonlinear Identification of Functional Spike-Timing-Dependent Plasticity from Simulated Spiking Activity

B. ROBINSON¹, D. SONG¹, AND T. BERGER¹ ¹University of Southern California, Los Angeles, CA

P = Poster Session **OP** = Oral Presentation = Reviewer Choice Award

P-Th-99

Understanding Synchrony in Networks of Neurons that are Noise-Dominated J. BAUER¹, F. FERNANDEZ¹, AND J. WHITE¹

¹University of Utah, Salt Lake City, UT

P-Th-100

Mental Activation of a Light Bulb Using Inexpensive Neural Interface Technology

J. LEIPHEIMER¹, D. CESARIO¹, L. ZEARING¹, AND B. CAMPBELL¹ ¹Robert Morris University, Moon Township, PA

P-Th-101

Nonlinear Method to Assess Autonomic Function in Diabetic patients Type 2 A. KAMAI

¹Tennessee Tech University, Cookeville, TN

P-Th-102

Learned Stimulus Response in Experimental and Simulated Neural Networks

K. O'NEILL¹, G. MATTSON¹, T. SHINBROT¹, AND B. FIRESTEIN¹ ¹Rutgers University, Piscataway, NJ

P-Th-103

Modelling Gait Syndrome in Huntington's disease: the Genetic Algorithm Approach

O. AJIBOLA¹, F. OGUNWOLU¹, O. IBIDAPO-OBE¹, V. OLUNLOYO¹, AND A. OSUNTOKI¹ ¹University of Lagos, Lagos, Nigeria

P-Th-104

Effect Of Transcranial Direct Current Stimulation On Behavior Impairments Following Neonatal HIE Stroke

C. ANDERSON¹, T. DEMARSE¹, P. CARNEY¹, M. WEISS¹, AND M. DOUGLAS-ESCOBAR¹ ¹University of Florida, Gainesville, FL

P-Th-105

Novel Supination Assessment Task In A Rat Model Of Ischemic Stroke E. MEYERS¹, A. SINDHURAKAR², S. HAYS¹, A. SLOAN¹, M. KILGARD¹, J. CARMEL², AND R. RENNAKER ¹University of Texas at Dallas, Richardson, TX, ²Burke-Cornell Medical Research Institute, White Plains, NY

P-Th-106

EMG Measurement of Middle Ear Muscle Reflex in Chinchillas Z. YOKELL¹, D. NAKMALI¹, S. JIANG¹, X. GUAN¹, AND R. GAN¹ ¹University of Oklahoma, Norman, OK

R. GRANJA-VAZQUEZ¹, B. JOHNSTON¹, M. LE², S. TRINH², AND M. ROMERO-ORTEGA¹

¹UT Arlington & UT Southwestern Medical Center, Arlington, TX, ²UT Arlington, Arlington, TX

P-Th-108

A Novel Substrate for In Vitro Optogenetics Experiments

A. HAMMACK¹, A. AVENDANO-BOLIVAR¹, H. JIA¹, AND B. GNADE¹ ¹University of Texas at Dallas, Richardson, TX

P-Th-109

Electrostimulation with Subnanosecond Pulses

S. XIAO¹, A. PAKHOMOV¹, I. SEMENOV¹, D. KANG¹, S. POLISETTY¹, AND K. SCHOENBACH¹

¹Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA

P-Th-110

Development Of An Implantable System For Controlling Rat Eye Pressure S. BELLO¹, C. PASSAGLIA¹, X. TANG¹, AND S. MALAVADE¹ ¹University of South Florida, Tampa, FL

P-Th-III

Transcranial Direct Current Stimulation to Enhance Motor Learning in Healthy Subjects

P. OLDANI¹, C. HOGAN¹, S. SHARMA¹, S. MICHALOVIC¹, AND R. OHRBACH¹ ¹University at Buffalo, Buffalo, NY

P-Th-107 Characterization Of Neuropathic Pain In Amputation Neuroma Model

9:30AM – 5:00PM POSTER SESSION Thurs 2014 OCTOBER 23 THURSDAY

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-II2

Low Stress Sleep Deprivation Using Vibration Table Method F. DECUIR¹ 'Louisiana Tech University, Ruston, LA

P-Th-113 High-throughput Mapping of Brain-wide Activities In Awake and Drugresponsive Vertebrates X. LIN¹, S. WANG¹, X. YU¹, AND P. SHI¹ 'City University of Hong Kong, Kowloon, Hong Kong

Track: New Frontiers and Special Topics, Translational Biomedical Engineering

Global Health

Chairs: TBD

P-Th-501

Normalizing Smart Phone Detection of Flourescence for Global Health

V. BARKER¹, M. LIPOWICZ¹, C. SMITH¹, A. MOSKOWITZ¹, C. VAN BUSSUM¹, AND A. GARCIA¹ 'Arizona State University, Tempe, AZ

P-Th-502

Assessing the Feasibility of Local Production of Medical Devices in Sub-Saharan Africa

J. ABBAS¹, M. POLUTA², A. SABET SARVESTANI³, AND A. VELAZOUEZ-BERUMEN⁴ ¹Arizona State Unviersity, Tempe, AZ, ²University of Cape Town, Rondebosch, South Africa, ³University of Michigan, Ann Arbor, MI, ⁴World Health Organization, Geneve, Switzerland

P-Th-503

Defining Head-Tilt Position for Neonatal and Infant Resuscitation M. HEMANI¹, B. GU¹, B. KIM¹, A. CRUZ¹, T. LAM¹, AND U. BHALALA²

M. HEMANI', B. GU', B. NIM', A. CRUZ', I. LAM', AND O. BHALALA-¹Johns Hopkins University, Baltimore, MD, ²Johns Hopkins Hospital, Baltimore, MD

P-Th-504

Magnetic Bead-Based Enhancement of Rapid Diagnostic Tests

N. ADAMS¹, K. DAVIS¹, D. WRIGHT¹, AND F. HASELTON¹ ¹Vanderbilt University, Nashville, TN

P-Th-505

Paper-Based Diagnostic Accelerates Phase Separation of a Micellar Aqueous Two-Phase System

D. PEREIRA¹, R. CHIU¹, A. THACH¹, AND D. KAMEI¹ ¹UCLA, Los Angeles, CA

P-Th-506

Uterine Contraction Monitoring: Improving Labor Management in Low Resource Settings

M. LAMBERTI¹, M. BABB¹, AND J. HUNT¹ ¹Johns Hopkins University, Baltimore, MD

P-Th-507

Understanding the Design Constraints of the Tanzanian Health Care System J. KOHN¹, M. MCCORRY¹, AND L. BONASSAR¹ ⁷Cornell University, Ithaca, NY

P-Th-508

Independent Dielectrophoretic Monitoring of Clostridium difficile Strains on a Microfluidic Device

Y-H. SU¹, C. WARREN¹, R. GUERRANT¹, AND N. SWAMI¹ ¹University of Virginia, Charlottesville, VA

P-Th-509

Polymer-coated Gold Nanoprobes For The Concentration And Detection Of Protein Biomarkers For Resource-poor Settings

R. CHIU¹, P. NGUYEN¹, J. WANG¹, E. JUE¹, A. THACH¹, B. WU¹, AND D. KAMEI¹ ¹University of California, Los Angeles, Los Angeles, CA

P-Th-510

Three Dimensions of Measurements for Global Health Diagnostics M. SCRIPT¹ 'Inspire Living, Inc., Fairfax Station, VA

P-Th-511

3D Printed Fluorometer For Global Health M. LIPOWICZ¹ AND A. GARCIA¹ '*Arizona State University, Tempe, AZ*

P-Th-512

Paper-based Diagnostic Devices for Measuring the Level of Organophosphate Poisoning in Human Serum of Patients K-H. CHEN¹, S-T. FAN¹, T-H. YEN², Y-F. HUANG¹, AND C-M. CHENG¹ ¹National Tsing Hua University, Hsinchu, Taiwan, ²Chang Gung University and School of Medicine, Taoyuan, Taiwan

Track: New Frontiers and Special Topics, Biomaterials

Smart Materials/Emerging Tech

Chairs: James Abbas, Anand Ramasubramanian

P-Th-513 🙎

MG63 Morphology and Behavior on Shape-Memory Polymer for Osteoblast Differentiation

E. HEWETT¹, K. SMITH², K. GALL¹, Z. SCHWARTZ³,⁴, AND B. BOYAN¹,³ ¹Georgia Institute of Technology, Atlanta, GA, ²MedShape Solutions, Inc., Atlanta, GA, ³Virginia Commonwealth University, Richmond, VA, ⁴University of Texas Health Science Center, San Antonio, TX

P-Th-514 🙎

Engineering *in Vitro* Models to Elucidate the Effect of Microcavitation in Astrocytes

S. SUN¹, D. KANG², S. XIAO², AND M. CHO¹ ¹University of Illinois at Chicago, Chicago, IL, ²Old Dominion University, Norfolk, VA

P-Th-515

A Compact Acoustic Tweezers System for Cell Trapping and In Vivo Applications

Y. LI¹, K. LEE¹, B. ZHU², Y. LI¹, AND K. SHUNG¹

¹NIH Ultrasonic Transducer Resource Center and Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, ²School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China, People's Republic of

P-Th-516

A Novel and Highly Efficient Method for Intracellular Delivery and Accumulation of Trehalose

A. ABAZARI¹, L. MEIMETIS¹, D. MOORE², S. HAND², R. WEISSLEDER¹, AND M. TONER¹ ¹Massachusetts General Hospital - Harvard Medical School, Boston, MA, ²Louisiana State University, Baton Rouge, LA

P-Th-517

nBioChip (nano-Biofilm Chip) - A Platform for Ultra-high-throughput Drug Discovery of Antimicrobial Drugs Against Polymicrobial Biofilms

A. SRINIVASAN^{1,2}, K. LEUNG³, J. LOPEZ-RIBOT^{1,2}, AND A. RAMASUBRAMANIAN^{1,2} ¹The University of Texas at San Antonio, San Antonio, TX, ²South Texas Center for Emerging Infectious Diseases, San Antonio, TX, ³US Army Institute of Surgical Research, FortSam Houston, TX

P-Th-518

CFD-Guided Experimental Investigation of Corneal Biomechanics in Microgravity

D. Sathyanarayan¹, N. Do², G. Girish², J. Grewal², R. Kowalchuk¹, N. Quintero², G. Truskey¹, S. Gangadharan², B. Dikici², and E. Divo²

¹Duke University, Durham, NC, ²Embry-Riddle Aeronautical University, Daytona Beach, FL

THURSDAY | OCTOBER 23 | 2014

POSTER SESSION Thurs 9:30AM – 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-519

The Role of Skin Dendritic Cells in Nanoparticle Transport in SKH-I Hairless Mice S. JATANA¹ AND L. DELOUISE¹

¹University of Rochester, Rochester, NY

P-Th-520

Lignocellulosic-based Analytical Devices

C-M. KUAN ¹ AND C-M. CHENG¹ ¹NanoEngineering and MicroSystems, Hsinchu, Taiwan

P-Th-521

Neurostimulation of the Cholinergic Anti-Inflammatory Pathway Reduces Endoscopy Score in Rat Colitis

Y. LEVINE¹, K. BLACK^{1,2}, AND M. FALTYS¹ ¹SetPoint Medical Corporation, Valencia, CA, ²Ra Pharmaceuticals, Cambridge, MA

P-Th-522

Creating a Geometrically Distinct Human Body FEM Using Radial Basis Function Interpolation

N. VAVALLE^{1,2}, S. SCHOELL^{1,2}, A. WEAVER^{1,2}, J. STITZEL^{1,2}, AND F. GAYZIK^{1,2} ¹Wake Forest School of Medicine, Winston-Salem, NC, ²Wake Forest Center for Injury Biomechanics, Winston-Salem, NC

P-Th-523

Biohybrid Soft Robotics Flagellum Enables Free Swimming B. WILLIAMS¹, J. RAJAGOPALAN², AND T. SAIF¹ 'University of Illinois at Urbana-Champaign, Urbana, IL, ²Arizona State University, Tempe, AZ

P-Th-524

Coordination of Ventilatory Mechanisms in the Madagascar Hissing Cockroach and Potential Bio-Inspired Microfluidic Systems

J. GARRETT¹ AND J. SOCHA¹ ¹Virginia Tech, Blacksburg, VA

P-Th-525

What Happens When Pupae Pump? Internal Effects of Abdominal Pumping in the Beetle Zophobas morio M. KENNY¹, H. PENDAR¹, AND J. SOCHA¹ ¹Virginia Tech, Blacksburg, VA

P-Th-526

Development and Characterization of Antibodies to Nanoparticles to Enhance their Detection in Human Skin

S. RAVICHANDRAN¹, M. SULLIVAN¹, AND L. DELOUISE¹ ¹University of Rochester, Rochester, NY

P-Th-527

Little Joey - Development of a Personalized Toy to Improve Cognitive, Sensory, and Motor Skills in a Neurologically Disabled Child

N. AHMED¹, J. SELLMAN¹, L. BRAY¹, AND N. PEIXOTO¹ ¹George Mason University, Fairfax, VA

P-Th-528

3D Printed Glass for the Correction of Eye Defects S. PERUMAL¹

¹University of South Florida, tampa, FL

P-Th-529

A Battery-less Pressure Driven Smart Pill for Oral to Systemic Protein Delivery

K. ARAN¹, J. PAREDES¹, K. LEE¹, A. ACHARYA¹, D. LIEPMANN¹, AND N. MURTHY¹ ¹University of California, Berkeley, CA

Track: Orthopaedic and Rehabilitation Engineering, Biomechanics

Biomechanics and Rehabilitation of the Upper Limb

Chairs: Wendy Murray, Katherine Saul

P-Th-156

Gestural Navigation of Virtual Exercise Environments for People with Mobility Impairments

S. POOL¹, L. MALONE², J. RIMMER¹, AND A. EBERHARDT¹ ¹University of Alabama at Birmingham, Birmingham, AL, ²Lakeshore Foundation, Birmingham, AL

P-Th-157

Robotics Based Human Body Model for Improvement of Upper Extremity Prostheses

D. MENYCHTAS¹, D. LURA², S. CAREY¹, AND R. DUBEY¹ ¹University of South Florida, Tampa, FL, ²Florida Gulf Coast University, Fort Mayers, FL

P-Th-158

Development of Prosthetic Fingertips for Improved Touch Screen Interactions

J. HEASLEY¹, A. AZANAW¹, K. SLIS¹, D. KISKA¹, AND B. CAMPBELL¹ ¹Robert Morris University, Moon, PA

P-Th-159 🙎

Functional Task Analysis for Human-Machine Performance Limits

R. PATTERSON¹, J. STANFORD², C. YOUNG¹, D. POPA², AND N. BUGNARIU¹ ¹University of North Texas Health Science Center, Fort Worth, TX, ²University of Texas at Arlington, Arlington, TX

P-Th-160

Mathematical simulation of multi-insertion site tendon transfer surgery for lateral pinch throughout thumb flexion-extension plane

S. O'LEARY¹, N. SALYAPONGSE¹, D. THELEN¹, AND J. TOWLES¹ ¹University of Wisconsin-Madison, Madison, WI

P-Th-161

Target Postures for Maximum Voluntary Contraction of Extrinsic Thumb Muscles During Intramuscular EMG

M. DE BRUIN^{1,2}, S. WOHLMAN², AND W. MURRAY^{1,2} ¹Rehabilitation Institute of Chicago, Chicago, IL, ²Northwestern University, Chicago, IL

P-Th-162

Elbow Stiffness at High Torque Levels D. LUDVIG¹,², H. LEE¹, AND E. PERREAULT¹,² ¹Rehabilitation Institute of Chicago, Chicago, IL, ²Northwestern University, Chicago, IL

P-Th-163

Biomechanical Simulation Of Pinch Forces From Experimental Muscle Activations

S. WOHLMAN¹ AND W. MURRAY¹ ¹Northwestern University, Chicago, IL

P-Th-164

Design of a 3-D Printed Exoskeleton Glove to Passively Move a Paralyzed Hand

E. AUSTIN, JR.¹, Y-H. SHIN¹, W. WANG¹, AND J-W. CHOI¹ ¹Louisiana State University, Baton Rouge, LA

P-Th-165

Design and Development of a 3D Printed Dexterous Prosthetic Hand P. MURUGESU¹ AND Y. M. AL-SMADI¹ ¹Texas A&M University Kingsville, TX

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

9:30AM – 5:00PM POSTER SESSION Thurs 2014 OCTOBER 23 THURSDAY

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-166

Modeling Influence of Whole Body Vibration on Upper Extremity Neuromuscular Performance During Space Vehicle Launch T. DELEON-NWAHA¹ AND D. PETERSON¹ ¹University of Connecticut Health Center, Farmington, CT

P-Th-167

Preventing Hand-Arm Vibration Injuries by Selecting Gloves Based on Tool-Specific Vibrations T. ASAKI¹, S. KUDERNATSCH¹, AND D. PETERSON¹

¹University of Connecticut Health Center, Farmington, CT

Track: Orthopaedic and Rehabilitation Engineering, Cellular and Molecular Bioengineering

Mechanobiology, Tissue Engineering and Regenerative Medicine, Musculoskeletal Pain

Chairs: Lijie Grace Zhang, Kyle Allen

P-Th-125

Tunable Low Intensity Pulsed Ultrasound for Improving Stem Cell Functions in 3D Printed Scaffolds

C. O'BRIEN¹, M. ALIABOUZAR¹, K. SARKAR¹, AND L. ZHANG¹ ¹The George Washington University, Washington, DC

P-Th-126

Comparing Cyclic Tensile Properties of Native and Decellularized Porcine Knee Meniscus

E. LAKES¹, M. DIAZ¹, P. MCFETRIDGE¹, AND K. ALLEN¹ ¹University of Florida, Gainesville, FL

P-Th-127

Multi-approach Assessments of BMSCs Transplantation After Nerve Crush Injury

S. LIU¹, H. CAI¹, A. HOKE¹, AND X. JIA¹,² ¹Johns Hopkins University School of Medicine, Baltimore, MD, ²University of Maryland School of Medicine, Baltimore, MD

P-Th-128

Anisotropy Promotes Myogenic Differentiation Via Integrins

M. MCCLURE^{1,2}, R. OLIVARES-NAVARRETE², Z. SCHWARTZ², AND B. BOYAN² ¹Hunter Holmes Veterans Affairs Medical Center, Richmond, VA, ²Virginia Commonwealth University, Richmond, VA

P-Th-129

Does Collagen Crosslinking in Ageing and Diabetes Modulate Overload Damage to Tendon Collagen?

A. BROWN¹, S. VERES^{1,2}, AND J. LEE¹ ¹Dalhousie University, Halifax, NS, Canada, ²Saint Mary's University, Halifax, NS, Canada

P-Th-130

Use of a Novel Behavioral Device to Measure Orofacial Mechanical Allodynia in Rats

E. ROHRS¹, K. KAPERNAROS¹, A. JENKINS¹, J. NEUBERT¹, AND K. ALLEN¹ ¹University of Florida, Gainesville, FL

P-Th-131

Low-intensity Vibration Amplifies Beneficial Effects of Sleeve Gastrectomy on Bone Marrow Niche

A. Yang¹, G. Pagnotti¹, V. Patel¹, M. Altieri², A. Pryor², D. Telem², M. Chan¹, and C. Rubin¹

 $^{\rm 1} {\rm Stony}$ Brook University, Stony Brook, NY, $^{\rm 2} {\rm Stony}$ Brook University School of Medicine, Stony Brook, NY

P-Th-132

The Effect of IL-I Beta on Axonal Growth Potential Induced by Interplay Between Annulus Fibrosus and DRG Neurons H. KIM¹, T. CASPAR¹, S. SHAH², AND A. HSIEH¹,³ ¹University of Maryland, College Park, MD, ²University of California-San Diego, La Jolla, CA, ³University of Maryland, Baltimore, MD

P-Th-133

Effects of Membrane Cholesterol Enrichment on Osteoblast Responsiveness to Hydrodynamic Pressures K. LOUGH¹ AND H. SHIN¹

¹University of Kentucky, Lexington, KY

P-Th-134 🤶

Mechanical Stimulation of a Healing Fracture in Mice Using An External Fixator J. CURREY¹, M. MANCUSO¹, AND S. KALIKOFF¹ ¹Union College, Schenectady, NY

Track: Orthopaedic and Rehabilitation Engineering, Biomechanics

Musculoskeletal Imaging

Chairs: Wendy Murray, Katherine Saul

P-Th-617

Regional Characterization of Effective Joint Space & Hip-joint Capsule Volume from Magnetic Resonance Imaging

P. MENON¹, P. ALBAL¹, B. MOSIER², L. MAYNARD², AND J. CHRISTOFORETTI² ¹Sun Yat-sen University - Carnegie Mellon University Joint Institute of Engineering, Pittsburgh, PA, ²Allegheny Health Network, Pittsburgh, PA

P-Th-618

The Effect of Skin Motion on Dynamic Musculoskeletal Ultrasound

D. LIPPS¹, S. LEE¹, B. WANG¹, AND E. PERREAULT¹ ¹Northwestern University, Chicago, IL

P-Th-619

Contrast Enhanced Computed Tomographic Analysis of the Biochemical and Biomechanical Properties of Human Articular Cartilage: Cationic vs. Anionic Contrast

R. Stewart^{1, 2}, B. Cooper¹, B. Lakin^{1, 2}, J. Freedman^{1, 2}, M. Grinstaff¹, and B. Snyder²

¹Boston University, Boston, MA, ²Beth Israel Deaconess Medical Center, Boston, MA

P-Th-620

Accuracy and Feasibility of Dual Fluoroscopy: *In-Vivo* Kinematics of Tibiotalar and Subtalar Joints

K. ROACH¹, B. WANG¹, A. KAPRON¹, N. FIORENTINO¹, M. SINGER¹, C. SALTZMAN¹, AND A. ANDERSON¹

¹University of Utah, Salt Lake City, UT

Track: Orthopaedic and Rehabilitation Engineering, Device Technologies and Biomedical Robotics

Technology, Computer Interfaces and Wearable Devices

Chairs: James Rains, Yahia Al-Smadi

P-Th-114

Automatic Parameter Generation for Therapeutic Games Using Patient Assessment and Performance Data

N. SUNNY¹ AND J. FARRIS¹ ¹Grand Valley State University, Grand Rapids, MI

THURSDAY | OCTOBER 23 | 2014

POSTER SESSION Thurs 9:30AM – 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-115

EOG Based Human-Computer Interface for the Operation of a Text-To-Speech App on Android Devices

J. LARA¹, V. CONTRERAS¹, A. HEREDIA², AND R. AMBROSIO¹ ¹Universidad Autónoma de Ciudad Juárez (UACJ), IIT, Ciudad Juárez, Mexico, ²Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla, Mexico

P-Th-116

Utilization of Video Recording to Analyze Cognitive and Physical Facets of Children with Autism

W. GOODWIN¹, J. THAKORE¹, J. MCMAHON¹, A. N'GOAN¹, AND D. SHAHMIRZADI¹ ¹Stevens Institute of Technology, Hoboken, NJ

P-Th-117

A Wearable Navigator For The Visually Impaired And Blind Population H. He' AND J. TAN'

¹The University of Tennessee, Knoxville, TN

Novel Eye-Tracking System for Control of Motorized Wheelchairs J. Ward¹ AND M. MCCARTHY²

¹Tulane University, Lake Charles, LA, ²Tulane University, Commerce Township, LA

P-Th-119

Blink Controlled Brain Computer Interface Using EEG

O. YETKIN¹, C. MONT¹, K. WALLACE¹, AND M. ROMERO¹ ¹University of Texas at Arlington, Arlington, TX

P-Th-120

Motor Rehabilitation Care for Children with Cerebral Palsy Using Telemedicine.

P. RODRIGUEZ¹, E. HERNANDEZ¹, S. MONTES¹, AND K. BUSTAMANTE¹ ¹ITESM Chihuahua, Chihuahua, Mexico

P-Th-121

Translational Research in the Development of Gait Rehabilitation Trainer M. LEE¹, W. SONG¹, S. SAGONG¹, J. SEO¹, AND S. EUN¹ ¹National Rehabilitation Center, Seoul, Korea, Republic of

P-Th-122

Novel Design of an Anterior Cruciate Ligament (ACL) Injury Prevention Brace

D. GREENSHIELDS¹, R. PORTER¹, J. KILLEWALD¹, AND E. MEYER¹ ¹Lawrence Technological University, Southfield, MI

P-Th-123

Variable Resistance Rehabilitative Knee Brace

S. DREYER¹, D. O'NEILL¹, U. ACAR¹, K. IZAK¹, A. PATEL¹, AND S. PILLER¹ ¹University of Illinois at Chicago, Chicago, IL

P-Th-124

MEMS Flexible Strain Sensors for Arthritis Diagnosis

K. SHINDE¹, J. JULIUS¹, S. RAO¹, AND J-C. CHIAO¹ ¹UT Arlington, Arlington, TX

Track: Tissue Engineering

Hepatic, Pancreatic, Digestive and Renal Tissue Engineering

Chairs: Gregory Underhill, Srivatsan Kidambi

P-Th-391

Evaluation of Oxygen Demand in Three Dimensional Culture of Pancreatic beta-cells

J. MCREYNOLDS¹, X. LI², J. GUAN², AND S. JIN¹,³ ¹University of Arkansas, Fayetteville, AR, ²The Ohio State University, Columbus, OH, ³Current: SUNY at Binghamton, Binghamton, NY

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

P-Th-392

Organotypic 3D Liver Models for Investigating Drug Toxicity S. ORBACH¹, M. CASSIN¹, AND P. RAJAGOPALAN¹

¹Virginia Tech, Blacksburg, VA

P-Th-393

Designing an Inflamed and Fibrotic Microenvironment to Investigate Changes in Liver Sinusoidal Endothelial Function

A. FORD¹ AND P. RAJAGOPALAN¹ ¹Virginia Tech, Blacksburg, VA

P-Th-394

Effect of Decellularized Liver Matrix Proteins on Porcine Hepatocytes in Vitro

R. CORONADO^{1,2,3}, J. ONG¹, R. CHRISTY³, W. WASHBURN², AND G. HALFF² ¹University of Texas at San Antonio, San Antonio, TX, ²University of Texas Health Science Center at San Antonio, San Antonio, TX, ³US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX

P-Th-395

Novel Integrated *In Vitro* Gastrointestinal and Hepatic Models for Investigating Drug Toxicity R. LESS¹ AND P. RAJAGOPALAN¹

¹Virginia Tech, Blacksburg, VA

P-Th-396

Analysis Of Perfusion-Enhanced Diffusion, Shear Damage And Metabolic Function In Spheroid-Seeded And Suspension-Seeded Hepatocyte Scaffolds D. ALZEBDEH¹ AND H. MATTHEW¹ 'Wayne State University, Detroit, MI

P-Th-397

Decellularized Liver Matrix Coating and Hydrogel for Culture and Transplantation of Hepatocytes J. LEE¹, K. LEE¹, J. SHIN¹, AND S-W. CHO¹

¹Yonsei University, Seoul, Korea, Republic of

P-Th-398

Is Hanging Monoculture of Primary Hepatocytes Better? Y. KANG¹, J. LAMONTAGNE¹, Y. CAI¹, M. BOUCHARD¹, AND H. NOH¹ ¹Drexel University, Philadelphia, PA

Track: Tissue Engineering

Neural, Epithelial and Adipose Tissue Engineering

Chairs: Sarah Stabenfeldt, John Frampton

P-Th-401

Neurotrophic Factor Gradient Delivery to Direct Schwann Cell Migration K. KRICK¹, Y-J. HUANG², R. MARTIN², P. SEARSON², A. KHADEMHOSSEINI³, A. HOKE¹, AND H-Q. MAO²

¹Johns Hopkins School of Medicine, Baltimore, MD, ²Johns Hopkins University, Baltimore, MD, ³Harvard-MIT, Cambridge, MA

P-Th-402

Inducing Inner Ear Hair Cell Development by Seeding Reprogrammed Human Wharton's Jelly Cells on Decellularized Cochlea

P-Th-403

FGF-Immobilized Multifunctional Microspheres for the Delivery of Neural Stem Cells

N. SKOP¹, F. CALDERONA¹, C. GANDHI¹, S. LEVISON¹, AND C. CHO² ¹Rutgers University, Newark, NJ, ²New Jersey Institute of Technology, Newark, NJ

P-Th-404

Development of an *In Vitro* 3D Neuroinflammation Model H. CHO¹ AND Y. LEE¹ *'Virginia Tech, Blacksburg, VA*

9:30AM - 5:00PM POSTER SESSION Thurs 2014 OCTOBER 23 THURSDAY

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-405

Nanochannel-Based Electrotransfection of Skin Cells In Situ

D. GALLEGO-PEREZ¹, S. GHATAK¹, D. PAL¹, N. AHMED¹, V. MALKOC¹, X. ZHAO¹, J. MA¹, X. WANG¹, S. GNYAWALI¹, S. KHANNA¹, C. RINK¹, J. OTERO¹, L. LEE¹, AND C. SEN¹ ¹The Ohio State University, Columbus, OH

P-Th-406

Coordinated Cellular Interplay in 3D Reorganization of Human Parotid Salivary Gland Cells

D. WU¹, S. PRADHAN-BHATT², D. HARRINGTON¹, R. WITT³, AND M. FARACH-CARSON¹ ¹Rice University, Houston, TX, ²University of Delaware, Newark, DE, ³Thomas Jefferson University, Philadelphia, PA

P-Th-407

The Effect of Enzymatic Pretreatment on Adipose Tissue Graft Viability

Y. CAO¹, S. SEAMAN¹, S. TANNAN¹, K. LIN¹, AND S. PEIRCE¹ ¹University of Virginia, Charlottesville, VA

Track: Tissue Engineering, Orthopaedic and Rehabilitation Engineering

Skeletomuscular Tissue Engineering

Chairs: Sangamesh Kumbar, John Fisher

P-Th-135

Characterization f Polysaccharide Based Micro-Nano Structured Scaffolds for Osteoinductivity

A. ARAVAMUDHAN^{1,2}, D. RAMOS¹, M. HARMON¹, AND S. KUMBAR¹ ¹Institute For Regenerative Engineering, Farmington, CT, ²University of Connecticut, Farmington- Storrs, CT

P-Th-136

Assessing the Osteogenic Differentiation of Human Mesenchymal Stem Cells Co-Cultured with Human Vein Endothelial Cells on a Peptide Amphiphile Nanomatrix

D. PATEL ¹, L. DENG¹, J. VINES¹, AND H-W. JUN¹ ¹University of Alabama at Birmingham, Birmingham, AL

P-Th-137

The Development and Characterization of a Pre-Vascularized Biomimetic Cortical Bone Scaffold

B. TAYLOR¹ AND J. FREEMAN¹ ¹Rutgers, the State University of New Jersey, Piscataway, NJ

P-Th-138

Dual Differentiation of Mesenchymal Stem Cells Can Be Obtained by Scaffold Characteristics

H. PARK¹, S. PARK², Y. KANG², J. SHIN², S. GU¹, Y-R. WU², AND J-W. SHIN¹,²,³ ¹Department of Helth Science and Techonology, Inje University, Gimhae-si, Korea, Republic of, ³Cardiovascular and Metabolic Disease Center/Institute of Aged Life Redesign/UHRC, Gimhae-si, Korea, Republic of

P-Th-139

Chondroinductive Microsphere Based Scaffolds With Decellularized Cartilage For Cartilage Tissue Engineering

A. SUTHERLAND¹, V. GUPTA¹, AND M. DETAMORE¹ ¹University of Kansas, Lawrence, KS

P-Th-140

Topographical Cues on Biomimetic Electrospun Scaffolds for Bone Tissue Engineering

S. CAMERON¹, S. AYAD¹, B. VENDRA¹, D. MASON¹, I. KHATRI¹, AND R. OLIVARES-NAVARRETE¹

¹Virginia Commonwealth University, Richmond, VA

P-Th-141

MgO Nanoparticles Enhance Osteoblast Functions on Hydroxyapatite Nanocomposites for Antibacterial Orthopedic Tissue Engineering Applications

D. HICKEY¹, B. ERCAN¹, L. SUN¹, AND T. WEBSTER¹ ¹Northeastern University, Boston, MA

P-Th-142

Tissue Engineered Cartilage Interaction in Healthy and Diseased Environment Using Hydroxyapatite Nanoparticles

R. DUA¹, C. SIYAMBALAPITIYA¹, A. AGARWAL¹, AND S. RAMASWAMY¹ ¹Florida International University, Miami, FL

P-Th-143

Utilizing Engineered Microporosity to Support Recellularization and Prepare a Porcine Derived Temporomandibular Joint Disc Scaffold for Tissue Engineering A. MATUSKA¹ AND P. MCFETRIDGE¹

¹University of Florida, Gainesville, FL

P-Th-144

 $\mathit{InVitro}$ Evaluation of the Endochondral Bone Formation on PCL Ceramic Composites

S. SCHUSSLER

¹New Jersey Institute of Technology, Newark, NJ

P-Th-145

Enhancing Bone Regeneration with Composite Microspheres that Reflect the Osteogenic Niche

C. HAASE¹, C. DODSON¹, C. GREGORY², AND R. KAUNAS¹ ¹Texas A&M University, College Station, TX, ²Institute for Regenerative Medicine Texas A&M Health Science Center, Temple, TX

P-Th-146

Modeling the Effects of Matrix Stiffness on Cartilage Formation in 3D Hydrogels

D. ZHU¹, A. BUGANZA TEPOLE¹, E. KUHL¹, AND F. YANG¹ ¹Stanford. University, Stanford, CA

P-Th-147

Effects of Proteoglycan Removal on Decellularization of Articular Cartilage C. BAUTISTA¹, H. PARK¹, AND B. BILGEN^{2,3}

¹Brown University, Providence, RI, ²Providence VA Medical Center, Providence, RI, ³The Warren Alpert Medical School of Brown University & Rhode Island Hospital, Providence, RI

P-Th-148

Vascularized Bone Grafts: Scaffold Design and Characterization

C. PIARD¹ AND J. FISHER

¹University of Maryland, College Park, MD

P-Th-149

Patterns of IHP Can Effectively Control Osteogenesis of hMSCs Rather than Osteogenic Media

Y. KANG¹, S. PARK¹, J. SHIN¹, S. GU², H. PARK², H. BAN¹, AND J-W. SHIN¹,²,³ ¹Department of Biomedical Engineering, Inje University, Gimhae-si, Korea, Republic of, ²Department of Health Science and Technology, Inje University, Gimhae-si, Korea, Republic of, ³Cardiovascular and Metabolic Disease Center /Institute of Aged Life Redesign/UHRC, Inje University, Gimhae-si, Korea, Republic of

P-Th-150

Engineered Bone Tissue Through Short-term Administration of an Osteogenic Small Molecule

E. CARBONE¹, H. KAN¹, C. LAURENCIN¹, AND W. LO¹ ¹UConn Health Center, Farmington, CT

P-Th-151

Tendon Differentiation Using Human Recombinant Insulin

D. RAMOS^{1,2}, C. LAURENCIN^{1,2}, AND S. KUMBAR^{1,2} ¹Institute For Regenerative Engineering, Farmington, CT, ²University of Connecticut, Farmington-Storrs, CT

P-Th-152

Multilayered Electrospun Silk Scaffolds Capable Of Eluting Platelet-Rich Plasma For Ligament Engineering

P. SOMASUNDARAM¹ AND S. SELL¹ ¹Saint Louis University, St. Louis, MO

P-Th-153

The Fabrication of Dense, Porous and Aligned Collagen Scaffolds using Novel 2D Plastic Compression and Porogen Based Techniques S. REESE¹, J. ZITNAY², D. ROJAS-LEON¹, AND J. WEISS¹

¹University of Utah, Salt Lake City, UT, ²University of Minnesota, Minneapolis, MN

session

THURSDAY | OCTOBER 23 | 2014 POSTER SESSION Thurs 9:30AM – 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-154

Human Skeletal Muscle Bundle Model and Perfusion System

B. DAVIS¹, J. SANTOSO¹, AND G. TRUSKEY¹ ¹Duke University, Durham, NC

P-Th-155

Development of Spatially Patterned Extracellular Matrix Cues to Direct the Differentiation and Alignment of Human Skeletal Muscle Tissue R. DUFFY¹, L. FRIEDMAN¹, AND A. FEINBERG¹ ¹Carnegie Mellon University, Pittsburgh, PA

Track: Tissue Engineering

Tissue Engineering of Models for Study of Disease and Drug Discovery

Chairs: Agneta Simoinescu, Scott Verbridge

P-Th-370 🙎

Analysis of Non-Enzymatic Collagen Crosslinks in Engineered Cell-Secreted Extracellular Matrices

D. MITRA¹, H. FATAKDAWALA¹, L. MARCU¹, AND J. LEACH¹ ¹University of California, Davis, CA

P-Th-371

Tissue Engineering an In Vitro Model of Fibrosis in Skeletal Muscle

A. MARINKOVIC^{1,2}, C. NEVILLE¹, O. MWIZERWA¹, K. VIVANCO³, I. POMERANTSEVA¹, J. KOHN², J. VACANTI², AND C. SUNDBACK¹

¹Massachusetts General Hospital, Boston, MA, ²New Jersey Center for Biomaterials, Piscataway, NJ, ³Massachusetts Institute of Technology, Cambridge, MA

P-Th-372

Improving Anastomosis Between Microfluidic Channels And Perfused Capillary Networks In Cultured 3D Human Microtissues.

D. PHAN^{1,2}, X. WANG^{1,2}, A. LEE¹, S. GEORGE^{1,2}, AND C. HUGHES^{1,2}

¹University of California, Irvine, Irvine, CA, ²The Edwards Lifesciences Center for Advanced Cardiovascular Technology, Irvine, CA

P-Th-373

The Inhibitory Effects of Fibrosis on Muscle Regeneration in a Self-Assembled Tissue Engineered Model of Skeletal Muscle

J. KRIEGER¹, J. RANKENBERG¹, B-W. PARK², J. FORTE², M. ROLLE², R. PAGE², AND C. MALCUIT¹

¹Kent State University, Kent, OH, ²Worcester Polytechnic Institute, Worcester, MA

P-Th-374

Investigating the Influence of Intercellular Signaling on Angiogenesis M. GADDE¹, M. RYLANDER¹, AND

¹Virginia Polytechnic Institute and State University, Blacksburg, VA

P-Th-375

Controlling Ferrofluid Permeability Across the *in vitro* Blood-Brain Barrier Model via Different Coatings

D. SHI¹, L. SUN¹, G. MI¹, S. BHATTACHARYA², S. NAYAR², AND T. WEBSTER¹ ¹Northeastern University, Boston, MA, ²CSIR-National Metallurgical Laboratory, Jamshedpur, India

P-Th-376

Improving Liver Functions of Hepatic Cell Lines *in vitro* by Co-Culture with Stromal Support Cells

K. BALLINGER¹, A. BAILEY¹, AND S. KHETANI¹ ¹Colorado State University, Fort Collins, CO

P-Th-377

Exploring Chronic Drug Dosing in Engineered Human Liver Cultures Using Global Expression Profiling

D. BERGER¹, M. MCVAY², AND S. KHETANI¹ ¹Colorado State University, Fort Collins, CO, ²Hepregen Corporation, Medford, MA

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

P-Th-378

Long-Term Engineered Cultures of Primary Mouse Hepatocytes for Genotype-Phenotype Studies

B. WARE¹, V. SOLDATOW², D. BERGER¹, E. LECLUYSE², AND S. KHETANI¹ ¹Colorado State University, Fort Collins, CO, ²The Hamner Institutes for Health Sciences, Research Triangle Park, NC

P-Th-379

Mimicking Chronic Hypo- and Hyper-glycemia in Engineered Cultures of Human Hepatocytes M. DAVIDSON¹, K. BALLINGER¹, AND S. KHETANI¹

¹Colorado State University, Fort Collins, CO

P-Th-380

Tissue Engineering Models for the Study of Diabetic Cardiomyopathy L. MCCALLUM¹, J. SCHULTE¹, AND A. SIMIONESCU¹ ¹Clemson University, Clemson, SC

P-Th-381

Magnetic Nanoshuttle for the Rapid Assembly of Functional Multicellular Cardiac Aggregates

M. HOGAN¹, G. SOUZA², AND R. BIRLA¹ ¹University of Houston, Houston, TX, ²Nano³D Biosciences, Houston, TX

P-Th-382

Investigation Of Circadian Rhythms Perturbation by Metabolic Stimulation in Peripheral Tissues through Microfluidic Technology

GAGLIANO¹,²
 ¹University of Padova, Padova, Italy, ²Venetian Institute of Molecular Medicine, Padova, Italy

P-Th-383

Development of An Integrated Bronchio-Alveolar Organ Construct for Understanding Pulmonary Drug Toxicity

J-H. HUANG¹, P. NATH¹, A. AREFIN², J. HARRIS¹, AND R. IYER¹ ¹Los Alamos National Laboratory, Los Alamos, NM, ²University of New Mexico, Albuquerque, NM

P-Th-384

3D Tumor Microtissue for Drug Discovery

E. ATEFI¹, S. LEMMO¹, D. FYFFE¹, AND H. TAVANA¹ ¹The University of Akron, Akron, OH

P-Th-385

An *in-vitro* Biomimetic, Fluid-Dynamic 3D Model of the Human Intestine for Evaluating Oral Drug Delivery

E. SCHLESINGER¹, A. CERCHIARI¹, J. KIM¹, AND T. DESAI² ¹UC Berkeley - UCSF, San Francisco, CA, ²University of California, San Francisco, San Francisco, CA

P-Th-386

Porous Poly Urethane Microspheres as a 3-D Culture Model for *In Vitro* Drug Screening

J. MENON¹, A. KURIAKOSE¹, K. POKHREL¹, A. SHARMA¹, Y. HONG¹, AND K. NGUYEN¹ ¹University of Texas at Arlington, University of Southwestern Medical Center at Dallas, Arlington, TX

P-Th-387

Ex Vivo Tissue Test Systems: Novel Layered Scaffold Design Offers Unique Analysis

S. ROWLINSON¹, K. KWIST¹, AND K. BURG¹ ¹Clemson University, Clemson, SC

P-Th-388

Acoustic Characterization of a Novel Scaffold-Based System for Investigations on Sonoporation

A. ALEID¹, A. ALASSAF¹, O. WILSON, JR.¹, AND V. FRENKEL¹ ¹The Catholic University of America, Washington, DC

2014 OCTOBER 24 FRIDAY

PI ATFORM

Fri-1

TODAY'S HIGHLIGHT

PLATFORM SESSIONS Fri-I 8:00am - 9:30am See pages 125-131, HBGCC

EXHIBIT HALL OPEN WSCC, Exhibit Hall A

9:30am - 5:00pm

POSTER SESSION Fri 9:30am - 5:00pm See pages 1429-173, WSCC, Exhibit Hall A

Poster Viewing with Authors 9:30am - 10:30am & Refreshment Break

PLENARY SESSION 10:30am - 12:00noon

HBGCC, Lila Cockrell Theatre

NIH NIBIB Lecture David Kaplan, PhD

WOMEN IN BME Luncheon 12:15pm - 1:30pm HBGCC, Ballroom A Additional ticket purchase required

PLATFORM SESSIONS Fri-2 1:45pm - 2:45pm See pages 132-136, HBGCC

PLATFORM SESSION Fri-3 3:00pm - 4:00pm See pages 137-140, HBGCC

Poster Viewing with Authors 4:00pm - 5:00pm & Refreshment Break HGBCC, Exhibit Hall A

PLENARY

SESSION 5:15pm - 6:15pm HBGCC, Lila Cockrell Theatre

Stephen Oesterle, MD

7:00pm - 10:00pm

BMES BASH Buckhorn Saloon & Texas Ranger Museum

FRIDAY, October 24, 2014

8:00 AM - 9:30 AM PLATFORM SESSIONS - FRI - I

Track: Tissue Engineering, Neural Engineering OP-Fri-I-I - Room 001A

Neural Tissue Engineering

Chairs: Stuart Tobet, Deanna Thompson

8:00AM

Engineering Personalized Neural Tissue by Combining Induced Pluripotent Stem Cells with Fibrin Scaffolds

A. MONTGOMERY¹, A. WONG¹, N. GABERS¹, AND S. WILLERTH¹ ¹University of Victoria, Victoria, BC, Canada

8:30AM

Rapid 3D Assays for Combinatorial Screening of Biomaterials C. BERTUCCI¹, S. RAMAMOORTHY¹, P. KARANDE¹, AND D. THOMPSON¹ ¹*Rensselaer Polytechnic Institute, Troy, NY*

8:45AM

Ocular Tissue Engineering with Fetal Brain Derived Extracellular Matrix Bioscaffolds

C. MEDBERRY¹, V. REDDY¹, A. FAUST¹, F. MEHDI¹, AND M. STEKETEE¹ ¹University of Pittsburgh, Pittsburgh, PA

9:00AM

A 3D Electrospun Fiber and Hydrogel Composite Scaffold for Brain Regeneration

C. JOHNSON¹, C. RIVET¹, K. ZHOU², R. GILBERT¹, D. FINKELSTEIN³, AND J. FORSYTHE² ¹Rensselaer Polytechnic Institute, Troy, NY, ²Monash University, Melbourne, Australia, ³University of Melbourne, Melbourne, Australia

9:15AM

Hydrophilic Surface Modification of Electrospun Fibers for Nerve Guidance

N. SCHAUB¹, C. LE BEUX², J. MAIO¹, R. LINHARDT¹, J. ALAUZUN², D. LAURENCIN², AND R. GILBERT¹

¹Rensselaer Polytechnic Institute, Troy, NY, ²Institut Charles Gerhardt de Montpellier, Montpellier, France

Track: Neural Engineering OP-Fri-I-2 - Room 001B

CNS injury: SCI, TBI and Concussion

Chairs: Mark Van Dyke, Randolph Ashton

8:00AM

Sustained *In Vivo* Dual Drug Delivery of Anti-Inhibitory Molecules for Spinal Cord Injury Treatment

T. WILEMS¹, C. INGRAM¹, AND S. SAKIYAMA-ELBERT¹ ¹Washington University in St. Louis, St. Louis, MO

8:15AM

Digitally Controlling the Biomechanics of Fluid Percussion Injury

M. LONG^{1,2}, N. PELOSO¹, AND B. PFISTER¹

¹New Jersey Institute of Technology, Newark, NJ, ²Rutgers Biomedical and Health Sciences, Newark, NJ

8:30AM

Local and Sustained Delivery of BDNF Mediates Spinal Learning after Injury

Z. KHAING¹, J. PARK², J. GRAU³, K. LEE³, A. NIEMERSKI³, AND C. SCHMIDT² ¹University of Florida, Gainesville, FL, ²University of Florida, Gainesville, GA, ³Texas A&M, College Station, TX

Local Delivery of Minocycline from Injectable Hydrogel Loaded with Self-Assembled Complexes Effectively Promotes Neuroprotection after Contusive Spinal Cord Injury

Z. WANG¹, K. WOFFORD¹, Z. ZHANG¹, AND Y. ZHONG¹ ¹Drexel University, Philadelphia, PA

9:00AM

Evaluation of Nanocarrier Delivery and a Novel Anti-inflammatory Drug for Spinal Cord Injury

T. SAXENA¹, K. LOOMIS¹, B. PAI¹, L. KARUMBAIAH¹, E. GAUPP¹, K. PATIL¹, R. PATKAR¹, AND R. BELLAMKONDA¹

¹Georgia Institute of Technology, Atlanta, GA

9:15AM

Transient Hypoxia in a Model of Distraction Spinal Cord Injury Results in a Reduction of Ventral Motor Neuron Size

J. SEIFERT¹,², J. BELL¹,², D. SUCATO³, AND M. ROMERO¹,²

 $^1 UT$ Arlington, Arlington, TX, $^2 UT$ Southwestern, Dallas, TX, $^3 Texas$ Scottish Rite Hospital for Children, Dallas, TX

PLATFORM SESSIONS

Track: Biomaterials, Cellular and Molecular Bioengineering OP-Fri-I-3 - Room 006A

Intelligent/Multifunctional Biomaterials

Chairs: Melissa Grunlan, Craig Duvall

8:00AM

Biomimetic, Monocyte-targeting Supramolecular Micellar Assemblies for Atherosclerosis Theranostics

E. CHUNG¹, L. MLINAR², K. NORD¹, M. SUGIMOTO¹, E. WONDER¹, C. ZHANG¹, C-H. KUO¹, J. ANDRADE¹, Y. FANG¹, L. HUANG¹, F. ALENGHAT¹, AND M. TIRRELL¹ ¹University of Chicago, Chicago, IL, ²University of California, Berkeley, Berkeley, CA

8:15AM

Non-Invasive Deep Tissue Imaging of Polymer Degradation Using X-Ray

T. OLSEN¹, D. WHITEHEAD¹, B. VAN HORN², AND F. ALEXIS¹ ¹Clemson University, Clemson, SC, ²College of Charleston, Charleston, SC

8:30AM

Molecularly Responsive Biomaterials Based on DNA-Crosslinked Hydrogels:Assembly and Applications

T. BETANCOURT¹, R. NAVARRO¹, R. DANSO¹, K. BEAVEN¹, R. HALL¹, K. KNUTSON¹, AND K. ABDELRAHMAN¹ '*Texas State University, San Marcos, TX*

8:45AM

Thiol-ene Networks As Hydrolytically Stable, Ultra-soft Neural Prosthetic Substrates

R. REIT¹, D. SIMON¹, B. LUND¹, T. WARE¹, AND W. VOIT¹ ¹University of Texas at Dallas, Richardson, TX

9:00AM

Magnetic Mesoporous Hollow Carbon Microspheres for Rapid Capture of Low-concentration Peptides

G. CHENG¹, M-D. ZHOU¹, AND S-Y. ZHENG¹ ¹Penn State University, State College, PA

9:15AM

$\label{eq:local_state} Electrochemically Modulated Nitric Oxide (NO) Releasing Biomedical Devices via Copper(II)-Tri(2-pyridylmethyl)amine Mediated Reduction of Nitrite$

H. REN¹, J. WU¹, C. XI¹, N. LEHNERT¹, T. MAJOR¹, R. BARTLETT¹, AND M. MEYERHOFF¹ ¹University of Michigan, Ann Arbor, MI

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

Track: Cardiovascular Engineering OP-Fri-I-4 - Room 006B

Cardiac Electrophysioloy and Mechanics

Chairs: Adam Engler, Jeffrey Jacot

8:00AM

Ephaptic Coupling and Its Complex Role in Maintaining Cardiac Conduction

S. George¹, K. Sciuto², J. Lin³, M. Salama², J. Keener², R. Gourdie^{1,4}, and S. Poelzing^{1,4}

¹Virginia Polytechnic Institute and State University, Blacksburg, VA, ²University of Utah, Salt Lake City, UT, ³California Polytechnic State University, San Luis Obispo, CA, ⁴Virginia Tech Carilion Research Institute, Roanoke, VA

8:15AM

Cell Size and Shape as Determinants of Ion Channel Distribution and Function

S. SENGUPTA¹, B. HOFFMAN¹, AND N. BURSAC¹ ¹Duke University, Durham, NC

8:30AM

Recellularized Cardiac Tissue Slices Produce Aligned Cells and Anisotropic Conduction

A. BLAZESKI¹, G. KOSTECKI¹, AND L. TUNG¹ ¹Johns Hopkins University, Baltimore, MD

8:45AM

Cycle Length Restitution and Spontaneous Action Potential Dynamics in Sinoatrial Node Disease

P. GLYNN¹, B. ONAL¹, AND T. HUND¹ ¹The Ohio State University, Columbus, OH

9:00AM

Control of Cardiac Alternans using Boundary Pacing and Mechanical Perturbations Control

A. HAZIM¹, S. DUBLJEVIC¹, AND Y. BELHAMADIA¹ ¹University of Alberta, Edmonton, AB, Canada

9:15AM

Effect of Substrate Stiffness on Cardiac Fibroblasts Isolated from Volume-Overload Induced Heart Failure

R. CHILDERS¹, P. LUCCHESI², AND K. GOOCH¹

¹The Ohio State University, Columbus, OH, ²Research Institute of Nationwide Children's Hospital, Columbus, OH

Track: Drug Delivery OP-Fri-I-5 - Room 006C

Nucleic Acid Delivery

Chairs: Debra Auguste, Blanka Sharma

8:00AM Invited

DNA and RNA Release Surfaces for Systemic and Localized Delivery Applications

P. HAMMOND¹

¹Massachusetts Institute of Technology, Cambridge, MA

8:30AM

Antibody-conjugated Nanoparticle Platform for Targeted Delivery of SiRNA to HER2+ Breast Cancer

W. NGAMCHERDTRAKUL¹, J. MORRY¹, S. GU¹, D. CASTRO¹,², T. SANGVANICH¹, S. GOODYEAR¹, Z. HU¹, J. GRAY¹, AND W. YANTASEE¹,²

¹Oregon Health and Science University, Portland, OR, ²PDX Pharmaceuticals, LLC, Lake Oswego, OR

Silencing of Tumor Necrosis Factor Receptor-I in Human Lung Microvascular Endothelial Cells Using Particle Platforms for siRNA Delivery

J. SAKAMOTO¹, L. BAI¹, D. CHAN¹, S. SHAMSUDEEN¹, AND R. SERDA² ¹Houston Methodist, Houston, TX, ²Baylor College of Medicine, Houston, TX

9:00AM

Engineering Exosomes for DNA Delivery T. LAMICHHANE¹, R. RAIKER¹, AND S. JAY¹

¹University of Maryland, College Park, MD

9:15AM

Nasal Delivery of MicroRNA-486 via Surfactant Protein-C Targeted Lipoplexes in Lung Cancer Treatment

Y. WU¹,², A. GAUGHAN³, J. MA², S. NANA-SINKAM², L. LEE², AND I. DAVIS³ ¹State University of New York at Buffalo, Buffalo, NY, ²The Ohio State University, Columbus, OH, ³The Ohio State University, Columbus, OH

Track: Translational Biomedical Engineering, Nano to Micro Technologies OP-Fri-I-6 - Room 006D

Bio-nanomedicine in Healthcare

Chairs: Kent Leach, Manu Platt

8:00AM Invited

Translating Promising Academic Medical Concepts to Products: Consider Success Criteria Beforehand A. COURY¹

¹Northeastern University, Boston, MA

8:30AM

Platform Anti-NF-&[kappa]B Nanotechnology for Virally Driven Adult T-Cell Leukemia/Lymphoma

H. PAN¹, K. HOU¹, D. RAUCH¹, J. HARDING¹, L. RATNER¹, AND S. WICKLINE¹ ¹Washington University School of Medicine, St Louis, MO

8:45AM

Intravenously Administered Nanoparticles Improve Cognitive Outcomes Following Blast Trauma

W. HUBBARD¹, M. LASHOF-SULLIVAN², C. HALL¹, E. LAVIK², AND P. VANDEVORD¹,³ ¹Virginia Polytechnic Institute and State University, Blacksburg, VA, ²Case Western Reserve University, Cleveland, OH, ³Salem VA Medical Center, Research & Development Service, Salem, VA

9:00AM

Inhibition of Various Bacterial Growth on Selenium Nanoparticle Coated Paper Towels

Q. WANG¹ AND T. WEBSTER¹

¹NORTHEASTERN UNIVERSITY, BOSTON, MA

9:15AM

TheraBlob for Ultrasound-mediated Ablation Therapy

S. MISRA^{1,2}, M. YE^{1,2}, P. RAY², AND D. PAN^{1,2,3}

¹University of Illinois at Urbana-Champaign, Urbana, IL, ²Carle Foundation Hospital, Urbana, IL, ³Beckman Institute, Urbana, IL

Track: Cancer Technologies

OP-Fri-I-7 - Room 007A

Engineered Models of Cancer I

Chairs: Nastaran Kuhn, Esther Gomez

8:00AM

An Agent-Based Model Based On Breast Cancer Receptor Heterogeneity

K-A. NORTON¹, N. PANDEY¹, AND A. POPEL¹ ¹Johns Hopkins University, Baltimore, MD

8:15AM

Development of a Versatile Platform to Analyze Glioma Specimens

S. PEDRON¹, M. SCHROEDER², J. SARKARIA², AND B. HARLEY¹

¹University of Illinois at Urbana-Champaign, Urbana, IL, ²Mayo Clinic, Rochester, MN

8:30AM

Multiplex Fluorescence Lifetime Imaging of Kinase activity in Live Cells with Peptide Biosensors

N. DAMAYANTI¹, L. PARKER¹, AND J. IRUDAYARAJ¹ ¹Purdue University, West Lafayette, IN

8:45AM

Genome Edited Cell Models to Investigate Epigenetic Fluctuation and Cancer Initiation

I. XHANGOLLI¹, J. CHEN¹, Y. WU¹, Y. MARUVKA², F. MICHOR², AND R. FAN¹ ¹Yale University, New Haven, CT, ²Dana Farber Cancer Institute, Boston, MA

9:00AM

Physical Intimacy of Breast Cancer Cells and Mesenchymal Stem Cells Regulates Drug Resistance Pathways

A. DAVEREY¹, A. DRAIN¹, K. BROWN¹, AND S. KIDAMBI¹ ¹University of Nebraska-Lincoln, Lincoln, NE

9:15AM

3D Bone Marrow Mimics to Study Stem Cell-Mediated Breast Cancer Spread

L. JANSEN¹, L. BARNEY¹, T. MCCARTHY¹, AND S. PEYTON¹ ¹University of Massachusetts Amherst, Amherst, MA

Track: Cardiovascular Engineering, Device Technologies and Biomedical Robotics OP-Fri-I-8 - Room 007B

Cardiovascular Assist Devices

Chairs: Marc Horner, Danny Bluestein

8:00AM

Physiological Characterization of the Total Artificial Heart

J. CROSBY¹, K. DECOOK¹, P. TRAN¹, R. SMITH¹, D. BURKHOFF², AND M. SLEPIAN¹ ¹The University of Arizona, Tucson, AZ, ²Columbia University, New York, NY

8:15AM

Numerical Model of Full Cardiac Cycle Hemodynamics in Syncardia Total Artificial Heart

G. MAROM¹, W-C. CHIU¹, S. PRABHAKAR², M. HORNER³, M. SLEPIAN¹,4, AND D. BLUESTEIN¹

¹Stony Brook University, Stony Brook, NY, ²Ansys Fluent India Pvt. Ltd, Pune, India, ³Ansys, Inc., Evanston, IL, ⁴University of Arizona, Tucson, AZ

8:30AM

Demonstration of Low Frequency Speed Modulation of Miniature Rotary Blood Pumps in a Large Animal Model

K. SOUCY¹, G. GIRIDHARAN¹, M. SOBIESKI¹, M. SLAUGHTER¹, AND S. KOENIG¹ ¹University of Louisville, Louisville, KY

PLATFORM SESSIONS

High Speed Flow Visualization Reveals Thrombogenic Pathlines in Axial Flow Blood Pump F. Yang' and J. ANTAKI'

¹Carnegie Mellon University, Pittsburgh, PA

9:00AM

Reduced Platelet Aggregation Following High Shear Exposure A. HOUZELLE¹, C. LEWIS¹, T. SNYDER², AND D. SCHMIDTKE¹

¹University of Oklahoma, Norman, OK, ²Integris, Oklahoma City, OK

9:15AM

Investigating VWF Degradation as a Result of Integrated Shear Stress Patterns

S. YANG¹ AND V. TURITTO¹ ¹Illinois Institute of Technology, Chicago, IL

Track: Cellular and Molecular Bioengineering OP-Fri-I-9 - Room 007C

PLATFORM SESSIONS

Chairs: Nic Leipzig, Eric Boder 8:00AM

Molecular and Cell Engineering I

Molecular Mechanism of Suppressed Cell Spreading in Tumor Repopulating Cells F. CHOWDHURY¹, N. WANG¹, AND T. HA¹

r. CHOWDHURY', N. WANG', AND T. HA' 'University of Illinois at Urbana-Champaign, Urbana, IL

8:15AM

Flu X-Hemagglutinin with Ablated Immunodominant Epitopes Protects Mice Against Lethal H5N1 Challenge

S. $\mathsf{BOCK}^1, \mathsf{A}, \mathsf{Lu}^1, \mathsf{R}, \mathsf{Dela}\;\mathsf{Cruz}^1, \mathsf{J}, \mathsf{Jenson}^1, \mathsf{J}, \mathsf{Marcos}^1, \mathsf{D}, \mathsf{Barnard}^2, \mathsf{and}\;\mathsf{B}, \mathsf{Tarbet}^2$

¹University of Utah, Salt Lake City, UT, ²Utah State University, Logan, UT

8:30AM

Engineering Immune Cell Function Using a Vector-Free Microfluidic Delivery Platform

A. SHARE^{17,2,3}, R. TRIFONOVA¹, S. JHUNJHUNWALA³, S. MAO³, G. HARTOULAROS³, A. EYERMAN³, P. BASTO³, J. LIEBERMAN¹, D. IRVINE³, D. ANDERSON³, U. VON ANDRIAN¹, R. LANGER³, AND K. JENSEN³

¹Harvard Medical School, Boston, MA, ²Ragon Institute, Cambridge, MA, ³Massachusetts Institute of Technology, Cambridge, MA

8:45AM

Engineering T Lymphocytes with Protein Nanogels for Cancer Immunotherapy

L. TANG¹, Y. ZHENG¹, AND D. IRVINE¹,²

¹MIT, Cambridge, MA, ²Howard Hughes Medical Institute, Chevy Chase, MD

9:00AM

Increasing CRISPR Specificity For Therapeutic Applications

C. LEE¹, Y. LIN¹, M. PREININGER², R. COTTLE¹, T. CRADICK¹, AND G. BAO¹ ¹Georgia Institute of Technology, Atlanta, GA, ²Emory University, Atlanta, GA

9:15AM

Enhancing Biomolecular Screening By Combining Yeast Surface Display and Noncanonical Amino Acids

J. VAN DEVENTER¹, R. KELLY¹, D. LE¹, J. ZHAO¹, AND K. WITTRUP¹ ¹Massachusetts Institute of Technology, Cambridge, MA

P = Poster SessionOP = Oral PresentationQ = Reviewer Choice Award

128 BMES 2014

Track: Orthopaedic and Rehabilitation Engineering

OP-Fri-I-I0 - Room 007D

Pain

Chairs: Lori Setton, Beth Winkelstein

8:00AM

Optogenetic Methods to Stimulate and Inhibit Pain in Mice S. IYER¹, K. MONTGOMERY¹, AND S. DELP¹ 'Stanford University, Stanford, CA

8:15AM

Luminescent IVIS Imaging of NF-1ĸ B Activity as a Biomarker of Inflammation Driven Pain

R. BOWLES¹ AND L. SETTON¹ ¹Duke University, Durham, NC

8:30AM

Experimental Disc Herniation Radiculopathy Requires Intraneural Macrophage Infiltration and can be Blocked by Strategies Limiting Macrophage Function

M. SHAMJI¹,², Y. TU³, AND M. SALTER³ ¹University of Toronto, Toronto, ON, Canada, ²Toronto Western Hospital, Toronto, ON, Canada, ³Hospital for Sick Children, Toronto, ON, Canada

8:45AM

Neuronal Activity in the CNS Modulates Persistent Pain: Mechanisms & Therapeutic Potential

B. WINKELSTEIN¹, N. CROSBY¹, P. SYRE¹, K. NICHOLSON¹, AND C. WEISSHAAR¹ ¹University of Pennsylvania, Philadelphia, PA

9:00AM

Reducing Pain and Improving Function in Patellofemoral Pain Synchome through Offaxis Training L-Q. ZHANG¹ AND L. TSAI¹ 'Northwestern University, Chicago, IL

9:15AM

Advancing Gait Analysis Techniques for the Assessment of Pain and Disability in Rodent Preclinical Models of Joint Disease K. ALLEN¹, H. KLOEFKORN¹, AND B. JACOBS¹ ¹University of Florida, Gainesville, FL

Track: Nano to Micro Technologies OP-Fri-I-II - Room 008A

Nanobiointerfaces

Chairs: Akhilesh Gaharwar, Adam Hall

8:00AM

Evaluation of High-efficiency Optoelectronic Nanowires in Rabbits M. KHRAICHE¹, L. CHEN¹, Y. JING¹, W. FREEMAN¹, AND G. SILVA¹ ¹University of San Diego California, La Jolla, CA

8:30AM

Probing Astrocytes with Carbon Nanotubes and Assessing the Role of Glial Fibrillary Acidic Protein in their Effects on Astrocytic Morphology and Proliferation

M. GOTTIPATI¹, E. BEKYAROVA², M. BRENNER¹, R. HADDON², AND V. PARPURA¹ ¹University of Alabama, Birmingham, AL, ²University of California, Riverside, CA

8:45AM

Detecting Single Molecule Dynamics Using a ZMW/Microfluidic Hybrid Chip

Y. ZHAO¹, D. CHEN¹, S. BENKOVIC¹, AND T. HUANG¹ ¹Pennsylvinia State University, State College, PA

9:00AM

Heat-Shrunken Hierarchical Silica Nanomembrane for Solid Phase DNA Extraction

Y. ZHANG¹, Y. ZHANG¹, K. LIU², AND T-H. WANG^{1,3,4,5}

¹Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, ²Circulomics Inc., Baltimore, MD, ⁹Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, ⁴Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, ⁵Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD

9:15AM

Probing Single-Bacterium Level Charge Transport in Microbial Fuel Cells

X. JIANG¹, J. HU², J. BIFFINGER³, L. FITZGERALD³, E. PETERSEN⁴, C. JACKAN¹, A. LIEBER¹, B. RINGEISEN³, AND C. LIEBER¹

¹Harvard University, Cambridge, MA, ²Institute of Chemistry, Chinese Academy of Sciences, Beijing, China, People's Republic of, ³US Naval Research Laboratory, Washington, DC, ⁴Nova Research, Inc., Alexandria, VA

Track: Tissue Engineering, Biomaterials OP-Fri-I-I2 - Room 008B

Bone and Cartilage Tissue Engineering I

Chairs: Fan Yang, Rene Olivares-Navarrete

8:00AM

Composite Tissue-Engineered Scaffolds for Cervical Disc Replacement in a Pre-Clinical Canine Model

J. MOJICA-SANTIAGO , P. GRUNERT, $\mathsf{MD}^2,$ Y. MORIGUCHI, MD, $\mathsf{PHD}^2,$ R. HARTL, $\mathsf{MD}^2,$ AND L. BONASSAR, PHD^1

¹Cornell University, Ithaca, NY, ²Weill Cornell Medical College, New York, NY

8:15AM

Small Peptide Isolated from Enamel Extracellular Matrix Induces Osteoblastic Differentiation in Mesenchymal Stem Cells

R. OLIVARES-NAVARRETE¹, S. HYZY¹, K. VESPER², Z. SCHWARTZ¹, AND B. BOYAN¹ ¹Virginia Commonwealth University, Richmond, VA, ²Georgia Regents University, Augusta, GA

8:30AM

Diabetic Bone Regeneration Enhanced by Biodegradable Drug-Based Polymer and its Mechanisms

W. YU¹, K. WADA², M. MATTOS², D. GRAVES², AND K. UHRICH¹ ¹Rutgers University, Piscataway, NJ, ²University of Pennsylvania, Philadelphia, PA

8:45AM

Lysophosphatidic Acid Presentation From Engineered Fibrin Gels for Cell-Based Bone Formation

B. BINDER¹, M. WILKINSON¹, AND J. LEACH¹ ¹University of California, Davis, Davis, CA

9:00AM

Inhibiting Inflammatory Signals Improves Stem Cell-based Bone Regeneration

M. MARTINO¹, K. MARUYAMA¹, R. MULLER², AND S. AKIRA¹ ¹Osaka University, Osaka, Japan, ²ETHZ, Zurich, Switzerland

9:15AM

Citrate-Based Biphasic Scaffolds For The Repair Of Large Segmental Bone Defects

R. TRAN¹, Y. GUO², D. XIE², D. NGUYEN¹, X. BAI², AND J. YANG¹
¹The Pennsylvania State University, University Park, PA, ²Southern Medical University, Guangzhou, China, People's Republic of

Track: Device Technologies and Biomedical Robotics, New Frontiers and Special Topics OP-Fri-1-13 - Room 201

Wearable Technology

Chairs: Youngjae Chun, John Hanks

8:00AM

Test Platform Accelerates Design of Fitness Bands, Smart Watches, and Wearable Devices

J. HANKS¹

¹Texas A&M University, College Station, TX

8:30AM

Spectral Analyses as a Measure of Limb Coordination

E. WADE¹ AND J. CHEN¹ ¹University of Tennessee, Knoxville, TN

8:45AM

Design and Validation of a Smart Knee Fixture for Measuring Knee Balancing

C. BELL¹, P. MEERE¹, I. BORUKHOV¹, AND P. WALKER¹ ¹NYU Hospital for Joint Diseases, New York, NY

9:00AM

Helmet Device for Optimized Mechanical Optical Clearing Enhancement of Near-Infrared Spectroscopy

C. IDELSON¹, P. REPISKY², S. LACONTE²,^{3,4}, B. KING-CASAS²,^{3,4}, AND C. RYLANDER¹,² ¹University of Texas, Austin, TX, ²Virginia Tech, Blacksburg, VA, ³Virginia Tech Carilion School of Medicine, Roanoke, VA, ⁴Virginia Tech Carilion Research Institute, Roanoke, VA

9:15AM

Wearable Biomechanical Sensor System for Vibration Exposure and Grip Force Measurements

S. KUDERNATSCH¹, T. ASAKI¹, AND D. PETERSON¹ ¹University of Connecticut Health Center, Farmington, CT

Track: Biomechanics, Biomaterials OP-Fri-I-I4 - Room 103B

Mechanics of Biomaterials

Chairs: Natalie Artzi, Wei Tan

8:00AM

Morphological and Mechanical Behavior of Fibrin Clots in Healthy, Diabetic, and Sickle Cell Anemia Disease States

N. FAN¹, M. PLATT¹, AND R. AVERETT¹ ¹Georgia Institute of Technology, Atlanta, GA

8:15AM

Theoretical Analysis and Finite Element Implementation of a Transversely Isotropic Material Model for Soft Tissue with Two Anisotropic Invariants

Y. FENG¹, R. OKAMOTO², G. GENIN², L. TABER², AND P. BAYLY² ¹Soochow University, SuZhou, China, People's Republic of, ²Washington University in Saint Louis, Saint Louis, MO

8:30AM

Stress-Relaxation Behavior of a Novel Alginate/Polyacrylamide Hydrogel Material with Tunable Properties M. FITZGERALD¹, J. BERBERICH¹, AND J. SPARKS¹

¹Miami University, Oxford, OH

PLATFORM SESSIONS

Response of Isolated Bioprosthetic Heart Valve Biomaterials to *In-Vivo* Stress

K. FEAVER¹, W. ZHANG¹, H. TAM², M. LEE³, J. MCGARVEY³, C. AOKI³, S. TAKEBAYASHI³, N. KONDO³, R. GORMAN³, J. GORMAN III³, N. VYAVAHARE², AND M. SACKS¹ ¹University of Texas at Austin, Austin, TX, ²Clemson University, Clemson, SC, ³University of Pennsylvania, Philadelphia, PA

9:00AM

Biaxial Analysis of Synthetic Scaffolds for Hernia Repair Demonstrates Variability in Mechanical Anistropy, Non-linearity, and Hysteresis

C. DEEKEN¹, D. THOMPSON¹, R. CASTILE¹, AND S. LAKE¹ ¹Washington University in St. Louis, St. Louis, MO

9:15AM

Synchrotron X-Ray Scattering Reveals a Pivotal Role of Water in the Ultrastructural Mechanics of Bone J. SAMUEL¹ AND X. WANG¹

¹University of Texas at San Antonio, San Antonio, TX

PLATFORM SESSIONS

Track: Bioinformatics, Computational and Systems Biology OP-Fri-I-I5 - Room 202A

Signaling Systems Analysis

Chairs: Benjamin Cosgrove, Scott Diamond

8:00AM Invited

Systems Biology: High-throughput, Multiscale and Patient Specific S. DIAMOND¹

¹University of Pennsylvania, Philaldelphia, PA

8:30AM

AKAP7y Amplifies but Decelerates Localized PKA Signaling Kinetics

E. GREENWALD¹, M. GILDART², J. SAUCERMAN¹, AND K. DODGE-KAFKA³ ¹University of Virginia, Charlottesville, VA, ²University of Saint Joseph, West Hartford, CT, ³University of Connecticut Health Center, Farmington, CT

8:45AM

The AXL Receptor is a Sensor of Ligand Spatial Heterogeneity

A. MEYER¹, C. RILEY¹, F. GERTLER¹, AND D. LAUFFENBURGER¹ ¹Massachusetts Institute of Technology, Cambridge, MA

9:00AM

Growth-differentiation Factor 11 (GDF11) as a Therapeutic Target in Basal-like Breast Cancers

S. BAJIKAR¹ AND K. JANES¹ ¹University of Virginia, Charlottesville, VA

9:15AM

Systems Analysis of Cytokine Profiles Identifies Key Cellular Contributors to HIV Immune Response

K. ARNOLD¹, G. SZETO¹, G. ALTER², D. IRVINE^{1,2}, AND D. LAUFFENBURGER¹ ¹Massachusetts Institute of Technology, Cambridge, MA, ²Ragon Institue of MGH, MIT and Harvard, Cambridge, MA

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

I30 BMES 2014

Track: Biomedical Imaging and Optics OP-Fri-I-I6 - Room 202B

Magnetic Resonance Imaging I

Chairs: Bruce Damon, Timothy Duong

8:00AM

Imaging Renal Perfusion in Acute Kidney Injury at 3T Using 19F/1H MRI of Perfluorocarbon Nanoparticles

M. GOETTE¹, J. CHEN¹, C. VEMURI¹, J. ALLEN¹, S. CARUTHERS^{1,2}, G. LANZA¹, AND S. WICKLINE¹

¹Washington University in St. Louis, St. Louis, MO, ²Philips Healthcare, Cleveland, OH

8:15AM

Magnetic Resonance Imaging of Cardiac Activation in Heart Failure Patients with Left Bundle Branch Block

D. AUGER¹, S. CUI¹, X. CHEN¹, K. BILCHICK¹, AND F. EPSTEIN¹ ¹University of Virginia, Charlottesville, VA

8:30AM

Chronic Toxicity of Dextran Functionalized Graphene Nanoparticles and Their Potential as Highly Efficacious Blood Pool Contrast Agent for Magnetic Resonance Imaging

S. KANAKIA¹, D. MINH HOANG², J. TOUSSAINT¹, S. MULLICK CHOWDHURY¹, S. LEE¹, K. SHROYER¹, W. MOORE¹, Y. ZAIM WADHGIRI², AND B. SITHARAMAN¹ ¹Stony Brook University, Stony Brook, NY, ²NYU School of Medicine, New York, NY

8:45AM

Monitoring Bone Repair in a Mouse Calvarial Defect Model Using Magnetic Resonance Imaging

V. KHALILZAD-SHARGHI¹, K. WARTELLA¹, M. KELSO², H. XU¹, AND S. OTHMAN¹ ¹University of Nebraska-Lincoln, Lincoln, NE, ²University of Nebraska Medical Center, Omaha, NE

9:00AM

Imaging Metastasis Using a Targeted Nanoparticle and MRI E. DOOLITTLE¹, P. PEIRIS¹, A. ABRAMOWSKI¹, R. TOY¹, AND E. KARATHANASIS¹

¹Case Western Reserve University, Cleveland, OH

Track: Biomedical Imaging and Optics, Device Technologies and Biomedical Robotics OP-Fri-I-I7 - Room 203A

Diagnostic Devices and Biosensors I

Chairs: Jing Yong Ye, Mehmet Kaya

8:00AM

In Vivo Imaging of Wound Infection Using a Bacteria-targeting Optical Nanoprobe

E. TANG¹, A. NAIR¹, D. BAKER¹, W. HU², L. TANG¹, AND J. ZHOU¹ ¹University of Texas at Arlington, Arlington, TX, ²Progenitec Inc., Arlington, TX

8:15AM

Noninvasive Frequency Domain Tissue Collagen Detection

R. LIU¹, Z. ZHAO¹, M. ZHOU¹, A. ARGENTO¹, Q. FANG², AND J. LO¹ ¹University of Michigan at Dearborn, Dearborn, MI, ²McMaster University, Hamilton, Canada

8:30AM

Photoacoustic Spectroscopic Determination of Met-Hb Concentration Ratio Using an Open-Microcavity Photonic Crystal Ultrasound Sensor R. PETERSON¹, J. LING², C. WHITNEY¹, AND J. YE¹

¹The University of Texas at San Antonio, San Antonio, TX, ²Southwest Research Institute, San Antonio, TX

8:45AM

NutriPhone:Vitamin D Testing on Your Smartphone

S. LEE¹, S. MEHTA¹, AND D. ERICKSON¹ ¹Cornell University, Ithaca, NY

9:00AM

Fiber-Coupled Microcavity Probe for Label-Free Biosensing: A Demonstration with DNA Hybridization N. LEARTPRAPUN¹, E. TOOMEY¹, AND J. XU¹ ¹Brown University, Providence, RI

9:15AM

Handheld Spatial Frequency Domain Imaging System for Skin Imaging B. YANG¹, J. LESICKO¹, M. SACKS¹, AND J. TUNNELL¹ ¹University of Texas at Austin, Austin, TX

Track: Biomechanics, Cellular and Molecular Bioengineering

OP-Fri-I-18 - Room 203B

Cell-Cell Interactions and Intercellular Forces

Chairs: Roland Kaunas, Leo Wan

8:00AM

Visualizing Mechanotransduction at Intercellular Junctions. D. LECKBAND¹, T. KIM¹, J. SUN¹, I. MUHAMMED¹, AND Y. WANG² ¹University of Illinois at Urbana, Urbana, IL, ²UC San Diego, La Jolla, CA

8:15AM

Protrusive Activity-dependent Inter-cellular Forces Determine Cell-cell Contact Stability

V. MARUTHAMUTHÜ¹,² AND M. GARDEL² ¹Old Dominion University, Norfolk, VA, ²University of Chicago, Chicago, IL

8:30AM

Intercellular Stresses Guide Endothelial Cell Polarization Under Laminar Fluid Shear Stress

R. STEWARD JR.¹, D. TAMBE¹, AND J. FREDBERG¹ ¹Harvard University, Boston, MA

8:45AM

Cell-induced Nanoscale Displacements Reveal Localized, Autonomous Forces Exerted By Fibroblasts S. KNOLL¹ AND T. SAIF¹ 'University of Illinois at Urbana-Champaign, Urbana, IL

9:00AM

Suspended Fused-Fiber Nanonets as Force Sensors A. NAIN¹ 'VIRGINIA TECH, BLACKSBURG, VA

9:15AM

Finite Element Simulation of Valvular Interstitial Cells under Atomic Force Microscopy and Microindentation Experiments

Y. SAKAMOTO¹ AND M. SACKS¹ ¹The University of Texas at Austin, Austin, TX

SPECIAL SESSION

8:00 AM – 9:30 AM Convention Center, Room 204A

Whitaker International Program: Funding Opportunity for Young Biomedical Engineers

The Whitaker International Program, founded in 2005 provides funding to emerging U.S.-based leaders in biomedical engineering to conduct a study and/or research project, with the underlying objective of building international bridges. Grant projects – including research, coursework, public policy work – are intended to enhance both the recipient's career and the BME field. The goal of the Whitaker Program is to assist the development of professional leaders who are not only superb scientists, but who will advance the profession through an international outlook. The Whitaker Program has three sub-programs: Fellows and Scholars Program, Summer Program, and an Undergraduate Program. For more information, including program details, the online application and deadlines, visit: http://www.whitaker.org.

PLATFORM SESSIONS Fri-2 1:45PM-2:45PM

FRIDAY, October 24, 2014

I:45 PM - 2:45 PM PLATFORM SESSIONS - FRI - 2

Track: Tissue Engineering, Stem Cell Engineering

OP-Fri-2-I - Room 001A

Epithelial and Adipose Tissue Engineering

Chairs: George Pins, Piyush Koria

1:45PM

The Ups and Downs of 3D Skin Models: Engineering the Keratinocyte Microniche *in vitro*

A. CLEMENT¹, T. MOUTINHO¹, J. MOLIGNANO¹, AND G. PINS¹ ⁷Worcester Polytechnic Institute, Worcester, MA

2:00PM

Elastin like Peptides (ELPs) Modulate Cellular Behavior through interaction with Cell Surface Glycosaminoglycans Y. YUAN¹ AND P. KORIA¹

¹University of South Florida, Tampa, FL

2:15PM

PI ATFORM

In Vitro Engineering of Functional Salivary Gland Cells Using Silk Fibroin Scaffolds

H. Wang¹, B-X. Zhang¹,², L. Alan¹, D. Dean¹, M. Pilia³, A. Ong³, X-D. Chen¹, and C-K. Yeh¹,²

¹UT Health Science Center at San Antonio, San Antonio, TX, ²GRECC & Research Service, South Texas Veterans Health Care System, San Antonio, TX, ³University of Texas at San Antonio, San Antonio, TX

2:30PM

Phenotypic Characterization of Adipose Derived Stem Cells Differentiated Toward Urothelial Lineage

J. TURNER¹, T. MATT¹, AND J. NAGATOMI¹ ¹Clemson University, Clemson, SC

Track: Neural Engineering, Device Technologies and Biomedical Robotics OP-Fri-2-2 - Room 001B

Peripheral Neural Interfaces: Stimulation & Recording

Chairs: Pamela VandeVord, Shyam Aravamudham

1:45PM

Partial Restoration of Sensorimotor Function After Hand Amputation Using Multiple Electrode Arrays

S. WENDELKEN¹, D. PAGE¹, T. DAVIS¹, H. WARK¹, D. WARREN¹, R. NORMANN¹, D. HUTCHINSON¹, B. GREGER², AND G. CLARK¹

¹University of Utah, Salt Lake City, UT, ²Arizona State University, Tempe, AZ

2:00PM

Reestablishment of the blood nerve barrier in Regenerative Multielectrode Interfaces

A. KANNEGANTI¹, G. BENDALE¹, J. L SEIFERT¹, V. DESAI¹, AND M. ROMERO-ORTEGA¹ ¹Univ. Of Texas at Arlington, Arlington, TX

2:15PM

A Stretchable Microneedle Electrode Array for Electrical Muscle Stimulation

G. GUVANASEN¹, A. CHEEK¹, R. AGUILAR², C. SHAFOR², S. RAJARAMAN², T. NICHOLS¹, AND S. DEWEERTH¹,³

¹Georgia Institute of Technology, Atlanta, GA, ²Axion BioSystems, Atlanta, GA, ³Emory University, Atlanta, GA

2:30PM

Osseointegrated Prosthesis Mount with High-Channel-Count Peripheral Neural Interface Capability

D. KLUGER¹, G. CLARK¹, D. WARREN¹, D. HUTCHINSON¹, AND K. BACHUS¹ ¹University of Utah, Salt Lake City, UT

Track: Biomaterials, Tissue Engineering OP-Fri-2-3 - Room 006A

Biomaterial Scaffolds II

biomaterial Scariolus

Chairs: Jai Rudra, Mark Van Dyke

1:45PM

In Vivo Assessment of Tissue Engineered Myocardial Patch for the Repair of Full-thickness RVOT Surgery S. POK¹ AND J. JACOT¹ 'Rice University, Houston, TX

2:00PM

Characterization of Sequential Collagen-Poly(ethylene glycol) Diacrylate Interpenetrating Networks for Vascular Tissue Engineering D. MUNOZ-PINTO¹, A. JIMENEZ-VERGARA¹, T. GHARAT¹, AND M. HAHN¹ ¹Rensselaer Polytechnic Institute, Troy, NY

2:15PM

Enabling Surgical Placement of Hydrogels Through Achieving Paste-Like Rheological Behavior Prior to Crosslinking

E. BECK¹, B. LOHMAN¹, S. KIEWEG¹, S. GEHRKE¹, C. BERKLAND¹, AND M. DETAMORE¹ ¹UNIVERSITY OF KANSAS, LAWRENCE, KS

2:30PM

Thermoresponsive Nanonets for Improving Wound Healing in Diabetes Y. ZHU¹, R. HOSHI¹, AND G. AMEER¹ *Northwestern University, Evanston, IL*

Track: Biomedical Engineering Education (BME) OP-Fri-2-4 - Room 006B

Design in BME Education

Chairs: Colin Drummond, Joe Tranquillo

1:45PM

A Program in Clinical Needs Finding, Medical Device Innovation and Design

G. TRUSKEY¹ AND B. BARNES¹ ¹Duke University, Durham, NC

2:00PM

Retrospective Analysis of Factors Impacting Senior Design Project Translation

A. SIEVING¹, M. POOL², A. BRIGHTMAN¹, AND A. RUNDELL¹ ¹Purdue University, West Lafayette, IN, ²University of Illinois at Urbana-Champaign, Urbana, IL

2:15PM

The Teaching Dead J. LA BELLE¹ AND S. MAXWELL¹ ¹Arizona State University, Tempe, AZ

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

2014 OCTOBER 24 FRIDAY

2:30PM

Development of Design-Oriented BME Degree Programs In Nigeria

M. GLUCKSBERG¹, A. COKER², A. OSUNTOKI³, T. DOUGLAS⁴, AND R. MURPHY⁵ ¹Northwestern University, Evanston, IL, ²University of Ibadan, Ibadan, Nigeria, ³University of Lagos, Lagos, Nigeria, ⁴University of Cape Town, Cape Town, South Africa, ⁵Northwestern University, Chicago, IL

Track: Drug Delivery

OP-Fri-2-5 - Room 006C

Novel Materials and Self Assembly

Chairs: Robert Peattie, Mario Fabilli

1:45PM

Controlled Delivery of HB-EGF Accelerates Healing of Diabetic Wounds

N. JOHNSON^{1,2} AND Y. WANG^{1,2} ¹University of Pittsburgh, Pittsburgh, PA, ²McGowan Institute for Regenerative Medicine, Pittsburgh, PA

2:00PM

Exploring the Synthesis, Self-Assembly, and Delivery of Concatameric siRNA-Polymer Nanoparticles

K. SHOPSOWITZ¹, S. MORTON¹, E. DREADEN¹, AND P. HAMMOND¹ *'MIT, Cambridge, MA*

2:15PM

Gap Junction Liposomes for Direct Therapeutic Delivery to the Cellular Cytoplasm

A. GADOK¹, D. BUSCH¹, AND J. STACHOWIAK¹ ¹University of Texas at Austin, Austin, TX

2:30PM

Controlling the Single Wall Carbon Nanotube Dispersing Agent for Bioactive Molecule Delivery

B. HOLT¹, P. BOYER¹, K. DAHL¹, AND M. ISLAM¹ ¹Carnegie Mellon University, Pittsburgh, PA

Track: New Frontiers and Special Topics, Translational Biomedical Engineering OP-Fri-2-6 - Room 006D

Bioelectronics

Chairs: Ranu Jung, Tejal Desai

1:45PM

How Are We Galvanising The Interdisciplinary Research Community Into Developing High Precision Medicines That Target Peripheral Nerves? K. FAMM¹ 'GSK, LONDON, UNITED KINGDOM

2:00PM

Stimulation Design for the First Human Study of an Implanted Neurostimulator in Rheumatoid Arthritis

Y. LEVINE¹, A. CARAVACA¹, M. FALTYS¹, AND R. ZITNIK¹ ¹SetPoint Medical Corporation, Valencia, CA

2:15PM

Control of Ankle Movement by Stimulating with Longitudinal Intrafascicular Electrodes

A. THOTA¹, R. SIU¹, S. GANESWARATHAS², L. LYKHOLT², J. ABBAS³, AND R. JUNG¹ ¹Florida International University, Miami, FL, ²Aalborg University, Aalborg, Denmark, ³Arizona State University, Tempe, AZ

2:30PM

Spatial Distribution of Light-Sensitive Cells Determines Effectiveness of Optogenetics-Based Termination of Atrial Arrhythmias P. BOYLE¹ AND N. TRAYANOVA¹

¹Johns Hopkins University, Baltimore, MD

Track: Cancer Technologies OP-Fri-2-7 - Room 007A

Engineered Models of Cancer II

Chairs: Shelly Peyton, Jennifer Munson

1:45PM

Tumor Metastasis At High Spatiotemporal Resolution: Examining Role Of Wnt Signalling In Colon Cancer

V. SHIRURE¹, M. WATERMAN¹, AND S. GEORGE¹ ¹University of California, Irvine, Irvine, CA

2:00PM

Investigation of Paracrine Signaling in the Ovarian Cancer Microenvironment using a Novel Culture System M. CARROLL¹, L. STOPFER¹, A. DESOTELL¹, O. VELAZOUEZ¹, AND P. KREEGER¹ ¹University of Wisconsin, Madison, WI

2:15PM

Taxol Resistance Exacerbates Ovarian Cancer Progression By Altering Adhesion Kinetics And Strength

D. MCGRAIL¹, M. QI¹, K. PATEL¹, N. KHAMBHATI¹, AND M. DAWSON¹ ¹Georgia Institute of Technology, Atlanta, GA

2:30PM

Breast Cancer Cells Alter Nuclear Envelope Composition To Aid Migration Through Narrow Constrictions

R. GILBERT¹, C. DENAIS¹, M. KRAUSE², K. WOLF², AND J. LAMMERDING¹ ¹Cornell University, Ithaca, NY, ²Radboud University Nijmegen Medical Center, Nijmegen, Netherlands

Track: Cardiovascular Engineering, Biomedical Imaging and Optics OP-Fri-2-8 - Room 007B

Cardiovascular Flow Imaging and Modeling in Health and Disease

Chairs: W Robert Taylor, Hsiai Tzung

1:45PM

MRI-based Computational Modeling of Blood Flow and Nanomedicine Depositionin Patients with Peripheral Arterial Disease

S. HOSSAIN¹, J. ZHANG², X. FU², G. BRUNNER³, J. SINGH⁴, T. HUGHES⁵, D. SHAH⁴, AND P. DECUZZI⁴

¹Texas Heart Institute, Houston, TX, ²Carnegie Mellon University, Pittsburgh, PA, ³Baylor College of Medicine, Houston, TX, ⁴Houston Methodist Research Institute, Houston, TX, ⁵The University of Texas at Austin, Austin, TX

2:00PM

Changing Vorticity in the Main Pulmonary Artery is Associated With RV-PA Decoupling in Pulmonary Hypertension

V. KHEYFETS¹, J. SMYSER², A. HONEYMAN², J. BROWNING³, J. HERTZBERG³, J. SCHROEDER², B. FENSTER², AND R. SHANDAS¹

¹University of Colorado Denver, Aurora, CO, ²National Jewish Health, Denver, CO, ³University of Colorado Boulder, Boulder, CO PLATFORM

Fri-2

PLATFORM SESSIONS Fri-2 1:45PM-2:45PM

2:15PM

Right Ventricular Diastolic Dysfunction and Vorticity In The Right Human Heart

J. HERTZBERG¹, J. BROWNING¹, B. FENSTER²,³, AND J. SCHROEDER²,³ ¹University of Colorado Boulder, Boulder, CO, ²National Jewish Health, Denver, CO, ³University of Colorado Denver School of Medicine, Aurora, CO

2:30PM

Investigation of Spatio-Temporal Coupling Applied to Computational Models of Virtual Surgery

A. RANDLES^{1,2}, E. DRAEGER¹, AND F. MICHOR²

¹Lawrence Livermore National Laboratory, Livermore, CA, ²Dana-Farber Cancer Institute, Boston, MA

Track: Cellular and Molecular Bioengineering OP-Fri-2-9 - Room 007C

Molecular and Cell Engineering II

Chairs: Evan Scott

1:45PM

PKA Controlled Regulation of SK Channel Expression Detected by Force Nanoscopy

K. ABIRAMAN¹, A. TZINGOUNIS¹, AND G. LYKOTRAFITIS¹ ¹University of Connecticut, Storrs, CT

2:00PM

'i-2

PI ATFORM

Real-Time Imaging of Histone H3 Lysine 9 Tri-Methylation in Living Cells Q. PENG^{1,2}, Y. WANG², AND Y. WANG¹

¹University of California, San Diego, La Jolla, CA, ²Chongqing University, Chongqing, China, People's Republic of

2:15PM

Engineering an Integrin-Based, Chimeric Protein for Ligand-Regulated Binding

J. PRICE¹, N. CARBERRY¹, C. BARNES¹, L. PEPPER², AND E. BODER¹ ¹University of Tennessee, Knoxville, TN, ²Whitehead Institute for Biomedical Research, Cambridge, MA

2:30PM

Helix Insertion Drives Membrane Bending by Enabling Protein-Protein Crowding

W. SNEAD¹, N. MOMIN¹, AND J. STACHOWIAK¹ ¹The University of Texas at Austin, Austin, TX

Track: Orthopaedic and Rehabilitation Engineering

OP-Fri-2-10 - Room 007D

Rehabilitation Engineering: Prosthetics and Wearable Devices

Chairs: Eric Perreault, David Lipps

1:45PM

Generalizability of Control for a Powered Knee and Ankle Prosthesis on Level and Inclined Surfaces at User-Modulated Walking Speeds N. Fey^{1,2}, A. SIMON^{1,2}, AND L. HARGROVE^{1,2}

¹Rehabilitation Institute of Chicago, Chicago, IL, ²Northwestern University, Chicago, IL

2:00PM

Structure Design and Algorism Strategy for Exoskeleton Powered Knee Devices

C. CHEN1, J. KOEHLER1, V. YALDO 1, Z. FENG1, C. ZHOU1, J. CAVANAUGH1, AND W. CHEN2

¹Wayne State University, Detroit, MI, ²Wayne State University, Grosse Pointe, MI

2:15PM

Interface Strength of a Percutaneous Prosthetic Attachment Implant G. NOBLE¹, A. LITSKY¹, M. ALLEN¹, N. FITZPATRICK², AND R. HART¹ ¹The Ohio State University, Columbus, OH, ²Fitzpatrick Referrals, Surrey, United Kingdom

2:30PM

Validation Of PVS Impression Molds For Profilometric Analysis Of Modular Joint Replacement Tapers

K. SCHWARTZMAN¹, P. PANIGRAHI¹, AND M. HARMAN¹ ¹Clemson University, Clemson, SC

Track: Nano to Micro Technologies, New Frontiers and Special Topics OP-Fri-2-11 - Room 008A

Diagnostics

Chairs: Tzahi Cohen-Karni , Lilie Grace Zhang

1:45PM

Enhancing Diagnostic Assays via Stimuli-Responsive Reagents J. LAI¹, S. SRINIVASAN¹, I. ANDREWS¹, B. NEHILLA², B. LUTZ¹, T. SCHULTE², AND P. STAYTON¹

¹University of Washington, Seattle, WA, ²Nexgenia Inc., Redmond, WA

2:15PM

Disease Detection by Ultrasensitive Quantification of Microdosed Synthetic Urinary Biomarkers

A. WARREN¹, S. GAYLORD², K. NGAN², M. MILUTINOVIC², G. KWONG¹, S. BHATIA¹, AND D. WALT²

¹Massachusetts Institute of Technology, Cambridge, MA, ²Tufts University, Medford, MA

2:30PM

A Highly Sensitive Microsphere-Based Assay for Early Detection of Type I diabetes

S. BALE¹, G. PRICE¹, M. CASALI¹, N. SAEIDI¹, A. BHUSHAN¹, AND M. YARMUSH¹ ¹Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Burns Hospital, Boston, MA

Track: Tissue Engineering, Biomaterials OP-Fri-2-12 - Room 008B

Bone and Cartilage Tissue Engineering II

Chairs: Kathryn Uhrich, Syam Nukavrapu

1:45PM

Enhanced Cartilage Formation *In Vivo* via Harnessing the Interplay Between Chondrocytes and Stem Cells

J. LAI¹, L. DEVEZA¹, S. YU¹, S. JEEAWOODY¹, R. SMITH², W. MALONEY², AND F. YANG¹,² ¹Stanford University, Stanford, CA, ²Stanford School of Medicine, Stanford, CA

2:00PM

Patient-Specific Auricular Cartilage Constructs Using High-Density Collagen for Ear Reconstruction

B. COHEN¹, R. HOOPER², J. PUETZER¹, R. NORDBERG¹, A. GOLAS², O. ASANBE², K. HERNANDEZ², J. SPECTOR², AND L. BONASSAR¹

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

1:45PM-2:45PM PLATFORM SESSIONS Fri-2

2014 OCTOBER 24 FRIDAY

2:15PM

Mimicking Cartilage Tissue Zonal Organization by Engineering Hydrogels with Gradient Niche Cues D. ZHU¹, X. TONG¹, J. LAI¹, AND F. YANG¹ 'Stanford. University, Stanford, CA

2:30PM

Human Mesenchymal Stem Cell Spheroids in Fibrin Hydrogels Exhibit Improved Cell Survival and Potential for Bone Healing K. MURPHY¹ AND J. LEACH¹ 'University of California, Davis, CA

Track: Device Technologies and Biomedical Robotics

OP-Fri-2-13 - Room 201

Verification and Validation of Computational Models of Medical Devices

Chairs: Marc Horner, Dawn Bardot

I:45PM INVITED

Modeling Hemodynamics in Patient Specific Intracranial Aneurysms D. DRAGOMIR-DAESCU¹, S. HODIS¹, AND D. KALLMES¹ ¹Mavo Clinic, Rochester, MN

2:15PM

Computational Fluid Dynamics Modeling Of The FDA Nozzle Using The V&V 20 Standard

G. D'SOUZA¹, P. HARIHARAN², R. MALINAUSKAS², R. BANERJEE¹, AND M. HORNER³ ¹University of Cincinnati, Cincinnati, OH, ²Food and Drug Administration, Silver Spring, MD, ³ANSYS Inc., Evanston, IL

2:30PM

Identifying Uncertainties in Models and Experiments for Model Verification and Validation

D. RIHA¹

¹Southwest Research Institute, San Antonio, TX

Track: Biomechanics OP-Fri-2-14 - Room 103B

Impact and Injury Biomechanics

Chairs: F. Scott Gayzik, Ruth Ochia

1:45PM

Astrocytic Thrombospondin-4 May Mediate Painful Facet Capsule Injury: Insights from *In Vivo* and *In Vitro* Studies N. CROSBY¹ AND B. WINKELSTEIN¹

¹University of Pennsylvania, Philadelphia, PA

2:00PM

Morphological Changes in the Adult Skull with Age and Sex

J. URBAN^{1,2}, Å. WEAVER^{1,2}, E. LILLIE^{1,2}, J. MALDJIAN², C. WHITLOW^{2,3}, AND J. STITZEL^{1,2}

¹Virginia Tech - Wake Forest University, Winston Salem, NC, ²Wake Forest School of Medicine, Winston Salem, NC, ³Translational Science Institute, Wake Forest University, Winston Salem, NC

2:15PM

Discrete Plasticity in Collagen Fibrils: Surprisingly Common in Unusual Places

S. VERES^{1,2}, B. SCOTT³, S. WELLS³, AND J. LEE³ ¹Saint Mary's University, Halifax, NS, Canada, ²Dalhousie University, Halifax, Canada, ³Dalhousie University, Halifax, NS, Canada

2:30PM

Modeling Stretching and Tearing of Human Liver using Finite Element Optimization and Cohesive Zone Modeling Techniques C. UNTAROIU¹ AND Y-C. LU¹ ¹Virginia Tech, Blacksburg, VA

Track: Bioinformatics, Computational and Systems Biology OP-Fri-2-15 - Room 202A

Systems Proteomics: Measurement and Computation

Chairs: Sriram Neelamegham, Christopher Barnes

1:45PM

A Computational Platform to Analyze High Throughput Tandem Mass Spectrometry Based Glycoproteomics Experiments

S. NEELAMEGHAM¹, C. LO¹, J. QU¹, AND G. LIU¹ ¹State University of New York at Buffalo, Buffalo, NY

2:00PM

Identification of Novel Direct Kinase-Substrate Associations with Peptide Phosphorylation and Mass Spectrometry

C. BARNES¹, A. MAIOLICA¹, S. WANKA², T. SCHMIDLIN¹, C. VON MERING², AND R. AEBERSOLD¹

¹ETH Zurich, Zurich, Switzerland, ²University of Zurich, Zurich, Switzerland

2:15PM

The Activation State Of The Breast Cancer Kinome: Characterization Of Subtypes And Identification Of Key Regulatory Kinases

K. COLLINS¹, T. STUHLMILLER¹, T. PHAM¹, S. ANGUS¹, J. DUNCAN¹, M. WHITTLE¹, L. GRAVES¹, G. JOHNSON¹,², AND S. GOMEZ¹

¹University of North Carolina at Chapel Hill, Chapel Hill, NC, ²Lineberger Comprehensive Cancer Center, Chapel Hill, NC

2:30PM

Improved Clustering of Molecular Measurements Using Ensemble Approaches K. NAEGLE¹

¹Washington University in St Louis, St Louis, MO

Track: Biomedical Imaging and Optics OP-Fri-2-16 - Room 202B

Magnetic Resonance Imaging II

Chairs: Mary McDougall, Omid Veiseh

1:45PM

Mapping Multiscale Myoarchitecture *In Vivo* With Generalized Q-Space MRI E. TAYLOR¹ AND R. GILBERT¹

¹Northeastern University, Boston, MA

2:00PM

Biomimetic Neural Fiber MRI Phantom Exhibits Anomalous Diffusion

A. YE¹, P. HUBBARD CRISTINACCE², F-L. ZHOU², Z. YIN¹, G. PARKER², AND R. MAGIN¹ ¹University of Illinois at Chicago, Chicago, IL, ²University of Manchester, Manchester, United Kingdom

2:15PM

Developing Support Vector Machine Classification Of Associative Memory For Real-Time fMRI

H. DESHPANDE^{1,2}, A. EKLUND², J. LISINSKI², C. MUELLER², B. KING-CASAS^{1,2}, AND S. LACONTE^{1,2}

¹Virgnia Tech, Blacksburg, VA, ²Virgnia Tech Carilion Research Institute, Roanoke, VA

LATFORM

2:30PM

Frequent Cognitive Activity for Non-demented Elderly Adults is Associated with Higher Brain Microstructural Integrity

C. BARTH¹, R. WILSON², A. CAPUANO², S. ZHANG², D. BENNETT², AND K. ARFANAKIS¹,² ¹Illinois Institute of Technology, Chicago, IL, ²Rush University, Chicago, IL

Track: Biomedical Imaging and Optics, Device Technologies and Biomedical Robotics OP-Fri-2-17 - Room 203A

Diagnostic Devices and Biosensors II

Chairs: Mahsa Ranji, Bilal Malik

1:45PM

Quantitative Mercury Sensing and Spatiotemporal Mapping Using a Smartphone

Q. WEI¹, R. NAGI¹, K. SADEGHI¹, S. FENG¹, D. TSENG¹, AND A. OZCAN¹ ¹University of California, Los Angeles, Los Angeles, CA

2:00PM

Skin Cancer Detection with Diffuse Reflectance Spectroscopy

R. HENNESSY¹, S. MAITY¹, S. LIM², J. TUNNELL¹, AND M. MARKEY¹,³ ¹The University of Texas at Austin, Austin, TX, ²University Health Network, Toronto, ON, Canada, ³The University of Texas MD Anderson Cancer Center, Houston, TX

2:15PM

Characterizing Perimeter Gated Single Photon Avalanche Diodes for Bioluminescence Applications

M. HABIB¹ AND N. MCFARLANE¹ ¹University of Tennessee, Knoxville, TN

2:30PM

Shrink Wrap Multi-scale Silica Structures Used to Enhance Fluorescence Detection for DNA Microarrays

H. SHARMA¹, J. WOOD¹, S. LIN¹, R. CORN¹, AND M. KHINE¹ ¹University of California, Irvine, Irvine, CA

Track: Respiratory Bioengineering, Biomechanics

OP-Fri-2-18 - Room 203B

Computational Modeling of the Respiratory System

Chairs: Sarah Vigmostad, Tilo Winkler

1:45PM

An Agent-Based Network Model of Pulmonary Fibrosis Development T. WELLMAN¹, J. BATES², G. DAVIS², AND B. SUKI¹ ¹Boston University, Boston, MA, ²University of Vermont, Burlington, VT

2:00PM

Airway-Parenchymal Interactions During Heterogeneous Bronchoconstriction

T. WINKLER¹ AND R. HARRIS¹ ¹Massachusetts General Hospital and Harvard Medical School, Boston, MA

2:15PM

Comparison of Homogeneity and Efficiency of Surfactant Delivery into the Lung M. FILOCHE¹ AND J. GROTBERG²,³ 'Ecole Polytechnique, Palaiseau, France, ²University of Michigan, Ann Arbor, MI, ³INSERM, Créteil, France

2:30PM

A Fully Resolved Glottal Flow Simulation In a Patient-specific Geometry of the Human Larynx

M. FARAHANI¹, J. MOUSEL¹, S. VIGMOSTAD¹, AND F. ALIPOUR¹ ¹The University of Iowa, Iowa City, IA

SPECIAL SESSION

2:00 PM – 4:00PM Convention Center, Room 204A

Diversity, Health Disparities and Affordable Healthcare

Chairs: Gilda Barabino, Cato Laurencin

This session will be offered to better inform the broader BME community about health disparities and inequities and the role biomedical engineers can play in combating them. The session will provide a context for examining health disparities in translational research and will discuss historical examples of differential medical treatment and civil rights infringements based on race and ethnicity. Emphasis will be placed on achieving enhanced and affordable healthcare through engineering technologies.

Moderator: Gilda Barabino, PhD, The City College of New York

P = Poster Session
 OP = Oral Presentation
 2 = Reviewer Choice Award

2014 OCTOBER 24 FRIDAY

FRIDAY, October 24, 2014

3:00 PM - 4:00 PM PLATFORM SESSIONS - FRI - 3

Track: Stem Cell Engineering, Cellular and Molecular Bioengineering OP-Fri-3-1 - Room 001A

Engineering Stem Cell Environments

Chairs: Tara Deans, Leo Wan

3:00PM

Incorporating Instructive Cues Within a Biomaterial to Engineer Hematopoietic Stem Cell Bioactivity

B. MAHADIK¹, S. PEDRON¹, L. SKERTICH¹, AND B. HARLEY¹,² ¹University of Illinois at Urbana-Champaign, Urbana, IL, ²Institute for Genomic Biology, Urbana, IL

3:15PM

Development Of A Controlled Oxygen Delivery System To Increase Adipose Stem Cell Survival

D. SANTIESTEBAN¹, A. HANNAH¹, L. SUGGS¹, AND S. EMELIANOV¹ ¹UT Austin, Austin, TX

3:30PM

Native Tissue-Specific ECMs Exhibit Distinct Mechanical Properties Affecting the Fate of hMSCs

M. MARINKOVIC¹, T. BLOCK¹, R. RAKIAN¹, D. DEAN¹, M. REILLY¹ AND X-D. CHEN¹ ¹University of Texas Health Science Center at San Antonio, San Antonio, TX

3:45PM

Controlled Cell-Cell Interactions Enhance Functional Maturation of iPSC-Derived Human Hepatocytes

D. BERGER¹, B. WARE¹, M. DAVIDSON¹, AND S. KHETANI¹ ¹Colorado State University, Fort Collins, CO

Track: Neural Engineering OP-Fri-3-2 - Room 001B

Neural Control and Modeling

Chairs: Katherine Steele, Eric Perreault

3:00PM

Stroke Reduces Neuromotor Control Bandwidth at the Elbow: A Pilot Study

M. BENGTSON¹, L. MROTEK¹,², T. STOECKMANN¹, C. GHEZ³, AND R. SCHEIDT¹,⁴ ¹Marquette University, Milwaukee, WI, ²University of Wisconsin Oshkosh, Oshkosh, WI, ³Columbia University, New York, NY, ⁴Northwestern University, Evanston, IL

3:15PM

Weak Electric Field Effects From Sham Transcranial Magnetic Stimulation on EEG Dynamics

J. MUELLER¹, A. OPITZ², W. LEGON², A. BARBOUR², W. BICKEL², W. PAULUS³, AND W. TYLER¹, ²

¹Virginia Tech, Blacksburg, VA, ²Virginia Tech Carilion Research Institute, Roanoke, VA, ³Georg-August-University, Gottingen, Germany

3:30PM

Autaptic Connections Shift Network Excitability and Bursting

L. WILES¹, D. BASSETT¹, AND D. MEANEY¹ ¹University of Pennsylvania, Philadelphia, PA

3:45PM

Linear Decoders of Retinal Spike-trains Yield Ideal-Observer Performance for Broad Classes of Visual Tasks A. IYER¹ AND N. GRZYWACZ¹

¹University of Southern California, Los Angeles, CA

Track: Biomaterials

OP-Fri-3-3 - Room 006A

Bioinspired and Self Assembling Biomaterials II

Chairs: Michael Yu, Gargi Ghosh

3:00PM

Thromboresistant Collagen-mimetic Hydrogels as Coatings for Cardiovascular Devices

V. GUIZA-ARGUELLO¹, S. BECERRA-BAYONA¹, S. MALMUT¹, B. RUSSELL², M. H??K², E. COSGRIFF-HERNANDEZ³, AND M. HAHN¹

¹Rensselaer Polytechnic Institute, Troy, NY, ²Texas A&M Health Science Center, Houston, TX, ³Texas A&M University, College Station, TX

3:15PM

The Design of Antimicrobial and Wound Healing Detachable Thin Films

M. CASSIN¹, D. SUSANTI¹, B. MUKHOPADHYAY¹, AND P. RAJAGOPALAN¹ ¹Virginia Polytechnic Institute and State University, Blacksburg, VA

3:30PM

Virus-inspired Self-assembling Peptide Nanoparticle Vaccines C. CHESSON¹, R. APPAVU¹, AND J. RUDRA¹

¹Department of Pharmacology and Toxicology, Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX

3:45PM

Collagen Mimetic Peptide Conjugated Nanoparticles For Targeting Denatured Collagens B-H. SAN¹, Y. LI¹, AND M. YU¹ ¹University of Utah, Salt Lake, UT

Track: Neural Engineering OP-Fri-3-4 - Room 006B

Neural Engineering: Controlling Cell Behavior

Chairs: Erin Lavik, J-C Chiao

3:00PM

Hemostatic Nanoparticles: New Approaches for CNS Injuries

E. LAVIK¹

¹Case Western Reserve University, Cleveland, OH

3:15PM

Conducting Polymer Films with Various Biomolecules for Cellular Adhesion and Growth

S. PARK¹, G. YANG¹, D. NOCERA¹, M. ABIDIAN¹, AND S. MAJD¹ ¹Pennsylvania State University, University Park, PA

3:30PM

Remote Regulation Of Neural Activity With Localized Release From Photo-sensitive Microgels

W. Ll¹, R. LUO², L. YAN³, A. JADHAV¹, X. CHEN³, C-H. CHEN², AND P. SHI¹ ¹City University of Hong Kong, Kowloon, Hong Kong, ²National University of Singapore, Singapore, Singapore, ³Cityu University of Hong Kong, Kowloon, Hong Kong

3:45PM

Quercetin And Derivatives Reduce Nuclear Factor-*B Activation Associated With Alzheimer's Disease

K. PATE¹, M. ROGERS¹, J. CLEGG¹, AND M. MOSS¹ ¹University of South Carolina, Columbia, SC PLATFORM

Eri-3

Track: Drug Delivery OP-Fri-3-5 - Room 006C

Multifunctional Drug Delivery

Chairs: Lola Eniola-Adefeso, YongTae Kim

3:00PM

In Vivo Delivery of Transcription Factors by Multifunctional Oligonucleotides Suppress Liver Failure

M. RAFI¹, K. LEE¹, X. FENG¹, R. TANG¹, N. LINGAMPALLI¹, AND N. MURTHY¹ ¹University of California Berkeley, Berkeley, CA

3:15PM

Bioengineered Nanoporous Silicon with Leukocyte Membrane Promotes Endothelial Adhesion

M. EVANGELOPOULOS¹, R. PALOMBA¹, C. CORBO¹, A. PARODI¹, S. ACCIARDO¹, AND E. TASCIOTTI¹

¹Houston Methodist Research Institute, Houston, TX

3:30PM

Light-activated Collapse of Sub-micron Gold Nanoplate/Polymer Shell Composite Particles for Drug Delivery Applications M. O'TOOLE¹, K. JAMES¹, D. PATEL², AND R. KEYNTON¹

¹University of Louisville, Louisville, KY, ²Energy Delivery Solutions, Jefersonville, IN

3:45PM

1KOC University, Istanbul, Turkey

Controlled Delivery of an Anticonvulsant Drug Pregabalin Through Visible-Light-Cured pH Responsive Composite Hydrogels S. KIZILEL¹, O. CEVIK¹, AND D. GIDONI¹

SESSIONS

Track: Translational Biomedical Engineering, Stem Cell Engineering OP-Fri-3-6 - Room 006D

Translational Therapeutics for Regenerative Medicine

Chairs: Robert Mauck, Mark Van Dyke

3:00PM

Injection of Matrilin-3/Nanotube Matrix for Treatment of Growth Plate Cartilage Injury *in Vivo*

Y. CHEN¹, P. MCCLURE¹, S. MCALLISTER¹, T. ALBRIGHT¹, H. YU¹, L. ERIC¹, D. MOORE¹, H. FENNIRI², M. EHRLICH¹, AND Q. CHEN¹

¹Brown University, Providence, RI, ²Northeastern University, Boston, MA

3:15PM

The Story of Hepregen Corporation: Bringing Engineered Liver Devices to the Marketplace

S. KHETANI¹

¹Colorado State University, Fort Collins, CO

3:30PM

Glypisomes: A Novel Construct for Enhancing of Growth Factor Activity for Therapeutic Angiogenesis A. Monteforte¹, B. Lam¹, A. DUNN¹, AND A. BAKER¹

¹University of Texas at Austin, Austin, TX

3:45PM

Exogenous Nitric Oxide Production Using Dielectric Barrier Discharge Plasma for Enhanced Osteoblasts Activity

M. ELSAADANY¹, G. SUBRAMANIAN¹, H. AYAN¹, AND E. YILDIRIM-AYAN¹,² ¹University of Toledo, Toledo, OH, ²University of Toledo Medical Center, Toledo, OH

P = Poster Session **OP** = Oral Presentation

Track: Cancer Technologies, Biomedical Imaging and Optics OP-Fri-3-7 - Room 007A

Imaging Strategies in Cancer

Chairs: Javier Jo, Vikram Kodibagkar

3:00PM

Down to 200 Cancer Cells Detected in Tumor-Draining Lymph Nodes by Dual-Tracer Fluorescence Imaging

K. TICHAUER¹, K. SAMKOE², J. GUNN², S. KANICK², P. HOOPES², R. BARTH², P. KAUFMAN², T. HASAN³, AND B. POGUE² ¹Illinois Institute of Technology, Chicago, IL, ²Dartmouth College, Hanover, NH, ³Massachusetts General Hospital, Boston, MA

3:15PM

Multicolor Three-Dimensional Tracking of Single Epidermal Growth Factor Receptors

Y-L. LIU¹, E. PERILLO¹, C. LIU¹, Y-A. CHEN¹, M-C. HUNG^{2,3,4}, A. DUNN¹, AND H-C. YEH¹ ¹Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, ²Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, ³Graduate School of Biomedical Sciences at Houston, The University of Texas, Houston, TX, ⁴Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan

3:30PM

Image-guided Photodynamic Therapy and Irinotecan Chemotherapy Combination for Pancreatic Cancer Treatment

S. MALLIDI¹, H-C. HUANG¹, C-T. CHIANG¹, Z. MAI¹, I. RIZVI¹, AND T. HASAN¹ ¹Harvard Medical School. Boston. MA

3:45PM

Design of Biofunctionalized Rare-Earth Albumin Nanocomposites for Tumor Microlesion Detection and Tracking

M. ZEVON¹, V. GANAPATHY¹, P. KIM¹, D. NACZYNSKI², M-C. TAN³, R. RIMAN¹, C. ROTH¹, AND P. MOGHE¹

¹Rutgers University, Piscataway, NJ, ²Stanford University, Stanford, CA, ³Singapore University of Technology and Design, Singapore, Singapore

Track: Cardiovascular Engineering OP-Fri-3-8 - Room 007B

Structure-function Relationship in the Cardiovascular System

Chairs: Manu Platt, Michael Davis

3:00PM

An *In Vitro* Study of the Effect of the Craya-Curtet Number on Contrast Injections during Angiography

A. PAGANO¹, C. SADASIVAN¹, D. FIORELLA¹, H. WOO¹, AND B. LIEBER¹ ¹Stony Brook University, Stony Brook, NY

3:15PM

Quantifying Myocardial Structure and Function Following Infarction Through Multiphoton Microscopy

K. QUINN¹, K. SULLIVAN¹, Z. BALLARD¹, I. GEORGAKOUDI¹, AND L. BLACK¹,² ¹Tufts University, Medford, MA, ²Tufts University School of Medicine, Boston, MA

3:30PM

Myoarchitectural Differences Between the Right and Left Ventricles of the Mouse Heart Determined by Generalized Q-space (GQ) MRI

E. TAYLOR¹, S. MIJAILOVICH¹, A. ABRISHAMCHI¹, M. HOFFMAN¹, AND R. GILBERT¹ Northeastern University, Boston, MA

2014 OCTOBER 24 FRIDAY

3:45PM

The Influence of Input Variables on Size Outcome in the Rabbit Elastase-Induced Aneurysm Model

R. DHOLAKIA¹, C. SADASIVAN¹, L. PEELING¹, D. FIORELLA¹, H. WOO¹, AND B. LIEBER¹ ¹Stony Brook University, Stony Brook, NY

Track: Cellular and Molecular Bioengineering OP-Fri-3-9 - Room 007C

Cell Motility

Chairs: William Guilford, Cynthia Reinhart-King

3:00PM

Equations of Inter-doublet Separation during Flagella Motion Explain Propagation of Dynein Activity

P. BAYLY¹ AND K. WILSON¹ ¹Washington University in Saint Louis, Saint Louis, MO

3:15PM

The Motile System Of A Parasite Measured In Live Cells At The Level Of Single Molecules

R. STADLER¹, L. WHITE¹, K. HU², B. HELMKE¹, AND W. GUILFORD¹ ¹University of Virginia, Charlottesville, VA, ²Indiana University, Bloomington, IN

3:30PM

Dimensionality and Contact Guidance Affect Tumor Cell Migration and Decision Making

C. PAUL^{1,2,3}, M. MAHONEY¹, AND K. KONSTANTOPOULOS^{1,2,3,4} ¹Johns Hopkins University, Baltimore, MD, ²Institute for NanoBioTechnology, Baltimore, MD, ³Physical Science-Oncology Center, Baltimore, MD, ⁴Center of Cancer Nanotechnology Excellence, Baltimore, MD

3:45PM

Filling the Gap: Relative Role of Proliferation versus Migration in Response to Injury of Vascular Endothelial and Smooth Muscle Cells K. AMMANN¹, K. DECOOK¹, P. TRAN¹, AND M. SLEPIAN¹

¹University of Arizona, Tucson, AZ

Track: Orthopaedic and Rehabilitation Engineering, Biomechanics OP-Fri-3-10 - Room 007D

Translational Research Relevant to Common Orthopaedic Injuries

Chairs: F. Scott Gayzik, Grace O'Connell

3:00PM

Epimuscular Fat in the Human Rotator Cuff is a Novel Brown Fat Depot Influenced by Cuff State

G. MEYER¹, M. GIBBONS², E. SATO², J. LANE², S. WARD², AND A. ENGLER² ¹Washington University in St. Louis, St. Louis, MO, ²UCSD, La Jolla, CA

3:15PM

The Effect of Size and Location of Tears in the Supraspinatus Tendon on Potential Tear Propagation

S. DAMLE¹, J. THUNES¹, S. PAL¹, R. MILLER¹, R. DEBSKI¹, AND S. MAITI¹ ¹University of Pittsburgh, Pittsburgh, PA

3:30PM

Surgical Design and Graft-Tunnel Interaction: An Analytical examination of ACL reconstruction

S. SALEHGHAFFARI¹ AND Y. DHAHER¹ ¹Northwestern University, Chicago, IL

3:45PM

Knee Biomechanics of Adolescent Athletes Returning to Sports Following ACL Reconstruction

E. GARIBAY¹, M. MILEWSKI¹, S. OUNPUU¹, J. WOODS¹, N. GIAMPETRUZZI¹, AND D. SUPRENANT¹

¹Connecticut Children's Medical Center, Farmington, CT

Track: Nano to Micro Technologies OP-Fri-3-11 - Room 008A

Nanoparticles and Theranostics

Chairs: Carlos Rinaldi, Hyun Joon Kong

3:00PM

Facile Method for the Site-Specific, Covalent Attachment of Full-Length IgG onto Nanoparticles J. Hui' AND A. TSOURKAS'

¹University of Pennsylvania, Philadelphia, PA

3:15PM

New Design Strategies for Multicolor NanoCluster Beacons J. OBLIOSCA¹, M. BABIN¹, C. LIU¹, Y-L. LIU¹, R. BATSON¹, AND H-C. YEH¹ ¹University of Texas at Austin, Austin, TX

3:30PM

A New Methodology for Preparation of Uniformly Sized Cell Membrane Mimicking Vesicles Y. KANG¹, H. WOSTEIN¹, AND S. MAJD¹

¹Pennsylvania State University, University Park, PA

3:45PM

A Multifunctional Nanoplatform for the Enhancement and Prediction of Therapeutic Response to External Beam Radiation Therapy

A. AL ZAKI¹, C. MCQUADE¹, G. KAO¹, J. DORSEY¹, AND A. TSOURKAS¹ ¹University of Pennsylvania, Philadelphia, PA

Track: Tissue Engineering, Biomaterials OP-Fri-3-12 - Room 008B

Scaffolds and Surfaces for Tissue Engineering III

Chairs: Taby Ahsan, Sheila Grant

3:00PM

Mechanical Properties Of Decellularized Lung Extracellular Matrix Tissue Scaffold Electospun With PLLA

B. BLAKENEY¹, G. SCHREYACK¹, R. POULIOT¹, AND R. HEISE¹ ¹Virginia Commonwealth University, Richmond, VA

3:15PM

Electrochemically Compacted Collagen Matrices for Corneal Repair R. IYER¹ AND V. KISHORE¹ ¹Florida Institute of Technology, Melbourne, FL

3:30PM

Bundled Gel Fibers Fabricated with a Combination of Microfluidic Device and Phase-Separated Polymer Solution

Y. MATSUNAGA¹ AND Y-J. KIM¹ ¹The University of Tokyo, Tokyo, Japan PLATFORM

PLATFORM SESSIONS Fri-3 3:00PM - 4:00PM

3:45PM

Tailoring Silk Fibroin Degradation using Embedded Proteolytic Enzymes J. COBURN¹, B. MARELLI¹, F. OMENETTO¹, AND D. KAPLAN¹ ¹Tufts University, Medford, MA

Track: Device Technologies and Biomedical Robotics

OP-Fri-3-13 - Room 201

Biomedical Robotics

Chairs: Arthur Ritter, Jaydip Desai

3:00PM

Design of a Compact Manipulator with Six Degrees-of-Freedom for Flexible Access Surgery

C. BRYSON¹, A. OREKHOV¹, AND D. RUCKER¹

¹University of Tennessee, Knoxville, TN

3:15PM

3D Printed Optogenetic Skeletal Muscle-Powered Biological Machines R. RAMAN¹, C. CVETKOVIC¹, B. WILLIAMS¹, S. UZEL², R. PLATT², R. KAMM², M. SAIF¹,

AND R. BASHIR¹ ¹University of Illinois at Urbana-Champaign, Champaign, IL, ²Massachusetts Institute of

Technology, Cambridge, MA

3:30PM

Haptic Robot and Human Ppsychophysical Studies: A Complementary Framework to Decode Haptic Perception

Z. SU¹ AND G. LOEB¹,²

¹University of Southern California, Los Angeles, CA, ²Syntouch LLC, Los Angeles, CA

3:45PM

Portable Robot for Autonomous Venipuncture using 3D Near Infrared and Ultrasound Guidance

A. CHEN¹, M. BALTER¹, AND T. MAGUIRE¹ ¹Rutgers University, Piscataway, NJ

Track: Biomechanics

OP-Fri-3-14 - Room 103B

Countermeasures for Bone Loss and Injury

Chairs: Russell Main, Oran Kennedy

3:00PM

Early Axial Compressive Loading Delays Mineralization and Remodeling of a Tibial Cortical Defect in Mice

R. CARRERA¹, D. WAGNER², B. GEORGE³, P. LEUCHT³, D. HUNTER³, J. HELMS³, G. BEAUPRE², AND A. CASTILLO²,

¹Stanford University, Palo Alto, CA, ²VAPAHCS, Palo Alto, CA, ³Stanford University School of Medicine, Palo Alto, CA

3:15PM

Photoacoustic Stimulation Enhances Bone Fracture Healing in Rats

Y. TALUKDAR¹, J. RASHKOW¹, S. PATEL¹, G. LALWANI¹, AND B. SITHARAMAN¹ ¹Stony Brook University, Stony Brook, NY

3:30PM

Both Bone Quality and Quantity of Obese Mice are Enhanced by Low Intensity Vibrations

B. NGUYEN¹, M. CHAN¹, L. LIN¹, Y-X. QIN¹, AND C. RUBIN¹ ¹Stony Brook University, Stony Brook, NY

P = Poster Session **OP** = Oral Presentation

3:45PM

Trabecular Bone Response to Elevated Loading Frequencies

R. CHUNG¹, M. NIEMIERA¹, A. RITTER¹, T. ERRICO², AND A. VALDEVIT¹,² ¹Stevens Institute of Technology, Hoboken, NJ, ²NYU Langone Medical Center, New York, NY

Track: Bioinformatics, Computational and Systems Biology **OP-Fri-3-15 - Room 202A**

Prokaryotic Systems Biology

Chairs: Ranjan Srivastava, Cheemeng Tan

3:00PM

Comparative Systems Analysis Of Persistent Cystic Fibrosis Pathogens

J. BARTELL¹, J. THØGERSEN², J. THYKÆR², K. NIELSEN², S. MOLIN², L. JELSBAK², AND J. PAPIN

¹University of Virginia, Charlottesville, VA, ²Technical University of Denmark, Lyngby, Denmark

3:15PM

In Silico Analysis of Bacillus Anthracis Predicts Link Between Quorum Sensing Circuit And Iron Metabolism

E. BAUTISTA¹ AND R. SRIVASTAVA¹ ¹University of Connecticut, Storrs, CT

3:30PM

Systems Analysis of Pseudomonas aeruginosa to Identify Drug Targets and Virulence Factor Dependencies

J. BARTELL¹, A. BLAZIER¹, P. YEN¹, J. THØGERSEN², P. JENSEN³, AND J. PAPIN¹ ¹University of Virginia, Charlottesville, VA, ²Technical University of Denmark, Lyngby, Denmark, ³Boston College, Chestnut Hill, MA

3:45PM

Phenotypic Signatures Arising from Unbalanced Bacterial Growth

C. TAN1, R. SMITH2, M-C. TSAI3, R. SCHWARTZ3, AND L. YOU4 ¹University of California Davis, Davis, CA, ²Nova Southwestern, Fort Lauderdale, FL, ³Carnegie Mellon University, Pittsburgh, PA, ⁴Duke University, Durham, NC

S
X
4
Щ
Z
≥
Ţ
S
2
U.
Щ

REFRESHMENT BREAKS

FRIDAY

REFRESHMENT BREAKS

696	695		_	672	671	685	657	644	643	630	629	616	615	602 602	<u>]</u>	588	287		574	573	640	559		_	536	535	522	521	508	507
697	694	L	1	673	670	659	656	645	642	631	628	617	614	8 63	909	580	586	C	575	572		228			537	534	523	520	509	506
698	693	684	683	674	699 00	.099	655	646	641	635	627	618	613	δ 04 604	599	200	285	AED	576	271	AN 557	221	548	547	538	533	524	519	510	505
669	692 N C	685	682 CRC	675	899	199	654	647	640	633	626	619	612	605 605	598		284	OP	577	570	H O	226	549	546	539	532	525	518	511	504
700	169 N	686	681 M	676	99	662	653	648	639	635	625	620	911	0 809	597	507	283	H	578	569	EÅ4	222	550	545	540	531	526	517	512	503
701	690	687	680	677	99 99	663	652	649	638	635	624	621	610	6 07	596	503	282	0 R	579	568		224	551	544	541	530	527	516	513	502
702	689	688	679	678	665	664	651	650	637	636	623	622	609	V 809	595	504	28		580	567	EAA	223	552	543	542	529	528	515	514	501
											J C) თ	-	шс	2 0								I							

475	474	463	462	451	450	439	438	427	426	415	414 403	[{	39L 802	[%	319	378	367	366	355	354	343	342	331	330	319	318 318	
476	473	464	461	452	449	440	437	428	425	416	413 404	Į	32 G	389	380	377	368	365	356	353	344	341	332	329	320		305
477	472	465	460 460	453	448 /ER	44	436	429	424	417	412 405		400 393	388	381	376	369	364	357	352 GIN	345	340	333	328	321	316	304
478	471	466	459 DR	454	447 ELIN	442	435	430	423	418	411 406		394 394	387	382 382	375	370	363	358	351 1AC	346	339	334	327	322		
479	470	467	458	455	446 D	443	434	431	422	419	410 407		395 395	386	383	374	371	362	359	350	347	338	335	326	323		302
480	469	468	457	456	445	444	433	432	421	420	409 408		396 396	385	384	373	372	361	360	349	348	337	336	325	324	313 313	

сО∾⊢шк∾

291	290	271	270	25 I	550	231	<u>ا</u> د	ß	⊒[210	191	190	171	12	151	<u>15</u>	ġ	<u>-</u>]	130	≡Ī	0	- 16	90	71	20	51	50	31	30	=	9
292	289	272	269	252	249	232	ן ג	i	뎕	209	192	189	172	169	152	149	N H	≊∣	129	=	109	92	89	72	69	52	49	32	29	12	6
293	288	273	268	253	248	233	ז] מ	λ J O O	۳ ای	208	193	188	173	168	153	148		<u>≃</u> [128	≘	108	93	88	73	68	53	48	33	28	13	œ
294	287	274	267	254	247	234	[[[oro	7	207	194	187	174	[67	ALS 154	147	μ	₫	127	₹		94	87	44	67	54	47	34	27	14	~
295	286	275	266	255	\$	235	ן ג	Ē	515	206	195	186	175	1 99		[46		<u></u>	0	[]	106	95	86 1 2 V	52	99	55	46	35	56	5	9
296	285	276	265	256 256	245	AN 36	ן ג		<mark>]8</mark>	205	196	185	176	165	ATI 156	145		≗	AN AN	°∎		96 '	28 1	76	65	56	45	36	55	16	Ю
297	284			257 .	244	737	214	ÏH	12	204	197	184	177	164		4		<u>≌</u> [124	Ê	2 Z	67	84	0		57	44	37	24	17	4
298	283	278	263	SSU 258	243	238	ן ג	Ż	58	203	198	183	178	[<u>8</u>]	<u>28</u>	[1	No.	<u>_</u>	133	≝	<u> </u>	98	80	78	63	58	43	38	53	8	M
259	282	279	262	259	242	239	۶]	۲ S]å	202	199	182	179	162	159	[42]	μ	<u>₹</u> [122	€	102	66	82	79	62	59	42	39	52	6	2
300	281	280	261	260	54	240	<u>ء</u>]ء	i	ຊີ	201	200	81	180	<u>]</u>	160	[₹	-	₹	121	2	0	<u>0</u>	8	8	[]	60	4	40	21	50	_

FRIDAY | OCTOBER 24 | 2014

POSTER SESSION Fri 9:30AM - 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 4:00PM - 5:00PM

FRIDAY, October 24, 2014

9:30 AM - 5:00 PM POSTER SESSIONS

Biomaterials, Microenvironments and Controlling Cell Behavior: P-Fri-I to P-Fri-208

Translation, Tissue Engineering and Synthetic Biology: P-Fri-211 to P-Fri-290

Neural Engineering: P-Fri-301 to P-Fri-328

Imaging: P-Fri-329 to P-Fri-365

Cardiovascular Bioengineering: P-Fri-366 to P-Fri-409

Drug Delivery: P-Fri-410 to P-Fri-473

Cardiopulmonary and Orthopaedic Biomechanics: P-Fri-501 to P-Fri-645

Fr

Nano and Micro Technology: P-Fri-651 to P-Fri-701

Track: Biomaterials

Bioinspired and Self Assembling Biomaterials

Chairs: Meng Deng, Wei Li

P-Fri-27

Mechanical Flows Govern the Architecture of Actin Bundle Structures S. JO' and H. Lee'

¹Yonsei University, Seoul, Korea, Republic of

P-Fri-28

Polydopamine-coated Implantable Metallic Seed for Migration Prevention W. LEE¹, H. LEE¹, M. PARK¹, C. PARK¹, J. PARK¹, S-J. YE², AND Y. CHOY³ ¹Seoul National University, Seoul, Korea, Republic of, ²Seoul National University Hospital, Seoul, Korea, Republic of, ³Seoul National University College of Medicine, Seoul, Korea, Republic of

P-Fri-29

Bio-inspired Functional Collagen-Cellulose Hydrogel Nanocompositeas a Potential Scaffold in Cardiovascular Tissue Engineering P. POOYAN¹, R. TANNENBAUM¹, AND H. GARMESTANI¹

¹Georgia Institute of Technology, Atlanta, GA

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

P-Fri-30

Assessing the Biological Activity of an Ester-modified, Self-assembling RGD Peptide as the Basis for Highly Degradable, Cell-instructive Hydrogel Biomaterials

K. ECKES¹, C. LARAMY¹, M. RUEHLE¹, AND L. SUGGS¹ ¹The University of Texas at Austin, Austin, TX

P-Fri-31

Bioinspired Tannin Complexes for Redox Responsive Biomaterials H. CHENG¹, C. DRINNAN¹, M. MACPHERSON¹, AND O. FISHER¹ ¹Temple University, Philadelphia, PA

P-Fri-32

Novel Free Form Fabrication Using a Modified, Thermo-reversible, Type-I Collagen K. DRZEWIECKI¹, W. KO¹, A. CHAVKIN¹, D. GIORDANO¹, AND D. SHREIBER¹ ¹Rutgers University, Piscataway, NJ

P-Fri-33

Self-assembly of Individual Cyclic Peptide Nanotubes (ICPNs) for In Vivo Sensing L. SUN¹, Y. WANG¹, Y. HUANG¹, AND M. ZHANG¹ ¹The Ohio State University, Columbus, OH

P-Fri-34

The Effect of L-Arginine on Platelet Adhesion using Bovine Whole Blood on a Novel Biointerface: d-LbL R. PORTER¹, J. ADANGAI¹, AND M. WATSON¹ *'LeTourneau University, Longview, TX*

P-Fri-35

Hydrogen Peroxide Generation and Cytotoxicity of Hydrogel-bound Mussel Inspired Adhesives H. MENG¹ AND B. LEE¹ 'Michigan Technological University, Houghton, MI

P-Fri-36

Targeted Delivery of SV40 Virus-Like Particles for Vaccine Vehicles M-C. HSIEH¹ AND M. PISHKO¹ 'Texas A&M University, College Station, TX

Track: Biomaterials

Biomaterial Scaffolds

Chairs: Vassilios Sikacitsas, Daniel Alge

P-Fri-89 🧕

Increasing Scaffold Attenuation with Hydroxyapatite Enhances an Ultrasound-induced Gene Switch

R. PHANSE¹, M. FABIILLI¹, A. MONCION¹, J. FOWLKES¹, AND R. FRANCESCHI¹ ¹University of Michigan, Ann Arbor, MI

P-Fri-90

Porated PDMS_{star}-PEG Hydrogels for Osteochondral Tissue Engineering R. SEHNERT¹, E. GACASAN¹, B. BASAGAOGLU¹, B. BAILEY¹, AND M. GRUNLAN¹ ¹Texas A&M University, College Station, TX

P-Fri-91

Electrospinning Silk With Selenium Nanoparticles For Antibacterial Skin Applications

S. CHUNG¹, M. STOLZOFF¹, B. ERCAN¹, AND T. WEBSTER¹ ¹Northeastern University, Boston, MA

P-Fri-92

Development of Gel Injectable Matrix for Treatment of Muscle Degeneration K. WILSON¹ AND J. WOLCHOK¹

K. WILSON' AND J. WOLCHOK' ¹University of Arkansas, Fayetteville, AR

9:30AM – 5:00PM POSTER SESSION Fri

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM , 4:00PM - 5:00PM

P-Fri-93

In Vitro Investigation of a Novel Genipin-Nanoparticle-Collagen Template Z. $\mathsf{BEACH}^1,$ J. $\mathsf{BRADLey}^1,$ D. $\mathsf{GRANT}^1,$ and S. GRANT^1

¹UNIVERSITY OF MISSOURI, COLUMBIA, MO

P-Fri-94

Characterization of a Nanomaterial-Tissue Patch for Vascular and Cardiac Reconstruction

A. OSTDIEK¹, R. GOPALDAS², AND S. GRANT¹ ¹University of Missouri, Columbia, MO, ²Prairie Cardiovascular, Springfield, IL

P-Fri-95

Self-Fitting Shape Memory Polymer Scaffolds For Bone Defect Repair L. NAIL¹, D. ZHANG¹, K. PETERSON¹, O. GEORGE¹, J. REINHARD¹, H. GLIDEWELL¹, AND M. GRUNI AN¹

¹Texas A&M University, College Station, TX

P-Fri-96

Characterizing the Cellular Response of Electrospun Manuka Honey-eluting Scaffolds

B. MINDEN-BIRKENMAIER¹, E. GROWNEY KALAF¹, R. FLORES¹, B. JANOWIAK¹, AND S. SELL²

¹Saint Louis University, St. Louis, MO, ²Saint Louis University, St Louis, MO

P-Fri-97

Characterization Of Pullulan As A Novel Material For Peripheral Nerve Conduits

J. SIMMONS¹, Z. SNOW¹, M. GRINTER¹, AND P. VANDEVORD¹ ¹Virginia Polytechnic Institute and State University, Blacksburg, VA

P-Fri-98

Degradable and Semi-Interpenetrating Hydrogels from PEG and Collagen for Tissue Scaffolds

C. PEAK¹, S. NAGAR¹, R. WATTS¹, AND G. SCHMIDT¹ ¹Purdue University, West Lafayette, IN

P-Fri-99

Stimulating Cell Recruitment on Fibrin Microthreads to Enhance Skeletal Muscle Regeneration

J. GRASMAN¹, R. PAGE¹, T. DOMINKO¹, AND G. PINS¹ ¹Worcester Polytechnic Institute, Worcester, MA

P-Fri-100

Scaffold HA/TCP Coated by Gelatin: In Vitro Test

L. RODRIGUES^{1,2}, C. ZAVAGLIA^{2,3}, AND C. LOMBELLO¹ ¹Federal University of ABC, Santo Andre, Brazil, ²INCT-Biofabris, Campinas, Brazil, ³Mechanical Engineering - State University of Campinas, Campinas, Brazil

P-Fri-101

Functional Lymphatics That Drain Collagen-Based Scaffolds

R. THOMPSON¹, B. COISMAN¹, AND J. TIEN¹ ¹Boston University, Boston, MA

P-Fri-102

Directing Bone Formation Using Nacre Proteins Patterned on Poly(ethylene glycol) Substrates

K. WHITE¹, C. FRANCO², J. WEST³, AND R. OLABISI¹ ¹Rutgers University, Piscataway, NJ, ²Twister Biotech, Houston, TX, ³Duke University, Durham, NC

P-Fri-103

Raw Material-Directed Differentiation Of Rat Bone Marrow Stromal Cells In Microsphere Based Gradient Scaffolds

V. GUPTA¹ AND M. DETAMORE¹ ¹University of Kansas, Lawrence, KS

P-Fri-104

Fabrication of Biodegradable hydroxyapatite-PLGA-collagen Biomaterial for Bone Regeneration

D. BHUIYAN¹, J. MIDDLETON¹, R. TANNENBAUM², AND T. WICK¹ ¹University of Alabama at Birmingham, Birmingham, AL, ²Stony Brook University, Stony Brook, NY

P-Fri-105

Electrospinning of Arabinoxylan as a Novel Nanofiber Scaffold D. ADUBA, JR.¹, W. YEUDALL¹, AND H. YANG¹ ¹Virginia Commonwealth University, Richmond, VA

P-Fri-106

Cytotoxicity of Boron Nitride Reinforced Polymeric Scaffolds. B. FARSHID¹, G. LALWANI¹, AND B. SITHARAMAN¹ ¹Stony Brook University, Stony Brook, NY

P-Fri-107

Response of Hydroxyapatite and Tricalcium Phosphate Bone Scaffolds to Elevated Loading Frequencies

C. MAGLARAS¹, A. RITTER¹, D. KALYON¹, A. ERGUN-BUTROS¹, AND A. VALDEVIT¹ ¹Stevens Institute of Technology, Hoboken, NJ

P-Fri-108

Development of PLLA Hollow Fiber Scaffold by Electrospinning for Cartilage Regeneration

K. MINAMIMOTO¹, Y. MORITA¹, T. KATAYAMA¹, AND E. NAKAMACHI¹ ¹Doshisha University, Kyotanabe, Japan

P-Fri-109

Gelatin Foam Production: In Vitro Test

L. RODRIGUES^{1,2}, D. FERRARAZ¹, M. NASCIMENTO¹, AND C. LOMBELLO¹ ¹Federal University of ABC - UFABC, Santo Andre, Brazil, ²INCT-BioFabris, Campinas, Brazil

Track: Biomaterials

Biomaterials Design

Chairs: Hitesh Handa, Michael Fenn

P-Fri-13 🧕

Stiffness Enhancement of Ultra-flexible Implantable Microsensor Array with Biodegradable Materials

C. NGUYEN¹, L. LEE¹, S. RAO¹, AND J-C. CHIAO¹ ¹University of Texas at Arlington, Arlington, TX

P-Fri-14

Biodegradable Sponge Fabrication For Use In Negative Pressure Wound Therapy

H. WARNER^{1,2}, R. WANG^{1,2}, J. JORDAN², M. MORYKWAS^{1,2}, L. ARGENTA², AND W. WAGNER^{1,2} 'Wake Forest University-Virginia Tech, Winston-Salem, NC, ²Wake Forest Baptist Hospital, Winston-Salem. NC

P-Fri-15

Water Structure in Hydrated Poly(2-methoxyethyl acrylate) Analogues Possessing Blood Compatibility

K. SATO', S. KOBAYASHI', T. HOSHIBA', S. WATAHIKI', M. OIKAWA', AND M. TANAKA' 'Yamagata University, Yonezawa, Japan

P-Fri-16

The Role of Substrate Materials in Controlled Culture of Endothelial Cells W. WOSIK¹, S. DAS¹, Z. ZUO¹, AND F. MERCHANT¹ ¹University of Houston, Houston, TX

P-Fri-17

Iron Oxide and Selenium Nanoparticles Combined with Methotrexate to Inhibit Bone Cancer Growth E. ALPASLAN¹ AND T. WEBSTER¹

¹Norheastern University, Boston, MA

P-Fri-18

See page 141 for Poster floor plan

Reduction Induced Biodegradable Polyurethane Elastomers for Biomedical Applications

C. XU^{1,2} AND Y. HONG^{1,2}

 1 University of Texas at Arlington, Arlington, TX, 2 The University of Texas Southwestern Medical Center at Dallas, Dallas, TX

FRIDAY | OCTOBER 24 | 2014

POSTER SESSION Fri 9:30AM – 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 4:00PM - 5:00PM

P-Fri-19

Enhanced Protein Resistance of Silicones Containing PEG-silane Amphiphiles as Surface Modifying Additives

M. RUFIN', J. GRUETZNER¹, M. HURLEY¹, M. HAWKINS¹, E. RAYMOND¹, J. RAYMOND¹, AND M. GRUNLAN¹

¹Texas A&M University, College Station, TX

P-Fri-20

Electrosprayed Polyethylene Glycol Hydrogel Microspheres for Platelet Rich Plasma Delivery in Knee Osteoarthritis

E. JAIN¹, K. SCOTT¹, S. SHETH¹, S. ZUSTIAK¹, AND S. SELL¹ ¹Saint Louis University, St. Louis, MO

P-Fri-21

Spun Silk-Fibronectin Protein Alloy Fibers for Improved Cellular Adhesion M. JACOBSEN¹, D. LI¹, N. RIM¹, N. HALL¹, M. SMITH¹, AND J. WONG¹ ¹Boston University, Boston, MA

P-Fri-22

Polycaprolactone Nanofibrous Materials as an Efficient Dry Eye Test Strip K. PATEL¹, V. KANDALA², A. APHALE², AND P. PATRA²

¹University of Bridgeport, bridgeport, CT, ²University of Bridgeport, Bridgeport, CT

P-Fri-23

Manipulation of Hydrogel Structure Using the Mechanical Flow Induced by Surface Acoustic Wave

B. KANG¹, S. JO¹, Y. JEON¹, AND H. LEE¹ ¹Yonsei University, Seoul, Korea, Republic of

P-Fri-24

Influence of Gallium Incorporation on Wettability of Glass Polyalkenoate Cements

A. ALHALAWANI¹, D. CURRAN¹, AND M. TOWLER¹ ¹Ryerson University, Toronto, ON, Canada

P-Fri-25

Site-Specific and Enzyme-Mediated Modular Construction of Protein Complexes

N. BHOKISHAM¹, Y. LIU¹, H. PAKHCHANIAN¹, G. PAYNE¹, AND W. BENTLEY¹ ¹University of Maryland, College Park, MD

P-Fri-26

Quantification of Stresses in Hydrogels using Photoelasticity G. FEUER¹, M. PENDOLA¹, AND S. SAHA¹ *'SUNY Downstate, Brooklyn, NY*

Track: Biomaterials

Biomaterials for Controlling Cell Environment

Chairs: Hitesh Handa, Michael Fenn

P-Fri-136

Encoding PEG Hydrogel Mechanics through Peptide Sequence to Regulate Endothelial Cell Morphogenesis R. SCHWELLER¹ AND J. WEST¹

¹Duke University, Durham, NC

P-Fri-137

Dual-crosslinked Hydrogel Microwell System for Formation and Culture of Multicellular Human Mesenchymal Stem Cell Spheroids O. JEON¹, D. WOLFSON¹, AND E. ALSBERG¹

¹Case Western Reserve University, Cleveland, OH

P-Fri-138

Patterning Cellular Microenvironments with a Hybrid Photopatterned Enzymatic Reaction (HyPER) Cell-compatible Platform D. GRIFFIN¹, N. DARLING¹, AND T. SEGURA¹

¹UC Los Angeles, Los Angeles, CA

P-Fri-139

Osseo-integration and Biofilm Formation on Different Ti-surfaces in a Post-operative Infection Model

N. GHIMIRE¹, B. FOSS¹, Y. SUN², AND Y. DENG¹ ¹The University of South Dakota, Sioux Falls, SD, ²The University of Massachusetts, Lowell, MA

P-Fri-140

Assessing the Osteoinductivity of Engineered Biomimetic Periosteum on Cortical Bone Allografts

R. Romero¹, L. Chubb¹, E. Asbury¹, A. Pennybaker¹, J. Travers¹, N. Ehrhart¹, and M. Kipper¹

¹Colorado State University, Fort Collins, CO

P-Fri-141

Development of an *in vitro* Bladder Cancer Tissue Mimic and the Response to Cisplatin Treatment B. BALHOUSE¹, A. PEKKANEN¹, M. RYLANDER¹, AND P. VLACHOS² 'Virginia Tech, Blacksburg, VA, ²Purdue University, West Lafayette, IN

P-Fri-142

Designing a Dynamically Tunable Photoresponsive Hydrogel for Studying Mechanotransduction

W. ZHONG¹, C. PETCHPRAYOON¹, S. Ll¹, AND G. MARRIOTT¹ ¹University of California, Berkeley, Berkeley, CA

P-Fri-143

Poly-L-Arginine Based Materials As Instructive Substrates for Fibroblasts Synthesis of Collagen K. BRATLIE¹

¹Iowa State University, Ames, IA

P-Fri-144

Strain-Based Detachment of Intact Tissue Modules from Shape-changing Hydrogel

O. AKINTEWE¹, S. DUPONT¹, M. CROSS¹, K. ELINENI¹, R. TOOMEY¹, AND N. GALLANT¹ ¹University of South Florida, Tampa, FL

P-Fri-145

Conformal Nanopatterning of Extracellular Matrix Proteins onto Topographically Complex Surfaces

Q. JALLERAT¹, Y. SUN¹,², J. SZYMANSKI¹, AND A. FEINBERG¹ ¹Carnegie Mellon University, Pittsburgh, PA, ²Beihang University, Beijing, China, People's Republic of

P-Fri-146

Influence of Sparse Electrospun Fibers on the Differentiation of Mesenchymal Stem Cells in Collagen Gels

P. THAYER¹, E. TONG¹, D. PLESSL¹, L. DAHLGREN¹, AND A. GOLDSTEIN¹ ¹Virginia Tech, Blacksburg, VA

P-Fri-147

A Mechanistic Study of Collective Fibroblast Migration P. SHARMA¹, A. KIM¹, C. NG¹, B. BEHKAM¹, AND A. NAIN¹ ¹Virginia Tech, Blacksburg, VA

P-Fri-148

Rational And Combinatorial Biomaterial Screening Platform For Development Of Optimal Tissue Specific Biomaterials

S. RAMAMOORTHY¹, R. JACOBSON¹, J. MALCOVITCH¹, C. BERTUCCI¹, G. SAUNDERS¹, D. THOMPSON¹, AND P. KARANDE¹ ¹Rensselaer Polytechnic Institute, Troy, NY

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

9:30AM – 5:00PM POSTER SESSION Fri

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM , 4:00PM - 5:00PM

P-Fri-149

Reducing Axon Retraction Events With Patterned Biomaterial Cues

M. WROBEL¹ AND H. SUNDARARAGHAVAN¹ ¹Wayne State University, Detroit, MI

P-Fri-150

Electroconductive Hyaluronic Acid Hydrogel for Neuronal Differentiationof Human Neural Stem Cells

J. SHIN¹, E. CHOI², K. YANG¹, C. SONG², AND S-W. CHO¹ ¹Yonsei University, seoul, Korea, Republic of, ²Sungkyunkwan University, Suwon, Korea, Republic of

P-Fri-151

Photo-Patterning Gelatin Hydrogels Using Caged Collagen Mimetic Peptides

Y. LI¹, J. KESSLER¹, AND S. YU¹ ¹University of Utah, Salt Lake City, UT

P-Fri-152

Carboxymethylcellulose Hydrogels Support CNS-derived Tumor Cell Chemotactic Migration

T. SINGH¹, C. KOTHAPALLI², D. VARMA¹, S. NICOLL¹, AND M. VAZOUEZ¹ ¹City College of New York-CUNY, New York, NY, ²Cleveland State University, Cleveland, OH

P-Fri-153

Orthopedic Implant Coating for Improved Osseointegration and Reduced Biofilm Formation

L. ACTIS¹, A. SRINIVASAN¹, A. RAMASUBRAMANIAN¹, AND J. ONG¹ ¹University of Texas at San Antonio, San Antonio, TX

P-Fri-154

Engineered Hydrogel System for Bone Regeneration Through Endochondral Ossification

P. MIKAEL¹ AND S. NUKAVARAPU² ¹University of Connecticut, Farmington, CT, ²University of Connecticut Health, Farmington, CT

P-Fri-155

Enhancing Neurite Outgrowth By Electrical Stimulation Through Conductive Nanofibers E. STEEL¹ AND H. SUNDARARAGHAVAN¹

¹Wayne State University, Detroit, MI

P-Fri-156

Fabrication of MgSiO3 Thin Film by RF Magnetron Sputtering Method to Accelerate Bone Formation

S. NAKASAKI¹, Y. MORITA¹, T. KATAYAMA¹, AND E. NAKAMACHI¹ ¹Doshisha University, Kyotanabe, Japan

P-Fri-157

Synthesis of a thermoreversible hydrogel for passaging adherent cells in three-dimensional culture

J. HEFFERNAN¹,², D. OVERSTREET¹, S. SRINIVASAN², B. VERNON², AND R. SIRIANNI¹,² ¹Barrow Neurological Institute, Phoenix, AZ, ²Arizona State University, Tempe, AZ

P-Fri-158

Fibroblast and Macrophage Cell Viability on Polyelectrolyte Complex S. MISTRY¹, K. DESAI¹, R. SCHLOSS¹, AND N. LANGRANA¹ ¹Rutgers University, Piscataway, NJ

P-Fri-159

Biofilm Accumulation on Medical Device Materials With Varied Surface Roughness

A. MACALUSO¹, A. CRITES¹, AND M. HARMAN¹ ¹Clemson University, Clemson, SC

P-Fri-160

The Study of Platelet Adhesions using Bovine Whole Blood versus Platelet Rich Plasma Comparing Percent Surface Aggregate Coverage

G. WILLIAMSON¹, A. BUJANA¹, M. RUSH¹, AND M. WATSON¹

¹LeTourneau University, Longview, TX

Track: Biomaterials

Biomaterials for Immunoengineering

Chairs: Vassilios Sikacitsas, Daniel Alge

P-Fri-37 🧕

Bacterial Outer Membrane Vesicle Vaccines Carrying Arah2 Confer Prophylactic Protection Against Peanut Allergy

T. LEUNG¹, J. ROSENTHAL¹, K. MINETA¹, M. DELISA¹, AND D. PUTNAM¹ $^{7}Cornell University, Ithaca, NY$

P-Fri-38 🙎

Microneedle-Based Immune Monitoring Platform Samples Cells and Interstitial Fluid from Tissue In Situ

A. MANDAL¹, J. VAN¹, D. IRVINE^{1,2,3,4}, AND P. HAMMOND^{1,5} ¹Massachusetts Institute of Technology, Cambridge, MA, ²Koch Institute for Integrative Cancer Research, Cambridge, MA, ³Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, ⁴Howard Hughes Medical Institute, Chevy Chase, MD, ⁵Koch Inst. for Integrative Cancer Research, Cambridge, MA

P-Fri-39

Cellular Mechanisms of Tolerance Involved in a Microparticle Vaccine for Type I Diabetes

J. STEWART¹, J. LEWIS¹, AND B. KESELOWSKY¹ ¹University of Florida, Gainesville, FL

P-Fri-40

Preventing Fibrosis of Hydrogels Implanted in Mice Using Immunomodulatory Agents

S. JHUNJHUNWALA¹, D. LAVIN¹, S. ARESTA-DASILVA¹, A. SANTIAGO-LOPEZ¹, R. LANGER¹, AND D. ANDERSON¹ *'MIT, Cambridge, MA*

P-Fri-41

Regulation of Macrophage Inflammatory Response by Immunomodulatory Poly(ethylene glycol) Hydrogels

Y-T. CHEN¹, J. SCHLOSSER¹, Y. KIM¹, AND W. LIU¹ ¹University of California, Irvine, Irvine, CA

P-Fri-42

Reprogramming Macrophages by Engineering Polymer Surface Properties K. BRATLIE¹

¹lowa State University, Ames, IA

P-Fri-43

Young Porcine Islets Encapsulated in Alginate Microcapsules can maintain Prolonged Euglycemia after Transplantation into Diabetic Athymic Nude Mice

R. KRISHNAN¹, B. BUDER¹, M. ALEXANDER¹, C. FOSTER III¹, AND J. LAKEY¹ ¹University of California Irvine, Orange, CA

P-Fri-44

Electrospun Microfiber Nanotopography Alters Macrophage Polarization N. Schaub¹, E. Harmon², M. Lennartz², and R. Gilbert¹

¹Rensselaer Polytechnic Institute, Troy, NY, ²Albany Medical College, Albany, NY

P-Fri-45

Macrophage Response to Titanium Surface Characteristics

K. HOTCHKISS¹, Z. SCHWARTZ¹, S. HYZY¹, B. BOYAN¹, AND R. OLIVARES-NAVARRETE¹ ¹Virginia Commonwealth University, Richmond, VA

P-Fri-46

See page 141 for Poster floor plan

Assessment And Control Of Anti-Microbial And Anti-Inflammatory Response Of Macrophages to Different Surface Nanomodifications G. BHARDWAJ¹ AND T. WEBSTER¹

¹Northeastern University, Boston, MA

FRIDAY | OCTOBER 24 | 2014

POSTER SESSION Fri 9:30AM – 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 4:00PM - 5:00PM

P-Fri-47

Antigen-Specific Immune Response of a PLGA Microparticle-Based DNA Vaccine against Ureaplasma

Q. WANG¹, L. WEISMAN¹,², A. LEEMING¹,², AND M. HEFFERNAN¹ ¹Baylor College of Medicine, Houston, TX, ²Texas Children's Hospital, Houston, TX

P-Fri-48

Endotoxin Contamination In Chitosan And Its Effect On Immune Response S. RAVINDRANATHAN¹, S. SMITH¹, B. KOPPOLU¹, S. KURTZ¹, AND D. ZAHAROFF¹ 'University of Arkansas, Fayetteville, Fayetteville, AR

Track: Biomechanics, Cardiovascular Engineering

Cardiovascular Biomechanics

Chairs: Aaron Baker, Jun Liao

P-Fri-596 🧕

Effect of Annuloplasty Ring Size: Patient-Specific Finite Element Evaluation A. CHOI¹, Y. RIM¹, D. MCPHERSON¹, AND H. KIM¹ ¹The University of Texas Health Science Center at Houston, Houston, TX

P-Fri-597 🧕

Hemodynamic Shear Stress And Biochemical Regulation Of Cathepsin K Activity In Sickle Cell Disease S. ANBAZHAKAN¹, P. KEEGAN¹, AND M. PLATT¹

¹Georgia Institute of Technology, Atlanta, GA

P-Fri-598

Numerical Modeling of Magnetic Micropump for Biogenic Bulk Transport in a Biomimetic Microchannel E. IGE¹, A. DARE¹, AND A. COKER¹ ¹University of Ibadan, Ibadan, Nigeria

P-Fri-599

Measurement of Endothelial Permeability Under Chronic Applied Shear Stress in a Bioreactor

S. GRAY¹, P. WEINBERG¹, D. OVERBY¹, AND A. RANDI¹ ¹Imperial College London, London, United Kingdom

P-Fri-600

Experimental Validation of an Algorithm for the Zero Pressure Geometry Derivation of Blood Vessels

G. VIMALATHARMAIYAH¹, S. CHANDRA¹, J. RODRIGUEZ², AND E. FINOL¹ ¹UNIVERSITY OF TEXAS AT SAN ANTONIO, SAN ANTONIO, TX, ²UNIVERSIDAD DE ZARAGOZA, ZARAGOZA, SPAIN

P-Fri-601

On the Biomechanical Behavior of the Layers of the Mitral Valve Anterior

S. AYOUB¹ AND M. SACKS ¹ ¹The University of Texas at Austin, Austin, TX

P-Fri-602

Active Stresses In The Porcine Common Carotid Artery

B. ZHOU¹, T. SHAZLA¹, G. BROWER^{2,3}, H. DOVIAK^{2,3}, AND F. SPINALE² ¹University of South Carolina, Columbia, SC, ²University of South Carolina School of Medicine, Columbia, SC, ³WJB DORN Veteran Affairs Medical Center, Columbia, SC

P-Fri-603

Effects of Arterial Wall Local Softening on Pulse Wave Propagations and Velocities

I. INGA¹ AND D. SHAHMIRZADI¹ ¹Stevens Institute of Technology, Hoboken, NJ

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

P-Fri-604

Experimental Validation of CFD Simulations of a Patient-Specific Pulmonary Vascular Model Using Stereoscopic Particle Image Velocimetry M. LEROUX¹, V. KHEYFETS¹, AND E. FINOL¹ ¹University of Texas at San Antonio, San Antonio, TX

P-Fri-605

Changes in Cardiac Tissue Properties Relative to the Applications of Radiofrequency or Cryo Ablative Therapies S. QUALLICH¹, K. KRIEGE¹, AND P. IAIZZO¹ ¹University of Minnesota, Minneapolis, MN

P-Fri-606

Structural Constitutive Model For Smooth Muscle Contraction T. TAN¹ AND R. DE VITA¹ 'Virginia Tech, Blacksburg, VA

P-Fri-607

Development of User Interactive Toolkit for Modeling Patient Specific Geometries without Volumetric Mesh

L. SHRESTHA¹, V. MAGNOTTA¹, N. GROSLAND¹, D. CALCETERRA¹, AND S. VIGMOSTAD¹ ¹The University of Iowa, Iowa City, IA

P-Fri-608

Artery Buckling Analysis using A Four-Fiber Wall Model Q. LIU¹, M. MOTTAHEDI¹, AND H-C. HAN¹

¹University of Texas at San Antonio, San Antonio, TX

P-Fri-609

Finite Element Analysis of the Mechanics of Neovessels with Intraplaque Hemorrhage in Carotid Atherosclerosis J. Lu¹ AND A. QIAO¹

¹Beijing University of Technology, Beijing, China, People's Republic of

P-Fri-610

Prior Distribution of Material Parameters for a Computational Model of the Abdominal Aorta S. Seyedsalehi¹, L. Zhang¹, J. Choi¹, and S. Baek¹

¹MICHIGAN STATE UNIVERSITY, EAST LANSING, MI

P-Fri-611

Fluid Structure Interaction Human Left Ventricular Modelling Using an Immersed Boundary-Finite Element Method

H. GAO¹, D. CARRICK¹, C. BERRY¹, B. GRIFFITH²,³, AND X. LUO¹ ¹University of Glasgow, Glasgow, United Kingdorn, ²University of North Carolina at Chapel Hill, Chapel Hill, NC, ³University of North Carolina School of Medicine, Chapel Hill, NC

P-Fri-612

Microfluidic Stiffness-Dependent Separation of Aged Erythrocytes for Improved Blood Storage and Purification

R. BYLER¹,², K. PATEL², L. HALL², A. ZHEN², AND T. SULCHEK² 'Yale University, New Haven, CT, ²Georgia Institute of Technology, Atlanta, GA

P-Fri-613 🙎

Computational Evaluation of Restoration of Mitral Valve Function Following Quadrangular Leaflet Resection and Ring Annuloplasty Y. RIM¹, A. CHOI¹, D. MCPHERSON¹, AND H. KIM¹

¹The University of Texas Health Science Center at Houston, Houston, TX

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM , 4:00PM - 5:00PM

Track: Biomechanics, Cellular and Molecular Bioengineering

Cell Biomechanics

P-Fri-614 🧝

Mechanical Biomarkers of Embryo Viability

L. ZARNESCU¹, J. HAN¹, B. BEHR¹, R. REIJO PERA¹, AND D. CAMARILLO¹ ¹Stanford University, Stanford, CA

P-Fri-615

Depletion of Linker Histone H1 Increases Cellular and Nuclear Young's Moduli

T. BONGIORNO¹, T. MCDEVITT¹,², Y. FAN¹, AND T. SULCHEK¹,² ¹Georgia Institute of Technology, Atlanta, GA, ²Emory University, Atlanta, GA

P-Fri-616

Intrinsically Disordered Proteins Drive Membrane Curvature of Clathrin Coated Vesicles

D. BUSCH¹, J. HOUSER¹, S. JAFRI¹, J. JOSE¹, AND J. STACHOWIAK¹ ¹University of Texas at Austin, Austin, TX

P-Fri-617

The Effect Of Soluble Factors Released By Mechanically Stimulated Osteocytes On the Mineralization Capacity Of Osteoblasts J. MCPHERSON¹, S. YORK¹, A. SEWELL¹, AND M. SAUNDERS¹

J. MICHERSON', S. TORK', A. SEWELL', AND M. SAUNDER ¹University of Akron, Akron, OH

P-Fri-618

Acoustic Radiation Force Based Clot Stiffness Assessment Is Highly Sensitive to Platelet Number and Activation

C. WANG¹, M. PEREZ¹, B. HELMKE¹, F. VIOLA¹, AND M. LAWRENCE¹ ¹University of Virginia, Charlottesville, VA

P-Fri-619

How Single Stress Fiber Mechanics Depend on Length and Adhesive Spacing

E. KASSIANIDOU¹ AND S. KUMAR² ¹UC Berkeley -UCSF Joint Program in Bioengineering, Berkeley, CA, ²University of California, Berkeley, CA

P-Fri-620

The Cell as a Pump: Cytoskeletal Contractions Drive Intercellular Fluid Flow

S. ZEHNDER¹, A. DUNN¹, J. URUEÑA¹, W. SAWYER¹, AND T. ANGELINI¹ ¹UNIVERSITY OF FLORIDA, GAINESVILLE, FL

P-Fri-621

Characterizing Dendritic Cell Motility on PDMS Surfaces

A. CHEVALIER¹ AND D. HAMMER¹ ¹University of Pennsylvania, Philadelphia, PA

P-Fri-622

Understanding Cell Viability and Mechanics of Actin Filament Response of NIH/3T3 Fibroblasts Under Biaxial Stretch

H. GHAZIZADEH¹, S. RAVARI², A. HUNG¹, D. LAJEUNESSE², AND S. ARAVAMUDHAN¹

'North Carolina A&T State University, Greensboro, NC, ²University of North Carolina at Greensboro, Greensboro, NC

P-Fri-623

Designing Next Generation Stem Cell Mechanics Studies for Prospective Guidance of Lineage Commitment

H. CHANG¹, M. SONG², AND M. KNOTHE TATE³

¹Case Western Reserve University, Cleveland, OH, ²University of Pennsylvania, Philadelphia, PA, ³University of New South Wales, UNSW Sydney, Australia

P-Fri-624

Finite Element Modeling of 3D Cell Migration through a Fibrous Matrix R. ZIELINSKI¹ AND S. GHADIALI^{1,2}

¹The Ohio State Univeristy, Columbus, OH, ²The Dorothy M. Davis Heart & Lung Research Institute, Columbus, OH

P-Fri-625

Mechanical Properties of Erythrosensors

S. BUSTAMANTE LOPEZ¹, S. RITTER¹, AND K. MEISSNER¹ ¹Texas A&M, College Station, TX

P-Fri-626

Effect of Substrate Stiffness on Force Generation by Airway Smooth Muscle Cells

H. PARAMESWARAN¹, S. POLIO¹, E. CANOVIC¹, B. HARVEY¹, B. SUKI¹, M. SMITH¹, AND K. LUTCHEN¹ 'Boston University, Boston, MA

BUSION UNIVERSILY, BUSI

P-Fri-627 Osteocyte Viability Changes In Response To Microdamage

S. YORK¹, J. KING¹, A. PIETROS¹, B-M. ZHANG NEWBY¹, P. SETHU², AND M. SAUNDERS¹ ¹University of Akron, Akron, OH, ²University of Alabama Birmingham, Birmingham, AL

P-Fri-628

Mechanics of Epithelial to Mesenchymal Transition in Cancer and Non-Cancer Models $% \left({{{\rm{C}}_{{\rm{A}}}}} \right)$

L. VOLAKIS¹, D. KNISS², AND S. GHADIALI² ¹The Ohio State University, Columbus, OH, ²The Wexner Medical Center at The Ohio State University, Columbus, OH

P-Fri-629

Rest Periods May Increase Mechanically Stimulated MSC's Promotion of Osteoblast Proliferation

B. YU¹, G. LEE², A. YANG², M. CHAN², AND C. RUBIN² ¹Stony Brook University, Tarrytown, NY, ²Stony Brook University, Stony Brook, NY

P-Fri-630

Contribution of Different Collagen IV Isoforms to Glomerular Basement Membrane Mechanics

L. GYONEVA¹, Y. SEGAL¹, K. DORFMAN¹, AND V. BAROCAS¹ ¹University of Minnesota - Twin Cities, Minneapolis, MN

P-Fri-63 l

Measurement Of Cell Traction Force With A Thin PDMS Cantilever M. Holley¹, E. Song¹, A. Moll¹, D. Hayes¹, W. Monroe¹, J-W. Choi¹, and K. Park¹ ¹Louisiana State University, Baton Rouge, LA

P-Fri-632

F-Actin Arrangement as an Indicator of Stiffness in Undifferentiated Mesenchymal Stem Cells

J. KAZLOW^{1,2}, T. BONGIORNO¹, AND T. SULCHEK¹ ¹Georgia Institute of Technology, Atlanta, GA, ²Emory University, Atlanta, GA

P-Fri-633

Shear Stimulated Differentiation of Bone Marrow Derived hMSCs Towards the Chondrocytic Lineage A. ADENIRAN-CATLETT¹ AND S. MURTHY¹ ¹Northeastern University, Boston, MA

P-Fri-634

Resistive-Pulse Differentiation of Metastatic and Non-metastatic Tumor Cells with Solid-state Micropores W. ALI¹, A. ILYAS¹, Y-T. KIM¹, AND S. IQBAL¹

¹University of Texas at Arlington, Arlington, TX

P-Fri-635

Characterization Of A Microloading Platform For *In Vitro* Mechanotransduction Studies S. YORK¹ AND M. SAUNDERS¹ *'University of Akron, Akron, OH*

P-Fri-636

See page 141 for Poster floor plan

Quantification Of Gap Junction Communication And Sclerostin Expression In Microdamaged Osteocytes

S. YORK¹, P. SETHU², AND M. SAUNDERS¹

¹University of Akron, Akron, OH, ²University of Alabama Birmingham, Birmingham, AL

SESSION

POSTER SESSION Fri 9:30AM – 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 4:00PM - 5:00PM

P-Fri-637

Computational Model of Fluid Flow During Cyclic Mechanical Loading of Cultured Cells

J. LEE¹, Q. SMITH¹, AND A. BAKER¹ ¹University of Texas at Austin, Austin, TX

P-Fri-638

Bio-mechanical Characteristics of Normal and Cancerous Cells - A Computational Study

T. BRADY¹ AND V. UNNIKRISHNAN¹ ¹The University of Alabama, Tuscaloosa, AL

P-Fri-639

A Microfluidic Device for Investigation of Cellular Migration and Invasion in Response to Chemical and Physical Stimuli

S. BEAN¹, L. LEE¹, S. RAO¹, V. LIN¹, AND J-C. CHIAO¹ ¹UT Arlington, Arlington, TX

P-Fri-640

Probing Microalgal Response Using Atomic Force Microscopy

K. WARREN¹, J. MPAGAZEHE¹, C. HIGGS III¹, AND P. LEDUC¹ ¹Carnegie Mellon University, Pittsburgh, PA

P-Fri-641

Migratory Behavior of Breast Cancer Cells in Conditioned Medium from Human Osteosarcoma Cells

S. LOH¹, L. LEE¹, S. BEAN¹, S. RAO¹, V. LIN¹, AND J-C. CHIAO¹ ¹UT Arlington, Arlington, TX

P-Fri-642

Biomechanical Characterization of Algal Motility in Response to Medium Viscosity

K. CLARK¹, D. FIJALKA¹, J. JOHNSON¹, M. MASHBURN¹, S. KARPOWICZ¹, AND G. XU¹ ¹University of Central Oklahoma, Edmond, OK

P-Fri-643 Squishy DNA Nanoparticles

S. COOK¹, K. CURTIS², S. BEHARIE², E. DIMITRIADIS³, F. HORKAY³, AND P. CHANDRAN² ¹Case Western Reserve University, Cleveland, OH, ²Howard University, Washington, DC, DC, ³National Institutes of Health, Bethesda, MD

P-Fri-644

Model of Oxidative Stress in the Aging Lens

C. GUTIERREZ CANDANO¹ ¹UTSA, San Antonio, TX

P-Fri-645

Nanomechanics of Human Adipose Stem Cells in Micromass during Chondrogenesis

C. QUISENBERRY¹, A. NAZEMPOUR¹, B. VAN WIE¹, AND N. ABU-LAIL¹ ¹Washington State University, Pullman, WA

Track: Biomechanics, Biomaterials

Mechanics of Biomaterials

Chairs: Vittoria Flamini, Jason Gleghorn

P-Fr-I

Shear Properties of PNIPAAm-g-CS Hydrogels

T. MAURIELLO¹, S. GOSSERT¹, G. FEIL¹, A. VERNENGO¹, AND J. KADLOWEC¹ ¹Rowan University, Glassboro, NJ

P = Poster Session OP = Oral Presentation = Reviewer Choice Award

P-Fr-2

Development and Characterization of Tissue-mimicking Anisotropic Gel for MR Elastography C. WALKER¹, M. MAHONEY¹, M. MATHISON¹, S. RAVEN¹, J. SCHMIDT¹, R. OKAMOTO¹,

C. WALKER, M. MAHUNEY, M. WATHISUN, S. NAVEN, J. SCHMIDT, N. OKAMOTO', AND P. BAYLY¹ ¹Washington University in Saint Louis, Saint Louis, MO

P-Fr-3

Probing Mechanical Tension in Human Fibroblast Collagen Lattices

L. TINNIN¹, C. ANDERSON¹, M. VAUGHAN¹, AND G. XU¹ ¹University of Central Oklahoma, Edmond, OK

P-Fr-4

Effect of Amyloid Beta on Mechanical Properties and Structure of Extracellular Matrix

Y. JEON¹, S. JO¹, B. KANG¹, AND H. LEE¹ ¹Yonsei University, Seoul, Korea, Republic of

P-Fr-5

Numerical Analysis of Vortex Entrapment of Particles with Respect to Bacterial Adhesion on Implants

H. BASAGAOGLU¹, J. CARROLA¹, C. FREITAS¹, B. BASAGAOGLU², AND M. DESILVA³ ¹Southwest Research Institute, San Antonio, TX, ²Texas A&M University, College Station, TX, ³Navy Medical Research Unit, Fort Sam Houston, TX

P-Fr-6

Pull-off Stress Evaluation of Commercially Available Wound-Treatment Polymers

R. THORNTON¹, V. KHEYFETS², AND E. FINOL¹ ¹University of Texas at San Antonio, San Antonio, TX, ²University of Colorado Denver, Denver, CO

P-Fr-7

Long Range Force Transmission Enabled by Formation of Aligned Fibers in Collagen Matrices

V. SHENOY¹, H. WANG¹, A. NAIR¹, AND R. WELLS¹ ¹University of Pennsylvania, Philadelphia, PA

P-Fr-8

Removal of Proteoglycans from Bone Matrix Significantly Reduce its In Situ Toughness

H. XU¹, A. SHELDRAKE¹, J. JIANG², AND X. WANG¹ ¹University of Texas at San Antonio, San Antonio, TX, ²University of Texas Health Science Center at San Antonio, San Antonio, TX

P-Fr-9

Dynamic Drying Mechanics of Human Stratum Corneum and the Effects of Moisturization

X. LIU¹ AND G. GERMAN¹ ¹Binghamton University, Binghamton, NY

P-Fr-10

Comparison Of Microstructural, Biomechanical and Suture Retention Strength Of Ovine Vaginal Patches Obtained From Three Types Of Decellularization Protocols.

S. PATNAIK¹, J. BUTLER¹, B. BRAZILE¹, B. WEED¹, V. DANDOLU², D. CHRISTIANSEN¹, P. RYAN¹, AND J. LIAO¹

¹Mississippi State University, Mississippi State, MS, ²University of Nevada School of Medicine, Las Vegas, NV

P-Fr-11

Quantifying The Effects of Decellularization on Liver Perfusion Dynamics K. NISHII¹, E. MORAN², G. REESE¹, AND J. SPARKS¹

¹Miami University, Oxford, OH, ²VT-WFU School of Biomedical Engineering and Sciences, Winston Salem, NC

P-Fr-12

Modeling Strain Distributions in Uniaxially Mechanically Loaded Acellular ECM-based Scaffolds

B. SEIFER¹ AND C. WAGNER¹ ¹The College of New Jersey, Ewing, NJ

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM , 4:00PM - 5:00PM

Track: Biomedical Imaging and Optics

Novel Approaches to Biomedical Imaging

Chairs: Craig Goergen

P-Fri-329 🧕

Single Molecule Tracking In Vivo Using Spatiotemporally Multiplexed Two-Photon Microscopy

K. HUYNH¹, E. PERILLO¹, Y-L. LIU¹, H-C. YEH¹, AND A. DUNN¹ ¹The University of Texas at Austin, Austin, TX

P-Fri-330

Complex Voltage Measurements With Active Electrodes In Electrical Impedance Tomography

M. MELLENTHIN¹, E. DARÍO LEÓN BUENO DE CAMARGO², F. SILVA DE MOURA², T. BATISTA RATTIS SANTOS², J. MUELLER¹, AND R. GONZALEZ LIMA² ¹Colorado State University, Fort Collins, CO, ²Universidade de São Paulo, São Paulo, Brazil

P-Fri-331

Gold Nanoparticles as Exogenous Soft Tissue Contrast for Live *In Vivo* MicroCT Imaging of Avian Morphogenesis

C. GREGG¹, H. ZHAO¹, AND J. BUTCHER¹ ¹Cornell University, Ithaca, NY

P-Fri-332

Nanoporous Magnesium Fluoride Substrates for Raman-Compatible Cell Culture

G. MADEJSKI¹ AND J. MCGRATH¹ ¹University of Rochester, Rochester, NY

P-Fri-333

Near-Infrared Switchable Fluorescent Nano-capsules for Temperature Sensing and USF Imaging

M. Wei¹,², B. Cheng¹,², V. Bandı²,², Y. Liu¹,², F. D'Souza³, K. Nguyen¹,², Y. Hong¹,², and B. Yuan¹,²

 t University of Texas at Arlington, Arlington, TX, 2 The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 3 University of North Texas, Denton, TX

P-Fri-334

Quantification of TiO2 Nanoparticle Uptake by Single Cells and Distribution Across a Population by Synchrotron X-ray Fluorescence

J. RASHKOW¹, S. PATEL¹, R. TAPPERO², AND B. SITHARAMAN¹ ¹Stony Brook University, Stony Brook, NY, ²National Synchrotron Light Source, Upton, NY

P-Fri-335

Fluorescent Based Fiber Optics Imaging On Electrospun Scaffold

E. SAPOZNIK^{1,2}, G. NIU², P. LU³, Y. ZHOU², T. CRISWELL², F. MARINI², Y. XU³, AND S. SOKER^{1,2}

¹Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston Salem, NC, ²Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, ³Virginia Tech, Blacksburg, VA

P-Fri-336

3D Surface Imaging of the Human Female Torso in Upright to Supine Positions

G. REECE¹, F. MERCHANT², H. KHATAM^{1,3}, K. RAVI-CHANDRA³, J. WESTON¹, M. FINGERET¹, C. LANE⁴, K. DUNCAN⁴, AND M. MARKEY^{1,3}

¹The University of Texas MD Anderson Cancer Center, Houston, TX, ²University of Houston, Houston, TX, ³The University of Texas at Austin, Austin, TX, ⁴³dMD, LLC, Atlanta, GA

P-Fri-337

Deeper Two-Photon Microscopy Imaging through Brain Tissue using ${\rm S_2}$ State of ChI $\alpha\,$ in Spinach Leaf

L. SHI¹, A. RODRIGUEZ-CONTRERAS¹, AND R. ALFANO¹ ¹City College of New York, New York, NY

Track: Biomedical Imaging and Optics

Optical Imaging and Microscopy

Chairs: Kaushik Parthasarathi

P-Fri-338

Near-Infrared Spectroscopic Photoacoustic Microscopy using a Pulsed Multi-Color Source based on Stimulated Raman Scattering B. WILKINSON¹, T. SHEEHAN¹, AND T. BUMA¹ ¹Union College, Schenectady, NY

P-Fri-339

Spectroscopic Photoacoustic Microscopy with a Multi-Color Pulsed Laser using a Multimode Optical Fiber T. SHEEHAN¹, B. WILKINSON¹, AND T. BUMA¹

¹Union College, Schenectady, NY

P-Fri-340

Well Resolved Two-Phase Optical Clearing by Hyperosmotic Agents: Application for High Resolution Deep Brain Imaging

L. OCHOA¹, A. KHOLODNYKH¹, L. VERGARA¹, G. VARGAS¹, AND M. MOTAMEDI¹ ¹University of Texas Medical Branch, Galveston, TX

P-Fri-341

Tracking Cerebrospinal Fluid Flow in Murine Lateral Ventricles A. MAGOLD^{1,2}, J. TEO³, AND M. SWARTZ¹

¹Swiss Federal Institute of Technology, Lausanne, Switzerland, ²The Weizmann Institute of Science, Rehovot, Israel, ³Khalifa University of Science, Abu Dhabi, United Arab Emirates

P-Fri-342

Simultaneous Imaging of Oxygen Tension and Blood Flow During Stroke Using a Digital Micromirror Device

C. SULLENDER¹, A. MARK¹, AND A. DUNN¹ ¹The University of Texas at Austin, Austin, TX

P-Fri-343

Using Bayesian Analysis to Improve Flow Velocity Measurement Precision in Optical Coherence Tomography K. ZHOU¹, B. HUANG¹, AND M. CHOMA¹

K. ZHOU', B. HUANG', AND M. CHOMA' ¹Yale University, New Haven, CT

P-Fri-344

Three-photon Excitation Spectra of Fluorescent Dyes for *In Vivo* Imaging D. MILLER¹, F. CIANCHETTI¹, AND A. DUNN¹ 'The University of Texas at Austin, Austin, TX

Track: Biomedical Imaging and Optics

Ultrasound

Chairs: Mario Fabilli

P-Fri-345 🙎

Relationship between Secondary Radiation Force, Targeted Adhesion, and Microbubbles Acoustic Response in Large Blood Vessels S. WANG¹, C. WANG¹, F. MAULDIN JR¹, AND J. HOSSACK¹

¹University of Virginia, Charlottesville, VA

P-Fri-346

Ultrasound Imaging of Microfluidic-Produced Microbubbles Directly Injected Into A Mouse Via A Tail Vein Catheter

A. DIXON¹, A. DHANALIWALA¹, D. LIN¹, A. KLIBANOV¹, AND J. HOSSACK¹ ¹University of Virginia, Charlottesville, VA

P-Fri-347

See page 141 for Poster floor plan

High-frequency Side-looking Phased Array for Colorectal Ultrasound Imaging

N. CABRERA-MUNOZ¹, H. KIM¹, J. WILLIAMS¹, AND K. SHUNG¹ ¹University of Southern California, Los Angeles, CA

POSTER SESSION Fri 9:30AM - 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 4:00PM - 5:00PM

P-Fri-348

A Single-Element Ultrasound Viscoelastography System for Point-of-Care Edema Quantification

J. PITRE¹, L. KOZOIL^{1,2}, G. KRUGER¹, W. WEITZEL^{1,2}, AND J. BULL¹ ¹University of Michigan, Ann Arbor, MI, ²VA Medical Center, Ann Arbor, MI

P-Fri-349

High Frequency Optoacoustic Sensor Based on a Microsphere Resonator K. HAMMER¹ AND T. BUMA¹

¹Union College, Schenectady, NY

P-Fri-350

Optically Activated Ultrasound Contrast Agents for Diagnostic Imaging A. HANNAH¹ AND S. EMELIANOV¹

¹UNIVERSITY OF TEXAS AT AUSTIN, AUSTIN, TX

P-Fri-351

High Frequency Ultrasound Array in Biopsy Needle for Breast Cancer Imaging

T. CUMMINS¹, H. CHOI¹, P. ELIAHOO¹, H. KIM¹, M. YAMASHITA¹, L. LARSEN¹, J. LANG¹, S. SENER¹, J. VALLONE¹, S. MARTIN¹, AND K. SHUNG¹ ¹University of Southern California, Los Angeles, CA

P-Fri-352

Low-Frequency Radial Imaging Array for Ultrasound-Navigated Spinal Fusion Surgery

A. MANBACHI¹, H. GINSBERG¹,², AND R. COBBOLD¹ ¹University of Toronto, Toronto, ON, Canada, ²St. Michael's Hospital, Toronto, ON, Canada

P-Fri-353

Automatic Real-Time Reconstruction of 3D Patient Specific Bones from RF Ultrasound Data

M. MAHFOUZ¹, E. ABDEL FATAH¹, AND G. TO¹ ¹University of Tenenssee, Knoxville, TN

STER P-Fri-354 SION Synergy Betw

Synergy Between High-intensity Focused Ultrasound and Ethanol Injection in Thyroid Cancer Ablation *In Vitro* and *In Vivo*

H. MURAD¹, N. HOANG¹, K. TSUMAGARI¹, E. KANDIL¹, AND D. KHISMATULLIN¹ ¹Tulane University, New Orleans, LA

P-Fri-355

Development and Characterization of Tissue-Mimicking Gelatin Phantoms for use with MRgFUS

A. FARRER¹, H. ODÉEN¹, J. DE BEVER¹, B. COATS¹, D. CHRISTENSEN¹, AND A. PAYNE¹ ¹University of Utah, Salt Lake City, UT

Track: Biomedical Imaging and Optics

X-ray, CT and Nuclear Medicine

Chairs: Ted Trouard

P-Fri-356

Interior Micro-CT for Radiation Dose Reduction H. GONG¹ AND G. CAO¹

¹Virginia Polytechnic Institute and State University, Blacksburg, VA

P-Fri-357

Hippocampus Layers Imaging of Mouse by Phase Contrast X-Ray CT

T-T. LWIN¹, A. YONEYAMA², R. SHIRAI¹, M. TAGUCHI¹, S. ESASHI¹, T. MATSUSHIMA¹, H. MARUYAMA¹, K. HYODO³, AND T. TAKEDA¹

¹Kitasato University, Sagamihara, Japan, ²Hitachi Ltd, Saitama, Japan, ³High Energy Accelerator Research Organization, Tsukuba, Japan

P = Poster Session OP = Oral Presentation Q = Reviewer Choice Award

150 BMES 2014

P-Fri-358

3D White Matter Imaging of Rat Obtained by Phase-Contrast X-Ray CT

T. TAKEDA¹, T-T. LWIN¹, A. YONEYAMA², J. WU¹, R. SHIRAI¹, M. TAGUCHI³, S. ESASHI³, T. MATSUSHIMA³, H. MARUYAMA¹, AND K. HYODO⁴ ¹Kitasato University, Sagamihara, Japan, ²Hitachi Ltd, Sitama, Japan, ³Kitasato Univercity, Sagamihara, Japan, ⁴Accelerator Research Organization, Tsukuba, Japan

P-Fri-359

Structural Change of Rat's Spleen by Phase-Contrast X-Ray CT

S. ESASHI¹, A. YONEYAMA², T-T. LWIN¹, M. TAGUCHI¹, T. MATSUSHIMA¹, H. MARUYAMA¹, K. HYODO³, AND T. TAKEDA¹ ¹Kitasato University, Sagamihara, Japan, ²Hitachi Ltd, Saitama, Japan, ³High Energy

'Nitasato University, Sagamihara, Japan, 'Hitachi Ltd, Saitama, Japan, 'High Energy Accelerator Research Organization, Tsukuba, Japan

P-Fri-360

Freeze-Thaw Kidney Imaging by Phase-contrast X-ray CT

M. Taguchi¹, A. Yoneyama², S. Takeya³, T-T. Lwin¹, S. Esashi¹, H. Maruyama¹, K. Hyodo⁴, and T. Takeda¹

¹Kitasato University, Sagamihara, Japan, ²Hitachi Ltd, Saitama, Japan, ³National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan, ⁴High Energy Accelerator Research Organization, Tsukuba, Japan

P-Fri-361

An Optimized Thresholding Reconstruction Approach for the Lp (0<p<1) Regularization Problem

C. MIAO¹ AND H. YU¹

¹Wake Forest University, Winston-Salem, NC

P-Fri-362

Exploring the Spatial Resolution Limits of Positron Emission Tomography Imaging

A. VARSHNEY^{1,2}, T. CAO^{1,2}, AND P. VASKA^{1,2}

¹SUNY - Stony Brook University, Stony Brook, NY, ²Brookhaven National Laboratory, Upton, NY

P-Fri-363

Arterial vs Venous Input Function: Full Quantification of 11C-ABP using Positron Emission Tomography

S. ROSSANO¹ AND C. DELORENZO¹ ¹Stony Brook University, Stony Brook, NY

P-Fri-364 🧕

An Image Processing Protocol for Assessing Longitudinal Growth of Coil Embolized Cerebral Aneurysms and their Corresponding Coil Masses A. HOPPE¹, D. HASAN¹, AND M. RAGHAVAN¹ ¹University of Iowa, Iowa City, IA

P-Fri-365

Functional Connectivity Mapping Across The Rodent Cerebral Cortex: Method And Implementation For Animal Autoradiographic Imaging Y-H. PENG¹, D. HOLSCHNEIDER¹, Y. GUO¹, Z. WANG¹, AND J-M. MAAREK¹ 'University of Southern California, Los Angeles, CA

Track: Cancer Technologies, Nano to Micro Technologies

Microtechnologies for Cancer

Chairs: Kapil Pant, Aram Chung

P-Fri-176 🙎

A Microfluidic Device for Dissociating Tumor Tissue into Single Cells X. QIU¹, J. DE JESUS¹, M. PENNELL¹, M. TROIANI¹, AND J. HAUN¹ ¹University of California, Irvine, Irvine, CA

P-Fri-177

A Microfluidic Platform to Evaluate the Role of Vessel Permeability in Tumor Cell Extravasation

L. BLAHA¹, C. ZHANG¹, R. ALANI², M. CABODI¹, AND J. WONG¹ ¹Boston University, Boston, MA, ²Boston University School of Medicine, Boston, MA

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM , 4:00PM - 5:00PM

P-Fri-178

Tagless Discrimination And Detection Of Cancer Cells Using Solid-State Micropores

A. ILYAS¹, W. ALI¹, J-T. HSIEH², Y. LOTAN², Y-T. KIM¹, AND S. IQBAL¹ ¹UNIVERSITY OF TEXAS AT ARLINGTON, ARLINGTON, TX, ²UNIVERSITY OF TEXAS SOUTHWESTERN MEDICAL CENTER AT DALLAS, DALLAS, TX

P-Fri-179

Double-Filter Based Enrichment of Circulating Tumor Cells Increases Efficiency and Purity of Captured CTCs

A. SANATI NEZHAD¹, J. HERNANDEZ-CASTRO¹, K. TURNER¹, AND D. JUNCKER¹ ¹McGill University, Montreal, QC, Canada

P-Fri-180

A Microfluidic Device to Analyze Vascular Dynamics in a Heterogeneous Brain Tumor Microenvironment

M. COX¹ AND S. VERBRIDGE¹ ¹Virginia Tech, Blacksburg, VA

P-Fri-181

A Microchip Platform for Interrogating Tumor-Immune Cell Communication at the Single-Cell M. ELITAS¹, K. BROWER², Y. LU¹, J. CHEN¹, AND R. FAN¹

¹Yale Unv., New Haven, CT, ²Isoplexis Inc, New Haven, CT

P-Fri-182

Development of a Microfluidic Device to Study the Role of Mechanobiology on Endothelial to Mesenchymal Transformation

S. MINA¹, W. WANG¹, Q. CAO ¹, B. MURRAY ¹, P. HUANG ¹, AND G. MAHLER ¹ ¹Binghamton University, Binghamton, NY

P-Fri-183

A poly(dimethyl siloxane) Microfluidic Device for *in situ* Imaging of Cellular Migration and Invasion in Response to Chemical Signaling L. LEE¹, S. RAO¹, V. LIN¹, AND J-C. CHIAO¹ *'UT Arlington, Arlington, TX*

P-Fri-184

High Throughput 3D Cell Migration Assay to Elucidate the Underlying Mechanisms of Metastasis M-E. BRETT¹ AND D. WOOD¹

¹University of Minnesota, Minneapolis, MN

P-Fri-185

Measuring Oxygenation In Intuitive Tumor Tissue Model Using a Gold Microelectrode Array

A. BUBIE¹ AND M. GRATZL² ¹Case Western Reserve University, Cleveland Heights, OH, ²Case Western Reserve University, Cleveland, OH

P-Fri-186

Label-Free Viable-Enrichment of Circulating Tumor Cells From Clinical Blood Samples with the FMSA Device

R. HAROUAKA¹, M. ZHOU¹, Y-T. YEH¹, W. KHAN¹, AND S. ZHENG¹ ¹The Pennsylvania State University, University Park, PA

P-Fri-187

Live Imaging of Microfiltration to Optimize the Purity of Isolated Circulating Tumor Cells

K. TURNER^{1,2}, A. SANATI NEZHAD^{1,2}, J. ALEJANDRO HERNANDEZ-CASTRO^{1,2}, AND D. JUNCKER^{1,2}

¹McGill University, Montreal, QC, Canada, ²Genome Quebec Innovation Centre, Montreal, QC, Canada

P-Fri-188

Automated, High Throughput 3D Culture Microtechnology for Anticancer Drug Testing

S. LEMMO¹ AND H. TAVANA¹ ¹University of Akron, Akron, OH

P-Fri-189

Circulating Pancreatic Cells for Risk Stratification of Patients with Precancerous Pancreatic Cyst Lesions

F. THEGE¹, T. LANNIN¹, T. SAHA², K. DAS³, A. RHIM², AND B. KIRBY^{1,4} ¹Cornell University, Ithaca, NY, ²University of Michigan School of Medicine, Ann Arbor, MI, ³Massachusetts General Hospital & Harvard Medical School, Boston, MA, ⁴Weill Cornell Medical College, New York, NY

P-Fri-190

Novel Tunable Functionalized Surface for the Isolation of Tumor Associated Cells

A. ANSARI¹ AND P. IMOUKHUEDE¹ ¹University of Illinois at Urbana-Champaign, Urbana, IL

Track: Cancer Technologies

Personalized Medicine, Imaging, and Immunoengineering Strategies in Cancer

Chairs: Catherine Whittington, Gregory Hudalla

P-Fri-191

Novel Immunosensor: Dual Ionophore Concept Based on an Ion Selective Electrode

X. LI¹, C. BERKMAN¹, J. GERUNTHO¹, B. VAN WIE (PI)¹, AND D. KIDWELL² ¹Washington State University, Pullman, WA, ²Naval Research Laboratory, SW, DC

P-Fri-192

Decreased T2 Relaxation and Increased Calcification In Articular Cartilage Following Modelled Therapeutic Irradiation At Long-Term Followup

I. Hutchinson¹, J. Olson¹, A. Lindburg¹, B. Collins², T. Smith¹, M. Munley¹, K. Wheeler¹, and J. Willey¹

¹Wake Forest Baptist Health, Winston Salem, NC, ²North Carolina A&T State University, Greensboro, NC

P-Fri-193

A Gold Nanoparticle Contrast Agent for Lung Cancer CT Imaging Using Novel EGFR-Specific VHH Domains

J. ASHTON¹, E. GOTTLIN², E. PATZ², J. WEST¹, AND C. BADEA² ¹Duke University, Durham, NC, ²Duke University Medical Center, Durham, NC

P-Fri-194

Development of Shape Coded Hydrogel Micro-particles for Simultaneous Detection of Multiple Biomolecules

M. AL-AMEEN¹, J. LI¹, AND G. GHOSH¹ ¹University of Michigan Dearborn, Dearborn, MI

P-Fri-195

Study of Synergisticcryo-thermal Treatment Modality Against Metastatic Breast Cancer Through Induction of Long-lasting Immune Responses P. LIU¹, J. LIU¹, AND L. XU¹ ¹School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China, People's Republic of

P-Fri-196

Exploring Biomarkers for Point of Care Bladder Cancer Detection C. WALKER¹, S. SMITH¹, AND D. ZAHAROFF¹ 'University of Arkansas, Fayetteville, Fayetteville, AR

P-Fri-197

In Vivo Capture and Label-free Detection of Early Metastatic Cells J. YI¹, S. AZARIN¹, L. SHEA¹, AND V. BACKMAN¹ ¹Northwestern University, Evanston, IL

P-Fri-198

Circulating microRNAs Detection in Patients with Hepatocelluar Carcinoma by Tethered Lipoplex Nanoparticles (TLN)

X. WANG¹, Z. YANG¹, J. MA¹, K. KWAK¹, R. SULLIVAN¹, C. SCHMIDT¹, AND J. LEE¹ ¹The Ohio State University, Columbus, OH POSTER SESSION

POSTER SESSION Fri 9:30AM - 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 4:00PM - 5:00PM

P-Fri-199

Tri Partite Motif E3 Ubiquitin Ligase Family Proteins Role in Cancer Mechanics

L. VOLAKIS¹, J. ALLOUSH¹, N. WEISLEDER², AND S. GHADIALI² ¹The Ohio State University, Columbus, OH, ²The Wexner Medical Center at The Ohio State University, Columbus, OH

P-Fri-200

Monitoring Protein Synthesis in Live Multiple Myeloma Cells

C. TU¹, Z. SMILANSKY², N. RAJE^{3,4}, AND J. ZOLDAN¹ ¹University of Texas at Austin, Austin, TX, ²Anima Cell Metrology, Bernardsville, NJ, ³Massachusetts General Hospital, Boston, MA, ⁴Harvard Medical School, Boston, MA

P-Fri-201

Individual CAR* T cells Recycle Effector Functions by Conjugating to Multiple Tumor Cells

N. Varadarajan'i, I. Liadi', H. Singh², N. Rey-Villamizar'i, G. Romain'i, B. Roysam'i, and L. Cooper²

¹University of Houston, Houston, TX, ²UT MD Anderson Cancer Center, Houston, TX

P-Fri-202

Hyaluronic Acid Derived Fluorescent Imaging Agents with Tunable NIR Emission

S. KELKAR^{1,2}, T. HILL^{1,2}, AND A. MOHS^{1,2,3}

¹Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, ²Wake Forest - Virginia Tech School of Biomedical Engineering and Sciences, Winston-Salem, NC, ³Comprehensive Cancer Center of Wake Forest University, Winston-Salem, NC

P-Fri-203

Analysis of Single Cell Progenies of MDA-MB-231 Cells Reveals Prognostic Gene Signature for Breast Cancer Patients

P-H. WU¹, D. GILKES¹, J. PHILIPS¹, M-H. LEE¹, AND D. WIRTZ¹ ¹Johns Hopkins University, Baltimore, MD

P-Fri-204

Irreversible Electroporation: Prostate and Pancreatic Cancer Cell Death Threshold Characterization

A. ROLONG¹, K. PROKOP¹, P. GARCIA¹, C. ARENA¹, AND R. DAVALOS¹ ¹Virginia Tech, Blacksburg, VA

P-Fri-205

Development of Novel Phase Change Electrodes with Metal Foams for Irreversible Electroporation Therapy

K. NITHYANANDAM¹ AND R. MAHAJAN¹ ¹Virginia Tech, Blacksburg, VA

P-Fri-206

Improved Early Detection Of Ovarian Cancer Using Microfluidic Capture Of Circulating Tumor Cells

M. GODLA¹, I. CARDLE¹, D. GUPTA², AND B. KIRBY¹ ¹Cornell University, Ithaca, NY, ²Weill Cornell Medical College, New York, NY

P-Fri-208

Enhanced Imaging of Breast Cancer Through Nanodiamonds

L. MOORE^{1,2}, T. TOWSEND¹, T. MEADE^{1,2}, AND D. HO^{3,4} ¹Northwestern University, Evanston, IL, ²Northwestern University, Chicago, IL, ³UCLA School of Dentistry, Los Angeles, CA, ⁴UCLA, Los Angeles, CA

Track: Cancer Technologies

Tumor Microenvironment

Chairs: Edmond Young, Scott Verbridge

P-Fri-161

BRCA1 Repair Complexes in Hereditary Breast Cancer

C. WINTON^{1,2}, B. GILMORE², A. DEMMERT³, AND D. KELLY^{1,2} ¹Virginia Tech, Blacksburg, VA, ²Virginia Tech Carilion Research Institute, Roanoke, VA, ³Virginia Tech, Roanoke, VA

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

P-Fri-162 🧕

Substratum Compliance Regulates Tetraploidy in Breast Cancer Cells A. SIMI¹, D. RADISKY², AND C. NELSON¹

¹Princeton University, Princeton, NJ, ²Mayo Clinic Cancer Center, Jacksonville, FL

P-Fri-163

Tumor Activation Alters the Mechano-responsiveness, Capillary Formation, and Drug Sensitivity of Endothelial Cells in Synthetic Matrices Y. WU¹, B. GUO¹, AND G. GHOSH²

¹University of Michigan Dearborn, Dearborn, MI, ²University of Michigan, Dearborn, Dearborn, MI

P-Fri-164

How Normal Breast Epithelial Cells Induce a Highly Protrusive and Invasive Phenotype in Breast Carcinoma Cells

M. LEE¹, P-H. WU¹, AND D. WIRTZ¹ ¹JOHNS HOPKINS UNIVERSITY, BALTIMORE, MD

P-Fri-165

Malignant Breast Tumor Cell Adhesion and Transmigration through Organspecific Microvascular Endothelium

¹The City College of the City University of New York, New York, NY

P-Fri-166

Cancer Cell Migration in Response to Soluble Chemical Gradient and Micropatterned Surface Cues

R. NATIVIDAD¹ AND A. ASTHAGIRI¹ ¹NORTHEASTERN UNIVERSITY, BOSTON, MA

P-Fri-167

Effects of Glucose Concentration on Fibrillogenesis in Breast Epithelial Cells

B. MARTINEZ¹, L. GRIGGS¹, M. ZHAO², L. ELMORE², AND C. LEMMON¹ ¹Virginia Commonwealth University, Richmond, VA, ²Virginia Commonwealth University Health System, Richmond, VA

P-Fri-168

CANCELLED BY AUTHOR

P-Fri-169

The Role of Adhesive Interactions with Osteoblasts for *Ex Vivo* Maintenance of Patient Multiple Myeloma Cells

W. ZHANG¹, J. ZILBERBERG², Y. GU¹, Q. SUN¹, P. TOLIAS¹, AND W. LEE¹ ¹Stevens Institute of Technology, Hoboken, NJ, ²Hackensack University Medical Center, Hackensack, NJ

P-Fri-171

MAP Kinase Drug Therapies Differentially Effect Melanoma Adhesion and the ECM During Metastasis

B. BLEHM¹, Y. KOTOBUKI¹, A. AFASIZHEVA¹, W. VIEIRA¹, AND K. TANNER¹ ¹National Institutes of Health, Bethesda, MD

P-Fri-172

Fibroblast Mediated Matrix Remodeling and Cancer Metastasis V. SHUKLA¹, M. SCHICKEL¹, Z. FELICIANO-MUNIZ¹, AND S. GHADIALI¹,²

¹The Ohio State University, Columbus, OH, ²Wexner Medical Center at The Ohio State University, Columbus, OH

P-Fri-173

Obesity-Associated Inflammation And Its Effect On Adipose Stromal Cells N. SPRINGER¹, B. SEO¹, AND C. FISCHBACH¹

¹Cornell University, Ithaca, NY

P-Fri-174

Investigating Breast Cancer Cell Behavior Using Tissue Engineering Scaffolds K. GUIRO¹ AND T. ARINZEH¹ 'New Jersey Institute of Technology, Newark, NJ

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM , 4:00PM - 5:00PM

P-Fri-175

Endothelial Cell Invasion Dependency on Extracellular Matrix Microstructure and Geometry Y. HOSSEINI¹, S. VERBRIDGE¹, AND M. AGAH¹

¹Virginia Tech, Blacksburg, VA

Track: Cardiovascular Engineering

Angiogenesis, Microvasculature and Lymphatics

Chairs: Hyunjoon Kong, Keith Neeves

P-Fri-397

Investigating the Role of Sphingosine-I-Phosphate and Hypoxia on Mature and Progenitor Endothelial Cells P. Williams¹ and E. Silva¹ ¹University of California, Davis, Davis, CA

P-Fri-398

Large Scale Microscopy Reveals New Mechanisms of Angiogenesis U. UTZINGER¹, B. BAGGETT¹, J. WEISS², AND J. HOYING³

¹University of Arizona, Tucson, AZ, ²University of Utah, Utah, UT, ³University of Louisville, Louisville, KY

P-Fri-399

Porous Microparticles for Cell Delivery in Tissue Regeneration A. KURIAKOSE¹, J. MENON¹, AND K. NGUYEN¹

¹University of Texas at Arlington, Arlington, TX

P-Fri-400

Urethane Doped Polyester (UPE) Based Nanoparticle Scaffolds for the Treatment of Peripheral Arterial Disease

D. THAKORE¹, P. PUNNAKITIKASHEM¹, R. TRAN², J. YANG², AND K. NGUYEN¹ ¹The University of Texas at Arlington, Arlington, TX, ²The Pennsylvania State University, University Park, PA

P-Fri-401

Peristaltic Flow in the Glymphatic System

J. GROTBERG¹ AND V. SURESH²

¹University of Michigan, Ann Arbor, MI, ²University of Auckland, Auckland, New Zealand

P-Fri-402

A Novel Approach to Study Contraction-Induced Relaxation in Lymphatic Vessels

A. Rosales¹, F. Yu¹, Y. Thakker¹, T. Lam¹, T. Hood¹, C. Quick¹, and R. Dongaonkar¹

¹Michael E. DeBakey Institute, Texas A&M University, College Station, TX

P-Fri-403

Filariasis Millifluidic Platform for Minimizing Blood Volume During Mosquito Feeding

T. SPENCER¹, A. MOORHEAD², AND B. DIXON¹ ¹Georgia Institute of Technology, Atlanta, GA, ²UGA College of Veterinary Medicine, Athens, GA

P-Fri-404

Characterizing the Simultaneous Effects of Shear Stress and Transmural Pressure on Lymphatic Pumping

H. PARISEAU¹, D. DANG¹, J. WHITE¹, C. QUICK¹, AND R. DONGAONKAR¹ ¹Michael E. DeBakey Institute, Texas A&M University, College Station, TX

P-Fri-405

Calcium Oscillations and Waves in Vascular Cells: Mechanisms of Initiation and Modulation

J. PARIKH¹, A. KAPELA¹, AND N. TSOUKIAS¹ ¹Florida International University, Miami, FL

P-Fri-406

Non-invasive Assessment of an Engineered Endothelium via Iron Oxide Nanoparticles and Magnetic Resonance Imaging B. JIANG¹, D. KATS¹, T. MEADE¹, AND G. AMEER¹ 'Northwestern University, Evanston, IL

P-Fri-407

Mechanisms of Flow-dependent Endothelial COX-2 and PGI₂ Expression S. RUSSELL-PULERI¹, E. EBONG², AND J. TARBELL¹ 'City College of New York, New York, NY, ?Northeastern University, Boston, MA

P-Fri-408

Microvascular Degeneration Predicted from Reduced Pulsatility

S. AHMED¹, T. BIMAL¹, P. NGUYEN¹, E. TUZUN¹, S. COQUIS-KNEZEK¹, AND C. QUICK¹ ¹Michael E. DeBakey Institute, Texas A&M University, College Station, TX

P-Fri-409

Endothelial Cells are Influenced by Simvastatin Therapy when Exposed to Static and Laminar Flow Conditions

M. DICK¹,², J-C. TARDIF², AND R. LEASK¹,² ¹McGill University, Montreal, QC, Canada, ²Montreal Heart Institute, Montreal, QC, Canada

Track: Cardiovascular Engineering, Tissue Engineering

Cardiovascular Regeneration and Functional Restoration

Chairs: Milica Radisic, Jun Liao

P-Fri-366

A Thermo-Responsive, Self-Adhesive Injectable Scaffold for iPSC-Derived Cardiomyocyte Delivery

X. WANG¹, L. ZHONG¹, Y. CHUN¹, C. LIM¹, C. HONG¹, S. MALTAIS¹, AND H-J. SUNG¹ ¹Vanderbilt University, Nashville, TN

P-Fri-367

Mitochondrial Transfer From a Stem Cell to a Cardiomyocyte via Tunneling Nanotube

H. YANG¹, R. RUNYAN², T. BORG³, R. MARKWALD³, AND B. GAO¹ ¹Clemson University, Clemson, SC, ²University of Arizona, Tucson, AZ, ³Medical University of South Carolina, Charleston, SC

P-Fri-368

Engineered Cell Therapy with Embryonic Stem Cell-derived Cardiomyocytes Encapsulated in Injectable Nanomatrix Gel Enhanced Engraftment and Promoted Cardiac Repair in Experimental Myocardial Infarction

K. BAN¹, H-J. PARK^{1,2}, S. KIM¹, A. ANDUKURI¹, H-W. JUN³, AND Y-S. YOON¹ ¹Emory University, Atlanta, GA, ²The Catholic University, Seoul, Korea, Republic of, ³University of Alabama, Birmingham, AL

P-Fri-369

Wireless Electrical Signal Recording for Neonatal Mouse Model of Heart Regeneration

T. BEEBE¹, Y. ZHAO², H. CAO³, H. ZHANG⁴, X. ZHANG², H. CHANG⁴, C-L. LIEN⁵, Y-C. TAI², and T. HSIAI¹,³

¹UCLA School of Engineering & Applied Sciences, Los Angeles, CA, ²California Institute of Technology, Pasadena, CA, ³UCLA School of Medicine, Los Angeles, CA, ⁴Northwestern Polytechnical University, Xi'an, China, People's Republic of, ⁶Children's Hospital Los Angeles, Los Angeles, CA

P-Fri-370

Differentiation of Human Progenitor Cells on Decellularized Cardiac Tissue

R. THIBAULT¹, E. CHAU¹, A. GORDON², A. GOBIN¹, M. RESENDE¹, R. SCHWARTZ¹, AND D. TAYLOR¹

¹Texas Heart Institute, Houston, TX, ²Rice University, Houston, TX

POSTER SESSION Fri 9:30AM – 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 4:00PM - 5:00PM

P-Fri-371

An Injectable Hydrogel with bFGF Release to Augment Cardiospherederived Cell Survive and Angiogenesis Under Ischemic Conditions X. LI¹, Z. FAN¹, M. FU¹, Y. XU¹, AND J. GUAN¹ ¹Ohio State University, Columbus, OH

P-Fri-372

Investigation of Drug-Induced Congenital Heart Defects Using Human Pluripotent Stem Cell Derived Cardiomyocytes

C. RIGDON¹, P. KERSCHER¹, AND E. LIPKE¹ ¹Auburn University, Auburn University, AL

P-Fri-373

Preclinical Performance of the PediaFlow® Pediatric VAD - A Potential Breakthrough Clinical Device

S. OLIA^{1,2}, V. SHANKARRAMAN², T. MAUL^{1,2,3}, E. KOCYILDIRIM², S. SNYDER⁴, J. VERKAIK⁴, D. PADEN⁴, W. WAGNER^{1,2}, J. ANTAKI^{2,5}, M. KAMENEVA^{1,2}, P. WEARDEN^{2,3}, AND H. BOROVETZ^{1,2}

¹University of Pittsburgh Department of Bioengineering, Pittsburgh, PA, ²McGowan Institute for Regenerative Medicine, Pittsburgh, PA, ³Children's Hospital of Pittsburgh, Pittsburgh, PA, ⁴Launchpoint Technologies, Goleta, CA, ⁶Carnegie Mellon University Department of Biomedical Engineering, Pittsburgh, PA

P-Fri-374

Total Artificial Heart and Mock Circulation System: A Training Tool for Ventricular Assist Devices

K. DECOOK¹, J. GAMBOA¹, P. TRAN¹, R. SMITH¹, D. BURKHOFF², AND M. SLEPIAN¹ ¹University of Arizona, Tucson, AZ, ²Columbia University, New York, NY

P-Fri-375

Prohealing Multifunctional Endothelium Nanomatrix Coated Stents

G. Alexander¹, A. Andukurl¹, Y-D. Sohn², Y-S. Yoon², B. Brott¹, P. Anderson¹, and H-W. Jun¹

¹University of Alabama at Birmingham, Birmingham, AL, ²Emory University, Atlanta, GA

P-Fri-376

Cardiovascular Assist Device Shear Stresses Induce Pro-thrombotic Microparticle Formation

A. Meyer¹, R. Kamucheka¹, P. Nair², K. Reddoch², ³, R. Montgomery³, B. Parida³, A. Cap³, N. Mackman⁴, and A. Ramasubramanian²

¹UT Health Science Center, San Antonio, TX, ²UT San Antonio, San Antonio, TX, ³U.S. Army Institute of Surgical Research, San Antonio, TX, ⁴University of North Carolina, Chapel Hill, NC

P-Fri-377

Potential Thrombogenic Impacts of the Radial Orientations of Inflow and Outflow Cannulae with Respect to the HeartMate II VAD

W-C. CHIU¹, S. EINAV¹, A. MCLARTY¹, M. SLEPIAN¹,², AND D. BLUESTEIN¹ ¹Stony Brook University, Stony Brook, NY, ²University of Arizona, Tucson, AZ

P-Fri-378

Reynolds Stress Assessment in the LVAD-Assisted Heart using High-Speed PIV

M. RAZAZ ZADEH¹, A. FALAHATPISHEH², A. KHERADVAR², AND K. MAY-NEWMAN¹ ¹San Diego State University, San Diego, CA, ²University of California, Irvine, Irvine, CA

P-Fri-379

Effect of Environmental Dynamics on Bioresorbable Vascular Scaffold Performance

J. FERDOUS¹, V. KOLACHALAMA², N. FATEMATUZZAHAN¹, AND T. SHAZLY¹ ¹University of South Carolina, Columbia, SC, ²Charles Stark Draper Laboratory, Cambridge, MA

P-Fri-380

Comparison of Blood Damage Indices in a Heart Assist Device Using CFD with Different Flow Models

M. HECK¹, T. SNYDER², D. PAPAVASSILIOU¹, E. O'REAR¹, AND D. SCHMIDTKE¹ ¹University of Oklahoma, Norman, OK, ²VADovations, Inc., Norman, OK

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

P-Fri-381

3D Printed Heart Models and Their Potential in Heart Surgery K. DAS¹ AND H. CHITTAM¹ *'University of South Florida, Tampa, FL*

P-Fri-382

Efficiency of Protease-Activatable Viruses for Cardiovascular Disease Tuned via Incorporation of Wild-type Capsid Subunits M. H0¹, M. LAM¹, M. YAMAGAMI¹, AND J. SUH¹ *'Rice University, Houston, TX*

Track: Cardiovascular Engineering

Heart Valves and Stents

Chairs: Aaron Baker, Craig Goergen

P-Fri-383 🤶

Effects Of Short-term Exposure of Estrogen On Smooth Muscle Cells Proliferation

J. BETALA¹, J. LEE¹, E. LANGAN², AND M. LABERGE¹ ¹Clemson University, Clemson, SC, ²Greenville hospital system, Greenville, SC

P-Fri-384

Hydroxyapatite Nanoparticles Enhance Osteoblastic Differentiation of Valvular Interstitial Cells in 3D Culture

J. RICHARDS¹, J. RUSS¹, L. ESTROFF¹, AND J. BUTCHER¹ ¹Cornell University, Ithaca, NY

P-Fri-385

Nutrient Transport During Engineered Heart Valve Tissue Exposure to Steady Flow

M. SALINAS¹, V. UNNIKRISHNAN², AND S. RAMASWAMY¹ ¹Florida International University, Miami, FL, ²The University of Alabama, Tuscaloosa, AL

P-Fri-386

Aortic Valve Endothelial to Mesenchymal Transformation is Induced by Altered Extracellular Matrix Composition

S. DAHAL¹ AND G. MAHLER¹ ¹Binghamton University, Binghamton, NY

P-Fri-387

Porcine Pericardium As A Biomaterial For Bioprosthetic Venous Valves L. MAGANINI¹ AND N. VYAVAHARE¹ 'Clemson University, Clemson, SC

P-Fri-388

Valve Interstitial Cell Remodeling Under Abnormal Mechanical Stress Is Mediated By 5HT and FGF2 Signaling

N. LAM¹, J. CARRADINI¹, S. SHARMA², AND K. BALACHANDRAN¹ ¹University of Arkansas, Fayetteville, AR, ²University of Arkansas for Medical Sciences, Little Rock, AR

P-Fri-389

Coaxially Electrospun Biohydrid Nanofibrous Scaffolds for Vascular Regeneration

N. NAGIAH¹ AND W. TAN¹ ¹University of Colorado, Boulder, CO

P-Fri-390

Properties of Graphene-Silicone Prosthetic Heart Valves

M. LORDEUS¹, A. ESTRADA¹, D. STEWART¹, R. DUA¹, C. ZHANG¹, A. AGARWAL², AND S. RAMASWAMY¹

¹Florida International University, Miami, FL, ²Indian Institute of Technology, New Delhi, India

P-Fri-391

Novel Magnesium-based Stent Biomaterials with Anticorrosion and Drugeluting Coatings

J. MA¹, N. ZHAO¹, AND D. ZHU¹ ¹North Carolina A&T State University, Greensboro, NC

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM , 4:00PM - 5:00PM

P-Fri-392

Effective Gene Delivery to Heart Valve Cells Using Adeno-associated Virus F. WONG¹, M. HO¹, J. SUH¹, AND J. GRANDE-ALLEN¹ ¹Rice University, Houston, TX

P-Fri-393

Pharmacokinetic Evaluation of Non-Stent Drug Delivery: An *In Vitro* System For Rapid Evaluation

M. ATIGH¹ AND S. YAZDANI¹ ¹University of South Alabama, Mobile, AL

P-Fri-394

Tricuspid Valve Leaflet Force on the Annulus after Clover Repair A. BASU¹ AND Z. HE¹ 'Texas Tech University, Lubbock, TX

P-Fri-395

Fabrication Of Human Serum Albumin Nanofilm For Enhanced Hemocompatibility And Vascular Smooth Muscle Cell Response A. KHANNA¹, I. LUZINOV¹, F. VATANSEVER¹, E. LANGAN III², AND M. LABERGE¹

¹Clemson University, Clemson, SC, ²Greenville Health System, Greenville, SC

P-Fri-396

Design of an Echocardiographic Benchtop Testing Phantom Replicating Tricuspid Regurgitation (TR)

H. O' GRADY¹, M. GILMORE², AND P. DELASSUS¹

¹Galway Mayo Institute of Technology (GMIT), Galway, Ireland, ²⁴TECH Cardio Ltd., Galway, Ireland

Track: Cardiovascular Engineering, Biomechanics

Hemodynamics, Vascular Mechanics and Flow Modelling

Chairs: Eno Ebong, Danial Shahmirzadi

P-Fri-557 🧕

Evaluation of the Time Course of Aortic Aneurysm Residual Stress in Apolipoprotein E-deficient Mice

R. PEATTIE¹, C. KAHN², Y. ZHANG¹, J. GALPER¹, AND L. DORFMANN² ¹Tufts Medical Center, Boston, MA, ²Tufts University, Medford, MA

P-Fri-558 🙎

Maximum Circumference Detects Nonhomogeneous Sac ExpansionIn Abdominal Aortic Aneurysm

R. S. NOMOTO¹, M. IAFRATI², L. DORFMANN³, AND R. PEATTIE² ¹Tufts University, Boston, MA, ²Tufts Medical Center, Boston, MA, ³Tufts University, Medford, MA

P-Fri-559

Feasibility of Pulsatile Flow in Ex Vivo Lung Perfusion

K. ZOELLER¹, E. SCHUMER¹, P. LINSKY¹, M. SOBIESKI II¹, G. MONREAL¹, K. SOUCY¹, G. GIRIDHARAN¹, S. KOENIG¹, M. SLAUGHTER¹, AND V. VAN BERKEL¹ ¹University of Louisville, Louisville, KY

P-Fri-560

Integrating Biomechanics and Mechanobiology to Predict Cardiac Contractility in a Closed-Loop System

C. NWOKOCHA¹, J. SCHUELER¹, M. VILLARREAL¹, D. WESTRA¹, T. DUONG¹, C. QUICK¹, AND R. STEWART¹

¹Michael E. DeBakey Institute, Texas A&M University, College Station, TX

P-Fri-56I

Cardiovascular Mechanical Properties Affect Regression of the Ductus Arteriosus

H. AHMED¹, F. HISE¹, U. CHIKHLIYA¹, C. QUICK¹, AND R. STEWART¹ ¹Michael E. DeBakey Institute, Texas A&M University, College Station, TX

P-Fri-562

Regulation of Vascular Tone via Localized Calcium Signaling in Myoendothelial Projections

J. PARIKH¹, A. KAPELA¹, AND N. TSOUKIAS¹ ¹Florida International University, Miami, Fl

rionua international Oniversity, ivitarii,

P-Fri-563

Dynamic Models of Cerebral Hemodynamics used for Diagnosis of Alzheimer's Disease

Y. KANG¹, D. SHIN¹, J. CLAASSEN², R. ZHANG³, AND V. MARMARELIS¹ ¹University of Southern California, Los Angeles, CA, ²Radboud University, Nijmegen Medical Center, Nijmegen, Netherlands, ³University of Texas, Southwestern Medical Center, Dallas, TX

P-Fri-564

Assumed Pressure Pulse Augmentation Can Originate from the Heart

P. THERIOT¹, G. OSA¹, T. DUNN¹, S. WALLOOPPILLAI¹, M. MOHUIDDIN¹, AND C. QUICK¹ ¹Michael E. DeBakey Institute, Texas A&M University, College Station, TX

P-Fri-565

Survival Analysis for Estimating Abdominal Aortic Aneurysm Rupture

M. THIRUGNANASAMBANDAM¹ AND E. FINOL¹ ¹University of Texas at San Antonio, San Antonio, TX

P-Fri-566

Increasing Differential Sensitivity to Preload and Afterload of LVADs Operated in Pulsatile Mode

M. MCDOWALL¹, A. WORKMAN¹, H. ADELEKE¹, O. SARWAR¹, S. COQUIS-KNEZEK¹, AND C. QUICK¹

¹Michael E. DeBakey Institute, Texas A&M University, College Station, TX

P-Fri-567

Effects Of Hemodynamic Factors On Hemolysis In Shear Flows

Q. NGUYEN¹, E. O' REAR¹, D. SCHMIDTKE¹, D. PAPAVASSILIOU¹, AND T. SNYDER² ¹The University of Oklahoma, Norman, OK, ²Advanced Cardiac Care, INTEGRIS Baptist Medical Center, Oklahoma city, Oklahoma, OK

P-Fri-568

Design and Calibration of Transducers for Aortic Root Force Measurement

T. BECHSGAARD^{1,2}, S. LAUGESEN², J. HONGE², H. NYGAARD², S. NIELSEN², AND P. JOHANSEN^{1,2}

¹Aarhus University, Aarhus N, Denmark, ²Aarhus University Hospital, Aarhus N, Denmark

P-Fri-569

Elevated Arterial Wall Permeability May Cause Vulnerable Plaque Formation In Mice

Z. Mohri¹, E. Rowland², L. Clarke², A. De Luca², V. Peiffer², S. Sherwin², R. Krams², and P. Weinberg²

¹Imperial College London, London, United Kingdom, ²Imperial College London, Lonodn, United Kingdom

P-Fri-570

Renal Blood Flow Distribution Assayed by Indicator-Dilution Method and Morphometric Model Analysis.

J. BUKOWY¹, L. EVANS¹, A. COWLEY¹, AND D. BEARD² ¹Medical College of Wisconsin, Milwaukee, WI, ²University of Michigan, Ann Arbor, MI

P-Fri-571

The Structural Determinants of Hemostatic Thrombi J. WELSH¹, T. STALKER¹, L. BRASS¹, AND S. DIAMOND¹

¹University of Pennsylvania, Philadelphia, PA

P-Fri-572

A Quantitative Test of the Efficient Transport Network Hypothesis in the Cerebral Vasculature D. KUDLIK¹ AND P. DREW¹

¹Pennsylvania State University, University Park, PA

P-Fri-573

Modeling Compensatory Mechanisms to Maintain Homeostasis During Moderate Blood Loss

M. WU¹, Y. TONG¹, K. DUPREE¹, T. STILES¹, AND C. QUICK¹ ¹Michael E. DeBakey Institute, Texas A&M University, College Station, TX

POSTER SESSION Fri 9:30AM - 5:00PM

P-Fri-574

A Novel Approach to Modeling Acute Normovolemic Hemodilution

B. PLISKOW¹ AND M. KAYA¹ ¹Florida Institute of Technology, Melbourne, FL

P-Fri-575

Simple Analytical Model to Predict Critical Hemodynamic Parameters in Fontan Patients

O. OKOSE¹, M. SHIMAZAKI¹, J. NGUYEN¹, K. MCFADDEN¹, M. MOHUIDDIN¹, AND C. QUICK¹

¹Michael E. DeBakey Institute, Texas A&M University, College Station, TX

P-Fri-576

Novel Approach to Optimize both Simplicity and Accuracy when Simplifying Complex Algebraic Models

C. MASON¹, W. WILDER¹, A. WILKERSON¹, A. GARCIA¹, M. MOHUIDDIN¹, R. STEWART¹, AND C. QUICK¹

¹Michael E. DeBakey Institute, Texas A&M University, College Station, TX

P-Fri-577

Mechanical Determinants of Acceptable Blood Volume Ranges in Heart Failure Patients

A. MORFIN¹, F. DALAL¹, S. KAMP¹, A. ARMSTRONG¹, M. RICHTER¹, T. STILES¹, AND C. QUICK¹

¹Michael E. DeBakey Institute, Texas A&M University, College Station, TX

P-Fri-578

Patient-specific Computational Fluid Dynamic Modelling of Pulmonary Artery Stenosis

M. DONG¹, E. KUNG¹, J. FEINSTEIN², AND A. MARSDEN¹

¹University of California, San Diego, La Jolla, CA, ²Stanford University, Stanford, CA

P-Fri-579

Patient Specific Models of Aortic Dissection

V. FLAMINI¹, S. GALLOT LAVALLEE^{1,2}, S. MADDALO³, A. DEANDA³, AND B. GRIFFITH³,⁴ ¹New York University, Brooklyn, NY, ²La Sapienza, Universita; di Roma, Rome, Italy, ³New York University, New York, NY, ⁴University of North Carolina, Chapel Hill, Chapel Hill, NC

P-Fri-580

The Effect of Vascular Curvature on Blood Flow and Oxygen Transport in Arterio-Venous Fistulae

L. GRECHY¹, F. IORI¹, R. CORBETT¹, W. GEDROYC², N. DUNCAN¹, C. CARO¹, AND P. VINCENT¹

¹Imperial College London, London, United Kingdom, ²St Mary Hospital, London, United Kingdom

P-Fri-581

Stiffening Right Ventricle Helps Relieving Respiratory Failure After Acute Kidney Injury (AKI)

Z. MENG¹, H. CRAWFORD¹, L. TUFTS¹, C. HAHN¹, S. JOHNSON¹, AND B. POSKEVICH¹ ¹Michael E. DeBakey Institute, Texas A&M University, College Station, TX

P-Fri-582

Regulation of ATP and ROS Production by Stretch Fluctuations in Vascular Smooth Muscle Cells

E. BARTOLAK-SUKI¹ AND B. SUKI¹ ¹Boston University, Boston, MA

P-Fri-583

Mechanisms of Phenotypic Change of Vascular Smooth Muscle Cells to Osteoblast Like Cells in Vascular Calcification

P. NAHAR¹, N. GOHAD¹, AND N. VYAVAHARE¹ ¹Clemson University, clemson, SC

P-Fri-584

Force Derived Applanation Tonometry for High and Low Deflections In a Phantom Vessel

G. DRZEWIECKI¹, G. SATHISH KRISHNA¹, AND H. KATTA¹ ¹Rutgers University, Piscataway, NJ

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

P-Fri-585 🙎

Effect of Sleep Apnea Event Duration on Concomitant Rise in Blood Pressure and Cerebral Blood Flow

S. Manchikatla¹, R. Alex¹, D. Watenpaugh²,³, R. Zhang⁴, E. Altuwaijri¹, and K. Behbehani¹

¹UT Arlington, Arlington, TX, ²Sleep Consultants, Ft. Worth, TX, ³Sleep Consultants, Fort Worth, TX, ⁴UT Southwestern Medical Center Dallas, Dallas, TX

P-Fri-586

Melding Experimental Protocol and Mathematical Representation in the Fürth-Ornstein-Taylor Equation

E. ECKSTEIN¹, M. LEGGAS², B. MA³, J. LAVINE⁴, AND J. GOLDSTEIN¹ ¹University of Memphis, Memphis, TN, ²University of Kentucky, Lexington, KY, ³University of Vermont, Burlington, VT, ⁴Bunker Hill Community College, Charlestown, MA

Track: Cellular and Molecular Bioengineering

Immunoengineering and Extracellular Matrix Interactions

Chairs: Kent Leach, Hanjoong Jo

P-Fri-49

Design and Selection of an MBP-Specific T-Cell Receptor in order to Abrogate Autoreactive Immune Attack in Multiple Sclerosis

E. LEONARD¹, K. ENTZMINGER¹, J. FOGARTY¹, B. ROY¹, AND J. MAYNARD¹ ¹University of Texas at Austin, Austin, TX

P-Fri-50

High Fc Density Particles Result in Binary Complement Activation but Tunable Macrophage Phagocytosis

T. SULCHEK¹, P. PACHECO¹, C. PANTOJA¹, A. MYLARAPU¹, AND D. WHITE² ¹Georgia Tech, Atlanta, GA, ²USDA, Ames, GA

P-Fri-5 l

Accurate and Quantitative Immune Repertoire Sequencing using Unique Molecular Identifiers

N. JIANG¹, D. WU¹, M. QU¹, AND B. WENDEL¹ ¹THE UNIVERSITY OF TEXAS AT AUSTIN, AUSTIN, TX

P-Fri-52

Sinusoidal Wavy Surfaces for Curvature-guided Migration of T Lymphocytes K. SONG¹, S. PARK¹, D. KIM¹, AND J. DOH¹ 'POSTECH, Pohang, Korea, Republic of

P-Fri-53

Substrate Stiffness Promotes Endothelial Senescence

J. FU¹, T. CHEUNG¹, AND G. TRUSKEY¹ ¹Duke University, Durham, NC

P-Fri-54

Single-cell Force Spectroscopy as a Technique to Quantify Erythrocyte Cytoadhesion and Biochemical Modulation

J. MACIASZEK¹,², K. PARTOLA¹, B. ANDEMARIAM³, AND G. LYKOTRAFITIS¹ ¹University of Connecticut, Storrs, CT, ²St. Jude Children's Research Hospital, Memphis, TN, ³University of Connecticut Health Center, Farmington, CT

P-Fri-55

Dynamic Micropatterning of Cells on Nanostructured Surfaces Using a Cell-friendly Photoresist

S. KWEON¹, K. SONG¹, J. CHOI¹, AND J. DOH¹ ¹POSTECH, pohang, Korea, Republic of

P-Fri-56

Connexin43 Mimetic Peptides for use in Breast Reconstructive Scar Reduction

K. DEGEN¹, M. RHETT², M. YOST², K. MOYER³, AND R. GOURDIE¹,⁴ ¹Virginia Tech, Blacksburg, VA, ²Medical University of South Carolina, Charleston, SC, ³Carilion Clinic, Roanoke, VA, ⁴Virginia Tech Carilion Research Institute, Roanoke, VA

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM , 4:00PM - 5:00PM

P-Fri-57

The Induction of EMT In Correlation With The Secretion of LTBP-1 In Mammary Epithelial Cells R. MALIK¹, L. GRIGGS¹, AND C. LEMMON¹

¹Virginia Commonwealth University, Richmond, VA

P-Fri-58

Embolism Coil Geometry Modulates Cell-Matrix Interactions B. EARNEST¹, E. NAGEL¹, A. EVANS¹, AND B. HELMKE¹ ¹University of Virginia, Charlottesville, VA

P-Fri-59

PMEDSAH is a Polyzwitterionic, Non-fouling Material that Supports Pluripotent Cell Growth

T. AYDIN¹, L. VILLA¹, R. KUMAR¹, J. LAHANN¹, AND P. KREBSBACH¹ ¹University of Michigan, Ann Arbor, MI

P-Fri-60

Sphingolipid Dysregulation Initiates Myeloid Cell Activation in Sickle Cell Disease

A. LANE¹, A. AWOJOODU¹, Y. ZHANG¹, AND E. BOTCHWEY¹ ¹Georgia Institute of Technology, Atlanta, GA

P-Fri-61

Exogenous Delivery of Indoleamine 2,3 Dioxygenase for the Induction of Tolerance

E. BRACHO-SANCHEZ¹, J. LEWIS¹, AND B. KESELOWSKY¹ ¹University of Florida, Gainesville, FL

P-Fri-62

A Microwell System for Detection of Cytokines Secreted by Single Adherent Macrophages F. MCWHORTER¹ AND W. LIU¹ ¹University of California, Irvine, Irvine, CA

Track: Cellular and Molecular Bioengineering, Bioinformatics, Computational and Systems Biology

Molecular Bioengineering, Systems and Synthetic Biology

Chairs: B. Rita Alevriadou, Stacey Finley

P-Fri-272

A Small Molecule-Peptide Hybrid Screening Technique Using Selenocysteine Phage Display

J. BEECH¹, H. FIGLER¹, J. LINDEN², C. NOREN³, L. SALEH³, AND K. KELLY¹ ¹University of Virginia, Charlottesville, VA, ²La Jolla Institute, La Jolla, CA, ³New England Biolabs, Ipswich, MA

P-Fri-273

Scaffold Residues of Monobody-Maltose Binding Protein 74 (MBP74) are Critical for Binding with its Ligand

D. SHEA¹, L-L. CHEUNG^{1,2,3}, N. NICHOLES¹, A. DATE¹, M. OSTERMEIER^{1,2}, AND K. KONSTANTOPOULOS^{1,2,3,4}

¹Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, ²Johns Hopkins Institute for NanoBioTechnology, Baltimore, MD, ³Johns Hopkins Physical Sciences-Oncology Center, Baltimore, MD, ⁴Johns Hopkins Center of Cancer Nanotechnology Excellence, Baltimore, MD

P-Fri-274

Characterization Of Autocatalytic Activation Of Influenza Hemagglutinin M. VALVERDE¹, M. BALTZ², J. PRICE³, J. LEE⁴, AND E. BODER¹

¹University of Tennessee, Knoxville, TN, ²Cornell University, Ithaca, NY, ³University of Delaware, Newark, DE, ⁴MedImmune, Inc., Gaithersburg, MD

P-Fri-275

Green and Black Tea Polyphenols Mechanistically Inhibit Amyloid-β Aggregation in Alzheimer's Disease S. CHASTAIN¹, K. PATE¹, AND M. MOSS¹ ¹University of South Carolina, Columbia, SC

P-Fri-276

RNA Enzymes as Potential Tools for Artificial Gene Regulation R. POUDYAL¹, M. CALLAWAY¹, AND D. BURKE¹ ¹University of Missouri, Columbia, MO

P-Fri-277

Quantitative Profiling of Angiogenic Receptors on Human Dermal Fibroblasts S. CHEN¹ AND P. IMOUKHUEDE¹ ¹University of Illinois at Urbana-Champaign, Champaign, IL

P-Fri-278

Intracellular Delivery of Macromolecules Using Ultrahigh Frequency Ultrasound S. YOON¹, M. KIM¹, N. CABRERA-MUNOZ¹, H. KIM¹, AND K. SHUNG¹ ¹University of Southern California, Los Angeles, CA

P-Fri-279

Engineering Quorum-sensing Crosstalk to Generate Complex Responses of Synthetic Gene Networks F. WU¹, D. MENN¹, AND X. WANG¹

¹Arizona State University, Tempe, AZ

P-Fri-280

Tuning Molecular Self-Assembly by Leveraging Synthetic Biology to Optimize Biomedical Materials R. ZHANG¹ AND W. RUDER¹ 'Virginia Tech, blacksburg, VA

P-Fri-281

Spatial Segregation of Synthetic Biological Circuit Output using Dropletbased Microfluidics S-H. PAEK¹ AND W. RUDER¹ ¹Virginia Tech, Blacksburg, VA

P-Fri-282

Aglycosylated Antibody Engineering for Novel Effector Functions T. KANG¹, S. JUNG², W. KELTON¹, AND G. GEORGIOU¹ ¹The University of Texas at Austin, Austin, TX, ²Kookmin University, Seoul, Korea, Republic of

P-Fri-283

Creation of CTX-M-14/CTX-M-15 Gene Fusions to Localize CTX-M-15 Associated Upregulation Element A. VARMAN¹ AND C. GEYER²

¹Duchesne Academy, Omaha, NE, ²Creighton University, Omaha, NE

P-Fri-284

Resveratrol And Its Derivatives' As Potential Inhibitors Of A $\beta\,$ Peptides Aggregation

Y. WANG¹ AND M. MOSS¹ ¹University of South Carolina, Columbia, SC

P-Fri-285

Pathophysiological Mechanisms of Autism and Identification of Therapeutic Targets

M. HWANG¹, H. CHO¹, AND Y. LEE¹ ¹Virginia Tech, Blacksburg, VA

P-Fri-286

Modeling the Effects of a Microfluidic Environment on GFP Expression in Reporter Bacteria

C. AUSTIN¹, W. STOY¹, P. SU², M. HARBER¹, P. BARDILL¹, B. HAMMER¹, AND C. FOREST¹ ¹Georgia Institute of Technology, Atlanta, GA, ²University of California, Berkeley, CA

FRIDAY | OCTOBER 24 | 2014

POSTER SESSION Fri 9:30AM - 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 4:00PM - 5:00PM

P-Fri-287

An Optogenetic System for Spatiotemporal Regulation of Viral Gene Delivery Vectors

E. GOMEZ¹, K. GERHARDT¹, J. JUDD¹, J. TABOR¹, AND J. SUH¹ ¹Rice University, Houston, TX

P-Fri-288

Engineering Diagnostic and Therapeutic Proteins Targeting the MSLN-MUC16 Tumor Biomarker Interface

S. MOORE¹, F. BASSIR¹, K. GEORGE¹, AND A. SIROIS¹ ¹Smith College, Northampton, MA

P-Fri-289

Knockdown of NHEJ-Related Genes Increases Rate of Homologous Recombination for Genome Editing C. KRUEGER¹, T. CRADICK¹, AND G. BAO¹ ¹Georgia Institute of Technology, Atlanta, GA

P-Fri-290

Engineered Aglycosylated IgG Variants with Enhanced Anti-tumor Activity via Complement Dependent Cytotoxicity (CDC) withoutAntibody Dependent Cell Cytotoxicity (ADCC). C-H. LEE¹, J. LEE¹, T. KANG¹, AND G. GEORGIOU¹ 'University of Texas at Austin, Austin, TX

Track: Drug Delivery

Drug Delivery

Chairs: Jianjun Guan, Jennifer Kang-Mieler

P-Fri-441

Developing an Albumin Binding Peptide Derivative of Anticancer Therapeutics Y-B. AHN¹

¹Duke University, Durham, NC

P-Fri-442

Early Black Cranberry Proanthocyanidins Inhibit Melanoma Cell Growth and Proliferation

N. MACEDO¹, T. FERREIRA¹, C. NETO¹, AND S. BHOWMICK¹ ¹UMass Dartmouth, Dartmouth, MA

P-Fri-443

Early Development of Gold-Lipidic Nanocomposites for the Detection and Treatment of Prostate Cancer

C. DOBSON¹, C. PICKERING¹, M. EGGERT¹, A. DAVID¹, P. PANIZZI¹, AND R. ARNOLD¹ ¹Auburn University, Auburn, AL

P-Fri-444

Development of a Nanoparticle Formulation of Orlistat: Solubility, Stability, and Cytotoxicity

T. HILL^{1,2}, F. WHEELER³, S. KELKAR^{1,2}, S. KRIDEL³, AND A. MOHS^{1,2,3} ¹Wake Forest-Virginia Tech School of Biomedical Engineering and Sciences, Winston Salem, NC, ²Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, ³Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC

P-Fri-445

Reducing Cell Survival in Metastatic Breast Cancer Using Curcumin-Loaded Silk Fibroin Nanoparticles

D. MISHRA¹, T. IYYANKI¹, AND A. MATHUR¹ ¹M.D. Anderson Cancer Center, Houston, TX

P-Fri-446

Temperature- and pH-responsive Photoluminescent Nanoparticles for Lung Cancer Treatment

J. MENON^{1,2}, D. NGUYEN^{1,2}, M. WEI^{1,2}, B. YUAN^{1,2}, J. YANG³, AND K. NGUYEN^{1,2} ¹University of Texas at Arlington, Arlington, TX, ²University of Texas Southwestern Medical Center, Dallas, TX, ³Pennsylvania State University, University Park, PA

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

P-Fri-447

Tamoxifen-Coated Selenium Nanoparticles for Breast Cancer Treatment M. STOLZOFF¹, A. D'ANTONIO¹, AND T. WEBSTER¹ *Northeastern University, Boston, MA*

P-Fri-448

Crosslinking Albumin To Alter Curcumin Release From Spray Dried Particles

I. JAIN¹, M. KELECY¹, M. O'TOOLE¹, R. KEYNTON¹, A. GOBIN², AND P. SOUCY¹ ¹University of Louisville, Louisville, KY, ²Texas Heart Institute, Houston, TX

P-Fri-449

Synthesis of Dendrimer-Camptothecin Nanoconjugates via Click Chemistry O. ZOLOTARSKAYA¹, H. YANG¹, L. XU¹, AND K. VALERIE¹ 'Virginia Commonwealth University, Richmond, VA

P-Fri-450

A Theoretical Model on the Acoustic Vaporization of Dual Phase Microdroplets

D. Ll¹, M. FABIILLII¹, J. FOWLKES¹, P. CARSON¹, AND J. BULL¹ ¹University of Michigan, Ann Arbor, MI

P-Fri-451 🙎

The Combinatorial Effect of Multiple MicroRNA Delivery on Glioblastoma Multiforme Y. YIN¹, D. RASSIAS¹, A. BELIVEAU¹, AND A. JAIN¹

¹Worcester Polytechnic Institute, Worcester, MA

P-Fri-452

Multifunctional Polymeric Nanoconstructs for Magnetic Resonance Imaging and Combinatorial Treatment of Brain Tumors

C. STIGLIANO¹, M. CHO¹, M. RAMIREZ¹, S. ARYAL¹, AND P. DECUZZI¹ ¹Houston Methodist Research Institute, Houston, TX

P-Fri-453

Curcumin Loaded Polymeric Nanoparticles For The Prevention Of Metastatic Disease

A. PALANGE^{1,2}, D. DI MASCOLO^{1,2}, AND P. DECUZZI¹ ¹Houston Methodist Research Institute, Houston, TX, ²University of Magna Graecia, Catanzaro, Italy

P-Fri-454

Development of pH Sensitive Micelles for Drug Delivery to Advanced Prostate Cancer

O. AYDIN¹, I. YOUSSEF¹,², Y. DURMAZ¹, G. TIRUCHINAPALLY¹, AND M. ELSAYED¹ ¹University of Michigan, Ann Arbor, MI, ²Mansoura University, Mansoura, Egypt

P-Fri-455

Mild Hypethermia Enhances Transport of Liposomal Gemcitabine and Improves *In vivo* Therapeutic Response Mild Hyperthermia Enhances Transport of Liposomal Gemcitabine and Improves *In Vivo* Therapeutic Response

D. KIRUI¹, C. CELIA², R. MOLINARO¹, H. SHEN¹, M. FERRARI¹, AND D. KIRUI¹ ¹Houston Methodist Research Institute, Houston, *TX*, ²University of Chieti, Chieti, Italy

P-Fri-456

CANCELLED BY AUTHOR

P-Fri-457

Nanoformulations of PARP Inhibitors for the Treatment of Cancer P. BALDWIN¹, S. TANGUTOORI¹, J. SHELKE¹, AND S. SRIDHAR¹

¹Northeastern University, Boston, MA

P-Fri-458

Localized Tumor Delivery of Radiosensitizers and Chemotherapeutics Using INCeRT Implants

J. BELZ¹, R. KUMAR¹, S. MARKOVIC¹, Y. SUN¹, M. NIEDRE¹, M. MAKRIGIORGOS², R. CORMACK², AND S. SRIDHAR¹

¹Northeastern University, Boston, MA, ²Dana Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM , 4:00PM - 5:00PM

P-Fri-459 🙎

Injectable Gelatin Derivative Hydrogels with Sustained VEGF Release for Induced Angiogenesis

Z. LI¹, S. LI², AND X. LIU¹

¹Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, dallas, TX, ²Department of Plastic and Aesthetic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China, People's Republic of

P-Fri-460 🧣

Drug-delivery Surgical Suture for Reduction of Scar Formation.

S. CHOI¹, B. KIM², M. PARK¹, C. PARK¹, S. LEE¹, C. HEO³, AND Y. CHOY^{1,2,4} ¹Interdisiplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, Korea, Republic of, ²Department of Biomedical Engineering, Seoul National University, Seoul, Korea, Republic of, ³Department of Plastic Surgery and Reconstructive Surgery, Seoul National University College of Medicinety, Seoul, Korea, Republic of, ⁴Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul, Korea, Republic of

P-Fri-461

Enhancing Macrophage Recruitment by Controlling Scaffold Pore size Y-H. ${\rm KIM}^1$ and Y. TABATA^1

¹Institution of Frontier Medical Science, Kyoto University, Kyoto, Japan

P-Fri-462

Multi-layered Polymeric Microparticles For Sustained Drug Delivery J. CASTILLO¹, L. GAVIBIA¹, T. GUDA¹, AND J. ONG¹

¹University of Texas at San Antonio, San Antonio, TX

P-Fri-463

Solvent-free Fabrication of polyHIPE Microspheres for Controlled Release of Growth Factors

M. WHITELY¹, R. MOGLIA¹, M. BROOKS¹, J. ROBINSON¹, M. PISHKO¹, AND E. COSGRIFF-HERNANDEZ¹

¹Texas A&M University, College Station, TX

P-Fri-464

Development of Nanodelivery System for Sustained Release of Bioactive Anti-NogoA

I. YAZDI¹, N. TAGHIPOUR¹, A. MUNOZ¹, T. BOONE¹, AND E. TASCIOTTI¹ ¹Houston Methodist Research Institute. Houston, TX

P-Fri-465

Biocompatibility Study of Drug Delivery Sutures in an Ovine Model for Cardiovascular Engineering Applications

D. LAVIN¹, L. ZHANG¹, R. QUINN², S. HILBERT², A. BERT², C. MCFALL², J. BUSTAMANTE², K. MERRIGAN², S. NEIGHBORS², C. THANOS¹, E. MATHIOWITZ¹, AND R. HOPKINS² ¹Brown University, Providence, RI, ²The Children's Mercy Hospital, Kansas City, MO

P-Fri-466

Combined Magnetic Nanoparticle-Based microRNA and Hyperthermia Therapy to Enhance the Treatment of Cancer

P. YIN¹, B. SHAH¹, AND K-B. LEE¹ ¹Rutgers University, Piscataway, NJ

P-Fri-467

Bioresorbable Multi-Drug Delivery Conduit to Promote Peripheral Nerve Regeneration

S. HO¹, K-M. LIN¹, H. SANT¹, J. SHEA¹, J. AGARWAL¹, AND B. GALE¹ ¹University of Utah, Salt Lake City, UT

P-Fri-468

Drug Delivery via Magnetic Nanoparticles: Pioneering Treatment of Osteosarcoma

T. SZASZ¹, A. KOVACH¹, S. BULLA¹, J. LIAO¹, L. WILLIAMS¹, C. BULLA¹, AND R. PRABHU¹ ¹Mississippi State University, Mississippi State, MS

P-Fri-469

Tunable Molecular Release With Micropatterned Nanoporous Gold Thin Films

O. KURTULUS¹, P. DAGGUMATI², AND E. SEKER²

¹Department of Chemical Engineering and Materials Science, University of California Davis, Davis, CA, ²Department of Electrical and Computer Engineering, University of California Davis, Davis, CA

P-Fri-470

NanoPorous Polycaprolactone Thin Films for Zero-order Protein Release E. SCHLESINGER¹ AND T. DESAI²

¹UC Berkeley - UCSF, San Francisco, CA, ²University of California, San Francisco, San Francisco, CA

P-Fri-47 l

Encapsulation of Halloysite Clay Nanotubes with Drug Impregnated Nanolayers

D. MILLS¹ AND R. GRIMES¹ ¹Louisiana Tech University, Ruston, LA

P-Fri-472

Light-Mediated Multi-Step Release From Liposomes

J. PARK¹, R. STOWERS¹, AND L. SUGGS¹ ¹University of Texas at Austin, Austin, TX

P-Fri-473

Cross-linked Lipid Particles for Delivery of Antiretroviral Combinations to Inhibit HIV Infection

W. LYKINS¹, R. RAMANATHAN¹, Y. JIANG¹, AND K. WOODROW¹ ¹University of Washington, Seattle, WA

Track: Drug Delivery, Biomaterials

Self Assembly and Nucleic Acid Drug Delivery

Chairs: Rachael Sirianni, Bahareh Behkam

P-Fri-410

Self-Assembling Drug Delivery Vehicles Direct Angiogenesis and Immune Signals

V. KUMAR¹, B. WANG¹, I-C. LI¹, A. JALAN¹, S. SHI¹, AND J. HARTGERINK¹ ¹Rice University, Houston, TX

P-Fri-411

Layer-by-layer Self Assembly Through α Helical Polypeptides for Responsive Drug Delivery

A. GORMLEY¹, R. CHANDRAWATI¹, D. AILI², AND M. STEVENS¹ ¹Imperial College London, London, United Kingdom, ²Linköping University, Linköping, Sweden

P-Fri-412

Morphologies of DNA Condensed with Functionalized Gold Nanoparticles

E. SALGADO¹, G. YESILBAG², V. ROTELLO², R. BRIBER¹, AND J. SEOG¹ ¹University of Maryland, College Park, MD, ²University of Massachusetts, Amherst, MA

P-Fri-413

Nanoengineered Amphiphilic Particles from Poly(glycerol sebacate)-co-Poly(ethylene glycol) for Drug Delivery Applications

P. DESAI¹, A. VENKATARAMANAN¹, J. CARROW¹, M. JAISWAL¹, A. SINGH², AND A. GAHARWAR¹

¹TEXAS A&M UNIVERSITY, COLLEGE STATION, TX, ²CORNELL UNIVERSITY, ITHACA, NY

P-Fri-414

Treatment Of Lysosomal Storage Disease With Therapeutic Polymersomes E. PEARCE¹, J. LARSEN¹, M. BYRNE¹, AND D. MARTIN¹

¹Auburn University, Auburn, AL

P-Fri-415

Lipid-polymeric Particles with a Patchy Surface C. SALVADOR-MORALES¹ 'George Mason University, Fairfax, VA

P-Fri-416

Incorporation and Simultaneous, Controlled Release Of Multiple, Diverse Comfort Molecules From A Single Daily Disposable Silicone Hydrogel Contact Lens C. WHITE¹, C. BARTEL¹, AND M. BYRNE¹ 'Auburn University, Auburn, AL

SESSION	

POSTER SESSION Fri 9:30AM – 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 4:00PM - 5:00PM

P-Fri-417

Optimizing Poly(beta-amino ester) Polyplexes for Enhanced Cellular Uptake and Particle Stability

J. KIM¹, P. MASTORAKOS², H. PARK², J. SUK², J. HANES², AND J. GREEN¹ ¹School of Medicine, Johns Hopkins University, Baltimore, MD, ²Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD

P-Fri-418

Identifying Factors for Effective Control of DNA Nanoparticle Shape While Retaining *In Vivo* Efficacy

J-M. WILLIFORD¹, Y. REN¹, M. ARCHANG¹, AND H-Q. MAO¹ ¹Johns Hopkins University, Baltimore, MD

P-Fri-419

Continuous-Flow Low-Voltage Microfluidic Electroporation for Gene Delivery

N. BHATTACHARJEE¹, L. HOROWITZ¹, AND A. FOLCH¹ ¹University of Washington, Seattle, WA

P-Fri-420

Enzymatically Degradable Microgels for the Oral Delivery of siRNA J. KNIPE¹, F. CHEN¹, AND N. PEPPAS¹

¹The University of Texas at Austin, Austin, TX

P-Fri-421

Reactive Oxygen Species-responsive Polyplex Micelles as a PEG-detachable Platform for Plasmid DNAdelivery

M. GUPTA¹, S. LEE¹, S. CROWDER¹, X. WANG¹, C. NELSON¹, C. DUVALL¹, AND H-J. SUNG¹

¹Vanderbilt University, Nashville, TN

P-Fri-422

Synthesis and Characterization of N- (2-hydroxy)-3-Chloride Derivatives of Aminoglycoside Polymer for Potential Application in Gene Delivery B. MIRYALA¹, Y. FENG¹, A. OMER¹, AND K. REGE¹

¹Arizona State University, Tempe, AZ

P-Fri-423

Biodegradable DNA Nanoparticles for Efficient *in vivo* Gene Delivery P. MASTORAKOS¹, A. DA SILVA², C. ZHANG¹, J. CHISHOLM¹, S. BERRY¹, W. CHOI¹, H.

PARK¹, M. MORALES², J. HANES¹, AND J. SUK¹ ¹Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, ²Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

P-Fri-424

Dendritic Cell Subsets Interact with CpG-carrying Pathogen Mimicking Particles in a Phenotype Specific Manner

J. LELEUX^{1,2}, P. PRADHAN¹, AND K. ROY^{1,2}

¹Georgia Institute of Technology, Atlanta, GA, ²Emory University, Atlanta, GA

P-Fri-425

Polyethyleneimine Coated Gold Nanoparticles For Efficient And Selective Gene Delivery

B. SHRESTHA¹ AND L. TANG¹ ¹University of Texas at San Antonio, San Antonio, TX

P-Fri-426

Gold Nanoparticle Enhanced DNA and RNA Mediated Therapeutics S. HUANG¹, Y. ZU¹, AND S. WANG¹

¹Louisiana Tech University, Ruston, LA

P-Fri-427

Targeted Intracellular Delivery of siRNA Via Polybasic Nanogels

J. PAWLISH¹, L. KOUECHEU¹, M. TABLER¹, J. GOLODNER¹, B. GONZALES¹, K. PASZEK¹, D. SINGH¹, C. MARCINKIEWICZ¹, AND O. FISHER¹

¹TEMPLE UNIVERSITY, PHILADELPHIA, PA

P = Poster Session
 OP = Oral Presentation
 @ = Reviewer Choice Award

P-Fri-428

Direct Tethering of Small Interfering RNA (siRNA) to Biodegradable Hydrogels for Its Controlled Delivery to Cells

M. NGUYEN¹, A. GILEWSKI¹, M. LEVY², AND E. ALSBERG¹ ¹Case Western Reserve University, Cleveland, OH, ²Albert Einstein College of Medicine,

P-Fri-429

Bronx, NY

Real-time Visualization of PEI Polymer Dynamics During pH Buffering K. CURTIS¹, T. Abdus-Shakur¹, and P. Chandran¹

¹Howard University, Washington, DC, DC

P-Fri-430

A Factorial Design For Therapeutic Agent Delivery For Pediatric Tracheomalacia

A. GOODFRIEND¹, T. WELCH¹, K. NGUYEN², A. NUGENT¹, AND J. FORBESS¹ ¹University of Texas Southwestern Medical Center at Dallas, Dallas, TX, ²University of Texas Arlington, Arlington, TX

P-Fri-431

Fabrication of PLGA Microparticles for Improved HPV Vaccine Delivery

E. CESEWSKI¹, K. HIGGINS¹, E. MCMAHON¹, R. BROWN¹, J. FIX¹, D. FREUDENBERGER¹, V. NIBA¹, H. PARK¹, G. PERDOMO¹, A. SEO¹, A. SRIVASTAVA¹, C. TSUI¹, A. WHITEMAN¹, AND R. ZUBAJO¹

¹University of Maryland, College Park, MD

P-Fri-432

Modeling of Gel Flow and Drug Transport in the Vaginal Mucosa for Better Microbicide Gel Design

Y. GAO¹, A. YUAN¹, AND D. KATZ¹,² ¹Duke University, Durham, NC, ²Duke University Medical Center, Durham, NC

P-Fri-433

Development of Surface-Modified pH-Responsive Hydrogels for the Oral Delivery of Growth Hormone

S. STEICHEN¹, E. FISCHER¹, S. YARBOROUGH¹, C. O'CONNOR¹, AND N. PEPPAS¹,² ¹The University of Texas at Austin, Austin, TX, ²The University of Texas of Austin, Austin, TX

P-Fri-434

Adjuvant Conjugated Nano-particles for Vaccine Delivery: A Robust Method for Immune Response

K. BRINK¹ ¹Texas A&M University, College Station, TX

P-Fri-435

Alginate Based Hydrogels for Controlled-release of Zosteric Acid and Sodium Benzoate

Q. WANG¹ AND B-M. ZHANG NEWBY¹ ¹The University of Akron, Akron, OH

P-Fri-436

Poly(acrylic acid)-Poly(ethylene glycol) Microgels for Protein Delivery J. RIOS¹, G. LU¹, N. SEO¹, T. LAMBERT¹, AND D. PUTNAM¹ ¹Cornell University, Ithaca, NY

P-Fri-437

Cell-Based Microarrays: A Platform to Facilitate Patient-Specific Therapy

M. CARSTENS¹, A. ACHARYA², J. LEWIS¹, E. HUANG³, AND B. KESELOWSKY¹ ¹University of Florida, Gainesville, FL, ²University of California, Berkelely, Berkeley, CA, ³Cleveland Clinic, Cleveland, OH

P-Fri-438

Development of Continuous Flow Microspotter for High-Throughput Drug Screening and Cytotoxicity Evaluation

J. ARELLANO¹, J. GAMMON¹, J. YANG¹, B. GALE¹, AND M. JANAT-AMSBURY¹ ¹University of Utah, Salt Lake City, UT

P-Fri-439

Microglia Migration and Interactions with Dendrimer in Brain in the Presence of Neuroinflammation

F. ZHANG^{1,2}, E. NANCE¹, Y. ALNASSER¹, R. KANNAN¹, AND S. KANNAN¹ ¹Johns Hopkins University School of Medicine, Baltimore, MD, ²Johns Hopkins University, Baltimore, MD

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM , 4:00PM - 5:00PM

P-Fri-440 MOVED TO P-TH-359

Track: Nano to Micro Technologies, Device Technologies and Biomedical Robotics

Nanotechnology, Microfluidic Platforms, Theranostics

Chairs: Maribel Vazquez, Jeff Zahn

P-Fri-65 l

Vertically Aligned Carbon Nanofiber Biosensor Platform K. MAMUN¹, F. TULIP¹, N. MCFARLANE¹, AND S. ISLAM¹ ¹University of Tennessee, knoxville, TN

P-Fri-652

Spectral Shifting of Bare and PEGylated Plasmonic Nanoparticles in Biological Environments

A. CHEN¹, M. JACKSON¹, Y. HU², A. LIN¹, J. YOUNG¹, R. LANGSNER¹, AND R. DREZEK¹ ¹Rice University, Houston, TX, ²Salk Institute for Biological Studies, La Jolla, CA

P-Fri-653

Interaction of Flagellin with Single-walled Carbon Nanotubes I. MacWaN¹, Z. ZHAO¹, O. SOBH², AND P. PATRA¹

¹University of Bridgeport, Bridgeport, CT, ²University of Pennsylvania, Philadelphia, PA

P-Fri-654

Nanoparticle Surface Charge Impacts Vesicle Motion in Cortical Neurons C. Godzich¹, D. Di Carlo¹, and A. Kunze¹

¹University of California Los Angeles, Los Angeles, CA

P-Fri-655

Digital Microfluidic Platform for Cell Spheroid-Based Migration/Invasion Assays

B. BENDER¹, A. AIJIAN¹, AND R. GARRELL¹ ¹University of California, Los Angeles, Los Angeles, CA

P-Fri-656

Preparation of a Nano-patterned Polymer Replica for Reducing Catheter Associated Inflammation and Infection

L. LIU¹, B. ERCAN¹, S. NI², L. SUN¹, AND T. WEBSTER¹ ¹Northeastern University, Boston, MA, ²Donghua University, Shanghai, China, People's Republic of

P-Fri-657

Macrophage Phenotypic Response to Silica Nanotparticles

H. HERD^{1,2}, K. BARTLETT^{1,2}, J. GUSTAFSON^{1,2}, AND H. GHANDEHARI^{1,2} ¹University of Utah, Salt Lake City, UT, ²Utah Center for Nanomedicine, Salt Lake City, UT

P-Fri-658

Highly Controlled Janus Nanoparticle Synthesis for Cancer Therapy E. CAMPBELL¹, J. TANG¹, Y. XIA¹, AND T. SULCHEK¹

E. CAMPBELL', J. TANG', Y. XIA', AND T. SULCHE 'Georgia Institute of Technology, Atlanta, GA

P-Fri-659

Controlled Gold Nanorod Assembly with Well-defined Surface Plasmon Pattern on Substrates

Z. MEI¹ AND L. TANG¹ ¹University of Texas at San Antonio, San Antonio, TX

P-Fri-660

Cell-Free Protein Synthesis in Miniaturized Devices and their Effects on the Synthesis Yield

K. JACKSON¹ AND Z. FAN¹ ¹University of Florida, Gainesville, FL

P-Fri-66 l

An Automated, Pump-less Microfluidic Device for Image-Cytometry Measurements of Oral Lesions T. ABRAM¹ AND J. MCDEVITT¹ *'Rice University, Houston, TX*

P-Fri-662

Reusable Polyurethane Negative Mold for Micropost Fabrication

N. TAPARIA¹, R. AARON¹, S. TAVAKOLI¹, A. KARCHIN¹, AND N. SNIADECKI¹ ¹UNIVERSITY OF WASHINGTON, SEATTLE, WA

P-Fri-663

3D-Printed Microvalves and Micropumps

A. AU¹ AND A. FOLCH¹ ¹University of Washington, Seattle, WA

P-Fri-664

3D Printed Microfluidic Oxygen Mixer G. MAULEON¹, L. VILLAFANA¹, AND D. EDDINGTON¹ 'University of Illinois at Chicago, Chicago, IL

P-Fri-665

3D Printed Microfluidic Devices for Oxygen Control in Cell Culture M. BRENNAN¹ AND D. EDDINGTON¹

¹University of Illinois at Chicago, Chicago, IL

P-Fri-666

Numerical And Experimental Investigation Of Sharp-edge-based Acoustofluidic Mixers

N. NAMA¹, P-H. HUANG¹, T. JUN HUANG¹, AND F. COSTANZO¹ ¹The Pennsylvania State University, University Park, State College, PA

e i ennisylvania State Oniversity, Oniv

P-Fri-667

Fast and Effective Mixing of High Viscosity Liquids via Acoustofluidic Bubble Cavitations

A. OZCELIK¹, Y. XIE¹, A. NAWAZ¹, AND T. HUANG¹ ¹The Pennsylvania State University, University Park, PA

P-Fri-668

Controllable Generation of Chemical Gradient via Acoustically Oscillated Sharp Edges

P-H. HUANG¹, C. CHAN¹, N. NAMA¹, Y. CHEN¹, Y. XIE¹, AND T. HUANG¹ ¹The Pennsylvania State University, University Park, PA

P-Fri-669

Droplet Generation and Trapping for High-throughput Bioassays

D. HU¹, Z. ZHAO¹, G. GHOSH¹, AND J. LO¹ ¹University of Michigan-Dearborn, Dearborn, MI

P-Fri-670

A Programmable Acoustofluidic Pump P-H. HUANG¹, N. NAMA¹, Z. MAO¹, Y. CHEN¹, Y. XIE¹, AND T. HUANG¹ 'The Pennsylvania State University, University Park, PA

P-Fri-67I

Single Cell Capturing and Long-Term Culture Using a Microfluidic Dual-Well Device

C-H. LIN^{1,2}, Y-H. HSIAO^{1,3}, H-C. CHANG^{1,2}, C-K. HE^{1,2}, I-M. CHIU^{1,2}, AND C-H. HSU^{1,2,3} ¹National Health Research Institute, Miaoli County, Taiwan, ²National Chung Hsing University, Taichung, Taiwan, ³National Tsing Hua University, Hsinchu, Taiwan

P-Fri-672

Compact, Low-power Micropump via Electrolysis and Catalytic Recombination towards Integrated Microfluidic Systems A. MICHAELIAN¹, C. TRUONG¹, AND U. KIM¹ 'Santa Clara University, Santa Clara, CA

FRIDAY | OCTOBER 24 | 2014

POSTER SESSION Fri 9:30AM – 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 4:00PM - 5:00PM

P-Fri-673

High-throughput Enrichment of Particles from mm/s Fluid Flow Based on AC Electrokinetics

Q. YUAN¹, C. CHENG¹, H. CUI¹, AND J. WU¹ ¹The University of Tennessee-Knoxville, Knoxville, TN

P-Fri-674

Diffusion-based Microfluidic PCR for "One-pot" Analysis of Cells C. LU¹, S. MA¹, D. LOUFAKIS¹, Z. CAO¹, Y. CHANG¹, AND L. ACHENIE¹ ¹Virginia Tech, Blacksburg, VA

P-Fri-675

Microfluidic Generation of Cell-Like Liposomes D. VALLEJO¹ AND A. LEE¹ ¹University of California, Irvine, Irvine, CA

P-Fri-676

Mathematical Simulations of Heat Transfer and Fluid Dynamics in a Microfluidic Calorimeter with Integrated Thin-film Thermopiles G. NESTOROVA¹, N. CREWS ¹, AND E. GUILBEAU¹ ¹Louisiana Tech University, Ruston, LA

P-Fri-677

Microfluidic Generation of Stiffness-tunable Polyacryamide Substrate for Studying Mechanical Regulation of Cell Culture Substrate on Cancer Cells H. YI-HSING^{1,2}, C. CHIHCHEN², AND H. CHIA-HSIEN^{1,3}

¹National Health Research Institutes, Miaoli County, Taiwan, ²National Tsing Hua University, Hsinchu, Taiwan, ³National Tsing Hua University, Hsin chu, Taiwan

P-Fri-678

Immobilization of Oxalyldihydrazide on Poly(Dimethylsiloxane)

S. STONE¹ AND B. HOLLINS¹ ¹Louisiana Tech University, Ruston, LA

P-Fri-679

A Portable Microfluidic Capillary Electrophoresis Platform for Detecting Organochloride Contaminants in Drinking Water

J. LEE¹, E. JENSEN², H. MEHRABANI², H. JIAO², AND J. KIM¹

¹Texas Tech University, Lubbock, TX, ²HJ Science & Technology, Inc., Berkeley, CA

P-Fri-680

Integrating 2D and 3D Microelectrodes in Plastic Microfluidic Devices Allowing Spatial and Temporal Control of Electric Fields for Detection or Stimulation.

J. PAREDES^{1,2}, K. FINK^{3,4}, M. CHOOLJIAN^{3,4}, AND D. LIEPMANN^{3,4,5}

¹CEIT and Tecnun (University of Navarra), Donostia-San Sebastián, Spain, ²CIC microGUNE, Arraste-Mondragon, Spain, ³University of California, Berkeley, Berkeley, CA, ⁴UC Berkeley – UC San Francisco Graduate Program in Bioengineering, Berkeley, CA, ⁵Berkeley Sensors and Actuators Center, Berkeley, CA

P-Fri-681

Trapping of Submicron Beads using 3D Embedded-electrode Insulator-based Dielectrophoresis (3D-E $^{\mbox{\tiny TT}}$ DEP)

D. NAKIDDE¹ AND M. AGAH¹ ¹Virginia Tech, Blacksburg, VA

P-Fri-682

Microfluidic Viscoelastic Hemostatic Assay for Coagulation Diagnostics

R. JUDITH¹, J. FISHER², R. SPERO², B. OBERHARDT¹,³, M. FALVO¹, R. TAYLOR¹, AND R.

SUPERFINE¹ ¹University of North Carolina at Chapel Hill, Chapel Hill, NC, ²Rheomics Inc., Chapel Hill, NC, ³North Carolina State University, Raleigh, NC

P-Fri-683

Single Cell Mechanophenotyping and Mechanotransduction using a Microfluidic Micropipette Array

L. Lee¹, V. Murray¹, J. Heureaux¹, and A. Liu¹ ¹University of Michigan, Ann Arbor, MI

P-Fri-684

Fabrication and Investigation of a Miniaturized Nanochannel Drug Delivery System

R. HOOD¹, S. FERRATI¹, AND A. GRATTONI¹ ¹The Houston Methodist Research Institute, Houston, TX

P-Fri-685

A Self-Contained Multi-Step Immunoassay for Point-of-Care Applications I. NANAYAKKARA¹, J. KARIMI¹, AND A. LEE¹ ¹University of California, Irvine, Irvine, CA

P-Fri-686

Multiplexed Electronic Protein Analysis: A Comprehensive Design Space S. EMAMINEJAD¹, R. DUTTON¹, R. DAVIS¹, AND M. JAVANMARD¹ 'Stanford University, Stanford, CA

P-Fri-687

Micro and Millifluidic Platforms for Scalable Production of Multifunctional Nanoparticles

S. KIM¹, M. TOTH¹, G. BAO¹, D. GIDDENS¹, AND Y. KIM¹ ¹Georgia Institute of Technology, Atlanta, GA

P-Fri-688

Facile Construction of Magnetic Enzyme Nanosystem as a Dual-platform for Fapid Tryptic Digestion G. CHENG¹ AND S-Y. ZHENG¹ ¹Penn State University, State College, PA **P-Fri-690**

P-Fri-690

Bioelectrical Impedance Measurements to Detect Changes in Tight Junction Expression at Cell Junctions R. KRAYA¹ AND P. SEARSON^{1,2}

¹Institute for Nanobiotechnology, Baltimore, MD, ²Johns Hopkins University, Baltimore, MD

P-Fri-69l

Selective Detection and Quantification of Modified DNA With Solid-State Nanopores

O. ZAHID¹, A. CARLSEN¹, J. RUZICKA², E. TAYLOR², AND A. HALL¹ ¹Wake Forest University School of Medicine, Winston-Salem, NC, ²University of North Carolina Greensboro, Greensboro, NC

P-Fri-692 🧝

Label Free, Multiplexed Plasmonic Gold Nanorod Biochip

Y. WANG¹ AND L. TANG¹

¹University of Texas at San Antonio, San Antonio, TX

P-Fri-693

Microfluidic Organ-on-a-Chip: Bi-directional Fluidic Flow Enhances Multicell-type, Three-dimensional Human Primary Liver Cell Culture M. ESCH¹, J-M. PROT¹, P. MILLER¹, D. APPLEGATE², AND M. SHULER¹ ¹Cornell University, Ithaca, NY, ²RegeneMed, San Diego, CA

inen oniversity, itnaca, ivi, 'negeneivi

P-Fri-694

Treatment of Vascular Calcification with Elastin-Targeted Theranostic Nanoparticles

K. BENNETT¹ AND C. SIMPSON¹

¹Mississippi State University, Mississippi State, MS

P-Fri-695

Evaluating Antibody Conjugated Magnetic Microspheres for the Depletion of Interleukin-I Beta for Osteoarthritis Treatment

A. MONSALVE¹, B. KOZISSNIK¹, A. GARRAUD¹, E. YARMOLA¹, K. ALLEN¹, AND J. DOBSON¹

¹University of Florida, Gainesville, FL

P-Fri-696

Molecular Targeting and Imaging Using Virus-Based Nanoparticle-Antibody Conjugates

J. WHITNEY¹, M. MCBURNEY¹, D. THOMPSON², P. DAWSON², AND N. STEINMETZ¹ ¹Case Western Reserve University, Cleveland, OH, ²The Scripps Research Institute, La Jolla, CA

P = Poster Session
 OP = Oral Presentation
 = Reviewer Choice Award

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM , 4:00PM - 5:00PM

P-Fri-697

Clinically Relevant Carbon Nanotube Dispersions for Microwave Hyperthermia

S. XIE¹, F. GAO², S. PATEL¹, J. BOOSKE², S. HAGNESS², AND B. SITHARAMAN¹ ¹Stony Brook University, Stony Brook, NY, ²University of Wisconsin-Madison, Madison, WI

P-Fri-698

Bioengineering Silicon Quantum dot Theranostics using a Network analysis of Metabolomic and Proteomic Data in Cardiac Ischeamia

F. EROGBOGBO¹ AND P. GLADDING²

¹San Jose State University (SJSU), San Jose, CA, ²North Shore Hospital, Auckland, New Zealand

P-Fri-699

Dendritic Wedge-Based Display of Polyarginine Peptides on Semiconductor Quantum Dots Mediates Differential Cellular Binding and Internalization J. BREGER^{1,2}, K. SUSUMU¹, M. MUTTENHALER³, J. DELEHANTY¹, P. DAWSON³, AND I. MEDINTZ¹

¹U.S. Naval Research Laboratory, Washington, DC, ²American Society for Engineering Education, Washington, DC, ³The Scripps Research Institute, La Jolla, CA

P-Fri-700 🤶

Pump-Free Membrane-Controlled Perfusion Microfluidic Platform V. GORAL¹, E. TRAN¹, AND P. YUEN¹ ¹Corning Incorporated, Corning, NY

P-Fri-701

Design of a Custom Multiwell Platform for the Simple and Rapid Preparation of Polyacrylamide Stiffness Assay N. AHMED¹, H. STEVENSON¹, A. KARADAGHY¹, AND S. ZUSTIAK¹ ¹Saint Louis University, St Louis, MO

Track: Neural Engineering, Device Technologies and Biomedical Robotics

Neural Engineering II: Glia, PNS Interfaces, and CNS Injury

Chairs: Teresa Murray, Jennifer Kang-Mieler

P-Fri-301

Static Stretch Affects Neural Stem Cell Differentiation Along the Oligodendrocyte Lineage

J. ARULMOLI¹, M. PATHAK¹, L. MCDONNELL¹, AND L. FLANAGAN¹ ¹University of California, Irvine, Irvine, CA

P-Fri-302

Application of Optical Clearing Methods to Tissue-Engineered Neural Microtissues

M. BOUTIN¹ AND D. HOFFMAN-KIM¹ [†]Brown University, Providence, RI

P-Fri-303

Spinal Cord Injury Treatments Tested *In Vivo* Integrating Neural Stem Cell Delivery and Lineage Specification via Immobilized Growth Factors H. Ll¹, T. HAM¹, A. WILKINSON¹, A. KOENIG¹, AND N. LEIPZIG¹ 'University of Akron, Akron, OH

P-Fri-304

Effects of Shear and Electric Stimulation on the Migrating Behavior of Microglia

S. AHN¹, S. SONG¹, E. PARK¹, M. SON¹, J-S. PARK¹, AND J. SHIN¹ ¹KAIST, Daejeon, Korea, Republic of

P-Fri-305

Directed Chemotaxis Of Retinal Progenitor Cells In 3D Hydrogels For Rational Cell Delivery Vehicles

A. KOPPES^{1,2,3}, M. OUDIN³, P. BARANOV², M. MILLER³, F. GERTLER³, M. YOUNG², D. LAUFFENBURGER³, AND R. CARRIER¹

¹Northeastern University, Boston, MA, ²Schepens Eye Research Institute & Harvard Medical School, Boston, MA, ³Massachusetts Institute of Technology, Cambridge, MA

P-Fri-306 🤶

Enhanced Astrocyte GLT-I Mediated Glutamate Uptake and Migration Induced by Fibronectin-coated Poly-L-lactic Acid Fibers

J. ZUIDEMA¹, M. HYZINSKI-GARCIA², K. VAN VLASSELAER¹, N. ZACCOR¹, G. PLOPPER¹, A. MONGIN², AND R. GILBERT¹

¹Rensselaer Polytechnic Institute, Troy, NY, ²Albany Medical College, Albany, NY

P-Fri-307

Increased Neurogenesis in Close Proximity to Flow-Stimulated Endothelial Cells

C. DUMONT¹, G. DAI¹, AND D. THOMPSON¹ ¹Rensselaer Polytechnic Institute, Troy, NY

P-Fri-308

Enhanced Myelination by Focal Electrical Stimulation in Microfluidic Platform

H. LEE¹, I. YANG¹,², AND N. THAKOR¹,² ¹National University of Singapore, Singapore, Singapore, ²Johns Hopkins University, School of Medicine, Baltimore, MD

P-Fri-309

3D Printing of Nanostructured Nerve Guidance Scaffolds with Graphene Nanoplatelets

C. O'BRIEN¹ AND L. ZHANG¹ ¹The George Washington University, Washington, DC

P-Fri-310

Astrocyte Aligning Using Laminin Micropattern on Cell Adhesive Substrate S. JOO¹, J. KIM², E. LEE², N. HONG¹, W. SUN², AND Y. NAM¹

¹KAIST, Daejeon, Korea, Republic of, ²Brain Korea ²¹, Korea University College of Medicine, Seoul, Korea, Republic of

P-Fri-311

Short Term Electrical Stimulation to Promote Nerve Repair and Functional Recovery of Sciatic Nerve Injuries

W. Zhou', C. Calvey², K. Sloan-Stakleff², P. Sendelbach-Sloan², W. Lanzinger², and R. Willits'

¹University of Akorn, Akron, OH, ²Akron General Medical Center, Akron, OH

P-Fri-312

A Multi-Branch Nerve Scaffold With Embedded Microwires In Neural Interfacing Applications

B. KIM¹, E. IBARRA¹, B. GARZA¹, R. LUNA¹, AND Y. CHOI¹ ¹University of Texas – Pan American, Edinburg, TX

P-Fri-313

Electrical Stimulation of Single Somatic Nerve Fascicles are Sufficient to Reduce Hypertension

A. Kanneganti¹, S. Fatemi¹, C. Nothnagle ², M. Wijesundara ², M. Mizuno³, S. Smith³, Y-T. Kim¹, and M. Romero-ortega¹

¹Univ. Of Texas at Arlington, Arlington, TX, ²Univ. Of Texas at Arlington Research Institute, Fort Worth, TX, ³Univ.of Texas Southwestern Medical Center, Dallas, TX

P-Fri-314

Neurophysiologic Evaluations of Nano Graphene Multi-Electrode Array for Neural Interfaces

C. CHEN¹, W. YI¹, Z. FENG¹, C. ZHOU¹, J. CAVANAUGH¹, AND M. CHENG¹ ¹Wayne State University, Detroit, MI

P-Fri-315

Thin Film Wireless Electrodes Used To Deliver Therapeutic Stimulation P. GAMBLE¹, M. STEPHEN¹, M. MACEWAN¹, AND W. RAY¹ 'Washington University in St Louis, St Louis, MO FRIDAY | OCTOBER 24 | 2014

POSTER SESSION Fri 9:30AM - 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 4:00PM - 5:00PM

P-Fri-316

The Role of Oxidative Stress in Axonal Pathology R. DASTGHEYB¹, G. GALLO², AND K. BARBEE¹

¹Drexel University, Philadelphia, PA, ²Temple University, Philadelphia, PA

P-Fri-317

Local Delivery of Paclitaxel from Aligned Electrospun Poly(lactic-acid) Microfibers Promotes Neurite Extension *In Vitro* J. ROMAN¹, A. HURTADO¹, AND H-Q. MAO¹ 'Johns Hopkins University, Baltimore, MD

P-Fri-318

Directing NPC Differentiation with Natural Biomaterials: Implications for Spinal Cord Repair

S. GEISSLER¹, A. SABIN², O. GOODEN², R. BESSER², AND C. SCHMIDT² ¹The University of Texas, Gainesville, FL, ²University of Florida, Gainesville, FL

P-Fri-319

Compromised Axonal Functionality After Neurodegeneration and/or Traumatic Brain Injury. P. MAIA¹ AND N. KUTZ¹

¹University of Washington, Seattle, WA

P-Fri-320

Transcriptomics and Metabolomics of Surgically-induced Cervical Syringomyelia

A. WILKINSON¹, M. FARRAG¹, S. HAFT², P. JOSHI¹, H. HUANG¹, L. SHRIVER¹, AND N. LEIPZIG¹

¹University of Akron, Akron, OH, ²Claremont McKenna College, Claremont, CA

P-Fri-321

Delivery of Paramagnetic Nanoparticles after Traumatic Brain Injury in Mice V. BHARADWAJ¹, K. RUMBO¹, V. KODIBAGKAR¹, AND S. STABENFELDT¹ 'Arizona State University, Tempe, AZ

P-Fri-322

Semi-Interpenetrating Alginate/Laminin Hydrogels to Study Mechanism for Neural Remodeling Following Traumatic Brain Injury

N. STURDIVANT¹, A. HAILEYESUS¹, J. CARRADINI¹, AND K. BALACHANDRAN¹ ¹University of Arkansas, Fayetteville, AR

P-Fri-323

Pairing Vagus Nerve Stimulation With Rehabilitative Training Enhances Functional Recovery After Traumatic Brain Injury

D. PRUITT¹,², A. SCHMID¹,², C. CHOUA¹,², L. KIM¹,², C. ABE¹,², J. TRIEU¹,², M. KILGARD¹,², AND R. RENNAKER¹,²

 $^{\circ}$ The University of Texas at Dallas, Richardson, TX, $^{\circ}$ Texas Biomedical Device Center, Richardson, TX

P-Fri-324

Incidence and Risk of Concussive Injury in Vehicle Crashes

H. GABLER¹

¹VIRGINIA TECH, BLACKSBURG, VA

P-Fri-325

Stretch Induced Effects on Callosal Pathway Flavoprotein Autofluoresence A. FAN¹, K. STEBBINGS¹, D. LLANO¹, AND T. SAIF¹ 'University of Illinois at Urbana-Champaign, Urbana, IL

P-Fri-326

Traumatic Brain Injury Resulted in Increased Aquaporin-4 Expression - Relevance to Post-Injury Edema?

N. STURDIVANT¹, A. HAILEYESUS¹, J. CARRADINI¹, AND K. BALACHANDRAN¹ ¹University of Arkansas, Fayetteville, AR

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

P-Fri-327 🧕

Wide Field-of-view, Dual-region Multiphoton Imaging Across Extended Cortical Networks

J. STIRMAN¹,², I. SMITH¹, M. KUDENOV³, AND S. SMITH¹,²,⁴

¹Neuroscience Center, University of North Carolina, Chapel Hill, NC, ²Carolina Institute for Developmental Disabilities, Chapel Hill, NC, ³Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, ⁴Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC

P-Fri-328

Carbon Nanotube/Polyethylene Glycol Hydrogel Composite as an *in vitro* Model for Neural Tissue Engineering

K. SHAH¹, D. VASILEVA¹, AND S. ZUSTIAK¹ ¹Saint Louis University, St Louis, MO

Track: Orthopaedic and Rehabilitation Engineering, Biomechanics

Articular Cartilage and Joints

Chairs: Spencer Lake, Meng Deng

P-Fri-545

In-Vitro Modeling of Osteoarthritis with a Silk Scaffold and Mechanical Compression

S. BERRY¹, L. HAYWARD¹, AND D. KAPLAN¹ ¹Tufts University, Medford, MA

P-Fri-546

Testing Efficacy of Pain Management Therapies in a Rodent Model of Post-Traumatic Knee Osteoarthritis

H. KLOEFKORN¹, B. JACOBS¹, AND K. ALLEN¹ ¹University of Florida, Gainesville, FL

P-Fri-547

Enhanced Stem Cell Functions on Cold Atmospheric Plasma Treated Nanocomposite Cartilage Scaffolds W. ZHU¹, M. KEIDAR¹, AND L. ZHANG¹ 'The George Washington University, Washington, DC

P-Fri-548

Designing a Probe for the Magnetic Collection of Molecular Biomarkers in Joints for Early Detection of Osteoarthritis Y. SHAH¹, C. VELEZ CUERVO¹, E. YARMOLA¹, D. ARNOLD¹, J. DOBSON¹, AND K. ALLEN¹ ¹University of Florida, Gainesville, FL

P-Fri-549

Improve the Efficiency of Articular Cartilage Indentation Test by Principal Component Analysis

X. CHEN¹, B. ZIMMERMAN¹, AND X. LU¹ ¹University of Delaware, Newark, DE

P-Fri-550

Low Intensity Vibration Enhances Cartilage Thickness in Young Obese Mice without Compromising Bone. V. BHANDAL¹, T. PAMON¹, M. CHAN¹, AND C. RUBIN¹

Stony Brook University, Stony Brook, NY

P-Fri-55 |

Wear in Total Knee Replacements with Oxidized Zirconium Femoral Components Explanted Postmortem

M. BLAND¹, K. AUSTRIACO¹, A. EBERHARDT¹, AND J. LEMONS¹ ¹University of Alabama at Birmingham, Birmingham, AL

P-Fri-552

Degradation-dependent Alterations in Articular Cartilage Lubricating Mechanisms

E. BONNEVIE¹, D. GALESSO², C. SECCHIERI², AND L. BONASSAR¹ ¹Cornell University, Ithaca, NY, ²Fidia Farmaceutici, Padua, Italy

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM , 4:00PM - 5:00PM

P-Fri-553

Calcium Phosphate Clay Nanoparticle Bone Cements with Enhanced Mechanical Properties<u> </u>

U. JAMMALAMADAKA¹, K. TAPPA², S. KARNIK¹, AND D. MILLS¹ ¹Louisiana Tech University, Ruston, LA, ²Louisiana Tech University, Ruston, Afghanistan

P-Fri-554

The Effect of Delayed Mechanical Stimulation in an *in vitro* Microfracture Model

M. PARK¹, M. CHATTERJEE¹, B. ZIMMERMAN¹, L. SNYDER-MACKLER¹, AND X. LU¹ ¹University of Delaware, Newark, DE

P-Fri-555

Alterations of Articular Cartilage Surfaces after Mechanical Insult

E. BONNEVIE¹, M. DELCO¹, P. ALEXANDER², R. TUAN², L. FORTIER¹, AND L. BONASSAR¹ ¹Cornell University, Ithaca, NY, ²University of Pittsburgh, Pittsburgh, PA

P-Fri-556 🧕

In Vivo Characterization of Silk Fibroin Microparticles for Intra-Articular Drug Delivery

T. MWANGI¹, R. BOWLES¹, D. TAINTER², R. BELL², D. KAPLAN³, AND L. SETTON¹,² ¹Duke University, Durham, NC, ²Duke University Medical Center, Durham, NC, ³Tufts University, Medford, MA

Track: Orthopaedic and Rehabilitation Engineering

Bone

Chairs: John Cotton, Joel Bumgardner

P-Fri-533

Experimental Investigation of Bone Drilling Performance

E. MACDONALD¹, S. RUSSEL¹, AND S. SCHMID¹ ¹University of Notre Dame, Notre Dame, IN

P-Fri-534

Cellulose-based Scaffolds for Enhanced Bone Formation by Human Adipose-derived Stem Cells

H-J. PARK¹, K. YANG¹, A-N. CHO¹, S. YU², S. IM², AND S-W. CHO¹ ¹Department of Biotechnology, Yonsei University, Seoul, Korea, Republic of, ²Department of Chemical and Biomolecular Engineering, KAIST, Daejeon, Korea, Republic of

P-Fri-535

Anti-Infective Calcium Phosphate Bone Cement

K. TAPPA¹, U. JAMMALAMADAKA², S. KARNIK², AND D. MILLS² ¹Louisiana Tech University, Ruston, Afghanistan, ²Louisiana Tech University, Ruston, LA

P-Fri-536

In-Vivo Biocompatibility and Toxicity of Single Walled Carbon Nanotube Composites for Bone Tissue Engineering

A. GUPTA1, T. LIBERATI1, S. VERHULST1, B. $\mathsf{MAIN1,^2}$, M. ROBERTS1, A. POTTY1, AND S. EL-AMIN1, 3

¹Southern Illinois University School of Medicine, Springfield, IL, ²University of Illinois at Springfield, Springfield, IL, ³Southern Illinois University, School of Medicine, Springfield, IL

P-Fri-537

Biomechanical Investigation of Extracorporeal Irradiation Therapy in Malignant Bone Tumours

S. CHAUHAN¹, K. MANOJ², S. RASTOGI², S. KHAN², AND A. PRASAD¹ ¹Indian Institute of Technology Delhi, New Delhi, India, ²All India Institute of Medical Sciences, New Delhi, India, New Delhi, India

P-Fri-538

Mitigating Effect Of Dynamic Hydraulic Flow Stimulation On Bone Loss In Functional Disuse Model

T. CHU¹, M. HU¹, AND Y-X. QIN¹ ¹Stony Brook University, Stony Brook, NY

P-Fri-539

Biasing MSC Differentiation into an Osteoblastogenic Fate Using LIV Leads to Higher Bone Count and Quality

T. SAMPHEL¹, D. FRECHETTE², E. CHAN², AND C. RUBIN²

¹Stony Brook University, woodside, NY, ²Stony Brook University, Stony Brook, NY

P-Fri-540

Electrical and Dielectric Properties of Bone and Its Constituents with Frequency

H. RANU¹ AND D. RAI²

¹American Orthopaedic Biomechanics Research Institute, Atlanta, GA, ²Shobit University, Meerut, India

P-Fri-54l

Intracranial Analysis of Non-Sutural Osteoblast Mechanobiology in the Developing Mammal Skull

H. WEISS-BILKA¹, S-Y. LIU², AND M. RAVOSA¹ ¹University of Notre Dame, Notre Dame, IN, ²Indiana University School of Dentistry, Indianapolis, IN

P-Fri-542

Morphological Analysis of Changes in the Thoracic Skeleton with Sex and $\ensuremath{\mathsf{Age}}$

A. WEAVER¹, S. SCHOELL¹, C. NGUYEN², AND J. STITZEL¹ ¹Wake Forest University Center for Injury Biomechanics, Winston-Salem, NC, ²Wake Forest University, Winston-Salem, NC

P-Fri-543

A Controlled Delivery Method to Localize Stem Cells

S. LESLIE¹, D. COHEN¹, J. SEDLACZEK², E. PINSKER³, Z. SCHWARTZ¹, AND B. BOYAN¹ ¹Virginia Commonwealth University, Richmond, VA, ²Otto-von-Guericke University, Magdeburg, Germany, ³Georgia Institute of Technology, Atlanta, GA

P-Fri-544

Fracture Healing in a Mouse Model of Saether-Chotzen Syndrome

S. HYZY¹, G. REDDY¹, R. OLIVARES-NAVARRETE¹, Z. SCHWARTZ¹,²,³, AND B. BOYAN¹,² ¹Virginia Commonwealth University, Richmond, VA, ²Georgia Institute of Technology, Atlanta, GA, ³University of Texas Health Science Center at San Antonio, San Antonio, TX

Track: Respiratory Bioengineering, Biomechanics

Computational Modeling of the Respiratory System

Chairs: Donald Gaver

P-Fri-522

Computational Modeling of the Alveolar-Scale Deformation during

Pulmonary Fibrosis L. CAGGIANO¹, M. SCHICKEL¹, AND S. GHADIALI¹ ¹The Ohio State University, Columbus, OH

P-Fri-524

Investigation Into the Enhancement of Surfactant Transport and Sorption in a Model of Airway Reopening

J. PILLERT¹, H. FUJIOKA¹, D. HALPERN², AND D. GAVER¹ ¹Tulane University, New Orleans, LA, ²University of Alabama, Tuscaloosa, AL

P-Fri-525

A Computational Model of Epithelial Cell Monolayer Disruption in the Lung B. Ma¹ AND J. BATES¹

¹University of Vermont, Burlington, VT

P-Fri-526

Mechanistic Computational Model of Lung Tissue Bioenergetics and the Effect of Acute Lung Injury

X. ZHANG¹, R. DASH², A. CLOUGH¹, E. JACOBS³, AND S. AUDI¹ ¹Marquette University, Milwaukee, WI, ²Medical College of Wisconsin, Milwaukee, WI, ³Zablocki VA Medical Center, Milwaukee, WI

POSTER SESSION Fri 9:30AM - 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 4:00PM - 5:00PM

P-Fri-527

Computational Simulation of Eustachian Tube Sonotubometry Test

J. TORRES-RODRIGUEZ¹ AND S. GHADIALI¹ ¹The Ohio State University, Columbus, OH

P-Fri-528

A Scaling Model of the Lung Parenchyma in Aging B. SUKI¹ ¹Boston University, Boston, MA

P-Fri-529

Agent-Based Models For Studying Stem Cell Dynamics On Decellularized Lung Scaffolds

J. POTHEN¹, V. RAJENDRAN², D. WAGNER¹, D. WEISS¹, AND J. BATES¹ ¹University of Vermont College of Medicine, Burlington, VT, ²Essex High School, Essex Junction, VT

P-Fri-530

Real-Time Numerical Simulation of Ozone Transport and Uptake in an Anatomically-Accurate Model of the Respiratory Tract S. MOTEVALIAN¹, J. ULTMAN¹, AND A. BORHAN¹

¹The Pennsylvania State University, University Park, PA

P-Fri-531

Numerical Simulation of Airflow in a CT-based Human Airway Model With Physiologically Appropriate Boundary Conditions

R. GRUETZEMACHER¹,², A. ARABSHAHI¹,², AND K. SREENIVAS¹,² ¹The University of Tennessee, Chattanooga, Chattanooga, TN, ²SimCenter: National Center for Computational Engineering, Chattanooga, TN

P-Fri-532

Dynamic Multi-scale Model of the Lung

J. RYANS¹, H. FUJIOKA¹, D. HALPERN², AND D. GAVER III¹ ¹Tulane University, New Orleans, LA, ²University of Alabama, Tuscaloosa, AL

SESSION

Track: Respiratory Bioengineering, Biomechanics

Respiratory Transport and Mechanics I

Chairs: Jason Bates

P-Fri-501 🤶

Mechanics of the Pulmonary Airway System in Healthy Subjects and Patients during Forced Expiration Maneuver

A. PRADEL¹, K. BLANC¹, P. GILFRICHE², T. SIMILOWSKI¹, C. STRAUS¹, AND M. FILOCHE³,⁴ ¹Université Pierre et Marie Curie, Paris, France, ²Ecole des Mines-ParisTech, Paris, France, ³Ecole Polytechnique, Palaiseau, France, ⁴INSERM, Créteil, France

P-Fri-502 🤶

Adhesive Properties of Ultra-Low Volume Mucus Samples during Otitis Media

N. HIGUITA-CASTRO¹, J. MALIK¹, J. SWARTS², AND S. GHADIALI¹ ¹The Ohio State University, Columbus, OH, ²University of Pittsburgh, Pittsburgh, PA

P-Fri-503

Effect of Long-term Alcohol Exposure on Mucociliary Clearance through 3D High Speed Imagingand Dynamic Modeling

Z. CHEN¹,², Y. WANG¹, X. JIA¹, AND M. ZHANG¹ ¹The Ohio State University, Columbus, OH, ²The University of Tennessee, Knoxville, TN

P-Fri-504

Modeling Lung Morphometry Using a Hybrid Power Law Method

B. HENRY¹, Z. DAI¹, AND T. ROYSTON¹ ¹University of Illinois at Chicago, Chicago, IL

P-Fri-505

Intramuscular Sarcomere Length Variability in Ageing Healthy Mouse Diaphragm Muscle

K. MARTIN¹, C. HENRY¹, S. PEIRCE-COTTLER¹, AND S. BLEMKER¹ ¹University of Virginia, Charlottesville, VA

P-Fri-506

Modeling the Mucociliary Clearance in Bronchial Bifurcations

M. MANOLIDIS¹, B. LOUIS², D. ISABEY², J. GROTBERG^{2,3}, AND M. FILOCHE¹,² ¹Ecole Polytechnique, Palaiseau, France, ²INSERM, Créteil, France, ³University of Michigan, Ann Arbor, MI

P-Fri-507

Spatial Organization of Constriction Pattern Contributes to Apparent Airway Hyperresponsiveness And Intersubject Variability in Response to Challenge and Dilation

S. AMIN¹ AND B. SUKI² ¹Boston University, Boston, MA, ²Boston University, BOSTON, MA

P-Fri-508

Mechanical Properties and Gelation Kinetics of Lung ECM Hydrogels Tailored for Regenerative Medicine

R. POULIOT¹, R. TAKAHASHI¹, M. MALIK¹, AND R. HEISE¹ ¹Virginia Commonwealth University, Richmond, VA

P-Fri-509

Small Charged Compound Lowers Surface Tension In Alveoli Flooded With Albumin Solution

A. Kharge¹ and C. Perlman¹ ¹Stevens Institute of Technology, Hoboken, NJ

P-Fri-510

A Composite Cost Function for Quantifying Ventilator-induced Lung Injury

J. BATES¹ AND B. SMITH¹ ¹University of Vermont, Burlington, VT

Track: Respiratory Bioengineering, Biomechanics

Respiratory Transport and Mechanics II

Chairs: Bela Suki

P-Fri-511

Effect of Airway Size on Magnitude of Bronchodilatory and Bronchoprotective Responses to Breathing

B. HARVEY¹, H. PETERSON¹, H. PARAMESWARAN¹, A. ZOLLINGER¹, AND K. LUTCHEN¹ ¹Boston University, Boston, MA

P-Fri-512

Plasma Proteins Required For Exogenous Surfactant To Lessen Ventilation Injury

Y. WU¹ AND C. PERLMAN¹ ¹Stevens Institute of Technology, Hoboken, NJ

P-Fri-513

Visualization of Dynamic Pulmonary Surfactant Transport during Simulated Airway Reopening

E. YAMAGUCHI¹, M. DEARDEN¹, L. NOLAN¹, AND D. GAVER¹ ¹Tulane University, New Orleans, LA

P-Fri-514

Neulizable Decellularized Lung Matrix Solution for Hyperoxia-induced Acute Lung Injury

J. Wu¹, Q. DING¹, A. DUTTA¹, R. IYER², P. RAVIKUMAR², L. Wu², C. HSIA², AND Y. HONG¹

 $^{\rm 1}$ University of Texas at Arlington, Arlington, TX, $^{\rm 2}$ University of Texas Southwestern Medical Center, Dallas, TX

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM , 4:00PM - 5:00PM

P-Fri-515

Distribution of Advective Ventilation in a Three-Dimensional Canine Lung Model

J. HERRMANN¹, M. TAWHAI², AND D. KACZKA³ ¹Boston University, Boston, MA, ²University of Auckland, Auckland, New Zealand, ³University of Iowa, Iowa City, IA

P-Fri-516

An Analytical Theory of Oxygen Transport in the Human Placenta

A. SEROV¹, C. SALAFIA², D. GREBENKOV¹, AND M. FILOCHE¹ ¹Ecole Polytechnique - CNRS, Palaiseau Cedex, France, ²Placenta Analytics LLC, Larchmont, NY

P-Fri-517

Estimation of Soft Tissue Elasticity surrounding Upper Airway from MR Imaging and Tube Law Method

D. Subramaniam¹, G. Mylavarapu¹, R. Fleck², S. Shott², R. Amin², and E. Gutmark¹

¹University of Cincinnati, Cincinnati, OH, ²Cincinnati Children's Hospital Medical Center, Cincinnati, OH

P-Fri-518

Aerosolized miR-146a Delivery and Expression in a Mouse Model C. BOBBA¹, K. NELSON¹, B. WHITSON¹, X. ZHAO¹, AND S. GHADIALI¹ ¹The Ohio State University, Columbus, OH

P-Fri-519

Modulation of Lung Vascular Stiffening by Lipoxin Attenuates LPS-induced Lung Inflammation

A. MELITON¹, M. ALLEN¹, K. BIRUKOV¹, M. GARDEL¹, M. GARDEL¹, AND A. BIRUKOVA¹ ¹University of Chicago, Chicago, IL

P-Fri-520

Quantifying Effects of Upper Airway Shunt on Peripheral Heterogeneity:A Computational Model Study

S. BHATAWADEKAR¹, D. LEARY¹, AND G. MAKSYM¹ ¹Dalhousie University, Halifax, NS, Canada

P-Fri-521

Effect of Lung Tissue Density on ¹⁸F-FDG Kinetics Parameters

T. WELLMAN¹ AND M. VIDAL MELO² ¹Boston University, Boston, MA, ²Massachusetts General Hospital, Boston, MA

Track: Stem Cell Engineering

Mechanobiology and Stem Cell Translation

Chairs: Thomas Gaborski, Janet Zoldan

P-Fri-231

Distribution of Mitochondria in Human Mesenchymal Stem Cells during Endothelial Differentiation

J. SHIN¹, S. PARK¹, Y. KANG¹, S. GU², H. PARK², H. KIM¹, AND J-W. SHIN¹,²,³ ¹Department of Biomedical Engineering, Inje University, Gimhae, Korea, Republic of, ²Department of Health Science and Technology, Inje University, Gimhae, Korea, Republic of, ³Cardiovascular and Metabolic Disease Center/Institute of Aged Life Redesign/UHRC, Inje University, Gimahe, Korea, Republic of

P-Fri-232

Texture Analysis of Nucleus during Differentiation of hMSCs into Osteoblasts in Early Phase

S. PARK¹, J. SHIN¹, Y. KANG¹, Y. KIM¹, H. PARK², S. GU², AND J-W. SHIN^{1,2,3} ¹Department of Biomedical Engineering, Inje University, Gimhae-si, Korea, Republic of, ²Department of Health Science and Technology, Inje University, Gimhae-si, Korea, Republic of, ³Cardiovascular and Metabolic Disease Center /Institute of Aged Life Redesign/UHRC, Inje University, Gimhae-si, Korea, Republic of

P-Fri-233

Mesenchymal Stromal Cell Influence on Pulmonary Metastasis After Removal of Primary Osteosarcoma

M. AANSTOOS¹, D. REGAN¹, R. ROSE¹, L. CHUBB¹, AND N. EHRHART¹ ¹Colorado State University, Fort Collins, CO

P-Fri-234

Human Pluripotent Stem Cell Derived Cardiac Tissues for Drug Development and Disease Modeling A. CARLSON¹, I. SHADRIN¹, AND N. BURSAC¹

¹Duke University, Durham, NC

P-Fri-235

Mechanosensors of Fluid Shear Induced MSC Migration B. RIEHL¹, J. LEE¹, L. HA¹, AND J. LIM¹ ¹University of Nebraska-Lincoln, Lincoln, NE

P-Fri-236 🙎

Optical Flow Paired With Machine Learning for Increased Detection of Drug-Induced Cardiotoxicity in Human Induced Pluripotent Stem Cell Derived Cardiomycoytes

E. LEE¹, Y. KUROKAWA¹, S. GEORGE¹, AND M. KHINE¹ ¹University of California, Irvine, Irvine, CA

P-Fri-237

Role of the Stretch-activated Ion Channel Piezo I in Mechanosensitive Lineage Choice

M. PATHAK¹, J. NOURSE¹, T. TRAN¹, J. ARULMOLI¹, J. HWE¹, E. BERNARDIS², L. FLANAGAN¹, AND F. TOMBOLA¹

¹UC Irvine, Irvine, CA, ²Children's Hospital of Philadelphia, Philadelphia, PA

P-Fri-238

Controlling Lineage Specific Differentiation Potential of Pluripotent Stem Cells by Engineering Colony Morphology

M. MALDONADO¹, K. LOW¹, L. WONG¹, G. ICO¹, T. FUJIMOTO¹, R. LUU¹, AND J. NAM¹ ¹University of California, Riverside, Riverside, CA

P-Fri-239

Influence of Agitation Rate and Aggregate Size on Human Pluripotent Stem Cells in Dynamic Suspension

D. NAMPE¹, R. JOSHI¹, C. BEAUDETTE¹, C. LIEW¹, AND H. TSUTSUI¹ ¹University of California, Riverside, Riverside, CA

P-Fri-240

Characterization of Human Mesenchymal Stem Cell Populations From Old Donors

T. BLOCK¹, M. MARINKOVIC¹, R. RAKIAN¹, D. DEAN¹, AND X-D. CHEN¹ ¹University of Texas Health Science Center at San Antonio, San Antonio, TX

P-Fri-24 l

Endothelial Differentiation of Adipose-derived Stem Cells in Comparison with Whartons jelly-derived Mesenchymal Stem Cells M. GUREL¹ AND P. MCFETRIGDE¹ ¹University of Florida, Gainesville, FL

P-Fri-242

HT-MBOSS: A High-Throughput System for Studying Cellular Mechanobiology

J. LEE¹, E. YOON¹, J. JANSSON¹, A. BAKER¹, AND M. WONG¹ ¹University of Texas at Austin, Austin, TX

POSTER SESSION Fri 9:30AM - 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 4:00PM - 5:00PM

Track: Stem Cell Engineering, Biomaterials

Stem Cell Environments and Differentiation

Chairs: Thomas Gaborski, Janet Zoldan

P-Fri-110

Promoting Ligamentogenic Differentiation of Mesenchymal Stem Cells in Controlled Microenvironments M. REHMANN¹ AND A. KLOXIN¹

¹University of Delaware, Newark, DE

P-Fri-III

Determining the Physiochemical Cues Directing Endothelial Specification During Differentiation Q. SMITH¹ AND S. GERECHT¹

¹Johns Hopkins University, Baltimore, MD

P-Fri-112

Arrayed Microenvironments for Probing Liver Progenitor Cell Fate Decisions

K. KAYLAN¹, V. ERMILOVA¹, AND G. UNDERHILL¹ ¹University of Illinois at Urbana-Champaign, Urbana, IL

P-Fri-113

Engineering the Cellular Lipidome to Direct Mesenchymal Stem Cell Differentiation

K. LEVENTAL¹, E. STOCKENBOJER², AND I. LEVENTAL¹ ¹University of Texas Health Science Center at Houston, Houston, TX, ²Rice University, Houston, TX

P-Fri-114

Expression of Extracellular Matrix and Cell-adhesion Molecules in Chondrogenesis of Human MSCs

A. NAZEMPOUR¹, C. R. QUISENBERRY¹, N. ABU-LAIL¹, AND B. J VAN WIE¹ ¹Voiland School of Chemical Engineering and Bioengineering, Washington State University, PULLMAN, WA

P-Fri-115

Incorporation of Retinoic Acid Releasing Microspheres into Aggregates of Pluripotent Stem Cells for Inducing Neuronal Differentiation J. GOMEZ¹, J. EDGAR¹, N. MOHTARAM¹, A. MONTGOMERY¹, AND S. WILLERTH¹

¹University of Victoria, Victoria, BC, Canada

P-Fri-116

Deterministic HOX Patterning in Human Pluripotent Stem Cell-derived Posterior Neuroectoderm

E. LIPPMANN¹, C. WILLIAMS¹, M. ESTEVEZ-SILVA¹, J. COON¹, AND R. ASHTON¹ ¹University of Wisconsin, Madison, WI

P-Fri-117

Prediction of Drug-Induced Liver Injury in Engineered Cultures of iPSC-Derived Human Hepatocytes

B. WARE¹, D. BERGER¹, AND S. KHETANI¹ ¹Colorado State University, Fort Collins, CO

P-Fri-118

Microfluidic Co-cultures to Study Stem Cell Fate Selection During Liver Injury

A. HAQUE¹, P. GHEIBI¹, Y. GAO¹, AND A. REVZIN¹ ¹University of California, Davis, Davis, CA

P-Fri-119 🙎

Distinct Regulation Of Arterial Venous Differentiation By Ephrinb2/Ephb4 Hydrogels

T. DORSEY¹ AND G. DAI¹ ¹Rensselaer Polytechnic Institute, Troy, NY

P = Poster SessionOP = Oral PresentationQ = Reviewer Choice Award

P-Fri-120

CANCELLED BY AUTHOR

P-Fri-121

The Effect of Alginate Capsule Composition on Pancreatic Differentiation of Human Embryonic Stem Cells

T. RICHARDSON¹, J. CANDIELLO¹, P. KUMTA¹, AND I. BANERJEE¹ ¹University of Pittsburgh, Pittsburgh, PA

P-Fri-122

Controlled Cell Transdifferentiation by Nanochannel Electroporation

D. GALLEGO-PEREZ¹, S. GHATAK¹, J. MA¹, C. CZEISLER¹, P. GYGLI¹, T. SHERWOOD¹, V. MALKOC¹, L. CHANG¹, X. WANG¹, C. ASKWITH¹, S. KHANNA¹, C. RINK¹, S. GNYAWALI¹, C. SEN¹, J. OTERO¹, AND L. LEE¹ ¹The Ohio State University, Columbus, OH

P-Fri-123

Optimization of Alternating Electric Current to Achieve Osteodifferentiation of Adult Human Mesenchymal Stem Cells M. WECHSLER¹, B. HERMANN¹, AND R. BIZIOS¹

¹The University of Texas at San Antonio, San Antonio, TX

P-Fri-124

Directed Differentiation of Stem Cells by 3D Extracellular Matrix Composites J. JUNG¹, M. BACHE-WIIG¹, AND B. OGLE¹

¹University of Minnesota - Twin Cities, Minneapolis, MN

P-Fri-125

Re-engineering The 3D Pancreatic Niche: Co-culture of Endothelial Cells with Human Embryonic Stem Cells-derived Pancreatic Progenitor Cells in Decellularized Pancreas

S-K. GOH¹, S. BERTERA², S. BARNER¹, AND I. BANERJEE^{1,3} ¹University of Pittsburgh, Pittsburgh, PA, ²Children's Hospital of Pittsburgh, Pittsburgh, PA, ³McGowan Institute of Regenerative Medicine, Pittsburgh, PA

P-Fri-126

Micro-engineered ECM Array as a Platform for Deciphering Cell-ECM Interaction During Stem Cell Differentiation

S-K. GOH¹, S. BERTERA², W. HALFTER¹, AND I. BANERJEE¹,³ ¹University of Pittsburgh, Pittsburgh, PA, ²Children's Hospital of Pittsburgh, Pittsburgh, PA, ³McGowan Institute of Regenerative Medicine, Pittsburgh, PA

P-Fri-127

In vitro Vascular Arterial Differentiation of Embryonic Stem Cells through Neuropilin-1

D. KIM¹ AND G. DAI¹ ¹Rensselaer Polytechnic Institute, Troy, NY

P-Fri-128

A Kinase Inhibitor Screen Identifies Small-molecule Modulators During Human Pluripotent Stem Cell-derived Cardiac Progenitors into Cardiomyocytes

H. SONG¹, M. RADISIC², AND P. ZANDSTRA² ¹University of Toronto, Toronto, ON, Canada, ²University of Toronto, Toronto, Canada

P-Fri-129

Cadherin-II Directs Mesenchymal Stem Cell Differentiation and Regulates Extracellular Matrix Production and Mechanical Properties of Myogenic Tissues *in-vivo* and *in vitro*

S. Row¹, S. Alimperti¹, M. Koobatian¹, Y. Liu¹, T. George², S. Agarwal², and S. Andreadis¹

¹State University of New york at Buffalo, Amherst, NY, ²Baylor College of Medicine, Houston, TX

P-Fri-130

Directed Differentiation of Mesenchymal Stem Cells on Cross-linked Gelatin Scaffolds by Mechanical and Architectural Cues

K. MCANDREWS¹, F. KIM¹, T. LAM¹, D. MCGRAIL¹, AND M. DAWSON¹ ¹Georgia Institute of Technology, Atlanta, GA

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM , 4:00PM - 5:00PM

P-Fri-131

A Multifactorial Approach Focusing On Induced Cardiomyocyte Transdifferentiation

N. CHRISTOFOROU¹,², S. CHAKRABORTY¹, A. ADLER¹, AND K. LEONG¹ ¹Duke University, Durham, NC, ²Khalifa University of Science Technology and Research, Abu Dhabi, United Arab Emirates

P-Fri-132

Single-Cell Approaches to Assess Hematopoietic Stem Cell Response to Matrix Cues

J. CHOI¹, Y. ILIN¹, Y. ZHUO¹, B. CUNNINGHAM¹, M. KRAFT¹, AND B. HARLEY¹ ¹University of Illinois at Urbana-Champaign, Urbana, IL

P-Fri-133

Protein Laden Soft Matrices as High-Throughput Platforms to Engineer Stem Cell Microenvironments M. FLOREN¹, S. BRYANT¹, AND W. TAN¹

¹University of Colorado, Boulder, CO

P-Fri-134

Hematopoietic Stem and Progenitor Cells Provide a Local Source of Neutrophils Necessary to Resolve Infected Wounds P. FALAHEL¹, D. DAHMUBED¹, AND S. SIMON¹ 'University of California at Davis, Davis, CA

P-Fri-135 CANCELLED BY AUTHOR

Track: Tissue Engineering, Stem Cell Engineering

Scaffolds and Surfaces for Tissue Engineering

Chairs: Justin Brown, Lijie Grace Zhang

P-Fri-63

Electrospun Nanostructured Chitosan/PVA Loaded with Growth Factors for Wound Healing

M. WANG¹ AND T. WEBSTER¹,² ¹The northeastern university, Boston, MA, ²King Abdulaziz University, Jeddah, Saudi Arabia

P-Fri-64

Optimally Processed Porcine Adipose Tissue as a Soft Tissue Engineering Scaffold

K. ROEHM¹ AND S. MADIHALLY¹ ¹Oklahoma State University, Stillwater, OK

P-Fri-65

Antibacterial Properties of Collagen Hydrogels with Tunable Mechanical Properties

R. Egerter¹, C. Angpraseuth¹, M. Jimenez¹, C. Keeler¹, C. Stannard¹, and E. Orwin¹

¹Harvey Mudd College, Claremont, CA

P-Fri-66

Poly(ethylene) Glycol Diacrylate Scaffold Mimics Elasticity of Native Bruch's Membrane for Retinal Tissue Engineering

C. WHITE¹ AND R. OLABISI¹ ¹Rutgers, The State University of New Jersey, Piscataway, NJ

P-Fri-67

The Effects of Hydroxyapatite Size and Hydrostatic Pressure on Osteogeneis of MSCs *in vitro*

S. GU¹, Y. KANG², S. PARK², J. SHIN², Y. WU², AND J-W. SHIN^{1,2,3}

¹Department of Health Science and Technology. Inje University, Gimhae-si, Korea, Republic of, ²Department of Biomedical Engineering, Inje University, Gimhae-si, Korea, Republic of, ³Cardiovascular and Metabolic Disease Center/Institute of Aged Life Redesign/UHRC, Gimhae-si, Korea, Republic of

P-Fri-68

Electrospinning of Dendrimers as a New Bio-Engineered Scaffold

D. ADUBA, JR.¹, J. OVERLIN¹, C. FRIERSON¹, G. BOWLIN², AND H. YANG¹ ¹Virginia Commonwealth University, Richmond, VA, ²University of Memphis, Memphis, TN

P-Fri-69

Incorporation of Intervertebral Disc Cells into Candidate Materials for Nucleus Pulposus Regeneration

E. GROWNEY KALAF¹, K. FELTZ¹, N. TEMOFEEW¹, J. BLEDSOE¹, AND S. SELL¹ ¹Saint Louis University, St. Louis, MO

P-Fri-70

Effects of Pore Size on Mechanical Properties and MSC Behavior in Bioglass Composite Scaffolds C. VISSERS' AND J. LEACH'

¹University of California, Davis, Davis, CA

P-Fri-7 l

Compressed Gelatin-Honey Sponges as Membrane Barriers for Bone Grafting Applications

I. RODRIGUEZ¹, B. BURGER², AND G. BOWLIN¹ ¹The University of Memphis, Memphis, TN, ²Dulles Institute for Oral/Maxillofacial Surgery, Sterling, VA

P-Fri-72

Fabricating Highly Aligned Collagen Sponges From Self-Assembled, Fibrillar Collagen Gels

C. LOWE¹, I. REUCROFT¹, AND D. SHREIBER¹ ¹Rutgers University, Piscataway, NJ

P-Fri-73

Synthesis and Evaluation of Barnacles $\boldsymbol{\beta}$ Strand Peptide Having Cell Attachment Activity

K. TAKASE¹, Y. HIRANO¹, AND K. KAMINO² ¹Kansai University, Suita, Japan, ²NITE, Chiba, Japan

P-Fri-74

3D Printed Bone Scaffolds with Microvascular Network and Nano Hydroxyapatite for Improved hMSC Functions B. HOLMES¹ AND L. ZHANG¹

¹The George Washington University, Washington, DC

P-Fri-75

Delivery of Growth Factor via Two Electrospinning Techniques L. PLACE¹, M. SEYKI², J. TAUSSIG², AND M. KIPPER²

L. PLACE', M. SEYKI², J. TAUSSIG², AND M. KIPPER² ¹Colorado State, Fort Collins, CO, ²Colorado State University, Fort Collins, CO

P-Fri-76

Endothelialization of Novel Magnesium-Rare Earth Alloys with Fluoride and Collagen Coating

N. ZHAO¹, B. WORKMAN¹, J. MA¹, AND D. ZHU¹ ¹North Carolina A&T State University, Greensboro, NC

P-Fri-77

A Pressure-sensitive Adhesive Derived from Sundew Plants for Wound Healing

Y. HUANG¹, Y. WANG¹, L. SUN¹, AND M. ZHANG¹ ¹The Ohio State University, Columbus, OH

P-Fri-78

Characterization of Native Wharton's Jelly: A Natural Tissue Engineering Construct

S. SAHAI¹, M. WILKERSON¹, F. VITALE², D. TSENTALOVICH², S. KIRAN¹, M. PASQUALI², C. S. COX JR.¹, AND F. TRIOLO¹

 1 UTHealth – The University of Texas Health Science Center at Houston, Houston, TX, 2 Rice University, Houston, TX

P-Fri-79

PEGylated Fibrin Biomaterials for Cardiomyocyte Cultivation

A. ALLEN¹, L. GEUSS¹, L. SUGGS¹, AND J. ZOLDAN ¹University of Texas at Austin, Austin, TX

POSTER SESSION Fri 9:30AM - 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 4:00PM - 5:00PM

P-Fri-80

Chitosan-Hyaluronic Acid Scaffolds As A Mimic Of Glioblastoma Microenvironment Extracellular Matrix

K. WANG¹, S. FLORCZYK¹, F. KIEVIT¹, AND M. ZHANG¹ ¹University of Washington, Seattle, WA

P-Fri-81

Hydrogel Polymer Libraries for Developing Induced Pluripotent Stem Cell Derived Cardiac Patches

A. JOAQUIN¹, N. PEPPAS¹, AND J. ZOLDAN¹ ¹University of Texas at Austin, Austin, TX

P-Fri-82

Early *in-vitro* and *in-vivo* Characterization of Small Submucosa and Hyaluronic Acid 3D Scaffolds

D. TABIMA¹, V. TALERO¹, A. SABOGAL¹, J. NAVARRO¹, D. NARVAEZ¹, H. GROOT¹, AND R. LOPEZ¹

¹Universidad de los Andes, Bogota, Colombia

P-Fri-83

A Preliminary Evaluation of Electrospun Polycaprolactone Scaffolds Embedded with Bioglass Beads for Dermal Repair

R. FLORES¹, A. MOHAMMADKHAH², D. DAY², AND S. SELL¹ ¹Saint Louis University, St Louis, MO, ²Missouri Science & Technology, Rolla, MO

P-Fri-84

Bi-Axially Aligned Nanofibers for Soft Tissue Regeneration

B. BANIK¹ AND J. BROWN¹ ¹The Pennsylvania State University, University Park, PA

P-Fri-85

Fibrous HA Scaffolds With Active NGF Delivery For Directed Neurite Growth

T. WHITEHEAD¹ AND H. SUNDARARAGHAVAN¹ ¹Wayne State University, Detroit, MI

P-Fri-86 🎗

A Three-Dimensional Model of Vascularized Human Tumor Colon Spheroids in a Human Colon-Extracted Extracellular Matrix M. ROMERO LOPEZ¹ AND C. HUGHES¹

¹University of California Irvine, Irvine, CA

P-Fri-87 🧣

Cell Proliferation and Infiltration in Electrospun non-Synthetic Biopolymer-Based Scaffolds

D. ARDILA¹, E. TAMIMI¹, A. ACUÑA¹, T. DOETSCHMAN¹, AND J. VANDE GEEST¹ ¹The University of Arizona, Tucson, AZ

P-Fri-88 🧕

Cell-derived Matrices as Biomimetic Substrates for Cardiomyoblast Differentiation

M. SUHAERI¹,², M. HWANG¹, I. KIM¹, S. VAN¹,², AND K. PARK¹,² ¹Korea Institute of Science and Technology, Seoul, Korea, Republic of, ²University of Science and Technology, Daejon, Korea, Republic of

Track: Tissue Engineering

Bioreactors for Tissue Engineering

Chairs: Anuradha (Anu) Subramanian, Teja Guda

P-Fri-255 🧕

Development Of A Graft For Skeletal Muscle Regeneration Using Bioreactor Technology

B. POLLOT^{1,2}, C. RATHBONE², AND T. GUDA^{1,2} ¹University of Texas at San Antonio, San Antonio, TX, ²U.S. Army Institute of Surgical Research, Ft. Sam Houston, TX

P-Fri-256

Simulated Microgravity Can Alter Cell Viability, Density, and Transport in 3D Microtissues

E. EVANS¹, Y-T. DINGLE¹, AND D. HOFFMAN-KIM¹ ¹Brown University, Providence, RI

P-Fri-257

Theoretical Modeling and Experimental Verification of an Ultrasound Assisted Bioreactor

T. LOUW¹, H. VILJOEN², AND A. SUBRAMANIAN²

¹University of Cape Town, Cape Town, South Africa, ²University of Nebraska, Lincoln, NE

P-Fri-258

Bioreactor Technologies and Testing of Stem Cell-Seeded Scaffolds for Tissue Engineered Heart Valves

L. SIERAD^{1,2}, E. SHAW¹, A. KENNAMER¹, R. ODUM¹, M. HARPA², O. COTOI², T. PREDA², L. HARCEAGA², R. DEAC², V. RAICEA², H. SUCIU², K. BRANZANIUC², I. EGYED², Z. PAVAI², A. SZANTO², A. SIMIONESCU^{1,2}, AND D. SIMIONESCU^{1,2}

¹Clemson University, Clemson, SC, ²Targu Mures University of Medicine and Pharmacy, Targu Mures, Romania

P-Fri-259

Quantification of Mechanically Induced Orientation of Collagen Fibers in Tissue Engineered Cartilage

E. KAHN¹, R. STEFANI², M. KELLEY¹, A. MEI¹, AND B. BILGEN²,³ ¹Brown University, Providence, RI, ²The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, ³Providence VA Medical Center, Providence, RI

P-Fri-260

Effects of Phonation-Relevant Vibration on Macrophage Phagocytosis

A. ZERDOUM¹, B. BACHMAN¹, AND X. JIA¹ ¹University of Delaware, Newark, DE

P-Fri-26I

Identifying the Localized Shear Forces on Cultured Preosteoblasts in 3D Flow Perfusion Cultures and Elucidating Their Metabolic State

V. SIKAVITSAS¹, C. WILLIAMS¹, R. VORONOV², AND D. PAPAVASSILIOU¹ ¹University of Oklahoma, Norman, OK, ²New Jersey Institute of Technology, Newark, NJ

P-Fri-262

H-Bioreactor Design, Viability Analysis, And Characterization Of Strain On Corneal Keratocytes

T. BECKMAN¹, R. ROLEY¹, AND E. ORWIN¹ ¹Harvey Mudd College, Claremont, CA

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM , 4:00PM - 5:00PM

Track: Tissue Engineering

Blood Vessel Tissue Engineering

Chairs: Wei Tan, Hsiai Tzung

P-Fri-263

Self-assembly of Endothelial Cells and Smooth Muscle Cells in Bio-printed 3D Fluidic Vascular Tissue

V. LEE¹, P. VINCENT², S-S. YOO³, AND G. DAI¹ ¹Rensselaer Polytechnic Institute, Troy, NY, ²Albany Medical College, Albany, NY, ³Brigham and Women's Hospital, Harvard Medical School, Boston, MA

P-Fri-264

Fabrication of Perfused Culture System for Functional Microvasculature Models

Y. YUKAWA¹, B. KIM¹, AND Y. MATSUNAGA¹

¹Institute of Industrial Science, The university of Tokyo, Meguro-ku, Tokyo, Japan

P-Fri-265

Large-scale Functional Endothelialized Microvessels in a Gel-free Microfluidic Network

Y. Xiao¹, M. Xu², X. Zi¹, X. Li³, G. Zheng², J. Fu³, S. Halene¹, R. Fan¹, L. Niklason¹, and J. Zhou¹

¹Yale University, New Haven, CT, ²Fudan University, Shanghai, China, People's Republic of, ³University of Michigan, Ann Arbor, Ann Arbor, MI

P-Fri-266

Reliable Soft Thermo-responsive Substrates for Patterned Cell-Sheet Engineering

S. SHAH¹, D. BACKMAN¹, B. LESAVAGE¹, AND J. WONG¹ ¹Boston University, Boston, MA

P-Fri-267

A Novel Bio-hybrid Functionally Graded Small Diameter Vascular Graft

H. PATEL¹, V. THOMAS¹, S. POGWIZD¹, R. SINGH², AND Y. VOHRA¹ ¹University of Alabama at Birmingham, Birmingham, AL, ²Vivo Biosciences, Birmingham, AL **P-Fri-268**

Adipose Derived Stem Cells for a Vascular Graft

J. ARRIZABALAGA¹ AND M. NOLLERT¹ ¹University of Oklahoma, Norman, OK

P-Fri-269

Development of a Bioengineered Cardiac Assist Device

M. MOHAMED¹, M. HOGAN¹, N. PATEL¹, Z-W. TAO¹, AND R. BIRLA¹ ¹University of Houston, Houston, TX

P-Fri-270

Development of Collagen Type IV Immobilized Electrospun PLLA Nanofibers Using Gamma-ray Irradiation for Enhanced Endothelialization

H. YUNHOE^{1,2}, L. YU BIN^{1,2}, L. JANG-SOO^{1,2}, K. EUNMI^{1,2}, AND S. HEUNGSOO^{1,2} ¹Hanyang University, Seoul, Korea, Republic of, ²BK²¹ Plus Future Biopharmaceutical Human Resources Training and Research Team, Seoul, Korea, Republic of

P-Fri-271

Increased Elastin Matrix Production In PEG-diacrylate Hydrogels For Vascular Tissue Engineering

D. HOLMAN¹, N. NOSOUDI¹, H-J. LEE¹, K. WEBB¹, AND N. VYAVAHARE¹ ^{$^{1}}Clemson University, Clemson, SC$ </sup>

Track: Tissue Engineering, Cardiovascular Engineering

Cardiac Muscle and Valve Tissue Engineering

Chairs: Jeffrey Jacot, Dan Simionescu

P-Fri-587

Modeling the Enhancement of Extracellular Matrix Quantity and Quality in Large-Deformation Mechanically-Conditioned Heart Valve Tissue Engineering

J. SOARES¹ AND M. SACKS¹

¹University of Texas at Austin, Austin, TX

P-Fri-588

Porcine Pericardium Fixation Studies For Aortic Heart Valves In Pediatrics T. WELCH¹, J. WANG¹, K. GULESERIAN¹, V. SEBASTIAN¹, AND J. FORBESS¹ ¹UT Southwestern Medical Center of Dallas, Dallas, TX

P-Fri-589

Development of a Tissue Engineered Mitral Valve

C. DEBORDE¹, J. LIAO², D. SIMIONESCU¹, AND A. SIMIONESCU¹ ¹Clemson University, Clemson, SC, ²Mississippi State University, Mississippi State, MS

P-Fri-590

Design of a Hypoxic Incubator for the Study of Calcific Aortic Valve Disease M. SAPP¹, G. FATORA¹, AND K. GRANDE-ALLEN¹

¹Rice University, Houston, TX

P-Fri-591 🙎

Electrical Pacing Of 3D IPSC-Derived Cardiomyocytes In A Microfluidic Device

S. LAM¹, M. SIMON¹, D. TRAN¹, L. ALONZO¹, N. FLOHN¹, A. LEE¹, AND S. GEORGE¹ ¹University of California, Irvine, Irvine, CA

P-Fri-592

Engineered Cardiac Tissues Utilizing Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes

J. WENDEL¹ AND R. TRANQUILLO¹ ¹University of Minnesota, Minneapolis, MN

P-Fri-593

Human Pediatric Cardiac Progenitor Cells Formed Structures with High Alignment in 3D Culture Y. GAO¹ AND J. JACOT^{1,2}

¹Rice University, Houston, TX, ²Texas Children's Hospital, Houston, TX

P-Fri-594

Fabrication and Formation of Multi-Strip, Optogenetic Cardiac Muscles V. CHAN¹, D. NEAL¹, AND H. ASADA¹

¹Massachusetts Institute of Technology, Cambridge, MA

P-Fri-595

Human Mesenchymal Stem Cell Seeding of Porcine Small Intestinal Submucosal Extracellular Matrix

J. CHANG¹, X. LIN², T. PETRIE², C. SONDERGAARD², AND L. GRIFFITHS¹ ¹University of California-Davis, Davis, CA, ²University of California-Davis, Sacramento, CA

POSTER SESSION Fri 9:30AM – 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 4:00PM - 5:00PM

Track: Tissue Engineering, Stem Cell Engineering

Tissue Microfabrication and Stem Cells

Chairs: Min-Ho Kim, Ying Mei

P-Fri-243

Construction of 3D Engineered Tissue by Magnetically-Assisted Cell Assembly

L. YU BIN¹,², L. JOONG-YUP¹,², T. AHMAD¹,², B. SEONGWOO¹,², AND S. HEUNGSOO¹,² ¹Hanyang University, Seoul, Korea, Republic of, ²BK²¹ Plus Future Biopharmaceutical Human Resources Training and Research Team, Seoul, Korea, Republic of

P-Fri-244

A Single Mask, Single Etch Process for Fabricating 3-D Geometries in Collagen I Hydrogel

Y. HOSSEINI¹, S. VERBRIDGE¹, AND M. AGAH¹ ¹Virginia Tech, Blacksburg, VA

P-Fri-245

Projection Micro-Stereolithography Apparatus for High Resolution Patterning of Cells in 3D: Applications in Tissue Engineering of Vasculature

R. RAMAN¹, B. BHADURI¹, A. SHKUMATOV¹, K. BAEK¹, M. MIR², H. KONG¹, G. POPESCU¹, AND R. BASHIR¹

¹University of Illinois at Urbana-Champaign, Champaign, IL, ²University of California, Berkeley, Berkeley, CA

P-Fri-246

3D Printing of Hydrogel Scaffolds with Tailored Composition and Stiffness K. HOMAN¹, A. JAGIELSKA², R. HAWTHORNE¹, T. BUSBEE¹, K. VAN VLIET², AND J. LEWIS¹

¹Harvard University, Cambridge, MA, ²MIT, Cambridge, MA

P-Fri-247

Engineering Alginate Microfibers with Spatially Defined Fibronectin Functional Sites for Skeletal Muscle Tissue Engineering

J. SZYMANSKI¹, P. PATIL¹, AND A. FEINBERG¹ ¹Carnegie Mellon University, Pittsburgh, PA

P-Fri-248

Investigating Endothelial Remodeling in Tissue-Engineered Microvessels via RNA-seq

J. ZHOU¹, M. XU¹,², X. ZI¹, Y. XIAO¹, G. ZHENG², L. NIKLASON¹, AND R. FAN¹,³ ¹Yale University, New Haven, CT, ²Fudan University, Shanghai, China, People's Republic of, ³Yale Comprehensive Cancer Center, New Haven, CT

P-Fri-249

Exploiting Angiogenic Properties of Dedifferentiated Fat Cells

M. SHAH¹, M. CHAPMAN², R. GEORGE², V. NARAYAN³, AND G. ZHANG¹ ¹University of Akron, Akron, OH, ²Summa Health System, Akron, OH, ³The Austen BioInnovation Institute in Akron, Akron, OH

P-Fri-250

Enhanced Stem Cell Growth on Smart Polyurethane Scaffolds

N. CASTRO¹, K. HEARON², AND L. ZHANG¹ ¹The George Washington University, Washington, DC, ²Massachusetts Institute of Technology, Cambridge, MA

P-Fri-25I

Growth Factor Release from Mesenchymal Stem Cells Encapsulated in **PEGDA Microspheres**

P. KRZYSZCZYK1 AND R. OLABISI1

¹Rutgers, The State University of New Jersey, Piscataway, NJ

P-Fri-252

Effect of MSC and Fibrochondrocyte 3D Co-Culture on Matrix Secretion and Cell Phenotype

M. MCCORRY¹, J. PUETZER¹, AND L. BONASSAR¹ ¹Cornell University, Ithaca, NY

P-Fri- 253

Mechanical Stimulation Of PEGDA Encapsulated Mesenchymal Stem Cells Into Adipocytes

S. MEHTA¹ AND R. OLABISI¹

¹Rutgers University, New Brunswick, NJ

P-Fri-254

Potential Effects of Mechanical Stimulation on The Reprogramming Somatic Cells into iPS Cells

Y. KIM¹, Y. KANG¹, S. PARK¹, J. SHIN¹, S. GU², H. PARK¹, AND J-W. SHIN¹,²,³ ¹Department of Biomedical Engineering, Inje University, Gimhae-si, Korea, Republic of, ²Department of Health Science and Technology, Gimhae-si, Korea, Republic of, ³Cardiovascular and Metabolic Disease Center /Institute of Aged Life Redesign/UHRC, Gimhae-si, Korea, Republic of

Track: Translational Biomedical Engineering, **Device Technologies and Biomedical Robotics**

Translational Biomedical Engineering I

Chairs: Mehdi Nikkhah, Mark Van Dyke

P-Fri-211 🧕

Amplification-free Multiplexed Detection of miRNA Biomarkers in Single Cancer Cells

N WANG¹ Y WU¹ Y LU¹ S CHAPIN² P DOYLE² AND R EAN^{1,3} ¹Yale University, New Haven, CT, ²MIT, Cambrige, MA, ³Yale Comprehensive Cancer Center, New Haven, C

P-Fri-212

Targeted Delivery Of Anti-miR-712 By VCAM1-Binding Au Nanospheres For Atherosclerosis Therapy

R. SIMMONS¹, T. SUN¹, C. KIM¹, X. ZHAO¹, Y. XIA¹, AND H. JO¹ ¹Georgia Institute of Technology & Emory University, Atlanta, GA

P-Fri-213

Rapid, Single Bacterial Detection From Blood using Microencapsulated Sensors

D-K. KANG¹, M. ALI¹, B. FAN¹, K. ZHANG¹, I. ALTAMORE¹, M. DIGMAN¹, E. GRATTON¹, E. PETERSON¹, AND W. ZHAO ¹University of California-Irvine, Irvine, CA

P-Fri-214

In Vivo Validation of Fluorescent Dye to Detect Ano-genital Injury in Women

Y. CAO¹, C. HENRY¹, A. BRUCE¹, S. PEIRCE¹, AND K. LAUGHON¹ ¹Univ. of Virginia, Charlottesville, VA

P-Fri-215

Bioactive Hydrogel Coatings for Improvised Titanium Implants S. KARNIK¹, Y. LUO¹, U. JAMMALAMADAKA¹, K. TAPPA², AND D. MILLS¹

¹Louisiana Tech University, Ruston, LA, ²Louisiana Tech University, Ruston, Afghanistan

P-Fri-216

Development of Silk-Elastinlike Protein Polymers as Liquid-To-Solid Embolic Agents

A. POURSAID¹, R. PRICE¹, A. TIEDE¹, E. OLSON¹, E. HUO¹, H. GHANDEHARI¹, AND J. CAPPELLO ¹University of Utah, Salt Lake City, UT

P = Poster Session **OP** = Oral Presentation = Reviewer Choice Award

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM , 4:00PM - 5:00PM

P-Fri-217

The Effect of Laser Adjuvant on the Efficacy of a Prophylactic

Transcutaneous Influenza Vaccine E. Elenes¹, R. Jadi¹, J. Deventhiran¹, H. Sooryanarain¹, S. Elankumaran¹, and C. Rylander¹

¹Virginia Polytechnic Institute and State University, Blacksburg, VA

P-Fri-218

Development of a Hepatocyte Bioreactor Utilizing Perfusion through Aligned Nanofiber Networks

A. Ğill I, F. Popovic I, C. Brouse I, J. Moore I, T. Raisch I, B. Koons I, and A. Nain I

¹Virginia Tech, Blacksburg, VA

P-Fri-219

Silk Microneedle Delivery and Stabilization of Enteric Disease Vaccines W. RAJA¹, S. LEE², H. KIM², B. XU², B. PANILAITIS¹, S. TZIPORI², AND D. KAPLAN¹ ¹Tufts University, Medford, MA, ²Tufts University, North Grafton, MA

P-Fri-220

Microtopographies Inhibit Human Lens Epithelial Cell Migration in Posterior Capsule Opacification Model

C. KIRSCHNER¹, M. DRINKER¹, K. CUEVAS²,³, A. BRENNAN¹,⁴, AND S. REDDY¹ ¹Sharklet Technologies, Inc., Aurora, CO, ²Rocky Mountain Ophthamology, Golden, CO, ³Insight Innovations, LLC, Golden, CO, ⁴University of Florida, Gainesville, FL

Track: Translational Biomedical Engineering, Device Technologies and Biomedical Robotics

Translational Biomedical Engineering II

Chairs: Manu Platt, Mehdi Nikkhah

P-Fri-22I

Soy Scaffolds Improve Healing of Full Thickness Skin Excision Wounds in Rat and Pig Models

Y-E. HAR-EL¹, J. GERSTENHABER¹, S. BAHARLOU¹, T. LO¹, R. BRODSKY¹, R. HUNEKE², AND P. LELKES¹

¹Temple University, Philadelphia, PA, ²Drexel University College of Medicine, Philadelphia, PA

P-Fri-222

The Analysis of Explanted Organ Perfusion to Determine Optimal Perfusion Temperature

T. O'BRIEN¹, T. DILLER¹, AND J. ROBERTSON¹ ¹Virginia Tech. Blacksburg, VA

P-Fri-223

Successful Isolation of Human islets using a Collagenase free Osmotic Shock Method

J. MCQuilling^{1,2}, S. Sittadjody², J. Steinman², G. Orlando², A. Farney², and E. Opara^{1,2}

¹Virginia Tech-Wake Forest School of Biomedical Engineering & Sciences (SBES), Winston-Salem, NC, ²Wake Forest School of Medicine, Winston-Salem, NC

P-Fri-224

Combined MicroRNA/Anti-MicroRNA Therapy and Molecular Beacons Based Prognosis of Mouse Hepatocelluar Carcinoma (HCC) using Target Lipoplex Nanoparticles

X. WANG¹, Z. YANG¹, R. LEE¹, S. JACOB¹, K. GHOSHAL¹, AND J. LEE¹ ¹the Ohio State University, columbus, OH

P-Fri-225

Layer-by-layer Nanoparticles for Co-delivery of Chemodrugs and RNAi for Treating Aggressive Types of Cancers

J. DENG¹, S. MORTON¹, E. DREADEN¹, AND P. HAMMOND¹ ¹MIT, Cambridge, MA

P-Fri-226

Multipotent Progenitor and Endothelial Cell Interactions Promote Angiogenesis and Osteogenesis

H. HOFER¹, P. ALEXANDER¹, AND R. TUAN¹ ¹University of Pittsburgh, Pittsburgh, PA

P-Fri-227

A Novel Cell-Based Assay for MMP Inhibitor Screening P. KRISANARUNGSON¹, A. WALKER¹, AND J. WOLCHOK¹

¹University of Arkansas, Fayetteville, AR

P-Fri-228

PolyGraphene Muco-adhesive Medi-Patches for Anti-Stem like Cell Therapy via STAT-3 Inhibition

S. MISRA¹,² AND D. PAN¹,²

¹University of Illinois at Urbana-Champaign, Urbana, IL, ²Carle Foundation Hospital, Urbana, IL

P-Fri-229

Pathology Evaluation and Analysis of Cardiac Leads H. SMITH¹, S. JESSEN¹, T. LANCON¹, M. O'BRIEN¹, L. SUAREZ¹, M. WILCOX¹, M. MILLER², B. WEEKS¹, AND F. CLUBB, JR.¹ 'Texas A&M University, College Station, TX, ²Texas A&M Institute for Preclinical Studies, College Station, TX

P-Fri-230

Minimally Invasive Irreversible Electroporation For Pancreatic Cancer Treatment

L. REESE¹, J. MCGUIRE¹, G. MISHRA², C. WILLIAMS¹, R. DAVALOS¹, AND L. BICKFORD¹ ¹Virginia Tech, Blacksburg, VA, ²Wake Forest Medical Center, Winston Salem, NC

SESSION

TODAY'S HIGHLIGHT

PLATFORM SESSION Sat I 8:00am - 9:30am See pages 174-181, HBGCC

EXHIBIT HALL OPEN HBGCC, Exhibit Hall A

9:30am - 1:30p

9:30pm -1:00pm

POSTER SESSION SAT

See pages 195-210 HBGCC, Exhibit Hall A Poster Viewing with Authors 9:30am - 10:30am & Refreshment Break

PLENARY SESSION 10:30am - 12:30pm

HBGCC, Lila Cockrell Theatre

Rita Schaffer Memorial Young Invesigator Lecture NEW PARADIGMS FOR CELL MIGRATION IN CONFINED MICROENVIRONMENTS

Kimberly Stroka, PhD

Diversity Lecture Naomi Chesler, PhD

PLATFORM SESSION Sat 2 1:30pm - 3:00pm See pages 182-188, HBGCC

PLATFORM SESSION Sat 3 3:15pm - 4:15pm See pages 189-193, HBGCC

SATURDAY, October 25, 2014

8:00 AM - 9:30 AM PLATFORM SESSIONS - SAT - I

Track: Tissue Engineering, Cardiovascular Engineering

OP-Sat-I-I - Room 001A

Cardiac Muscle and Valve Tissue Engineering

Chairs: Nenad Bursac, Song Li

8:00AM

Tubular Heart Valves by Suturing Decellularized Engineered Tissue Tubes

J. REIMER¹, Z. SYEDAIN¹, B. HAYNIE¹, AND R. TRANQUILLO¹ ¹University of Minnesota, Minneapolis, MN

8:15AM

Electrically Stimulated Heart Microbundles as a 3D Model of Neonatal to Adult Cardiac Tissue Maturation C. JACKMAN¹ AND N. BURSAC¹ ¹Duke University, Durham, NC

8:30AM

Fibrous Tissue Scaffolds: Relationships between Geometric Structure and Mechanical Behavior

J. CARLETON¹, G. RODIN¹, AND M. SACKS¹ ¹University of Texas at Austin. Austin. TX

Three-Dimensional Artificial Heart Muscle to Supplement the Framework of a Bioartificial Heart

M. HOGAN¹, M. MOHAMED¹, Z-W. TAO¹, L. GUTIERRIEZ¹, AND R. BIRLA¹ ¹University of Houston, Houston, TX

9:00AM

Tuning Material Properties of Cardiac Extracellular Matrix for Cardiac **Tissue Engineering**

M. JEFFORDS¹, J. WU², Q. DING², Y. HONG², AND G. ZHANG¹ ¹The University of Akron, Akron, OH, ²University of Texas at Arlington, Arlington, TX

9:15AM

Native Fiber Structure in Decellularized Myocardium Promotes Cardiac Cell Alignment and Maturation

J. SCHWAN¹, A. KWACZALA¹, T. RYAN¹, A. LEBID¹, AND S. CAMPBELL¹ ¹Yale University, New Haven, CT

Track: Biomaterials, Nano to Micro Technologies OP-Sat-1-2 - Room 001B

Micro and Nanostructured Materials

Chairs: Scott Verbridge, Tzahi Cohen-Karni

8:00AM

Tunable Microtopography Reduces Myofibroblast Activation and Cutaneous Fibrosis

J. ALLEN¹, J. RYU¹, AND T. DESAI¹ ¹University of California, San Francisco, San Francisco, CA

8:15AM

Heat-Resistant RNA Biomaterials to Construct Nanoparticles with Controllable Size, Shape, and Stoichiometry for Biomedical Applications E. KHISAMUTDINOV¹, D. JASINSKI¹, AND P. GUO¹

¹Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY

P = Poster Session **OP** = Oral Presentation Reviewer Choice Award

2D Nanosheets for Osteogenic Differentiation of Human Mesenchymal Stem Cells

J. XAVIER¹, P. DESAI¹, AND A. GAHARWAR¹ ¹Texas A&M University, College Station, TX

8:45AM

Antigen-Independent Targeting of Cancer Cells on Polylysine/Fatty Acid Complexes

C. CASTELLANOS¹, J. LI¹, M. MITCHELL¹, AND M. KING¹ ¹Cornell, Ithaca, NY

9:00AM

Heparin Hydrogel Microdroplets for Cultivation of Embryonic Stem Cells

C. SILTANEN¹, E. FOSTER¹, J. YOU¹, A. HAQUE¹, D-S. SHIN¹, AND A. REVZIN¹ ¹UC Davis, Davis, CA

9:15AM

Biocompatible Sub-100 nm Patterning TiO2 for the Regulation of Endothelial and Smooth Muscle Cell Functions

M. RIZWAN¹, S. LIM¹, S. GOH¹, J. LAW², M. SAIFULLAH², G. HO¹, AND E. YIM¹ ¹National University of Singapore, Singapore, Singapore, ²Institute of Materials Research and Engineering, Singapore, Singapore

Track: Cardiovascular Engineering OP-Sat-I-3 - Room 006A

Microcirculation

Chairs: Taby Ahsan, Steven George

8:00AM

Monocytes are Recruited From Post-Capillary Venules During the Early Phases of Arteriogenesis

A. BRUCE¹, M. KELLY-GOSS¹, J. MEISNER¹, R. PRICE¹, AND S. PEIRCE¹ ¹Univ. of Virginia, Charlottesville, VA

8:15AM

The Role Of Cathepsin B In The Control Of Neutrophil Pseudopod Activity Under Flow M. AKENHEAD¹ AND H. SHIN¹

¹University of Kentucky, Lexington, KY

8:30AM

Flow Characteristics of Sickle Cell Blood in Hypoxic Conditions

X. LU¹, C. JONAS¹, J. HIGGINS²,³, AND D. WOOD¹ ¹University of Minnesota, Minneapolis, MN, ²Harvard Medical School, Boston, MA, ³Massachusetts General Hospital, Boston, MA

8:45AM

Vein-On-a-Chip: Functional Assessment and Activation of Intact Mouse Mesenteric Vein

Z. ABDI DEZFOOLI¹, S-S. BOLZ¹, AND A. GÜNTHER¹ ¹University of Toronto, Toronto, ON, Canada

9:00AM

Exogenous Nitric Oxide Supplementation To Enhance The Outcome Of Fluid Resuscitation From Hemorrhagic Shock

J. CRUMP¹, J. BRICENO¹, AND P. CABRALES²

¹Universidad de Los Andes, Bogota D.C., Colombia, ²University of California, San Diego, La Jolla, CA

9:15AM

Platelet Gplb α Binding to Von Willebrand Factor (VWF) under Hydrodynamic Shear: Relative Contributions of The D'D3-domain, Al-domain Flanking Peptide and O-linked Glycosylation

C. ZHANG¹, A. KELKAR¹, S. MADABHUSHI¹, K. DAYANANDA¹, AND S. NEELAMEGHAM¹ ¹SUNY at Buffalo, Buffalo, NY

Track: Biomechanics, Cardiovascular Engineering OP-Sat-I-4 - Room 006B

Cardiovascular Biomechanics I

Chairs: Hanjoong Jo, Danial Shahmirzadi

8:00AM

Biomechanical Characterizations Of Scar ECM During The Acute To Chronic Stages Of Myocardial Infarction

B. BRAZILE¹, J. BUTLER¹, S. PATNAIK¹, Y. XU², A. CLAUDE¹, R. PRABHU¹, L. WILLIAMS¹, G. ZHANG³, J. GUAN², AND J. LIAO¹ ¹Mississippi State University, Mississippi State, MS, ²Ohio State University, Columbus, OH,

³University of Akron, Akron, OH

8:15AM

Bending and Twisting the Embryonic Heart Tube: A Noval Computational Model

Y. SHI¹, J. YAO², R. PERUCCHIO³, AND L. TABER¹ ¹Washington University, St. Louis, MO, ²Dassault Systemes Simulia Corp., Providence, RI, ³University of Rochester, Rochester, NY

8:30AM

Quantitative Histomorphological Analysis of Right Ventricular Myocardium Under Chronic Pressure Overload

S. M. SIEGEL¹, U. A. DAR¹, M. RAHMAN¹, M. R. HILL¹, M. A. SIMON², AND M. S. SACKS¹

¹The University of Texas at Austin, Austin, TX, ²The University of Pittsburgh, Pittsburgh, PA

8:45AM

Exogenous Relaxin Treatment Reverses Left Ventricular Fibrosis and Improves Diastolic Function in a Rate Model J. HANEY¹, D. SCHWARTZMAN¹,², AND S. SHROFF¹

¹University of Pittsburgh, Pittsburgh, PA, ²University of Pittsburgh Medical Center, Pittsburgh, PA

9:00AM

Time-Evolving Growth and Remodeling Response of Right Ventricular Myocardium to Pressure Overload

M. HILL¹, M. SIMON², AND M. SACKS¹ ¹University of Texas at Austin, Austin, TX, ²University of Pittsburgh, Pittsburgh, PA

9:15AM

Probing Local Nonlinear Mechanics with Whole-Tissue Experiments C. WITZENBURG¹ AND V. BAROCAS¹ ¹University of Minnesota, Minneapolis, MN

Track: Cellular and Molecular Bioengineering OP-Sat-I-5 - Room 006C

Cell and Molecular Immunoengineering

Chairs: Lance Kam, Chris Love

8:00AM

Lipopolysaccharide (LPS) Induces the Interactions of Breast Cancer and Endothelial Cells via Activated Monocytes

C. CHEN¹ AND D. KHISMATULLIN¹ ¹Tulane University, New Orleans, LA

8:15AM

T-Pharmacytes for the Targeted Eradication of Latent HIV Reservoirs

B. JONES¹, S. MUELLER¹, R. O'CONNOR¹, V. VRBANAC¹, A. TAGER¹, B. WALKER¹,², AND D. IRVINE¹.

¹Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, ²Howard Hughes Medical Institute, Chevy Chase, MD

TLR3 Stimulation Enhances The Immune Stimulatory Properties of Exosome-based Vaccines

M. DAMO¹, E. SIMEONI¹, D. WILSON¹, AND J. HUBBELL¹ ³Swiss Federal Institute of Technology, Lausanne, Switzerland

8:45AM

Development of a Tissue-Engineered Lymph Node to Study Stromal Immunomodulatory Functions *In Vitro*

C. BUCHANAN¹ AND M. SWARTZ¹ ¹Ecole Polytechnique Federal de Lausanne, Lausanne, Switzerland

9:00AM

Molecular-level Deconvolution of the Human Serum Antibody Repertoire Elicited by Vaccination

J. LAVINDER¹, G. IPPOLITO¹, Y. WINE¹, D. BOUTZ¹, J. BLAZECK¹, A. HORTON¹, C. GIESECKE², K. HOI¹, B. TAN¹, E. MURRIN¹, M. WIRTH¹, A. ELLINGTON¹, T. DÖRNER², E. MARCOTTE¹, AND G. GEORGIOU¹ ¹University of Texas at Austin, Austin, TX, ²Charite Universitätsmedizin Berlin, Berlin, Germany

9:15AM

Dysregulated Sphingolipid Metabolism In Sickled Erythrocytes & Inflammatory Microparticle Generation

A. AWOJOODU¹, P. KEEGAN¹, A. LANE¹, Y. ZHANG¹, M. PLATT¹, AND E. BOTCHWEY¹ ¹Georgia Institute of Technology, Atlanta, GA

Track: Cardiovascular Engineering, Tissue Engineering OP-Sat-I-6 - Room 006D

Cardiac Regeneration

Chairs: Milica Radisic, Lauren Black III

8:00AM

Designing an Elastic Scaffold with Shape-Memory for Functional Tissue Delivery

M. MONTGOMERY¹, B. ZHANG¹, L. REIS¹, AND M. RADISIC¹ ¹University of Toronto, Toronto, ON, Canada

8:15AM

Generation of Functional Human Myocardium from Native Human Heart Matrix and Human iPS-derived Cardiomyocytes

J. GUYETTE¹, J. CHAREST¹, P. MOSER¹, AND H. OTT¹ ¹Harvard Medical School, Boston, MA

8:30AM

Engineering Mature Cardiac Tissue *In Vitro*: Biomechanical and Biochemical Stimulation of Physiological Hypertrophy.

C. RUPERT¹, M. REGNIER², C. MURRY², AND K. COULOMBE¹ ¹Brown University, Providence, RI, ²University of Washington, Seattle, WA

8:45AM

In Vitro Recruitment of Macrophages by Human Embryonic Stem Cell-Derived Cardiomyocytes

I. PALLOTTA¹, E. WRONA¹, AND D. FREYTES¹ ¹The New York Stem Cell Foundation Research Institute, New York, NY

9:00AM

Cardiac Progenitor Cell Exosomes to Treat the Heart

S. Ghosh- Choudhary 1, W. Gray 2, K. Kanter 3, B. Kogon 3, M. Platt 2, and M. Davis 4

¹Georgia Institute of Technology, Atlanta, GA, ²Georgia Institute of Technology and Emory University, Atlanta, GA, ³Children's Healthcare of Atlanta, Atlanta, GA, ⁴Georgia Institute of Technology and Emory University and Children's Healthcare of Atlanta, Atlanta, GA

9:15AM

Hepatic Cell-Mediated Delivery of Trefoil Factor 3 to Ischemic Myocardium - A Trans-system Mechanism Against Cardiomyocyte Calcification

S. LIU¹, B. ZHANG¹, AND Y. WU¹ ¹Northwestern University, Evanston, IL

Track: Stem Cell Engineering, Biomechanics OP-Sat-1-7 - Room 007A

Mechanobiology of Stem Cells

Chairs: Rhima Coleman, Shyni Varghese

8:00AM Invited

Nuclear Scaling in Stem Cell Differentiation

D. DISCHER¹ ¹Univ Pennsylvani, Philadelphia, PA

8:30AM

ColVI and DCN's Role In Mechanotransduction And Scaffold Material Properties During Chondrogenesis

J. TWOMEY¹, B. BULKA¹, AND A. HSIEH¹,²

¹University of Maryland, College Park, College Park, MD, ²University of Maryland, Baltimore, Baltimore, MA

8:45AM

Differentiation of Human Adipose-Derived Stem Cells in Response to Mechanical Stimulation

K. MEGERLE¹, W. COLE², I. MAHAFFEY², P. LEUCHT¹, J. CHANG¹, AND A. CASTILLO^{1,2} ¹Stanford University School of Medicine, Palo Alto, CA, ²VAPAHCS, Palo Alto, CA

9:00AM

Hippo-YAP Dependent Mechanosensitive Motor Neuron Differentiation of Human Pluripotent Stem Cells

Y. SUN¹, K. AW YONG¹, W. CHEN¹, R. PHILSON¹, S. WENG¹, AND J. FU¹ ¹University of Michigan, Ann Arbor, MI

9:15AM

Parsing Stem Cell Phenotypes Using High Content Imaging of Mechanotransductive Nuclear Reporters

A. DHALIWAL¹, S. VEGA¹, V. ARVIND¹, M. BRENNER¹, Z. ZHANG², Y. MAO², J. KOHN³, AND P. MOGHE^{1,4}

¹Biomedical Engineering, Rutgers University, Piscataway, NJ, ²New Jersey Center for Biomaterials, Rutgers University, Piscataway, NJ, ³Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ, ⁴Department of Chemical & Biochemical Engineering, Rutgers University, Piscataway, NJ

Track: Cardiovascular Engineering OP-Sat-I-8 - Room 007B

Angiogenesis

Chairs: Bob Tranquillo, Sara Nunes Vasconcelos

8:00AM

Recruitment and Programming of Endogeneous Progenitor Cells In Situ for Therapeutic Angiogenesis

L. DEVEZA¹, J. CHOI¹, J. ASHOKEN², AND F. YANG¹ ¹Stanford University, Stanford, CA, ²San Jose State University, San Jose, CA

8:15AM

Uncoupling Angiogenesis and Inflammation in Peripheral Artery Disease by Therapeutic Peptides with Injectable Microgels

A. Zachman', X. Wang', J. Tucker-Schwartz', S. Lee', M. Skala', and H-J. Sung' 'Vanderbilt University, Nashville, TN

P = Poster Session
 OP = Oral Presentation
 = Reviewer Choice Award

sessions

Syndesomes: A Novel Therapy For Peripheral Ischemia

S. DAS¹, A. MONTEFORTE¹, G. SINGH¹, M. MARTINEZ¹, A. DUNN¹, AND A. BAKER¹ ¹University of Texas, Austin, Austin, TX

8:45AM

A Fluid Shear Stress Threshold Regulates Angiogenic Sprouting P. GALIE¹, P. JANMEY¹, AND C. CHEN²

¹University of Pennsylvania, Philadelphia, PA, ²Boston University, Boston, MA

9:00AM

Evaluation of Endothelial Progenitor Cells for Microvessel Tissue Engineering

E. BROWN PETERS¹, N. CHRISTOFOROU^{1,2}, K. LEONG¹, G. TRUSKEY¹, AND J. WEST¹ ¹Duke University, Durham, NC, ²Khalifa University, Abu Dhabi, United Arab Emirates

9:15AM

Physical Signals That Promote Vascularization of Capillary-Scale Channels

N. BOLAND¹, G. COVARRUBIAS¹, AND J. TIEN¹ ¹Boston University, Boston, MA

Track: Cellular and Molecular Bioengineering OP-Sat-I-9 - Room 007C

Young Innovator Session I

Chairs: Cynthia Reinhart-King, Deborah Leckband

8:00AM

Shrink Wrapping Cells in a Defined Extracellular Matrix to Modulate the Chemo-Mechanical Microenvironment

R. PALCHESKO¹, J. SZYMANSKI¹, A. SAHU¹, AND A. FEINBERG¹I ¹Carnegie Mellon University, Pittsburgh, PA

8:15AM

Efficiency of Protease-activatable Virus Nanonodes Tuned Through Incorporation of Wild-type Capsid Subunits

M. HO¹, J. JUDD¹, B. KUYPERS¹, M. YAMAGAMI¹, F. WONG¹, AND J. SUH¹ ¹Rice University, Houston, TX

8:30AM

Aqueous Two-Phase Printing of Tumor Spheroids For Drug Screening E. Atefl¹, S. Lemmo¹, D. Fyffe¹, G. Luker², and H. Tavana¹

¹University of Akron, Akron, OH, ²University of Michigan, Ann Arbor, MI

8:45AM

Quantitative Evaluation and Optimization of Co-drugging to Improve Anti-HIV Latency Therapy

V. WONG¹, L. FONG¹, N. ADAMS¹, O. XUE¹, S. DEY², AND K. MILLER-JENSEN¹ ¹Yale University, New Haven, CT, ²Hubrecht Institute, Utrecht, Netherlands

9:00AM

PAActivation of a Bacterial Mechanosensitive Channel in Mammalian Cells by Cytoskeletal Stress

A. LIU¹, J. HEUREAUX¹, D. CHEN¹, V. MURRAY¹, AND C. DENG¹ ¹University of Michigan, Ann Arbor, MI

9:15AM

Network Modeling Approach to Predict Myofibroblast Differentiation A. Schroer¹, L. Ryzhova¹, and W. Merryman¹

¹Vanderbilt University, Nashville, TN

Track: Orthopaedic and Rehabilitation Engineering, Tissue Engineering OP-Sat-I-I0 - Room 007D

Musculoskeletal Tissue Engineering

Chairs: Clark Hung, Warren Grayson

8:00AM

 $\label{eq:chondroinductive Biomaterials for Cartilage Tissue Engineering M. Detamore1 $$$

¹University of Kansas, Lawrence, KS

8:15AM

Spatial Control of MSC Fate Using 3D Multi-compartment Scaffolds for Engineering Orthopedic Interfaces

W. GRIER¹, L. MOZDZEN¹, S. CALIARI¹, D. WEISGERBER¹, M. BOPPART¹, AND B. HARLEY¹

¹University of Illinois at Urbana-Champaign, Urbana, IL

8:30AM

Dynamic Hydrostatic Pressure-induced Formation of Micropores in Mature Tissue-engineered Articular Cartilage

T-A. KELLY¹, S. SIRSI², A. NOVER¹, C. CHEN¹, A. DITZEL¹, P. MOUNTFORD², S. ETEZAZIAN², G. ATESHIAN¹, M. BORDEN², AND C. HUNG¹ ¹Columbia University, New York, NY, ²University of Colorado at Boulder, Boulder, CO

8:45AM

Engineering Craniofacial Bone And Skeletal Muscle From Adipose-Derived Stem Cells W. GRAYSON¹

¹Johns Hopkins University, Baltimore, MD

9:00AM

A Combined Experimental and Theoretical Approach to Designing Enzyme Degradable Hydrogels for Cartilage Tissue Engineering

S. SKAALURE¹, S. CHU¹, U. AKALP¹, F. VERNEREY¹, A. DOOSTAN¹, AND S. BRYANT¹ ¹University of Colorado, Boulder, CO

9:15AM

The Use of Laminin-functionalized Hydrogels to Restore Pathological Nucleus Pulposus Cells of the Intervertebral Disc

P. HWANG¹, A. FRANCISCO¹, L. JING¹, W. RICHARDSON¹, R. ISAACS¹, C. BROWN¹, J. CHEN¹, AND L. SETTON¹

¹Duke University, Durham, NC

Track: Nano to Micro Technologies, Device Technologies and Biomedical Robotics OP-Sat-I-II - Room 008A

Cells Tissues and Organs on Chip I

Chairs: Keith Neeves, Maribel Vazquez

8:00AM

Capillary Formation under Interstitial Flow in a Microfluidic Device for Liver Tissue Engineering

R. SUDO¹, Y. ABE¹, S. MENJO¹, AND K. TANISHITA² ¹Keio University, Yokohama, Japan, ²Waseda University, Tokyo, Japan

8:15AM

Simple Microfluidic Device for Automated, High-throughput Morphological Analysis of Stored Red Blood Cells

N. PIETY¹, S. GIFFORD¹, X. YANG¹, AND S. SHEVKOPLYAS¹ ¹University of Houston, Houston, TX PLATFORM SESSIONS

Inflammation Mediated Modulation of Blood Brain Barrier In Vitro

A. SMITH¹, J. ROSANO¹, C. GARSON¹, K. BHATT¹, B. PRABHAKARPANDIAN¹, M. ASCHNER², AND K. PANT¹

¹CFD Research, Huntsville, AL, ²Albert Einstein College of Medicine, Bronx, NY

8:45AM

A Human Blinking 'Eye-on-a-chip' J. SEO¹ AND D. HUH¹ ¹University of Pennsylvania, Philadelphia, PA

9:00AM

A Microfabricated Platform for Evaluating Prodrug Metabolism and Toxicity in a Hepatocyte-Cancer Model

S. BALE¹, R. JINDAL¹, G. SRIDHARAN¹, I. GOLBERG¹, W. MCCARTY¹, M. HEGDE¹, A. BHUSHAN¹, L. PRODANOV¹, O. USTA¹, AND M. YARMUSH¹ ¹Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners, Burns Hospital, Boston, MA

9:15AM

A Microfluidic-Based Array for Large-Scale Ordering And High-Resolution Imaging Of Islets

M. NOURMOHAMMADZADEH¹, J. MENDOZA-ELIAS¹, Y. XING¹, J. OBERHOLZER¹, AND Y. WONG¹

¹University of Illinois at Chicago, Chicago, IL

Track: Respiratory Bioengineering, Tissue Engineering OP-Sat-I-I2 - Room 008B

Engineering Strategies for Lung Transplant & Regeneration

Chairs: Daniel Weiss, Samir Ghadiali

8:00AM Invited

Ex-Vivo Lung Perfusion – A Bench to Bedside Platform for Pulmonary Investigation

¹B. WHITSON

¹The Ohio State University, Columbus, OH

8:15AM

Design and Validation of a Clinical-Scale Biomimetic Whole-Lung Bioreactor

J. CHAREST¹, T. OKAMOTO¹, A. YASUDA¹, S. GILPIN^{1,2}, D. MATHISEN¹, AND H. OTT^{1,2} ¹Massachusetts General Hospital, Boston, MA, ²Harvard Medical School, Boston, MA

8:30AM

Enhanced Reseeding of Decellularized Rodent Lung Airway and Vasculature

C. STABLER¹, S. LECHT¹, M. BARAKAT¹, L. CAIRES², A. RYLANDER¹, R. CHIAVERELLI¹, E. SCHULMAN³, C. MARCINKIEWICZ¹, AND P. LELKES¹

¹Temple University, Philadelphia, PA, ²Federal University of Juiz de Fora, Juiz de Fora, Brazil, ³Drexel University College of Medicine, Philadelphia, PA

8:45AM

Mechanical Control of Airway Branching Morphogenesis

V. VARNER¹, J. GLEGHORN¹, AND C. NELSON¹ ¹Princeton University, Princeton, NJ

9:00AM

Engineered Cartilaginous Structures for Tracheal Tissue Replacement

A. DIKINA¹, H. STROBEL², B. LAI¹, M. ROLLE², AND E. ALSBERG¹ ¹Case Western Reserve University, Cleveland, OH, ²Worcester Polytechnic Institute, Worcester, MA

P = Poster Session OP = Oral Presentation Q = Reviewer Choice Award

9:15AM

An Alginate-Based Pulmonary Patch For Repairing Pleural Injuries S. FENN¹, D. WAGNER¹, P. SAUNDERS¹, P. CHARRON¹, D. WEISS¹, AND R. OLDINSKI¹ 'University of Vermont, Burlington, VT

Track: Device Technologies and Biomedical Robotics, Translational Biomedical Engineering OP-Sat-1-13 - Room 201

Biosensors I: Materials and Techniques

Chairs: J-C Chiao, Jeff LaBelle

8:00AM

Advancing Silicon Photonics for Clinical Applications D. RATNER¹ ¹University of Washington, Seattle, WA

8:30AM

Macromolecularly Imprinted Polymers on the Surface of Nanoparticle Supports for Low-Cost Biosensors

H. CULVER¹, C. FAUVARQUE NUYTTEN², AND N. PEPPAS¹ ¹University of Texas at Austin, Austin, TX, ²Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

8:45AM

A High Density Electrochemical Imaging System for Understanding Cell-to-Cell Communication

W. WILSON¹, K. SCHOELFIELD¹, J. WYDALLIS¹, R. FEENY¹, W. TEJIO¹, T. KERN¹, S. LANTVIT¹, C. HENRY¹, S. TOBET¹, M. REYNOLDS¹, AND T. CHEN¹ ¹Colorado State University, Fort Collins, CO

9:00AM

Protease Detection Assay Based on Aggregation of Stimulus-Responsive Polypeptides

A. GHOORCHIAN¹, A. CHILKOTI¹, AND G. LOPEZ¹ ¹Duke University, Durham, NC

9:15AM

Up-Regulation of Metabolites for Early Detection of Bacterial Pathogens in Human Biofluids

H. SISMAET¹, T. WEBSTER¹, AND E. GOLUCH¹ ¹Northeastern University, Boston, MA

Track: Drug Delivery, Cancer Technologies OP-Sat-I-I4 - Room 103B

Cancer Drug Delivery I

Chairs: Natalie Artzi, Hao Cheng

8:00AM

Role of Endocytosis in Electrotransfection of Tumor Cells M. WU¹, C-C. CHANG¹, AND F. YUAN¹

¹Duke University, Durham, NC

8:15AM

Mapping The CXCR4 Receptor On Breast Cancer Cells By AFM: A Tool For Engineering Targeted Drug Delivery Vehicles

B. WANG¹ AND D. AUGUSTE ¹ ¹The City College of New York, New York, NY

Systemic Delivery of Liposome-Anchored Cytokines Elicits Antitumor Immunity Without Lethal Toxicity

Y. ZHANG^{1,2,3} AND D. IRVINE^{1,2,3,4,5}

¹Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, ²Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, ³Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, ⁴Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA, ⁵Howard Hughes Medical Institute, Chevy Chase, MD

8:45AM

Core/Shell Systems for Improved Control of the Externally Triggered Release of Chemotherapeutics

J. PETERS¹, N. LIZANA¹, I. VERMA¹, AND N. PEPPAS¹ ¹The University of Texas at Austin, Austin, TX

9:00AM

A Long Circulating PVX-Based Nanoparticle for Enhanced Tumor Homing and Therapeutic Payload Delivery

K. LEE¹, S. SHUKLA¹, K. WEBER BONK¹, R. KERI¹, AND N. STEINMETZ¹ ¹Case Western Reserve University, Cleveland, OH

Track: Neural Engineering, Device Technologies and Biomedical Robotics OP-Sat-I-I5 - Room 202A

Brain-computer Interfaces

Chairs: Chris Passaglia, Erkin Seker

8:00AM

Role of Interleukin Iβ Converting Enzyme on Recording Performance and the Reactive Tissue Response Around Chronic Neural Electrode T. KOZAI¹, X. LI¹, L. BODILY¹, E. CAPAROSA¹, D. CARLISLE¹, R. FRIEDLANDER¹, AND X. CUI¹

¹University of Pittsburgh, Pittsburgh, PA

8:15AM

Understanding the Immune Response to Intracortical Microelectrodes

J. HERMANN^{1,2}, M. RAVIKUMAR, PHD^{1,2}, J. JIANG^{1,3}, J. NGUYEN^{1,2}, S. SUNIL¹, C. WONG¹, A. SOFFER¹, V. SRIVASTAVA¹, D. TAYLOR, PHD^{2,3}, AND J. CAPADONA, PHD^{1,2} ¹Case Western Reserve University, Cleveland, OH, ²Louis Stokes Cleveland VA Medical Center, Cleveland, OH, ³Cleveland Clinic Lerner Research Institute, Cleveland, OH

8:30AM

The Spatial Distribution of FBR Biomarkers Correlates with Recording Performance in Rats

N. NOLTA¹, M. CHRISTENSEN¹, AND P. TRESCO¹ ¹University of Utah, Salt Lake City, UT

8:45AM

Modeling Mechanics of Flexible Neural Probes Coated in an Ultra-fast Degrading Polymer for Optimizing Probe Design

S. SINGH¹, M-C. LO¹, V. DAMODARAN², H. KAPLAN², J. KOHN², J. ZAHN¹, AND D. SHREIBER¹

¹Rutgers University, Piscataway, NJ, ²New Jersey Center for Biomaterials, Piscataway, NJ

9:00AM

Flexible Neural Micoprobes Coated with a Fast Degrading Polymer as an Aid to Tissue Insertion

M-C. LO¹, S. SINGH¹, V. B. DAMODARAN¹, S. WANG¹, H. M. KAPLAN¹, K. COFFEY ¹, D. BARKER ¹, J. D. ZAHN¹, D. I. SHREIBER¹, AND J. KOHN¹ ⁷Rutgers, the State University of New Jersey, Piscataway, NJ

9:15AM

Extracellular Matrix Coatings for CNS Neural Recording Arrays

R. OAKES¹, M. POLEI¹, J. SKOUSEN¹, AND P. TRESCO¹ ¹University of Utah, Salt Lake City, UT

Track: New Frontiers and Special Topics, Device Technologies and Biomedical Robotics OP-Sat-1-16 - Room 202B

Global Health I

Chairs: Sergey Shevkoplyas, Leo Wan

8:00AM

A Low-cost, Paper-based Assay for Diagnosis of Sickle Cell Disease in Resource-limited Settings

N. PIETY¹, X. YANG¹, B. DINU², A. GEORGE², AND S. SHEVKOPLYAS¹ ¹University of Houston, Houston, TX, ²Baylor College of Medicine, Houston, TX

8:30AM

GlucoSense: Design of a Low Cost Diabetes Glucometer System K. GAINEY¹, T. OVINGTON¹, J. DESJARDINS¹, AND D. DEAN¹

¹Clemson University, Clemson, SC

8:45AM

Immunomodulatory Nanoparticles Ameliorate Disease in the Leishmania (Viannia) panamensis Mouse Model

A. SIEFERT¹, A. EHRLICH¹, M. CORRAL CARIDAD², K. GOLDSMITH-PESTANA¹,
 D. MCMAHON-PRATT¹, AND T. FAHMY¹
 ¹Yale University, New Haven, CT, ²Universidad Complutense de Madrid, Madrid, Spain

9:00AM

Towards Development of an Autonomous Network of BacteriaBots: High-Throughput Spatiotemporal Characterization of Bacterial Quorum-Sensing Response

A. SAHARI¹, M. TRAORE¹, A. STEVENS¹, B. SCHARF¹, AND B. BEHKAM¹ ¹Virginia Tech, Blacksburg, VA

9:15AM

Increasing Access to HIV Medication in Developing Countries:An Operational, Feasibility Study in Zambia

A. DAHINTEN¹, J. EKUTA¹, AND R. MALKIN¹ ¹Duke University, Durham, NC

Track: Biomedical Imaging and Optics OP-Sat-I-I7 - Room 203A

Ultrasound Imaging

Chairs: Baohong Yuan, Paul Carson

8:00AM

Development and Application of Ultrasound Techniques for Investigating Pathogenesis in Experimental Abdominal Aortic Aneurysms

E. PHILLIPS¹, A. YRINEO¹, H. SCHROEDER¹, F. DAMEN¹, A. BOGUCKI¹, S. JUBAER¹, A. JACKSON¹, R. FOLEY¹, N. BLAIZE¹, J-X. CHENG¹, AND C. GOERGEN¹ ¹Purdue University, West Lafayette, IN

8:15AM

RSNA QIBA Ultrasound Shear Wave Speed: Sources of Variability in Phantoms, Simulations and Humans

P. CARSON¹, A. MILKOWSKI², T. HALL³, B. GARRA⁴, K. NIGHTINGALE⁵, M. PALMERI⁵, A. SAMIR⁶, S. CHEN⁷, T. LYNCH⁸, N. ROUZE⁵, M. DHYANI⁶, AND D. SULLIVAN⁵ ¹Univ. of Michigan, Ann Arbor, MI, ²Siemens Ultrasound, Issaquah, WA, ³Univ. of Wisconsin, Madison, WI, ⁴Veterans Health System, Hyattsville, MD, ⁵Duke Univ., Durham, NC, ⁶Mass. Gen'l Hospital, Boston, MA, ⁷Mayo Clinic, Rochester, MN, ^eCIRS, Inc., Norfolk, VA

8:30AM

Ultrasound and Photoacoustic Imaging of Anatomical and Functional Indicators of Lymph Node Metastasis

G. LUKE¹ AND S. EMELIANOV¹ ¹The University of Texas at Austin, Austin, TX

sessions Sat-1

8:45AM

Formulation and *In Vitro* Characterization of Targeted Lipid-Pluronic Nanobubbles

P. KOTA¹, C. HERNANDEZ¹, H. WU¹, AND A. EXNER¹ ¹Case Western Reserve University, Cleveland, OH

9:00AM

Skeletal Imaging and Assessment Using Hand-Held Focal Quantitative Ultrasound Technology

J. MUIR¹, L. LIN¹, J. CHENG¹, AND Y-X. QIN¹ ¹Stony Brook University, Stony Brook, NY

9:15AM

Bipolar Nanosecond Electric Pulses Display Reduced Efficacy Due to Acoustic Interference

C. ROTH¹, R. BARNES², S. MASWADI², B. IBEY³, H. BEIER³, AND R. GLICKMAN¹ ¹UTHSCSA, San Antonio, TX, ²UTSA, San Antonio, TX, ³Air Force Research Laboratories, San Antonio, TX

Track: Biomedical Imaging and Optics OP-Sat-I-18 - Room 203B

Optical Imaging and Microscopy I

Chairs: Bernard Choi, Ken Tichauer

8:00AM

Near Infrared Fluorescent Neural Progenitor Cells to Track Differentiation and Tissue Innervation

A. MOHS^{1,2}, S. RAGHAVAN^{1,2}, R. GILMONT², S. SOMARA², F. MARINI², AND K. BITAR^{1,2} ¹Wake Forest - Virginia Tech School of Biomedical Engineering and Sciences, Winston-Salem, NC, ²Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC

8:15AM

Imaging Three-Dimensional Nanoscale Morphometry of Type I Collagen Gels Using Focused Ion Beam Scanning Electron Microscopy S. REESE¹, N. FARHANG¹, AND J. WEISS¹

¹University of Utah, Salt Lake City, UT

8:30AM

Light-sheet Single-Molecule Super-resolution Imaging of Tissues Y. HU¹, Z. KATZ¹, B. LILLEMEIER¹, AND H. CANG¹

¹Salk Institute, La Jolla, CA

8:45AM

Intracellular Three-Dimensional Single-Particle Tracking with Multiplexed Two-Photon Excitation

E. PERILLO¹, Y-L. LIU¹, C. LIU¹, H-C. YEH¹, AND A. DUNN¹ ¹The University of Texas Austin, Austin, TX

9:00AM

Large Scale, High Resolution Imaging with a Simple and Robust Superresolution Light Sheet Microscopy

P. FEI¹ ¹UCLA, Los Angeles, CA

9:15AM

Ultra-Wide Field-Of-View Gigapixel Fluorescent Imaging System Using A Modified Flatbed Scanner

Z. GÖRÖCS¹, Y. LING¹, M. YU¹, D. KARAHALIOS¹, K. MOGHARABI¹, K. LU¹, Q. WEI¹, AND A. OZCAN¹,²

¹University of California, Los Angeles, Los Angeles, CA, ²California NanoSystems Institute, Los Angeles, CA

Track: Cancer Technologies, Nano to Micro Technologies

OP-Sat-I-I9 - Room 103A

Nanotechnologies for Cancer I

Chairs: Carlos Rinaldi, Craig Duvall

8:00AM

Resources For Preclinical Characterization Of Nanomaterials For Cancer Diagnosis, Imaging & Therapy

N. PANARO¹, S. STERN¹, A. PATRI¹, AND S. MCNEIL¹ ¹Leidos Biomedical Research, Frederick, MD

8:15AM

In Vivo Targeting of Tumor Associated Macrophages Using Mannosylated Endosomal-Escape Nanoparticles

R. ORTEGA¹, W. BARHAM¹, I. MCFADDEN¹, O. TIKHOMIROV¹, K. SHARMAN¹, F. YULL¹, AND T. GIORGIO¹

¹Vanderbilt University, Nashville, TN

8:30AM

Targeting Nanotechnology to Invasive Brain Tumors

P. PEIRIS¹, A. ABRAMOWSKI¹, L. BAUER¹, R. TOY¹, E. DOOLITTLE¹, S. RAO¹, S. SHAH¹, K. GHAGHADA², S. BRADY-KALNAY¹, J. BASILION¹, M. GRISWOLD¹, AND E. KARATHANASIS¹ ¹Case Western Reserve University, Cleveland, OH, ²Texas Children's Hospital, Houston, TX

8:45AM

A Novel Triple Negative Breast Cancer Theranostic Target for Nanomedicine

P. GUO¹ AND D. AUGUSTE² ¹Boston Children's Hospital, Boston, MA, ²City College of New York, New York, NY

9:00AM

In Vivo Targeting of Adoptively Transferred T-cells with Nanoparticles for Cancer Immunotherapy

Y. ZHENG¹,² AND D. IRVINE^{1,2,3,4}
¹Massachusetts Institute of Technology, Cambridge, MA, ²Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, ³Ragon Institute of Massachusetts General Hospital, MIT and Harvard University, Cambridge, MA, ⁴Howard Hughes Medical Institute,

9:15AM

Chevy Chase, MD

In Vivo Multiplex Photoacoustic Molecular Imaging for Optimization of Nanoparticle Targeting and Kinetics

C. BAYER¹, G. LUKE¹, AND S. EMELIANOV¹ ¹The University of Texas at Austin, Austin, TX

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

Track: Biomedical Engineering Education (BME) OP-Sat-1-20 - Room 204A

Novel Laboratory Modules

Chairs: Ann Saterbak, Chris Geiger

8:00AM

Teaching Sequential Design of Experiments and Biomedical Process Optimization

J. AUDET¹ ¹University of Toronto, Toronto, ON, Canada

8:15AM

"Building Blocks" for Inventing Instruments in the Classroom D. HILL¹, L. ANDERSON¹, C. HILL¹, AND W. GROVER¹ ¹University of California, Riverside, Riverside, CA

8:30AM

Receiving Feedback from Instructor and Peers Increases the Quality of Written Reports in a Biomedical Instrumentation Laboratory Course R. RAMOS¹ 'Rice University, Houston, TX

8:45AM

Integrating 3D Additive Manufacturing Technologies into a Tissue Engineering Lab Course A. FEINBERG¹

¹Carnegie Mellon University, Pittsburgh, PA

9:00AM

A Two-Dimensional Motion Analysis Laboratory for Introductory Courses in Biomedical Engineering C. HENAK¹ AND S. ARCHER¹ ¹Cornell University, Ithaca, NY

9:15AM

Cloud Experimentation And Biotic Games As Novel Media For Bioengineering Education

I. RIEDEL-KRUSE¹, Z. HOSSAIN¹, A. CHUNG¹, AND N. CIRA¹ ¹Stanford Bioengineering, Stanford, CA SPECIAL SESSION

8:00 AM – 9:30 AM Ballroom A, Convention Center

Advanced Biomanufacturing: Application Towards the Next Generation Therapies and Diagnostics

Advanced Biomanufacturing is an emerging field in biomedical engineering. Unlike conventional bioprocessing technologies, advanced biomanufacturing builds on the groundbreaking discoveries such as 3D additive manufacturing, genome editing, cell reprogramming and transdifferentiation, systems and synthetic biology, stem cell biology, computational modeling, micro and nanofabrication, material genomes, biomaterials, tissue engineering and regenerative medicine. A group of leading scientists have worked together and recently launched a BMES special interest group (SIG) for advanced biomanufacturing (ABioM-SIG). The objective of the BMES SIG is to bring academic and industrial leaders together to promote the development of advanced biomanufacturing, foster collaborations among investigators in the field, and create a new mode of educating and training the next generation leaders and workforce in advanced biomanufacturing. This inaugural session is the BMES ABioM-SIG's first official session to discuss opportunities and grand challenges in advanced biomanufacturing and to lay out a strategic plan to spur research, education, and industry growth and innovation in advanced biomanufacturing towards significant benefits to the patient population and the society at large.

SPEAKERS:

Microphysiological Tissue Platforms for Drug Testing in Human Health and Disease

GORDANA VUNJAK-NOVAKOVIC, Professor, Department of Biomedical Engineering and Department of Medical Sciences, Columbia University,

Advanced Biomanufacturing: A New Wave of Biomedical Engineering

KAIMINGYE, Professor and Department Chair, Department of Bioengneering, State University of New York, Binghamton (SUNY Binghamton)

On the Threshold – Advanced Biomanufacturing and Clinical Challenges

PETER DILLON, Professor and Department Chair, Department of Surgery, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine

Moderator: ATHANASSIOS SAMBANIS Panelists: CHENG DONG, KAM LEONG, DAVID KAPLAN, GANG BAO, AND GILDA BARABINO
SATURDAY | OCTOBER 25 | 2014

2014 PLATFORM SESSIONS Sat-2 1:30PM-3:00PM

SATURDAY, October 25, 2014

I:30 PM - 3:00 PM PLATFORM SESSIONS - SAT - 2

Track: Tissue Engineering, Stem Cell Engineering OP-Sat-2-1 - Room 001A

Adult Stem Cells in Tissue Engineering

Chairs: Liping Tang, Michelle Dawson

1:30PM

TGF- β I Pretreatment Improves The Function Of Mesenchymal Stem Cells In The Wound Bed

D. GHOSH¹, D. MCGRAIL¹, AND M. DAWSON¹ ¹Georgia Institute of Technology, Atlanta, GA

1:45PM

Photocrosslinkable, Biodegradable Hydrogels with Controlled Cell Adhesivity for Tunable siRNA Delivery to Encapsulated hMSCs M. NGUYEN¹, D. SCHAPIRA¹, A. MCMILLAN¹, AND E. ALSBERG¹ 'Case Western Reserve University, Cleveland, OH

2:00PM

Gelatin-based Injectable Microsphers for Encapsulating Mesenchymal Stem Cells

B. SUNG¹, S. SHAFFER ¹, C. KIM¹, AND M-H. KIM¹ ¹Kent State University, Kent, OH

2:15PM

A Novel 'Differentiation Niche' Promoting Stem Cell Differentiation to Smooth Muscle Lineage

L. VELUTHERIL THOMAS¹ AND J. L.WEST¹ ¹Duke University, Durham, NC

2:30PM

Hypoxic Modulation of Mesenchymal Stem Cells Affects Macrophage Function for Ischemic Tissue Repair

L. RICLES¹, E. CHUNG¹, N. KOPCHO¹, AND L. SUGGS¹ ¹The University of Texas at Austin, Austin, TX

2:45PM

Tissue Regeneration Using Scaffold-mediated Autologous Progenitor Cell Responses *In Vivo*

A. NAIR 1, J. SHEN 1, C. ZHANG 2, R. SAXENA 2, J. BORRELLI 3, R. TRAN 4, J. YANG 4, AND L. TANG 1

¹University of Texas at Arlington, Arlington, TX, ²University of Texas Southwestern Medical Center at Dallas, Dallas, TX, ³Texas Health Arlington Memorial Hospital, Arlington, TX, ⁴Pennsylvania State University, University Park, PA

Track: Biomaterials, Cellular and Molecular Bioengineering OP-Sat-2-2 - Room 001B

Biomaterials for Immunoengineering I

Chairs: Jeffrey Capadona, Adam Ekenseair

1:30PM

The Aggregate Structure of Self-Assembled Nanocarriers Specifies Their In Vivo Uptake By Antigen Presenting Cell Subsets E. SCOTT¹, A. DE TITTA², AND J. HUBBELL²

¹Northwestern University, Evanston, IL, ²EPFL, Lausanne, Switzerland

1:45PM

Nanomaterials-based Vaccines for Cocaine Addiction

R. APPAVU¹, C. DING¹, S. STUTZ¹, Y. DING¹, K. CUNNINGHAM¹, J. ZHOU¹, AND J. RUDRA¹ ¹Department of Pharmacology and Toxicology, Center for Addiction Research, University of Texas Medical Branch, Galveston, TX

2:00PM

M2e Conjugated Gold Nanoparticles Protect Against H1N1, H3N2 and H5N1 Influenza A Viruses

W. TAO¹, E. TARBET², AND H. GILL¹

¹Texas Tech Univeristy, Lubbock, TX, ²Utah State University, Logan, UT

2:15PM

Immunogenicity and Adjuvanticity of Biologically Derived Nanoparticles Y. WANG¹, Y. HUANG¹, L. SUN¹, AND M. ZHANG¹ ¹Ohio State University, Columbus, OH

2:30PM

Membrane-interacting, Amphiphilic Gold Nanoparticles: Mechanisms for Bilayer-embedding and Applications in Peptide Vaccine Therapy P. ATUKORALE¹, K. MOYNIHAN¹, D. YUN¹, AND D. IRVINE¹ ¹Massachusetts Institute of Technology, Cambridge, MA

2:45PM

Pre-clinical Development of a Biomaterial-based Microparticle Vaccine for Type I Diabetes Attenuation

J. Lewis¹, M. Carstens¹, N. Dolgova¹, C-Q. Xia¹, M. Clare-Salzler¹, and B. Keselowsky¹

¹University of Florida, Gainesville, FL

Track: Biomaterials OP-Sat-2-3 - Room 006A

Biomaterials Design I

Chairs: Abigail Koppes, Matt Kipper

I:30PM Invited

Biomaterials Design for Enhanced Vascularization and Healing 'G. VUNJAK-NOVAKOVIC

¹Columbia University, New York, NY

2:00PM

Periadventitial Application of Rapamycin-Loaded Nanoparticles Produces Sustained Inhibition of Vascular Restenosis

G. CHEN¹, X. SHI², L. GUO², K. KENT², AND S. GONG¹,³

¹Materials Science Program and Wisconsin Institute for Discovery, University of Wisconsin– Madison, Madison, WI, ²Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, WI, ³Department of Biomedical Engineering, University of Wisconsin– Madison, Madison, WI

2:15PM

Polysaccharide Mediated Pore Formation For 3D Myotube Formation

M. RICH¹, M. LEE¹, N. MARSHALL², J. CHEN¹, AND H. KONG¹ ¹University of Illinois, Urbana, IL, ²Drake University, Des Moines, IA

2:30PM

Polycarbonates Built From the Polyhydroxyl Natural Products Quinic Acid and Glucose: Tuning the Thermal, Mechanical, and Surface Properties for Degradable Medical Plastics Applications

L. LINK¹, T. GUSTAFSON¹, A. LONNECKER¹, J. RAYMOND¹, K. HEARON¹, C. MAHER¹, D. MAITLAND¹, AND K. WOOLEY¹

¹Texas A&M University, College Station, TX

2:45PM

Rheological and Mechanical Characterization of Biocomposites Based on Chitosan with Potential Use as Bone Adhesives

L. PINZON', F. CEDANO', F. SALCEDO', J. CASAS', C. MORENO', J. BRICENO', AND D. TABIMA'

¹Universidad de los Andes, Bogota, Colombia

182 BMES 2014

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

Track: Biomechanics, Cardiovascular Engineering OP-Sat-2-4 - Room 006B

Aortic Biomechanics

Chairs: Craig Goergen, Zhijie Wang

1:30PM

Translation of AAA Rupture Risk Assessment: Wall Mechanics and Geometric Quantification

S. RAUT¹, J. SHUM², AND E. FINOL³

¹University of Texas at Austin, Austin, TX, ²Carnegie Mellon University, Pittsburgh, PA, ³University of Texas at San Antonio, San Antonio, TX

1:45PM

Role of Aneurysm on Biomechanics of Radially-Oriented Fibers in Human Ascending Thoracic Aorta

A. TSAMIS¹, S. PAL², J. PHILLIPPI², S. PASTA³, A. D'AMORE^{2,3}, T. GLEASON², D. VORP ², AND S. MAITI²

¹Carnegie Mellon University, Pittsburgh, PA, ²University of Pittsburgh, Pittsburgh, PA, ³Fondazione Ri.MED and DICGM University of Palermo, Palermo, Italy

2:00PM

The Role of Heparanase in Aneurysm Development and Cardiac Function

V. LE¹ AND A. BAKER¹ ¹University of Texas at Austin, Austin, TX

2:15PM

A Biochemomechanics Model of Stress-Mediated Vascular Adaptation in Normal Physiological Conditions

H. GETACHEW¹ AND S. BAEK¹ ¹Michigan State University, East Lansing, MI

2:30PM

Viscoelastic Characterization of Damage Progress in Porcine Aortic Tissues *In Vitro*

M. SHARMA¹, A. VALDEVIT¹, C. PERLMAN¹, Y. WU¹, A. KHARGE¹, AND D. SHAHMIRZADI¹ ¹Stevens Institute of Technology, Hoboken, NJ

2:45PM

An Alternative Method to Measure the Diameter of Abdominal Aortic Aneurysms Using Maximally Inscribed Spheres

H. GHARAHI¹, B. ZAMBRANO¹, C. LIM¹, J. CHOI¹, W. LEE², AND S. BAEK¹ ¹Michigan State University, East Lansing, MI, ²Seoul National University Hospital, Seoul, Korea, Republic of

Track: Biomechanics OP-Sat-2-5 - Room 006C

Ocular Biomechanics

Chairs: Ross Ethier, Matthew Reilly

1:30PM

Effect Of Cell Stiffness On Transcellular And Paracellular Pore Formation In Schlemm's Canal Cells

M. JOHNSON¹, S. BRAAKMAN², R. PEDRIGI², A. VAHABIKASHI¹, J. SHERWOOD², R. VARGAS-PINTO¹, R. GUPTA², K. PERKUMAS³, W. STAMER³, C. ETHIER⁴, AND D. OVERBY² ¹Northwestern University, Evanston, IL, ²Imperial College London, London, United Kingdom, ³Duke University, Durham, NC, ⁴Georgia Tech, Atlanta, GA

1:45PM

The Role of Ocular Lens-Specific Proteins In Determining Lens Optical and Mechanical Properties

M. Reilly¹, S. Kumar¹, B. Rapp², N. Ravi³,⁴, P. Hamilton⁴, M. Leroux¹, A. Shiels¹, and B. Marchand¹

¹University of Texas at San Antonio, San Antonio, TX, ²Indiana University Health, Indianapolis, IN, ³Washington University in St. Louis, St. Louis, MO, ⁴Department of Veterans Affairs, St. Louis, MO

2:00PM

Effect of Orbital Geometry on Eye Response to Survivable Primary Blast Overpressure

V. ALPHONSE¹, A. KEMPER¹, AND S. DUMA¹

¹Virginia Tech - Wake Forest University Center for Injury Biomechanics, Blacksburg, VA 2:15PM

Matrix Stiffening Contributes to Retinal Endothelial Inflammation Associated with Diabetic Retinopathy

X. YANG¹, H. SCOTT¹, S. ARDEKANI¹, AND K. GHOSH¹ ¹University of California, Riverside, Riverside, CA

2:30PM

Ocular Compliance in Mice

S. SCHWANER¹, J. SHERWOOD², E. GEISERT³, D. OVERBY², AND C. ETHIER¹ ¹Georgia Institute of Technology, Atlanta, GA, ²Imperial College London, London, United Kingdom, ³Emory University, Atlanta, GA

2:45PM

Primary Blast Influences Incidence and Severity of Ocular Injury in a Porcine Eye Model

D. SHERWOOD¹, B. LUND², R. GLICKMAN³, W. SPONSEL¹,⁴, W. GRAY¹, R. WATSON¹, K. THOE⁴, AND M. REILLY¹

¹University of Texas San Antonio, San Antonio, TX, ²U.S. Army Institute of Surgical Research, Ft Sam Houston, TX, ³University of Texas Health Science Center at San Antonio, San Antonio, TX, ⁴WESMDPA, San Antonio, TX

Track: Cancer Technologies, Nano to Micro Technologies

OP-Sat-2-6 - Room 006D

Microtechnologies for Cancer I

Chairs: Rafael Davalos, Samir Iqbal

1:30PM

Dielectrophoretic Isolation and Detection of Cancer Related Circulating Cell Free DNA Biomarkers from Blood and Plasma M. HELLER¹

¹University of California San Diego, La Jolla, CA

1:45PM

Circulating Tumor Cell Cluster-Chip

A. SARIOGLU¹, N. ACETO¹, N. KOJIC¹, M. DONALDSON¹, M. ZEINALI¹, B. HAMZA¹, A. ENGSTROM¹, H. ZHU¹, T. SUNDARESAN¹, D. MIYAMOTO¹, X. LUO¹, A. BARDIA¹, B. WITTNER¹, S. RAMASWAMY¹, T. SHIODA¹, D. TING¹, S. STOTT¹, R. KAPUR¹, S. MAHESWARAN¹, D. HABER¹, AND M. TONER¹ 'Harvard Medical School, Charlestown, MA

2:00PM

Platelet-Targeted Microfluidic Isolation of Circulating Tumor Cells

X. JIANG¹, A. KHANKHEL¹, E. REATEGUI¹, M. ZEINALI¹, M. PHILLIPS¹, F. FACHIN¹, A. HOANG¹, A. JENSEN¹, L. SEQUIST², S. MAHESWARAN², D. HABER², S. STOTT¹, AND M. TONER¹

¹Massachusetts General Hospital and Harvard Medical School, Boston, MA, ²Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA

2:15PM

Non-Fixative Preservative Solution for Stabilizing Circulating Tumor Cells in Whole Blood

R. SANDLIN¹, K. WONG¹, T. CAREY¹, A. KHANKHEL¹, A. SHANK¹, J. WALSH¹, D. IRIMIA¹, S. MAHESWARAN¹, D. HABER¹, S. STOTT¹, AND M. TONER¹

¹Massachusetts General Hospital, Harvard Medical School, Charlestown, MA

2:30PM

Shear-responsive Nanocoating for Single Circulating Tumor Cell DNA Analysis

E. RÉATEGUI^{1,2}, N. ACETO^{2,3}, J. SULLIVAN^{2,3}, A. JENSEN¹, E. LIM⁴, M. ZEINALI¹, J. MARTEL^{1,2}, A. ARANYOSI¹, W. LI⁴, A. BARDIA³, L. SEQUIST³, D. HABER^{3,5}, S. MAHESWARAN³, P. HAMMOND⁴, M. TONER^{1,2}, AND S. STOTT^{1,3}

¹Center for Engineering in Medicine, Massachusetts General Hospital, Charlestown, MA, ²Harvard Medical School, Boston, MA, ³Massachusetts General Hospital Cancer Center, Charlestown, MA, ⁴Massachusetts Institute of Technology, Cambridge, MA, ⁵Howard Hughes Medical Institute, Chevy Chase, MD

183

BMES 2014

2:45PM

Detecting DNA Damage Electrically With Solid-State Nanopores M. MARSHALL¹, J. RUZICKA¹, E. TAYLOR¹, AND A. HALL²

¹University of North Carolina Greensboro, Greensboro, NC, ²Wake Forest University School of Medicine, Winston-Salem, NC

Track: Stem Cell Engineering, Tissue Engineering

OP-Sat-2-7 - Room 007A

Directing Stem Cell Differentiation

Chairs: Steven George, Randolph Ashton

1:30PM Invited

Membrane Capacitance Indicates Neural Stem Cell Fate Via Specific Cell Surface Molecules

J. NOURSE¹, S. AHMED¹, J. ARULMOLI¹, B. POVIENG¹, L. MCDONNELL¹, C. SOEMARDY¹, AND L. FLANAGAN¹

¹University of California Irvine, Irvine, CA

1:45PM

Nanog Restores the Lost Myogenic Capacity of Senescent Stem Cells P. MISTRIOTIS¹, M. LIANG¹, L. KARACOSTA², AND S. ANDREADIS¹ ¹University at Buffalo, Amherst, NY, ²University at Buffalo, Buffalo, NY

2:00PM

Oxygenation Augments Myogenic Differentiation of Mesenchymal Stem Cells under Ischemic Conditions

Y. XU¹, M. FU¹, Z. LI¹, X. LI¹, Z. FAN¹, P. ANDERSON¹, Z. LIU¹, AND J. GUAN¹ ¹The Ohio State University, Columbus, OH

2:15PM

Direct Conversion of Skin Stem Cells into Functional Neural Crest Fate

V. BAJPAI¹ AND S. ANDREADIS¹ ¹University at Buffalo, Amherst, NY

2:30PM

Directed *In Vitro* Myogenesis of Human Embryonic Stem Cells and Their *In Vivo* Delivery Using Biomimetic Materials S. VARGHESE¹, H. KABRA², Y. HWANG², AND M. KAR² *¹UC San Diego, La Jolla, CA, ²UCSD, La Jolla, CA*

2 Track: Cardiovascular Engineering OP-Sat-2-8 - Room 007B

Heart Valves and Stents I

Chairs: Michael Sacks, Craig Simmons

1:30PM

Simulation of Heart Valve Biomaterial Fatigue M. SACKS¹ 'University of Texas at Austin, Austin, TX

University of Texas at Austin, Austin, Th

1:45PM

A Comparative Analysis of Valvular Cell Calcification from Coronary or Non-coronary Aortic Valve Cusps S. MASJEDI¹, R. ACHARYA¹, AND Z. FERDOUS¹

¹University of Tennessee, Knoxville, TN

2:00PM

Pharmacological Targeting of Cadherin-11 Prevents Valvular Calcific Nodule Formation M. BOWLER¹ AND W. MERRYMAN¹

VI. BOWLER' AND W. MERRYMAN Vanderbilt University, Nashville, TN

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

2:15PM

The Role of Valve Interstitial Cell Structure on Initiation and Progression of Aortic Valve Disease A. RAZAVI¹, J. CARRADINI¹, AND K. BALACHANDRAN¹ 'University of Arkansas, Fayetteville, AR

2:30PM

Novel Mechanism of Directing Osteoblastic-like Differentiation in Valvular Interstitial Cells E. HEDBERG-DIRK¹ AND M. RUSH¹ ¹University of New Mexico, Albuquerque, NM

2:45PM

Effect of Boundary Stiffness on Maintenance of Myofibroblast Phenotype M. KURAL¹ AND K. BILLIAR¹ 'Worcester Polytechnic Institute, Worcester, MA

Track: Cellular and Molecular Bioengineering OP-Sat-2-9 - Room 007C

Young Innovator Session II

Chairs: Cynthia Reinhart-King, Deborah Leckband

1:30PM

The Relative Role of Soluble Guanylyl Cylase Dependent and Independent Pathways in Nitric Oxide Inhibition of Platelet Aggregation Under Flow J. SYLMAN¹, S. LANTVI², M. REYNOLDS², AND K. NEEVES¹

STEMAN, S. LANTOTT, M. RETNOLDS, AND K. NEEVES¹
 ¹Colorado School of Mines, Golden, CO, ²Colorado State University, Ft Collins, CO

I:42PM

Depolarization of Resting Membrane Potential Stimulates Neonatal Cardiomyocyte Proliferation In Vitro

J-Y. LAN¹, C. WILLIAMS¹, M. LEVIN¹, AND L. BLACK III¹,² ¹Tufts University, Medford, MA, ²Tufts University School of Medicine, Boston, MA

1:54PM

Membranes Promote Endothelial Differentiation of Adipose-Derived Stem Cells and Perivascular Interactions

A. MAZZOCCHI¹, J-P. DESORMEAUX², A. MAN¹, AND T. GABORSKI¹ ¹Rochester Institute of Technology, Rochester, NY, ²SiMPore Inc., West Henrietta, NY

2:06PM

Microscale Bio-adhesive Hydrogel Arrays for Cell Engineering Applications

R. PATEL¹, A. PURWADA¹, A. GAHARWAR², AND A. SINGH¹ ¹Cornell University, Ithaca, NY, ²Texas A&M University, College Station, TX

2:18PM

Nuclear Deformability Constitutes a Rate-limiting Step During Cell Migration in 3-D Environments P. DAVIDSON¹, C. DENAIS¹, M. BAKSHI¹, AND J. LAMMERDING¹

¹Cornell University, Ithaca, NY

2:30PM

Electrospun Polymers for Reprogramming Human Cells

T. CORDIE¹, T. HARKNESS¹, X. JING¹, H-Y. MI¹, L-S. TURNG¹, AND K. SAHA¹ ¹University of Wisconsin-Madison, Madison, WI

2:42PM

Endometriotic Epithelial Cell Response to Macrophage-Secreted Factors is Dependent on Extracellular Matrix Context

K. POLLOCK¹, T. JARACZEWSKI¹, M. CARROLL¹, D. LEBOVIC², AND P. KREEGER¹ ¹University of Wisconsin-Madison, Madison, WI, ²University of Wisconsin School of Medicine and Public Health, Madison, WI

Track: Drug Delivery OP-Sat-2-10 - Room 007D

OF-Sat-2-10 - Koom 007D

Targeted Drug Delivery I

Chairs: Yun Wu, Michael Davis

1:30PM

A Universal Protein Tag for Delivery of SiRNA - Aptamer Chimeras H. LIU¹ AND X. GAO²

¹Georgia Regents University, Evans, GA, ²University of Washington, Seattle, WA

1:45PM

Local Inhibition of MMPs in Abdominal Aortic Aneurysm Rat Model Using Anti-elastin Decorated Nanoparticles Loaded with Batimastat N. NOSOUDI¹, A. SINHA¹, P. NAHAR¹, AND N. VYAVAHARE¹ ¹Clemson University, Clemson, SC

2:00PM

Membrane-Embedding Nanoparticles as Cytosolic Drug Delivery Vehicles for Infectious Diseases.

Y-S. YANG¹, A. BEKDEMIR ², F. STELLACCI², AND D. IRVINE³

¹Massachusetts Institute of Technology, Cambridge, MA, ²École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, ³Massachusetts Institute of Technology and Howard Hughes Medical Institute, Cambridge, MA

2:15PM

Selective Enhancement of Macropinocytosis For The Delivery Of a Mitochondriotoxic Peptide To Non-Small Cell Lung Cancer (NSCLC) R. IGLESIAS' AND P. KORIA'

¹University of South Florida, Tampa, FL

2:30PM

Targeting of Atheroprone Vasculature for Diagnostic Imaging and Prophylactic Drug Delivery

L. HOFMEISTER¹, S. LEE¹, W. CHEN¹, T. GIORGIO¹, D. HARRISON¹, AND H-J. SUNG¹ ¹Vanderbilt University, Nashville, TN

2:45PM

Soluble Epoxide Hydrolase Inhibitor for Nerve Regeneration: Delivery by a Synthetic Nerve Conduit.

C. TERRY¹, J. AGARWAL¹, Y. HE¹, S. HEILSHORN², C. MORISSEAU³, AND J. SHEA¹ ¹University of Utah, Salt Lake City, UT, ²Stanford University, Stanford, CA, ³UC Davis, Davis, CA

Track: Nano to Micro Technologies, Device Technologies and Biomedical Robotics OP-Sat-2-11 - Room 008A

Cells Tissues and Organs on Chip II

Chairs: Shannon Weigum, Joseph Kinsella

1:30PM

Inflammatory Cell Trafficking Dynamics Across the Blood-Brain Barrier on a Novel Fluidic Platform

C. PALMIOTTI¹, R. BEARD², A. CONWAY¹, F. SINATRA¹, S. YUAN², S. SUNDARAM¹, AND A. ACHYUTA³

¹Draper Laboratory, Tampa, FL, ²Dept. of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, ³Draper Laboratory, Cambridge, MA

1:45PM

Body-on-a-Chip Simulation with Gastrointestinal Tract and Liver Tissues Suggests that Ingested Nanonanoparticles Have the Potential to Cause Liver Injury

M. ESCH¹, G. MAHLER², T. STOKOL¹, AND M. SHULER¹

¹Cornell University, Ithaca, NY, ²Binghamton University, Binghamton, NY

2:00PM

A Microfluidic Vascular Injury Model Using Heat-induced Endothelial Cell Activation

J. SYLMAN¹, S. RETTERER², K. RANA¹, AND K. NEEVES¹,³

¹Colorado School of Mines, Golden, CO, ²Oak Ridge National Laboratory, Oak Ridge, TN, ³University of Colorado Denver, Denver, CO

2:15PM

Digital Microfluidic Immunocytochemistry in Single Cells (DISC) for Analysis of Cell Signaling

A. H. C. NG¹, M. D. CHAMBERLAIN¹, AND A. R. WHEELER¹ ¹University of Toronto, Toronto, ON, Canada

2:30PM

Microfluidic Reconstruction of 3D Osteocyte Network and Mechanotransduction Function

Y. GU¹, Q. SUN¹, W. ZHANG¹, J. ZILBERBERG², A. VALDEVIT¹, AND W. LEE¹ ¹Stevens Institute of Technology, Hoboken, NJ, ²Hackensack University Medical Center, Hackensack, NJ

2:45PM

A Microfluidic Platform For Dopaminergic Neuron Growth And In-Line Dopamine Uptake Measurements

Y. YU¹, M. SHAMSI¹, D. KRASTEV¹, AND A. WHEELER¹ ¹University of Toronto, Toronto, ON, Canada

Track: Respiratory Bioengineering, New Frontiers and Special Topics OP-Sat-2-12 - Room 008B

Translational Respiratory Engineering

Chairs: Joseph Bull, William Federspiel

I:30PM Invited

Respiratory Devices – "Bench to Bedside" P. DECOMO¹

¹ ALung Technologies, Inc., Pittsburgh, PA

⁴Virginia Tech, Blacksburg, VA

1:45PM

An Acoustic Method for Detecting Air Flow in Artificial Airways

K. YANG¹, A. MUELENAER²,³, A. WICKS⁴, AND T. RUSCHER⁴ ¹¹ Burton Center for Arts and Technology- Center for Engineering, Salem, VA, ²Carilion Clinic Children's Hospital, Roanoke, VA, ³Virginia Tech Carilion School of Medicine, Roanoke, VA,

2:00PM

In Vitro Performance Of A Compact Integrated Blood Pump-Oxygenator For Ambulatory Respiratory Assist

S. MADHANI¹, B. FRANKOWSKI¹, C. BERMUDEZ¹, AND W. FEDERSPIEL¹ ¹University of Pittsburgh, Pittsburgh, PA

2:15PM

Microtopographies LIMIT Bacterial Biofilm Accumulation: A Novel Approach to Decreasing Ventilator-Associated Pneumonia CASES E. MANN¹, R. MAY¹, R. METTETAL¹, A. BRENNAN², AND S. REDDY¹

Sharklet Technologies, Inc, Aurora, CO, ²University of Florida, Gainesville, FL

2:30PM

Modeling A Novel Design For A Total Artificial Lung With Enhanced Flow Mixing

P. FERNANDO¹, H. CHERIYAN¹, J. BULL¹, AND R. BARTLETT¹ ¹University of Michigan, Ann Arbor, MI

2:45PM

Personalized Predictions of Recruitment, Derecruitment, and Tissue Distention in the Injured Lung

B. SMITH¹, L. LUNDBLAD¹, J. SATALIN², M. KOLLISCH-SINGULE², B. EMR², K. SNYDER², L. GATTO³, P. ANDREWS⁴, N. HABASHI⁴, G. NIEMAN², AND J. BATES¹

¹University of Vermont, Burlington, VT, ²SUNY Upstate Medical University, Syracuse, NY, ³SUNY Cortland, Cortland, NY, ⁴University of Maryland, Baltimore, MD

Track: Device Technologies and Biomedical Robotics, Translational Biomedical Engineering OP-Sat-2-13 - Room 201

Biosensors II: Applications

Chairs: Sihong Wang, Lissett Bickford

1:30PM

Multimarker Diabetes Management Device

J. LA BELLE¹,² AND C. COOK² ¹Arizona State University, Tempe, AZ, ²Mayo Clinic College of Medicine, Scottsdale, AZ

1:45PM

Colorimetric Detection of Substrate Binding to Cytochrome P450 with Plasmonic Nano Lycurgus Cup Array

L. PLUCINSKI¹, A. HSIAO¹, M. GARTIA¹, W. ARNOLD¹, A. AMEEN¹, A. DAS¹, AND G. LIU¹ ¹University of Illinois at Urbana-Champaign, Urbana, IL

2:00PM

Rapid And No-wash Detection Of Avianin Fluenza A Virus From Clinical Swab Samples

C. CHENG¹, H. CUI¹, Q. YUAN¹, J. WU¹, AND S. EDA¹ ¹The University of Tennessee, Knoxville, TN

2:15PM

A Focused Surface Acoustic Wave Device for Rapid and Sensitive Detection of Listeria Monocytogenes Based on Recombinase Polymerase Amplification

L. REN¹, F. GUO¹, Y. CHEN¹, P. LI¹, Y. XIE¹, AND T. HUANG¹ ¹Penn state university, State College, PA

2:30PM

Multi-Modal System For Monitoring Cellular Behavior

L. WONG¹, C. MANJUNATH¹, M. PEREZ¹, C. HORNER¹, M. MALDONADO¹, AND J. NAM¹ ¹University of California, Riverside, Riverside, CA

2:45PM

Multi-Electrode Sensing for Signal-to-Noise Ratio Enhancement of Impedance Cytometry

S. EMAMINEJAD¹, S. TALEBI¹, R. DAVIS¹, AND M. JAVANMARD¹ ¹Stanford University, Stanford, CA

Track: Drug Delivery, Cancer Technologies OP-Sat-2-14 - Room 103B

Cancer Drug Delivery II

Chairs: Beata Chertok, Omolola Eniola-Adefeso

1:30PM

Hydrophobically Modified Glycol Chitosan Nanoparticles: Enzymatic Stability, pH Responsiveness, Biocompatibility and Uptake

G. SUARATO¹, A. CHIN², AND Y. MENG¹ ¹Stony Brook University, Stony Brook, NY, ²Rensselaer Polytechnic Institute, Troy, NY

1:45PM

Unnatural Killer Cells:TRAIL-coated Leukocytes Kill Cancer Cells in a Spontaneous Metastasis Mouse Model of Prostate Cancer

M. MITCHELL¹, E. WAYNE¹, C. SCHAFFER¹, AND M. KING¹ ¹Cornell University, Ithaca, NY

2:00PM

Nanotechnology Strategies to Improve Therapeutic Relevancy of Cisplatin for Malignant Gliomas

C. ZHANG¹, E. NANCE¹, P. MASTORAKOS¹, J. CHISHOLM¹, S. BERRY¹, J. SUK¹, AND J. HANES¹

¹Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD

2:15PM

Polyanionic Nanoscale Hydrogels for the Oral Delivery of Chemotherapeutics

A. PURANIK¹, D. SPENCER¹, V. WHITE¹, L. PAO¹, AND N. PEPPAS¹ ¹The University of Texas at Austin, Austin, TX

2:30PM

Non-viral DNA Delivery to Human Adipose Mesenchymal Stem Cells for Glioblastoma Treatment

A. DENDULURI¹, S. TZENG¹, K. KOZIELSKI¹, O. WIJESEKERA², A. MANGRAVITI², K. CHAICHANA², H. GUERRERO-CAZARES ², J. GREEN³, AND A. QUINONES-HINOJOSA² ¹Dept. of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, ²Dept. of Neurosurgery, Johns Hopkins University, Baltimore, MD, ³Dept. of Biomedical Engineering & Dept. of Neurosurgery, Johns Hopkins University, Baltimore, MD

2:45PM

Biological Response To Multiple Administrations Of Viral Nanoparticles Carriers: Implication For Long-Term Drug Delivery Applications S. SHUKLA¹, D. DORAND¹, J. MYERS¹, J. WHITNEY¹, A. HUANG¹, AND N. STEINMETZ¹ ¹Case Western Reserve University, Cleveland, OH

Track: Neural Engineering

OP-Sat-2-15 - Room 202A

Glial Cell Engineering / Neural Progenitor Cell and Tissue Engineering

Chairs: Deanna Thompson, Ryan Gilbert

1:30PM

Schwann Cells and Electrical Stimulation: Enhanced Migration and Neurotrophic Factors to Aid PNS Repair

L. ZHANG¹, A. KOPPES¹, K. KEARNS¹, AND D. THOMPSON¹ ¹Rensselaer Polytechnic Institute, Troy, NY

1:45PM

Piezoelectric Fibrous Scaffolds for Schwann Cell Induced Spinal Cord Repair

Y-S. LEE¹, S. DAMARJU², S. WU², M. BUNGE¹, AND T. ARINZEH² ¹University of Miami, Miami, FL, ²New jersey Institute of Technology, Newark, NJ

2:00PM

Aligned, Electrospun Fibers as Artificial Axons to Study Oligodendrocyte Myelination

S. LEE¹, S. TUCK², M. LEACH³, S. CHONG¹, J. CHAN¹, AND J. COREY², ³ ¹University of California at San Francisco, San Francisco, CA, ²VA Ann Arbor Healthcare Center, Ann Arbor, MI, ³The University of Michigan, Ann Arbor, MI

2:15PM

Three-Dimensional Microscaffolds for Enrichment and Transplantation of Human Pluripotent Stem Cell-Derived Neurons

N. FRANCIS¹, N. BENNETT¹, A. CARLSON¹, A. HALIKERE^{1,2}, Z. PANG², AND P. MOGHE¹ ¹Rutgers University, Piscataway, NJ, ²Child Health Institute of New Jersey, New Brunswick, NJ

2:30PM

A Novel Injectable Hydrogel-Based Drug Delivery System for Local Delivery of T3 to Promote Myelination after Spinal Cord Injury R. SHULTZ ¹ AND Y. ZHONG¹ ¹Drexel University, Philadelphia, PA

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

2:45PM

Engineering a White Matter Model of Traumatic Brain Injury B. PFISTER¹, A. ADAMS¹, J. ZALK¹, AND H. KIM²

¹New Jersey Institute of Technology, Newark, NJ, ²Rutgers University, Newark, NJ

Track: New Frontiers and Special Topics, Device Technologies and Biomedical Robotics

OP-Sat-2-16 - Room 202B

Global Health II

Chairs: Elain Fu, Anand Ramasubramanian

1:30PM

Colorimetric Detection of Azidothymidine Using an Alkyne-Modified Dextran Substrate G. PRATT¹, A. FAN¹, AND C. KLAPPERICH¹

Boston University, Boston, MA

1:45PM

Conversion of a Laboratory-based Colorimetric Assay to a Field-use Paper-based Test for the Detection of Phenylketonuria in Newborns G. THIESSEN¹, K. DE LOS REYES¹, R. MONNAT¹, AND E. FU²

¹University of Washington, Seattle, WA, ²Oregon State University, Corvallis, OR

2:00PM

Quantitative Real-Time Recombinase Polymerase Amplification of HIV-1 DNA $\,$

B. ROHRMAN¹, Z. CRANNELL¹, AND R. RICHARDS-KORTUM¹ ¹Rice University, Houston, TX

2:15PM

Real-time Fluorescence Detection of Nucleic Acid Amplification on a Mobile Phone for TB Diagnosis

A. SKANDARAJAH¹, B. BAKER², M. KATO-MAEDA³, A. CATTAMANCHI³, AND D. FLETCHER¹ ¹University of California, Berkeley, Berkeley, CA, ²Lawrence Livermore National Laboratory, Livermore, CA, ³UCSF Medical School, San Francisco, CA

2:30PM

Fluorescence Detection of DNA Amplification in Porous Media for Point-of-Care Diagnostics

C. MONAHAN¹, J. BISHOP¹, AND P. YAGER¹ ¹University of Washington, Seattle, WA

2:45PM

A Fully Integrated Paper-Based Assay for the Extraction, Isothermal Amplification, and Detection of Pandemic (HINI) Influenza A RNA

N. RODRIGUEZ^{1,2}, A. FAN¹, J. LINNES¹, C. CHEN^{1,2}, AND C. KLAPPERICH¹ ¹Boston University, Boston, MA, ²Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA

Track: Biomedical Imaging and Optics OP-Sat-2-17 - Room 203A

Novel Approaches to Biomedical Imaging

Chairs: B. Hyle Park, Nozomi Nishimura

1:30PM

Multi-parametric Photoacoustic Microscopy of Arterial Ligation M. KENNEDY¹, B. NING¹, S. SEAMAN¹, R. CHEN², Q. ZHOU², K. SHUNG², S. PEIRCE¹, AND S. HU¹

¹University of Virginia, Department of Biomedical Engineering, Charlottesville, VA, ²University of Southern California, Resource Center for Medical Ultrasonic Transducer Technology, Los Angeles, CA

1:45PM

Diagnostic Accuracy of Integrated Intravascular Ultrasound and Optical Coherence Tomography for the Detection and Characterization of Human Atherosclerotic Plaque

T. MA¹, J. Ll², A. Correa¹, D. Mohar², P. Patel², K. Shung¹, Z. Chen², and Q. Zhou¹

¹University of Southern California, Los Angeles, CA, ²University of California, Irvine, Irvine, CA

2:00PM

Multi-Modal Validation Framework of Mitral Valve Geometry and Biomechanical Models

S. GRBIC¹, T. EASLEY², T. MANSI¹, D. NEUMANN¹, E. PIERCE², M. JENSEN², C. BLOODWORTH², A. SIEFERT², J. KREBS¹, D. YUH³, A. YOGANATHAN², AND D. COMANICIU¹

¹Siemens, Princeton, NJ, ²Georgia Tech, Atlanta, GA, ³Yale University School of Medicine, New Haven, CO

2:15PM

Rapid Throughput, Seamless Imaging of Human Hip Joint Tissue Across Length Scales to Elucidate Emergent Structure-Function Relationships

D. ZEIDLER¹, U. KNOTHE², T. GARBOWSKI¹, G. DELLEMANN¹, AND M. KNOTHE TATE³ ¹Carl Zeiss Microscopy, Oberkochen, Germany, ²Cleveland Clinic, Cleveland, OH, ³University of New South Wales, UNSW Sydney, Australia

2:30PM

Quantitative Measurement of Cerebrospinal Fluid Flow in Ventricular Shunts by Contrast-enhanced Ultrasound and Cross-correlation Based Microbubble Tracking

R. HARTMAN', S. AGLYAMOV¹, D. FOX², AND S. EMELIANOV¹ ¹University of Texas at Austin, Austin, TX, ²St. David's NeuroTexas Institute, Austin, TX

2:45PM

Novel Dental Imaging System

J. JOHNSON¹, S. GRAY¹, L. LEONARD¹, AND R. WEBER² ¹UTSI, Tullahoma, TN, ²MDI, Arlington Heights, IL

Track: Biomedical Imaging and Optics OP-Sat-2-18 - Room 203B

Optical Imaging and Microscopy II

Chairs: Javier Jo, Michael Fenn

1:30PM

Bioengineering Autobioluminescence for Biomedical Imaging: From Microbe to Man

S. RIPP¹, T. XU², D. CLOSE², AND G. SAYLER¹ ¹The University of Tennessee, Knoxville, TN, ²⁴³⁰ BioTech Inc., Knoxville, TN

1:45PM

Live-Cell Analysis of Fibroblast Phenotype on Electrospun Meshes using Surface Enhanced Raman Spectroscopy

E. KIBROM¹, N. ROKI¹, C. BASHUR¹, AND M. FENN¹ ¹Florida Institute of Technology, Melbourne, FL

2:00PM

Optimization of Time Gate Selection in Bi-exponential Fluorescence Lifetime Imaging via Sensitivity Analysis

T. OMER¹, N. SINSUEBPHON¹, L. ZHAO¹, X. INTES¹, AND J. HAHN¹ ¹Rensselaer Polytechnic Institute. Trov. NY

2:15PM

Multiplexing Imaging of Single mRNA Isoforms for Dynamical Quantification in Live Cells

K. LEE^{1,2}, Y. CUI², L. LEE¹, AND J. IRUDAYARAJ²

¹University of California Berkeley, Berkeley, CA, ²Purdue University, West Lafayette, IN

2:30PM

Confocal Fluorescence Nanocytology: Detecting The Molecular Mechanisms Of Carcinogenesis

J. CHANDLER¹, Y. STYPULA-CYRUS¹, L. ALMASSALHA¹, B. FRESE¹, H. SUBRAMANIAN¹, AND V. BACKMAN¹

¹Nortwestern University, Evanston, IL

2:45PM

Predictive Model Of Probe-Dependent Sampling Depth In Diffuse Reflectance Spectroscopy

W. GOTH¹, R. HENNESSY¹, M. SHARMA¹, AND J. TUNNELL¹ ¹The University of Texas at Austin, Austin, TX

Track: Cancer Technologies, Nano to Micro Technologies

OP-Sat-2-19 - Room 103A

Nanotechnologies for Cancer II

Chairs: Kaiming Ye, Debadyuti (Rana) Ghosh

1:30PM

Tumor-penetrating Nanocomplexes for siRNA Delivery to Pancreatic Cancer

J. LO^{1,2}, E. KWON¹, M. MUZUMDAR^{1,3}, Y. REN^{1,2}, T. JACKS¹, AND S. BHATIA^{1,4,5} ¹MIT, Cambridge, MA, ²Harvard-MIT MD-PhD program, Boston, MA, ³Dana-Farber Cancer Institute, Boston, MA, ⁴Brigham and Women's Hospital, Boston, MA, ⁵Broad Institute of Harvard and MIT, Cambridge, MA

1:45PM

Spherical Nucleic Acids as an RNAi-Based Therapy for Glioblastoma

E. DAY^{1,2}, S. JENSEN², C. KO², L. HURLEY², A. STEGH², AND C. MIRKIN² ¹University of Delaware, Newark, DE, ²Northwestern University, Evanston, IL

2:00PM

Magnetic Fluid Hyperthermia Increases Bortezomib Cytotoxicity in Cancer Cells by Proteotoxic Stress

M. TORRES-LUGO¹, M. ALVAREZ², A. CASTILLO², O. SOTO², AND C. RINALDI³ ¹University of Puerto Rico, Mayaguez Campus, Mayaguez, Puerto Rico, ²University of Puerto Rico, Mayaguez Campus, Mayaguez, PR, Puerto Rico, ³University of Florida, Gainesville, Gainesville, FL

2:15PM

Prussian Blue Nanoparticles For Laser-Induced Photothermal Therapy Of Tumors

H. HOFFMAN¹, L. CHAKRABARTI¹, M. DUMONT¹, A. SANDLER¹,², AND R. FERNANDES¹,² ¹Children's National Health System, Washington, DC, ²George Washington University, Washington, DC

2:30PM

Synergistic Antitumor Activity from Two-Stage Delivery of Piperlongumine and TRAIL Nanoparticles

C. SHARKEY¹, J. LI¹, AND M. KING¹ ¹Cornell University, Ithaca, NY

2:45PM

A Nano-plasmonic Sensor for Label-free Detection and Molecular Profiling of Cancer Exosomes

H. IM¹, H. SHAO¹, Y. PARK¹, V. PETERSON¹, C. CASTRO¹, R. WEISSLEDER¹,², AND H. LEE¹ ¹Massachusetts General Hospital, Boston, MA, ²Harvard Medical School, Boston, MA

Track: Undergraduate

OP-Sat-2-20 - Room 204B

Undergraduate Research I

Chairs: William Guilford, Kristine Ropella

1:30PM

Computational Prediction of G-quadruplex Formation

J. CALVERT¹, A. KREIG¹, S. SINHA¹, AND S. MYONG¹ ¹University of Illinois at Urbana-Champaign, Champaign, IL

verenty en miniele at ensand enampaign, e

1:40PM

Spatiotemporal-Specific Antibody Signatures Associated with Tenofovir Microbicide Use

L. DUNPHY¹, D. ARCHARY², K. ARNOLD¹, K. SEATON³, J-A. PASSMORE^{2,4,5}, L. WERNER², L. MORRIS⁴, G. TOMARAS³, AND D. LAUFFENBURGER¹

¹Massachusetts Institute of Technology, Cambridge, MA, ²Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa, ³Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, ⁴National Health Laboratory Services, Johannesburg, South Africa, ⁵Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, South Africa

1:50PM

Bioactive Glass Ceramics: The Ideal Synthetic Bone Substitute E. MASON¹, M. FENN¹, AND L. HENCH¹

¹Florida Institute of Technology, Melbourne, FL

2:00PM

Zeolite-loaded Alginate-chitosan Hydrogel Beads As A Topical Hemostat

K. Christodoulides¹, M. Bayomi¹, Y. Choi¹, P. Fathi¹, A. Ghodasara¹, J. Knazik¹, K. Langan¹, B. Miller¹, M. Sikorski¹, H. Thaker¹, J. Titcomb¹, O. Wonodi¹, A. Behrens¹, and P. Kofinas¹

¹University of Maryland, College Park, MD

2:10PM

Evaluation of Screw-Tunnel Divergence and Graft Fixation Biomechanics using Flexible and rigid Reamer Systems for Anterior Cruciate Ligament Reconstruction

M. DRAZEK^{1,2}, K. WALLEY^{1,3}, M. PEREZ-VILORIA¹, S. OKAJIMA^{1,3}, O. MANOUKIAN^{1,4}, A. MASOUDI^{1,5}, A. CHILOYAN^{1,3}, R. NAIR^{1,3}, M. STEINER⁶, AND A. NAZARIAN¹ ¹Beth Israel Deaconess Medical Center, Boston, MA, ²Tufts University School of Medicine, Boston, MA, ³Boston University, Boston, MA, ⁴University of Connecticut, Storrs, CT, ⁵Harvard Medical School, Boston, MA, ^eNew England Baptist Hospital, Roxbury Crossing, MA

2:20PM

Mechanical Activity of Valve Interstitial Cells in Disease-like Conditions V. PRAMIL¹, E. FARRAR¹, C. MOSHER², J. RICHARDS¹, AND J. BUTCHER¹

¹Cornell University, Ithaca, NY, ²Case Western University, Cleveland, OH

2:30PM

Imaging Collagen Architecture With Polarization-Sensitive Optical Coherence Tomography

R. DE LA ROSA¹, M. VILLIGER²,³,⁴, N. URIBE-PATARROYO²,³,⁴, AND B. BOUMA²,³,⁴ ¹Brown University, Providence, RI, ²Wellman Center for Photomedicine, Boston, MA, ³Harvard Medical School, Boston, MA, ⁴Massachusetts General Hospital, Boston, MA

2:40PM

Ultrasound Imaging of Forearm Muscles for Decoding Hand Movements in Real Time

M. LAHLOU¹, N. AKHLAGHI¹, H. ZAFAR¹, AND S. SIKDAR¹ ¹George Mason Univiersity, Fairfax, VA

2:50PM

Using Nonlinear Dynamical Measures to Compare MEG Recordings of Epilepsy Patients with Normal Controls

S. SUBRAMANIAN¹, S. ROBINSON², S. INATI², AND R. COPPOLA²

1Johns Hopkins University, Baltimore, MD, 2National Institutes of Health, Bethesda, MD

P = Poster Session
 OP = Oral Presentation
 = Reviewer Choice Award

3:15PM-4:45PM PLATFORM SESSIONS Sat-3 2014 OCTOBER 25 SATURDAY

SATURDAY, October 25, 2014

3:15 PM - 4:45 PM **PLATFORM SESSIONS – SAT - 3**

Track: Tissue Engineering, Orthopaedic and Rehabilitation Engineering OP-Sat-3-I - Room 001A

Muscular, Tendinous, Ligamental Tissue Engineering

Chairs: George Christ, Vassilios Sikavitsas

3:15PM

Highly Functional Engineered Skeletal Muscle Tissues: From Rat to Human

N. BURSAC¹ ¹Duke University, Durham, NC

3:30PM

Mechanical Stimulation of Cellularized Polyurethane-Collagen Composite Meshes for Connective Tissue Applications

P. THAYER¹, E. TONG¹, L. DAHLGREN¹, S. GUELCHER², AND A. GOLDSTEIN¹ ¹Virginia Tech, Blacksburg, VA, ²Vanderbilt University, Nashville, TN

3:45PM

Keratin Hydrogels as a Cell and Growth Factor Delivery Vehicle for Treatment of Volumetric Muscle Loss

H. BAKER^{1,2}, J. PASSIPIERI¹, S. TOMBLYN³, M. SIRIWARDANE¹, C. OKOUKONI^{1,2}, C. STEWART⁴, M. ELLENBURG³, L. BURNETT³, AND G. CHRIST¹,²

¹Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, ²VT-WFU School of Biomedical Engineering and Sciences, Winston Salem, NC, ³KeraNetics, LLC, Winston Salem, NC, ⁴University of Virginia, Charlottesville, VA

4:00PM

Tendon Tissue Engineering using a Mechanostimulator and Adult Stem Cell Seeded Decellularized Human Umbilical Vein

V. SIKAVITSAS¹ AND B. ENGEBRETSON¹ ¹University of Oklahoma, Norman, OK

4:15PM

Contractile Composite Scaffolds for Skeletal Muscle Tissue Engineering D. BROWE¹, C. SIMMONDS¹, K. MCKEON-FISCHER¹, AND J. FREEMAN¹ ¹Rutgers University, Piscataway, NJ

4:30PM

Localized BMP-4 Release For Improvement of the Engineered Enthesis A. LEE1, C. LEE1, M. VIDAL1, AND K. BAAR1 ¹University of California, Davis, Davis, CA

Track: Biomaterials, Cellular and Molecular Bioengineering OP- Sat - 3-2 - Room 001B

Biomaterials for Immunoengineering II

Chairs: Lindsay Fitzpatrick, Anjelica Gonzalez

3:15PM

Immunomodulatory Scaffolds for Enhanced Cell Transplant

R. GOWER¹, X. ZHANG¹, J. ZHANG¹, J. LIU¹, C. RICCI¹, AND L. SHEA¹ ¹Northwestern University, Chicago, IL

3:30PM

Biodegradable Nanoellipsoidal Artificial Antigen Presenting Cells for Cancer Immunotherapy

R. MEYER¹, J. SUNSHINE¹, K. PERICA¹, K. AJE¹, J. SCHNECK¹, AND J. GREEN¹ ¹School of Medicine, Johns Hopkins University, Baltimore, MD

3:45PM

Incorporation of The Extra Domain A of Fibronectin (EDA) in Fibrin Matrices Mediates Activation of DCs and T-cell-dependent Tumor Regression

Z. JULIER¹, M. MARTINO¹, A. DE TITTA¹, AND J. HUBBELL¹ ¹Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

4:00PM

Effects of Age-Related Changes in Biomechanical and Biochemical Properties Upon Host Response to ECM

S. LOPRESTI¹,², L. ZHANG¹,², C. DEARTH¹, AND B. BROWN¹,² ¹University of Pittsburgh, Pittsburgh, PA, ²McGowan Institute for Regenerative Medicine, Pittsburgh, PA

4:15PM

Injectable Thermogelling Block Copolymers as Vaccine Delivery Devices

J. ADAMS¹ AND S. MALLAPRAGADA¹ ¹Iowa State University, Ames, IA

4:30PM

Modulation of Cardiac Macrophages via Hydrogel-mediated IL-4 Delivery as a Strategy for Infarct Healing

I. SOMASUNTHARAM¹, S. CARROLL¹, M. BROWN², A. SALIMATH¹, A. GARCIA¹, AND M. DAVIS^{1,2}

¹Georgia Institute of Technology, Atlanta, GA, ²Emory University, Atlanta, GA

Track: Biomaterials OP-Sat-3-3 - Room 006A

Biomaterials Design II

Chairs: Nasim Annabi, Michael Davis

3:15PM

Near-infrared Light Triggerable Polysaccharides Double Network Hydrogel

R. LUO¹, Z. LIM¹, W. LI², P. SHI², AND C-H. CHEN¹ ¹National University of Singapore, Singapore, Singapore, ²City University of Hong Kong, Hong Kong, Hong Kong

3:30PM

The Design of Hypoxia-Inducible Hydrogels via In Situ Oxygen **Consuming Reaction** K. PARK¹ AND S. GERECHT¹

Johns Hopkins University, Baltimore, MD

3:45PM

Hierarchical Design of Tunable Tissue-Like Collagen Materials K. BLUM¹, T. NOVAK¹, C. NEU¹, AND S. VOYTIK-HARBIN¹ ¹Purdue University, West Lafayette, IN

4:00PM

Superbiocompatible Hydrogels for Islet Encapsulation Therapy: Tuning the Geometry of Hydrogels Prevents Foreign Body Immune Responses and Fibrosis to Enable Long-Term Blood Glucose Correction in Diabetic Mice

O. VEISEH¹, J. DOLOFF¹, A. VEGAS¹, R. LANGER¹, AND D. ANDERSON¹ ¹Massachusetts Institute of Technology, Cambridge, MA

4:15PM

Directing Cell Functions Using Bioorthogonally Clicked Multiblock Hybrid Copolymers S. LIU¹, H. ZHANG¹, J. FOX¹, AND X. JIA¹ ¹University of Delaware, Newark, DE

SATURDAY | OCTOBER 25 | 2014 PLATFORM SESSIONS Sat-3 3:15PM-4:45PM

Track: Biomechanics OP-Sat-3-4 - Room 006B

OF-Sal-3-4 - Room 000B

Biomechanics in Degeneration and Regeneration

Chairs: Alesha Castillo, Kyle Allen

3:15PM

A Novel Biomechanical Model to Study Subchondral Microdamage Following Acute Knee Injury

O. KENNEDY¹, B. BEUTEL¹, AND M. LENDHEY¹ ¹New York University School of Medicine, NY, NY

3:30PM

Prevention of Cartilage Degeneration by Intraarticular Treatment with Lubricin-Mimetics in the Rat Following Anterior Cruciate Ligament Transection

K. SAMAROO¹, M. TAN¹, M. DEMANGE², A. TITAN², C. CARBALLO², M. SISTO², S. RODEO², D. PUTNAM¹, AND L. BONASSAR¹ ¹Cornell University, Ithaca, NY, ²Hospital for Special Surgery, New York, NY

3:45PM

Indentation Method to Map Mechanical Properties of Articular Surface to Identify Degenerated Regions

S. SIM¹,², A. CHEVRIER¹, M. GARON², E. QUENNEVILLE², AND M. BUSCHMANN¹ ¹Ecole Polytechnique de Montreal, Montreal, QC, Canada, ²Biomomentum Inc., Laval, QC, Canada

4:00PM

Mechanobiology Assessment of Temporomandibular Disc Surfaces: A Nanoindentation and TEM Study.

C. JURAN¹, A. MATUSKA¹, AND P. MCFETRIDGE¹ ¹University of Florida, Gainesville, FL

4:15PM

Genipin Effect on Soft Palates for the Treatment of Snoring and Obstructive Sleep Apnea

J. KUO¹, P. SLUSAREWICZ¹, AND T. HEDMAN¹,² ¹Orthopeutics LP, Lexington, KY, ²University of Kentucky, Lexington, KY

4:30PM

The Effect of IGF-I Gene Therapy on the Mechanical Properties of Repaired Equine Cartilage

D. GRIFFIN¹, K. ORTVED¹, A. NIXON¹, AND L. BONASSAR¹ ¹Cornell University, Ithaca, NY

Track: Biomechanics OP-Sat-3-5 - Room 006C

Multiscale Biomechanics

Chairs: Heather Hayenga, Rouzbeh Amini

3:15PM

A Multiscale Particle Based Model of Platelets in Shear Flows: Correlating Numerical Simulations with *In Vitro* Results

P. ZHANG¹, J. SHERIFF¹, C. GAO¹, M. LIVELLI¹, S. POTHAPRAGADA¹, N. ZHANG¹, L. ZHANG¹, M. SLEPIAN², Y. DENG¹, AND D. BLUESTEIN¹

¹Stony Brook University, Stony Brook, NY, ²University of Arizona, Tucson, AZ

3:30PM

How the Morphology of Osteocytes Contributes to their Mechanotransduction near Microdamage

E. BUDYN^1, Z. M. BENSIDHOUM3, E. HENRY1, J-C. AUREGAN3, H. PETITE3, AND E. DEPREZ1

¹Ecole Normale Superieure de Cachan, Cachan, France, ²University of Illinois at Chicago, Chicago, IL, ³University Paris Diderot, Paris, France

3:45PM

Finite Element Modeling of Normal and Pathological Chinchilla Ears X. WANG¹, X. GUAN¹, R. BROWDER¹, D. MCCASKILL¹, AND R. GAN¹ ¹University of Oklahoma, Norman, OK

4:00PM

Coarse-Grained Molecular Dynamics Modeling of Band-3 Protein Diffusion in the Defective Red Blood Cell Membrane H. LI¹ AND G. LYKOTRAFITIS¹

4:15PM

Computational Analysis of Eustachian Tube Opening during Inflammatory Otitis Media in Children with Cleft Palate J. MALIK¹ AND S. GHADIALI¹ ¹The Ohio State University, Columbus, OH

4:30PM

A Computational-Experimental Approach for the In Situ Estimation of Aortic Valve Interstitial Cell Biophysical State R. BUCHANAN¹ AND M. SACKS¹

¹The University of Texas at Austin, Austin, TX

Track: Cancer Technologies, Nano to Micro Technologies

OP-Sat-3-6 - Room 006D

Microtechnologies for Cancer II

Chairs: Sihong Wang, Wei Li

3:15PM

Metastatic Cancer Cells Migration in 3D Collagen Matrix and Microtracks

A. RAHMAN¹, S. CAREY¹, C. KRANING-RUSH¹, B. ROMERO¹, R. WILLIAMS¹, AND C. REINHART-KING¹ 'Cornell University, Ithaca, NY

3:30PM

Decoupling Protrusion from Migration: A New Assay to Study Cancer Cell Protrusion Dynamics in the Absence of Migration

B. KOONS¹ AND A. NAIN¹ ¹Virginia Tech, Blacksburg, VA

3:45PM

Programmable Bacteria for Cancer Therapy and Diagnostics

T. DANINO¹, A. PRINDLE², O. DIN², G. KWONG¹, S. BHATIA¹, AND J. HASTY 2 1MIT, Cambridge, MA, 2UCSD , La Jolla, CA

4:00PM

Epidermal Growth Factor as a New Migration-Targeted Therapy for Pediatric Brain Tumors

J. RICO¹, T. SINGH¹, S. MCCUTCHEON¹, AND M. VAZQUEZ¹ ¹The City College of New York (CUNY), New York, NY

4:15PM

A Kinetic Model for Rapid Molecular Phenotyping of Resected Tissues during Cancer Surgery

L. SINHA¹, Y. WANG², C. YANG¹, A. KHAN², S. LEIGH², J. LIU², AND K. TICHAUER¹ ¹Illinois Institute of Technology, Chicago, IL, ²Stony Brook University (SUNY), Stony Brook, NY

P = Poster SessionOP = Oral PresentationQ = Reviewer Choice Award

4:30PM

A Comparative Study Of Patient-Derived Primary Brain Tumor Cells Using 3D Biomimetic Hydrogels

C. WANG¹, X. JIANG¹, C. WILSON¹, A. PONNUSWAMI¹, V. CARETTI¹, M. MONJE¹, G. GRANT¹, AND F. YANG¹

¹Stanford University, Stanford, CA

Track: Stem Cell Engineering, Tissue Engineering OP-Sat-3-7 - Room 007A

Stem Cells in Translational Science

Chairs: Eduardo Silva, Stephanie Willerth

3:15PM Invited

Spatiotemporal Mapping of De Novo Tissue Genesis by Stem Cells & Tissue-Implant Interactions

C. Heu1, S. Moore2, U. Knothe3, R. Segal1, T. Piepergerdes4, and M. Knothe Tate1 $% \left[1 + 1 \right]$

¹University of New South Wales, UNSW Sydney, Australia, ²Case Western Reserve University, Cleveland, OH, ³Cleveland Clinic, Cleveland, OH, ⁴Vanderbilt University, Nashville, TN

3:30PM

Preparation of Native Extracellular Matrix for Stem Cell-based Salivary Gland Regeneration.

A. MALAKHOV¹, B-X. ZHANG¹, H. WANG¹, A. LIN¹, D. DEAN¹, S. WEINTRAUB¹, X-D. CHEN¹, AND C-K. YEH²

¹UTHSC, San Antonio, TX, ²STVHCS, San Antonio, TX

3:45PM

A Human iPS-derived In Vitro Model of 3D Vascularized Cardiac Muscle

Y. KUROKAWA¹, D. TRAN¹, M. MOYA¹, A. SOBRINO¹, L. ALONZO¹, C. HEYLMAN¹, C. TU¹, L. LOCK¹, C. HUGHES¹, B. CONKLIN², AND S. GEORGE¹

¹University of California, Irvine, Irvine, CA, ²Gladstone Institutes, San Francisco, CA

4:00PM

Stable Human Induced Pluripotent Stem Cell-derived Cardiomyocyte Syncytium That Supports Paced Electrical Activities and Responds to IKr Blockage

R. ZHU¹, A. BLAZESKI¹, K. BOHELER¹, AND L. TUNG¹ ¹The Johns Hopkins University, Baltimore, MD

4:15PM

Beat Whole Decellularized Mouse Heart with Human Induced Pluripotent Stem (iPS) Cells

B. LIN¹, T. LU¹, J. KIM¹, M. SULLIVIAN¹, K. TOBITA¹, G. SALAMA¹, AND L. YANG¹ ¹University of Pittsburgh, Pittsburgh, PA

Track: Cardiovascular Engineering OP-Sat-3-8 - Room 007B

Heart Valves and Stents II

Chairs: Mehdi Nikkah, Gulden Camci-Unal

3:15PM

Physiological Relevant Shear Stress and Flexure in Developing Valvular Tissues

S. RATH¹, A. VILLEGAS¹, M. SALINAS¹, AND S. RAMASWAMY¹ ¹Florida International University, Miami, FL

3:30PM

Design of an *In Vitro* Simulation Pipeline for the Development of Computational Mitral Valve Modeling

C. BLOODWORTH IV¹, E. PIERCE¹, T. EASLEY¹, M. TOMA¹, A. KHALIGHI², C-H. LEE², M. SACKS², A. SIEFERT¹, M. JENSEN¹, AND A. YOGANATHAN¹ ¹Georgia Institute of Technology, Atlanta, GA, ²University of Texas at Austin, Austin, TX

3:45PM

Integrated Experimental-Computational Modeling of Mitral Valve Intestitial Cell Deformation Under In Situ Physiological Loading

C-H. Lee1, C. Carruthers², B. Good³, S. Ayoub¹, R. Gorman⁴, J. Gorman⁴, and M. Sacks¹

¹The University of Texas at Austin, Austin, TX, ²Metronic, Minneapolis, MN, ³Pennsylvania State University, State College, PA, ⁴University of Pennsylvania, Philadelphia, PA

4:00PM

Impact of Transcatheter Aortic Valve Oversizing on Leaflet Stress and Strain Distribution

M. ABBASI¹ AND A. AZADANI¹ ¹University of Denver, Denver, CO

4:15PM

Hemodynamic Changes in Coronary Arteries Due to Regional Aortic Root Pathologies

H. MOHAMMADI¹, R. CARTIER², AND R. MONGRAIN¹ ¹McGill University, Montreal, QC, Canada, ²Montreal Heart Institute, Montreal, QC, Canada

4:30PM

Stent Strut Geometry Affects Endothelial Cell Migration

J. JIMÉNEZ¹, P-J. WANG¹, AND P. DAVIES¹ ¹University of Pennsylvania, Philadelphia, PA

Track: Drug Delivery

OP-Sat-3-9 - Room 007D

Targeted Delivery II

Chairs: Emily Day, Junghae Suh

3:15PM

Targeting Drug Delivery to Motor Neurons in the Spinal Cord R. SIRIANNI¹ AND A. PRAKAPENKA¹

¹Barrow Neurological Institute, Phoenix, AZ

3:30PM

Albumin Nanoparticles for Targeted EDTA Delivery to Reverse Elastin Specific Medial Calcification Y. LEI¹ AND N. VYAVAHARE¹

¹Clemson University, Clemson, SC

3:45PM

Cystathionine-Gamma-Lyase Enzyme Prodrug Therapy Targeted to Tumor Vasculature in Immune Competent Model

J. KRAIS¹, C. KURKJIAN², AND R. HARRISON¹ ¹University of Oklahoma, Norman, OK, ²University of Oklahoma Health Sciences Center, Oklahoma City, OK

4:00PM

Protease-activatable Virus Based on Adeno-associated Virus for Cardiovascular Disease Therapy

M. HO¹, M. LAM¹, M. YAMAGAMI¹, C. GUENTHER¹, AND J. SUH¹ ¹Rice University, Houston, TX

4:15PM

Development of Poly-aspartic Acid Peptide Linked PLGA-based Nanoparticles for Bone Targeting

E. CARBONE¹, X. YU¹, T. JIANG¹, C. NELSON¹, H. KAN¹, AND W. LO¹ ¹UConn Health Center, Farmington, CT

4:30PM

Plasma Proteins Alter the Vascular Wall Adhesion of Drug Carriers in a Material & Donor Specific Way

D. SOBCYNSKI¹, P. CHAROENPHOL¹, P. ONYSKIW¹, K. NAMDEE¹, A. THOMPSON¹, AND L. ENIOLA-ADEFESO¹

¹University of Michigan, Ann Arbor, MI

Track: Respiratory Bioengineering, Biomechanics OP-Sat-3-10 - Room 008B

Mechanobiology in the Respiratory System

Chairs: Konstantin Birukov, Rebecca Heise

3:15PM

Genetic Variants of Cytoskeletal Elements Linked to Acute Lung Injury Impair Lamellipodia Dynamics and Endothelial Wound Healing D. LECKBAND¹, S. CHOI¹, AND S. DUDEK²

¹University of Illinois at Urbana, Urbana, IL, ²University of Illinois at Chicago, Chicago, IL

3:30PM

The Role of MicroRNAs in Ventilator Induced Lung Injury (VILI) and Inflammation

K. NELSON¹, C. BOBBA¹, B. WHITSON^{1,2}, AND S. GHADIALI^{1,3} ¹Ohio State University, Columbus, OH, ²Department of Surgery and Division of Cardiac Surgery, Columbus, OH, ³Department of Pulmonary, Allergy, Critical Care, and Sleep, Columbus, OH

3:45PM

Paxillin-GEF-HI-MAPK Signalosome and Pathologic Mechanotransduction in Mechanically Ventilated Lung

G. GAWLAK¹, X. TIAN¹, A. BIRUKOVA¹, AND K. BIRUKOV¹ ¹University of Chicago, Chicago, IL

4:00PM

Enhanced Matrix Elastin Production and Organization Using Pentagalloyl Glucose in Pulmonary Fibroblast Cultures V. PARASARAM¹, N. NOSOUDI¹, AND N. VYAVAHARE¹

V. PARASARAM', N. NOSOUDI', AND N. VYAVA ¹Clemson University, Clemson, SC

4:15PM

Chronic Tone and Substrate Stiffness Modulation Alters Airway Smooth Muscle Contractile Phenotype

R. WISE¹, N. ZAMAN¹, A. WEST², P. GRATZER¹, K. BILLIAR³, AND G. MAKSYM¹ ¹Dalhousie University, Halifax, NS, Canada, ²University of Manitoba, Winnipeg, MB, Canada, ³Worcester Polytechnic Institute, Worcester, MA

4:30PM

Age Related Changes in Pulmonary Mechanics and Inflammatory Response to Experimental Ventilator Induced Lung Injury

J. HERBERT¹, M. VALENTINE¹, P. PATEL¹, A. REYNOLDS¹, R. PIDAPARTI², AND R. HEISE¹ ¹Virginia Commonwealth University, Richmond, VA, ²University of Georgia, Athens, GA

Track: Neural Engineering, Orthopaedic and Rehabilitation Engineering

OP-Sat-3-II - Room 201

Neuro-rehabilitation Biomechanics

Chairs: Jeffrey Capadona, Ayesgul Gunduz

3:15PM

Predicting Metabolic Costs of Pathologic Gait in Cerebral Palsy K. STEELE¹ AND M. SCHWARTZ²,³

¹University of Washington, Seattle, WA, ²Gillette Children's Specialty Healthcare, St. Paul, MN, ³University of Minnesota, Minneapolis, MN

3:30PM

Information Theoretic Metrics as Biomarkers of Parkinsonian Symptom Severity

C. ANDERSON¹ AND A. DORVAL¹ ¹University of Utah, Salt Lake City, UT

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

3:45PM

Increased Shoulder Abduction Loads Decrease Voluntary Finger Flexion in Individuals with Chronic Stroke

Y. LAN¹, J. YAO¹, AND J. DEWALD¹ ¹Northwestern University, CHICAGO, IL

4:00PM

Dynamic Simulation and Neuromuscular Control of Balance in Children with Cerebral Palsy: Implications for Rectus Femoris Transfer Surgery

M. MANSOURI BOROUJENI¹ AND J. REINBOLT¹ ¹University of Tennessee, Knoxville, TN

4:15PM

Optimizing the Spinal Cord: Finding the Best Sensory Input to Improve Walking after Injury

J. WHITE¹,², L. MCCOLLOUGH³, K. TANSEY²,⁴, AND S. DEWEERTH¹,² ¹Georgia Institute of Technology, Atlanta, GA, ²Emory University, Atlanta, GA, ³Shepherd Center, Atlanta, GA, ⁴Atlanta VA Medical Center, Atlanta, GA

4:30PM

An Analytical Solution For Obtaining The Lumbar Spine Segmental Rotations

I. SHOJAEI¹ AND B. BAZRGARI¹ ¹University of Kentucky, Lexington, KY

Track: Drug Delivery, Cancer Technologies OP-Sat-3-12 - Room 103B

Cancer Drug Delivery III

Chairs: Srivatsan Kidambi, Joseph Kinsella

3:15PM

Targeted Polymeric Nanoparticles for Leukemia Cell-Specific Delivery of Pediatric Chemotherapy

V. KRISHNAN¹,², X. XU³, R. W. MASON², X. JIA¹, AND A. K. RAJASEKARAN¹ ¹University of Delaware, Newark, DE, ²Nemours Alfred I DuPont Hospital for Children, Wilmington, DE, ³Massachusetts Institute of Technology, Cambridge, MA

3:30PM

Functionalization of Gold Nanorods for Cancer Cell Imaging, Drug Delivery and Photothermal Therapy

D. PACARDO¹, B. NEUPANE², M. RIKARD¹, Y. LU¹, R. MO¹, G. WANG², F. LIGLER¹, AND Z. GU¹

¹North Carolina State University and University of North Carolina, Raleigh, NC, ²North Carolina State University, Raleigh, NC

3:45PM

Novel Functionalization of Single Walled Carbon Nanohorns for Controlled Chemotherapeutic Delivery

A. PEKKANEN¹, M. DEWITT¹, AND M. RYLANDER¹ ¹Virginia Tech, Blacksburg, VA

4:00PM

A Magnetic Field to Target Paramagnetic Nanoparticles in a Tumor Model of Glioblastoma

M. NAVATI¹, S. LOPEZ¹, M. URBAN-MALDONADO¹, M. SILVA¹, J. SEGALL¹, D. SPRAY¹, AND J. FRIEDMAN¹ ¹Yeshiva University, Bronx, NY

esniva University, bi

4:15PM

Oxidized Graphene Nanoribbons As A Novel Delivery System For The Anticancer Sphingolipid Ceramide

C. SUHRLAND¹, B. SITHARAMAN¹, AND J-P. TRUMAN¹ ¹SUNY Stony Brook, Stony Brook, NY

4:30PM

Thermo-responsive, Multimodal Imaging Enabled Nanoparticles Towards Cancer Therapy

N. PANDEY¹, A. WADAJKAR¹, V. SUNDARESAN¹,², E. HERNANDEZ², J-T. HSIEH², L. TANG¹,², J. YANG³, AND K. NGUYEN¹,²

¹University of Texas at Arlington, Arlington, TX, ²The University of Texas Southwestern Medical Center, Dallas, TX, ²The Pennsylvania State University, University Park, PA

Track: Neural Engineering, Biomedical Imaging and Optics

OP-Sat-3-13 - Room 202A

Macro/micro Design for Neurotechnologies / Networked Neural Sensors, Actuators, and Instrumentation

Chairs: Pedro Irazoqui, Mehmet Kaya

3:15PM

Implantable Networks of Wireless Nanoelectronic Nodes P. IRAZOQUI¹ ¹Purdue University, West Lafayette, IN

3:30PM

System for Integrated Neural Imaging, Recording and Stimulation Z. LIU $^{\rm I}$ AND H. ${\rm CHENG^2}$

¹Purdue University, West Lafayette, IN, ²Indiana University, Bloomington, IN

3:45PM

Ultrasound Neuromodulation: Field Overview and Observations in the Vagus Nerve of a Rat $E. \; JUAN^1$

¹UPR-Mayagüez, Mayagüez, PR

4:00PM

Nanowire Electrophysiology for *In Vivo* Measurement of the *C. elegans* Neuromuscular Junction

D. GONZALES¹, B. AVANTS¹, D. VERCOSA¹, AND J. ROBINSON¹,² ¹Rice University, Houston, TX, ²Baylor College of Medicine, Houston, TX

4:15PM

The Multipatcher: A Robot for High Density Measurement of Intracellular Recordings *In Vivo*

S. KODANDARAMAIAH¹, F. FLORES^{1,2}, G. HOLST³, I. WICKERSHAM¹, E. BROWN^{1,2}, C. FOREST³, AND E. BOYDEN¹

¹Massachusetts Institute of Technology, Cambridge, MA, ²Massachusetts General Hospital, Cambridge, MA, ³Georgia Institute of Technology, Atlanta, GA

4:30PM

Principles of High Fidelity, High Density 3D Neural Recording

C. MOORE-KOCHLACS¹,², J. SCHOLVIN², J. KINNEY², J. BERNSTEIN², Y. YOON², S. ARFIN², N. KOPELL¹, AND E. BOYDEN²

¹Boston University, Boston, MA, ²Massachusetts Institute of Technology, Cambridge, MA

Track: Undergraduate

OP-Sat-3-14 - Room 204B

Undergraduate Research II

Chairs: William Guilford, Kristine Ropella

3:15PM

AAV9-based Gene Delivery for Cardiac Regeneration via Fibroblast Reprogramming

S. HANSEN¹ AND B. FRENCH¹ ¹University of Virginia, Charlottesville, VA

3:25PM

Promoting Elastin Production in Tissue-Engineered Blood Vessels by Inhibiting microRNA-29 in Human Neonatal Dermal Fibroblasts S. PEREZ¹, C. FERNANDEZ¹, W. REICHERT¹, AND G. TRUSKEY¹

¹Duke University, Durham, NC

3:35PM

Washing with Human Albumin Improves the Ability of Stored Red Blood Cells to Perfuse an Artificial Microvascular Network R. ABIDI¹, N. PIETY¹, AND S. SHEVKOPLYAS¹ ¹University of Houston, Houston, TX

3:45PM

The Effect of Lovastatin Treatment on Activated Endothelial Cell Gene Expression and Monocyte Adhesion

K. HENDERSON¹, C. FERNANDEZ², W. REICHERT², AND G. TRUSKEY² ¹University of Missouri-Columbia, Kansas City, MO, ²Duke University, Durham, NC

3:55PM

New Chameleon NanoCluster Beacons for Emission-Spectrum-Based SNP Detection

D. IMPHEAN¹, R. BATSON¹, J. OBLIOSCA¹, AND H-C. YEH¹ ¹University of Texas at Austin, Austin, TX

4:05PM

Single-cell Transfection Within a 3D Tumor Model Using Optoporation

M. MAURER¹, M. MONAGHAN², Y. MÖLLER³, M. OLAYIOYE³, AND K. SCHENKE-LAYLAND¹,²

¹Eberhard-Karls-University Tübingen, Tübingen, Germany, ²Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany, ³University of Stuttgart, Stuttgart, Germany

4:15PM

Computational Fluid Dynamic Modeling of 3D Scaffolds in Dynamic Culture

H. KO¹, B. NGUYEN¹, AND J. FISHER¹ ¹University of Maryland, College Park, College Park, MD

4:25PM

Postural Sway as a Correlate of Psychosis Proneness and Social Behavior

H. BOTHWELL¹ AND D. EVANS²

 $^1 \rm Bucknell$ University, Lewisburg, PA, $^2 \rm Geisinger-Bucknell$ Autism and Developmental Medicine Institute, Lewisburg, PA

4:35PM

An Enzyme-activatable, Receptor-targeted Filamentous Viral Nanoparticle

P. CHARIOU¹, K. LEE¹, AND N. STEINMETZ¹ ¹Case Western Reserve University, Cleveland, OH

SATURDAY

REFRESHMENT BREAKS

REFRESHMENT BREAKS

-	20	21	40	41	60	61	80	81	100	101	120	121	140	141	160	191	180	181	200	201	220	221	240	241	260	261	280	281	300
2	9	. 22	. 39	42	59	62	. 79	82	. 99	102	, 119	122	. 139	142	159	162	. 179	182	199	202	219	222	. 239	242	259	262	. 279	282	259
3	8	23	38	43	58	63	78	83	. 98	103	811	123	138	143	158	163	. 178	183	198	203	218	223	238	243	258	263	. 278	283	298
4	71	24	. 37	44	57	ו ב נ	-]	84	. 97	104	117	124	137	144	157	164	. 177	184	197	204	217	224	237	244	. 257	Ľ	r] L	284	297
σ	16	25	36	45	56	65	76	85	96	105	116	125	136	145	156	165	176	185	961	205	216	225	236	245	256	265	276	285	296
6	15	26	35	46	55	66	75	86	95	901	115	126	135	146	155	166	175	186	195	206	215	226	235	46	255	266	275	286	295
7	4	27	34	47	54 54	67	74	87	94	107	114	127	134	147	154	167	174	187	194	207	214	227	234	247	254	267	274	287	294
8	IЗ	28	33	48	53	89	73	88	93	801	II3	128	133	148	153	891	173	188	193	208	213	228	233	248	253	268	273	288	293
٩	12	29	32	49	52	69	72	68	92	601	112	129	132	149	152	691	172	189	192	209	212	229	232	249	252	269	272	289	292
0	=	30	31	50	5	70	71	90	16	110	Ξ	130	131	150	151	170	171	190	191	210	211	230	231	250	251	270	271	290	291
						C]							s;	ח ס	ч н	S	τ Ο	J							C	ב		
	Γ	T	• .		٢, .	1	Γ.		Γ		Γ,.	1	Γ		٢, .		Γ.	. 1	Γ.		Γ.	. 1			г.	. 1	٢.		τ.

30 I	312	313	324	325	336	337	348	349	360	36 I	372	373	384	385	396	397	408	409	420	42 I	432	433	444	445	456	457	468	469	480
302	311	314	323	326	335	338	347	350	359	362	.371	374	383	386	395	398	407	410	.419	422	.43 I	434	. 443	446	455	458	.467	470	.479
303	310	315	.322	327	334	339	346	351	358	363	370	375	382	387	.394	399	406	411	418	423	. 430	435	. 442	447	454	459	. 466	471	. 478
304	309	316	321	328	333	340	345 345	352	357	364	369	376	38I	388	393	400	405	412	417	424	429	436	441	448	453	460	465	472	477
305	308	317	320	329	332	34I	344	353	356	365	368	377	380	389	392	401	404	413	416	425	428	437	440	449	452	461	464	473	476
306	307	318	319	330	33	342	343	354	355	366	367	378	379	390	391	402	403	414	415	426	427	438	439	450	45 I	462	463	474	475

515
 542
 541
 540
 539
 538
 537
 536

 529
 530
 531
 532
 533
 534
 535
 543 543 678 514 513 512 511 510 509 508 501 502 503 504 505 506 507 528
 566
 565
 564
 563
 562

 553
 554
 555
 556
 557
 567
 594
 593
 592
 591
 590
 589
 588

 581
 582
 583
 584
 585
 586
 587
 595 595 609
 636
 635
 635
 633
 635
 631
 630

 623
 624
 625
 626
 627
 628
 629

 650
 649
 648
 647
 646
 645
 644

 637
 638
 639
 640
 641
 642
 643

 664
 663
 662
 661
 660
 659
 685

 651
 652
 653
 654
 655
 656
 657
 665
 688
 687
 686
 685
 684

 679
 680
 681
 682
 683
 689 580 579 578 577 576 677 676 675 674 673 672 66 66 668 669 670 671 069 516 527 551 550 549 548 544 545 546 547 019 621 10 568 569 570 571 607 606 605 604 603 602 596 597 598 599 600 601 620 619 618 617 616 611 612 613 614 615
 700
 699
 698

 691
 692
 693
 526 525 524 523 522 517 518 519 520 521 575 574 572 573 697 696 694 695 558 559

らどうしょう

REFRESHMENT BREAKS

236 137

536 437

636

537

436 337 336

237

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

SATURDAY, October 25, 2014

9:30 AM - 1:00 PM **POSTER SESSIONS** Poster Viewing with Authors - 9:30 AM - 10:30 AM

Bioinformatics, Computational and Systems Biology

P-Sat-I

Computational Modeling of Integrated HDAC5 Response to Electrical and Neurohormonal Stimuli

J. SAUCERMAN¹, M. RHOADS¹, R. NORTH¹, AND W. BOYD¹ ¹University of Virginia, Charlottesville, VA

P-Sat-2

PDGFR α And PDGFR β Cell Surface Levels Are Positively Correlated With Cell Confluency In Vitro

X. GUO¹, O. IMARENEZOR¹, S. CHEN¹, AND P. IMOUKHUEDE¹ ¹University of Illinois at Urbana-Champaign, Urbana, IL

P-Sat-3

An Agent-Based Model Predicts How Pancreatic Islet Size Affects Revascularization and Engraftment Potential Following Transplantation M. LATAILLADE¹ AND S. PEIRCE-COTTLER¹ ¹University of Virginia, Charlottesville, VA

P-Sat-4

Examining The Partitioning Of Angiogenic Receptors In Vitro

A. STORM¹, W. WOODS¹, AND P. IMOUKHUEDE¹ ¹University of Illinois, Urbana-Champaign, Urbana, IL

P-Sat-5

A Computational Model of Collagen Fibrillogenesis

V. LANKA¹, J. HOLMES², AND W. RICHARDSON² ¹University of Virginia, Ashburn, VA, ²University of Virginia, Charlottesville, VA

P-Sat-6

Modeling Temporal Dynamics of Infarct Collagen Turnover W. PILCHER¹, J. HOLMES¹, AND W. RICHARDSON¹ ¹University of Virginia, Charlottesville, VA

P-Sat-7

Experimental and Computational Analysis of Cardiomyocyte Generation from iPS Cells via Temporal Modulation of Wnt Signaling T. JONES¹ AND P. AURORA¹ ¹University of Virginia, Charlottesville, VA

P-Sat-8

Automated Validation and Systematic Revision of a Cardiac Hypertrophy Signaling Model

A. PAAP¹, K. RYALL¹, R. NORTH¹, AND J. SAUCERMAN¹ ¹University of Virginia, Charlottesville, VA

P-Sat-9

Integrating the Effects of Exercise to the UVa/Padova Type I Diabetes Simulator

N. FRANTZ¹, K. TURKSOY¹, M. SERTBAS¹, J. FENG¹, AND A. CINAR¹ ¹Illinois Institute of Technology, Chicago, IL

P-Sat-10

Pan-Cancer Analysis for Identifying Proteins Related to Cancer Stage S. MISHRA¹, C. KADDI¹, AND M. WANG¹

¹Georgia Institute of Technology, Atlanta, GA

P-Sat-II

Towards Optimizing the Production of Pertussis Vaccine Using Computational Modeling

M. BLOOM¹, H. TRUONG¹, M. GRAY¹, E. HEWLETT¹, AND J. PAPIN¹ ¹University of Virginia, Charlottesville, VA

Biomaterials

P-Sat-I3

Efficacy And Degradation Analysis of Heat Labile Antibiotic Compounds Subjected To Thermal Conditions Indicative Of PMMA Curing Processes J. CHANG^{1,2}, T. HESS¹, AND M. DESILVA¹

¹Naval Medical Research Unit San Antonio, San Antonio, TX, ²Naval Research Enterprise Internship Program, San Antonio, TX

P-Sat-15

Study of the Second Virial Coefficient of Cowpea Mosaic Virus Under Varying pH and Ionic Strength Using Composition-Gradient Multi-Angle Light Scattering

D. ACOSTA¹, Y. MA¹, A. WEN¹, R. PODGORNIK²,³,⁴, V. PARSEGIAN², R. FRENCH¹, AND N. STEINMETZ¹

¹Case Western Reserve University, Cleveland, OH, ²University of Massachusetts, Amherst, MA, 3J. Stefan Institute, Ljubljana, Slovenia, 4University of Ljubljana, Ljubljana, Slovenia

MOVED TO P-SAT-51

P-Sat-16

Creating Biomimetic Neighbors for In Vitro 3D $\,\beta$ -Cell Culture systems S. AHMADMEHRABI¹,², S. AKBARI², AND P. HAMMOND²

¹Case Western Reserve University, Cleveland, OH, ²Massachusetts Institute of Technology, Cambridge, MA

P-Sat-17

Comparison of Mechanical Testing Methods for Biomaterials: Nanoindentation, Pipette Aspiration, and Macroscale Testing

K. TONG¹, R. BLAHO¹, C. BUFFINTON¹, AND D. EBENSTEIN¹ ¹Bucknell University, Lewisburg, PA

P-Sat-18

Analysis of Cement Particles Present in Human Biopsies Affected by Periimplantitis

M. BURBANO¹, T. WILSON², P. VALDERRAMA², J. BLANSETT³, C. WADHWANI⁴, P. CHOUDHARY¹, AND D. RODRIGUES¹

¹University of Texas at Dallas, Richardson, TX, ²Private Practice of Periodontics, Dallas, TX, ³Private Practice of Periodontics, Rogers, AR, ⁴University of Washington, Seattle, WA

P-Sat-19

Fabrication of a Human Lamina Cribosa Mimic by Co-electrospinning

J. HOCHSTEIN^{1,2}, M. EARLEY^{1,3}, A. RAJABI ZAMANI¹, G. COLLINS¹, B. MANTILLA¹, AND M. JAFFE

¹New Jersey Institute of Technology, Newark, NJ, ²Johns Hopkins University, Baltimore, MD, ³Virginia Tech, Blacksburg, VA

P-Sat-20

Tuning an In Vitro Hydrogel Microenvironment with Fibroblast Co-Culture for Improved Skeletal Myoblast Delivery

N. RAO¹, G. AGMON¹, M. TIERNEY², A. SACCO², AND K. CHRISTMAN¹ ¹UC San Diego, La Jolla, CA, ²Sanford-Burnham Medical Research Institute, La Jolla, CA

P-Sat-21

P-Sat-22

Hydrogels

Characterization of Lactose-Containing Two-Solution Bone Cements E. BENTLEY¹, L. RODRIGUEZ¹, J. CHARI¹, S. AGHYARIAN¹, AND D. RODRIGUES¹

Determination of Variables Affecting Degradation of Polyethylene Glycol

J. REDINGTON¹, E. JAIN², S. SELL², AND S. ZUSTIAK² ¹Shorter University, Suwanee, GA, ²Saint Louis University, St Louis, MO P-Sat-23

Comparative Analysis of Chemical and Photochemical Crosslinking of Polyacrylamide Gels

A. KARADAGHY¹, H. STEVENSON¹, AND S. ZUSTIAK¹ ¹Saint Louis University, St Louis, MO

¹The University of Texas at Dallas, Richardson, TX

POSTER SESSION Sat 9:30AM – 1:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

P-Sat-24

Conditioning Cells to Microenvironmental Cues

S. SYED¹ AND S. ZUSTIAK¹ ¹Saint Louis University, St Louis, MO

P-Sat-25

Characterization of a Collagen Film at Various pH and Temperatures Using a QCM-D

A. WILLIAMS¹, T. ALEXANDER², L. LOZEAU², AND T. CAMESANO²

¹Vanderbilt University, Nashville, TN, ²Worcester Polytechnic Institute, Worcester, MA

P-Sat-26

Genetically Engineered Fluorescent Plant Viral Nanoparticles as Versatile Optical Imaging Agents

A. NAGARAJAN¹, S. SHUKLA¹, C. DICKMEIS², R. FISCHER², U. COMMANDEUR², AND N. STEINMETZ¹

¹Case Western Reserve University, Cleveland, OH, ²RWTH Aachen, ⁵²⁰⁷⁴ Aachen, Germany

P-Sat-27

Investigating the Effect of Conducting Polymer Graphene Oxide Composite Coatings on Magnesium Corrosion

H. LI¹, K. CATT¹, AND X. CUI¹ ¹University of Pittsburgh, Pittsburgh, PA

P-Sat-28

Analyzing ROS Generation from Magnetic Nanoparticles in an Alternating Magnetic Field and its Role in lintracellular Hyperthermia

C. OLIVER¹, R. WYDRA², D. COCHRAN², K. ANDERSON², T. DZIUBLA², AND J. HILT² ¹University of Connecticut, Storrs, CT, ²University of Kentucky, Lexington, KY

P-Sat-29

Self Assembled Organosilane Coatings For Resorbable Devices

O. JACKSON¹, A. PATIL¹, AND E. BENIASH¹ ¹University of Pittsburgh, Pittsburgh, PA

P-Sat-30

Syndesomes Enhance Cutaneous Wound Healing in Diabetic Mice G. SINGH¹, S. DAS¹, M. MARTINEZ¹, A. DUNN¹, AND A. BAKER¹ ¹University of Texas, Austin, TX

P-Sat-31

Designing a SiO2-coated Gd-loaded Macromolecular Magnetic Resonance Contrast Agent

L. RANDOLPH¹, M. BRUCKMAN¹, AND N. STEINMETZ¹,² ¹Case Western Reserve University, Cleveland, OH, ²Case Western Reserve University School of Medicine, Cleveland, OH

P-Sat-32

Interface of Physics and Biology: Engineering Virus-Based Nanoparticles for Biophotonics

D. Kernan', A. Wen', M. Infusino',², A. De Luca',³, G. Strangi',³, and N. F. Steinmetz'

¹Case Western Reserve University, Cleveland, OH, ²Universidad San Francisco de Quito, Quito, Ecuador, ³University of Calabria, Rende, Italy

P-Sat-33

Methods for Coating Microspheres with Mesenchymal Stem Cell-Derived Matrix

R. REESE¹, A. TONDON¹, C. GREGORY², AND R. KAUNAS¹ ¹Texas A&M University, College Station, TX, ²Texas A&M Health Science Center, Temple, TX

P-Sat-34

Self-Assembly of DNA-Based Responsive Soft Biomaterials:A Computational and Experimental Approach

J. DOMINGUEZ¹, Z. GODDARD¹, S. BENNER², C. HALL², AND T. BETANCOURT¹ ¹Texas State University, San Marcos, TX, ²North Carolina State University, Raleigh, NC

P-Sat-36

Bio-Corrosion Evaluations Using Dynamic Electrochemical Methods H. LUNDIN¹

¹Wichita State University, Park City, KS

P-Sat-37

Effects Of Dual Frequency Excitation On Cavitation Of Microbubbles A. SMITH¹, L. PHILLIPS¹, S. GUO², X. JIANG², AND P. DAYTON¹

A. SMITH', L. PHILLIPS', S. GUO', A. JIANG', AND P. DAYTON' ¹University of North Carolina, Chapel Hill, NC, ²North Carolina State University, Raleigh, NC

P-Sat-38

Optimizing Electrospun Fiber Mats For Use As Mock Blood-Brain Barriers M. MENDIVE¹, V. PENSABENE²,³, D. BALIKOV³, AND H-J. SUNG³

¹SyBBURE-Searle Undergraduate Research Experience, Vanderbilt University, Nashville, TN, ²Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, ³Department of Biomedical Engineering, Vanderbilt University, Nashville, TN

P-Sat-39

Random Sequential Adsorption of Proteins on Polymer-covered Surfaces: A Simulation-based Approach

A. GORE¹, E. DUMONT², P. KATIRA¹, AND H. HESS¹

¹Columbia University, New York, NY, ²The Joan and Irwin Jacobs Technion-Cornell Innovation Institute, New York, NY

P-Sat-40

Study of the Effects of Detoxification Treatments on Titanium used in Osseointegrative Applications

S. Wheelis¹, I. Gindri¹, S. Sridhar¹, P. Valderramma², T. Wilson³, and D. Rodrigues¹

¹University of Texas at Dallas, Richardson, TX, ²Private Practice of Periodontics, Dallas, TX, ³Baylor College of Dentistry, Dallas, TX

P-Sat-41

Effect of Lateral Retinacular Release after Total Knee Replacement on Patellar Kinematics and Patellofemoral Contact Pressure at Varying Patellar Component Thicknesses

J. RODRIGUEZ^1, X. XIE^1,, R. RUSLY^1, A. C. CLARK^1, F. VOSS^2, J. DESJARDINS^1, AND M. LABERGE^1

¹Clemson University, Clemson, SC, ²University of South Carolina, School of Medicine, Clemson,

SC P-Sat-42

Improved Magnetically Responsive Gels for Controlled Drug Delivery

C. ROCO^{1,2}, S. KENNEDY^{1,2}, C. CEZAR^{1,2}, A. DÉLÉRIS^{1,2}, S. PATRIZIA^{1,2}, AND D. MOONEY^{1,2}

¹Harvard School of Engineering and Applied Science, Cambridge, MA, ²Wyss Institute for Biologically Inspired Engineering, Boston, MA

P-Sat-43

Biomimetic Nanofiber Microenvironments for Metastatic Tumor Cell Line Development

R. BANOUB¹, T. NELSON¹, J. LANG¹, AND J. LANNUTTI¹ ¹The Ohio State University, Columbus, OH

P-Sat-44

Electrospun Nanofibers as a Biomimetic Platform for Melanoma Migration

S. BUSHMAN¹, T. NELSON¹, R. UNDERINER¹, X. GUAN¹, A. HOLDERBAUM¹, J. LANNUTTI¹, AND C. BURD¹

¹Ohio State University, Columbus, OH

P-Sat-45

Synthesis of Mg-Microbeads using Electrospraying Technique

T. CAMPBELL¹, R. BLOUNT², AND N. BHATTARAI²

¹University of Rhode Island, Kingston, RI, ²North Carolina A&T State University, Greensboro, NC

P-Sat-46

Fabrication and Characterization of 3D-Printed Pore Architecture Scaffolds for Mesenchymal Stem Cell Adhesion and Proliferation

M. PRENDERGAST¹, K. FERLIN¹, D. KAPLAN², AND J. FISHER¹

¹University of Maryland - College Park, College Park, MD, ²Food and Drug Administration, Silver Spring, MD

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

9:30AM - 1:00PM POSTER SESSION Sat 2014 OCTOBER 25 SATURDAY

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

P-Sat-47

Characterizing Gold Nanoparticle Interactions with a Supported Lipid Bilayer in the Presence of Humic Acid

C. BAILEY¹, E. KAMALOO¹, K. WATERMAN¹, K. WANG¹, AND T. CAMESANO¹ ¹Worcester Polytechnic Institute, Worcester, MA

P-Sat-48

Design And Manufacture Of Novel Polymer Neural Electrodes For Blast Testing

G. TERZIEV¹, G. WOOD¹, J. SHRIDHARANI¹, A. ALSHAREEF¹, B. BIGLER¹, E. SKOLNICK¹, AND C. BASS¹

¹Duke University, Durham, NC

P-Sat-49

Fabrication of Porous PDMS Thin Films as a Microfluidic Blood Brain Barrier

N. BRAMAN^{1,2}, L. HOFMEISTER^{1,2}, V. PENSABENE^{2,3}, D. SCHAFFER^3, C. MARASCO^{1,2,3}, AND J. WIKSWO^{2,3}

¹Searle SyBBURE Undergraduate Research Program, Nashville, TN, ²Vanderbilt University, Nashville, TN, ³Vanderbilt Institute for Integrative Biosystems Research and Education, Nashville, TN

P-Sat-50

Osseointegration of Wrapped Dental Implants in Rabbits

A. WHITEHEAD¹, S. HYZY¹, D. COHEN¹, B. BOYAN¹,², AND Z. SCHWARTZ¹,³ ¹Virginia Commonwealth University, Richmond, VA, ²Georgia Institute of Technology, Atlanta, GA, ³University of Texas Health Science Center at San Antonio, San Antonio, TX

P-Sat-51

Characterization of Gold Nanoparticle Interactions with DNA Aptamers Studied through Absorbance and Fluorescent Spectroscopy

J. YOHO¹,², J. CHAVEZ², N. KELLEY-LOUGHNANE², AND J. HAGEN²

¹University of Dayton, Dayton, OH, ²Wright-Patterson Air Force Base, Dayton, OH

P-Sat-52

Drosophila melanogaster as a Simple Model to Test Dark Toxicity and Tolerance of Potential Photodynamic Therapy Agents

J. YOHO¹, C. STROH¹, S. SWAVEY¹, AND M. KANGO-SINGH¹ ¹University of Dayton, Dayton, OH

Biomechanics

P-Sat-61

Analysis of Arterial Mechanics During Head-Down-Tilt Bed Rest

M. ELLIOTT¹,², D. MARTIN³, C. WESTBY², M. STENGER³, AND S. PLATTS⁴ ¹Saint Louis University, Chattanooga, TN, ²Universities Space Research Association, Houston, TX, ³Wyle Science, Technology, and Engineering Group, Houston, TX, ⁴NASA Johnson Space Center Life Sciences, Houston, TX

P-Sat-62

Investigation of the Tibialis Posterior and Peroneus Longus Muscles on Foot Kinematics While Walking

M. BUCKLIN ¹ AND C. NEVILLE ² ¹University of Rochester, Rochester, NY, ²Upstate Medical University, Syracuse, NY

P-Sat-64

Naive Endoscope Users Have Higher Forces on a Simulated Colon Model Compared to Experienced Endoscopist

M. FARNHAM¹, K. BIERYLA¹, E. GEIST¹, AND D. DIEHL² ¹Bucknell University, Lewisburg, PA, ²Geisinger Health System, Danville, PA

P-Sat-65

Single-Level Cervical Fusion Does Not Increase Range of Motion in Adjacent Segments During Head Rotation

T. WEST¹, W. ANDERST¹, W. DONALDSON¹, J. LEE¹, AND J. KANG¹ ¹University of Pittsburgh, Pittsburgh, PA

P-Sat-66

Radiographic Evaluation of the Carpometacarpal Joint in Osteoarthritis Severity and Joint Laxity

S. GUANG¹, T. PATEL¹, AND J. CRISCO¹ ¹Brown University, Providence, RI

P-Sat-67

Development of Pipette Aspiration Technique for Measurement of Chick Embryonic Myocardium Mechanical Properties

R. BLAHO¹, K. TONG¹, C. BUFFINTON¹, D. EBENSTEIN¹, AND E. BUFFINTON² ¹Bucknell University, Lewisburg, PA, ²Lafayette College, Easton, PA

P-Sat-68

Structural and Effective Material Properties of the Anterior, Lateral, and Posterior Human Rib Bone

T. COMTE¹, A. LAU¹, AND M. KINDIG²

¹University of North Carolina, Chapel Hill, NC, ²University of Virginia, Charlottesville, VA

P-Sat-69

Factors that Contribute to Inter-Subject Variation in Human Liver and Spleen Material Properties

S. ZWOLSKI¹, T. LEROITH², AND A. KEMPER³ ¹University of Rochester, Rochester, NY, ²Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, ³Virginia Tech - Wake Forest University, Blacksburg, VA

P-Sat-70

Statistical Shape Analysis of the Human Spleen by Landmark Sliding K. YATES¹, Y-C, Lu², AND C, UNTAROIU²

¹Michigan Technological University, Houghton, MI, ²Virginia Polytechnic and State University, Blacksburg, VA

P-Sat-71

Relationship of Lumbar Angle and Torso Inclination in Adolescent Females S. GALVIS¹, G. BAKER¹, S. WILSON¹, AND E. FRIIS¹ 'University of Kansas, Lawrence, KS

P-Sat-72

Single Cell Directionality on Suspended and Aligned Nanofibers S. RAO^{1,2}, J. WANG², AND A. NAIN²

¹University of Virginia, Charlottesville, VA, ²Virginia Tech, Blacksburg, VA

P-Sat-73

A More Rigorous Swimming Regimen Does Not Enhance Cardiovascular Changes in Elastin-Deficient Mice

D. CHIRUMBOLE¹, K. STOKA¹, AND J. WAGENSEIL¹ ¹Washington University in St. Louis, St. Louis, MO

P-Sat-74

Reduced arterial compliance decreases plaque development in Eln+/-ApoE-/- mice

S. BHAYANI¹, J. MAEDEKER², K. STOKA², AND J. WAGENSEIL² ¹Saint Louis University, St. Louis, MO, ²Washington University in St. Louis, St. Louis, MO

P-Sat-75

Determining the Effect of Vimentin on Cell Traction Force and Stiffness A. DAGLE¹, G. THOMAS², AND Q. WEN²

¹Clark University, Worcester, MA, ²Worcester Polytechnic Institute, Worcester, MA

P-Sat-76

In 2D and 3D In Vitro Vibrations Modulate Mesenchymal Stem Cell Proliferation and Enhance Gap Junction Intercellular Interaction with Osteoblast Like Bone Cells

R. PATEL¹, A. DAMATO¹,², S. PONGKITWITOON¹, AND S. JUDEX¹ ¹Stony Brook University, Stony Brook, NY, ²Stony Brook University School of Medicine, Stony Brook, NY

P-Sat-78

Using Virtual Reality To Improve The Compliance Of Children And Adults To Daily Vibration Treatment While Measuring Treatment Efficacy

S. TIKKIREDDY¹, S. LEE¹, A. YANG¹, G. PAGNOTTI¹, R. TONG², C. RUBIN¹, AND M. CHAN¹ ¹Stony Brook University, Stony Brook, NY, ²The Hong Kong Polytechnic University, Hong Kong, China, People's Republic of

P-Sat-79

Initiation and Propagation of Microdamage in Cancellous Bone

M. LUNA¹, A. TORRES², J. MATHENY², AND C. HERNANDEZ² ¹University of Arizona, Tucson, AZ, ²Cornell University, Ithaca, NY SATURDAY | OCTOBER 25 | 2014

POSTER SESSION Sat 9:30AM – 1:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

P-Sat-80

Measurement of Mechanical Tension Applied to the Nucleus of a Cell

I. RAMACHANDRAN¹, P. ARSENOVIC¹, AND D. CONWAY¹ ¹Virginia Commonwealth University, Richmond, VA

P-Sat-81

Uphill Walking Enhances The Retention Of A New Stepping Pattern Learned On A Split-Belt Treadmill

J. CALVERT¹, C. SOMBRIC¹, AND G. TORRES-OVIEDO¹ ¹University of Pittsburgh, Pittsburgh, PA

P-Sat-83

High Resolution, Low-Cost Transducer For Cellular Mechanics E. RICHARD¹, N. GAMBARDELLA¹, K. KASPAR¹, AND A. VALDEVIT¹ 'Stevens Institute of Technology, Hoboken, NJ

P-Sat-84

Noninvasive Detection of Pain Associated Spinal Injuries *In Vivo* using microCT Imaging and Acoustic Emissions

A. KNIGHT¹, H. CUTCLIFFE¹, G. TERZIEV¹, C. BASS¹, AND J. SHRIDHARANI¹ ¹Duke University, Durham, NC

P-Sat-85

Hand Dominance and Physical Activity History Have Little Effect on Distal Radius Microstructure

O. ANJONRIN-OHU¹, T. BUTLER², J. JOHNSON², AND K. TROY²

¹University of Tennessee, Kingsport, TN, ²Worcester Polytechnic Institute, Worcester, MA

P-Sat-86

Microcontact-patterned Proteins on Cyclically Stretched Polyacrylamide Substrates

J. URIBE¹, H. CIRKA², AND K. BILLIAR² ¹University of Massachusetts Dartmouth, Dartmouth, MA, ²Worcester Polytechnic Institute, Worcester, MA

P-Sat-87

Characterization Of The Viscoelastic Property Of Mitral Valve Leaflets P. PARAJULI¹, S. PATNAIK¹, B. BRAZILE¹, R. PRABHU¹, H. RHEE¹, L. WILLIAMS¹, AND J. LIAO¹

¹Mississippi State University, Mississippi State, MS

P-Sat-88

Sex Differences in Proximal Pulmonary Artery Stiffness as Revealed by Exercise MRI.

J. Warczytowa¹, O. Forouzan¹, C. Francois¹, O. Wieben¹, and N. Chesler¹ ¹University of Wisconsin-Madison, Madison, WI

P-Sat-89

Correlation Between Acoustic Surface And Whole-Body Attenuations Using Reflection And Transmission QUS for Characteristic Of Bone Quality K. AGARWAL¹, L. LIN¹, J. MUIR¹, AND Y-X. QIN¹ 'Stony Brook University, Stony Brook, NY

P-Sat-90

Mechanical and Cell-Matrix Cues that Induce EMT in a Mouse Lung Adenocarcinoma Model

A. LEE¹, R. HAN², AND J. GRANDE-ALLEN²

¹Boston University, Boston, MA, ²Rice University, Houston, TX

P-Sat-91

Adapting Gait to Multifocal-Lens Glasses Improves Stepping Accuracy in Novice Wearers

E. Weston¹, B. Muncy², D. Tomashek², K. Keenan², R. Smith², and K. Beschorner¹

¹University of Pittsburgh, Pittsburgh, PA, ²University of Wisconsin-Milwaukee, Milwaukee, WI

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

P-Sat-92

Measurement of Endoscopist Grip Strength and Manual Dexterity during a Day of Endoscopic Procedures

M. FARNHAM¹, Y. MELO¹, Z. MCCOY¹, E. GEIST¹, K. BIERYLA¹, AND D. DIEHL² ¹Bucknell University, Lewisburg, PA, ²Geisinger Medical Center, Danville, PA

P-Sat-93

Investigation Of Psychophysical Testing Method For Vibrotactile Thresholds A. PERRY ¹ AND R. CHAPLA¹ *'North Carolina State University, Raleigh, NC*

P-Sat-94

Body Segment Parameters in Normal Weight Versus Obese Young Females M. KNEWTSON¹, Z. MERRILL¹, R. CHAM¹, AND A. CHAMBERS¹ ¹University of Pittsburgh, Pittsburgh, PA

P-Sat-95

Quantifying Tibiofemoral Joint Contact Forces in Patients with Knee Osteoarthritis Using OpenSim P. KENDELL¹ AND S. FARROKHI¹ ¹University of Pittsburgh, Pittsburgh, PA

P-Sat-96

Environmental and Storage Effects on Measurements of Porcine Lens Stiffness B. MARCHAND¹, S. KUMAR¹, AND M. REILLY¹ ¹University of Texas at San Antonio, San Antonio, TX

P-Sat-97

Mechanodifferentiation Of Progenitor Cells Cultured On An Intact ECM Scaffold

C. RABOLLI¹, A. LECLAIR¹, AND C. WAGNER¹ [†]The College of New Jersey, Ewing, NJ

P-Sat-98

Methods for Patient-specific Aortic Dissection Modelling Z. LUCIENNE¹, V. FLAMINI¹, P. URSOMANNO², A. DEANDA², AND B. GRIFFITH³

¹New York University Polytechnic School of Engineering, Brooklyn, NY, ²New York University School of Medicine, New York, NY, ³University of North Carolina at Chapel Hill, Chapel Hill, NC

P-Sat-99

Quantifying Cell-Derived Strain In 3-Dimensional Self-Assembled Dogbone Microtissues

B. WILKS¹, J. SCHELL¹, AND J. MORGAN¹ ¹Brown University, Providence, RI

P-Sat-100

Non-Invasive Characterization of Liver Stiffness Based on Tagged MRI and Inverse Finite Element Analysis

F. CHAVES CARVALHO¹, V. FLAMINI¹, L. AXEL², S. CHUNG², AND S. BHAGAVATULA² ¹New York University Polytechnic School of Engineering, New York, NY, ²New York University Langone Medical Center, New York, NY

P-Sat-101

High Resolution Particle-Tracking Microrheology In Endothelial Cells And Glycocalyx Layer

P. YU¹, Y-L. LIU¹, A. HSU¹, P. VOYVODIC¹, A. BAKER¹, AND H-C. YEH¹ ¹University of Texas at Austin, Austin, TX

P-Sat-102

The Collagen Microstructure in the Peripapillary Sclera of the Optic Nerve Head

S. MOED¹, N-J. JAN¹, S. SMELKO¹, R. O'MALLEY¹, A. DEES¹, J. CONSTANTIN¹, M. URICH¹, M. IASELLA¹, N. RUTOWSKI¹, T. MARTIN¹, C. GOMEZ¹, H. TRAN¹, J. GRIMM¹, K. LATHROP¹, AND I. SIGAL¹ ¹University of Pittsburgh, Pittsburgh, PA

P-Sat-103

Lower Extremity Pediatric Orthotic Gait Trainer Lower Extremity Gait Trainer

M. YIN¹, B. MCDEED², A. GALCZYNSKI², AND T. LE¹ ¹Mercer University, Macon, GA, ²Mercer University, MAcon, GA

9:30AM - 1:00PM POSTER SESSION Sat 2014 OCTOBER 25 SATURDAY

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

P-Sat-103

Development of a Finite Element Model of the Gottingen Minipig Head to Investigate Complex Impact Scenarios

W. BAKER¹, E. FIEVISOHN¹, P. VANDEVORDE¹, C. UNTAROIU¹, AND W. HARDY¹ ¹Virginia Polytechnic Institute and State University, Blacksburg, VA

P-Sat-104

Design And Testing Of Composite Materials For Use In The Outer Shell Of **Contact Sport Helmets**

N. WALTERS¹, N. PATZIN¹, D. BARRY¹, G. BATT¹, AND J. DESJARDINS¹ ¹Clemson University, Clemson, SC

Biomedical Imaging and Optics

P-Sat-108

Assessing Edge-Thickness of Soft Contact Lenses Using Gabor-Domain **Optical Coherence Microscopy**

J. WON¹, P. TANKAM¹, I. COX¹, AND J. ROLLAND¹ ¹University of Rochester, Rochester, NY

P-Sat-109

Evaluation of an Infrared Imager for Breast Cancer Screening S TIBUMALA¹ AND M LOFW¹

¹George Washington University, Washington, DC

P-Sat-II0

Color Coding Optically Sectioned Fresh Biopsies for Rapid Pathological Assessment

J. JUAN¹, N. LOEWKE², S. SENSARN², S. ROGALLA², D. RIMM³, AND C. CONTAG² ¹Brown University, Providence, RI, ²Stanford University, Stanford, CA, ³Yale University, New Haven, CT

P-Sat-III

Evaluation of the Targeting Ability of Chain-Like Nanoparticles Towards **Micrometastasis**

G. DORON¹, A. GOLDBERG¹, P. PEIRIS¹, E. DOOLITTLE¹, R. TOY¹, AND E. KARATHANASIS¹ ¹Case Western Reserve University, Cleveland, OH

P-Sat-112

Phase Microscopy of Endothelial Cell Interactions in Scattering Media with **Oblique Back-Illumination**

A. ANDERSON¹, T. FORD², AND G. TEARNEY²,³

¹University of Rochester, Rochester, NY, ²Massachusetts General Hospital, Boston, MA, ³Harvard Medical School, Boston, MA

P-Sat-113

Quantifying Cell Surface Receptor Expression In Live Tissue Culture Media Using Dual-Tracer Approach

A. SINGH¹, X. XIAOCHUN XU¹, L. SINHA¹, C. YANG¹, J. XIANG¹, AND K. TICHAUER¹ ¹Illinois Institute of Technology, Chicago, IL

P-Sat-114

Computer Simulation of Tooth Mobility Using Varying Material Properties A. BECKMANN¹, S. RAITH², L. UNTERBERG², AND H. FISCHER²

¹Virginia Commonwealth University, Richmond, VA, ²RWTH Aachen University, Aachen, Germany

P-Sat-115

Non-linear Optical Microscopy of Murine Abdominal Aortic Aneurysm

K. WILSON¹, A. YRINEO², A. ADELSPERGER², H. SCHROEDER², D. ZHANG², J. ZHANG², C-S. LIAO², F. DAMEN², E. PHILLIPS², J-X. CHENG², AND C. GOERGEN² ¹University of Arkansas, Fayetteville, AR, ²Purdue University, West Lafayette, IN

P-Sat-116

Design and Optimization of a Hyperspectral Illumination Source for Clinical and Preclinical Imaging

A. ARSHAD¹, S. MAYES¹, T. RICH¹, AND S. LEAVESLEY¹ ¹University of South Alabama, Mobile, AL

P-Sat-117

Detection of Giardia lamblia Cysts and Cryptosporidium parvum Oocysts Using Digital Image Processing

A. GIFFORD¹, H. CEYLAN KODEMIR¹, AND A. OZCAN¹ ¹University of California Los Angeles, Los Angeles, CA

P-Sat-118

Using Targeted Molecular Imaging For In Vivo Evaluation Of Doxorubicin-Based Anti-Cancer Treatment In Combination With The Herbal Medicine Black Cohosh In MCF-7 Xenografts

S. SCHUH¹,², M. WOZNIAK¹,³, J. HEDHLI¹,², S. SLANIA¹,², A. CZERWINSKI⁴, L. KALINOWSKI^{1,3}, L. DOBRUCKI^{1,2}, AND I. DOBRUCKI¹

¹Beckman Institute for Advanced Science and Technology, Urbana, IL, ²Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, ³Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland, ⁴Peptides International Inc., Louisville, KY

P-Sat-119

Vesicular Localization Induced by Dextran Uptake

T. NETTERFIELD¹, M. KEMP¹, C. PAYNE¹, AND S. SARKAR²

¹Georgia Institute of Technology, Atlanta, GA, ²Northeastern Univeristy, Boston, MA

P-Sat-120

Single-Nucleotide Polymorphism (SNP) Detection Using a DNA-based Machine

M. FAN1, K. YEHL1, AND K. SALAITA1 ¹Emory University, Atlanta, GA

P-Sat-121

Diffuse Correlation Spectroscopy to Monitor Longitudinal Vascular Changes in Murine Allografts with Tissue-Engineered Periosteum

E. MANNOH¹, S. HAN², M. HOFFMAN¹, M-J. BELTEJAR¹, D. BENOIT¹, AND R. CHOE¹ ¹Department of Biomedical Engineering, University of Rochester, Rochester, NY, ²Institute of Optics, University of Rochester, Rochester, NY

P-Sat-122

Optimizing Imaging and Computational Analysis for 3D Topographical Visualization of Optically Cleared Whole Normal and Regenerative Tissues

K. COWDRICK^{1,2}, K. NELSON^{1,3}, G. CHRIST¹, AND F. MARINI^{1,4}

¹Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, ²University of Notre Dame, South Bend, IN, ³Wake Forest School of Medicine, Winston-Salem, NC, ⁴Wake Forest University Baptist Medical Center, Winston-Salem, NC

P-Sat-123

Quantitative Analysis of Conceptual Pattern Recognition Tasks under Ambiguous Conditions

M. WENKE¹, E. LIN¹, P. SHAH¹, J. IDE¹, AND L. MUJICA-PARODI¹ ¹State University of New York at Stony Brook, Stony Brook, NY

P-Sat-124

Kinetic Modeling of Fluorescent Uptake in the Retina for Blood Flow Madding

L. HONES¹, M. GUTHRIE¹, L. SINHA¹, J. KANG-MIELER¹, AND K. TICHAUER¹ ¹Illinois Institute of Technology, Chicago, IL

P-Sat-125

Axonal Water Fraction is Related to Head Impact Exposure in High School Varsity Football Players

K. APKARIAN^{1, 2}, E. DAVENPORT², J. URBAN², M. ESPELAND², C. WHITLOW², Y. JUNG², D. ROSENBAUM², A. POWERS², J. STITZEL², AND J. MALDJIAN² ¹The Johns Hopkins University, Baltimore, MD, ²Wake Forest School of Medicine, Winston-

Salem, NC

P-Sat-126

PET-CT Imaging of Peripheral Angiogenesis in Type-I Diabetes Using Novel Dimeric cRGD Peptide

S. SLANIA^{1,2}, A. CZERWINSKI³, I. DOBRUCKI², AND L. DOBRUCKI^{1,2} ¹University of Illinois at Urbana-Champaign, Urbana, IL, ²Beckman Institute for Advanced Science and Technology, Urbana, IL, ³Peptides International Inc., Louisville, KY Sat

SATURDAY | OCTOBER 25 | 2014

POSTER SESSION Sat 9:30AM – 1:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

P-Sat-127

Ultrasound Characterization Of The Tibialis Anterior Muscle In Children With Cerebral Palsy And Foot Drop.

A. ARALAR¹, D. TURO¹, A. ERANKI¹, C. STANLEY², D. DAMIANO², AND S. SIKDAR¹ ¹George Mason University, Fairfax, VA, ²National Institutes of Health, Bethesda, MD

P-Sat-128

A Novel SNR Measure for Estimation of Shear Stiffness in MR Elastography K. HUYNH¹, R. EON², D. LAKE³, AND A. MANDUCA³

¹The University of Texas at Austin, Austin, TX, ²Viterbo University, La Crosse, WI, ³Mayo Clinic, Rochester, MN

P-Sat-129

Highly Sensitive Label-free Biosensors Based On Biconically Tapered Fibers C. ROWLAND¹

¹California State Polytechnic University, Pomona, Los Angeles, CA

P-Sat-130

Development of a Temperature Sensitive MRI Contrast Agent

K. HEMZACEK¹, R. SHANKAR¹, K. HUSSAIN¹, AND V. KODIBAGKAR¹ ¹Arizona State University, Tempe, AZ

Cancer Technologies

P-Sat-132

A Caspase-8 Reporter Cell Line from Non-Small Cell Lung Cancer for Anti-Cancer Drug Screening

H. LEE¹, Z. DERELI-KORKUT¹, L. YANG¹, AND S. WANG¹ ¹The City College of New York, CUNY, New York, NY

MOVED TO P-SAT-52.

P-Sat-134

Development of a Screening Array for Congenital Melanocytic Nevi

A. VALIGA¹, D. WIDMER¹, T. BIEDERMANN², P. CHENG¹, R. DUMMER¹, AND M. LEVESQUE¹

¹University Hospital Zürich, Zürich, Switzerland, ²University Children's Hospital Zürich, Zürich, Switzerland

P-Sat-135

Polyvalent Aptamers for the Enhanced Capture of Circulating Tumor Cells in Dynamic Conditions

G. GYDUSH¹, E. RICHARDS¹, AND Y. WANG^{*1} ¹The Pennsylvania State University, State College, PA

P-Sat-136

Integrin-Mediated Metastatic Plasticity in Breast Cancer

S. NOLAN¹, L. BARNEY¹, AND S. PEYTON¹ ¹University of Massachusetts Amherst, Amherst, MA

P-Sat-137

Understanding Glioblastoma Migration on Engineered Aligned Nanofibers S. ARORA¹, A. BELIVEAU², AND A. JAIN²

¹Johns Hopkins University, Baltimore, MD, ²Worcester Polytechnic Institute, Worcester, MA

P-Sat-138

ECM Stiffening Drives EMT-Like Changes in 3D Epithelial Cell Morphogenesis

K. MARTIN¹, S. CAREY¹, AND C. REINHART-KING¹ ¹Cornell University, Ithaca, NY

P-Sat-139

Varying Concentrations Of Thrombin Affects Tumor Cell Adhesion In Dynamic Conditions

D. LEE¹, G. GYDUSH², E. RICHARDS², Y. WANG², AND C. DONG² ¹The Pennsylvania State University, State College, PA, ²The Pennsylvania State University, University Park, PA

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

P-Sat-140

Improving the Response Post-Adoptive Cell Transfer of Dendritic Cells Using Microfluidic Delivery

S. LIU¹,²

¹Massachusetts Institute of Technology, Cambridge, MA, ²David H. Koch Institute of Integrative Cancer Research, Cambridge, MA

Cardiovascular Engineering

P-Sat-141

Strain Visualization And Quantification For Abdominal Aortic Aneurysm Rupture Risk Prediction

L. YANG¹, N. COUPER¹, D. MIX¹, M. RICHARDS¹, AND A. CHANDRA¹ ¹University of Rochester, Rochester, NY

P-Sat-142

Ex Vivo Assessment Of A Novel Inflow Cannula For Pediatric Continuous-Flow Ventricular Assist Devices

M. GRIFFIN^{1,2}, M. GRZYWINSKI^{1,2}, S. OLIA^{1,2}, AND M. KAMENEVA^{1,2,3} ¹Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, ²McGowan Institute for Regenerative Medicine, Pittsburgh, PA, ³Department of Surgery, University of Pittsburgh, Pittsburgh, PA

P-Sat-143

3D Reconstruction and Printing of CHD Hearts from Medical CT and Amira Software

M. LEWIS¹, C. BUFFINTON¹, AND R. MANGANO² ¹Bucknell University, Lewisburg, PA, ²Geisinger Health System, Danville, PA

P-Sat-144

The Role of Reflex Compensation Following Myocardial Infarction: Supplementing Reported Data Through Model-Based Optimization. W. ZHANG' AND J. HOLMES'

¹University of Virginia, Charlottesville, VA

P-Sat-145

Graphical User Interface To Quantify *In Vitro* Cardiomyocyte Contractility K. MCCARTY¹, I. RIVERA², AND C. SIMMONS² *'Rice University, Houston, TX, ²University of Florida, Gainesville, FL*

P-Sat-146

Experimental and Computational Models of Microparticle Transport under Dynamic Flow Conditions

C. DEZERGA¹, J. GONZAGA², AND C. HALL³ ¹The College of New Jersey, Freehold, NJ, ²The College of New Jersey, Clifton, NJ, ³The College of New Jersey, Ewing, NJ

P-Sat-147

Analysis Of A Medical-grade Material Used In A Cardiac Device K. BROWN¹, A. ADKINS², E. HORD³, C. BOLCH⁴, AND J. CRISCIONE³

¹Mississippi State University, Mississippi State, MS, ²St. Mary's University, San Antonio, TX, ³Texas A&M University, College Station, TX, ⁴CorInnova Incorporated, College Station, TX

P-Sat-148

Durability of a Device Designed for Cardiac Assist and Support in a Failing Heart

A. ADKINS¹, K. BROWN², E. HORD³, C. BOLCH⁴, AND J. CRISCIONE³,⁴
 ¹St. Mary's University, San Antonio, TX, ²Mississippi State University, Mississippi State, MS,
 ³Texas A&M University, College Station, TX, ⁴CorInnova Inc., College Station, TX

P-Sat-149

Biophysical Mechanisms Underlying Increased Cardiac Contraction by Myofilament Acetylation

Y. WANG¹, S-H. SMITH¹, AND S-G. SHROFF¹ ¹University of Pittsburgh, Pittsburgh, PA

P-Sat-150

The Role of Heparanase in a Diabetic Mouse Model

S. MAHAJAN¹, G. SINGH¹, E. NUNEZ¹, S. DAS¹, AND A. BAKER¹ ¹University of Texas at Austin, Austin, TX

9:30AM – 1:00PM POSTER SESSION Sat 2014 | OCTOBER 25 | SATURDAY

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

P-Sat-151

Adeno-associated Virus Mediated Gene Delivery in Rat Cardiomyocytes

G. SADANANDA¹, C. AMBROSI¹, AND E. ENTCHEVA¹ ¹Stony Brook University (SUNY), Stony Brook, NY

P-Sat-152

Real-Time Visualization of Platelet Deposition Onto Ti6Al4V in Disturbed Flow Geometries

D. PEDERSEN¹, M. JAMIOLKOWSKI¹, M. KAMENEVA¹, J. ANTAKI¹,², AND W. WAGNER¹ ¹University of Pittsburgh, Pittsburgh, PA, ²Carnegie Mellon University, Pittsburgh, PA

P-Sat-153

Effect of C-Kit And KDR Stem Cell Markers on PDGFR-a in a Diabetic Mouse Myocardium

S. ILBEIG¹, G. SINGH¹, S. DAS¹, AND A. BAKER¹ ¹The University of Texas at Austin, Austin, TX

P-Sat-154

Development of an Automatic System for the Acquisition of ARFI Ultrasound Images during Diastole

K. KESSINGER¹, S. EYERLY¹, AND P. WOLF¹ ¹Duke University, Durham, NC

P-Sat-155

Regional Strain Quantification of Induced Pluripotent Derived Cardiomyocytes Cultured on a Stiff Substrate

E. CLARK¹, R. ORR², J. FAVREAU², AND G. GAUDETTE² ¹Rice University, Houston, TX, ²Worcester Polytechnic Institute, Worcester, MA

P-Sat-156

Investigating The Effect Of 5-hydroxytryptamine On The Functional Properties Of The Cardiac Valve

R. REYNOLDS¹, A. RAZAVI¹, C. MARTINDALE¹, J. MORALES¹, AND K. BALACHANDRAN¹ ¹University of Arkansas, Fayetteville, AR

P-Sat-157

$\mathit{In\,Vitro}$ Bioactivity Testing of Cardiac Derived Extracellular Matrix Using Stem Cells

T. GRUBB¹ AND G. ZHANG¹ ¹The University of Akron, Akron, OH

P-Sat-158

In Vitro and Ex Vivo Substrate Stiffness Effects on Endothelial Permeability in Response to TNF \Box

C. FURIA¹, R. LOWNES URBANO¹, P. OSEI-OWUSU¹, AND A. MORSS CLYNE¹ ¹Drexel University, Philadelphia, PA

P-Sat-159

Development of a Valve-on-Chip to Study Cardiac Valve Endothelial-Mesenchymal Transformation

J. CARRADINI¹, N. STURDIVANT¹, AND K. BALACHANDRAN¹ ¹University of Arkansas, Fayetteville, AR

P-Sat-160

Analysis of Structural Changes in Developing Hearts Due to Hyperglycemia *M. Caruso¹, T. Lawson², and M. Hinds²*

¹Washington State University, Pullman, WA, ²OHSU, Portland, OR

P-Sat-161

Influence of Ionic Strength and pH on Neonatal Clot Structure K. Ahlstedt¹, A. Brown¹, S. Saxena¹, N. Welsch¹, J. Fernandez², N. Guzzetta²,³, and T. Barker^{1,4}

¹Georgia Tech, Atlanta, GA, ²Childrens Healthcare of Atlanta, Atlanta, GA, ³Emory University, Atlanta, GA, ⁴Emory University School of Medicine, Atlanta, GA

P-Sat-162

Parametric Anatomical Models: Rapid Prototyping Methods and Approaches M. ALLAIN¹, M. LE SAOUT², AND C. TAYLOR¹

¹University of Louisiana at Lafayette, Lafayette, LA, ²University of Poitiers, Poitiers, France

P-Sat-163

Visualization of Convective Heat Transfer with a Thermal Camera *In Vivo* During Cardiac Radiofrequency Ablation L. SUCHOMEL¹, S. EYERLY², AND P. WOLF¹

¹Duke University, Durham, NC, ²Duke University, Durh, NC

P-Sat-164

Baseline Relation Of Asymmetric Dimethylarginine (ADMA) Levels And Whole Blood Viscosity (WBV) In Patients With End Stage Renal Disease

R. TRIGALO¹, R. MADHURAOANTULA², A. SINGH², M. HAMMES³, AND P. DHAR² ¹University of Illinois at Urbana-Champaign, Champaign, IL, ²Illinois Institute of Technology, Chicago, IL, ³University of Chicago, Chicago, IL

P-Sat-165

Effect of Exogenous TGF $\beta\,$ and its Inhibitors on Hyaluronan Homeostasis in Porcine Aortic Valve Interstitial Cells

A. STOUT¹, V. KRISHNAMURTHY¹, AND K. GRANDE-ALLEN¹ ¹Rice University, Houston, TX

P-Sat-166

Characterizing Mechanical Properties of Cardiac Microtissues E. ROBINSON¹, A. DESAI¹, J. RODRIGUEZ-DEVORA¹, AND D. DEAN¹ ¹Clemson University, Clemson, SC

Biomedical Engineering Education

P-Sat-170

Analyzing the Diffusion of Water in Ion-Exchange Gels Using NMR Methods J. FEINDT¹ AND J. MANEVAL¹ *Bucknell University, Lewisburg, PA*

Cellular and Molecular Bioengineering

P-Sat-171

Endothelial Surface Glycocalyx Stimulation Induced Nitric Oxide and Calcium Signaling

D. CHESTER¹, M. DRAGOVICH¹, B. FU², AND X. ZHANG¹ ¹Lehigh University, Bethlehem, PA, ²The City College of The City University of New York, New York City, NY

P-Sat-172

Endovascular Coil Geometry Determines Blood Clot Permeability E. Nagel¹, B. Earnest¹, A. Evans¹, and B. Helmke¹

¹University of Virginia, Charlottesville, VA

P-Sat-173

Effects of an Aquaporin Inhibitor on Cryosurgery of Breast Cancer Cells H. REAVIS¹, D. DRÉAU², AND C. LEE²

¹University of North Carolina at Chapel Hill, Chapel Hill, NC, ²University of North Carolina at Charlotte, Charlotte, NC

P-Sat-174

Rapid Characterization of G-quadruplexes in Double-Stranded DNA J. SANOICA¹, J. CALVERT¹, A. KREIG¹, R. TIPANNA¹, AND S. MYONG¹

¹University of Illinois at Urbana-Champaign, Champaign, IL

P-Sat-175

Analysis of Shear-Induced Calcium Oscillations in Vascular Endothelium J. JULIAN^{1,2}, C. SCHEITLIN^{1,2}, AND B. ALEVRIADOU^{1,2}

¹The Ohio State University, Columbus, OH, ²Davis Heart & Lung Research Institute, Columbus, OH

P-Sat-176

Mapping Sensory Diversity Using High-throughput Neural Imaging in C. elegans

T. GONGS¹, R. LAGOY², AND D. ALBRECHT²

 $^{\rm I}$ Louisiana State University, Baton Rouge, LA, $^{\rm 2}$ Worcester Polytechnic Institute, Worcester, MA

POSTER SESSION Sat 9:30AM – 1:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

P-Sat-177

Lysyl Oxidase Inhibitor $\boldsymbol{\beta}$ aminopropionitrile Reduces Invasiveness of Male Mammary Tumor Cells

K. YOUNG¹, A. ABRAHAM¹, A. BROCK¹, AND R. HO¹ ¹The University of Texas, Austin, TX

P-Sat-179

Clinical and Molecular Expression Profiles Revealed Abnormal Plasma mir22 in Patients with Aortic Valve Stenosis

M. BANGE¹, S. SAMY², M. SHULER¹, AND M. ARIZA-NIETO¹ ¹Cornell University, Ithaca, NY, ²Guthrie Clinic, Sayre, PA

P-Sat-180

Amplifying Signals From Riboswitch Biosensors

A. BENNETT¹,², M. GOODSON², AND N. KELLY-LOUGHNANE² ¹The University of Dayton, Dayton, OH, ²⁷¹¹th Human Performance Wing, Dayton, OH

P-Sat-181

In vitro Endothelialized Microfluidic Assay to Study Pulmonary Vasoocclusion in Sickle Cell Disease

A. MOORE^{1,2}, P. SUNDD^{1,2,3}, E. GUTIERREZ⁴, AND A. GROISMAN⁴ ¹University of Pittsburgh, Pittsburgh, PA, ²Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh-School of Medicine, Pittsburgh, PA, ³Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh-School of Medicine, Pittsburgh, PA, ⁴Department of Physics, University of California-San Diego, La Jolla, CA

P-Sat-182

Engineering The Extracellular Matrix Of Probiotic Bacteria To Control Localized Adhesion In The Gut

T. NASH¹,², F. WARD¹,², P. PRAVESCHOTINUNT¹,², A. DURAJ-THATTE¹,², AND N. JOSHI¹,² ¹Harvard University, Cambridge, MA, ²Wyss Institute for Biologically Inspired Engineering, Boston, MA

P-Sat-183

$Characterizing \ Thermodynamic \ Constraints \ of \ T4 \ Lysozyme \ Secretion \ via \ the \ Type \ III \ Secretion \ System$

C. LI¹, A. AZAM¹, AND D. TULLMAN-ERCEK² ¹College of Engineering, UC Berkeley, Berkeley, CA, ²College of Chemistry, UC Berkeley, Berkeley, CA

P-Sat-184

Expression Profiles of Extracellular Vesicle CD14 in Liver Tissue and Plasma in Patients Undergoing Roux-en-Y Gastric Bypass

M. BANGE¹, J. ALLEY², M. SHULER¹, AND M. ARIZA-NIETO¹ ¹Cornell University, Ithaca, NY, ²Guthrie Clinic, Sayre, PA

P-Sat-185

Modeling Tumor-Macrophage Interactions In 3D Micro-Tissues

A. RODRIGUEZ¹, A. BROCK¹, AND H. JOYCE¹ ¹The University of Texas at Austin, Austin, TX

P-Sat-186

Proliferation of Aging Human Cord Blood-Derived Endothelial Cells on Variably Compliant Polyacrylamide Gels

S. BOWMAN^{1,2}, T. CHEUNG², J. FU², AND G. TRUSKEY² ¹Vanderbilt University, Nashville, TN, ²Duke University, Durham, NC

P-Sat-187

The Use Of Ga(III) and Zn(II) Hemecomplexes As A Novel Strategy For Treatment of Staphylococcus aureus Biofilms

A. ALBACH¹,² ¹US Army Institute of Surgical Research, Ft. Sam Houston, TX, ²St. Mary's University, San Antonio, TX

P-Sat-188

Structural Determination of an Avian Astrovirus Capsid Core Structural Determination of an Avian Astrovirus Capsid Core R. YORK¹ AND R. DUBOIS¹

¹Univeristy of California Santa Cruz, Santa Cruz, CA

P = Poster Session OP = Oral Presentation Q = Reviewer Choice Award

P-Sat-189

Application of Interfacial Shear Stress to Annulus Fibrosus Cells

A. UPPALA¹, S. HAN¹, AND A. HSIEH¹ ¹University of Maryland College Park, College Park, MD

P-Sat-190

Effect of Chitosan's Biochemical Properties on Antimicrobial Activity A. TABASSUM¹, B. KOPPOLU¹, AND D. ZAHAROFF¹ ¹University of Arkansas, Fayetteville, AR

Device Technologies and Biomedical Robotics

P-Sat-195

An ECG-Embedded Weight Scale for the Measurement of the QTc Interval in Healthy Adult Individuals

X. NIU¹ AND J-P. COUDERC¹ ¹University of Rochester, Rochester, NY

P-Sat-197

Neonatal Temperature Sensor for the Developing World

M. YAMAGAMI¹, E. SILVA¹, H. CHEN¹, E. ALEXANDER¹, K. MAYNARD¹, P. KEAHEY¹, Q. DUBE², AND R. RICHARDS-KORTUM¹ ¹Rice University, Houston, TX, ²Queen Elizabeth Central Hospital, Blantyre, Malawi

P-Sat-198

Firefighter Health Monitoring Using Wearable EKG Sensors with Bioidentification Capability

J. FARMER¹ AND J. YAO¹ ¹East Carolina University, Greenville, NC

P-Sat-199

An Implantable Pneumatic Driver With Non-Invasive Transmural Powering For Cardiac Assist Devices

S. RAZVI^{1,2}, S. ZAMBRANO¹, J. COELLO³, J. CRISCIONE¹, AND M. MORENO¹ ¹Texas A&M University, College Station, TX, ²The University of Texas at Austin, Austin, TX, ³Instituto Tecnológico de Mérida, Yucatán, Mexico

P-Sat-200

Debubbling Rotary Planar Peristaltic Micropump S. RICE¹, R. REISERER¹, D. MARKOV¹, S. SHERROD¹, E. WERNER¹, K. SEALE¹, AND C. MARASCO¹

¹Vanderbilt University, Nashville, TN

P-Sat-201

Development of an Analog Front End for the AD5933 Impedance Analyzer to Make Accurate Bio-Impedance Measurements for a Brain on a Chip Device

S. HALIM¹, O. HOILETT¹, J. KRIBB¹, R. REISERER¹, AND J. WIKSWO¹ ¹Vanderbilt University, Nashville, TN

P-Sat-202

Electronic Platform For Automatic Short Performance Physical Battery (SPPB) Test

Y. BAI¹, N. MARCO¹, W. JIA¹, H. ZHANG², Z-H. MAO¹, J. ZGIBOR¹, L. BURKE¹, S. ALBERT¹, A. NEVMAN¹, AND M. SUN¹
¹University of Pittsburgh, Pittsburgh, PA, ²Beihang University, Beijing, China, People's Republic of

P-Sat-203

Pressure-sensing Pads for Ultrasound Tissue Mechanics Characterization C. CORBETT¹, K. SHOWERS¹, H. SCRUGGS¹, E. KOWAL¹, C. KERR¹, H. CASH¹, M.

HANSCHKE¹, D. DEAN¹, AND D. KWARTOWITZ¹ ¹Clemson University, Clemson, SC

P-Sat-204

A Method for Determining Skull Coupling of an Instrumented Mouthguard Using Stereo Vision

¹Stanford University, Stanford, CA

9:30AM - 1:00PM POSTER SESSION Sat 2014 | OCTOBER 25 | SATURDAY

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

P-Sat-205

Optimizing Fat Delivery Methods in Continuous Enteral Feeding of Expressed Breast Milk to Neonates

K. ABDELRAHMAN^{1,2}, A. HAIR², K. HAWTHORNE², AND S. ABRAMS² ¹University of Pittsburgh, Pittsburgh, PA, ²Baylor College of Medicine, Houston, TX

P-Sat-206

Upper Extremity Frailty Assessment in Trauma Patients Using Wearable Sensor Technology

M. Heusser¹, N. Toosizadeh¹, B. Zangbar-Sabegh¹, J. Mohler¹, B. Joseph¹, and B. Najafi¹

¹University of Arizona Medical Center, Tucson, AZ

P-Sat-207

Finite Element Analysis Comparison of Two Types of Removable Partial Denture Designs

L. PETKU¹, E. MEYER¹, AND J. KNAPP²

¹Lawrence Technological University, Southfield, MI, ²University of Michigan, Ann Arbor, MI

P-Sat-208

An Automated Fast-ELISA System for the Quantitative Detection of Biomarkers $\mathit{InVitro}$

D. MAXIM¹,² AND I. GEORGAKOUDI² ¹Brigham and Women's Hospital, Harvard Medical School, Boston, MA, ²Tufts University, Medford, MA

Drug Delivery

P-Sat-211

Cross-linked Lipid Particles for Delivery of Antiretroviral Combinations to Inhibit HIV-1 Infection

W. LYKINS¹, R. RAMANATHAN¹, Y. JIANG¹, AND K. WOODROW¹ ¹University of Washington, Seattle, WA

P-Sat-212

Targeting Human Epidermal Hyperplasia by Suppressing Human HRAS Through Spherical Nucleic Acid (SNA) Nanoconjugates

S. SRINIVASAN¹, H. MANNAM², Q. SONG², C. MIRKIN², AND A. PALLER² ¹Case Western Reserve University, Cleveland, OH, ²Northwestern University, Chicago, IL

P-Sat-213

Dual Drug Release of Doxorubicin and 2-Methoxyestradiol to Inhibit Cancer Cell Invasion and Proliferation

J. NAM¹, E. RIVERA¹, AND H. VON RECUM¹ ¹Case Western Reserve University, Cleveland, OH

P-Sat-214

Transgene Induction from Cyclodextrin Based Polymers

E. WARD¹, E. RIVERA-DELGADO¹, AND H. VON RECUM¹ ¹Case Western Reserve University, Cleveland, OH

P-Sat-215

Multivalent Presentation of HER2 Epitopes on Filamentous Plant Virus Platform: A Potential Breast Cancer Vaccine

N. DIFRANCO¹, S. SHUKLA¹, U. COMMANDEUR², AND N. STEINMETZ¹ ¹Case Western Reserve University, Cleveland, OH, ²RWTH Aachen University, Aachen, Germany

P-Sat-216

TMV Formulation for Imaging and Targeted Treatment of Thrombosis

G. HSU¹, A. WEN¹, Y. WANG², K. JIANG¹, A. YANG¹, H. GAO², X. YU¹, D. SIMON², AND N. STEINMETZ¹,²

¹Case Western Reserve University, Cleveland, OH, ²Case Cardiovascular Research Institute, Cleveland, OH

P-Sat-217

Estimating the Controlled Release of PRP Components Encapsulated in Biodegradable PEG Hydrogels

S. SHETH¹, E. JAIN¹, S. SELL¹, AND S. ZUSTIAK¹ ¹Saint Louis University, St Louis, MO

P-Sat-218

Synthesis and Characterization of Magnetic Nanoparticles for Drug Delivery to Central Nervous System

L. BRUK¹, N. SNYDER¹, X. CUI¹, Y. ZHAO¹, AND T. IBRAHIM¹ ¹University of Pittsburgh, Pittsburgh, PA

P-Sat-219

Engineering of Liposomal Nanoparticles as a Platform for Advanced Drug Delivery Applications

D. FRANCIS¹, P. KHOLMATOV¹, S. HAYWARD¹, AND S. KIDAMBI¹ ¹University of Nebraska-Lincoln, Lincoln, NE

P-Sat-220

Effect of Nanoparticle Morphology and Surface Modification on Tumor Penetration and Distribution

L. SIMS¹, H. FRIEBOES¹, AND J. STEINBACH¹ ¹University of Louisville, Louisville, KY

P-Sat-221

A Sweet Nano-affair of Carbon Particles with Deoxyribose Nucleic Acid for Gene Therapy

A. OHOKA^{1,2}, S. MISRA^{1,2,3}, AND D. PAN^{1,2,3}
¹University of Illinois at Urbana-Champaign, Champaign, IL, ²Biomedical Research Center and Carle Foundation Hospital, Urbana, IL, ³Beckman Institute, Urbana, IL

P-Sat-222

Effects Of Industrially Processed PLGA Thin Films On Drug Delivery and Material Properties

D. HORNE¹, Y. ZHOU², K. VEDANTHAM², AND T. STEELE² ¹Clemson University, Clemson, SC, ²Nanyang Technological University, Singapore, Singapore

P-Sat-223

Optimization of Parameters Influencing Polyethylene Glycol Microsphere Fabrication Using Electrospraying

K. SCOTT¹, E. JAIN¹, S. ZUSTIAK¹, AND S. SELL¹ ¹Saint Louis University, St. Louis, MO

P-Sat-224

Novel Chitosan-based Hydrogel for Controlled Release of Anti-tumor Cytokines

E. LOWRY¹, C. WALLACE¹, B. KOPPOLU¹, S. SMITH¹, AND D. ZAHAROFF¹ ¹University of Arkansas, Fayetteville, AR

P-Sat-225

A Novel Approach For Root Canal Treatment: Encapsulation of Oral Antibiotics For Drug Delivery Into Dentin Tubules

R. HASEEB¹, M. LAU¹, L. RODRIGUEZ¹, M. STEFAN¹, K. PALMER¹, F. MONTAGNER², AND D. RODRIGUES¹

¹University of Texas at Dallas, Richardson, TX, ²Federal University of Rio Grande do Sul, Porto Alegre, Brazil

P-Sat-226

Role of Membrane Rafts in Nanoparticle Uptake by Endothelial Cells M. BLAND¹, S. SON², AND P. BUTLER²

¹University of Alabama, Birmingham, AL, ²Penn State University, University Park, PA

P-Sat-227

The Characterization of PEG-based Hydrogels for Application in Ocular Drug Delivery

E. CANNING¹, E. DOSMAR², AND J. KANG-MIELER² ¹Saint Louis University, St. Louis, MO, ²Illinois Institute of Technology, Chicago, IL

P-Sat-228

Controlled Self-Assembly and Dynamics of Nanoscale Bacteria-Enabled Autonomous Drug Delivery Systems (NanoBEADS)

C. DAMICO¹, M. TRAORE^{1,2}, AND B. BEHKAM¹

¹Virginia Polytechnic and State University, Blacksburg, VA, ²Washington University, St. Louis, MO

SATURDAY | OCTOBER 25 | 2014

POSTER SESSION Sat 9:30AM – 1:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

P-Sat-229

Regional Nanoparticle Delivery in the Central Nervous System as a Function of Route of Administration

E. CHUNG¹,², A. PRAKAPENKA¹,², D. DIPERNA¹, R. MCCALL¹, AND R. SIRIANNI¹,² ¹Barrow Neurological Institute, Phoenix, AZ, ²Arizona State University, Tempe, AZ

Nano to Micro Technologies

P-Sat-239

Experimental Optical Properties Of Quadruplex DNA

K. KRAWIEC¹, K. LEE¹, D. DRYDEN¹, Y. MA¹, R. FRENCH¹, N. STEINMETZ¹, L. POUDEL², W-Y. CHING², R. PODGORNIK³, AND V. PARSEGIAN³ ¹Case Western Reserve University, Cleveland, OH, ²University of Missouri-Kansas City, Kansas City, MO, ³University of Massachusetts, Amherst, MA

P-Sat-240

Dual-gel Construct with Dynamic Control of Soluble Chemotactic Cues for the Study of Neural Cells

O. KUZURA^{1,2}, C. PETERSEN^{1,3}, V. RENGARAJAN¹, AND R. PEREZ-CASTILLEJOS¹ ¹New Jersey Institute of Technology, Newark, NJ, ²Grinnell College, Grinnell, IA, ³Case Western University, Cleveland, OH

P-Sat-241

Application of Switchable Silicon Nanomembranes for Controlled Therapeutic Release

S. WAYSON¹, G. MADEJSKI¹, K. SMITH¹, AND J. MCGRATH¹ ¹University of Rochester, Rochester, NY

P-Sat-242

High Yielding Conversion of Modified Tobacco Mosaic Virus to Functional Spherical Nanoparticles Using a Mesofluidic Device A. VanMeter¹, M. Bruckman¹, and N. Steinmetz¹ 'Case Western Reserve University, Cleveland, OH

P-Sat-243

Fabrication of a Porous Matrix Integrated into Microfludic Devices for HIV Capture

K. KUNDROD¹, K. SURAWATHANAWISES¹, AND X. CHENG¹ ¹Lehigh University, Bethlehem, PA

P-Sat-244

The Effect of Chondroitin Sulfate Proteoglycan Surface Gradient Profile on Neurite Growth

A. GELDERT¹,²

¹National Institutes of Health, Bethesda, MD, ²University of Virginia, Charlottesville, VA

P-Sat-245

Paper-Based Capture of Neisseria gonorrheae for Point-of-Care Diagnostics C. ELLENSON¹, J. LINNES¹, AND C. KLAPPERICH¹ ¹Boston University, Boston, MA

Boston University, Boston, IVIA

P-Sat-246

Microfluidic Chromatin Immunoprecipitation in Nanoliter-scale Droplets A. ORESKOVIC¹, R. GRAYBILL¹, M. MODAK¹, Y. XU¹, S. DOONAN¹, J. TICE¹, T. ORDOG²,

AND R. BAILEY¹ ¹University of Illinois at Urbana-Champaign, Urbana, IL, ²Mayo Clinic, Rochester, MN

P-Sat-247

A Chemical Patterned Paper-Based Microfluidic Device For Biochemical Detections

R. HOWSE¹, M. MUSALLAM¹, B. DEMESSIE² AND J. KIM¹ ¹Texas Tech University, Lubbock, TX, ²William Mason High School, Mason, OH

P-Sat-248

The Development of an Epidermal Electronic Heating Device for Perioperative Warming

A. STIER¹, K. DILLER¹, AND N. LU¹ ¹The University of Texas at Austin, Austin, TX

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

P-Sat-249

Cellular Deformation Via Varying Geometric Channels And Dynamic Flow Resistance

J. VAVRA¹, J. ZHENG¹, AND J. ZAHN¹ ¹Rutgers University, Piscataway, NJ

P-Sat-250

Optical Imaging of Biomolecular Tension with Sub-100 nm Resolution R. PARK¹, Y. LIU², AND K. SALAITA² ¹Brown University, Providence, RI, ²Emory University, Atlanta, GA

P-Sat-25I

Testing the Effect of Red Blood Cell Shape on Perfusion of a Microvascular Network

P. POURREAU¹, N. PIETY¹, AND S. SHEVKOPLYAS¹ ¹University of Houston, Houston, TX

P-Sat-252

The Effects of Nanoparticle Ingestion on Glucose Transport and Uptake in the Gut Microbiome

G. SHULL¹, J. RICHTER¹, J. FOUNTAIN¹, G. MAHLER¹, AND A. FIUMERA¹ ¹Binghamton University, Binghamton, NY

P-Sat-253

Extending the Spectral Range of Inkjet-Fabricated Paper-Based Plasmonic Enhancing Sensors with Silver Staining

C. LANE¹ AND I. WHITE¹ ¹University of Maryland, College Park, MD

P-Sat-254

Development of a Salivary Cortisol Sensor Using Surface Plasmon Resonance

H. SCHMIDT¹, T. LONG¹, S. PAUTLER¹, A. WOOD¹, S. GRANT¹, AND S. GANGOPADHYAY¹ ¹University of Missouri, Columbia, MO

P-Sat-255

On-chip Oxygen Gradient Stimulation of Pancreatic Beta Cells F. CHOUGHARI¹ AND M. MAHMOUD¹

¹University of Michigan-Dearborn, Dearborn, MI

P-Sat-256

Detecting Pesticides with Antibody Conjugated CPMV Nanoparticles J. KIM¹, J. WHITNEY¹, AND N. STEINMETZ²

¹Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, Cleveland, OH, ²Department of Biomedical Engineering | Radiology | Materials Science and Engineering | Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, Cleveland, OH

P-Sat-257

Complement-mediated Cell Death of Leukemia and E. coli Cells with Fc Functionalized Beads

M. DEVLIN¹, B. GIZAW¹, A. KHAJA¹, A. MYLARAPU¹, C. PATONJA¹, P. PACHECO¹, AND T. SULCHEK¹

¹Georgia Institute of Technology, Atlanta, GA

P-Sat-258

Reference Sensors using Poly-acrylonitrile (PAN) Nanobeads for Improved Accuracy in Implantable Optical Sensing Devices

M. SCHECHINGER¹, R. UNRUH¹, A. NAGARAJA¹, J. WEAVER¹, AND M. MCSHANE¹ ¹Texas A&M, College Station, TX

P-Sat-259

In Vitro Turnover of Endothelial Cells

A. WNOROWSKI¹, J. DESTEFANO¹, A. WONG¹, AND P. SEARSON¹ ¹Johns Hopkins University, Baltimore, MD

P-Sat-260

Preasure Measurement In PDMS Microchannels Using The Ideal Gas Law D. ${\sf RENNER}^1$ and X. ${\sf LUO}^1$

¹The Catholic University of America, Washington, DC

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

Neural Engineering

P-Sat-26I

Two-Dimensional Movement Control using a Non-Invasive, Low-Cost, Brain-Computer Interface

J. DEVINCE¹ AND A. RITTER¹ ¹Stevens Institute of Technology, Hoboken, NJ

P-Sat-262

The Role of Blood-Derived Macrophages and Resident Microglia in the Neuroinflammatory Response to Implanted Intracortical Microelectrodes

S. SUNIL^{1,2}, M. RAVIKUMAR^{1,2}, J. BLACK¹, D. BARKAUSKAS¹, A. HAUNG¹, R. MILLER¹, S. SELKIRK^{1,2}, AND J. CAPADONA^{1,2}

¹Case Western Reserve University, Cleveland, OH, ²Louis Stokes Cleveland Veterans Affairs Medical Centre, Cleveland, OH

P-Sat-263

Volumetric Differences of the Amygdala, Hippocampus and Caudate Nucleus in Autism Spectrum Disorder

M. WEITEKAMP¹, V. DELBENE¹, S. MOLHOLM¹, L. ROSS¹, AND J. FOXE¹ ¹Albert Einstein College of Medicine, Bronx, NY

P-Sat-265

Transient Spectral Dynamics Correlates with Blood Pressure Excursions During MoyaMoya Neurosurgery

N. SEO¹, S. RYU², R. MURPHY³, J. LEONARD⁴, AND S. CHING²,³

¹University of Rochester, Rochester, NY, ²Washington University in St. Louis, St. Louis, MO, ³Washington University School of Medicine in St. Louis, St. Louis, MO, ⁴Nationwide Children's Hospital, Columbus, OH

P-Sat-266

The Ladder Rung Walking Task as a Technique to Quantify Traumatic Cerebellar Injury in Rats

J. BINION¹,², S. KELLER¹,³, G. ORDEK¹, AND M. SAHIN¹ ¹New Jersey Institute of Technology, Newark, NJ, ²Grove City College, Grove City, PA,

'New Jersey Institute of Technology, Newark, NJ, "Grove City College, Grove City, PA, ³Vanderbilt University, Nashville, TN

P-Sat-267

Model of Blast Traumatic Brain Injury with *In Vitro* Dorsal Root Ganglia in Shock Tube

T. LOUK^{1,2}, M. SISK^{1,3}, M. SKOTAK¹, M. KURIAKOSE¹, A. ADAMS¹, N. CHANDRA¹, AND B. PFISTER¹

¹New Jersey Institute of Technology, Newark, NJ, ²Wartburg College, Waverly, IA, ³George Mason University, Fairfax, VA

P-Sat-268

Determining the Role of IGF-I in Post-Traumatic Epileptogenesis

L. BOLLER¹, K. WALTERS¹, C. PIMENTEL¹, Y. SONG¹, AND Y. BERDICHEVSKY¹ ¹Lehigh University, Bethlehem, PA

P-Sat-269

The Effects of Binaural Stimulation on Brainwave Entrainment

J. PARKS¹, M. HARRING¹, C. BEAUCHENE¹, AND A. LEONESSA¹ ¹Virginia Polytechnic Institute and State University, Blacksburg, VA

P-Sat-270

Local Field Potentials Indicate Object Presence During Human Neuroprosthetic Control

D. CROWDER^{1,2,3}, J. DOWNEY^{2,4}, S. FOLDES^{2,4}, M. BONINGER^{2,3}, AND J. COLLINGER^{2,3,5} ¹The University of Akron, Akron, OH, ²University of Pittsburgh, Pittsburgh, PA, ³Human Engineering Research Laboratories, Pittsburgh, PA, ⁴Center for the Neural Basis of Cognition, Pittsburgh, PA, ⁶Center for Neural Basis of Cognition, Pittsburgh, PA

P-Sat-271

Diffusion Tensor Imaging Segmentation and Tractography of Infantile Nystagmus Syndrome

A. ZAMPINI¹ AND N. KASHOU¹ ¹Wright State University, Dayton, OH

P-Sat-272

Dexamethasone Attenuates Immediate Microglial Responses to Brain Microdialysis *In Vivo* as Revealed by Two-Photon Microscopy G. BRUNETTE¹, T. KOZAI¹, A. JAQUINS-GERSTL¹, A. VAZQUEZ¹, A. MICHAEL¹, AND X.

¹University of Pittsburgh, Pittsburgh, PA

P-Sat-273

CUI1

Development of Superoxide Dismutase Mimetic Surfaces to Reduce Accumulation of Reactive Oxygen Species for Neural Interfacing Applications

N. GITOMER¹, K. POTTER-BAKER¹, J. NGUYEN¹, K. KOVACH¹, T. SRAIL¹, W. STEWART¹, J SKOUSEN¹, AND J. CAPADONA¹

¹Case Western Reserve University, Cleveland, OH

P-Sat-274

A Wireless, Real-Time Embedded Hand Gesture Recognition System For Myoelectric Control

J. SACKS¹, X. LIU², M. ZHANG², AND J. VAN DER SPIEGEL²

¹The University of Texas at Austin, Austin, TX, ²University of Pennsylvania, Philadelphia, PA

P-Sat-275

Inhibition Of Cluster Of Differentiation 14 (CD14) Attenuates Neuroinflammation Around Intracortical Microelectrode Interface

W. TOMASZEWSKI', M. RAVIKUMAR', S. SUNIL', A. BURKE', D. HAGEMAN', AND J. CAPADONA'

¹Case Western Reserve University, Cleveland, OH

P-Sat-276

Diffusion Tractography as a Tool for Subject-Specific Computational Models of DBS in the MLR

K. BRINTZ¹, L. ZITELLA¹, J. XIAO¹, Y. DUCHIN¹, G. ADRIANY¹, E. YACOUB¹, N. HAREL¹, AND M. JOHNSON¹

¹University of Minnesota, Minneapolis, MN

P-Sat-278

Novel Fractal Electrode Geometries for Efficient Deep Brain Stimulation of Neural Tissue

N. IYENGAR¹, A. DEMARIA¹, AND X. WEI¹ ¹The College of New Jersey, Ewing, NJ

P-Sat-279

In Vitro Model For Mimicking Concussion Impacts on Sterile Cell Culture N. NIBRAS¹ AND S. MADIHALLY¹

¹Oklahoma State University, Stillwater, OK

P-Sat-280

Histological and Biodistribution Assessment of Daily Administration of Resveratrol:Application for Intracortical Microelectrodes

W. STEWART', K. POTTER-BAKER^1, 2, W. MEADOR^1, W. TOMASZEWSKI^1, M. GITOMER ^1, N. ZIATS^1, AND J. CAPADONA^1, 2

 $^1 \rm Case$ Western Reserve University, Cleveland, OH, $^2 \rm L.$ Stokes Cleveland VA Medical Center, Cleveland, OH

P-Sat-281

Mechanically-compliant Intracortical Implants Reduce the Neuroinflammatory Response

J. NGUYEN^1,2, D. PARK^1, J. SKOUSEN², A. HESS-DUNNING², D. TYLER¹,², S. ROWAN¹,³, C. WEDER³,4, AND J. CAPADONA¹,²

¹Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, ²Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, ³Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, ⁴Adolphe Merkle Institute, University of Fribourg, Marly, Switzerland

P-Sat-282

See page 194 for Poster floor plan

Complexing Blood Proteins and Resveratrol to Increase Reactive Oxygen Species Scavenging for Intracortical Electrode Use

T. SRAIL¹, E. EREIFEJ¹, AND K. POTTER-BAKER¹

¹Case Western Reserve University, Cleveland, OH

POSTER SESSION Sat 9:30AM – 1:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

New Frontiers and Special Topics

P-Sat-294

Synthesis and Characterization of a Citrate-based Hydrogel for Injection Assisted Endoscopic Mucosal Resection

S. VILCHEZ MERCEDES¹, C. CHU¹, R. TRAN¹, AND J. YANG¹ ¹The Pennsylvania State University, State College, PA

P-Sat-295

The Interaction Between Cytochrome B5 and Cytochrome B5 Reductase-I in Electron Transport

E. KWAN¹,², W. BAUER², AND M. MALKOWSKI² ¹University of Rochester, Rochester, NY, ²Hauptman Woodward Medical Research Institute, Buffalo, NY

P-Sat-296

Detecting Electrophysiologic Abnormalities In Chronic Insomnia Using Detrended Fluctuation Analysis

A. CUGINI¹, D. BUYSSE², M. HALL², D. CASHMERE², AND F. HE² ¹University of Pittsburgh, Pittsburgh, PA, ²Clinical and Translational Science Institute, Pittsburgh, PA

P-Sat-297

Development Of X-ray Irradiation Port For Biological Material At CUEBIT W. HEFFRON¹, R. WILSON², D. MEDLIN², A. GALL², M. RUSIN², D. DEAN², AND E. TAKACS²

¹Wofford College, Spartanbug, SC, ²Clemson University, Clemson, SC

P-Sat-298

Bioproduction Of Ethanol Via Co-culture of Ralstonia eutropha and Saccharomyces cerevisiae

S. KAKARLA¹, A. KEHAIL¹, M. SILBY¹, V. BUCCI¹, AND C. BRIGHAM¹ ¹University of Massachusetts Dartmouth, North Dartmouth, MA

P-Sat-299

Reagent Stability for Ultra-low-cost Sickle Cell Disease Assay D. LEZZAR¹, N. PIETY¹, AND S. SHEVKOPLYAS¹ 'University of Houston, Houston, TX

P-Sat-300

Design of an Inexpensive Recording Device To Overcome Obstacles Resulting From Low Literacy Rates In Developing Countries C. FAYAL¹ AND S. GRAF²

¹University of Connecticut, Stonington, CT, ²University of Connecticut, Storrs, CT

Orthopaedic and Rehabilitation Engineering

P-Sat-301

Interaction Between Mirror Visual Feedback and Goal-Directed Task Shows Increased Cortical Excitability in Untrained Hemisphere; Possible Stroke Rehabilitation Applications

N. MUBIN^{1,2}, A. ALBANESE^{1,3}, M. YAROSSI^{1,4}, E. TUNIK⁴, AND S. ADAMOVICH¹ ¹New Jersey Institute of Technology, Newark, NJ, ²The College of New Jersey, Ewing Township, NJ, ³University of Nevada, Reno, NV, ⁴Rutgers Biomedical and Health Sciences, Newark, NJ

P-Sat-302

The Role Of Scleraxis In Bone Remodeling and Callus Formation During Fracture Healing

B. Havelka¹, J. MCKENZIE², E. BUETTMANN², A. ABRAHAM², M. SILVa², M. GARDNER², AND M. KILLIAN²

¹Saint Louis University, St. Louis, MO, ²Washington University School of Medicine, St. Louis, MO

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

P-Sat-303

Biomechanical Analysis of Internal Fixation Methods for Distal Interphalangeal Joint Arthrodesis S. RIGOT^{1,2}, R. DIAZ-GARCIA², R. DEBSKI², AND J. FOWLER²

¹University of Rochester, Rochester, NY, ²University of Pittsburgh, Pittsburgh, PA

P-Sat-304

Modeling Finger Pose and Position in a Cable-Actuated Soft Exomusculate Robotic Glove For Stroke Rehabilitation M. HUSZAGH¹, C. NYCZ², AND G. FISCHER²

¹Vanderbilt University, Nashville, TN, ²Worcester Polytechnic Institute, Worcester, MA

P-Sat-305

Effects of Exercise and Reduced Collagen Crosslinking on Bone Geometry and Microarchitecture in Mice

T. LAINE¹, M. HAMMOND², AND J. WALLACE¹,² ¹Indiana University Purdue University Indianapolis, Indianapolis, IN, ²Purdue University, Indianapolis, IN

P-Sat-306

Sleeve Gastrectomy on Obese Rats Impairs Trabecular Bone in Quantity and Ouality

J. TAN¹, J. ABRAHAM¹, G. PAGNOTTI¹, V. PATEL¹, A. YANG¹, M. ALTIERI¹, A. PRYOR¹, D. TELEM¹, C. RUBIN¹, AND M. CHAN¹ 'Stony Brook University. Stony Brook. NY

P-Sat-307

Utilization Of Peak Extraction Force Of Kirschner (K-) Wire And Reference Probe Indentation Parameters As Predictors Of Bone Mineral Density (BMD)

S. DENNING¹, A. DINCER¹, R. PISANO¹, T. BOWEN², D. EBENSTEIN¹, AND E. KENNEDY¹ ¹Bucknell University, Lewisburg, PA, ²Geisinger Health System, Danville, PA

P-Sat-308

A Mechanically Induced Model of Pain and Structural Changes in the Temporomandiular Joint in the Rat

T. ZHOU¹, S. KARTHA¹, E. GRANQUIST¹, AND B. WINKELSTEIN¹ ¹University of Pennsylvania, Philadelphia, PA

P-Sat-309

Development of a Device To Non-Invasively Induce Osteoarthritis Of The Elbow In An Animal Model

L. KAHAN¹ AND S. LAKE¹ ¹Washington University in St. Louis, St. Louis, MO

P-Sat-310

First Steps Towards the Development Of An Artificial Vocal Fold Prosthesis M. SANDOE¹, G. BURKS¹, AND A. LEONESSA¹ 'Virginia Tech, Blacksburg, VA

P-Sat-311

Comparing Cyclic Tensile Properties of Porcine Meniscus when Hydrated in PBS versus Synovial Fluid

C. KLINE¹, E. LAKES¹, P. MCFETRIDGE¹, AND K. ALLEN¹ ¹University of Florida, Gainesville, FL

P-Sat-312

Sleeve Gastrectomy on Obese Rats Reduces the Quantity of Cortical Bone

at the Mid Diaphysis J. Abraham¹, J. Tang¹, G. Pagnotti¹, V. Patel¹, A. Yang¹, M. Altieri¹, A. Pryor¹, D. Telem¹, C. Rubin¹, and E. Chan¹

¹Stony Brook University, Stony Brook, NY

P-Sat-313

Quantitative Assessment of Gait and Balance for Determining Alignment Parameters for Prosthetic Fitting

J. LOAYZA¹, A. ARRINDA¹, A. KONJENGBAM², A. ALFRED¹, A. THOTA¹, AND R. JUNG¹ ¹Florida International University, Miami, FL, ²Wakefield Girls High School, Wakefield, United Kingdom

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

P-Sat-314

Older Adults Learn Equally From Large And Small Errors During Split-Belt Locomotor Adaptation

H. HARKER¹, C. SOMBRIC¹, P. SPARTO¹, AND G. TORRES-OVIEDO¹ ¹University of Pittsburgh, Pittsburgh, PA

P-Sat-315

Alignment of Hinged Dynamic External Fixators Using the Elbow's Flexion-Extension Axis of Rotation

F. UNUKPO¹, R. BAKER¹, C. KOPFLER¹, C. LOBRANO², D. O'NEIL¹, AND A. HOLLISTER² ¹Louisiana Tech University, Ruston, LA, ²Louisiana State University Health Sciences Center, Shreveport, LA

P-Sat-316

Effect of Ankle Immobilization on Able-Bodied Gait to Model Bilateral Transtibial Amputee Gait

A. NEPOMUCENO¹, M. MAJOR¹,², R. STINE², AND S. GARD¹,² ¹Northwestern University Prosthetics-Orthotics Center, Chicago, IL, ²Jesse Brown VA Medical Center, Chicago, IL

P-Sat-317

Altered Trabecular Bone In An Animal Model Of Post-Traumatic Elbow Stiffness

M. LIU¹, R. CASTILE¹, L. GALATZ¹, AND S. LAKE¹ ¹Washington University in St. Louis, St. Louis, MO

P-Sat-318

Use of Natural Crosslinkers to Stabilize Decellularized Cartilage

A. PINHEIRO^{1,2}, A. GOTTIPATI², AND S. ELDER² ¹The University of Akron, Akron, OH, ²Mississippi State University, Mississippi State, MS

P-Sat-319

Development of Silver Doped Tricalcium Phosphate Thin Films for the Coating of Magnesium Implants

T. MOSES¹, G. HARRIS², E. CRAVEN², N. YAMOAH², R. KOTOKA², S. IBRAHIM², S. AJINOLA², AND D. KUMAR²

 $^{\rm t}Clemson$ University, Clemson, SC, $^{\rm 2}North$ Carolina Agricultural and Technical State University, Greensboro, NC

Respiratory Bioengineering

P-Sat-322

Darcy Permeability Characterization of PMP Hollow Fiber Membrane Bundles

B. D'ALOISO¹, S. MADHANI¹, B. FRANKOWSKI¹, AND W. FEDERSPIEL¹,² ¹Medical Devices Lab, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, ²University of Pittsburgh, Pittsburgh, PA

P-Sat-323

Design of Collapsible Tubing System for Simulated Airway Reopening

C. FAULMAN¹, E. YAMAGUCHI¹, AND D. GAVER¹ ¹Tulane University, New Orleans, LA

P-Sat-324

Computational and Experimental Analysis of Mucus Adhesive Properties during Otitis Media

J. MCGUIRE¹, J. MALIK², N. HIGUITA-CASTRO², AND S. GHADIALI² ¹Virginia Tech, Blacksburg, VA, ²The Ohio State University, Columbus, OH

P-Sat-325

The Use Of Exhaled Breath Condensate To Assess Surfactant Dysfunction From Chlorine Exposure

C. EDWARDS¹, E. SVENDSEN¹, AND D. GAVER¹ ¹Tulane University, New Orleans, LA

P-Sat-326

A Microfluidic Model of Pulmonary Airway Reopening in Asymmetric Bifurcating Networks

L. NOLAN¹, E. YAMAGUCHI¹, AND D. GAVER¹ ¹Tulane University, New Orleans, LA

P-Sat-327

Mechanical Stretch and Aging of Alveolar Epithelial Cells induces Endoplasmic Reticulum Stress and Pro-inflammatory Gene Expression J. NKWOCHA¹, J. HERBERT¹, A. REYNOLDS¹, AND R. HEISE¹ 'Virginia Commonwealth University, Richmond, VA

P-Sat-328

Assessment of Ventilatory Function and Respiratory Muscle Electromyograms in Rodents for Design of an Adaptive Ventilatory Neuromuscular Pacing Device B. DAVIS¹, R. SIU¹, B. HILLEN¹, C. VALE¹, AND R. JUNG¹

¹Florida International University, Miami, FL

Track: Undergraduate Research

Stem Cell Engineering

P-Sat-337

Redirecting Intestinal Stem Cell Fate Using Small Molecules K. BENJAMIN¹, S. MOHAMMADI¹, AND E. WIELLETTE¹

¹Novartis Institutes for Biomedical Research, Cambridge, MA

P-Sat-338

Combined Role of Basic Fibroblast Growth Factor and $\ensuremath{\mathsf{p}}\xspace$ H on Glioblastoma Stem Cell Expansion

E. HALEY¹, S. TILSON¹, D. DOZIER¹, AND Y. KIM¹ ¹The University of Alabama, Tuscaloosa, AL

P-Sat-339

The Effect of Y-27632 on the Propagation of Glioblastoma Stem Cells

S. TILSON¹, E. HALEY¹, D. DOZIER¹, G. YANCEY GILLESPIE², AND Y. KIM¹ ¹University of Alabama, Tuscaloosa, AL, ²University of Alabama at Birmingham, Birmingham, AL

P-Sat-340

Improving Transfection Efficiency of Nucleofection Technique by Manipulating Cell Concentration

M. BLOOM¹, A. MELLOTT¹, M. DETAMORE¹, AND H. SHINOGLE¹ ¹University of Kansas, Lawrence, KS

P-Sat-341

The Role of Hydrocortisone in the Maturation of Pancreatic Endocrine Beta-like Cells Derived from Murine Embryonic Stem Cells *In Vitro* J. CHOE¹ AND H. KU²

¹University of California, Berkeley, Berkeley, CA, ²City of Hope, Duarte, CA

P-Sat-342

Adipose-Derived Stem Cells From Diabetic Patients Display A Pro-Thrombogenic Phenotype

D. PEZZONE^{1,2}, J. KRAWIEC^{1,2}, J. WEINBAUM^{1,2}, J. RUBIN^{1,2}, AND D. VORP^{1,2} ¹University of Pittsburgh, Pittsburgh, PA, ²McGowan Institute for Regenerative Medicine, Pittsburgh, PA

P-Sat-343

Investigating the Effects of Stromal Cell - Neuronal Cell Co-culture on Neuronal Maturity and Neuronal Viability Under Oxidative Stress K. SMITH¹, P. MOGHE², N. BENNETT², AND N. FRANCIS²

¹University of Connecticut, Storrs, CT, ²Rutgers, The State University of New Jersey, Piscataway, NJ

P-Sat-344

Optimization Of Polyethyleneimine Coated Gold Nanorods For Use In Caspase-3-siRNA Knockdown Of Adipose-Derived Stem Cells B. HENSON¹, D. SANTIESTEBAN¹, L. SUGGS¹, AND S. EMELIANOV¹ ¹The University of Texas at Austin, Austin, TX

P-Sat-345

Cytoskeletal Remodeling due to Applied Shear Stress in Differentiating Pluripotent Stem Cells

J. GUIDRY¹, R. WOLFE¹, AND T. AHSAN¹ ¹Tulane University, New Orleans, LA

POSTER SESSION Sat 9:30AM - 1:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

P-Sat-346

Human Mesenchymal Stem Cell Response to a Patterned and Electrostimulated Monolayer of Graphene B. FANG

¹Vanderbilt University, Nashville, TN

P-Sat-347

Site Directed Differentiation of Using a Fibronectin-VEGF Matrix Blend N. WHITE¹, J. ZAMORA¹, R. BURTZLAFF¹, D. GLASER¹, AND K. MCCLOSKEY¹ ¹University of California, Merced, Merced, CA

Tissue Engineering

P-Sat-349

Sustained Protein Release from Tissue Engineering Scaffolds for Bone Regeneration Using Layer-by-Layer Coating M. LEE1, M. KEENEY1, X. JIANG1, AND F. YANG1

¹Stanford University, Stanford, CA

P-Sat-350

Enhanced Human Bone Marrow Mesenchymal Stem Cell Behavior on Novel 3D Printed Osteochondral Nanocomposite Scaffolds R. PATEL¹, N. CASTRO¹, AND L. ZHANG¹ ¹The George Washington University, Washington, DC

P-Sat-351

Enhancing Bone Regeneration by using Osteoinductive Microspheres C. DODSON¹, C. HAASE¹, R. KAUNAS¹, AND C. GREGORY² ¹Texas A&M University, College Station, TX, ²Texas A&M Health Science Center, Temple, TX

P-Sat-352

eta -Catenin Signaling Leading to Cell Maintenance or Differentiation in **Response to Electrospun Fibers**

R. NAGURNEY¹ AND J. BROWN¹ ¹The Pennsylvania State University, State College, PA

P-Sat-353

Mechanical Characterization Of Extracellular Matrix Hydrogels For Peripheral Nerve Reconstruction D. SRINIVASACHAR¹, T. PREST¹, AND B. BROWN¹

¹University of Pittsburgh, Pittsburgh, PA

P-Sat-354

Adipose Stem Cell Suspension in Keratin Hydrogel for Nervous Tissue Regeneration

L. MARRA¹, D. MINTEER¹, AND K. MARRA¹,² ¹University of Pittsburgh, Pittsburgh, PA, ²McGowan Institute for Regenerative Medicine, Pittsburgh, PA

P-Sat-355

Single Walled Carbon Nanohorns Modulate Extracellular Matrix Response in Tendons and Ligaments

J. JACKSON¹, E. EKWUEME², A. PEKKANEN³, P. BROLINSON⁴, M. RYLANDER³, AND J. FREEMAN²

¹Rensselaer Polytechnic Institute, Troy, NY, ²Rutgers Univeristy, Piscataway, NJ, ³Virginia Tech, Blacksburg, VA, ⁴Edward Via Virginia College of Osteopathic Medicine, Blacksburg, VA

P-Sat-356

Design of a Mold System for 3D Self-Assembly of Skeletal Muscle In Vitro M. MANCUSO¹, J. FORTE², AND R. PAGE²

¹Union College, Schenectady, NY, ²Worcester Polytechnic Institute, Worcester, MA

P-Sat-357

Development of Carbon Nanotube Hydrogel Composites

D. VASILEVA¹, K. SHAH¹, AND S. ZUSTIAK¹ ¹Saint Louis University, St Louis, MO

P-Sat-358

Quantifying Cell Aggregation in 3D Smooth Muscle Cell Tissue Rings C. NUNEZ¹, K. LEVI², AND M. ROLLE²

¹University of Rhode Island, Kingston, RI, ²Worcester Polytechnic Institute, Worcester, MA

P-Sat-359

Development of a Tendon Graft for Rotator Cuff Repair Using the Human Amniotic Membrane

J. LIU¹, M. MOUCHIROUD¹, J. ARRIZABALAGA¹, AND M. NOLLERT¹ ¹University of Oklahoma, Norman, OK

P-Sat-360

Cell Surface Engineering of Embryonic Stem Cells with Modular Biomaterial Chemistries R. Yada¹, N. Bansal¹, and G. Underhill¹

¹University of Illinois at Urbana-Champaign, Champaign, IL

P-Sat-361

Development of Nerve Guidance Conduit for Peripheral Nerve Regeneration from Urinary Bladder Matrix C. LOVELAND¹,², B. YOUNG¹, C. VALMIKINATHAN¹, AND T. GILBERT¹

¹ACell, Inc., Columbia, MD, ²Johns Hopkins University, Baltimore, MD

P-Sat-362

Oxygen Sensing Microparticles For Use In Tissue Engineering Scaffolds N. VERA-GONZALEZ¹, N. VIRDONE¹, B. NSIAH¹, AND J. WEST¹ ¹Duke University, Durham, NC

P-Sat-363

Influence of the Elastic Modulus of Aligned Electrospun Fibers on Mesenchymal Stem Cell Behavior in Collagen Gels N. BUTLER-ABISRROR¹, P. THAYER², AND A. GOLDSTEIN²

¹Virginia Polytechnic Institute and State University, Richmond, VA, ²Virginia Polytechnic Institute and State University, Blacksburg, VA

P-Sat-364

Creation of a Functional Mitral Regurgitation Reversal Model in a Physiological Flow Loop Bioreactor

S. KIM¹, P. CONNELL¹, M. JACKSON², S. LITTLE ², AND J. GRANDE-ALLEN¹ ¹Rice University, Houston, TX, ²The Methodist Hospital, Houston, TX

P-Sat-365

Transcriptional Activator TAZ Increases Fibroblast ECM Deposition in the Context of Pulmonary Fibrosis

L. STOPFER^{1,2}, A. JORGENSON¹, D. SICARD¹, AND D. TSCHUMPERLIN¹

¹Mayo Graduate School, Rochester, MN, ²University of Wisconsin Madison, Madison, WI

P-Sat-366

Precise Triaxial Deposition of Near Field Electrospun Nanofibers for the Fabrication of Tissue Scaffolds J. DOVER¹ AND J. BROWN¹

¹The Pennsylvania State University, University Park, PA

P-Sat-367

Characterization Of Highly Aligned Collagen Sponge-Like Scaffolds For Nerve Tissue Engineering

M. GROTA¹, C. LOWE², AND D. SHREIBER²

¹University of Massachusetts Dartmouth, New Bedford, MA, ²Rutgers The State University of New Jersey, New Brunswick, NJ

P-Sat-368

Prevascularization of Natural Extracellular Matrix Scaffold

M. TAHTINEN¹, L. ZHANG¹, AND F. ZHAO¹ ¹Michigan Technological University, Houghton, MI

P-Sat-369

Bell-shaped Dose Response Of Sodium Pyruvate On Properties Of Tissue Engineered Cartilage

S. BANSAL¹, E. ESTELL¹, G. ATESHIAN¹, AND C. HUNG¹ ¹Columbia University, New York, NY

P = Poster Session **OP** = Oral Presentation = Reviewer Choice Award

9:30AM – 1:00PM POSTER SESSION Sat 2014 | OCTOBER 25 | SATURDAY

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

P-Sat-370

The Effect Of Interleukin $\,\beta\,$ On VLDL Secretion In Steatotic Hepatocytes During Defatting

A. CHEN-LIAW¹, G. YARMUSH², AND F. BERTHIAUME² ¹University of Scranton, Scranton, PA, ²Rutgers, The State University of New Jersey, Piscataway, NJ

P-Sat-371

Extraction of Platelet-Rich Plasma Derived Lipids from Electrospun Structures for Wound Healing

K. POLITO¹ AND S. SELL¹ ¹Saint Louis University, St. Louis, MO

P-Sat-372

Investigating the Response of Fibroblasts to Microgravity: an *In Vitro* Platform to Study Wound Healing

S. BRADY¹, L. STAPLETON², E. EVANS¹, AND D. HOFFMAN-KIM¹ ¹Brown University, Providence, RI, ²University of New Mexico, Albuquerque, NM

P-Sat-373

Preventing Articular Cartilage Calcification by the Controlled Release of Dorsomorphin

P. BIANCON1¹,², R. GOTTARDI^{1,3,4,5,6}, V. ULICI^{1,4}, S. LITTLE^{1,2,7}, AND R. TUAN^{1,3,4} ¹University of Pittsburgh, Pittsburgh, PA, ²Department of Bioengineering, Pittsburgh, PA, ³McGowan Institute for Regenerative Medicine, Pittsburgh, PA, ⁴Orthopedic Surgery, Pittsburgh, PA, ⁵Ri.Med Foundation, Palermo, Italy, ⁶Department of Mechanical Engineering, Pittsburgh, PA, ⁷Department of Chemical Engineering, Pittsburgh, PA

P-Sat-374

Peptide linkage of Poly(caprolactone)-Chitosan Blend Scaffolds

M. Sanchez¹, D. Ramos^{1,2}, C. Laurencin^{1,2,3}, and S. Kumbar^{1,2,3}

¹University of Connecticut, Storrs, CT, ²Institute For Regenerative Engineering, Farmington, CT, ³University of Connecticut Health Center, Farmington, CT

P-Sat-375

Extended Bioreactor Conditioning of MNC Seeded Heart Valves C. URYASZ¹, M. VEDEPO¹, C. MCFALL¹, K. NEILL¹, R. HOPKINS¹, AND G. CONVERSE¹ ¹Children's Mercy Hospital, Kansas City, MO

P-Sat-376

UCP-I Expression in White Adipose Depots in Laminin α 4 Knockout Mice A. Wanagas¹, M. Vaicik¹, M. Morse², R. Cohen², and E. Brey¹

¹Illinois Institute of Technology, Chicago, IL, ²University of Chicago, Chicago, IL

P-Sat-377

Cellular Response To PPF Reinforced Pericardium Scaffold

V. NIBA¹, L. BRACAGLIA¹, AND J. FISHER¹ ¹University of Maryland, College Park, MD

P-Sat-378

Three-Dimensional Microfluidic Computational Study in Tissue Engineering J. STEWART¹

¹Tarleton State University, Stephenville, TX

P-Sat-379

Cell Culture on Photovoltaic Surfaces: An Alternative to Trypsinization C. Arthur¹, A. Stastny¹, C. Jones¹, A. Desai¹, D. Dean¹, and J. Rodriguez-Devora¹ ¹Clemson University, Clemson, SC

P-Sat-380

Developing an *In Vitro* Cardiac Infarct Model With Silk and Cardiac Progenitor Cells A. GREANEY¹

¹Tufts University, Medford, MA

P-Sat-381

Mechanical Properties & Degradation of Hydroxyapatite & Tri-Calcium Phosphate Incorporated Hydrogels

D. KAMIREDDI¹, B. AKAR², AND E. BREY² ¹University of Connecticut, Storrs, CT, ²Illinois Institute of Technology, Chicago, IL

P-Sat-382

Increasing Engineered Cardiac Muscle Tissue Alignment in 2D

S. KIM¹, I. BATALOV¹, AND A. FEINBERG¹ ¹Carnegie Mellon University, Pittsburgh, PA

P-Sat-383

Rabbit Corneal Fibroblast Response to Substrate Stiffness K. CURLIN¹ AND E. ORWIN¹

¹Harvey Mudd College, Claremont, CA

P-Sat-384

Biodegradable Polyurethane and Its Application in Tissue Engineering R. AEKINS¹, D. DORCEMUS¹, R. BEZWADA², AND S. NUKAVRAPU³

¹University of Connecticut, Storrs, CT, ²Bezwada Biomedical LLC, Hillsborough, NJ, ³University of Connecticut, Farmington, CT

P-Sat-385

Glioma Stem Cells Respond Differentially to Treatment in Tissue Engineered Brain Tumor Microenvironments

A. BERR¹, O. COSSIO¹, AND J. MUNSON¹ ¹University of Virginia, Charlottesville, VA

P-Sat-386

Spatiotemporal Oxygen Monitoring for Three-Dimensional Engineered Tissues

S. KNOWLTON¹, A. ACUN², AND P. ZORLUTUNA² ¹University of Connecticut, Storrs Mansfield, CT, ²University of Notre Dame, Notre Dame, IN

P-Sat-387

Three Dimensional Cell Culture Effects on Chondrogenesis of Kartogenintreated hMSCs

M. PATIL¹, R. GOTTARDI^{1,2,3}, V. ULICI³, S. LITTLE¹, AND R. TUAN³ ¹Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, ²Ri.MED Foundation, Palermo, Italy, ³McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA

P-Sat-388

A Long Term Imaging Platform for Patterned Substrates E. TAGUE¹

¹The University of Illiniois Urbana-Champaign, Batavia, IL

P-Sat-389

Alignment-Induced RNA Expression of Endothelial Cells

I. BUCZKO¹ AND K. MCCLOSKEY ¹ ¹University of California, Merced, Merced, CA

Track: Undergraduate, Translational Biomedical Engineering

Translational Biomedical Engineering -Undergraduate Research

P-Sat-396

Synth-AID:A Synthetic Skin Delivery System K. CYR¹ AND C. MARASCO¹ ¹Vanderbilt University, Nashville, TN

P-Sat-397

Optimizing Antibiotic Treatment Strategies Using Small Molecule Inhibitors of DNA Damage Repair

H. THORP^{1,2}, J. YANG^{1,2}, AND J. COLLINS^{1,2}

¹Boston University, Boston, MA, ²Howard Hughes Medical Institute, Boston, MA

P-Sat-398

Synthesizing PLA-PEG Nanoparticles With A Fluidic Nanoprecipitation System For Industrial Scale Up

N. SCHINDLER¹, M. LASHOF-SULLIVAN¹, R. GROYNOM¹, AND E. LAVIK¹ ¹Case Western Reserve University, Cleveland, OH SATURDAY | OCTOBER 25 | 2014

POSTER SESSION Sat 9:30AM - 1:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

P-Sat-399

Efficient Expression and Purification of Beta Amyloid 42 T.Armand I, S. Sharma I, and T. Head-Gordon I I University of California, Berkeley, Berkeley, CA

P-Sat-400

Computational Modeling of Pancreatic Duct Strictures as a Predictor for Stent Therapy

C. MOREAU¹ AND C. LEE²

¹University of Texas Health Science Center at San Antonio, San Antonio, TX, ²University of Texas at San Antonio, San Antonio, TX

P-Sat-401

The Impact of Mild Cognitive Impairment on Balance and Gait: a Systematic Review

L. BAHUREKSA¹, M. SCHWENK¹, A. SALEH¹, M. SABBAGH², D. COON³, J. MOHLER¹, AND B. NAJAFI¹

¹University of Arizona, Tucson, AZ, ²Banner Sun Health Research Institute, Sun City, AZ, ³Arizona State University, Phoenix, AZ

P-Sat-402

Structural and Functional Analysis of Neonatal Fibrin Clots

R. HANNAN¹, A. BROWN¹, J. FERNANDEZ², N. GUZZETTA²,³, AND T. BARKER¹ ¹Georgia Institute of Technology, Atlanta, GA, ²Children's Healthcare of Atlanta, Atlanta, GA, ³Emory University, Atlanta, GA

P-Sat-403

Patient-Derived Biomaterials for Bone Regeneration

C. STEPHENS¹, P. MIKAEL², AND S. NUKAVRAPU²

¹Syracuse University, Syracuse, NY, ²University of Connecticut, Farmington, CT

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

HENRY B. GONZALES CONVENTION CENTER

Henry B. Gonzales Convention Center

200 East Market Street San Antonio, TX 78205 (210) 207-8500

MARKET STREET

TRACK	8:00AM – 9:30AM	2:00PM - 3:30PM	4:30PM - 6:00PM			
BIOINFORMATICS, COMPUTATIONAL	Single Cell, Heterogeneity, Noise Room 202A	Multiscale Modeling Room 202A	Cell Regulatory Circuits Room 202A			
AND SYSTEMS BIOLOGY			Engineering Cells and Pathways via Synthetic and Systems Biology Room 007D			
BIOMATERIALS	Biomaterial Scaffolds I Room 006A	Therapeutic and Theranostic Biomaterials I Boom 006A	Therapeutic and Theranostic Biomaterials II Room 006A Biomaterials for Controlling Cell Environment II Room 006B Hepatic, Pancreatic, Digestive & Renal Tissue Engineering Room 001A			
	Bioinspired and Self Assembling Biomaterials I Room 006B	Biomaterials for Controlling Cell Environment I Room 006B				
BIOMECHANICS	Cell Biomechanics I Room 006D	Cell Biomechanics II Room 006D	Heart Valve Biomechanics Room 006D			
	Head Injury Room 103B	Spine Biomechanics Room 103B	Methods for Assessing Injury and Injury Risk Room 103B			
	Room 007D Skeletal Muscle Mechanics	Room 007D	Cardiovascular Flow Modeling in Health and Disease Room 007B			
	Room 202B		Structure-Function Relationships in Musculoskeletal Tissues Room 202B			
BIOMEDICAL ENGINEERING EDUCATION	Innovations in BME Education Room 203B	Teaching in a Flipped Classroom Room 203B	Effective Use of Technology in the BME Classroom Room 203B			
BIOMEDICAL IMAGING & OPTICS	Applied Biomedical Imaging Techniques	Molecular Probes I Room 203A	Molecular Probes II Room 203A			
	Room 203A	Musculoskeletal Imaging Room 202B				
CANCER TECHNOLOGIES	Cancer Mechanobiology Room 007A	Tumor Microenvironment I Room 007A	Tumor Microenvironment II Room 007A			
CARDIOVASCULAR ENGINEERING	Hemodynamics and Vascular Mechanics I Room 007B	Hemodynamics and Vascular Mechanics II Room 007B	Cardiovascular Flow Modeling in Health and Disease Boom 007B			
	Blood Vessel Tissue Engineering Room 001A	Cardiovascular Devices: Intelligent Design Using Computations and Experiments Room 201	Heart Valve Biomechanics Room 006D			
CELLULAR & MOLECULAR BIOENGINEERING	Cell Adhesion Room 007C	Cell Adhesion and the Extracellular Matrix Interaction Room 007C	Cell Interactions with the Extracellular Matrix Room 007C			
	Room 007D	Mechanotransduction II Room 007D	Engineering Cells and Pathways via Synthetic and Systems Biology			
	Room 006D Microfluidic Platforms I	Biomaterials for Controlling Cell Environment I Room 006B	Room 007D Biomaterials for Controlling Cell Environment II			
		Cell Biomechanics II Room 006D	Room 006B			
		Microfluidic Platforms II Room 008B				
DEVICE TECHNOLOGIES AND BIOMEDICAL ROBOTICS	Implantable Devices and Implantable Electronics Room 201 Biomedical Products and Devices Ballroom A	Cardiovascular Devices: Intelligent Design Using Computations and Experiments Room 201	Medical Device Technologies Room 201			

PROGRAM AT-A-GLANCE 2014 | OCTOBER 23 | THURSDAY

Track	8:00am – 9:30am	2:00pm - 3:30pm	4:30pm - 6:00pm			
DRUG DELIVERY	Nano/Micro Drug Delivery Room 006C	Drug Delivery in Tissue Engineering I Room 006C	Drug Delivery in Tissue Engineering II Room 006C			
NANO AND MICRO TECHNOLOGIES	BioMEMS I Room 008A Microfluidic Platforms I Room 008B Nano/Micro Drug Delivery Room 006C	BioMEMS II Room 008A Microfluidic Platforms II Room 008B	Paper Fluidics Room 008A Microfluidic Platforms III Room 008B			
NEURAL ENGINEERING	Head Injury Room 103B					
NEW FRONTIERS & SPECIAL TOPICS	Microfluidic Platforms I Room 008B Implantable Devices and Implantable Electronics Room 201 Microfabrication and 3D Printing for Tissue Engineering Room 001B Biomedical Products and Devices	Microfluidic Platforms II Room 008B	Paper Fluidics Room 008A Hepatic, Pancreatic, Digestive & Renal Tissue Engineering Room 001A			
ORTHOPEDIC AND REHABILITATION ENGINEERING	Ballroom A Skeletal Muscle Mechanics Room 202B	Musculoskeletal Imaging Room 202B Spine Biomechanics Room 103B	Structure-Function Relationships in Musculoskeletal Tissues Room 202B Orthopaedic Biomechanics Room 204A			
STEM CELL ENGINEERING	Microfabrication and 3D Printing for Tissue Engineering Room 001B					
TISSUE ENGINEERING	Blood Vessel Tissue Engineering Room 001A Microfabrication and 3D Printing for Tissue Engineering Room 001B Biomaterial Scaffolds I Room 006A	Tissue Engineering of Models for Study of Disease and Drug Discovery Room 001A Scaffolds and Surfaces for Tissue Engineering I Room 001B Drug Delivery in Tissue Engineering I Boom 006C	Hepatic, Pancreatic, Digestive & Renal Tissue Engineering Room 001A Scaffolds and Surfaces forTissue Engineering II Room 001B Drug Delivery in Tissue Engineering II Room 006C			
TRANSLATIONAL BIOMEDICAL ENGINEERING	Biomedical Products and Devices Ballroom A Applied Biomedical Imaging Techniques Room 203A Microfluidic Platforms I Room 008B Microfabrication and 3D Printing for Tissue Engineering Room 001B	Overcoming Challenges and Obstacles for Clinical Translation: From Bench to Bedside Room 204A Microfluidic Platforms II Room 008B	Paper Fluidics Room 008A			
OTHER	8:00 – 9:30am Professional Integrity Workshop Room 102AB	2:00-6:00pm BMES-NSF Special Session on Research & Grant Writing Room 004	4:00-7:30pm Korea-US Joint Workshop in Biomedical Engineering Ballroom A			
STUDENT AND EARLY CAREER	9:00 – 10:30am What Do Biomedical Engineers Actually Do? What Are the Specialization Areas? Room 103A	1:30 – 2:45pm How to Get Your First Job Room 103A 2:00-4:00pm Resume Review & Critique Room 102AB	3:15 – 4:30pm Networking for Career Success Room 103A 5:00 – 6:15pm Mock Interview Room 103A			

PROGRAM AT-A-GLANCE

Track	8:00am – 9:30am	l:45pm - 2:45pm	3:00pm – 4:00pm
BIOINFORMATICS, COMPUTATIONAL AND SYSTEMS BIOLOGY	Signaling Systems Analysis Room 202A	System Proteomics: Measurement and Computation Room 202A	Prokaryotic Systems Biology Room 202A
BIOMATERIALS	Intelligent/Multifunctional Biomaterials Room 006A Bone & Cartilage Tissue Engineering I Room 008B	Biomaterial Scaffolds II Room 006A Bone & Cartilage Tissue Engineering II Room 008B	Bioinspired & Self Assembling Biomaterials II Room 006A Engineering Stem Cell Environments Room 001A Scaffolds and Surfaces for Tissue Engineering III Boom 008B
BIOMECHANICS	Mechanics of Biomaterials Room 103B Cell-Cell Interactions and Intercellular Forces Room 203B	Impact and Injury Biomechanics Room 103B Computational Modeling of the Respiratory System Room 203B	Countermeasures for Bone Loss and Injury Room 103B Translational Research Relevant to Common Orthopaedic Injuries Room 007D
BIOMEDICAL ENGINEERING EDUCATION		Design in BME Education Room 006	
BIOMEDICAL IMAGING & OPTICS	Magnetic Resonance Imaging I Room 202B Diagnostic Devices and Biosensors I Room 203A	Magnetic Resonance Imaging II Room 202B Diagnostic Devices and Biosensors II Room 203A Cardiovascular Flow Imaging and Modeling in Health and Disease Boom 007B	Imaging Strategies in Cancer Room 007A
CANCER	Engineered Medale of Concert	Engineered Medale of Concert!	Imaging Stratagias in Canaar
TECHNOLOGIES	Room 007A	Room 007A	Room 007A
TECHNOLOGIES CARDIOVASCULAR ENGINEERING	Cardiac Electrophysiology and Mechanics Room 006B Cardiovascular Assist Devices Room 007B	Cardiovascular Flow Imaging and Modeling in Health and Disease Room 007B	Structure-Function Relationship in the Cardiovascular System Room 007B
CARDIOVASCULAR ENGINEERING CELLULAR & MOLECULAR BIOENGINEERING	Engineered Models of Cancer I Room 007A Cardiac Electrophysiology and Mechanics Room 006B Cardiovascular Assist Devices Room 007B Molecular and Cell Engineering I Room 007C Cell-Cell Interactions and Intercellular Forces Room 203B	Engineered wodels of Cancer II Room 007A Cardiovascular Flow Imaging and Modeling in Health and Disease Room 007B Molecular and Cell Engineering II Room 007C	Room 007A Structure-Function Relationship in the Cardiovascular System Room 007B Cell Motility Room 007C Engineering Stem Cell Environments Room 001A
CANCER TECHNOLOGIES CARDIOVASCULAR ENGINEERING CELLULAR & MOLECULAR BIOENGINEERING DEVICE TECHNOLOGIES AND BIOMEDICAL ROBOTICS	Engineered Models of Cancer I Room 007A Cardiac Electrophysiology and Mechanics Room 006B Cardiovascular Assist Devices Room 007B Molecular and Cell Engineering I Room 007C Cell-Cell Interactions and Intercellular Forces Room 203B Wearable Technology Room 201 Cardiovascular Assist Devices Room 007B	Engineered wodels of Cancer II Room 007A Cardiovascular Flow Imaging and Modeling in Health and Disease Room 007B Molecular and Cell Engineering II Room 007C Verification and Validation of Computational Models of Medical Devices Room 201 Peripheral Neural Interfaces: Simulation & Recording Room 001B	Room 007A Structure-Function Relationship in the Cardiovascular System Room 007B Cell Motility Room 007C Engineering Stem Cell Environments Room 001A Biomedical Robotics Room 201
CANCER TECHNOLOGIES CARDIOVASCULAR ENGINEERING CELLULAR & MOLECULAR BIOENGINEERING DEVICE TECHNOLOGIES AND BIOMEDICAL ROBOTICS DRUG DELIVERY	Engineered Models of Cancer I Room 007A Cardiac Electrophysiology and Mechanics Room 006B Cardiovascular Assist Devices Room 007B Molecular and Cell Engineering I Room 007C Cell-Cell Interactions and Intercellular Forces Room 203B Wearable Technology Room 007B Nucleic Acid Delivery Room 006C	Engineered wodels of Cancer II Room 007A Cardiovascular Flow Imaging and Modeling in Health and Disease Room 007B Molecular and Cell Engineering II Room 007C Verification and Validation of Computational Models of Medical Devices Room 201 Peripheral Neural Interfaces: Simulation & Recording Room 001B Novel Materials and Self Assembly Room 006C	Biomedical Robotics Room 201
CANCER TECHNOLOGIES CARDIOVASCULAR ENGINEERING CELLULAR & MOLECULAR BIOENGINEERING DEVICE TECHNOLOGIES AND BIOMEDICAL ROBOTICS DRUG DELIVERY NANO AND MICRO TECHNOLOGIES	Engineered Models of Cancer I Room 007A Cardiac Electrophysiology and Mechanics Room 006B Cardiovascular Assist Devices Room 007B Molecular and Cell Engineering I Room 007C Cell-Cell Interactions and Intercellular Forces Room 203B Wearable Technology Room 201 Cardiovascular Assist Devices Room 007B Nucleic Acid Delivery Room 006C Nanobiointerfaces Room 008A Bio-nanomedicine in Healthcare Room 006D	Engineered wodels of Cancer II Room 007A Cardiovascular Flow Imaging and Modeling in Health and Disease Room 007B Molecular and Cell Engineering II Room 007C Verification and Validation of Computational Models of Medical Devices Room 201 Peripheral Neural Interfaces: Simulation & Recording Room 001B Novel Materials and Self Assembly Room 006C Diagnostics Room 008A	Biomedical Robotics Room 007A Structure-Function Relationship in the Cardiovascular System Room 007B Cell Motility Room 007C Engineering Stem Cell Environments Room 001A Biomedical Robotics Room 201 Multifunctional Drug Delivery Room 006C Nanoparticles and Theranostics Room 008A

FRIDAY | OCTOBER 24 | 2014

_

PROGRAM AT-A-GLANCE

Track	8:00am – 9:30am	l:45pm - 2:45pm	3:00pm – 4:00pm		
NEW FRONTIERS & SPECIAL TOPICS	Intelligent/Multifunctional Biomaterials	Bioelectronics Room 006D			
	Diagnostic Devices and Biosensors I Room 203A	Diagnostic Devices and Biosensors II Room 203A			
	Wearable Technology Room 201	Diagnostics Room 008A			
ORTHOPEDIC AND REHABILITATION ENGINEERING	Pain Room 007D Bone & Cartilage Tissue	Rehabilitation Engineering: Prosthetics and Wearable Devices Room 007D	Translational Research Relevant to Common Orthopaedic Injuries Room 007D		
	Engineering I Room 008B	Peripheral Neural Interfaces: Simulation & Recording Room 001B			
		Bone & Cartilage Tissue Engineering II Room 008B			
RESPIRATORY BIOENGINEERING		Computational Modeling of the Respiratory System Room 203B			
STEM CELL ENGINEERING		Epithelial and Adipose Tissue Engineering	Engineering Stem Cell Environments Room 001A		
		Room 001A	Translational Therapeutics for Regenerative Medicine Room 006D		
TISSUE ENGINEERING	Neural Tissue Engineering Room 001A	Epithelial and Adipose Tissue Engineering Boom 001A	Scaffolds and Surfaces for Tissue Engineering III Boom 008B		
	Bone & Cartilage Tissue Engineering I Room 008B	Bone & Cartilage Tissue Engineering II Room 008B			
		Biomaterial Scaffolds II Room 006A			
	Bio-nanomedicine in Healthcare	Diagnostics	Translational Therapeutics for Regenerative Medicine		
		N00111 000A	Regenerative medicine		
ENGINEERING		Bioelectronics Room 006D	Room 006D		
OTHER	Whitaker International Room 204A	Bioelectronics Room 006D 2:00-4:00pm Diversity, Health Disparities and Affordable Healthcare Room 004	Room 006D		
OTHER STUDENT AND EARLY CAREER	Whitaker International Room 204A 8:30 – 9:30am Student Chapter Outstanding Best Practices Room 103A	Bioelectronics Room 006D 2:00-4:00pm Diversity, Health Disparities and Affordable Healthcare Room 004 1:30 - 2:30pm Owning Your Career & Using Mentors Room 103A	Room 006D		

PROGRAM AT-A-GLANCE

Track	8:00am – 9:30am	l:30pm - 3:00pm	3:15pm - 4:45pm			
BIOMATERIALS	Micro and Nanostructured Materials Room 001B	Biomaterial for Immunoengineering I	Biomaterial for Immunoengineering II Room 001B			
		Room 001B Biomaterials Design I Room 006A	Biomaterials Design II Room 006A			
BIOMECHANICS	Cardiovascular Biomechanics I Room 006B	Aortic Biomechanics Room 006B	Biomechanics in Degeneration and Regeneration Room 006B			
		Ocular Biomechanics Room 006C	Multiscale Biomechanics Room 006C			
			Mechanobiology in the Respiratory System Room 008B			
BIOMEDICAL ENGINEERING EDUCATION	Novel Laboratory Modules Room 204A					
BIOMEDICAL IMAGING & OPTICS	Ultrasound Imaging Room 203A	Novel Approaches to Biomedical Imaging Room 203A	Macro/Micro Design for Neurotechnologies: Networked Neural Sensors and Instrumentation			
	Optical imaging and Microscopy I Room 203B	Optical Imaging and Microscopy II Room 203B	Room 202A			
	Nanotechnologies for Cancer I Room 103A	Nanotechnologies for Cancer II Boom 103A	Microtechnologies for Cancer II			
	Cancer Drug Delivery I Room 103B	Microtechnologies for Cancer I Room 006D	Cancer Drug Delivery III Room 103B			
		Cancer Drug Delivery II Room 103B				
CARDIOVASCULAR ENGINEERING	Cardiac Muscle and Valve Tissue Engineering	Heart Valves & Stents I Room 007B	Heart Valves & Stents II Room 007B			
	Noom 001A Microcirculation	Aortic Biomechanics Room 006B				
	Room 006A					
	Room 006B					
	Cardiac Regeneration Room 006D					
	Angiogenesis Boom 007B					
CELLULAR & MOLECULAR BIOENGINEERING	Cellular and Molecular Immunoengineering Boom 006C	Biomaterial for Immunoengineering I	Biomaterial for Immunoengineering II Room 001B			
	Young Innovator Session I Room 007C	Young Innovator Session II Room 007C				
DEVICE TECHNOLOGIES	Biosensors I: Materials and Techniques	Biosensors II: Applications Room 201				
ROBOTICS	Cells Tissues and Organs on Chip I	Cells Tissues and Organs on Chip II Room 008A				
	Room 008A Global Health I	Global Health II Boom 202B				
	Room 202B Brain Computer Interfaces					
	Room 202A					
DRUG DELIVERY	Cancer Drug Delivery I Room 103B	Cancer Drug Delivery II Room 103B	Cancer Drug Delivery III Room 103B			
		Targeted Drug Delivery I Room 007D	Targeted Drug Delivery II Room 007D			

Track	8:00am – 9:30am	l:30pm - 3:00pm	3:15pm - 4:45pm			
NANO AND MICRO TECHNOLOGIES	Cells Tissues and Organs on Chip I Room 008A	Cells Tissues and Organs on Chip II Room 008A	Macro/Micro Design for Neurotechnologies: Networked			
	Micro and Nanostructured Materials Room 001B	Microtechnologies for Cancer I Room 006D	Room 202A			
	Nanotechnologies for Cancer I Room 103A	Nanotechnologies for Cancer II Room 103A	Microtechnologies for Cancer II Room 006D			
NEURAL ENGINEERING	Brain Computer Interfaces Room 202A	Glial Cell Engineering / Neural Progenitor Cell and Tissue	Neuro-rehabilitation Biomechanics Room 201			
		Engineering Room 202A	Macro/Micro Design for Neurotechnologies: Networked Neural Sensors and Instrumentation Room 202A			
NEW FRONTIERS & SPECIAL TOPICS	Global Health I Room 202B	Global Health II Room 202B				
	Biosensors I: Materials and Techniques Room 201	Biosensors II: Applications Room 201				
	Cells Tissues and Organs on Chip I Room 008A	Room 008A				
	Nanotechnologies for Cancer I Room 103A					
ORTHOPEDIC AND REHABILITATION ENGINEERING	Musculoskeletal Tissue Engineering Room 007D		Neuro-rehabilitation Biomechanics Room 201			
RESPIRATORY BIOENGINEERING	Engineering Strategies for Lung Transplant & Regeneration Room 008B	Translational Respiratory Engineering Room 008B	Mechanobiology in the Respiratory System Room 008B			
STEM CELL ENGINEERING	Mechanobiology of Stem Cells Room 007A	Directing Stem Cell Differentiation Room 007A	Stems Cells in Translation Science Room 007A			
	Cardiac Regeneration Room 006D	Adult Stem Cells in Tissue Engineering Room 001A				
TISSUE ENGINEERING	Cardiac Muscle and Valve Tissue Engineering Room 001A	Adult Stem Cells in Tissue Engineering Room 001A	Muscular, Tendinous, Ligamental Tissue Engineering Room 001A			
	Cardiac Regeneration Room 006D	Directing Stem Cell Differentiation Room 007A				
	Cells Tissues and Organs on Chip I Room 008A	Cells Tissues and Organs on Chip II Room 008A				
	Musculoskeletal Tissue Engineering Room 007D					
	Engineering Strategies for Lung Transplant & Regeneration Room 008B					
TRANSLATIONAL BIOMEDICAL	Biosensors I: Materials and Techniques	Biosensors II: Applications Room 201				
ENGINEERING	Room 201 Global Health I	Global Health II Room 202B				
	Room 202B Nanotechnologies for Cancer I Room 103A	Translational Respiratory Engineering Room 008B				
OTHER	ABioM SIG Special Session: Application towards the Next Generation Therapies and Diagnostics Ballroom A	Undergraduate Research I Room 204B	Undergraduate Research II Room 204B			
WEDNESDAY, October 22, 2014

11:00am – 7:00pm	Registration	HBGCC, Exhibit Hall A
8:30am – 4:30pm	BMES Board of Directors Meeting	HBGCC, Room 102AB
3:30pm – 5:30pm	Meet the Faculty Candidates	HBGCC, West Registration Area
5:30pm – 7:00pm	Welcome Reception	HBGCC, Grotto, River Level

AFFILIATE EVENTS:

11:00am – 4:00pm AIMBE Board

of Directors Meeting Henry B. Gonzales Convention

Center, Room 003AB

4:00pm - 5:00pm AIMBE Academic Council Policy Briefing Henry B. Gonzales Convention Center,Room 003AB 6:15pm – 9:00pm **Council of Chairs Dinner & Meeting** *Marriott Rivercenter Salon J* 7:00pm – 10:00pm Annals of Biomedical Engineering Editorial Board Dinner Marriott Rivercenter, Conference Room 13-14

7:00am – 6:00pm	Registration	HBGCC, Exhibit Hall A
7:00am - 8:00am	Diversity Committee Meeting	HBGCC, Room 003B
7:00am - 8:00am	National Meetings Committee Meeting	HBGCC, Room 003A
8:00am - 9:30am	Platform Session – Thurs I	HBGCC, 19 concurrent rooms
8:00am - 9:30am	Professional Integrity Workshop	HBGCC, Room 102AB
9:00am - 10:30am	What Do Biomedical Engineers Actually Do?	HBGCC, Room 103A
9:30am – 5:00pm	Exhibit Hall Open	HBGCC, Exhibit Hall A
9:30am – 5:00pm	Poster Session – Thurs	HBGCC, Exhibit Hall A
9:30am – 10:30am	Poster Viewing with Authors & Refreshment Break	HBGCC, Exhibit Hall A
10:30am – 12:15pm	Plenary Session & State of the Society Pritzker Distinguished Lecturer	HBGCC, Lila Cockrell Theatre
12:30pm - 1:45pm	Celebration of Minorities in BME Luncheon	HBGCC, Ballroom A
12:15pm – 1:45pm	Lunch on Your Own	
12:45pm – 1:45pm	Medical Devices SIG Business Meeting	HBGCC, Room 003B
1:30pm - 2:30pm	Membership Committee Meeting	HBGCC, Room 003A
1:30pm – 2:45pm	How to Get Your First Job	HBGCC, Room 103A
2:00pm - 3:30pm	Overcoming challenges and obstacles for clinical translation: From bench to bedside	HBGCC, Room 204A
2:00pm - 4:00pm	Resume Review & Critique	HBGCC, Room 012AB
2:00pm - 3:30pm	Platform Session – Thurs - 2	HBGCC - 20 concurrent rooms
2:00pm -6:00pm	BMES-NSF Special Session	HBGCC, Room 004
3:30pm - 4:30pm	Poster Viewing with Authors & Refreshment Break	HBGCC, Exhibit Hall A
3:15pm – 4:30pm	Networking Effectively– Social Media & Face-to-Face	HBGCC, Room 103A
4:30pm - 6:00pm	Platform Session – Thurs - 3	HBGCC - 89 concurrent rooms
4:00pm - 7:30pm	Korea-US Joint Workshop in Biomedical Engineering	HBGCC, Ballroom A
5:00pm – 6:15pm	Mock Interview	HBGCC, Room 103A
6:15pm - 7:30pm	Plenary Session: Computational Modeling and Simulation for Medical Devices	HBGCC, Lila Cockrell Theatre
8:00pm – 9:30pm	University Receptions	Marriott Rivercenter and Marriott Riverwalk

THURSDAY, October 23, 2014

AFFILIATE EVENTS:

12noon – 1:30pm Cellular and Molecular Bioengineering - Editorial Board Marriott Rivercenter , Conference Room 13-14 4:00pm – 5:30pm AEMB Annual Grand Meeting Henry B. Gonzales Convention Center, Room 002AB 6:00pm – 8:00pm AEMB Reception The Republic of Texas Restaurant

8:00pm – 9:30pm **University Reception**

Marriott Rivercenter and Marriott Riverwalk

Platform Sessions Posters Workshops Student & Early Career Exhibits Special Events

Plenary Sessions

General

FRIDAY, October 24, 2014

Plenary Sessions
Platform Sessions
Posters
Workshops
Student & Early Career
Exhibits
Special Events
General

7:00am – 6:00pm	Registration	HBGCC, Exhibit Hall A
7:00am - 8:00am	2015 Annual Meeting Planning Committee Meeting	HBGCC, Room 003A
7:00am - 8:00am	ABioM SIG Business Meeting	HBGCC, Room 102AB
7:00am - 8:00am	Education Committee	HBGCC, Room 003B
8:00am – 9:30am	Platform Sessions - Fri-I-I	HBGCC - 18 concurrent rooms
8:00am - 9:30am	Whitaker International Session	HBGCC, Room 204A
8:30am - 9:30am	BMES Student Chapter—Outstanding Chapter Best Practices	HBGCC, Room 103A
9:30am - 10:30am	BMES Student Chapter Outreach and Mentoring Best Practices	HBGCC, Room 103A
9:30am – 5:00pm	Exhibit Hall Open	HBGCC, Exhibit Hall A
9:30am – 5:00pm	Poster Session – Fri	HBGCC, Exhibit Hall A
9:30am – 10:30am	Poster Viewing with Authors & Refreshment Break	HBGCC, Exhibit Hall A
10:30am – 12noon	Plenary Session NIBIB Lecture	HBGCC, Lila Cockrell Theatre
12noon – 1:30pm	Lunch on Your Own	
12noon – 1:30pm 12noon – 1:30pm	Lunch on Your Own CMBE SIG Business Meeting	HBGCC, Room 003B
12noon – 1:30pm 12noon – 1:30pm 12:15pm - 1:30pm	Lunch on Your Own CMBE SIG Business Meeting Woman in BME Luncheon	HBGCC, Room 003B HBGCC, Ballroom A
12noon – 1:30pm 12noon – 1:30pm 12:15pm - 1:30pm 1:30pm – 2:30pm	Lunch on Your Own CMBE SIG Business Meeting Woman in BME Luncheon International Affairs Committee	HBGCC, Room 003B HBGCC, Ballroom A HBGCC, Room 003A
12noon – 1:30pm 12noon – 1:30pm 12:15pm - 1:30pm 1:30pm – 2:30pm 2:00pm - 4:00pm	Lunch on Your Own CMBE SIG Business Meeting Woman in BME Luncheon International Affairs Committee Resume Review & Critique, <i>repeated</i>	HBGCC, Room 003B HBGCC, Ballroom A HBGCC, Room 003A HBGCC, Room 102AB
12noon – 1:30pm 12noon – 1:30pm 12:15pm - 1:30pm 1:30pm – 2:30pm 2:00pm - 4:00pm 1:45pm - 2:45pm	Lunch on Your Own CMBE SIG Business Meeting Woman in BME Luncheon International Affairs Committee Resume Review & Critique, <i>repeated</i> Platform Session – Fri - 2	HBGCC, Room 003B HBGCC, Ballroom A HBGCC, Room 003A HBGCC, Room 102AB HBGCC - 18 <i>concurrent rooms</i>
12noon – 1:30pm 12noon – 1:30pm 12:15pm - 1:30pm 1:30pm – 2:30pm 2:00pm - 4:00pm 1:45pm - 2:45pm 2:00pm - 4:00pm	Lunch on Your Own CMBE SIG Business Meeting Woman in BME Luncheon International Affairs Committee Resume Review & Critique, <i>repeated</i> Platform Session – Fri - 2 Diversity, Health Disparities and Affordable Healthcare	HBGCC, Room 003B HBGCC, Ballroom A HBGCC, Room 003A HBGCC, Room 102AB HBGCC - 18 <i>concurrent rooms</i> HBGCC, Room 204A
12noon – 1:30pm 12noon – 1:30pm 12:15pm - 1:30pm 1:30pm – 2:30pm 2:00pm - 4:00pm 1:45pm - 2:45pm 2:00pm - 4:00pm 3:00pm - 4:00pm	Lunch on Your Own CMBE SIG Business Meeting Woman in BME Luncheon International Affairs Committee Resume Review & Critique, <i>repeated</i> Platform Session – Fri - 2 Diversity, Health Disparities and Affordable Healthcare Platform Session – Fri - 3	HBGCC, Room 003B HBGCC, Ballroom A HBGCC, Room 003A HBGCC, Room 102AB HBGCC - 18 <i>concurrent rooms</i> HBGCC, Room 204A HBGCC - 15 <i>concurrent rooms</i>
12noon – 1:30pm 12noon – 1:30pm 12:15pm - 1:30pm 1:30pm – 2:30pm 2:00pm - 4:00pm 1:45pm - 2:45pm 2:00pm - 4:00pm 3:00pm - 4:00pm 4:00pm - 5:00pm	Lunch on Your OwnCMBE SIG Business MeetingWoman in BME LuncheonInternational Affairs CommitteeResume Review & Critique, repeatedPlatform Session - Fri - 2Diversity, Health Disparities and Affordable HealthcarePlatform Session - Fri - 3Industry Affairs Committee Meeting	HBGCC, Room 003B HBGCC, Ballroom A HBGCC, Room 003A HBGCC, Room 102AB HBGCC - 18 <i>concurrent rooms</i> HBGCC, Room 204A HBGCC - 15 <i>concurrent rooms</i> HBGCC, Room 003A
12noon – 1:30pm 12noon – 1:30pm 12:15pm - 1:30pm 1:30pm – 2:30pm 2:00pm - 4:00pm 1:45pm - 2:45pm 2:00pm - 4:00pm 3:00pm - 4:00pm 4:00pm - 5:00pm	Lunch on Your OwnCMBE SIG Business MeetingWoman in BME LuncheonInternational Affairs CommitteeResume Review & Critique, repeatedPlatform Session - Fri - 2Diversity, Health Disparities and Affordable HealthcarePlatform Session - Fri - 3Industry Affairs Committee MeetingPoster Viewing with Authors & Refreshment Break	HBGCC, Room 003B HBGCC, Ballroom A HBGCC, Room 003A HBGCC, Room 102AB HBGCC - 18 <i>concurrent rooms</i> HBGCC, Room 204A HBGCC, Room 204A HBGCC, Room 003A

AFFILIATE EVENTS:

9:00am – 10:00am AEMB Ethics Session

Henry B. Gonzales Convention Center, Room 002AB

1:30pm - 3:00pm

AIMBE-AEMB Student Public Policy Session Henry B. Gonzales Convention Center, Room 002AB

Registration	HBGCC, Exhibit Hall A	
Platform Sessions - Sat-I	HBGCC - 20 concurrent rooms	
ABioM SIG Special Session	HBGCC, Ballroom A	
Exhibit Hall Open	HBGCC, Exhibit Hall A	
Poster Session – Sat	HBGCC, Exhibit Hall A	
Poster Viewing with Authors	HBGCC, Exhibit Hall A	
& Refreshment Break		Discours Consistent
& Refreshment Break Plenary Session Rita Schaffer Young Investigator Lecture & Diversity Award Winner	HBGCC, Lila Cockrell Theatre	Plenary Sessions Platform Sessions Posters
& Refreshment Break Plenary Session Rita Schaffer Young Investigator Lecture & Diversity Award Winner Student Affairs Committee Meeting	HBGCC, Lila Cockrell Theatre HBGCC, Room 003A	Plenary Sessions Platform Sessions Posters Workshops
& Refreshment Break Plenary Session Rita Schaffer Young Investigator Lecture & Diversity Award Winner Student Affairs Committee Meeting Lunch on Your Own	HBGCC, Lila Cockrell Theatre HBGCC, Room 003A	Plenary Sessions Platform Sessions Posters Workshops Student & Early Career
& Refreshment Break Plenary Session Rita Schaffer Young Investigator Lecture & Diversity Award Winner Student Affairs Committee Meeting Lunch on Your Own BMES Board of Directors Meeting	HBGCC, Lila Cockrell Theatre HBGCC, Room 003A HBGCC, Room 102AB	Plenary Sessions Platform Sessions Posters Workshops Student & Early Career Exhibits
& Refreshment Break Plenary Session Rita Schaffer Young Investigator Lecture & Diversity Award Winner Student Affairs Committee Meeting Lunch on Your Own BMES Board of Directors Meeting Platform Session – Sat - 2	HBGCC, Lila Cockrell Theatre HBGCC, Room 003A HBGCC, Room 102AB HBGCC - 20 concurrent rooms	Plenary SessionsPlatform SessionsPostersWorkshopsStudent & Early CareerExhibitsSpecial Events
	Registration Platform Sessions - Sat- I ABioM SIG Special Session Exhibit Hall Open Poster Session - Sat Poster Viewing with Authors	RegistrationHBGCC, Exhibit Hall APlatform Sessions - Sat- IHBGCC - 20 concurrent roomsABioM SIG Special SessionHBGCC, Ballroom AExhibit Hall OpenHBGCC, Exhibit Hall APoster Session - SatHBGCC, Exhibit Hall APoster Viewing with AuthorsHBGCC, Exhibit Hall A

SATURDAY, OCTOBER 24, 2014

Now accepting submissions

EDITOR-IN-CHIEF David L. Kaplan Tufts University

Research at the intersection of chemistry, biology, materials science, and engineering >>>

ACS Publications is pleased to introduce ACS Biomaterials Science & Engineering, a new journal formed to address the rapid growth, fueled by the biomedical and biotechnology industries.

Manuscripts will cover a broad spectrum of topics including:

- Modeling and informatics tools for biomaterials
- New biomaterials, bioinspired and biomimetic approaches to biomaterials
- Biomaterial interfaces, health risk studies studies of biomaterial
- Bioelectronics, bioMEMS, biomaterials based devices and prosthetics
- Regenerative medicine, biomaterial technology for tissues, genetic designs and bioengineering

2015 CMBE Conference From Womb to Tomb: Mechanobiology of Generation, Regeneration, and Degeneration

January 6-10, 2015

Sugar Bay Resort, St. Thomas USVI

Conference Chair

Elizabeth G. Loboa

University of North Carolina at Chapel Hill and North Carolina State University

Keynote Speakers

Kristi Anseth University of Colorado Boulder

Anthony Atala Wake Forest University

Ben Fabry University of Erlangen-Nuremberg

Don Ingber Harvard University

Robert Nerem Georgia Institute of Technology

Registration

Early Bird registration expires October 29. For more information visit: www.bmes.org/cmberegistration

Sponsorships

For sponsorship and exhibit opportunities, visit www.bmes.org/cmbesporsorships or contact Elizabeth Loboa at (919) 513-4015 or egloboa@ncsu.edu

Hotel

Sugar Bay Resort & Spa

www.sugarbayresortandspa.com

Hotel reservations must be made by Nov 24, 2014. BMES has negotiated a special conference rate of \$235 for 3 nights or \$245 for 4 nights. To receive the special conference rate call 1-800-966-3426 and reference "BMES".

Complete information

www.bmes.org/cmbeconf