

2015 Annual Meeting October 7–10, 2015

Tampa Convention Center Tampa, Florida

Steven C. George Meeting Chair

BMES

Angelique Louie Program Chair

1990-2015

www.bmes.org

ANNIVERSARY

BMES Officers

President Richard T. Hart, PhD *The Ohio State Universityk*

Immediate Past President Gilda Barabino, PhD The City College of New York

Secretary David A.Vorp, PhD University of Pittsburgh

Treasurer Jennifer West, PhD Duke University

Publications Board Chair Susan S. Margulies, PhD University of Pennsylvania

Finance Committee Chair Raphael C. Lee, MD, ScD, FACS The University of Chicago

BMES Board of Directors

2012-2015 Directors Ravi Bellamkonda, PhD Georgia Institute of Technology

Kristen Billiar, PhD Worcester Polytechnic Institute

Scott L. Diamond, PhD University of Pennsylvania

Jane Grande-Allen, PhD Rice University

2013-2016 Directors Ed Botchwey, PhD *Georgia Institute of Technology*

Deborah Leckband, PhD University of Illinois, Urbana-Champaign

Cato Laurencin, MD, PhD University of Connecticut

William Reichert, PhD Duke University

2014 - 2017 Directors B. Rita Alevriadou, PhD Ohio State University

Dawn Elliott, PhD University of Delaware

Jason Papin, PhD University of Virginia

Cynthia A. Reinhart-King, PhD Cornell University Advancing Human Health and Well Being

8201 Corporate Drive, Suite 1125 Landover, MD 20785-2224 Phone: 301-459-1999 Fax: 301-459-2444 Web: www.bmes.org

BMES Staff

Edward L. Schilling, III Executive Director

Doug Beizer Communications Director

Michele S. Ciapa, MPH, CHES Education Director

Valerie A. Kolmaister Operations and Finance Director

Debra Tucker, CMP Meetings Director

Terry Young BMES Career Connections Director

Elizabeth DaSilva Student Affairs Manager

Lori Saskiewicz Membership Assistant/Registrar

Valencia Logan Meetings Coordinator

Katherine Quintanilla Receptionist/Administrative Assistant

Media Contact

Doug Beizer doug@bmes.org, 410 -814-9564

Future BMES Annual Meetings

October 5-8, 2016 Minneapolis, Minnesota

October 11-14, 2017 Phoenix, Arizona

October 17-20, 2018 Atlanta, Georgia

October 16-19, 2019 Philadelphia, Pennsylvania

October 14-17, 2020 San Diego, California

October 6-9, 202 I Orlando, Florida

SOCIAL MEDIA: BMES 2015

Please share your comments, photos & videos!

facebook

www.facebook.com/BMESociety

twitter

@BMESociety
Please use the hashtag #BMES2015

www.youtube.com/BMESociety

Educating Leaders, Thinkers and Entrepreneurs

@CU_BioE

clemson.edu/coes/bioe

Table of Contents

BMES Leadership & Staff1			
Sponsors			
Welcome			
25th Anniversary			
Meeting Chairs			
Plenary Sessions Pritzker Distinguished Lecture 10 Models for Funding Research 11 NIBIB Lecture / DEBUT Awards Ceremony 12 Prosthetics Advancements: How One Little Dolphin Learned to Swim Again 13 Rita Schaffer Memorial Lecture 14 Diversity Lecture 15			
Diversity Lecture			
Exhibits & Poster Session Floorplan			
General Information			
Presenter Information			
Program Highlights			
Luncheons			
Additional Meetings			
Hosted Receptions			
Student and Early Career Programs			
2015 Award Recipients			
Track Chairs & Reviewers			
Hotel Floorplan			
Convention Center Floorplan			
Program at a Glance			
Schedule at a Glance			

Scientific Program

THURSDAY

Platform Sessions Th-1 (Thursday 8:00-9:30am)	
Platform Sessions Th-2 (Thursday 2:00-3:30pm))
Platform Sessions Th-3 (Thursday 4:30-6:000pm))
Poster Sessions – Thursday	
FRIDAY	
Platform Sessions Fri-1 (Friday 8:00-9:30am))
Platform Sessions Fri-2 (Friday 1:45-2:45pm))
Platform Sessions Fri-3 (Friday 3:00-4:00pm)146-151	
Poster Sessions – Friday	;
SATURDAY	
Platform Sessions Sat-1 (Saturday 8:00am-9:30am)	Ļ
Platform Sessions Sat-2 (Saturday 1:30-3:00pm)	
Platform Sessions Sat-3 (Saturday 3:15-4:45pm)	,
Poster Sessions – Saturday	;

2015 BMES ANNUAL MEETING

Mobile App

GO TO EITHER THE APPLE OR ANDROID STORE AND SEARCH FOR:

Mira Mobile

> Download the free app

 Select BMES2015 from the list of available meetings

> Browse the program by date or session type
> Search keywords
> Search author list
> Add presentations to a custom itinerary
> Click a link to show where a presentation is on a map of the convention center

AUTHOR INDEX

Available on the Mobile App

Available at http://submissions.mirasmart.com/bmes2015/itinerary Copies also available at the registration desk.

BMES 2015 ANNUAL MEETING SPONSORS

Thank you for our sponsors' generous support:

PLATINUM

Virginia Tech Wake Forest University

School of Biomedical Engineering and Sciences

GOLD

SILVER

UF FLORIDA

BRONZE

Thank you to our other supporters:

Grants have been provided by the National Institute of Biomedical Imaging and Bioengineering and the National Science Foundation for the BMES 2015 Annual Meeting.

National Institute of Biomedical Imaging and Bioengineering

Richard T. Hart, PhD

BMES President

Edgar C. Hendrickson Professor and Department Chair BMES Fellow Department of Biomedical Engineering The Ohio State University Columbus, OH

ELCOME TO THE 2015 ANNUAL MEET-ING of the Biomedical Engineering Society! Our Annual Meeting is the premier event for the Society and the field of biomedical engineer-

ing. This year's theme – "Innovation at the Interface" – epitomizes the multidisciplinary approach of biomedical engineers. I urge you to take advantage of the excellent technical program, plenaries, special events and myriad opportunities for professional development and networking.

This year also marks the 25th Anniversary of the Society's Annual Meeting. It was a significant milestone: the Annual Meeting launched an upsurge of interest for both the Society and the general field of BME. Look for artifacts from the first meeting near the registration area and please join in commemorating the anniversary throughout the meeting.

This year features familiar networking opportunities including the Celebration of Minorities in BME Luncheon and the Women in BMES Luncheon. This year also includes new networking opportunities including the LGBT Dessert Social on Wednesday night. And don't miss the Friday Night Bash at the Convention Center where BEDrock will be performing – a band comprised of biomedical engineering faculty and colleagues.

This year's meeting also features a new slate of sessions from the Society's Industry Committee. The special sessions will take place throughout the meeting and will include: Transitioning from Academia to Industry; Engineering to Entrepreneur; and Start-ups and Venture Capital: Navigating the Funding Process and Investment Pitches. The Industry Committee has done a great job putting together the three days of programming, and I encourage you to take advantage of the sessions. These events promote BMES's vision to become the networking connection for academia and industry!

Student and Early Career programing has also been expanded for the 2015 meeting. The programing is specifically tailored for those navigating new careers. Topics include: How to Find a Job in Industry; How to get an Industry, Government or Academia job after your PhD; and Resume Review and Critique. The Annual Meeting Career Fair also returns this year on Friday from 1 pm to 5 pm.

Of special note, a terrific slate of keynote addresses starts Thursday morning with the Pritzker Distinguished Lecture by Martin Yarmush, MD, PhD, Rutgers University. And don't miss the special Friday night talk by Kevin Carroll, one of the researchers who helped develop a prosthetic tail for Winter the dolphin, whose story was featured in the movie *Dolphin Tale*.

In the 25-year history of the Annual Meeting, the Society has established itself as the premier organization for biomedical engineering and bioengineering. BMES has now grown to more than 7,000 members – up over 33% in just the past 4 years! The hard work of our members ensures that BMES will continue to lead the field. Special thanks are due to Conference Chair Steven C. George and Program Chair Angelique Louie, BMES Staff, NSF, NIH, our sponsors and our meeting attendees. My very best wishes to you for an enjoyable and productive meeting!

Richard T. Hart, PhD BMES President

Year

CELEBRATING TWENTY-FIVE YEARS OF BMES ANNUAL MEETINGS!

Attendees	Location
109	BLACKSBURG, VA
55 I	CHARLOTTESVILLE,VA
410	SALT LAKE CITY, UT
568	MEMPHIS, TN
679	TEMPE, AZ
750	BOSTON, MA
67	STATE COLLEGE, PA
800	san diego, ca
I,326	CLEVELAND, OH
2,118	ATLANTA, GA
1,041	SEATTLE, WA
I,378	DURHAM, NC
I,899	HOUSTON, TX
1,727	NASHVILLE, TN
2,000	PHILADELPHIA, PA
2,189	BALTIMORE, MD
2,450	CHICAGO, IL
2,275	los angeles, ca
I,972	st. louis, mo
2,598	PITTSBURGH, PA
3,035	AUSTIN, TX
3,004	HARTFORD, CT
3,901	ATLANTA, GA
3,247	SEATTLE, WA
3,616	san antonio, tx
+++	

HE FIRST PRACTITIONERS OF what became the discipline of biomedical engineering were systems physiologists and engineers, the latter largely trained in the traditional engineering disciplines. Both groups saw the value of more quantitative approaches to medicine and biology, and both were critically important to the creation of the BMES. However, each favored a different venue to present their work. Systems physiologists attended the Federation of American Societies for Experimental Biology (FASEB) annual meeting (since renamed "Experimental Biology") in the spring. BMES was a guest of the American Physiological Society at FASEB, where it held its annual business meeting. Most of the engineers who were to become active in BMES presented their work at the fall Annual Conference on Engineering in Medicine and Biology (ACEMB). Over time, BMES became a major contributor to the ACEMB program.

Although these meetings provided platforms for researchers in the emerging discipline of biomedical engineering, the presence of two venues, one more biologically oriented and the other with an engineering orientation, inhibited interaction between the two populations. Meanwhile, interdisciplinary competition in the engineering world during the 1980's compromised the financial viability of the ACEMB, the last of which was held in 1988. It became clear that the impending loss of a platform for a growing number of interdisciplinary engineers, and the unhelpful distinction between engineers and quantitative physiologists, could both be addressed if BMES took the lead and ran a meeting that would welcome both populations. Furthermore, such a meeting would establish the Society as the society for all biomedical engineers and, in the longer term, establish by example biomedical engineering as a distinct discipline within engineering (see accompanying rationale).

The BMES President in 1988-9 (terms were for a single year at that time) was Mort Friedman, who created a Special Committee to explore the possibility that our Society could independently manage a technical meeting, distinct from FASEB, that would underline the broader aspects of our field. The committee met at the final ACEMB and was chaired by President-Elect H.K. Chang. In January 1989, the Special Committee filed a report recommending that BMES go forward with its first Annual Fall Meeting. As President of BMES from 1989-90, H.K. advanced the process in an important way by obtaining an essential grant from the Whitaker Foundation. The President of our Society in 1990-1 was Dan Schneck, who took the process the rest of the way, serving as Conference Chair of the first standalone meeting of BMES, in Blacksburg, Virginia, in October 1990.

Steven C. George, MD, PhD

Annual Meeting Chair, BMES 2015 Annual Meeting

Department Chair & Professor Department of Biomedical Engineering Washington University in St. Louis St. Louis, MO **ETACEANS. SEA. SCIENCE.** We are excited to welcome you to the 2015 BMES meeting in Tampa, Florida!

This year's theme is Innovating at the Interface, which celebrates the highly interdisciplinary and collaborative nature of biomedical engineering. To highlight these types of interactions, in this year's program you will see the denotation "DREAMTEAM & CENTER" and Centers" next to some of the abstracts. These are works that self-identified to consist of teams of three or more principal investigators/labs working in collaboration. Although we are highlighting teams of >3 Pls, many other works presented may consist of collaborations between 2 Pls. Celebrate the strength of team-work by making note of successful collaborations and think about how you could enhance your own work through fruitful alliances.

As befitting the sunshine state, the program this year is full of bright gems. We have two fascinating Plenary Sessions: The Thursday night Plenary features three representatives from major funding agencies (NSF, NIH, Stand Up to Cancer) speaking on the future of funding. Come hear about these different funding models and where the leadership sees trends going in the future. Stand Up to Cancer is a relatively new funding agency with a unique funding model that focuses on "DREAM TEAM & CENTER". Come to the plenary to find out more about it! Friday night we have a special treat with speaker Kevin Carroll, engineer of the prosthetic fin worn by Winter the dolphin. Winter lost her tail fin when she was entangled in a crab trap line at only 3 months old. Though her tail had to be amputated, she was able to swim again with the aid of a prosthetic tail. Hear Dr. Carroll speak about advancement in human rehabilitation engineering as well as how these advancements can aid other species.

You will also see several technical sessions that are jointly listed between Tracks in the Program-at-a-Glance (beginning page 229) in order to highlight and promote the cross-disciplinary nature of research.

There are several new features to this years meeting. First, this year in the Exhibit Hall is the "Meet the Expert" theater. Throughout the meeting, experts from various disciplines and careers will be featured, who will give a more in depth view of a variety of BME topics and potential career paths. Programming for the theater can be found on page 74 and 132. Drop by and meet an expert! Second, there are cash awards for the winners of the "Best Poster" competition. This year there will be five awards, and in addition to the cash award, each winner will receive a certificate and recognition on the BMES website. Third, we are having a series of "Student and Early Career" sessions that will cover a range of topics from how to get your first job in industry to protecting intellectual property. And, of course, don't forget the BMES BASH on Friday evening.

This meeting also would not be possible without your participation. There were a recordbreaking 2,885 abstract submissions this year. The efforts and dedication of our many volunteers are truly appreciated. From the Track Chairs, Abstract Reviewers/Session Chairs to the student volunteers at the meeting, it takes a village and we want to take this moment to acknowledge all of the volunteers—be sure to thank one when you see them around the meeting! Big thanks also to the heroes behind the scenes such as Debby Tucker who is the force behind all aspects of the administration of the meeting, also Michele Ciapa and Ed Schilling who work tirelessly to garner the financial support required to offer the meeting and our many programmed events and activities, and the other BMES staff dedicated to provided quality programs for our students and early career members.

Don't forget to enjoy Florida! Winter the dolphin lives at the Florida Clearwater Aquarium, about an hour from the Tampa Convention Center. You might think about scheduling a visit while you are in Florida. Manatee viewing opportunities are also possible around the state. Soak up the science (see some of our recommended highlights below), then soak up the sea and sun (but wear SPF!)!

At a glance meeting highlights from the Chairs:

- Meet the Expert Theater (Exhibition Hall)
- Thursday night plenary on "The Future of Funding"
- Friday night plenary featuring Kevin Carroll, developer of the prosthetic dolphin tale
- DREAM TEAM & CENTER and Centers talks
- Student and Early Career workshops
- BMES BASH Friday, October 9, 6:30 9:00 PM Convention Center
- Women in BME Luncheon Friday, October 9, 12:15 1:30 PM Convention Center
- Celebration of Minorities Luncheon *Thursday, October 8, 12:30 1:45 PM Convention Center*
- BMES-NSF Special Session on Research in Biomedical Engineering and Grant Writing -*Friday, October 9, 1:45 - 5:00 PM - Convention Center*
- ABET workshop Thursday, October 8, 8:00 9:30 AM Convention Center
- Tech Transfer and Licensing Best Practices in Transferring Technologies from Academia and the Clinic Into Industry - Friday, October 9, 3:15 - 5:00 PM - Convention Center
- Start-ups and Venture Capital: Navigating the Funding Process and Investment Pitches -*Friday, October 9, 2:00 - 3:00 PM - Convention Center*
- Biomedical Engineering Technology for the Elimination of Health Disparities *Thursday, October 8, 2:00 – 4:00 PM - Convention Center*
- Get involved: attend a BMES committee meeting, see meeting times posted in program
- Support undergraduate research and attend the Undergraduate Research, Design, and Leadership sessions on Saturday
- Visit the Exhibit Hall
- Enjoy the sea!

Angelique Y. Louie, PhD

Program Chair, BMES 2015 Annual Meeting

Department of Biomedical Engineering University of California, Davis Davis, CA

BMES ROBERT A. PRITZKER DISTINGUISHED LECTURE

Pritzker Distinguished Lecturer:

Martin L. Yarmush, MD, PhD

Paul and Mary Monroe Chair and Distinguished Professor of Biomedical Engineering, Rutgers University, and Director of the Center for Engineering in Medicine at the Massachusetts General Hospital/Harvard Medical School.

THURSDAY OCTOBER 8, 2015 10:30AM BALLROOM BC TAMPA CONVENTION CENTER

Emerging Technologies and Biomedical Engineering Innovation

HIS PRESENTATION WILL COVER a diverse set of key topics that have the potential to make a real difference in biomedical research and healthcare in the coming decades. The discussion of certain "hot" fields (e.g. organs-on-a-chip, stem cells, tissue engineering, synthetic biology, personalized medicine, nanobiotechnology, etc.) will attempt to distinguish between what will likely be within the realm of scientific advancement and technology development, and not merely fodder for "scientific entertainment.

Martin L. Yarmush is an internationally recognized bioengineer and translational scientist whose laboratory has been a pioneer and leader in multiple fields including: tissue engineering and regenerative medicine, applied immunology and biotechnology, BioMEMS and nanotechnology, and metabolic engineering and functional genomics. Dr. Yarmush currently serves as the Paul and Mary Monroe Chair and Distinguished Professor of Biomedical Engineering at Rutgers University, and Director of the Center for Engineering in Medicine at the Massachusetts General Hospital/Harvard Medical School. Over the last 30 years, Dr. Yarmush has: 1) published more than 450 peerreviewed journal articles, 2) has co-authored more than 50 patents and patent applications, 3) has mentored over 130 postdoctoral fellows and graduate students, and 4) has taught a spectrum of courses from Molecular Genetics and Immunology, to Thermodynamics and Transport Phenomena, to Innovation and Entrepreneurship for Science and Technology and Bioengineering in the Biotechnology and Pharmaceutical Industries. More than 70 of his former fellows have

gone on to successful careers in academia both here and abroad, while many others have gone on to become leaders in the pharmaceutical, biotechnology and medical device industries. In addition to his teaching and research achievements, Dr. Yarmush has contributed to the advancement of science and engineering through service as: (1) a member of NIH, NSF, FDA, and Office of Technology Assessment review panels; (2) an advisory board member for foundations (e.g. the Whitaker Foundation, Juvenile Diabetes Foundation, and Doris Duke Foundation), academic-based centers, and industrial firms; and 3) an editor of several science and engineering journals. A frequent invited speaker at major conferences and institutions, and winner of over 25 local and national awards, Dr. Yarmush's research "pushes the envelope" on several healthcare technology frontiers. He has been credited with many pioneering scientific and technological advances including: innovative cell culture systems, stem cell therapies, dynamic cell and tissue microsystems, point-of-care devices, bioartificial organs development, targeted therapies for tumors and infections, recombinant protein purification techniques, and recombinant retrovirus production and purification techniques. Some of these developments have resulted in licensed patents and the formation and development of > 10 companies based on these advances. Dr. Yarmush received his BA from Yeshiva University, his MD degree from Yale University, and completed PhD work at The Rockefeller University in biophysical chemistry and at MIT in chemical engineering.

SPECIAL PLENARY SESSION | THURSDAY

Future of Funding

THURSDAY OCTOBER 8, 2015 6:15PM - 7:30PM BALLROOM BC TAMPA CONVENTION CENTER

This special plenary session is about the funding landscape in biomedical research. This session will discuss the future of funding as well as innovative approaches to funding. The speakers bring their unique expertise to the discussion.

SESSION CHAIR Steven C. George, PhD Washington University, St. Louis, MO

SPEAKER Dr. Pramod Khargonekar Assistant Director, Engineering Directorate National Science Foundation

SPEAKER Dr. Sung Poblete President and CEO Standup 2-Cancer (SU2C)

SPEAKER Dr. Jerry Lee Deputy Directory CSSI National Cancer Institute

NIH NIBIB LECTURE

NIH National Institute of Biomedical Imaging and Bioengineering Lecture:

Wendy M. Murray, PhD

Associate Professor, Northwestern University Departments of Biomedical Engineering, Physical Medicine & Rehabilitation, and Physical Therapy & Human Movement Sciences Research Health Scientist, Edward Hines, Jr. VA Hospital, Research Scientist Rehabilitation Institute of Chicago

FRIDAY, OCTOBER 9, 2015 10:30AM BALLROOM BC TAMPA CONVENTION CENTERR

Advances in Biomechanical Simulation of Complex Hand Motion

ERSONS WITH RECENT HAND amputations expect modern hand prostheses to function like intact hands. Because of this, advances in mechanical hardware are directed toward providing functionality comparable to the intact human hand. Despite such advances, the performance of sophisticated hand prostheses remains limited by the ability to control them via physiological (e.g., electromyographic) signals sensed from the user.

Currently, my laboratory leads a NIBIB-funded study with the longterm objective of advancing biomechanical simulation of the hand and wrist in order to facilitate control algorithms capable of predicting the motions that would occur in an intact hand given the electromyographic (EMG) signals measured from the residual muscles of an amputee's forearm. Given the paucity of experimental data describing complex hand motions, in general, we first developed experimental protocols that enabled.

Dr. Murray is an Associate Professor at Northwestern University with appointments in the Departments of Biomedical Engineering, Physical Medicine and Rehabilitation, and Physical Therapy and Human Movement Sciences. She is the Director of the Applied Research in Musculoskeletal Simulation (ARMS) laboratory at the Rehabilitation Institute of Chicago, where she is appointed as a Research Scientist; she also holds an appointment as a Research Health Scientist at the Edward Hines VA Medical Center. Dr. Murray received her Bachelor of Science in Mathematics from the University of Notre Dame in 1990. She obtained her M.S. and Ph.D. in Biomedical Engineering from Northwestern University. She completed post-doctoral training in Biomedical Engineering at the Cleveland FES Center at Case Western Reserve University, where she was named an NIDRR Mary Switzer Fellow, and was also awarded post-doctoral funding from the Paralyzed Veterans of America. From 2000 to 2006, she developed an NIH-funded research program as an independent investigator for the Department of Veterans Affairs at the VA Palo Alto. She joined the Northwestern faculty in 2007.

The foundation for Dr. Murray's work is the development of biomechanical models that accurately represent the mechanical actions of the upper extremity muscles. The models and corresponding anatomical databases that Dr. Murray has shared with the scientific community have been cited hundreds of times. The main thrust of her current research is the application of these models to better understand and, ultimately, to help improve function of the disabled upper limb. Her work has relevance over a broad scope, including basic motor control, the design of control systems for exoskeletons and upper limb prosthetics, restoration of hand and arm function following cervical spinal cord injury, rehabilitation of hand and arm function following stroke, orthopaedic interventions for osteoarthritis, and prevention of injuries in baseball pitching. In addition to the NIH and VA investigator-initiated award funding that has enabled her research program to thrive, the trainees in her program have been awarded pre- and post-doctoral fellowships from NIH, the Neilsen Foundation, and the American Heart Association. She served as co-Track Chair of the Orthopaedics and Rehabilitation Engineering Track at the 2014 Biomedical Engineering Society Annual Meeting, and Program Chair of the 2011 Annual Meeting of the American Society of Biomechanics. She is a member-at-large of the Executive Board of the US National Committee on Biomechanics and is also a member of the Multi-Scale Modeling Consortium, sponsored by the Interagency Modeling and Analysis Group.

Kevin Carroll, MS, CP, FAAOP

Vice President of ProstheticsHanger Clinic

FRIDAY, OCTOBER 9, 2015 5:15PM - 6:15PM BALLROOM BC TAMPA CONVENTION CENTER

Prosthetics Advancements: How One Little Dolphin Learned to Swim Again

EVIN CARROLL, MS, CP, FAAOP is an accomplished healthcare professional with over 30 years as a practicing prosthetist, visionary researcher, and skilled educator. As Vice President of Prosthetics for Hanger Clinic, Carroll travels nationally and internationally presenting scientific symposiums and managing clinics for difficult prosthetic cases.

Carroll is an American Board Certified Prosthetist and has been named a Fellow of the American Academy of Orthotics and Prosthetics, one of the highest honors of the profession. He is the codeveloper of the patented Hanger ComfortFlex[™] Socket System and the first prosthetic tail for a dolphin, the story of which debuted September 23, 2011 in a 3D feature film titled, *Dolphin Tale* starring Morgan Freeman, Ashley Judd, and Harry Connick, Jr. He has appeared on news broadcasts such as *Dateline, 20/20, CBS Early Show, NBC Nightly News,* ABC's *Good Morning America*, and the *Discovery Channel*.

RITA SCHAFFER MEMORIAL LECTURE

BMES 2015 Rita Schaffer Memorial - Young Investigator Lecturer:

Jonathan F. Lovell, PhD

Assistant Professor of Biomedical Engineering State University of New York at Buffalo

SATURDAY, OCTOBER 10, 2015 10:30AM BALLROOM BC TAMPA CONVENTION CENTER

Engineering Self-Assembled Porphyrin Nanoparticles for Biomedical Applications in Imaging and Drug Delivery

PORPHYRINS HAVE PLAYED NUMEROUS historic roles in development of approaches to the diagnosis and treatment of diseases, in particular based on how these molecules interact with light. This lecture will cover some of our recent efforts to develop new self-assembled materials from porphyrins and related molecules and how these nanomaterials have potentially advantageous properties for disease diagnosis and therapy. In particular, several recently reported nanoscale systems will be discussed that are being investigated preclincally: First, porphyrin nanovesicles have been developed that can release drugs in response to red laser irradiation, leading to enhanced drug deposition in irradiated tumors. Second, these porphyrin nanovesicles can be chelated with cobalt for simple functionalization using polyhistidine ligands. Finally, a family of highly light-absorbing nanoparticles have been developed for safe and real-time gastrointestinal imaging following oral administration.

JONATHAN F. LOVELL is an assistant professor of biomedical engineering at the State University of New York at Buffalo. He is a faculty of both the School of Engineering and Applied Sciences, and the School of Medicine and Biomedical Sciences. Dr. Lovell received a Bachelor of Applied Sciences in Systems Design Engineering from the University of Waterloo in 2004. He went on to a M.S. degree in Biochemistry at McMaster University working in the group of

Dr. David Andrews where he developed liposomal systems to study membrane permeabilization during cell death. Dr. Lovell pursued doctoral studies in biomedical engineering at the Institute of Biomaterials and Biomedical Engineering at University of Toronto. Working under Dr. Gang Zheng, Dr. Lovell discovered new liposome-like nanovesicles formed from porphyrin-phospholipids conjugates, which exhibit unique characteristics useful for biomedical imaging and therapy. In 2012, Dr. Lovell received his Ph.D. and joined the University at Buffalo faculty the same year. In 2013, Dr. Lovell was awarded an Early Independence Award from the National Institutes of Health. To date, he has co-authored over 40 peer-reviewed journal publications and 7 patents. His group at University at Buffalo has published numerous works involving the engineering of porphyrin-based materials, in journals including Advanced Materials, Nature Chemistry, Nature Communications and Nature Nanotechnology. Dr. Lovell is a council member and newsletter editor for the American Society for Photobiology, and is a member of the American Chemical Society as well as BMES. Dr. Lovell is on the editorial board of several journals including Theranostics and is a senior editor for the Journal of Interdisciplinary Nanomedicine. He has participated in numerous federal and international grant review panels. His main research interests involve developing clinically translatable nanoplatforms for improving disease diagnosis and treatment.

BMES established this award in 2000 to honor Rita M. Schaffer, former BMES Executive Director. Rita's gift of her estate, along with contributions from her family, friends, and associates, has enabled BMES to create the Rita Schaffer Young Investigator Award, which includes the Rita Schaffer Memorial Lecture. The City College of New York Diversity Lecture:

Department of Biomedical Engineering The City College of New York

SATURDAY, OCTOBER 10, 2015 11:15AM BALLROOM BC TAMPA CONVENTION CENTER

Biomedical Engineering at The City College of New York: Experiences in Diversity and Success

HE DEPARTMENT OF BIOMEDICAL ENGI-NEERING at The City College of New York was created in 2002 with a mission that placed equal emphasis on academic excellence and diversity. We are uniquely positioned for this mission, given the rich legacy of City College and its historical core commitments to offer an affordable education and to recruit and support a diverse student population, reflective of both New York City and the global society in which we live. We will discuss our approaches, failures and successes en route to achieving a faculty and student body diversity that is extraordinary among engineering programs in the United States.

DEPARTMENT OF BIOMEDICAL ENGINEERING AT THE CITY COLLEGE OF NEW YORK

Founded originally in 1847 as the Free Academy of the City of New York, the mission of The City College of New York (CCNY) was and remains: "To provide the children of immigrants and the poor access to free higher education based on academic merit alone." The CCNY Department of Biomedical Engineering has 13 faculty members, with research concentrations in Cardiovascular Biomechanics, Musculoskeletal Biomechanics, Neural Engineering and Tissue Engineering & Biomaterials. Among our faculty are members of the National Academy of Engineering, National Academy of Sciences, Institute of

Lecture to be presented by: John Tarbell, PhD CUNY and Wallace Coulter Distinguished Professor of Biomedical Engineering Medicine and 8 Fellows of the American Institute of Medical and Biological Engineering. We are also among the most diverse faculties in the country; 7 of our 12 faculty are women and/or under-represented minorities.

Education: The PhD program in Biomedical Engineering at CCNY started in 1999. In the most recent NRC Rankings of PhD programs, it was ranked 1st in diversity, 7th in overall research productivity and among the top 20 programs in overall quality. Our undergraduate program started in 2006 and has rapidly grown into one of the most successful in the NYC area. True to our CCNY mission, diversity and outreach remain our priority. The New York Center for Biomedical Engineering (NYCBE) The CCNY Department of Biomedical Engineering also anchors the NYCBE - a consortium established in 1994 to serve as a center for promoting interactions between CCNY and partner clinical institutions in NYC (Albert Einstein College of Medicine, Hospital for Special Surgery, Weill Medical College of Cornell University, Mount Sinai School of Medicine, New York University Schools of Medicine and Dentistry, Memorial Sloan-Kettering Cancer Center, CUNY School of Medicine). The NYCBE enables research and educational collaborations, program and training grants, and provides opportunities for CCNY BME students in research laboratories at partner institutions.

Our faculty: Gilda Barabino, PhD, Marom Bikson, PhD, Luis Cardoso, PhD, Jacek Dmochowski, PhD, Susannah Fritton, PhD, Bingmei Fu, PhD, Steven Nicoll, PhD, Lucas Parra, PhD, Mitchell Schaffler, PhD, John Tarbell, PhD, Maribel Vazquez, PhD, Sihong Wang, PhD, Sheldon Weinbaum, PhD

2016 BMES/FDA Frontiers in Medical Devices Conference

May 22-25, 2016, Washington DC

The College Park Marriott Hotel and Conference Center at the University of Maryland

The Biomedical Engineering Society and the US Food and Drug Administration have formed a partnership to co-host the BMES/ FDA Frontiers in Medical Devices Conference, a meeting for researchers, engineers, clinicians and other professionals in the fields of designing, building and using medical devices.

Meeting Co-chairs

Tina Morrison

Regulatory Advisor of Computational Modeling for Center for Devices and Radiological Health, U.S. Food and Drug Administration

Jeff Bischoff

Zimmer, Inc

Registration opens March 2, 2016

Earlybird registration deadline April 19, 2016

BMES Medical Devices

SPECIAL INTEREST GROUP

For more information

www.bmes.org/ meddevicesregistration

Please visit: www.bmes.org/meddevicessig for additional information about the meeting.

ANNUAL REVIEWS ** SPARK A CONNECTION

Annual Review of Biomedical Engineering

bioeng.annualreviews.org • Volume 17 • September 2015

Editor: Martin L. Yarmush, Rutgers University Center for Engineering in Medicine, Massachusetts General Hospital

The Annual Review of Biomedical Engineering, in publication since 1999, covers the significant developments in the broad field of biomedical engineering, including biomechanics, biomaterials, computational genomics and proteomics, tissue engineering, biomonitoring, health care engineering, drug delivery bioelectrical engineering, biochemical engineering, and biomedical imaging topics.

Congratulations to Editor Martin L. Yarmush—the 2015 recipient of the Pritzker Distinguished Lectureship Award. Come by booth #510 on Thursday to meet Dr. Yarmush and enjoy a celebratory treat!

TABLE OF CONTENTS:

- Advances in Antibody Design, Kathryn E. Tiller, Peter M. Tessier
- Biological Soft Robotics, Adam W. Feinberg
- *Biomaterial Strategies for Immunomodulation,* Nathan A. Hotaling, Li Tang, Darrell J. Irvine, Julia E. Babensee
- *Biosensors for Cell Analysis,* Qing Zhou, Kyungjin Son, Ying Liu, Alexander Revzin
- Coherent Raman Scattering Microscopy in Biology and Medicine, Chi Zhang, Delong Zhang, Ji-Xin Cheng
- *Digital Microfluidic Cell Culture,* Alphonsus H.C. Ng, Bingyu Betty Li, M. Dean Chamberlain, Aaron R. Wheeler
- Hamiltonian Systems and Optimal Control in Computational Anatomy: 100 Years Since D'arcy Thompson, Michael I. Miller, Alain Trouvé, Laurent Younes
- High-Throughput Assessment of Cellular Mechanical Properties, Eric M. Darling, Dino Di Carlo
- Image-Based Predictive Modeling of Heart Mechanics, V.Y. Wang, P.M.F. Nielsen, M.P. Nash
- Large-Volume Microfluidic Cell Sorting for Biomedical Applications, Majid Ebrahimi Warkiani, Lidan Wu, Andy Kah, Ping Tay, Jongyoon Han
- *Microfluidic Sample Preparation for Medical Diagnostics,* Francis Cui, Minsoung Rhee, Anup Singh, Anubhav Tripathi

Access all Annual Reviews journals via your institution at www.annualreviews.org.

 $\mathbf{\hat{R}}$

ANNUAL REVIEWS | Connect With Our Experts 650.493.4400/800.523.8635 (us/can) service@annualreviews.org

- *Modeling Signaling Networks to Advance New Cancer Therapies,* Julio Saez-Rodriguez, Aidan MacNamara, Simon Cook
- *Molecular-Scale Tools for Studying Mechanotransduction,* Andrew S. LaCroix, Katheryn E. Rothenberg, Brenton D. Hoffman
- Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems, Juan José Vaquero, Paul Kinahan
- Synergizing Engineering and Biology to Treat and Model Skeletal Muscle Injury and Disease, Nenad Bursac, Mark Juhas, Thomas A. Rando
- *The Mechanobiology of Aging,* Jude M. Phillip, Ivie Aifuwa, Jeremy Walston, Denis Wirtz
- Viral Vectors for Gene Therapy: Translational and Clinical Outlook, Melissa A. Kotterman, Thomas W. Chalberg, David V. Schaffer

EXHIBITS

BOOTH # 604

EXHIBITS

Aldrich Materials Science

 3050 Spruce Street

 St. Louis, MO 63103

 Phone:
 314-771-5765

 Email:
 logan.heinrich@sial.com

 Web:
 www.sigmaaldrich.com/matsci

 Aldrich Materials Science, a strategic technology initiative of Sigma

 Aldrich, offers a range of performance materials for biomedical markets.

 Through our Polymer Center of Excellence, we enable innovation

information is available at www.sigma-aldrich.com/matsci

BOOTH # 510

Annual Reviews

4139 El Camino Way Palo Alto, CA 94306 Phone: 650-493-4400 Email: mdruker@annualreviews.org Web: www.annualreviews.org Annual Reviews journals intelligently sur

Annual Reviews journals intelligently synthesize the overwhelming volume of scientific literature to advance your research further, faster. Annual Reviews journals offer insightful reviews written by experts in 46 disciplines in the Biomedical, Life, Physical, and Social Sciences. Stop by booth #510 and learn more about Annual Review of Biomedical Engineering.

through new additions to our materials portfolio, collaborations, tech-

nology licensing, custom products, and contract manufacturing. More

school of biological and health systems engineering sbhse.engineering.asu.edu

Cutting-edge discoveries in

biomedical imaging,

biosensors and bio-instrumentation, molecular, cellular and tissue engineering, neural/rehabilitation engineering, and synthetic biology and systems bioengineering

Faculty and students at the School of Biological and Health Systems Engineering in the Ira A. Fulton Schools of Engineering are designing the future of medicine, physiology and biology.

Learn more about our growing community of world-class faculty at sbhse.engineering.asu.edu

visit us at booths 415 and 417

BOOTHS # 415 / 417

Arizona State University School of Biological and Health Systems Engineering P.O. Box 879709

Tempe, AZ 85287-9709 Phone: 480-965-3028 Email: sbhse@asu.edu Web: sbhse.engineering.asu.edu

The mission of the School of Biological and Health Systems Engineering at ASU is to create novel solutions to improve human health through research, education, and service to the community. The faculty in SBHSE has a wide range of research expertise with strengths in the following research areas: imaging, biosensors and instrumentation, molecular, cellular and tissue engineering, neural and rehabilitation engineering, synthetic biology and systems bioengineering.

BOOTH # 420

Binghamton University Department of Bioengineering

4400 Vestal Parkway East Binghamton, NY 13902 Phone: 607-777-5238

Email: gmahler@binghamton.edu

Web: www.binghamton.edu/bioengineering

The Binghamton University Department of Biomedical Engineering provides a state-of-the-art, affordable education. We train the next generation of biomedical engineers, cultivate leaders, and foster entrepreneurship through the integration of engineering principles, medical science, and biology towards an improved understanding of biophysical phenomena, healthcare systems, disease prevention, diagnostics, and treatment.

BOOTH # 402

Biomomentum Inc.

970 Michelin Street, Suite 200 Laval, Quebec H7L 5C1 Canada Phone: 450-667-2299 Email: info@biomomentum.com

Web: www.biomomentum.com

Biomomentum commercializes the Mach-ITM, a configurable mechanical tester capable of performing compression, tension, shear, and torsion for precise characterization of cartilage and soft materials. The Mach-ITM is the only tester that can automatically map the mechanical properties of an entire sample's surface in 3D. Biomomentum also offers biomechanical testing services.

BOOTH # 800 BIOPAC Systems, Inc.

42 Aero Camino Goleta, CA 93117 Phone: 805-685-0066 Email:: info@biopac.com Web: www.biopac.com

Complete data acquisition and analysis solutions for biomedical engineering applications. BIOPAC is trusted by thousands of labs and cited in over 18,000 scientific articles. Wireless and wearable solutions: Mobita 32-CH, BioNomadix ECG, EEG, EMG, EOG, NICO, GSR, Pulse, Resp., and more! Powerful AcqKnowledge software has automated analysis and customizable display.

BOOTH # 421

Boston University Biomedical Engineering

44 Cummington Mall, Room 220

Boston, MA 02215 Phone: 617-353-5759 Email: christen@bu.edu Web: www.bu.edu/bme

The Boston University Department of Biomedical Engineering is one of the largest and oldest departments of its kind in the country.We attract exceptional students to our BS, MEng, MS and PhD degree programs, which are known for their highly quantitative approach.We have strengths in numerous research areas including biomechanics, neural engineering, biomedical optics, respiratory dynamics, tissue engineering, biomaterials and synthetic biology.We boast a wealth of research resources, and have strong ties with the BU School of Medicine, and other top medical research centers in the Boston area.

BOOTH # 816

Brown University Center for Biomedical Engineering

171 Meeting Street Providence, RI 02912 Phone: 401-863-6778 Email: bme@brown.edu Web: www.brown.edu/bme

The Center for Biomedical Engineering at Brown University features an interdisciplinary approach in four complementary research areas: Neuroengineering, biosensors/bioplatforms, mechanobiology, and tissue engineering/regenerative medicine. The program offers BS, MS, and PhD degrees and is distinguished by its research and strong collaborative connections between academic science/engineering, clinical medicine, and industry.

BOOTH # 404

Cambridge University Press

32 Avenue of the Americas New York, NY 10013 Phone: 212-924-3900 Email: jmurphy@cambridge.org Web: www.cambridge.org/us/academic

Visit the Cambridge University Press booth to save 20% on books including: Biomedical Engineering 2/e by Mark W. Saltzman, Biodesign 2/e by Yock et al. and Handbook of Bioelectronics by Sandro Carrara and Krzysztof Iniewski. Editor Dr. Michelle Carey will be available to talk about book publication services with Cambridge University Press.

BOOTH # 524

Carnegie Mellon University

5000 Forbes Avenue Doherty Hall 2100 Pittsburgh, PA 15213 Phone: 412-268-6222 Email: yuliwang@andrew.cmu.edu Web: www.bme.cmu.edu

The Department of Biomedical Engineering at Carnegie Mellon is built upon a long tradition of interdisciplinary research across departmental borders. Its decades-old research program emphasizes a collaborative network that balances four synergistic areas: basic engineering principles of living cells and tissues, engineering tools for biomedical research, interface between living and artificial materials, and clinical applications of biomedical engineering. Training programs encourage students to expand their vision and prepare them for a wide range of careers from academic research in basic sciences, to engineering entrepreneurship, to medical care.

BOOTH # 300

Case Western Reserve University

10900 Euclid Avenue Wickenden 309 Cleveland, OH 44106 Phone: 216-368-4094 Email: bmedept@case.edu Web: http://bme.case.edu/

The Department of Biomedical Engineering at Case Western Reserve University offers distinctive programs ranging from the B. S. degree through the Ph.D. degree, including our innovative M.D./Ph.D. degree, M. D./M.S. degree, and our Biomedical Entrepreneurship program. Cuttingedge research thrusts include: biomaterials and tissue engineering, neural engineering and neuroprostheses, biomedical imaging and sensing, transport and metabolic engineering, biomechanics, and targeted therapeutics.

BOOTH # 804

CD-adapco

60 Broad Hollow Road Melville, NY 11747 Phone: 671-629-3132 Email: lenny.odonnell@cd-adapco.com Web: www.cd-adapco.com

CD-adapco is the world's largest independent CFD-focused provider of engineering simulation software, support and services. It has over 30 years of experience in delivering industrial strength engineering simulation to a wide range of industries and application.

Ph.D. Program

- · Students receive full tuition support and a living stipend.
- Thesis research starts within one month of matriculation, allowing immediate immersion in research.
- Progress evaluation with faculty feedback is conducted each semester to ensure timely graduation (average time to degree < 4.5 years).
- CMU offers a highly collaborative environment to promote interactions across disciplines.

Research-Option M.S. Program

- \cdot Designed to provide intensive research experience leading to publishable results.
- Typically completed in 16-21 months.

Practicum-Option M.S. Program

- · Designed to facilitate career transition and advancement.
- · Accelerated program typically completed in 9-16 months.
- Students may take a course with a substantial project component or perform a project with clinical exposure at a local medical center to meet the practicum requirement
- Students have the option to apply to a dual M.S. program with the Engineering & Technology Innovation Management (E&TIM).

http://www.bme.cmu.edu

BOOTH # 310

Cell Resource Core Harvard Medical School Massachusetts General Hospital

51 Blossom Street, Room 220 Boston, MA 02114 Phone: 857-250-7634 Email: contact@cellresourcecore.org Web: www.cellresourcecore.org Cell Resource Core at Massachusetts General

Cell Resource Core at Massachusetts General Hospital is a nonprofit company that specializes in isolating primary hepatocytes using techniques that have been developed in-house over the last 20 years. Comprised of a team of highly capable MDs, PhDs, and technicians, we are ready to answer any questions you may have.

BOOTH # 715

CellScale Biomaterials Testing

3B- 572 Weber Street N. Waterloo, Ontario N2L 5C6 Canada Phone: 519-342-6870 Email: info@cellscale.com Web: www.cellscale.com

CellScale manufactures biomaterial and mechanobiology test systems. Our mechanical test systems are specifically designed for biomaterials testing and incorporate temperature-controlled media baths, image capture and analysis software, and a range of gripping mechanisms. Our cell culture systems enable mechanically active environments in 2D or 3D.

BOOTH # 708

Center for Engineering in Medicine Massachusetts General Hospital Harvard Medical School

51 Blossom Street Boston, MA 02114 Phone: 617-726-3474 Email: cemmail@sbi.org Web: www.cem.sbi.org

The CEM at MGH/HMS trains investigators in fundamentals and applications of BME. Established in 1995 and catalyzed by a Whitaker Foundation Development Award, the CEM has been sustained by well over \$150M in funding over the past 10 years, and has garnered an international reputation for its interdisciplinary research thrusts and training of postdocs and grad students for academic and high impact industrial careers.

BOOTH # 920

The City College of New York Biomedical Engineering

 160 Convent Avenue

 New York, NY
 10031

 Phone:
 212-650-6707

 Email:
 pcupid@ccny.cuny.edu

 Web:
 bme.ccny.cuny.edu

The City College of New York – the founding college of CUNY. Founded in 1847, it has produced nine Nobel Prize winners and ranks seventh in the number of alumni who have been elected to the National Academy of Sciences. The Biomedical Engineering Department was established in 2002. BME at CCNY: Biomaterials/nanotechnology; Cardiovascular Engineering; Musculoskeletal Biomechanics; and Neural Engineering.

BOOTH # 625

Clemson University Department of Bioengineering 301 Rhodes Hall

Clemson, SC 29670 Phone: 864-656-7276 Email: mariam@clemson.edu Web: www.clemson.edu/ces/bioe

Adding 30,000 sq. ft. of research labs and innovation space for business partnership, our newest facility is CUBEInC, Clemson University Biomedical Engineering Innovation Campus, where student-facultyclinician teams develop and test emerging technologies. Our continuing commitment to excellence in undergraduate and graduate education assures degree market value and stimulates economic development.

BOOTH # 215

Colorado School of Mines

I 500 Illinois Street Golden, CO 8040 I Phone: 303-273-3720 Email: cdjacobs@mines.edu Web: www.chemeng.mines.edu

The Chemical & Biological Engineering Department at Colorado School of Mines is a dynamic, exciting environment for research and higher education. Research areas include renewable energy, soft materials, biomedical devices, and thin-film materials. Golden, Colorado is a gorgeous place to work and play with 300 days of sunshine a year.

BOOTHS # 221 / 223

Columbia University Department of Biomedical Engineering

351 Engineering Terrace 1210 Amsterdam Avenue New York, NY 10025 Phone: 212-854-6196 Email: bme@columbia.edu Web: www.bme.columbia.edu

The Department of Biomedical Engineering at Columbia University offers biomedical engineering education and research through B.S., M.S., Ph.D., and M.D./Ph.D. degree programs. Our department provides a surprising mix of the intellectual atmosphere of an Ivy League institution and the sense of community of a small college enriched by the diversity of New York City.

EXHIBITS

Full-time engineering development program for high caliber new grads

Ready for an innovative and meaningful career? Interested in applying your talents to solve complex challenges that will save lives?

Then there's never been a better time to join Edwards Lifesciences, the global leader in the science of heart valves and hemodynamic monitoring. You'll thrive in our formal engineering development program, which combines a summer networking and educational program with ongoing personal mentorship, technical peer support, and senior management collaboration and guidance. It's the ideal foundation for launching your career.

Create Your Profile Today

A number of engineering backgrounds are welcome, including biomedical, mechanical, chemical, electrical, packaging, industrial, materials, manufacturing, quality and engineering management. You should be on track to earn a B.S. or M.S. in engineering between Fall 2016 and Spring 2017, as well as have a 3.0 GPA and proof of U.S. citizenship or permanent residency authorization.

Deadline is early October 2016 for both programs.

We're also accepting 2016 Summer Internship applications, which will be reviewed and finalized in February 2016.

Apply online in August for the Engineering New Grad Programs at Edwards.com/University

Engineering New Grad Programs

We offer program participants two unique technical engineering tracks in our Irvine, California and Draper, Utah locations.

Technical Development Program

This 18-month, full-time, broad-spectrum rotational program offers four handson work rotations that deliver multi-product exposure across all businesses and functions.

University Engineering Program

Gain a highly-focused specialization in one of four business units: Advanced Technology, Critical Care, Heart Valve Therapy, or Transcatheter Heart Valves.

Edwards, Edwards Lifesciences, and the stylized E logo are trademarks or service marks of Edwards Lifesciences Corporation. © 2015 Edwards Lifesciences Coporation. All rights reserved.

Edwards Lifesciences USA | Switzerland | Japan | China | India | Australia | Brazil edwards.com

Edwards

BOOTHS # 500/502 Cornell University

101 Weill Hall Ithaca, NY 14853 Phone: 607-255-

EXHIBITS

Phone: 607-255-2573 Email: bh42@cornell.edu Web: www.bme.cornell.edu

The Nancy E. and Peter C. Meinig School of Biomedical Engineering at Cornell University focuses on interdisciplinary research to achieve a quantitative understanding of human biology at all spatial and temporal scales with the goal of improving human health. The School has a close relationship with Weill Cornell Medical College and its associated hospitals in New York City, including an "Immersion Term" during which all Ph.D. students spend 7 weeks in a clinical experience at the Medical College. Cornell University is a comprehensive university with outstanding programs of teaching and research in all areas of human inquiry which has its main campus at Ithaca in the Finger Lakes Region of upstate New York. A new Engineering campus is opening in New York City located on a site less than 20 minutes from the Medical College which will catalyze further growth in the School's interactions with the Medical College and hospitals. The Meinig School of Biomedical Engineering has close collaborations with a wide variety of other departments in Ithaca, especially with those in the Colleges of Engineering, Veterinary Medicine, Agriculture and Life Sciences, Arts and Sciences, and Human Ecology.

BOOTH # 805

CRC Press / Taylor & Francis

6000 Broken Sound Parkway NW Suite 300 Boca Raton, FL 33487 Phone: 561-998-2507 Email: charmaine.lowe@taylorandfrancis.com Web: www.crcpress.com

CRC Press - Taylor & Francis is a premier publisher in biomedical engineering textbooks, professional manuals, reference works, journals, and electronic databases. Please visit our booth to peruse our titles, receive special convention discounts, and pick up copies of our journals. Talk to us about being a CRC Press Author!

BOOTH # 423

Dalhousie University School of Biomedical Engineering

5981 University Avenue P.O. Box 15000 Halifax, Nova Scotia B3H 4R2 Canada Phone: 902-494-8869 Email: esb@dal.ca Web: www.dal.ca/bme

The School of Biomedical Engineering at Dalhousie University offers Masters & Doctorate programs with over 40 faculty from Biomaterials and Regenerative Medicine to Biomechanics and Imaging. Our BioMedic Entrepreneurship Certificate program includes stipend support, clinician mentoring, industrial placements, training in clinical needs and medical device regulatory & industry standards.

BOOTH # 304

Dassault Systèmes SIMULIA

1301 Atwood Avenue Suite 101W Johnston, RI 02919 Phone: 401-531-5000 Email: april.alfieri@3ds.com Web: www.3ds.com/simulia

Highlighted by the world renowned Living Heart Project, Dassault Systèmes is leading the translation of breakthroughs in virtual human modeling into practice to explore treatments or study performance/reliability of new medical devices. Further, novel musculoskeletal techniques are used to investigate interaction of muscle, bone and skin with fixation on mobility devices.

BOOTH # 602

Edwards Lifesciences

One Edwards Way Irvine, CA 92614 Phone: 949-756-4258 Email: erin_spinner@edwards.com Web: www.edwards.com

Edwards Lifesciences is a global leader in products and technologies to treat advanced cardiovascular disease, the global leader in acute hemodynamic monitoring and the number-one heart valve company in the world. Headquartered in Irvine, California, Edwards has more than 6,200 employees worldwide.

BOOTH # 305

Elsevier

 101 Hughes Lane

 N. Babylon, NY
 11703

 Phone:
 631-665-1833

 Email:
 s.pierre-lys@elsevier.com

 Web:
 www.elsevier.com

As a leading provider of online books and eBooks in Biomedical Engineering, Elsevier is committed to bringing you the latest, most groundbreaking biomedical books in the field. Our list includes topics from biomaterial science, medical device technologies, to biofluid mechanics.

BOOTH # 514

Engineering World Health

302 East Pettigrew Street Suite 200 Durham, NC 27701 Phone: 919-682-7788 Email: info@ewh.org Web: www.ewh.org

Engineering World Health works with students and the BME community to improve healthcare delivery in developing world hospitals. We build local capacity to maintain medical equipment, make repairs, and develop low-cost technologies. Visit us to learn about Summer Institute and making a lasting impact on developing world health care!

BOOTH # 909

FASEB

9650 Rockville Pike Bethesda, MD 20814 Phone: 301-634-7930 Email: cadams@faseb.org Web: www.faseb.org/marc

FASEB MARC (Maximizing Access to Research Careers) Program provides a variety of activities to support the training of students, postdoctorates, faculty and researchers from underrepresented groups who are engaged in the biomedical and behavioral sciences research and training. We offer faculty/mentor with students and poster/platform presenter travel awards for scientific meetings (National and regional) and FASEB Science Research Conferences. We also sponsor career/leadership development and grantsmanship training seminars and workshops.

BOOTH # 403

Flexcell International Corporation

2730 Tucker Street, Suite200 Burlington, NC 27215 Phone: 919-732-1591 Email: beth@flexcellint.com Web: www.flexcellint.com

Flexcell® International Corporation specializes in products for applying mechanical loads (tension, compression, and fluid shear) to cells in monolayer and 3D culture. Flexcell has 6-well and 24-well flexible-bottomed culture plates, collagen solutions for tissue engineering applications, microscope devices for viewing real-time responses to load, and a stateof-the-art dual syringe pump.

BOOTH # 724

Florida International University Biomedical Engineering Department

10555 West Flagler Street EC 2610 Miami, FL 33174 Phone: 305-348-1409 Email: yqian@fiu.edu Web: www.bme.fiu.edu

The Coulter Foundation endowed Department of Biomedical Engineering at Florida International University in Miami is the only program with doctoral, masters and accredited bachelors among all of the public universities amongst the Hispanic and Minority serving universities in the nation. Multiple undergraduate and graduate scholarships support research and entrepreneurship. Senior Design projects are extensively industry sponsored and the MS professional track includes courses in management. New faculty hires, revised doctoral curriculum and extensive links with the Colleges of Medicine, Nursing & Health Sciences and Arts & Sciences allow research focus in Engineered Tissue Model Systems, Diagnostic Bioimaging and Sensor Systems, and Therapeutic and Reparative Neurotechnology.

BOOTH # 911

George Mason University Department of Bioengineering 4400 University Drive MSI65

Fairfax,VA 22030 Phone: 703-993-5769 Email: bioeng@gmu.edu Web: www.bioengineering.gmu.edu

Located in the Washington DC metropolitan area, George Mason University's Department of Bioengineering offers unique research and educational experience with collaborative opportunities with nearby national laboratories, institutes, and clinical facilities. The BS program earned accreditation from ABET in 2012 offers two concentrations: Biomedical Signals & Systems and Bioengineering Healthcare Informatics. The Bioengineering PhD program is currently accepting applications from outstanding prospective students with full tuition and stipend support. The department has 11 primary faculty members with approximately \$6M of active research in areas ranging from biomedical imaging, nanotechnology, neural engineering, and date-driven biomechanics.

Micronet Department of Bioengineering Volgenau School of Engineering Solving problems that matter PhD in

Bioengineering

AREAS OF STUDY:

Biomedical imaging Data-driven biomechanical modeling Nanoscale bioengineering Neuroengineering

> To apply contact: vsegadm@gmu.edu 703.993.1512

1

Dept. of Bioengineering bioeng@gmu.edu 703.993.4190

Discover Design Develop Deliver

Home to remarkable students, cutting-edge research and award-winning faculty, the Department of Biomedical Engineering at Florida International University in Miami, Florida, combines medical needs with engineering expertise.

As a WH Coulter Foundation endowed department, transitional research is an integral part of our mission to produce valuable innovations that enhance health care and hold the promise of greatly improving people's lives.

FIU

Biomedical Engineering

FLORIDA INTERNATIONAL UNIVERSITY

bme.fiu.edu

BOOTH # 710

George Washington University Department of Biomedical Engineering

801 – 22nd Street, NW, Room 608 Washington, DC 20052 Phone: 202-994-5934 Email: aspatola@email.gwu.edu Web: http://www.seas.gwu.edu/bme

The graduate program in biomedical engineering at the George Washington University offers a unique combination of small class sizes, engaged faculty, and cutting edge research. Areas of research include biosensors, cardiac electrophysiology, image analysis, medical imaging instrumentation, microfluidics, and therapeutic ultrasound. The Department of Biomedical Engineering offers both M.S. and Ph.D. degrees in Biomedical Engineering. Our newly opened Science and Engineering Hall is located directly across the street from the GW School of Medicine and Health Sciences which gives our faculty and students direct access to real world medical problems. In addition, our location in the heart of the nation's capital affords our students and faculty unparalleled access to world class research facilities in a number of government laboratories including the National Institutes of Health and the Food and Drug Administration.

BOOTH # 520

The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech / Emory University 313 Ferst Drive

Atlanta, GA 30332 Phone: 404-385-0124 Email: gradstudies@bme.gatech.edu Web: www.bme.gatech.edu

The Wallace H. Coulter Department of Biomedical Engineering is a unique partnership between Georgia Tech's College of Engineering and Emory University's School of Medicine. PhD students are trained in a world-class research infrastructure, working alongside pre-eminent engineers and bio-scientists. We also offer a PhD program that is joint between Georgia Tech, Emory, and Peking University, whereby students have the opportunity to work in three different renowned institutions in two different countries. In addition, we offer a Master of Biomedical Innovation and Development whereby students receive instructional and hands-on clinical experience in the biomedical industry. With world class faculty and new initiatives in research and learning, BME at Georgia Tech/ Emory is the go-to place for all those who want to actively shape the world and invent the future of healthcare!

BOOTH # 400

Great Lakes NeuroTechnologies

 10055 Sweet Valley Drive

 Valley View, OH
 44125

 Phone:
 216-361-5410

 Email:
 info@GLneurotech.com

 Web:
 www.GLNeuroTech.com

Learn how the BioRadio is a flexible, reliable 14 channel wireless physiological monitor for ECG, EMG, EEG, SpO2, respiration, and more. Software includes a research package for DAQ and DSP, a teaching package with lab sessions ranging from signal introduction to clinical applications, and an SDK for real-time custom applications.

BOOTH # 905

Houston Methodist Research Institute

6670 Bertner Street, R2-216 Houston, TX 77030 Phone: 713-441-7267

Email: aswright@houstonmethodist.org Web: www.houstonmethodist.org

Houston Methodist's mission of leading medicine is grounded in a commitment to translational and interdisciplinary research and education. Our mission is to innovate in health care technology and train current and future clinicians and translational researchers from around the world in cutting edge health care advances.

BOOTH # 322

Illinois Institute of Technology - BME

3255 S. Dearborn Street, WH 314 Chicago, IL 60616 Phone: 312-567-5790 Email: jgeorgia@iit.edu Web: www.iit.edu

BOOTH # 901

Imperial College London Department of Bioengineering

South Kensington Road, Royal School of Mines London SW7 2AZ United Kingdom

Phone: +44 (0) 20 7594 5179

Email: bioengineering@imperial.ac.uk

Web: www.imperial.ac.uk/bioengineering

Imperial College London is the only UK university to focus entirely on science, engineering, medicine and business. Our international reputation for excellence in teaching and research sees us consistently rated in the top 10 universities worldwide. The Department of Bioengineering at Imperial is the leading Department in the UK. Our research spans the breadth of bioengineering and falls under five themes: biomechanics; cellular and molecular bioengineering; detection, devices, design; implants and regenerative medicine and neural engineering. We offer a full range of academic and research opportunities for undergraduate (MEng) and postgraduate (MSc, MRes and PhD).

BOOTH # 210

Temple Circus, Temple Way Bristol BSI 6HG United Kingdom Phone: +44 (0) 117 930 1213 Email: lisa.searle@iop.org Web: http://ioppublishing.org

IOP Publishing provides publications through which leading-edge scientific research is distributed worldwide. Beyond our traditional journals programme, we make high-value scientific information easily accessible through an ever-evolving portfolio of books, community websites, magazines, conference proceedings and a multitude of electronic services. Visit: http://ioppublishing.org

BOOTHS # 501 / 503 / 505

Johns Hopkins University Department of Biomedical Engineering

EXHIBITS

720 Rutland Avenue, Traylor 406 Baltimore, MD 21205 Phone: 410-614-4280 Email: hlan1@jhmi.edu Web: www.bme.jhu.edu

BOOTHS # 209 / 211

Korea Institute of Science and Technology (KIST)

Hwarangno 14-gil 5, Seongbuk-gu Seoul 136-791 Republic of Korea Phone: +82-2-958-6087 Email: ikwon@kist.re.kr Web: www.kist.re.kr

The Biomedical Research Institute at KIST is Korea's leading medical research agency. Making important discoveries that improve health and save lives, we invite you to learn more about our institute and research accomplishments. We will also be providing interviewing opportunities to prospective students, postdocs, and scientists through our research staff.

BOOTH # 823

Lehigh University Bioengineering 111 Research Drive, Room D325 Bethlehem, PA 18015

Phone: 610-758-4091 Email: inbioe@lehigh.edu Web: www.lehigh.edu/~inbioe

The Bioengineering Program at Lehigh holds true to our University's tradition of world-class excellence in education and research. We accomplish this with outstanding and dedicated faculty, a vibrant curriculum, state of the art technologies and a highly integrated and interdisciplinary curriculum. We offer a full range of academic and research opportunities for BS, MS and PhD students, from the nano-scale to the systems levels, with a focus on the advancement of knowledge of biological systems, the generation of new diagnostic tools, the improvement of medical therapies and innovation of medical devices. Broad categories of bioengineering research include Biomaterials, Biomechanics, Biomedical Imaging and Analysis, Biosensors, Biophotonics and Bioelectronics, Biophysics, Cell and Tissue Engineering, Computational Engineering, Modeling of Biological Systems, Molecular Bioengineering and Neuroengineering

STUDENTS.

Interested in a career in academia, the medical device industry, or consulting? Prepare for any of these through graduate programs offered by the **Department of Biomedical Engineering at Marquette University** in collaboration with the **Medical College of Wisconsin**:

M.S. in Biomedical Engineering Ph.D. in Biomedical Engineering

 Major research areas include imaging, rehabilitation engineering, robotics, modeling and computation, orthopedics, biomechanics, visualization and cardiovascular technologies, neurosystems, biosystems, and others.

BE THE DIFFERENCE.

M.S. in Healthcare Technologies Management

Unique 12-month program combines business, technology, and healthcare

 Prepares graduates for career advancement and management positions with medical device companies, hospitals, and healthcare consulting firms

M.E. in Biomedical Engineering (non-thesis)

Ph.D. in Functional Imaging

• Cutting-edge MR, MEG, CT and SPECT technologies; emphasizes clinical applications

FOR MORE INFORMATION, visit marquette.edu/biomedical-engineering/graduate-programs.php or marquette.edu/engineering/hctm. CHECK OUR WEBSITE OVERTHE NEXT FEW MONTHS FOR A MAJOR ANNOUNCEMENT REGARDING GRADUATE PROGRAMS AT MARQUETTE UNIVERSITY AND THE MEDICAL COLLEGE OF WISCONSIN.

BOOTH # 902

Louisiana Tech University Biomedical Engineering

818 Nelson Avenue #10157 / BMEB 103

 Ruston, LA
 71272

 Phone:
 318-257-4420

 Email:
 ahill@latech.edu

 Web:
 www.latech.edu/biomedical-engineering

Are you looking for a graduate program in a research university with small classes and friendly faculty? Please talk to us! Our research areas include neural engineering/neuroscience; nanotechnology/applied biotechnology; biosensors; biosignal processing, advanced optical imaging; and cell, molecular and tissue engineering. Plus we have clinical partners in epilepsy, anesthesia, TBI and cancer treatment.

Create the future... of healthcare

Michigan Technological University

Department of Biomedical Engineering Houghton, Michigan

www.mtu.edu/biomedical

BOOTHS # 315 / 317

Marquette University Medical College of Wisconsin PO. Box 1881

Milwaukee, VVI 53201 Phone: 414-288-6059 Email: jay.goldberg@mu.edu Web: www.mu.edu

M.S., Healthcare Technologies Management: Unique graduate curriculum combines business, technology, and healthcare to prepare engineers for management positions with medical device companies, hospitals, and healthcare consulting firms. Full time students can earn the MS degree in Healthcare Technologies Management in one year. M.E., M.S., Ph.D., Biomedical Engineering: Research opportunities are available in areas including rehabilitation engineering, neurosystems, cardiovascular and pulmonary medicine, imaging, biomechanics, orthopedics, biosystems, and others. The program is recognized for strong industry ties and research collaborations with Froedtert Hospital, Children's Hospital of Wisconsin, Zablocki VA Medical Center, and Shriner's Hospital (Chicago).

BOOTH # 516

Mayo Graduate School Biomedical Engineering & Physiology Program

200 First Street, SW Rochester, MN 55905 Phone: 507-255-8544 Email: kingsleyberg.shirley@mayo.edu

Web: www.mayo.edu/,gs/programs/phd/biomedical-engineeringBooth

BOOTH # 424 McGill University Department of Bioengineering

817 Sherbrooke Street West

Room 270 MacDonald Engineering Building Montreal, Quebec H3A 0C3 Canada

Phone: 514-398-7138

Email: adminoffice.bioeng@mcgill.ca

Web: www.mcgill.ca/bioengineering

The Department of Bioengineering is the newest department to join McGill University's renowned Faculty of Engineering. Faculty members are carrying out experimental and computational research in biological materials and mechanics; biomolecular and cellular engineering; and biomedical, diagnostics and high throughput screening.

BOOTH # 308

Michigan Technological University Department of Biomedical Engineering 1400 Townsend Drive

Houghton, MI 49931

Phone: 906-487-2772

Email: biomed@mtu.edu

Web: www.mtu.edu/biomedical

Located in the beautiful Upper Peninsula of Michigan, the Department of Biomedical Engineering at Michigan Technological University conducts world-class research at the interface of medicine, biology, and engineering, while educating the next generation of biomedical engineers by offering B.S., M.S., and Ph.D. degrees. The BME Department at MTU leverages the University's strong and rich history of engineering education and research. We create the future of medicine.

BOOTH # 321

Mississippi State University Department of Ag & Bio Engineering 130 Creelman Street

Mississippi State, MS 39762 Phone: 662-325-7938 Email: manderson@abe.msstate.edu Web: www.abe.msstate.edu

Mississippi State University offers M.S. and Ph.D. degrees in Biomedical Engineering. Research areas include Bio-Inspired design, Injury biomechanics, Cardiovascular and Orthopedic bioengineering, Tissue engineering, Multiscale modeling, and Computational simulation. Our program emphasizes the interdisciplinary nature of biomedical engineering and often collaborates with the College of Veterinary Medicine here at Mississippi State University.

BOOTH # 716

National Institute of Biomedical Imaging and Bioengineering / National Institutes of Health

 31 Center Drive, Room IC14

 Bethesda, MD 20892

 Phone:
 301-496-9208

 Email:
 coneyjohnsons@mail.nih.gov

 Web:
 http://www.nibib.nih.gov

The mission of the National Institute of Biomedical Imaging and Bioengineering (NIBIB) is to improve human health by leading the development and accelerating the application of biomedical technologies. The Institute is committed to integrating the physical and engineering sciences with the life sciences to advance basic research and medical care. Stories of exciting research breakthroughs are told through video and web content at www.nibib.nih.gov. In addition to funding research, NIBIB supports a broad range of training programs from undergraduate to post-doctoral students. These programs are designed to support researchers throughout the career continuum, increase the number of clinician-scientists, and enhance the participation of underrepresented populations in biomedical imaging and bioengineering research.

EXPAND THE FRONTIERS OF SCIENCE AND ENGINEERING

The NYU Polytechnic School of Engineering leads world-renowned research, exceptional education and thriving business incubators that will push you to the forefront of new applications in a variety of rapidly expanding disciplines—from materials chemistry to biomedical engineering to biotechnology and entrepreneurship.

AN ENVIRONMENT THAT FOSTERS INNOVATION

Opportunities to engage in innovative cross disciplinary research in the cutting-edge field include our distinctive Summer Research Program for College Juniors, open to science and engineering majors from colleges around the country.

MASTER'S AND DOCTORAL PROGRAMS

- Biomedical Engineering MS
- Biotechnology MS
- Biotechnology and Entrepreneurship MS
- Chemical Engineering MS, PhD
- Chemistry MS
- Materials Chemistry PhD
- Bioinformatics MS (online only)

VISIT US AT BOOTH #1000

> LEARN MORE engineering.nyu.edu/grad/cbe

EXHIBITS

BOOTH # 915

National Science Foundation

4201 Wilson Boulevard Arlington, VA 22230 Phone:: 703-292-5111 Email: tbattle@nsf.gov Web: www.nsf.gov

The NSF Division of Chemical, Bioengineering, Environmental, and Transport Systems (CBET) supports innovative research and education primarily in the fields of chemical, mechanical, and civil/environmental engineering, and bioengineering. CBET program directors from the Biomedical Engineering and GARDE (General and Age-Related Disabilities Engineering) programs will be available to answer questions about proposals, areas for funding, timelines and expectations while writing, and common author mistakes. Attendees can also gain tips on how to create and develop a proposal while incorporating key features requested by NSF.

BOOTH # 320

New Jersey Institute of Technology (NJIT) Department of Biomedical Engineering

University Heights Newark, NJ 07102

Phone: 973-596-5268 Email:: rocha@njit.edu Web: http://biomedical.njit.edu

Biomedical engineering is the youngest engineering department at the New Jersey Institute of Technology (NJIT) and offers bachelor's, master's and doctoral degrees. The program has grown rapidly and today NJIT is among the top producers of biomedical engineering degrees in the region. In addition to the bachelor's program, the graduate programs are also a significant part of the department's total educational offerings. NJIT's master's program is the second largest nationally. Our doctoral program was ranked by the National Research Council 26th out of 76 nationally in curriculum quality and student accomplishment. We have a strong research program with expertise in neural and neuromuscular engineering, and tissue engineering/regenerative medicine.

BOOTH # 1000

New York University School of Engineering 6 Metrotech Ctr

Brooklyn, NY 11218 Phone: 718-637-5984 Email: rlutzky@nyu.edu Web: http://engineering.nyu.edu

The Othmer-Jacobs Department of Chemical and Biomolecular Engineering at the NYU School of Engineering offers programs that follow current trends in novel molecules, advanced products and processes, as well as synthesis design and operation methodology. The department offers M.S. and Ph.D. degrees in Biomedical Engineering, Biotechnology, Biotechnology and Entrepreneurship, Chemical Engineering, Chemistry, and Materials Chemistry.

BOOTH # 917

Northeastern University

360 Huntington Avenue 313 Snell Engineering Center Boston, MA 02115 Phone: 627-373-2989 Email: f.kiragu@neu.edu Web: www.che.neu/edu

BOOTH # 600

Northwestern University

2145 Sheridan Road Evanston, IL 60026 Phone: 847-467-2369 Email: s-olds@northwestern.edu Web: www.bme.northwestern.edu

With cutting-edge research in Biomaterials and Regenerative Medicine, Imaging and Biophotonics, and Neural Engineering, Northwestern University BME attracts top faculty and students alike. Research takes place on the main campus in Evanston and on the medical school campus in downtown Chicago.

BOOTH # 825

The Ohio State University Department of Biomedical Engineering 270 Bevis Hall 1080 Carmack Road

Columbus, OH 43210 Phone: 614-292-1285 Email: senitko.1@osu.edu Web: www.bme.osu.edu

Offering B.S., M.S., Ph.D., and M.D./Ph.D. degrees with research in biomechanics/biotransport; biomaterials; bioimaging; tissue engineering; biomedical devices, and micro/nanotechnology at state-of-the-art facilities including our own Wexner Medical Center, Davis Heart and Lung Research Institute, and Institute for Materials Research; Nationwide Children's Hospital of Columbus; and the Ohio State Comprehensive Cancer Center featuring a new James Cancer Hospital and Richard J. Solove Research Institute.

BOOTH # 109

Palmetto Health

5 Medical Park Road Columbia, SC 29203 Phone: 800-321-5552 Email: oneteam@palmettohealth.org Web: palmettohealth.org/careers

BOOTH # 515

The Pennsylvania State University

205 Hallowell Building University Park, PA 16801 Phone: 814-865-1407 Email: mjs436@engr.psu.edu Web: www.bme.psu.edu

The Penn State Department of Biomedical Engineering and the Intercollege Graduate Degree Program in Bioengineering are proud to offer B.S., M.S. and Ph.D. degrees. Our mission is to educate students to become world-class engineers who contribute to social and economic development through innovative solutions to problems in medicine and the life sciences. The graduate program offers strong integration with many other disciplines to increase the breadth of our uniquely trained faculty and specialized facilities, enable cutting-edge research in fundamental biology, medical device design, and disease diagnosis, with a goal to translate discovery from academia to society. Come by for a visit. We look forward to meeting you!

BOOTHS # 509/511

Purdue University Weldon School of Biomedical Engineering

206 S. Martin Jischke Drive West Lafayette, IN 47907-2032 Phone: 765-494-2995 Email: fergusoc@purdue.edu Web: www.purdue.edu/bme

The Weldon School at Purdue is undergoing significant programmatic and faculty growth. Opportunities abound in our expanding graduate programs, signature areas of research, and entrepreneurial partnerships. Ask us about our unique specialty programs in Regulatory Affairs and Biomedical Entrepreneurship. We are recruiting top students for several nationally-funded graduate training programs.

BOOTH # 720

Rensselaer Polytechnic Institute

I10 8th Street, BMED JEC7049Troy, NY12180Phone:518-276-6548Email:bme@rpi.eduWeb:www.bme.rpi.edu

Rensselaer Polytechnic Institute is the nation's oldest technological research university and home to one of the oldest biomedical engineering departments. Educating outstanding academics, industry leaders and research scientists. Research is centered on Biomolecular Science and Engineering, Biomedical Imaging, Musculoskeletal Engineering, Neural Engineering, Systems Biology and Biocomputation, and Vascular Engineering (bme.rpi.edu).

BOOTHS # 101 / 103

Rice University

Department of Bioengineering

6100 Main Street Houston,TX 77005-1892 Phone: 713-348-5869 Email: bioeng@rice.edu

Web: www.bioengineering.rice.edu

Rice University's Department of Bioengineering is a top-tier teaching and research institution with graduate programs that lead to an MBE, PhD, or a joint MD/PhD with Baylor College of Medicine. Situated next to the Texas Medical Center, we offer education and research opportunities in biomaterials and drug delivery, biomedical imaging and diagnostics, cellular and bimolecular engineering, computational and theoretical bioengineering, systems and synthetic biology, and tissue engineering and biomechanics.

BOOTH # 815

Rutgers University

599 Taylor Road Piscataway, NJ 08854 Phone: 848-445-4500 Email: langrana@rci.rutgers.edu Web: http://biomedical.rutgers.edu

The Rutgers Department of Biomedical Engineering (BME) is a vibrant and dynamic enterprise of scholarship, learning, and technology development. Located in the heart of New Jersey's "Cure Corridor", BME offers a remarkably diverse array of opportunities for undergraduate, graduate, and postgraduate training and research in molecular systems bioengineering, biomaterials and tissue engineering, bionanotechnology, biomechanics, rehabilitation engineering, and biomedical imaging.

BOOTH # 324

Santa Clara University

500 El Camino Real Santa Clara, CA 95053 Phone: 408-554-4874 Email: sbeaumier@scu.edu Web: www.scu.edu/engineering/bioengineering

Bioengineering at SCU has experienced a tremendous rate of growth in both undergraduate and graduate programs. Our actively engaged faculty, and world-class industrial advisory board with members from all over Silicon Valley work together to set new directions in education, research, outreach, mentorship and training. Our mission is to prepare students for exciting, fulfilling, rewarding, and meaningful careers while promoting high ethical standards and social responsibility.

BOOTH # 903

Sawbones Worldwide Inc.

10221 SW 188th Street Vashon, WA 98070 Phone: 206-463-5551 Email: info@sawbones.com Web: www.sawbones.com

PACIFIC RESEARCH - SAWBONES WORLDWIDE offers a complete range of biomechanical composite analogue bones and blocks for mechanical testing. Designed to simulate the physical properties of human bone; these materials offer a more reliable test bed for biomechanical studies than cadaveric specimens.

BOOTH # 900

Springer

233 Spring Street New York, NY 10013 Phone: 212-460-1500 Email: exhibits-ny@springer.com Web: www.springer.com

Springer is proud to be the publisher of Annals of Biomedical Engineering, Cellular & Molecular Bioengineering and Cardiovascular Engineering and Technology.Visit our booth to explore our full range of print and electronic publications in Biomedical Engineering.

BOOTH # 208

Stanford University Bioengineering 318 Campus Drive, Room E100

Stanford, CA 94305

Phone: 650-736-1160

Email: christine.kurihara@stanford.edu

Web: bioengineering.stanford.edu

The Bioengineering Department creates a fusion of engineering and the life sciences to promote biomedical discovery and the development of new technologies and therapies. Bioengineering at Stanford embraces biology as a new engineering paradigm and applies engineering principles to medical problems and biological systems. The Biodesign Program has a mission to train students, fellows and faculty in the Biodesign Process: a systematic approach to needs finding and the invention and implementation of new biomedical technologies. A key component of the program is the Biodesign Medical Technology Innovation Fellowships. In the Mechanical Engineering Department, the Biomechanical Engineering division helps students combine strong mechanical skills with a working understanding of biological and/or medical systems and processes.

BOOTH # 203

Stevens Institute of Technology

I Castle Point on Hudson Hoboken, NJ 07030 Phone: 201-716-5000 Email: avaldevit@aol.com Web: www.stevens.edu

As one of the nation's leading research universities, Stevens displays a unique pedagogical model that includes productive research programs with world-class facilities. Graduate students can choose from 22 PhD programs and 43 master's programs. All Stevens students benefit from a distinguished faculty displaying exacting scientific, academic, and entrepreneurial standards.

BOOTH # 325

Stony Brook University Department of Biomedical Engineering 5281 SUNY

 Stony Brook, NY 11794

 Phone:
 631-632-2302

 Email:
 nubia.andrade@stonybrook.edu

 Web:
 www.bme.sunysb.edu

The mission of the BME department at Stony Brook University is to fully integrate the cutting edge of engineering and physical sciences with stateof-the-art biology to advance our understanding of biomedical problems, and to drive the development of therapeutics, diagnostics and medical devices. Areas of research expertise include biomechanics, bioelectricity, tissue engineering, bioinstrumentation, cellular and molecular bioengineering, and bioimaging.

BOOTH # 323

Syracuse University Department of Biomedical and Chemical Engineering 329 Link Hall

Syracuse, NY 13244 Phone: 315-443-1931 Email: topgrads@syr.edu Web: http://eng-cs.syr.edu/our-departments/biomedical-andchemical-engineering/

Prospective graduate students and faculty can learn about our graduate programs that offer cutting edge, multidisciplinary research and education in biomedical engineering in a truly collaborative setting within the Syracuse Biomaterials Institute. Interact with our faculty and graduate students on a one-to-one basis and learn about financial aid opportunities.

BOOTH # 725

Temple University Department of Bioengineering

1947 North 12th Street Philadelphia, PA 19122 Phone: 215-204-3404 Email: doreen.aiello@temple.edu Web: http://engineering.temple.edu/bioengineering

Temple's Bioengineering Department officially started back in 2012 with Master's and PhD students. The undergraduate curriculum commenced in the Fall of 2013. We will be graduating our first cohort in the Spring of 2016. Matriculating doctoral students receive financial support that includes a stipend, tuition remission and health insurance. Matriculating master's degree students on the thesis option may be eligible for financial support. Temple U., in addition, offers Presidential and University Fellowships for both graduate and undergraduate students. Current faculty expertise is focused on cellular and regenerative tissue engineering, neuroengineering, biomechanics, biomaterials, molecular engineering, bioimaging and spectroscopy. We have a strong emphasis on interdisciplinary collaborations and translational research, leveraging strategic initiatives and institutional strengths in Medicine, Pharmacy, Dentistry, and Oncology.

Bioengineering Department TEMPLE UNIVERSITY

http://engineering.temple.edu/bioengineering

Temple's Bioengineering Department officially started back in 2012 with Master's and PhD students. The undergraduate curriculum commenced in the Fall of 2013. We will be graduating our first cohort in the Spring of 2016. Matriculating doctoral students receive financial support that includes a stipend, tuition remission and health insurance. Matriculating master's degree students on the thesis option may be eligible for financial support. Temple U, in addition, offers Presidential and University Fellowships for both graduate and undergraduate students. Contact us for more details or visit http://engineering.temple.edu/bioengineering. Current faculty expertise is focused on cellular and regenerative tissue engineering, neuroengineering, biomechanics, biomaterials, molecular engineering, biomaging and spectroscopy. We have a strong emphasis on interdisciplinary collaborations and translational research, leveraging strategic initiatives and institutional strengths in Medicine, Pharmacy, Dentistry, and Oncology. BOOTH # 801

Texas A & M University Department of Biomedical Engineering 3120 TAMU

College Station, TX 77843-4462 Phone: 979-845-2312 Email: bmen@tamu.edu Web: http://engineering.tamu.edu/biomedical

The Department of Biomedical Engineering at Texas A&M University offers an opportunity to participate in ground-breaking research in sensing and imaging, optics, orthopedic biomechanics, biomaterials, tissue engineering and more. The department's award-winning faculty members have strong collaborations with medical and veterinary schools as well as industry. Offering graduate degree options at the master's (M.S., M.Eng., & M.Eng./MBA) and doctoral (Ph.D. & D.Eng.) levels, this program provides an exceptional academic experience.

BOOTHS # 721 / 723

Tufts University Biomedical Engineering 4 Colby Street

Medford, MA 02155 Phone: 614-627-2580 Email: bme@tufts.edu Web: www.engineering.tufts.edu/bme

Biomedical Engineering at Tufts University draws from core disciplines such as engineering, biology, computer science, physics, chemistry, and physiology emphasizing an interdisciplinary approach to research and education. Strong emphasis is placed on interactions with faculty in Arts and Sciences and the professional schools. The Tissue Engineering Resource Center (TERC) was initiated in August of 2004 as a Resource Center supported through the National Institutes of Health P41 program. The core themes in the Center focus on functional tissue engineering achieved through a systems approach - integrating cells, scaffolds and bioreactors to control the environment in vitro for translation in vivo.

THE UNIVERSITY OF ALABAMA AT BIRMINGHAM

Knowledge that will change your world

- Tissue Engineering & Regenerative Medicine
- Biomaterials, Biomechanics & Drug Delivery
- Biomedical Imaging & Optics
- Biomedical Implants & Devices

Degree Programs

- + Ph.D.
- M.D./Ph.D. & D.M.D./Ph.D.
- Master's of Science
- Master's in BME with a Certificate in Technology Commercialization and Entrepreneurship

- Cardiac Electrophysiology
- Multiscale Computational Biology

www.eng.uab.edu/bme

Booth #601

BOOTH # 714

Tulane University

500 Lindy Boggs Bldg. New Orleans, LA 70118 Phone: 504-865-5897 Email: bmeninfo@tulane.edu Web: www.bmen.tulane.edu

Tulane's Biomedical Engineering Department is located in the diverse cultural mecca of New Orleans and has been established since 1977. Degrees offered range from B.S. to Ph.D., and research includes biomechanics, biotransport, regenerative medicine, biomaterials and devices. Collaboration with the School of Medicine and numerous other centers are available and abounding.

BOOTH # 824

The University of Akron Department of Biomedical Engineering

302 Buchtel CommonAkron, OH44325-0302Phone:330-972-6650Email:bmegrad@uakron.eduWeb:http://bme.uakron.edu

The Department of Biomedical Engineering at The University of Akron offers two graduate degree programs: a master's degree in engineering with a biomedical specialization and a Ph.D. in engineering. These programs have an individualized curricular approach, designed in coordination with each student's career plans. BME faculty are engaged in a variety of research areas, including but not limited to, instrumentation, biomaterials, biomechanics, and tissue engineering. Our faculty have active collaborations both on campus and with researchers in regional health care institutions and biomedical industry. We encourage interdisciplinary interactions to promote vibrant research activities and to provide an exceptional scholarly atmosphere for learning. The BME Department currently has 17 full-time and joint faculty, including 8 recent hires, 3 endowed chairs, and 2 CAREER award recipients.

BOOTHS # 601 / 603

The University of Alabama at Birmingham Department Biomedical Engineering

1825 University Boulevard, Suite 801

Birmingham, AL 35295 Phone: 205-996-6936 Email: minrob@uab.edu Web: www.eng.uab.edu/bme

The Biomedical Engineering (BME) Graduate Program at The University of Alabama at Birmingham offers Master's and PhD degrees. The BME Department has a joint status in the School of Engineering and School of Medicine with a strong record of interdisciplinary research in biomaterials, biomechanics, biomedical imaging, cardiac electrophysiology, computational biology, tissue engineering and regenerative medicine. The BME Graduate Program has over 60 primary and secondary faculty training students to develop the next generation of technologies. BME graduates find employment in universities, health care, medical devices, pharmaceuticals, and regulatory agencies.

BOOTH # 314

The University of Arizona Biomedical Engineering / GIDP Program P.O. Box 210240

Tucson,AZ 85721 Phone: 520-626-9134 Email: stanley@email.arizona.edu Web: www.bme.arizona.edu

The University of Arizona's Biomedical Engineering Graduate

Interdisciplinary Program offers opportunities to integrate engineering, mathematics, biology, and medicine in a collaborative multi-disciplinary environment with over 60 faculty mentors. Proximity to Medicine, and Health Sciences Colleges facilitates cutting-edge translational research in specialties such as cardiovascular engineering, imaging, nanotechnology, computational modeling and entrepreneurship.

BOOTH # 904

University of Arkansas Department of Biomedical Engineering I University of Arkansas

120 John A. White, Jr. Engineering Hall Fayetteville, AR 72701 Phone: 479-575-4667 Email: bmeginfo@uark.edu

Web: http://bmeg.uark.edu

The Biomedical Engineering Program at the University of Arkansas offers MS and PhD degrees. Our active faculty has research programs in: Organ Regeneration; Cell and Molecular Imaging; Nanobiotechnology; Molecular Genetics and Cell Biology in Disease Prevention; Biomaterials; Tissue Engineering; and Vaccine and Immunotherapy Delivery Systems. Stop by our booth and learn how well qualified students can earn \$10,000 to \$20,000 per year on top of standard assistantship stipends!

BOOTH # 422

University of Calgary Biomedical Engineering Graduate Program

ENA 127, 2500 University Drive NW

Calgary, Alberta T2N IN4 Canada Phone: 403-220-2721

Email: bmegrad@ucalgary.ca

Web: www.ucalgary.ca/bme/graduate

Students in the Biomedical Engineering (BME) Graduate Program at the University of Calgary are interested in cutting-edge, multidisciplinary biomedical research. The BME Graduate Program enables graduate students to undertake MSc or PhD programs that intersect the fields of engineering, kinesiology, medicine, science, nursing, and veterinary medicine.

BOOTH # 610

University of California, Berkeley

306 Stanley Hall #1762 Berkeley, CA 94720-1762

Phone: 510-642-5833

Email: bioeng@berkeley.edu

Web: http://bioeng.berkeley.edu/

The Department of Bioengineering at the University of California,

Berkeley will be showcasing its novel research and academic programs including BS, MEng (Master of Engineering), MTM (Master of Translational Medicine), and PhD degrees. Come visit the UC Berkeley booth to speak with representatives and learn more about the department.
BOOTH # 217

EXHIBITS

The University of California at Davis Department of Biomedical Engineering

451 E. Health Sciences Drive GBSF 2303, University of California Davis, CA 95616 Phone: 530-752-1033 Email: bme@ucdavis.edu Web: www.bme.ucdavis.edu

With 33 primary faculty and a graduate group of ~75 faculty, BME at UC Davis combines exceptional teaching with state-of-the-art research to prepare students for careers in academics and industry. Come learn about our programs in bioinformatics, biomechanics, cellular and molecular systems, imaging, synthetic biology, and tissue engineering and regenerative medicine.

BOOTHS # 414 / 416

University of California, Irvine

3120 Natural Sciences II Irvine, CA 92697-2715 Phone: 949-824-9196 Email: chta@uci.edu Web: www.bme.uci.edu

The UC Irvine Department of Biomedical Engineering's mission is to inspire engineering minds for the advancement of human health. Engineering focus areas include biomedical photonics/optoelectronics, biomedical nano- and microscale systems/fabrication, biomedical computation/ modeling, and tissue engineering. These technology areas intersect with clinical areas of focus such as cardiovascular disease, the nervous system, cancer, and ophthalmology. Included in these opportunities are major campus research centers at the Beckman Laser Institute (biophotonics), the Edwards Lifesciences Center for Advanced Cardiovascular Technology, the Chao Family Comprehensive Cancer Center, the Integrated Nanosystems Research Facility, the Laboratory of Fluorescence Dynamics, and the Micro/nano Fluidics Fundamentals Focus Center. UCI is located in Orange County, home to more than 300 medical device companies.

UNIVERSITY OF

Biomedical Engineering Graduate Program

The Biomedical Engineering Graduate Program is

a multi-displinary program spanning the Schulich School of Engineering, the Cumming School of Medicine, and the Faculties of Kinesiology, Veterinary Medicine, Science, and Nursing.

Broad research areas of the faculty in the program include:

- Bioelectricity
- Biomechanics
- Cell and Tissue Engineering
- Medical Imaging
- Biomedical Instrumentation

Graduate programs offered:

- MSc (thesis based, typical duration 2 years)
- **PhD** (thesis based, typical duration 4 years)

For Program Details including application deadlines visit, ucalgary.ca/bme/graduate

BOOTH # 200

University of Chicago Institute for Molecular Engineering

5747 South Ellis Avenue, Room 222

Chicago, IL 60637 Phone: 773-834-1437 Email: ime@uchicago.edu Web: http://ime.uchicago.edu

The IME PhD program equips students with engineering principles to analyze and design molecules for emerging applications, taking research beyond the boundaries of traditional engineering fields. Students work closely with faculty and peers in combining problem-solving skills with broad scientific expertise to build useful systems from the molecular level up.

BOOTH # 225

University of Colorado Denver Anschutz Medical Campus Department of Bioengineering

12700 E. 19th Avenue Room 6018, MS 8607 Aurora, CO 80045 Phone: 303-724-5893 Email: bioengineering@ucdenver.edu

Web: www.ucdenver.edu/bioengineering

Located on a medical campus, we are integrated with world-class hospitals and the nationally ranked CU School of Medicine. In addition to traditional undergraduate and graduate degrees, we offer a dual MS-MBA, MD-MS and MD-PhD. Our students work with top faculty and researchers on projects that range from basic research to clinical applications and commercialization of medical technologies through our entrepreneurship pathway.

Department of Bioengineering UNIVERSITY OF COLORADO DENVER | ANSCHUTZ MEDICAL CAMPUS

http://engineering.ucdenver.edu/BIOE

APPLYING ENGINEERING SOLUTIONS TO HEALTH-RELATED PROBLEMS

Bioengineering at University of Colorado Denver | Anschutz Medical Campus: a comprehensive bioengineering education on a world-class medical campus where students get hands-on experience with faculty, clinicians, and industry professionals.

Degrees offered: BS, MS, PhD

Dual degrees: MD/PhD, MS/MBA, MD/MS

Research areas:

Cardiovascular biomechanics and hemodynamics Diabetes Imaging Biophotonics Rehabilitation engineering and assistive technology Neuromuscular control and neuroscience engineering Spinal and orthopedic biomechanics

Vascular surgery and interventional radiology Polymers and drug delivery

Biomedical entrepreneurship

EXHIBITS

New College. New Medicine.

The Department of Bioengineering at the University of Illinois at Urbana-Champaign

is proud to be a driving force in the creation of the first college of medicine focused, from the beginning, on the intersection of engineering and medicine.

The university expects to accept the first cohort of medical students in the new college in Fall 2018.

Further enhancing the integration of engineering and medicine is the exciting addition of the Jump Simulation Center, to be built within Everitt Laboratory. Scheduled for a \$55 million renovation beginning in 2016, Everitt Lab is the future home of the **Department of Bioengineering at Illinois.**

Carle IIILLINOIS

FOR MORE INFORMATION

email: bioengineering@illinois.edu web: medicine.illinois.edu

BOOTH # 722

University of Delaware

161 Colburn Lab 130 Academy Street Newark. DE 19716 Phone: 302-831-2120 Email: jss@udel.edu Web: www.bme.udel.edu

University of Delaware's Biomedical Engineering Department welcomes undergraduate and graduate students who are intellectually motivated, creative, and diverse individuals to join us. Our research focus areas: Biomolecular Engineering, Cellular Engineering & Systems Biology; Tissue Engineering, Biomaterials & Drug Delivery; Rehabilitation Engineering & Neuroengineering; Biomechanics; Bioimaging, Bio-computing & Bioelectronics.

BOOTH # 709

University of Florida Department of Biomedical Engineering

1275 Center Drive Biomedical Sciences Building JG-56 P.O. Box 116131 Gainesville, FL 32606 Phone: 352-273-9222 Email: info@bme.ufl.edu Web: www.bme.ufl.edu

UF BME is made possible by the vision and generosity of Dr. J. Crayton Pruitt and his family. Since its inception in 2002, the department continues to excel in interdisciplinary research that merges engineering with biology and medicine. The department offers both a graduate program and an undergraduate program (2012 inaugural class), with particular strengths in Neural Engineering, Imaging and Medical Physics, Biomaterials and Regenerative Medicine, and Biomedical Informatics and Modeling. In the past year, the department has grown to 22 faculty and will continue that growth up to 25-30. UF BME is one of only a few departments in the nation to be co-localized with a top-ranked medical school, veterinary school, and dental school. The department is also uniquely positioned to contribute to clinical translation of biomedical technologies because of the outstanding resources for entrepreneurship and commercialization in the Gainesville area. EXHIBITS

Univ

BOOTH # 717

University of Illinois at Chicago

851 S. Morgan Street, Room 218 Chicago, IL 60607-7052 Phone: 312-996-2335

Email: bioe@uic.edu Web: www.bioe.uic.edu

One of the first degree granting and accredited Bioengineering programs in the nation, since 1965 UIC Bioengineering offers B.S, M.S, Ph.D., M.D./ M.S. and M.D./Ph.D. programs that emphasize translational research and innovative training that can include clinical immersion and industry-linked interdisciplinary medical product development. The Richard and Loan Hill Department of Bioengineering is led by core faculty who collaborate with leading faculty in five major academic medical centers in Chicago including UIC, home of the largest medical school in the country.

M | BIOMEDICAL ENGINEERING

WHAT WE DO HERE IMPACTS PEOPLE'S LIVES:

Innovative research is just the beginning. We also know how to move that innovation from the lab to the hospital and launch companies to share it with the world.

Come see how:

BME.UMICH.EDU

MICHIGAN ENGINEERING

MEDICAL SCHOOL

BOOTH # 309

University of Illinois @ Urbana-Champaign 1304 W. Springfield Avenue Urbana, IL 61801

Phone: 217-333-1867 Email: jenchrn@illinois.edu

Web: www.bioengineering.illinois.edu

The Department of Bioengineering in the College of Engineering at the University of Illinois at Urbana-Champaign offers B.S., M.S. and Ph.D. degrees in Bioengineering. Highly qualified students may pursue the joint M.D./Ph.D. through the Medical Scholars Program. And Illinois now offers a first-of-its-kind professional Master's of Engineering degree in Bioinstrumentation. The Bioengineering Graduate Program provides students with access to Illinois' accomplished faculty who cross numerous disciplines and its world-renowned centers, labs and institutes. Areas of focus include Bioimaging at Multi-Scale; Bio-Micro/Nanotechnology; Molecular, Cellular and Tissue Engineering; Computational Bioengineering; and Synthetic Bioengineering.

BOOTH # 615

The University of Kansas

1520 West 15th, Room I, Eaton Hall

Lawrence, KS 66045 Phone: 785-864-5258

Email: bioe@ku.edu

Web: www.bio.engr.ku.edu

KU Bioengineering is an exciting and dynamic place. Our curriculum is broad and flexible, embracing the interdisciplinary nature of the field. With six tracks; Bioimaging, Bioinformatics, Biomolecular, Biomedical Product Design & Development, Biomechanics & Neural, and Biomaterials & Tissue; and a collaboration with the University of Kansas Medical Center, students customize their education and create a niche of research before they enter the job market.

BOOTH # 820

University of Kentucky Department of Biomedical Engineering 522 Robotics and Manufacturing Building

143 Graham Avenue Lexington, KY 40506 Phone: 859-257-8101 Email: bmedgs@uky.edu

Web: www.bme.uky.edu

UK is one of only a small number of U.S. institutions having a major academic medical center with all six health sciences colleges and the full spectrum of academic colleges on a single campus. Visit with BME representatives to learn about the exciting research and educational opportunities in our department.

BOOTH # 111

University of Maryland **Fischell Department of Bioengineering**

2330 Jeong H. Kim Building College Park, MD 20742 Phone: 301-405-8268 Email: bioe-grad@umd.edu Web: http://www.bioe.umd.edu

Faculty and students in the Fischell Department of Bioengineering at UMD are committed to making a difference in human health care through education, research, and invention. We have exciting collaborations with the FDA, NIH-NCI, UMB Pharmacy and Medicine, and Children's National Medical Center and offer programs leading to the BS, M.Eng., MS/MD, MD/PhD and PhD degrees.

BOOTH #814

University of Memphis - University of Tennessee Health Sciences Center **Biomedical Engineering**

330 Engineering Technology Building Herff College of Engineering Memphis, TN 39152-3210 Phone: 901-678-3733 jbmgrdnr@memphis.edu Email: Web:

www.memphis.edu/bme

The UM/UT Joint Graduate Program offers M.S. and Ph.D. degrees in biomedical engineering with research specialization in biomaterials, tissue engineering, drug delivery, biomechanics, biomedical sensors, electrophysiology, and bioimaging. Emphasis in these disciplines is in dental/ orthopedics, computational models (pulmonary, coronary, and muscoskeletal), sensor nano/microfabrication, and image processing and analyses.

BOOTHS # 202 / 204

University of Miami Department of Biomedical Engineering

1251 Memorial Drive, MEA #219A Coral Gables, FL 33146-0621 Phone: 305-284-2445 Email: oozdamar@miami.edu Web: www.bme.miami.edu

Our undergraduate and graduate programs leading to the B.S., 5 year B.S./M.S, M.S and Ph.D. degrees provide graduates with the analytical and design skills required to solve problems at the interface of engineering and life sciences. Special features of our program include small class size, very strong ties with the University of Miami Miller School of Medicine, high level of student-faculty interaction, and a high percentage of undergraduate student participation in research and professional activities. The research areas of our Faculty include biomedical imaging, optics and lasers; neural engineering, biosignals and instrumentation; and biomechanics, biomaterials and tissue engineering.

BOOTH # 401

University of Michigan Department of Biomedical Engineering

2200 Bonisteel Blvd. Ann Arbor, MI 48109-2099 Phone: 734-763-5290 Email: sbitzer@umich.edu Web: www.bme.umich.edu

The University of Michigan Department of Biomedical Engineering provides an outstanding educational experience for engineers in biomedical engineering and develops future leaders in the field. The program's primary emphasis is on biomedical engineering fundamentals, while allowing students to personalize their curriculum to prepare them for a wide variety of careers including biomedical engineering, law, medicine, and business.

BOOTH # 409

University of Minnesota Department of Biomedical Engineering

312 Church St. SE 7-105 Nils Hasselmo Hall Minneapolis, MN 55455 Phone: 612-624-8396 Email: bmengp@umn.edu Web: www.umn.edu/bme

The Department of Biomedical Engineering at the University of Minnesota is physically located at the intersection of the medical school, engineering, and physical sciences, and in the heart of LifeScience Alley (home to Medtronic, Boston Scientific, St. Jude Medical, Covidien, plus 500 other FDA-registered medtech companies). Research conducted by the faculty spans the full spectrum, with particular depth in cardiovascular/neural engineering, cell/tissue engineering, cancer bioengineering, and biomedical imaging/optics.

BOOTH # 405

University of Minnesota IGERT Systems Neuroengineering Program 312 Church St. SE

7-105 Nils Hasselmo Hall Minneapolis, MN 55455 Phone: 612-624-8396 Email: igert-ne@umn.edu Web: http://igert-ne.umn.edu

The NSF IGERT (Integrative Graduate Education and Research Traineeship) training program provides interdisciplinary education and research training to highly qualified doctoral students to develop the skills to revolutionize technologies for interfacing with the brain and advance our fundamental understanding of the brain through engineering innovations.

BIOMEDICAL ENGINEERING

UNIVERSITY

ER

Cutting-edge discoveries in:

Biomechanics, Biomedical Acoustics, Biomedical Nanotechnology, Biomedical Optics, Cell & Tissue Engineering, Medical Imaging, and Neuroengineering.

We offer graduate research fellowships including full tuition, stipend, and health insurance.

We also offer a 1-year Master's Degree specializing in Medical Technology & Innovation. The unique feature of this degree is the eight week clinical immersion term in the U.S. top-ranked University of Rochester Medical Center.

www.bme.rochester.edu

BOOTH # 301

University of North Carolina at Chapel Hill NC State University 137 MacNiber Hall

Chapel Hill, NC 27599 Phone: 919-966-8088 Email: vberg@email.unc.edu www.bme.unc.edu Web:

The Joint Department of Biomedical Engineering is an academic department co-located at the University of North Carolina at Chapel Hill and NC State University and was established on December 1, 2003, linking the School of Medicine at UNC-CH to the College of Engineering at NC State. The graduate program offers joint MS and PhD degrees in Biomedical Engineering. The department has administrative offices on both campuses (NCSU: 4130 Engineering Building III; UNC-CH: 152 MacNider Hall).

BOOTHS # 809 / 811

University of Pittsburgh Department of Bioengineering 306 CNBIO

Pittsburgh, PA 15219 Phone 412-624-6445 Email: ngm8@pitt.edu Web: engineering.pitt.edu

The University of Pittsburgh Department of Bioengineering conducts world-class research and is home to faculty and students at both the graduate and undergraduate level who have won both nationally and internationally recognized awards. The department also has a close affiliation with the renowned University of Pittsburgh School of Medicine.

EXHIBITS

Department of Chemical & Biomedical Engineeering and Morsani College of Medicine

Visit us at Booths 922 & 924

health.usf.edu/medicine

National Academy of Inventors academyofinventors.org

University of Portland

5000 N.Willamette Boulevard Portland, OR 97203 Phone 503-943-7612 Email: cairncro@up.edu Web: engineering.up.edu

The University of Portland's master's degree in Biomedical Engineering is an interdisciplinary 12-month program that immerses students in the technical, scientific, medical, business, and management aspects of health care innovation. Students from all STEM backgrounds are encouraged to apply. More information can be found at: engineering.up.edu

BOOTH # 608

University of Rochester Biomedical Engineering

204 Robert E. Georgen Hall Rochester, NY 14627 Phone: 585-275-3891 Email: donna.porcelli@rochester.edu Web: www.bme.rochester.edu

The Graduate Program in Biomedical Engineering at the University of Rochester provides training at the Masters and Doctoral level. Multiple active centers and affiliated groups offer collaborative research in Biomedical Optics; Neuroengineering; Biomechanics; Medical Imaging; Biomaterials, Nanotechnology and Cell & Tissue Engineering. With access to over 50 laboratories on the River Campus and the adjacent Medical Center, students can tailor their own interdisciplinary and translational training experience. We also offer an MS program focused on Medical Technology & Innovation, including a clinical practicum and full-year design experience.

PITT GRADUATE PROGRAM IN BIOENGINEERING

One of our distinctive strengths in interdisciplinary research is our relationship with Pitt's School of Medicine and Schools of the Health Sciences, as well as with the McGowan Institute for Regenerative Medicine. Bioengineering is also deeply embedded within clinical research at University of Pittsburgh Medical Center, one of the top ranked hospital networks in the country. Faculty have laboratories within clinical departments, which allow graduate students to apply engineering principles directly to patient care in bench-to-bedside settings.

Most importantly for our graduate students, Pitt is an urban campus in one of the most livable cities in the world. Its world-class research institutions, corporate headquarters, public amenities, healthcare, low cost of living and relative safety have earned Pittsburgh accolades from *Forbes, Kiplingers, National Geographic, The Economist,* and *US News & World Report.* Both the University and the City provide the perfect match for an outstanding graduate school environment.

PLEASE VISIT engineering.pitt.edu/bioengineering

for a detailed description of graduate program information including our admissions process and various research focus areas.

BOOTH # 201

University of Southern California (USC) Viterbi School of Engineering

3650 McClintock Ave, OHE 106 Los Angeles, CA 90089 Phone: 213-740-0119 Email: fujioka@usc.edu Web: http://viterbi.usc.edu/gapp

A USN&WR top-10 ranked graduate engineering school, the University of Southern California is a leading private research university. Our Biomedical Engineering department is in the top tier for research funding per faculty and hosts six internationally recognized research centers. Located in L.A., USC offers extensive opportunities for study and research.

BOOTHS #922 / 924

University of South Florida

4202 E. Fowler Avenue Tampa, FL 33620 Phone: 813-974-3780 Email: bhethana@usf.edu Web: www.chbme.eng.usf.edu

The University of South Florida is a high-impact, global research university dedicated to student success. USF is a Top 50 research university among both public and private institutions nationwide in total research expenditures, according to the National Science Foundation. Serving nearly 48,000 students, the USF System has an annual budget of \$1.5 billion and an annual economic impact of \$4.4 billion.

A Closely Knit Community

Nestled into Utah's Wasatch Mountain range, the Department of Bioengineering's new home (foreground) is located between the University Hospital & School of Medicine (upper left) and the College of Engineer Campus (just to the right out of frame) providing a clinically immersive engineering experience that is unique among BME training programs. Did you know that the Department of Bioengineering is one of the oldest and yet fastest growing Biomedical training programs in the nation. We rank 7th nationally in median h-index for core faculty as determined by google scholar. With over 125 faculty our research strengths span every inch of Clinical medicine. Not to mention that we are surrounded by unprecedented natural beauty.

Learn more about us at: http://www.bioen.utah.edu/

BOOTHS # 908 / 910

EXHIBITS

University of Tennessee - Knoxville

1512 Middle Drive 414 Dougherty Engineering Bldg Knoxville, TN 37996 Phone: 865-974-5115 Email: williamk@utk.edu Web: http://mabe.utk.edu

The department of Mechanical, Aerospace and Biomedical Engineering at the University of Tennessee offers B.S., M.S., and Ph.D. degrees in Biomedical Engineering. Graduate level research in Biomedical Engineering are organized as interdisciplinary and across departmental and college boarders through the Institute of Biomedical Engineering (iBME). In iBME, faculty from the College of Engineering, the Graduate School of Medicine, the College of Veterinary Medicine, and the College of Education, Health, and Human Sciences work collaboratively to teach a wide variety of courses and perform research in seven major thrust groups. Current thrust groups include Healthcare Engineering and Bioinformatics, Systems Modeling and Simulation, Medical Sensors and Devices, Biomechanics, Multi-Scale Imaging, Systems Biology and Molecular Medicine, and Biomaterials and Regenerative Medicine.

BOOTH # 522

University of Texas Arlington **Bioengineering Department**

500 UTA Blvd., Suite 226 Arlington, TX 76010 817-272-2249 Phone: Fmail cbradfield@uta.edu Web: www.uta.edu/bioengineering

The Bioengineering Department at the University of Texas Arlington offers several research and scholarship opportunities for students interested in Biomaterials & Regenerative Tissue Engineering, Bioinstrumentation, Biomechanics, and Biomedical Imaging. Graduate students also have the option of earning a joint graduate degree with The University of Texas Southwestern Medical Center at Dallas. Those interested in our programs are strongly encouraged to visit Booth 522 at the exhibit to learn more!

BOOTHS # 614 / 616

The University of Texas at Austin **Department of Biomedical Engineering** 107 W. Dean Keeton, C0800

Austin, TX 78712 Phone: 512-475-8623 sbixby@mail.utexas.edu Fmail: Web: www.bme.utexas.edu

The University of Texas at Austin's Biomedical Engineering Department educates the next generation of biomedical engineers by offering B.S., M.S., and Ph.D. degrees. Scholars and students build interdisciplinary knowledge in areas such as bioinformatics, biomechanics, biomedical imaging and instrumentation, cellular and biomolecular engineering, and computational biomedical engineering, among others.

BOOTH # 411

University of Texas at Dallas Eric Jonsson School of Engineering and **Computer Science**

800 W. Campbell Rd. EC 39 Richardson, TX 75080 Phone: 972-883-5155 kelly.sloan@utdallas.edu Email: Web: www.be.utdallas.edu

We would like to provide attendees information regarding the many opportunities that exist for dedicated students to pursue graduate studies in Bioengineering at the University of Texas at Dallas. Outstanding students planning to pursue the Ph.D. degree are invited to apply for a Founders Distinguished Graduate Fellowship at UT Dallas.

BOOTH # 425

University of Toronto Institute of Biomaterials & Biomedical Engineering

164 College Street

Rosebrugh Building, Room 407 Toronto, Ontario M5S 3G9 Canada Phone: 416-946-8019

Fmail

comm.ibbme@utoronto.ca Web: www.ibbme.utoronto.ca

Collaboration shapes innovation at the University of Toronto's Institute

of Biomaterials & Biomedical Engineering (IBBME). Spanning three faculties (Applied Science & Engineering, Medicine and Dentistry) and ten major hospitals, IBBME's unique biomedical and clinical engineering research programs deliver world-class, real world education for students of Canada's top-ranked University.

BOOTH #205

University of Utah Department of Bioengineering

36 S. Wasatch Drive, SMBB 3100 Salt Lake City, UT 84112

801-581-8528 Phone: Email: erin.pugh@utah.edu www.bioen.utah.edu Web:

The Department of Bioengineering and the SCI Institute are internationally recognized for research in biomaterials, drug delivery, neuroengineering, othropedics, cardiovascular medicine, visualization, scientific computing, and image analysis, respectively. Together they offer BS, MS, and PhD training opportunities in a world class vacation destination located at the base of the Wasatch Range. The highly entrepreneurial and interdisciplinary environment is distinguished by its strong collaborative connections between clinical medicine, engineering and industry; a place where researchers can work and play hard.

School of Biomedical Engineering and Sciences

MS

www.sbes.vt.edu

BOOTH # 504

University of Virginia Department of Biomedical Engineering P.O. Box 800759

Charlottesville,VA 22908 Phone: 434-924-5101 Email: adt2n@virginia.edu Web: http://bme.virginia.edu

Join a vibrant network of engineers, clinicians, basic scientists and entrepreneurs. U.Virginia Biomedical Engineering offers a rare integration of Engineering and Medicine, with an exceptionally supportive, collaborative training environment for translational research and the basic sciences. UVA: Explore, Discover, Invent.

BOOTH # 605

University of Washington Department of Bioengineering

3720 15th Avenue NE Box 355061 Seattle,WA 98195

Seattle, WA 98195 Phone: 206-685-2000 Email: bioeng@uw.edu Web: http://depts.washington.edu/bioe/index.html University of Washington Bioengineering is a world leader in bioengineering research, education, clinical applications, technology transfer, and service. Please visit booth 605 to discover how we are inventing the future of medicine. Our faculty and students are eager to talk to you!

BOOTHS # 609 / 611

Vanderbilt University Department of Biomedical Engineering

5824 Stevenson Center

 Nashville, TN 37235

 Phone:
 615-343-1099

 Email:
 tina.shaw@vanderbilt.edu

 Web:
 engineering.vanderbilt.edu/BiomedicalEngineering.aspx

VU BME bridges Vanderbilt's engineering, basic science departments, and its renowned medical center; an ideal location for engineering research at the interface of technology and medicine. Research strengths include image-based technologies, nanobiotechnology, biophotonics, modeling, biomaterials, bioregenerative engineering, bioMEMs. VU BME stimulates high impact research and provides unique educational opportunities.

BOOTHS # 621 / 623

Virginia Commonwealth University

401 W. Main Street P.O. Box 843067 Richmond, VA 23284 Phone: 804-828-7956 Email: biomedicalengr@vcu.edu Web: www.biomedical.engr.vcu.edu

Located on a thriving urban campus, VCU Biomedical Engineering has strong ties with the VCU Medical Center, School of Medicine, School of Dentistry, and Massey Cancer Center, and offers degrees at the Bachelor's, Master's, and Doctoral level. Research specialties include mechanobiology, regenerative medicine, orthopaedic biomechanics, rehabilitation engineering, and biomaterials.

BOOTHS # 700 / 701 / 702 / 703 / 704 / 705

Virginia Tech-Wake Forest University School of Biomedical Engineering & Science

VT-WFU SBES: 317 Kelly Hall (MC0298) Blacksburg, VA 24061 Phone: 540-231-8191 Email: pamstiff@vt.edu Web: www.sbes.vt.edu

The Virginia Tech – Wake Forest University, School for Biomedical Engineering and Sciences offers MS, PhD, MD/PhD, and DVM/PhD degrees. We have 76 biomedical engineering faculty with active research programs in tissue engineering, biomedical imaging, biomechanics, nanomedicine, & nanobioengineering, neuroengineering, translational cancer research, cardiovascular engineering, and other emerging fields.

INVENT THE FUTURE OF MEDICINE WITH US

UNIVERSITY of WASHINGTON

BACHELOR OF SCIENCE · BACHELOR/MASTER OF SCIENCE MASTER OF SCIENCE · DOCTOR OF PHILOSOPHY MASTER OF PHARMACEUTICAL BIOENGINEERING

BE BOUNDLESS DEPTS.WASHINGTON.EDU/BIOE

EXHIBITS

BOOTH # 508

Washington University in St. Louis

One Brookings Drive, Box 1097 St. Louis, MO 63131

Phone: 314-935-6164 Email: teasdalek@wustl.edu Web: http://bme.wustl.edu/

In partnership with our world-class medical school, our department emphasizes interdisciplinary training from top-notch faculty. Our main research areas are biomaterials and tissue engineering; cardiovascular engineering; imaging; molecular, cell and systems engineering; and neural engineering. Our department has more than 75,000 sq. ft. of state-of-theart facilities. We offer BS, MS, MEng, MS/MA, PhD and MD/PhD degrees.

BOOTH # 617

Wayne State University

818 W. Hancock Detroit, MI 48201 Phone: 313-577-1345 Email: nmurthy@wayne.edu Web: www.bme.wayne.edu

The Biomedical Engineering Department at Wayne State University offers BS, MS, PhD and MD/PhD degrees. It is involved in some of the newest ground breaking research in the field. From the use of biomaterials to aid in the regeneration of nerves and the tailoring of these materials to optimize cellular response, to the use of advanced human modeling to study the biomechanics of impact injuries, and the study of sports related injuries and prevention of these injuries, Wayne State will play a major role in the development of new standards to better the quality of human life. Our past research has led to improvement in the standards of the automotive industry, better safer equipment for our soldiers, and a better understanding of injury biomechanics to help prevent and repair damage from these injuries.

BOOTH # 821

Whitaker International Program

809 United Nations Plaza New York, NY 10017 Phone: 212-984-5442 Email: saltaf@iie.org Web: www.whitaker.org

The Whitaker International Program provides funding to emerging U.S.based leaders in biomedical engineering, with a goal of building international bridges. Grant projects – including research, coursework, public policy work – are intended to enhance both the recipient's career and the BME field. Administered by the Institute of International Education.

BOOTH # 822

Worcester Polytechnic Institute

100 Institute Road Worcester, MA 01609 Phone: 508-831-5301 Email: bme-web@wpi.edu Web: www.wpi.edu/+gradbme

Graduate students in WPI's Biomedical Engineering (BME) Department collaborate with scientists and engineers across disciplines, seeking breakthroughs in regenerative medicine, innovations in bioinstrumentation, and major steps forward in healthcare. Whether in the classroom or the lab, the focus remains squarely on solving real-world problems. BME graduates have gone on to rewarding careers at major medical and biomedical research centers across academia, government, and the medical device industry.

BIOENGINEERING AT THE JONSSON SCHOOL

The Erik Jonsson School of Engineering & Computer Science at The University of Texas at Dallas offers its students state-of-the-art facilities, 19 bioengineering tenure-track faculty, collaboration opportunities with affiliated universities, and a premier location near the Telecom Corridor—home to more than 600 high-tech companies.

OUR RESEARCH FOCUS AREAS INCLUDE:

Biosensors and Bioelectrics
 Neuroengineering
 Systems Biology
 Biomechanics
 Biomaterials
 Prosthetics

FIND OUT MORE AT: be.utdallas.edu

DALLAS

EXHIBITS

BOOTH # 517

EXHIBITS

World Scientific Publishing

27 Warren Street, Suite 401 Hackensack, NJ 07601 Phone: 201-487-9655 Email: ruth@wspc.com Web: www.wspc.com

Established in 1981, World Scientific today is one of the leading STM publishers. Publishing 500 titles a year and 120 journals, our mission is to develop the highest quality knowledge-based products and services for the academic, scientific, professional, research and student communities.

BOOTH # 316 Yale University

55 Prospect Street New Haven, CT 06511 Phone: 203-432-4262 Email: deanna.lomax@yale.edu Web: www.seas.yale.edu/departments/biomedical-engineering

The booth will be staffed with graduate representatives and faculty from the department of Biomedical Engineering at Yale. The faculty and graduate representative will aim to describe the program to interested visitors and answer any questions regarding the program requirements and admissions process.

GREAT MINDS

MULTIPLIED

Where innovation is a degree requirement.

The master's and doctoral programs in biomedical engineering at WPI produce leaders and entrepreneurs highly valued in today's workplace. Find your place here, among researchers who are seeking innovative ways to improve lives.

GRAD.WPI.EDU

48th OUT OF MORE THAN 1,500 COLLEGES ACROSS THE COUNTRY ON *MONEY* MAGAZINE'S 2015 "BEST COLLEGES" LIST **100%** PHD POST-GRADUATION EMPLOYMENT VPI CAREER DEVELOPMENT CENTER, 2013

Whitaker International Program: Fellows, Scholars & Summer Programs

Grants For Biomedical Engineering Study or Research Abroad

The Whitaker International Program provides young biomedical engineers, and those in a related field, the opportunity to expand their geographic and academic horizons.

Potential activities to pursue overseas include:

- conducting research at an academic institution or with a corporation
- interning at a policy institute
- studying for a post-baccalaureate degree
- pursuing post-doctoral work

For more information, including program details, application requirements, and the online application, visit our website.

ACTIVITIES

A Whitaker International grant experience will ideally advance your career, while also advancing the goal of increased international collaboration in BME.

Activities could include:

Type of Awards:

- Fellows Award: one year award after receiving your bachelor's degree.
- Scholars Award: for post-doctoral work.
- Summer Award: for BME coursework or research towards your Master's or Ph.D. degree.

Phone: +212-984-5442 www.whitaker.org

Institute of International Education, 809 United Nations Plaza, New York, NY 10017 www.whitaker.org

Meeting Location

Tampa Convention Center

333 S Franklin Street Tampa, FL 33602 (813) 274-8511

Tampa Marriott Waterside

(Headquarters Hotel) 700 South Florida Avenue Tampa, Florida 33602 (813) 221-4900

Registration

Paid registration is required for admission to all meeting functions including scientific sessions, posters, exhibits, breaks and the BMES BASH on Friday evening. BMES cancellation policy may be found on any registration form. Any applicable refunds will be issued post-meeting. Substitutions are permitted with written permission from the original registrant. Additional social event tickets including the Celebration of Minorities in BME Luncheon, and the Women in BME Luncheon are separate and above BMES meeting registration.

On-Site Registration Hours

- Wednesday, October 7 Thursday, October 8 Friday, October 9 Saturday, October 10
- 1:00pm 7:00pm 7:00am – 6:00pm 7:00am – 6:00pm 7:00am – 2:00pm

Exhibits

Exhibit Hall, Tampa Convention Center

Exhibits are located in the Exhibit Hall at the Tampa Convention Center. Exhibits will be open:

Thursday, October 8	9:30am – 5:00pm
Friday, October 9	9:30am – 5:00pm
Saturday, October 10	9:30am – 1:30pm

Dream Teams & Centers

Throughout the program, presentations are recognized as DREAM TEAMS & CENTERS. These teams consist of a minimum of three independent principal investigators. It truly highlights the teamnature of science and the ability of bioengineers to work effectively with others.

BMES Presenter Information Platform Presentations

Each technical session room will be equipped with a PC-compatible computer with a USB port and PowerPoint along with an LCD projector, screen and a lectern with microphone.

During the half hour before your session begins, please upload your presentation onto the computer using a memory stick or flash drive. Because of the potential difficulty transferring some Mac files to PC format, we encourage you to avoid use of animation if there is a question about transferability.

Please do not try to connect your own laptop. Please note, it will not be possible to provide special equipment. Any additional equipment will need to be supported by the presenter. Although BMES has paid for WiFi throughout the convention center during the Annual Meeting, there will not be specific dedicated hard-wired internet access in the meeting rooms.

Sessions chairs should keep sessions on the listed schedule so attendees can move back and forth among sessions. In most cases, presentations should be done in twelve minutes, allowing three minutes for questions and answers and transition to the next speaker.

Poster Presentations

Posters will be presented Thursday, Friday and Saturday. Posters are to be displayed all day on assigned day. Authors must be present during specified viewing with authors as listed in Scientific Program:

Thursday	9:30-10:30am and 3:30-4:30pm
Friday	9:30-10:30am and 4-5pm
Saturday	9:30-10:30am

All posters will be in the Exhibit Hall of the Tampa Convention Center. Posters are numbered with a card corresponding to the numbers assigned in the program.

Speaker Ready Room

Registration Area, Exhibit Hall of the Tampa Convention Center In the BMES Speaker Ready Room you will find cables, LCD projector and screen to practice your presentation. Please bring your own laptop.

Wednesday, October 7	1:00pm – 5:00pm
Thursday, October 8	7:00am – 5:00pm
Friday, October 9	7:00am – 5:00pm
Saturday, October 10	7:00am – 2:30pm

Program Highlights

Don't Miss These Events

WEDNESDAY, October 7 Meet the Faculty Candidate Forum

3:30pm - 5:30pm

Exhibit Hall, Tampa Convention Center

The "Meet-the-Faculty Candidate" poster session provides a great opportunity for faculty, recruiters, and Department Chairs to speak directly with current graduate students and postdoctoral researchers who are seeking faculty positions.

The BMES 2015 Annual Meeting MEET THE FACULTY CANDIDATE FORUM was only open to those who are actively on the market for the 2015-2016 recruiting cycle. Candidates submitted for consideration in August. The accepted candidates' CVs can be viewed at www.bmes.org.

WEDNESDAY, October 7 Welcome Reception

5:30pm - 7:00pm 2nd Floor Foyer, Tampa Convention Center Light refreshments will be served. All registrants are invited to attend.

Sponsored by

WEDNESDAY, October 7 VIP Reception invitation only

6:30pm - 7:30pm Il Terrazzo, Tampa Marriott Waterside

Sponsored by

WEDNESDAY, October 7 LGBT Desert Social ticket purchase required

8:00pm - 9:00pm Room 4, Tampa Marriott Waterside *additional registration and \$10 ticket required.

Wendy Thomas, Associate Professor of Bioengineering at the University of Washington, is the inaugural speaker for the BMES LGBT social hour. As a member of the LGBT community, Prof. Thomas has served as an open role model and mentor for numerous trainees and a champion for diversity issues. She will speak about her experiences as an out member of the community, her experiences communicating with students and colleagues, and the faculty search process. Introductory remarks will be made by Shelly Peyton, Assistant Professor of Chemical Engineering at the University of Massachusetts, Amherst. Prof. Thomas' talk will be followed by dessert and a cash bar.

LGBT Social Sponsored in part by: Georgia Tech and Emory University, University of Massachusetts, Rice Institute of Biosciences and Bioengineering, University of Washington and other anonymous donors.

THURSDAY, October 8

BMES State of the Society Address & Fellows Induction 10:30am

Ballroom BC, Tampa Convention Center Please join us for a dialogue with BMES President Rich Hart and other leaders of the Society.

FRIDAY, October 9 BMES Bash at the Tampa Convention Center

6:30pm - 9:00pm

Riverwalk Terrace

Admission to the BMES BASH will require a wristband. **Please** exchange your ticket (in your badge envelope) for your wristband at the Information Counter (Level 1) or BMES Registration.

Refreshment Breaks

Please note your meeting registration includes morning and afternoon refreshments breaks on Thursday, Friday and Saturday. All refreshment breaks will be in the Exhibit Hall.

Thursday morning refreshment break sponsored by

FLORDA INTERNETIONAL UNIVERSITY

Thursday afternoon refreshment break sponsored by

NULT New Jersey Institute of Technology

LUNCHEONS

THURSDAY, October 8

Celebration of Minorities in BME Luncheon*

12:30-1:45pm Ballroom D, Tampa Convention Center *additional registration and \$25 ticket required

This is the sixth year of this event hosted by the BMES Diversity Committee to create a community and network within the Society fostering support and professional development of minorities in BMES at all levels. Everyone is invited to attend, as diversity only increases when all groups play a part. The luncheon complements the Diversity Award lecture on Saturday and the Women in BME Luncheon on Friday.

Leveraged Innovation: Incorporating, New Opportunities, Varying Tactics, Opposing the Norm!

Christine S. Grant, PhD, Associate Dean of Faculty Affairs and Professor of Chemical and Biomolecular Engineering at North Carolina State University

In this presentation, Dr. Grant will share her experiential perspectives in engineering and inspire the audience to: (i) identify the interfaces in their lives, specifically at the intersection of the personal and professional realms, (ii) create exemplar examples of people and systems that manage seemingly conflicting realms well, and (iii) execute a plan aligned with their own life goals. The discussion will include strategic approaches to the myriad interfaces that exist in the professional and personal realms. The resulting plan will be both flexible and incorporate paradigm-shifting opportunities for "career upgrades." The balance between the public and private components of this plan enables us to selectively invite allies to successfully leverage our core strengths with their external networks, creating new pathways for success.

Dr. Christine Grant is a tenured Full Professor of Chemical and Biomolecular (CBE) engineering and serves as the Associate Dean of Faculty Advancement in the NC State College of Engineering. She is one of only 4 African-American women ChE Full Professors in the U.S. Grant is working to change the under-representation of women and minorities in STEM through targeted empowerment of both women and underrepresented minority (URM) academics at all levels in the STEM pathway. An NSF Presidential Award for Excellence in Science, Math and Engineering Mentoring (PAESMEM) awardee, Grant was selected as a Boeing Senior Fellow of the National Academy of Engineering's Center for the Advancement of Scholarship on Engineering Education (CASEE). She has received the AIChE Minority Affairs Committee Distinguished Service Award, Council for Chemical Research Diversity Award, and YWCA Academy of Women in Science and Technology award. An entrepreneur, her company, Leveraged Empowerment a unit of CoolSci Productions LLC empowers STEM students, faculty and professionals towards excellence in both academic career and personal development via workshops, keynotes and seminars.

FRIDAY, October 9 Women in BME Luncheon*

12:15pm-1:30pm Ballroom D, Tampa Convention Center *additional registration and \$25 ticket required

Gordana Vunjak-Novakovic, PhD, Mikati Foundation Professor of Biomedical Engineering and a Professor of Medical Sciences at Columbia University

Achieving gender equality in science will require formulating and implementing strategies to overcome the political, administrative, financial, and cultural challenges that exist in the current environment. Dr. Vunjac-Novakovic will describe how she navigated her academic career path, becoming a leader in the field stem cells and tissue engineering and founder of EpiBone and TARA Biosystems. Dr. Vunjac-Novakovic will propose an initial shortlist of recommendations to promote gender equality in science and stimulate future efforts to level the field.

Gordana Vunjak-Novakovic is the Mikati Foundation Professor of Biomedical Engineering, and a Professor of Medical Sciences at Columbia University. She directs the Laboratory for Stem Cells and Tissue Engineering and the Stem Cell Imaging Core, and co-directs the NIH Tissue Engineering Center and the Craniofacial Regeneration Center. She is the lead for bioengineering for the Columbia Stem Cell Initiative. She obtained her Ph.D. in chemical engineering at the University of Belgrade in Serbia where she stayed on faculty and became Full Professor in 1993. She spent twelve years at MIT, to join Columbia University in 2005. The focus of her research is on engineering human tissues using stem cells, biomaterials and bioreactors, for regenerative medicine and study of development and disease. She was elected to the National Academy of Engineering and National Academy of Medicine.

2015 BMES ANNUAL Mobile App MEETING

GO TO EITHER THE APPLE OR ANDROID STORE AND SEARCH FOR:

Mira Mobile

- > Download the free app
- Select BMES2015 from the list of available meetings
 - Browse the program by date or session type Search keywords Search author list
 - Add presentations to a custom itinerary Click a link to show
 - where a presentation is on a map of the convention center

ADDITIONAL MEETINGS

Additional Meetings

Most of these meetings/events are invitation only. Please check with the organizer.

Wednesday, October 7

Venture/Well - BME - IDEA 2015 7:00am - 6:00pm

Marriott, Florida Salon V Organizer: Holly Crisler

BMES Board of Directors Meeting

8:30am – 4:30pm Convention Center, Room 24 Organizer: Richard Hart

AIMBE Board of Directors Meeting

11:30am - 3:30pm Convention Center, Room 36 Organizer: Milan Yager

AIMBE Academic Council Meeting

4:30pm - 5:30pm Convention Center, Room 36 **Organizer:** Milan Yager

Annals of Biomedical Engineering - Editorial Board

7:00pm - 10:00pm Marriott Florida Salon I **Organizer:** Christina Dzikowski

Council of Chair Dinner & Meeting

6:15pm - 9:00pm Marriott Florida Salon IV **Organizer:** Judy Cezeaux

Industry Committee Planning Committee 7:30pm - 8:30pm

Marriott, Room 7 Organizer: Ben Noe

Thursday, October 8

ABioM SIG Business Meeting 7:00am - 8:00am Convention Center, Room 35 Organizer: Kaiming Ye

BMES Diversity Committee Meeting

7:00am - 8:00am Convention Center, Room 36 Organizer: Guillermo Ameer and Debra August

BMES National Meetings Committee Meeting

8:00am - 10:00am Convention Center, Room 31 Organizer: Christine Schmidt

Cellular and Molecular Bioengineering – Editorial Board

12noon – 1:30pm Marriott, Florida Salon I **Organizer:** Christina Dzikowski

BMES Membership Committee Meeting

1:30pm - 2:30pm Convention Center, Room 36 Organizer: Martine LaBerge

BMES International Affairs Committee Meeting

1:30pm - 2:30pm Convention Center, Room 31 Organizer: Phil LeDuc

HOSTED RECEPTIONS

Friday, October 9

BMES Education Committee 7:00am - 8:00am Convention Center, Room 36 Organizer: Don Gaver

2016 BMES Annual Meeting Committee Meeting

8:00am - 10:00am Convention Center, Room 31 Organizer: Song Li

Ethics Committee

9:30am - 10:30am Convention Center, Room 36 Organizer: Subrata Saha

Medical Devices SIG Business Meeting 12:30pm - 1:30pm

Convention Center, Room 39 Organizer: Walt Baxter

Saturday, October 10

BMES Industry Advisory Committee Meeting - (Invitation only) 8:30am - 9:30am Convention Center, Room 39 Organizer: Ben Noe

BMES Student Affairs Committee Meeting

9:30am - 10:30am Convention Center, Room 36 **Organizer:** Elizabeth DaSilva

BMES Board of Directors Meeting & New Board Orientation

1:00pm - 3:30pm Convention Center, Room 24 Organizer: Rich Hart

Hosted Receptions

Thursday, October 8

Tampa Marriott WatersideIndividual organizations have set their own

times for their private receptions. Please consult your invitation for the specific time. Generally receptions are from 8:00-9:30pm.

Arizona State University Meeting Room 11

Biomedical Engineering Opportunities in India (MIT) *Florida Ballroom I*

Boston University Grand Ballroom G

Clemson Bioengineering *Grand Ballroom A*

Cornell University Grand Ballroom F

Duke University Grand Ballroom J

Florida International University Meeting Room 7

Georgia Tech Grand Ballroom D

Johns Hopkins University Grand Ballroom B

NJIT - New Jersey Institute of Technology Meeting Room 6

Rensselaer Polytechnic Institute *Grand Ballroom H*

Rice University Grand Ballroom I

The Ohio State Universiy *Grand Ballroom E*

University of California Berkeley *Grand Ballroom C*

University of California Irvine Meeting Room 3

University of California, Los Angeles Meeting Room 12

University of California, San Diego Meeting Room 10

University of Florida Il Terrazzo

University of Illinois at Urbana-Champaign Florida Ballroom VI

University of Michigan *Champions Sports Bar*

University of Pennsylvania *Meeting Room 4*

University of Pittsburgh Florida Ballroom III

University of Southern California *Meeting Room 5*

University of South Florida *Waterside PDR*

University of Texas at Austin Florida Ballroom IV

University of Texas at Dallas Il Terrazzo Boardroom

University of Utah Florida Ballroom II

University of Virginia *Meeting Room 9*

University of Washington *Florida Ballroom V*

University of Wisconsin-Madison Meeting Room 1

Vanderbilt University Meeting Room 8

Whitaker Meeting Room 13

Texas A&M University Embassy Suites Hotel

PHYSICAL REVIEW APPLIED

journals.aps.org/prapplied

Physical Review Applied is APS's newest journal, dedicated to publishing the highest quality research at the intersection of physics and engineering.

The Editors encourage the submission of research that:

- Significantly advances the field of applied physics.
- Is forward thinking, with a clear vision for future directions.
- Offers qualitative, not merely quantitative or incremental, advances over prior work.
- Crosses disciplines, to interest more than a specialized group of readers.

Now Indexed in Web of Science!

CAREER | CONNECTIONS a career development resource of BMES

SOUTHEAST BIOMEDICAL ENGINEERING REGIONAL CONFERENCE

HOSTED BY

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

CO-SPONSORED BY

PRATT SCHOOL of ENGINEERING BIOMEDICAL ENGINEERING UNIVERSITY

OCTOBER 22-23, 2015 Raleigh Convention Center Raleigh, North Carolina

www.BMES.org/SEConf15

CAREER AND PROFESSIONAL DEVELOPMENT SESSIONS

The career and professional development sessions offer career guidance for job seekers ranging from entry level to experienced professionals. The sessions will highlight both traditional and alternative careers available to BMEs.

Thursday, October 8

How to Find a Job in Industry 8:00am - 9:00am

8:00am - 9:00am

Convention Center, Ballroom A The biomedical engineering field is growing rapidly. Biomedical engineering opens the door to an ever-growing amount of job opportunities in industry. Hear from experts in human resources and BME professionals how to search for industry jobs and what to do when you find them.

BME Careers in Industry, Government and Academia 9:15am - 10:15am

Convention Center, Ballroom A

Biomedical Engineering professionals from industry, government and academia will share their career paths, educational training, insight into the hiring market, and suggestions for students and recent graduates.

Student and Early Career programming is sponsored by

Transitioning from Academia to Industry Panel 4:00pm - 5:30pm

Convention Center, Ballroom A This session will explore the industry career paths available to biomedical engineers, what companies look for when hiring undergraduate and graduate students, the interview process, and desired skills of an entry –level biomedical engineer.

Rapid Resume... Review and Critique

Experienced BME professionals or BME related disciplines will review an electronic or hard copy of your resume and work with you to edit and improve your resume. While this has been done successfully at past meetings in a roundtable format, recommendations were made to revise the format so attendees can seek more one-on-one advice.

Convention Center, Room 24

Thursday, October 8 2:00pm - 4:00pm

Friday, October 9 2:00pm - 4:00pm

Friday, October 9

BMES Student Chapter Outstanding Chapter Best Practices 8:30am - 9:30am

Convention Center, Room 12

This workshop will feature the Student Chapter that was awarded the BMES Outstanding Student Chapter Award, along with the Student Chapter awarded the Commendable Achievement Award. During this workshop each Chapter will provide their chapter best-practices, allowing students to ask questions, exchange ideas and implement new goals for the upcoming year.

BMES Student Chapter -Outreach and Mentoring Best Practices 9:30am - 10:30am

Convention Center, Room 12

This workshop will feature the Student Chapter that was awarded the BMES Outstanding Mentoring Award, as well as the Student Chapter awarded the Outstanding Outreach Award. This workshop will begin with the Mentoring and Outreach presentations from both awardees, which will serve to provide information on chapter best-practices, allowing students to ask questions, exchange ideas and implement new goals for the upcoming year.

What You Need to Know to Get a Job in Industry, Government and Academia after Your Ph.D.

9:00am - 10:30am

Convention Center, Ballroom A

Take control of your career! Whether you are employed or searching for a job, this session will provide a structured "roadmap" to help you develop and execute a short-term career plan. Learn actionpacked steps to get started with and apply a new approach throughout your career. In addition, this session will teach you how to build a mentorship base. Who should your mentors be? Learn your role as the "mentee" and what to expect from your mentors. These are tips you will be able to implement successfully right away. Remember: nobody cares about your career more than you do; you owe it to yourself to learn new ways to get ahead!

BMES Undergraduate Student Design Competition – Friday I:45pm - 3:15pm

Convention Center, Ballroom BC (funding with a grant from Medtronic)

The theme of this year's first competition is Bioinstrumentation. The session will bring together the top 6 winning design teams that were selected out of 16 applicants. The top 6 include Columbia University, UC Berkeley, Virginia Commonwealth University, Virginia Tech, Worcester Polytechnic Institute and Yale University. This competition allows each design team to orally present their projects and students to ask questions after each presentation.

Upon completion of all presentations, the judges will select and announce the top 3 winners. Winners will receive First, Second and Third place prize money during the awards ceremony on Saturday, October 10th during the Plenary.

Career Fair – Friday I:00pm - 5:00pm

Convention Center, Exhibit Hall

This event is designed to connect organizations looking to hire high-level people with specialized knowledge and innovation to new product and process development, teaching/training, scientific research, critical resource management, and more.

Start-ups and Venture Capital: Navigating the Funding Process and Investment Pitches 2:00pm - 3:00pm

Convention Center, Room 12

This will be a forum for start-up companies to pitch to venture capitalists, angel investors, and large company venture groups.

Tech Transfer and Licensing - Best Practices in Transferring Technologies from Academia and the Clinic into Industry 3:15pm - 5:00pm

Convention Center, Room 12

1st segment: The first segment of this session will describe what companies seek in transferrable technologies, when and how to transfer, the ins and outs of licensing, and best practices for commercializing inventions and technologies derived from academic and clinical settings. Panelists will include distinguished professionals with expertise in the fields of university tech transfer, law, incubator support, and venture capital investment. **2nd segment:** The second segment of this session will be a forum for select researchers and academics to pitch to select companies interested in sponsoring research or licensing a technology. The technology topics will align with the commercial interests of the participating companies. All members are welcome to sit in the audience to watch pitches.

STUDENT CHAPTER TABLES

Stop by the Student Chapter Booths inside the Registration area in Exhibit Hall to see what's going on "on campus"!

Alpha Eta Mu Beta, The National Biomedical Engineering Honor Society

Binghamton University

Cornell University

San Jose State University

University of California, Davis

University of Illinois, Urbana-Champaign

University of Maryland

University of North Carolina, Chapel Hill

University of Southern California

Wayne State University

CAREER | CONNECTIONS a career development resource of BMES

Solution Solution Solution

of Akron

NOVEMBER 6, 2015 The University of Akron **Student Union Akron, Ohio**

www.BMES.org/MWConf15

Alpha Eta Mu Beta (AEMB) Programs

Alpha Eta Mu Beta Annual Grand Meeting

Thursday, October 8

4:00pm - 5:00pm

Convention Center, Room 25

Session Co-chairs: Bhavit Vora, BS, Justin Huckaby, BS, Morgan Elliott, BS, David Wolfson, BS, Alicia Fernandez-Fernandez, DPT,PhD, Marcia A. Pool, PhD, Teresa A. Murray, PhD, Dominic E. Nathan PhD.

At this annual grand meeting, members representing chapters nationwide will come together to discuss important contemporary events relating to AEMB. (Attendance is mandatory for all AEMB members). If you would like to learn more about AEMB or start a new chapter at your school, please consider attending this session and speak to any of the national officers.

Alpha Eta Mu Beta Reception

(Invitation Only)

Thursday, October 8

5:30pm - 7:00pm

The Annual AEMB reception will be held at the Embassy Suites Tampa (across the street from the Convention Center).

Session Co-chairs: Bhavit Vora, BS, Justin Huckaby, BS, Morgan Elliott, BS, David Wolfson, BS, Alicia Fernandez-Fernandez, DPT,PhD, Marcia A. Pool, PhD, Teresa A. Murray, PhD, Dominic E. Nathan PhD.

The Annual AEMB reception will be held at The Embassy Suites Tampa Downtown Convention Center). We will be presenting the national awards and charters for new chapters during this session. Furthermore, this session is a networking opportunity to meet with other fellow members from AEMB chapters, representatives from industry and academia. This session is open to all AEMB student and faculty members, however tickets are required. For tickets, please contact aemb@alphaetamubeta.org

Alpha Eta Mu Beta - Mentoring for INnovative Design Solutions (MINDS)

Workshop (by invitation only)

Friday, October 9

9:00am - 10:30am

Convention Center, Room 25

Session Chairs: Teresa Murray, PhD, Alicia Fernandez, PhD, DPT, Marcia A. Pool, PhD, Bhavit Vora, BS, Dominic E. Nathan, PhD

Participation in this workshop is by invitation after successfully competing for a spot on a design team. Student applicants will submit an idea for a novel device that uses wearable electronics or telemetry technology for the biomedical applications (please see http://www. alphaetamubeta.org/ for application instructions). Students will work in teams of 4 based on similar interests. Each team will have a mentor who will assist the team in creating a potentially marketable innovation. The mentor will help students incorporate key design considerations, including (i) market considerations for commercialization, (ii) design development and testing, (iii) quality control, (iv) regulatory strategy, and (v) intellectual property protection. After the workshop, students will meet virtually (e.g., via Skype) for up to 6 months to further refine their innovation. They will also be required to produce a more extensive presentation of their product, such as a video for a Kickstarter campaign, or a PowerPoint presentation for a group of potential investors. We will alert participants about opportunities for design contests, investment, and grant programs to further promote and develop their innovations.

Alpha Eta Mu Beta Annual Ethics Session - Genomic Testing and Personalized Medicine, to What Extent is Knowing a Good Thing?

Friday, October 9 2:00pm - 3:00pm

Convention Center, Room 25

Session Chair: Robert D. Frisina, PhD, Bhavit Vora, BS

Today's biomedical engineers are advancing many technical areas of bioengineering at a very rapid pace. Impacts of recent and ongoing advances in tissue engineering and microelectronic fabrication are revolutionizing progress in the arenas of personalized medicine, especially with regards to molecular genetics and genomic testing. Technological progress in these areas have significantly improved guality of care and the efficacy of treatment. However, one of the professional conundrums in the area of genomic testing pertains to moral and ethical challenges, especially with regards to newborns and children. The basic dilemma here focuses upon the decisions that parents have to make for their young children, since children cannot make the decision themselves, about how much genetic testing should be carried out, and what can or should be done with the results of that genetic testing. Genomic testing in children is becoming faster, more efficient and less expensive. So, now instead of testing for a few obvious genes for children who are born with birth defects, possible genetic syndromes, or easily diagnosed problems such as hearing loss or deafness, genetic screening immediately on the horizon will be able to screen for mutations in hundreds or thousands of genes routinely. So, for example, what if a newborn is discovered to have a gene that causes an age-related disorder such as Alzheimer's Disease? Should the parents be told? Should the child be told when they are old enough to know? What is the point of telling the family now, when there are still no preventative or curative treatments of Alzheimer's? Should it go in the child's medical record, where future employers, insurance companies or hackers can gain access to it? And you can imagine a number of biomedical scenarios where it is not obvious what to do with genetic information such as this. Another

STUDENT & EARLY CAREER PROGRAMS - AEMB/WHITAKER

challenging issue is how to obtain the necessary blood samples from a newborn, which has a relatively small blood volume. Umbilical cord blood has been mentioned as a good source, since the umbilical cord is normally cut (sometimes by the proud Father) and discarded with the placenta. However, even this seemingly innocent, harmless procedure has now been called into question as some new evidence suggests that babies do better when the cord blood is allowed to flow into the baby for awhile, precluding a quick cutting of the cord, as has traditionally been done. So, as biomedical engineers work with nurses, doctors, insurance companies and other players in our healthcare system, these issues will come up without clear-cut answers available to them.

Alpha Eta Mu Beta (AEMB), the International Biomedical Engineering Honor Society, is committed to promoting ethics in the field of biomedical engineering. This year, AEMB is honored to host Dr. Robert D. Frisina. Dr. Frisina is a Professor and Director of the Department of Chemical and Biomedical Engineering and also the director for the Communication Sciences and Disorders lab at the University of South Florida. In addition, Dr. Frisina is the director of the Global Center for Hearing and Speech Research and holds joint appointments as Professor at the National Technical Institute for the Deaf (one of two colleges for the deaf in the world), and at the University of Buffalo Center for Hearing and Deafness. Dr. Frisina's research is focused on the function and disorders of the auditory system, more specifically in the critical areas of hearing loss and deadness for which there are is no existing cure. More information about Dr. Frisina can be found at his official website (http://www.eng.usf.edu/~rfrisina/).

Whitaker International Program: Funding Opportunity for Young Biomedical Engineers

Friday, October 9

8:00am - 9:30am

Convention Center, Room 39

The Whitaker International Program, founded in 2005 provides funding to emerging U.S.-based leaders in biomedical engineering to conduct a study and/or research project, with the underlying objective of building international bridges. Grant projects – including research, coursework, public policy work – are intended to enhance both the recipient's career and the BME field. The goal of the Whitaker Program is to assist the development of professional leaders who are not only superb scientists, but who will advance the profession through an international outlook. The Whitaker Program has two subprograms: Fellows and Scholars Program, and the Summer Program. For more information, including program details, the online application and deadlines, visit: http://www.whitaker.org.

1. Sabeen Altaf (Session Chair)

Senior Program Manager, Science and Technology Programs Institute of International Education

2. Caitlin Anderson

Whitaker International Fellow, 2013 Host Institution: Kilimanjaro Clinical Research Institute, TanzaniaTitle: Sensitive antibody detection for Mycobacterium tuberculosis infection in the Tanzanian setting

3. Adam Gormleyy

Whitaker International Scholar, 2012 Host Institution: Imperial College London, UK Title: Self-Assembled Biomaterials and Enzyme Enabled Polymnerizations

4. Carson Ingo

Whitaker International Fellow, 2013Host Institution: Leiden University, NetherlandsTitle: An opportunity in innovation training in medical device development and how it has directed my future

5. Metasebya Solomon

Whitaker International Fellow, 2013

Host Institution: St. Paul's Hospital Millennium Medical College, Ethiopia

Topic: Biomedical Engineering Center in a Low-funding Hospital for Improved Healthcare: Challenges and Applied Practical Solutions

6. Kelli Summers

Whitaker International Fellow, 2013

Host Institution: Medical University of Graz, Austria **Topic:** Novel IL-10 Coated Proticles for Detecting Unstable Atherosclerotic Lesions

2015 BMES AWARDS RECIPIENTS

2015 Awards Recipients

One of the more important — and most enjoyable — tasks of the Society is to recognize contributions to the intellectual and professional development of the field of biomedical engineering. On behalf of the awards committee we would like to thank all the members who submitted nominations and provided letters of support and for the high quality of their nominees. Congratulations to the following award winners.

Robert A. Pritkzer Distinguished Award Lecture Martin Yarmush, MD, PhD Rutaers University

с ,

NIBIB Lecture

Wendy M. Murray, PhD Northwestern University

Distinguished Service Award Winner Gilda Barabino, PhD The City University of New York

Rita Schaffer Young Investigator Award Lecture Jonathan F. Lovell, PhD State University of New York at Buffalo

Diversity Award Lecture

The City College of New York Department of Biomedical Engineering New York, NY

Annals of Biomedical Engineering (ABME) Awards

Presented at Friday afternoon plenary session at 5:15pm

Each year, *The Annals of Biomedical Engineering*, the BMES flagship journal, offers awards for the most downloaded and the most cited papers. This year's awards go to:

Most Downloaded Article

Smartphones for Cell and Biomolecular Detection Smartphones for cell and biomolecular detection.

Xiyuan Liu, Tung-Yi Lin, Peter B. Lillehoj

November 2014, Volume 42, Issue 11, pp 2205-2217

Most Cited Article

Porous Implants Modulate Healing and Induce Shifts in Local Macrophage Polarization in the Foreign Body Reaction

Eric M. Sussman, Michelle C. Halpin, Jeanot Muster, Randall T. Moon, Buddy D. Ratner

July 2014, Volume 42, Issue 7, pp 1508-1516

BMES Extended Abstracts: Design and Research Awards:

Presented at Friday morning plenary session at 10:30am

Graduate Students Sebastian Barreto Johns Hopkins University

Brian Evans Vanderbilt University Lisa Tostanoski

University of Maryland - College Park

Abigail Tyson Virginia Tech

Undergraduate Students Garrett Cyprus

Virginia Commonwealth University Sarah Denning

Bucknell University

Talia Greenstein Rutgers University

Sagar Kaushik University of Alabama at Birmingham

Andrea Mazzocchi Rochester Institute of Technology

Katerina Stojkova Illinois Institute of Technology

Kelly Tong Bucknell University

BMES Student Chapter Awards

Presented at Saturday morning plenary session at 10:30am

2015 Outstanding Achievement Award BMES Student Chapter at University of Pennsylvania

2015 Commendable Achievement Award BMES Student Chapter at the University of California - Davis

2015 Outreach Program Award BMES Student Chapter at University of Texas - Arlington

2015 Outstanding Mentoring Award BMES Student Chapter at The Ohio State University

2015 Commitment to Excellence Award BMES Student Chapter at University of California, Davis

2014 Fleetest Feet Award BMES Student Chapter Virginia Tech/Wake Forest - 105,672 miles

Cellular and Molecular Bioengineering

Congratulates the 2015 CMBE Young Innovators!

September 2015 issue, edited by Nicholas Peppas, Cynthia Reinhart-King, and Christine Schmidt

Danielle Benoit Univ. Rochester Akhilesh Gaharwar Texas A&M Univ. Anjelica Gonzalez Yale Univ. Zhen Gu Univ. North Carolina, and North Carolina State Univ. **Brenton Hoffman** Duke Univ. Princess Imoukhuede Univ. Illinois Urbana-Champaign

Deok-Ho Kim Univ. Washington Shelly Peyton Univ. Massachusetts Nicole Steinmetz Case Western Reserve Univ. Stephanie Willerth Univ. Victoria Lijie Grace Zhang George Washington Univ.

See the Young Innovators present their work on <u>Friday, October 9, 2015 at 8am and 1:45pm!</u>

- Become a 2016 CMBE Young Innovator! Next competition is underway.
- Accepted authors will be invited to present their work in a special twopart platform session at the 2016 BMES Annual Meeting.
- To be eligible, candidates must be BMES members and hold a position at the Assistant Professor level or equivalent.
- Self nominations should include manuscript title with 200-word abstract, and a 2-page NIH-style biosketch, emailed to mike.king@cornell.edu.

Key Dates for 2016 Young Innovators issue: Nomination Deadline: November 6, 2015 Abstract Acceptance: December 11, 2015 Manuscript Submission: February 12, 2016 Print Publication: September 2016

Bioinformatics and Systems Biology

Leonor Saiz University of California, Davis Victor Rodgers University of California, Riverside

Biomaterials

Leo Wan Rensselaer Polytechnic Institute Danielle Benoit University of Rochester

Biomechanics

Joel Stitzel Wake Forest University

Phil LeDuc Carnegie Mellon University

Biomedical Engineering Education

Craig Goergen Purdue University

Michaelann Tartis NM Institute of Mining and Technologyy

Biomedical Imaging and Optics

Joan Greve University of Michigan Paul Dayton

Paul Dayton University of North Carolina

Cancer Technologies

Shay Soker Wake Forest University Marissa Nichole Rylander University of Texas, Austin

Cardiovascular Engineering

Manu Platt Georgia Tech

Mike Hess Medtronic

Cellular and Molecular Bioengineering

Abdul Barakat Ecole Polytechnique (LadHyX) Melissa Knothe Tate UNSW Australia

Device Technologies and Biomedical Robotics

Dan Moran Washington University Justin Williams University of Wisconsin

Drug Delivery

Dean Ho University of California Los Angeles Kim Woodrow University of Washington

Nano to Micro Technologies

Dan Kamei University of California Los Angeles

Lim Chwee Teck National University of Singapore

Neural Engineering

Ryan Gilbert Rensselaer Polytechnic Institute Karen Moxon Drexel University

New Frontiers and Special Topics

Steven George Washington University Wajeeh Saadi Draper Laboratory

Orthopedic and Rehabilitation Engineering

Liyun Wang Univerity of Delaware S. Lucas Lu University of Delaware

Respiratory Bioengineering

Connie Hsia University of Texas Southwestern Medical Center Carrie Perlman Stevens Institute of Technology

Stem Cell Engineering

Jennifer Elisseeff Johns Hopkins University Stephanie Willerth University of Victoria

Tissue Engineering

Andy Putnam University of Michigan Kent Leach

University of California Davis

Translational Biomedical Engineering

Melinda Harman Clemson University Mark Palmer Medtronic

Undergraduate Research, Design & Leadership

Pam VandeVord Virginia Tech Hans van Oostrom University of Florida

2015 TRACK CHAIRS

Thank you to our reviewers for their time and effort:

BIOINFORMATICS, COMPUTATIONAL AND SYSTEMS BIOLOGY

Sharon Aviran Gary Bader Daniel Beard Javier Buceta Valerie Daggett **Olivier Elemento** Stacey Finley Alex Hoffmann Princess Imoukhuede Pamela Kreeger Ting Lu Avi Ma'ayan Aaron Meyer Sriram Neelamegham David Odde Monica Pickholz Jose Luis Puglisi Victor Rodgers Leonor Saiz Armindo Salvador George Serafin Cheemeng Tan Ilya Vakser Jose Vilar Lin Yang Bailin Zhang

BIOMATERIALS

Kyle Allen Jorge Almodovar Nasim Annabi Natalie Artzi Danielle Benoit Lauren Black III Yupeng Chen Petr Cigler David Corr Kareen Coulombe Guohao Dai Emily Day Cole DeForest Craig Duvall Adam Ekenseair **Donald Freytes** Chloe Funkhouser Delphine Gourdon Warren Grayson Jingjiao Guan Brendan Harley Jay Henderson Denise Hocking Yi Hong Gregory Hudalla Jeffrey Jacot Christopher Jewell

Mathumai Kanapathipillai Kristopher Kilian Deak-Ho Kim April Kloxin Kyle Lampe Wan-Ju Li Chien-Chi Lin Elizabeth Lipke Maureen Lynch Amrinder Nain Michael Nash **Baoqing Nie** Iohn Oakey Rachael Oldinski Keat Ghee Ong Jennifer Patterson Arghya Paul Shelly Peyton Evan Scott John Slater Kara Spiller Kelly Stevens Hossein Tavana Yadong Wang Corin Williams John Wilson Anthony Wren Qiaobing Xu Jia Yao Hongchuan Yu David Zaharoff Feng Zhao lanet Zoldan Silviya Zustiak

BIOMECHANICS

Vinay Abhyankar Rita Alevriadou Kyle Allen Jorge Almodovar Scott Anderson Sriram Balasubramanian Gang Bao Janet Barzilla Babak Bazrgari Aditya Belwadi Gary Bledsoe Dixon Brandon Amy Brock Hee Cheol Cho Petr Cigler John Cotton Raffaella De Vita Andrew Drach Stefan Duma Allen Ehrlicher Adam Engler Elizabeth Esposito Adam Feinberg Yuan Feng

Steve Fening Alicia Fernandez-Fernandez F. Scott Gayzik Samir Ghadiali Anna Grosberg Teja Guda Charles Hardin Jeff Holmes Adam Hsieh Roland Kaunas Andrew Kemper Sinan Keten Hyun Jung Kim Tony Kim Mahesh Krishnamoorthy Ramaswamy Krishnan Spencer Lake Noshir Langrana Phil LeDuc J. Michael Lee Jun Liao Elizabeth Loboa lason Luck Robert Mauck Prahlad Menon Kristin Miller James Moore liro Nagatomi Ruth Ochia **Robert Peattie** Estefania Peña Ferris Pfeiffer Raj Prabhu Kyle Quinn Smitha Rao

Katherine Reuther Jorge Rodriguez Noah Rosenblatt Steve Rowson Partha Roy Warren Ruder Taher Saif Roccabianca Sara Hainsworth Shin Andrew Siefert Nathan Sniadecki Amber Stern Robert Steward loel Stitzel Dhananjay Tambe Jeremy Teo loe Tien Jillian Urban Viola Vogel Ashley Weaver Jeffrey Weiss Beth Winkelstein Ge Yang

BIOMEDICAL ENGINEERING EDUCATION

Asem Aboelzahab Nehal Abu-Lail Jeremy Ackerman Jawad Ali Robert Allen Jorge Almodovar Kristen Billiar

ABSTRACT REVIEWERS

A. Nicole Blaize Gary Bledsoe Ting Chen Petr Cigler Jennifer Currey Jaydip Desai John Desjardins Thomas Everett Paul Fagette Donald Gaver Richard Goldberg Shelly Gulati Princess Imoukhuede Morten Jensen Damir Khismatullin Ruba Khnouf Margaret Lowder Jean-Michel Maarek Joseph Martel Kunal Mitra Deborah Munro Jennifer Munson Ashwin Nair Ruth Ochia Kevin Otto Marcia Pool Carlos Ramírez Mark Ruegsegger Alisha Sarang-Sieminski Karl Schilke Steven Schreiner Scott Sell Nirav Shah Jan Stegemann Alyssa Taylor **George Verghese** Sarah Vigmostad Conrad Zapanta Wujie Zhang Donghui Zhu

BIOMEDICAL IMAGING AND OPTICS

Jorge Almodovar Said Audi Carolyn Bayer Lissett Bickford Eric Brey Charles Caskey Simon Cherry Beata Chertok Petr Cigler Paul Dayton Wawrzyniec Lawrence Dobrucki Daniel Elson David Gilland Samuel Grant Joan Greve Hongsheng He Luis Hernandez-Garcia John Hossack Kenneth Hoyt Hyungsoon Im Javier Jo

Markad Kamath Mehmet Kaya Joseph Marshalek G Miller Umberto Morbiducci Gergana Nestorova Walter O'Dell Scott Peltier Adrian Podoleneau Joshua Rychak **Rosalind Sadleir** Yoshifumi Saijo **Ulrich Scheven** Natalie Serkova Mohamed Yacin Sikkandar John Sled Noor Tantawy Elena Tolkacheva Andrew Tsourkas Xueding Wang Simon Williams Lin Yang Hsin-Chih (Tim) Yeh Baohong Yuan Noel Ziebarth

Steven Abel lorge Almodovar Janet Barzilla Carolyn Bayer Marcelo Behar Lissett Bickford Brian Booth Katie Bratlie Beata Chertok Petr Cigler Tara Deans Maribella Domenech Michael Fenn Alicia Fernandez-Fernandez Stacey Finley Ashlee Ford Versypt Samir Ghadiali Debadyuti (Rana) Ghosh Gargi Ghosh Esther Gomez Rana Gosh Michael Gower Adam Hall Xiaoming He He Thomas Hund Hyungsoon Im Princess Imoukhuede Christopher Jewell Xiaocheng Jiang Mathumai Kanapathipillai Matt Kay Albert Keung Damir Khismatullin Yonghyun Kim Joseph Kinsella

Piyush Koria Pamela Kreeger Jan Lammerding Michael Lawrence Wei Li Yaling Liu Ting Lu Feilim Mac Gabhann Joseph Martel Prahlad Menon Aaron Meyer Kunal Mitra **Jennifer Munson** Ashwin Nair Sriram Neelamegham Mehdi Nikkhah David Odde Abhiiit Patwardhan Pallab Pradhan Smitha Rao Jorge Rodriguez George Serafin Keyue Shen Sourabh Shukla Ankur Singh Rachael Sirianni Aleksander Skardal Jonathan Song Kimberly Stroka Cheemeng Tan Hossein Tavana Jeremy Teo Scott Verbridge **Biran WANG** Yun Wu Lin Yang **Baohong** Yuan **Bailin Zhang** Wujie Zhang

CARDIOVASCULAR ENGINEERING

Jorge Almodovar Rodney Averett Aaron Baker Matthew Bonner Edward Botchwey Nenad Bursac Naomi Chesler Petr Cigler Michael Davis Gabriele Dubini Lola Eniola-Adefeso Adam Feinberg Stacey Finley James Gilkerson Anjelica Gonzalez Alex Hill Michael Hill Ngan Huang Princess Imoukhuede Morten lensen Hanjoong Jo

Alain Kassab Damir Khismatullin Tim Laske James Moore Umberto Morbiducci Shelly Peyton Milica Radisic Ellie Rahbar Cynthia Reinhart-King Michael Sacks Taewon Seo Sergey Shevkoplyas Jennifer Siggers Hannah Song W Robert Taylor Albert Titus Bob Tranguillo Yadong Wang

CELLULAR AND MOLECULAR BIOENGINEERING

Steven Abel Nehal Abu-Lail B. Rita Alevriadou Kyle Allen Jorge Almodovar Marcelo Behar Nirveek Bhattacharjee Brian Booth Petr Cigler Guohao Dai Eric Darling Tara Deans Maribella Domenech Adam Engler Thomas Everett Stacey Finley John Frampton Samir Ghadiali Jason Gleghorn Esther Gomez Samuel Grant William Guilford Heather Hayenga Xiaoming He He Brenton Hoffman Bryant Hollins Adam Hsieh Patrick Hsieh SJ Claire Hur Lance Kam Albert Keung Salman Khetani Damir Khismatullin Devrim Kilinc Deok-Ho Kim Yonghyun Kim YongTae Kim Vipuil Kishore Piyush Koria Shiva Kotha Carla Lacerda

ABSTRACT REVIEWERS

Jan Lammerding Michael Lawrence Dan Leslie Allen Liu Ting Lu Feilim Mac Gabhann Gretchen Mahler Mikael Martino Venkat Maruthamuthu Aaron Meyer Sriram Neelamegham David Odde Rene Olivares-Navarrete Anthony Passerini Medha Pathak Pablo Perez-Pinera Steven Poelzing Elizabeth Powell Michelle Previtera David Rubenstein Krishanu Saha Jennifer Seifert Nirav Shah Keyue Shen Hainsworth Shin Sanjeev Shroff C. LaShan Simpson Ankur Singh John Slater Nathan Sniadecki Amber Stern Kimberly Stroka Paul Sundaram Cheemeng Tan Marlon Thomas Alice Tomei Lijie Grace Zhang Wujie Zhang

DEVICE TECHNOLOGIES AND BIOMEDICAL ROBOTICS

Jorge Almodovar Rodney Averett Aaron Baker Matthew Bonner Edward Botchwey Nenad Bursac Naomi Chesler Petr Cigler Michael Davis Gabriele Dubini Lola Eniola-Adefeso Adam Feinberg Stacey Finley James Gilkerson Anjelica Gonzalez Alex Hill Michael Hill Ngan Huang Princess Imoukhuede Morten Jensen Hanjoong Jo

Alain Kassab Damir Khismatullin Tim Laske lames Moore Umberto Morbiducci Shelly Peyton Milica Radisic Ellie Rahbar Cynthia Reinhart-King Michael Sacks Taewon Seo Sergey Shevkoplyas Jennifer Siggers Hannah Song W Robert Taylor Albert Titus **Bob Tranquillo** Yadong Wang

DRUG DELIVERY

Eilaf Ahmed Daniel Alge Kyle Allen Jorge Almodovar Tania Betancourt Katie Bratlie Beata Chertok Edward Chow

Petr Cigler Anthony Convertine Tara Deans Xianting Ding Elizabeth Dirk Yanan Du Craig Duvall Mario Fabiilli Debadyuti (Rana) Ghosh Xiaoming He He Christine Hong Seungpyo Hong SJ Claire Hur Steven Jay Christopher Jewell Lifeng Kang Benjamin Keselowsky Dong-Keun Lee Min Lee Somin Lee Na Li Peter Lillehoj Sierin Lim James Moon Laura Moore Buddy Ratner Daniel Ratner W. Mark Saltzman Evan Scott

Stephanie Seidlits Ankur Singh Patrick Sinko Andrew Smith James Springstead Jeanne Stachowiak Jill Steinbach Matthias Stephan Susan Thomas Hideaki Tsutsui Chun Wang John Wilson Pak Wong Tak Sing Wong Xiaoyang Xu Yitong Zhao Siyang Zheng

NANO AND MICRO TECHNOLOGIES

Jorge Almodovar Shyam Aravamudhan Vince Beachley Leon Bellan Tania Betancourt Nirveek Bhattacharjee Lissett Bickford Hsueh-Chia Chang

ABSTRACT REVIEWERS

Cheng-fu Chen Chia-Hung Chen J-C Chiao Aram Chung Petr Cigler Tzahi Cohen-Karni Jaap den Toonder Jon Dobson David Eddington Rong Fan Jason Fiering Sheila Grant Gianluca Grenci Adam Hall Xiaoming He He Bryant Hollins Tony Huang Dongeun Huh SJ Claire Hur Xiaocheng Jiang Roger Kamm Saif Khan Jungkyu (Jay) Kim Catherine Klapperich Jacqueline Linnes Yuxin Liu Hang Lu

James Moon Nam-Trung Nguyen Nicholas Panaro Sungsu Park **Beth Pruitt** Smitha Rao Dan Ratner Carlos Rinaldi Shelly Sakiyama-Elbert Erkin Seker Sergey Shevkoplyas Steven Soper Gregory Szeto Yi-Chin Toh Majid Warkiani . Pak Wong Jia Yao

NEURAL ENGINEERING

Jorge Almodovar Shyam Aravamudhan Treena Arinzeh Randolph Ashton Nirveek Bhattacharjee Diana-Andra Borca-Tasciuc Tim Bruns Hung Cao Jeffrey Capadona Ting Chen Petr Cigler Joseph Corey Nguyen Cuong Tara Deans Jaydip Desai Alan Dorval Jaimie Dougherty Courtney Dumont Hananeh Esmailbeigi Bin Feng Jason Fiering

Lisa Flanagan Francisco Flores John Frampton Ayesgul Gunduz Mitra Hartmann Xiaofeng Jia Matthew Johnson Mehmet Kaya Massoud Khraiche Devrim Kilinc Suhasa Kodandaramaiah Abigail Koppes

Ryan Koppes Chandra Kothapalli Anja Kunze Kyle Lampe Nicholas Langhals Erin Lavik Nic Leipzig Jason Luck Dylan McCreedy Dominic Nathan Kevin Otto Matthew Panzer Chris Passaglia Abhijit Patwardhan Ryan Pearson Bryan Pfister Sarah Pixley Kelsey Potter **Elizabeth Powell** Samhita Rhodes Frisina Robert Shani Ross **Rosalind Sadleir** Sabato Santaniello Matthew Schiefer Stephanie Seidlits Jennifer Seifert

CONGRATULATIONS TO THE BMES 2015 CLASS OF FELLOWS

RASHID BASHIR, PHD University of Illinois

KAREN BURG, PHD Kansas State University

MICHAEL KING, PHD Cornell University

STEVEN R. LITTLE, PHD University of Pittsburgh

SAMIR MITRAGOTRI, PHD University of California – Santa Barbara PRABHAS V. MOGHE, PHD Rutgers University

ALYSSA PANITCH, PHD Purdue University

BMES Fellow status is awarded to members who demonstrate exceptional achievements and experience in the field of biomedical engineering, and a consistent record of membership and participation in the Society.

Fellows will be awarded their plaques at the Pritzker Lecture, Thursday, October 8th.
ABSTRACT REVIEWERS

Erkin Seker Or Shemesh Peng SHI Anita Singh Sarah Stabenfeldt Deanna Thompson Anil Thota Stuart Tobet Hanbing Wang David Warren Iohn White Stephanie Willerth Rebecca Willits Yunfeng Wu Yinghui Zhong Jonathan Zuidema

ORTHOPEDIC AND REHABILITATION ENGINEERING

Kyle Allen Jorge Almodovar Elisa Arch Petr Cigler Eric Darling Raffaella De Vita Susannah Fritton Sheila Grant Mariah Hahn Lin Han Adam Hsieh Xiaofeng Jia Brian Knarr Chris modlesky **Christopher Price** Rhonda Prisby **Dustyn Roberts** Jonathan Rylander Anita Singh Allison Singles Padma Pradeepa Srinivasan **leffrey** Weiss Lijie Grace Zhang

RESPIRATORY BIOENGINEERING

Jorge Almodovar Said Audi Petr Cigler Samir Ghadiali Jason Gleghorn Yi Hong Connie Hsia Olusegun Ilegbusi Markad Kamath Angana Kharge Kytai Nguyen Tam Nguyen Abhijit Patwardhan Carrie Perlman Carlos Ramírez Priya Ravikumar Arthur Ritter George Verghese Robert (Bob) Weatherly You Wu Huidan (Whitney) Yu Tao Zhang

STEM CELL ENGINEERING

Taby Ahsan Jorge Almodovar Andres Bratt-Leal Petr Cigler Guohao Dai Tim Downing Akhilesh Gaharwar Penney Gilbert Jeffrey Jacot Albert Keung Deak-Ho Kim Ethan Lippmann Jin Nam Sean Palecek Eduardo Silva Ankur Singh Aiiun Wang Stephanie Willerth

TISSUE ENGINEERING

Nehal Abu-Lail Taby Ahsan B. Rita Alevriadou Daniel Alge Jorge Almodovar Eben Alsberg Deirdre Anderson Gobin Andrea Shyam Aravamudhan Randolph Ashton Amit Aurora Vince Beachley Leon Bellan Bahar Bilgen Gary Bledsoe Gary Bowlin Katie Bratlie Eric Brey Jason Burdick Jonathan Butcher Petr Cigler Guohao Dai Tara Deans Elizabeth Dirk Jon Dobson Andrew Drach Adam Feinberg Yuan Feng Michael Fenn

Claudia Fischbach John Fisher John Frampton Gargi Ghosh Jason Gleghorn Cheryl Gomillion Michael Gower Samuel Grant Sheila Grant Anna Grosberg Mariah Hahn Xiaoming He He Adam Hsieh Patrick Hsieh Ho-Wook Jun Mathumai Kanapathipillai Benjamin Keselowsky Salman Khetani Deok-Ho Kim Jungkyu (Jay) Kim Min-Ho Kim Yonghyun Kim Vipuil Kishore Seda Kizilel Piyush Koria Pamela Kreeger Joydip Kundu Carla Lacerda Jonathan Lakey Mai Lam Jennie Leach Kent Leach Peter Lelkes Jun Liao Xiaohua Liu Gretchen Mahler Mikael Martino Kristyn Masters Megan McCain Kara McCloskey lordan Miller Kristin Miller Jennifer Munson Ashwin Nair Mehdi Nikkhah Rene Olivares-Navarrete Pablo Perez-Pinera George Pins **Elizabeth Powell** Andy Putnam Milica Radisic Jorge Rodriguez Ion Rowley David Rubenstein Evan Scott Erkin Seker Scott Sell Nirav Shah Blanka Sharma Hainsworth Shin Heungsoo Shin **Craig Simmons**

C. LaShan Simpson Ankur Singh Rachael Sirianni Jan Stegemann Paul Sundaram Hossein Tavana Jeremy Teo loe Tien Alice Tomei Bob Tranquillo Leslie Tung Gregory Underhill **Biran Wang** Robert (Bob) Weatherly Antonio Webb Nathan Weidenhamer Jeffrey Weiss loyce Wong Young-sup Yoon Ge Zhang Lijie Grace Zhang Wujie Zhang Donghui Zhu Pinar Zorlutuna

Translational Biomedical Engineering

Jorge Almodovar Shahram Amiri Tamara Baynham Chao-Min Cheng Petr Cigler Melinda Harman Richard Hughes Hansen Mansy Jeremy Mercuri Baoqing Nie Mark Palmer William Richardson Stanley Samuel Siyuan Xing

PROGRAM

TODAY'S HIGHGHTS

PLATFORM SESSIONS Thurs-1 8:00am - 9:30am See pages 75-81, Convention Center

EXHIBIT HALL OPEN Convention Center, Exhibit Hall

9:30am - 5:00pm

POSTER SESSION9:30am - 5:00pmSee pages 97-131, Convention Center Exhibit HallPoster Viewing with Authors9:30am - 10:30am& Refreshment Break

PLENARY SESSION 10:30am - 12:15pm Convention Center, Ballroom BC State of the Society Fellows Presentation Rich Hart, PhD

Robert A. Pritzker Distinguished Lecture EMERGING TECHNOLOGIES AND BIOMEDICAL ENGINEERING INNOVATION Martin Yarmush, PhD

Celebration of Minorities in BME Luncheon

Additional ticket purchase required Convention Center, Ballroom D

PLATFORM SESSIONS Thurs-2 2:00pm - 3:30pm See pages 82-89, Convention Center

Poster Viewing with Authors 3:30pm - 4:30pm & Refreshment Break Convention Center, Exhibit Hall

PLATFORM SESSIONS Thurs-3 4:30pm - 6:00pm See pages 90-96, Convention Center

PLENARY SESSION Models for Funding Research Convention Center, Ballroom BC 6:15pm - 7:30pm

12:30pm - 1:45pm

Hosted Receptions–Marriott See page 57 for list

SPECIAL SESSION

Meet the Expert 2015 Schedule

New for 2015 is the "Meet the Expert" theater located on the Exhibition Hall floor. "Meet the Expert" was conceived as a method to allow attendees to explore various biomedical engineering disciplines and career options. The format of the theater allows closer interaction and personal connection with invited experts who will be presenting throughout the week.

Thusday, October 8

12:30 - 1:45PM Engineer/Clinician to Entrepreneur Samit Gupta¹, Paul Torres²

¹Graftworx, ²Universal Hospital Services

Description: The audience will be treated to an inside look of medical device entrepreneurship. The challenges and triumphs of entrepreneurship will be explained with real-world experiences from an engineer or clinician who launched a successful start-up. The speaker will be available for a Q&A session after the presentation.

2:00 - 3:30PM

Product Development Panel: From Idea to Product Rebecca DeLegge¹, Stuart Hart², Anthony Coston³, Elliot Botvinick⁴

¹DeLegge Medical, ²Center for Advanced Learning and Simulation (CAMLS), ³Alkermes, ⁴UC Irvine

Description: This session will provide an overview of the medical device development process. Join experts in medical device product development as they discuss aspects of the development process from idea to commercialization. They will share perspectives on product development relevant to start-ups (including university and clinician inventors) and large medical device manufacturers.

4:30 - 6:00 PM

Opportunity Recognition at the Interface of Medicine and Technology

Rashid Bashir¹, Amy Herr², Elliot Botvinick³

¹Univ of Illinois at Urbana-Champaign, ²UC Berkeley, ³UC Irvine

Description: An in-depth look into what it takes to commercialize cutting edge technologies from academic labs through successful startups and spinoffs in medicine and healthcare. Meet entrepreneurs from academia and industry who worked on both sides of the equation, and learn how they identified the right opportunities and the right approaches for successful commercialization.

P = Poster Session
 OP = Oral Presentation
 2 = Reviewer Choice Award

sessions

8:00AM-9:30AM PLATFORM SESSIONS Thurs-I

Γh-1

THURSDAY, October 8, 2015

8:00 AM - 9:30 AM PLATFORM SESSIONS - THURS - I

Track: Cellular and Molecular Bioengineering OP-Thurs-I-I - Room 18

Cell Adhesion and Interactions with the Extracellular Matrix I

Chairs: Michelle Previtera

8:00AM

High-throughput Matrix Platform Reveals Nonlinear Regulation of Oncogenic microRNA by Stiffness and Fibronectin Density A. RAPE¹, M. ZIBINSKY¹, N. MURTHY¹, AND S. KUMAR¹ ¹University of California, Berkeley, Berkeley, CA

8:15AM

Biomechanical Characterization of Glycocalyx Mediated Leukocyte Adhesion

M. DRAGOVICH¹, K. GENEMARAS¹, AND X. F. ZHANG¹ ¹Lehigh University, Bethlehem, PA

8:30AM

Effect of Shear Stress on Streptococci gordonii Binding to Platelets in Infective Endocarditis

W. THOMAS ^1, O. YAKOVENKO ^1, B. BOURGEOIS ^1, B. BENSING ^2, T. IVERSON ^3, AND P. SULLAM ^2

¹University of Washington, Seattle, WA, ²University of California San Francisco, San Francisco, CA, ³Vanderbilt University, Nashville, TN

8:45AM DREAM TEAM & CENTER

Disrupting Glycosphingolipid Biosynthesis on Human Myeloid Cells Results in Reduced Adhesion and Skipping Motion of Leukocytes S. NEELAMEGHAM¹, N. MONDAL¹, G. STOLFA¹, A. ANTONOPOULOS², A. BUFFONE, JR.¹, G. ATILLA-GOKCUMEN¹, S. HASLAM², AND A. DELL²

¹State University of New York, Buffalo, NY, ²Imperial College, London, United Kingdom

9:00AM

Mechanical Memory In Cadherin Mediated Cell Adhesion

S. SIVASANKAR¹, A. PRIEST¹, AND K. MANIBOG¹ ¹Iowa State University, Ames, IA

9:15AM

Provisional Matrix Citrullination Contributes to Altered Fibroblast Phenotypes V. STEFANELLI' AND T. BARKER' 'Georgia Institute of Technology, Atlanta, GA

Track: Cellular and Molecular Bioengineering OP-Thurs-I-2 - Room 19

Cell Motility

Chairs: Evan Scott

8:00AM

Confinement and Contractility Mediate Tumor Cell Decision Making in Bifurcating Microchannels

C. PAUL¹, D. SHEA¹, M. MAHONEY¹, A. CHAI¹, W-C. HUNG¹, AND K. KONSTANTOPOULOS¹ ¹Johns Hopkins University, Baltimore, MD

8:15AM

Immobilized and Soluble EGF Differentially Impact Cell Signaling and Migration in Keratinocytes C. KIM¹, I. MITCHELL¹, M. KIM¹, P. KREEGER¹, AND K. MASTERS¹

¹University of Wisconsin-Madison, Madison, WI

8:30AM

Collective Migration Slows Dynamics Of Directional Alignment During Electrotaxis

M. LALLI¹ AND A. ASTHAGIRI¹ ¹Northeastern University, Boston, MA

8:45AM

Matrix Alignment Mediates 3D Cell Protrusion Events Through Rac I and FAK

S. CAREY¹, Z. GOLDBLATT¹, K. MARTIN¹, B. ROMERO¹, R. WILLIAMS¹, AND C. REINHART-KING¹ ¹Cornell University, Ithaca, NY

9:00AM

Integrated Modeling-Experimental Analysis of Actin Turnover Regulation in Migrating Glioma Cells B. MCCULLOUGH¹ AND D. ODDE¹ 'University of Minnesota, Minneapolis, MN

9:15AM

Role of Cytoskeletal Forces in Directional Cell Migration Within Three-dimensional Matrices C. CHOI¹,², M. KUTYS¹,², K. DREZEK¹, AND C. CHEN¹,²

¹Boston University, Boston, MA, ²Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA

Track: Cancer Technologies

OP-Thurs-I-3 - Room 20

Engineered Models of Cancer and Tumor Environment I

Chairs: Claudia Fischbach, Bobak Mosadegh

8:00AM

Understanding and Modulation of the Glioma Stem Cell Microenvironment L. NUSBLAT¹ AND C. ROTH¹¹ Rutgers, The State University of New Jersey, Piscataway, NJ

8:15AM

Dynamic Matrix Stiffening Accelerates Tumor Progression in vivo

S. ALLEN¹, N. EBELT¹, R. STOWERS², C. VAN DEN BERG¹, AND L. SUGGS¹ ¹University of Texas at Austin, Austin, TX, ²Stanford University, Stanford, CA

8:30AM

Dynamically Stiffening Hydrogels Promote Malignant Transformation and Mechanical Signaling

M. ONDECK¹, S. WEI¹, J. YANG^{1,2}, AND A. ENGLER^{1,31} UC San Diego, La Jolla, CA, ²Moores Cancer Center, La Jolla, CA, ³Sanford Consortium for Regenerative Medicine, La Jolla, CA

8:45AM

Non-microtubule Targeting Drug Increased Eradication Effect on Brain Tumor Cell Lines in Physical ConfinementL.

BUI¹, A. HENDRICKS¹, R. LEVINER¹, AND Y-T. KIM ¹University of Texas at Arlington, Arlington, TX

9:00AM

Mesofluidic Platform for High Throughput Screening for Inhibitors of Metastasis

A. SPENCER¹, C. SPRUELL¹, S. NANDI¹, V. LE¹, M. CREXIELL¹, A. DUNN¹, AND A. BAKER¹ ¹University of Texas at Austin, Austin, TX

9:15AM

PLATFORM SESSIONS

Changes in Extracellular Matrix Microarchitecture Drive Tumor Progression

K. WANG^{1,2}, B. R. SEO^1, M. QUIEN^2, L. HSU^2, S. MIN^2, C. FISCHBACH^{1,3}, AND D. GOURDON^{1,2}

¹Biomedical Engineering, Cornell University, Ithaca, NY, ²Materials Science and Engineering, Cornell University, Ithaca, NY, ³Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY

Track: Biomaterials OP-Thurs-I-4 - Room 21

Biomaterials Scaffolds I

Chairs: Anjana Jain, Yadong Wang

8:00AM

Electrochemical Compaction Yields Transparent and Stable Collagen Matrices for Corneal Applications R. IYER¹ AND V. KISHORE¹

¹Florida Institute of Technology, Melbourne, FL

8:15AM

Injectable Ultrathin Polymeric Films for Subretinal Cell Delivery H. KAJI¹, T. KONDO¹, N. NAGAI¹, AND T. ABE¹ ¹Tohoku University, Sendai, Japa

8:30AM

Intrinsically Electroactive Biodegradable Photoluminescent Elastomers for Nerve Regeneration

D. SHAN¹ AND J. YANG¹ ¹Penn State University, State College, PA

8:45AM

Poling Electrospun Collagenous Scaffolds for Enhanced Piezoelectric Behavior and Cellular Response

A. H. RAJABI¹, T. LIVINGSTON ARINZEH¹, AND M. JAFFE¹ ¹New Jersey Institute of Technology, Newark, NJ

9:00AM

Versatile Click Alginate Hydrogels Crosslinked via Tetrazine-Norbornene Chemistry

R. DESAI^{1,2}, S. KOSHY^{1,2}, S. HILDEBRAND³, D. MOONEY^{1,2}, AND N. JOSHI^{1,2} ¹Harvard University, Cambridge, MA, ²Wyss Institute for Biologically Inspired Engineering, Boston, MA, ³Harvard Medical School, Boston, MA

9:15AM

Improving Wound Healing in Diabetes via a Novel Cell Adhesive Thermoresponsive Dressing

Y. ZHU¹, Z. CANKOVA¹, M. MRKSICH¹, AND G. AMEER¹ ¹Northwestern University, Evanston, IL

Track: Translational Biomedical Engineering OP-Thurs-I-5 - Room 22

Biomedical Device Design in Translational Research

Chairs: Melinda Harman, Tamara Baynham

8:00AM

Compact Magnetic Levitation for Rapid, On-Site Disease Diagnostics S. KNOWLTON¹ AND S. TASOGLU¹ 'University of Connecticut, Storrs, CT

8:15AM

Multimolecule Electroporation-mediated Delivery Integrated on Chip (MEDiC) Towards Personalized Medicine

C. H. CHOI¹, M. OUYANG¹, AND S. C. HUR¹ ¹Rowland Institute at Harvard University, Cambridge, MA

8:30AM

Fiber Oscillation as a Mode for Gas Exchange Enhancement in the Paracorporeal Ambulatory Artificial Lung (PAAL) device S. MADHANI¹, B. FRANKOWSKI¹, AND W. FEDERSPIEL¹ 'University of Pittsburgh, Pittsburgh, PA

8:45AM DREAM TEAM & CENTER

Design And Development Of A Novel, Low-Cost, Portable, Autotransfusion Device For Application In Low Resource Settings T. WONG¹, K. SIERZEGA¹, G. ROYTMAN¹, N. ROBINSON¹, P. KUTZ¹, S. GELLER¹, V. DOBIESZ¹, AND H. ESMAILBEIGI¹ 'University of Illinois at Chicago, Chicago, IL,

9:00AM

Bedside Washing of Stored Red Blood Cells: A Simple Apparatus Based on Microscale Sedimentation in Normal Gravity

G. KHANAL¹, R. HUYNH¹, K. TORABIAN¹, S. GIFFORD¹, AND S. SHEVKOPLYAS¹ ¹University of Houston, Houston, TX

9:15AM

Endotracheal Tube Geometry and Restraint Affect Forces and Displacements Within the Upper Airway: System Design Considerations

J. WAGNER¹, M. DE ACHAVAL¹, C. LANNING¹, AND R. SHANDAS¹ ¹University of Colorado, Aurora, CO

Track: Biomaterials OP-Thurs-I-6 - Room 23

Micro and Nano Structured Materials I

Chairs: April Kloxin, Kristopher Kilian

8:00AM

Sequential Click Reactions for the Polymerization and Functionalization of PEG hydrogel Microparticles

R. YEGAPPAN¹, F. JIVAN¹, A. GAHARWAR¹, AND D. ALGE¹ ¹Texas A&M University, College Station, TX

8:15AM

Extracellular Matrix Nanoparticles Modulate Macrophage Phenotype M. WOLF¹, J. KRILL¹, T. WANG¹, K. SADTLER¹, C. KIM¹, AND J. ELISSEEFF¹ 'Johns Hopkins University, Baltimore, MD

PLATFORM SESSIONS

Th-1

8:30AM

Osteogenesis on Microtextured Surfaces Is Suppressed In The Presence Of Cigarette Smoke Extract

G. CYPRUS¹, S. HYZ¹, Z. SCHWARTZ¹, M. SAKAGAMI¹, B. BOYAN¹,², AND R. OLIVARES-NAVARRETE¹ ¹Virginia Commonwealth University, Richmond, VA, ²Georgia Institute of Technology,

Atlanta, GA

8:45AM

Nanohydroxyapatite Gelatin Hydrogels for Biomimetic Bone Tissue Engineering

T. THAKUR¹, J. XAVIER¹, L. CROSS¹, M. JAISWAL¹, AND A. GAHARWAR¹ ¹Texas A&M University, College Station, TX

9:00AM DREAM TEAM & CENTER

Advanced Breast Cancer Remotely Alters the Nanostructure of the Bone Metastatic Site

F. HE^{1,2,3}, M. LYNCH¹, R. HOERTH², B. R. SEO¹, B. WILLIE³, W. WAGERMAIER², G. DUDA³, P. FRATZL², AND C. FISCHBACH¹

¹Cornell University, Ithaca, NY, ²Max Planck Institute of Colloids and Interfaces, Potsdam-Golm, Germany, ³Charite - University Medicine Berlin, Berlin, Germany

9:15AM DREAM TEAM & CENTER

Micropatterns Promote Cell Migration for Enhanced Epithelialization C. MAGIN¹, M. DRINKER¹, D. NEALE², B. WILLENBERG^{2,3}, S. REDDY¹, G. SCHULTZ², AND

A. BRENNAN¹,² ¹Sharklet Technologies, Inc., Aurora, CO, ²University of Florida, Gainesville, FL, ³University of

Central Florida, Orlando, F

Tracks: Tissue Engineering, Cardiovascular Engineering

OP-Thurs-I-7 - Room I3

Cardiovascular Tissue Engineering I

Chairs: Nenad Bursac, Kara McClosk

8:00AM

Extracting the Enhancement of Extracellular Matrix Production and Stiffness in Large-Deformation Mechanically-Conditioned Heart Valve Tissue Engineering

J. SOARES¹, A. D'AMORE², J. STELLA², W. ZHANG¹, J. MAYER, JR.³, W. WAGNER², AND M. SACKS¹

¹University of Texas at Austin, Austin, TX, ²University of Pittsburgh, Pittsburgh, PA, ³Boston Children's Hospital, Boston, MA

8:15AM

A Tissue Engineered Hybrid Myocardial Patch for Post-MI Cardiac Regeneration

A. ANDUKURI¹, K. BAN¹, S. KIM¹, Y. JEON¹, S. LEE¹, P. HWANG², H-W. JUN², AND Y-S. YOON¹

¹Emory University, Atlanta, GA, ²University of Alabama at Birmingham, Birmingham, AL

8:30AM

Early 3D Culture Promotes Functional Maturation of hPSC-derived Cardiomyocytes

I. SHADRIN¹, A. CARLSON¹, AND N. BURSAC¹ ¹Duke University, Durham, NC

8:45AM

Engineering 3D Cardiac Micro-Tissues by Co-Culturing Cardiomyocytes and Cardiac Fibroblasts within Hydrogel Based Constructs

H. SAINI¹, A. NAVAEI ¹, A. VAN PUTTEN¹, AND M. NIKKHAH¹ ¹Arizona State University, Tempe, AZ

9:00AM

Electromechanical Conditioning of Human iPS Derived Cardiac Microtissues Enables Predictive Modeling of Toxicity and Disease

K. Ronaldson¹, S. Ma¹, T. Chen¹, K. Yeager¹, D. Sirabella¹, L. Song¹, M. Yazawa¹, and G. Vunjak-Novakovic¹

¹Columbia University, New York, NY

9:15AM

Differential Effect of PEG-Based Hydrogels on MAPK Signaling in Adventitial Fibroblasts

R. A. SCOTT¹, P. M. KHARKAR¹, N. J. BUNCE¹, R. E. AKINS², AND K. L. KIICK¹ ¹University of Delaware, Newark, DE, ²A.I. duPont Hospital for Children, Wilmington, DE

Track: Tissue Engineering OP-Thurs-1-8 - Room 14

Inflammation and Immunomodulation in Tissue Engineering I

Chairs: Benjamin Keselowsky, Evan Scott

8:00AM

Novel Strategy to Alter Fibrotic Tissue Responses by Directed-Adipogenic Differentiation D. BAKER¹, Y-T. TSAI¹, H. WENG¹, AND L. TANG¹

¹University of Texas at Arlington, Arlington, T

8:15 AM

Optimizing Spheroidal Culture of Mesenchymal Stromal Cells to Enhance Wound Healing Potential K. MURPHY¹, P. FALAHEE¹, S. SIMON¹, AND J. K. LEACH¹

¹UC Davis, Davis, CA

8:30AM

Role of Macrophage-associated GPNMB in MSC Migration and Diabetic Wound Healing

B. YU¹, T. ALBOSOLEMY¹, C. MALCUIT¹, F. SAFADI², AND M-H. KIM¹ ¹Kent State University, Kent, OH, ²Northeast Ohio Medical University, Rootstown, OH

8:45AM

Long term Glycemic Control Using Polymer Encapsulated, Human Stem-Cell Derived & β -cells in Immune Competent Rodents O. VEISEH¹

¹Massachusetts Institute of Technology, Cambridge, MA

9:00AM

MnO 2 Nanoparticles as Oxidative Stress Modulators in Beta Cell Culture/Encapsulation* M. TOOTOONCHI¹ AND C. FRAKER²

¹University of Miami School of Medicine, Miami, FL, ² University of Miami Diabetes Research Institute, Miami, FL

9:15AM

Localized Low-Dose Release of Corticosteroid from Macroporous Organosilicone Scaffolds*

K. JIANG¹, J. WEAVER², P. BUCHWALD³, AND C. STABLER¹
¹ University of Florida, Gainesville, FL, ² Georgia Institute of Technology, Atlanta, GA, University of Miami, Miami, FL

Track: Biomechanics

OP-Thurs-I-9 - Room 15

Concussion and Head Impact Measurement and Mitigation in Sports

Chairs: Stefan Duma, Songbai Ji

8:00AM

Quantifying Head Impact Exposure in Collegiate Women's Soccer J. PRESS¹ AND S. ROWSON¹ *Virginia Tech, Blacksburg, VA*

PLATFORM SESSIONS Thurs-I 8:00AM-9:30AM

8:15AM

Direct Assessment of Impact Mitigation by Football Helmets

B. CUMMISKEY¹, E. NAUMAN¹, J. MEYER¹, D. ADAMS², T. TALAVAGE¹, AND L. LEVERENZ¹ ¹Purdue University, West Lafayette, IN, ²Vanderbilt University, Nashville, TN

8:30AM DREAM TEAM & CENTER

Ex Vivo Evaluation of an Instrumented Mouthguard C. Kuo¹, L. Wu¹, J. LUCK², H. CUTCLIFFE², R. LYNALL³, J. KAIT², K. CAMPBELL³, J. MIHALIK³, C. BASS², AND D. CAMARILLO¹ ¹Stanford University, Stanford, CA, ²Duke University, Durham, NC, ³University of North Carolina at Chapel Hill, Chapel Hill, NC

8:45AM

Head Impact Exposure Of Youth Football Athletes Over Multiple Seasons

M. KELLEY¹, J. URBAN¹, D. JONES¹, L. MILLER¹, AND J. STITZEL¹ ¹Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Winston-Salem, NC

9:00AM DREAM TEAM & CENTER

Validation of an Ear-Based Measurement System for Head Impact H. CUTCLIFFE¹, J. LUCK¹, J. KAIT¹, C. KUO², L. WU², R. LYNALL³, K. CAMPBELL³, D. CAMARILLO², J. MIHALK³, AND D. BASS¹

¹Duke University, Durham, NC, ²Stanford University, Stanford, CA, ³University of North Carolina at Chapel Hill, Chapel Hill, NC

9:15AM DREAM TEAM & CENTER

Laboratory Evaluation of the xPatch: Differences in Outputs between the Left and Right xPatch in Helmeted Head Impacts

K. R. CAMPBELL¹, R. C. LYNALL¹, J. F. LUCK², H. C. CUTCLIFFE², J. R. KAIT², C. KUO³, L. WU³, D. B. CAMARILLO³, C. R. ⁺. BASS², AND J. P. MIHALIK¹

¹University of North Carolina at Chapel Hill, Chapel Hill, NC, ²Duke University, Durham, NC, ³Stanford University, Stanford, CA

Track: Biomechanics OP-Thurs-I-10 - Room 16 Computational and Multiscale Modeling,

Cellular and Cardiovascular

Chairs: Michael Sacks, Chung-Hao Lee

8:00AM

Effect Of The Degradation Of Bioresorbable Stents On Mechanical Stresses In The Stent And The Artery

J. MENSAH¹, F. CORNAT¹, A. LAFONT¹,², AND A. BARAKAT¹ ¹Ladhyx - Ecole Polytechnique, Palaiseau, France, ²Université Paris Descartes, Paris, France

8:15 AM

Computational Modeling of Cell Invasion Dynamics into a 3D ECM Fiber Network

M-C. KIM¹, J. WHISLER¹, Y. R. SILBERBERG², R. D. KAMM¹, AND H. H. ASADA¹ ¹Massachusetts Institute of Technology, Cambridge, MA, ²Singapore MIT Alliance Research Technology, Singapore, Singapore

8:30AM

A Computational Model for Studying Mechanical Stresses on Cells Using Microfluidics

K. WARREN¹, J. MPAGAZEHE¹, P. LEDUC¹, AND C. F. HIGGS, III¹ ¹Carnegie Mellon University, Pittsburgh, PA

8:45AM

Development of a Population-Averaged Model of the Complete Mitral Valve Geometry

A. KHALIGHI¹, A. DRACH¹, C-H. LEE¹, C. BLOODWORTH², E. PIERCE², M. JENSEN², A. YOGANATHAN², R. GORMAN³, J. GORMAN³, AND M. SACKS¹
¹The University of Texas as Austin, Austin, TX, ²Georgia Institute of Technology, Atlanta,

GA³University of Pennsylvania, Philadelphia, PA

9:00AM DREAM TEAM & CENTER

A Multiscale Model of Leukocyte Transmigration R. BHUI¹, C. MEYER¹, S. LEONARDI¹, AND H. HAYENGA¹ ¹University of Texas at Dallas, Richardson, TX

9:15AM

Cardiac Electromechanics-Growth model: Predicting the Long-Term Effects of Left Branch Bundle Block

L. C. LEE¹, M. GENET², J. SUNDNES³, S. WALL³, AND G. KASSAB⁴ ¹Michigan State University, East Lansing, MI, ²ETH Zurich, Zurich, Switzerland, ³Simula Research Laboratory, Oslo, Norway, ⁴California Medical Innovations Institute, San Diego, CA

Track: Cardiovascular Engineering OP-Thurs-I-II - Room 3-4

Hemodynamics and Vascular Mechanics

Chairs: Morton Jensen, Hanjoong Jo

8:00AM

Altered Lymphatic Flow in Lymphedema J. JIMÉNEZ¹, D. SWEET¹, P. DAVIES¹, AND M. KAHN¹ ¹University of Pennsylvania, Philadelphia, PA

8:15AM

Ex vivo Whole Blood Haemostatic Model of Trauma-induced Coagulopathy and Assessment of Trauma Patient Platelet Function Under Flow

R. LI¹, H. ELMONGY ¹, C. SIMS², AND S. DIAMOND¹ ¹University of Pennsylvania, Philadelphia, PA, ²Hospital of the University of Pennsylvania, Philadelphia, PA

8:30AM

Pathological VWF Fibers Resist tPA and ADAMTS13 while Promoting the Contact Pathway and Shear-Induced Platelet Activation

B. HERBIG¹ AND S. DIAMOND¹ ¹University of Pennsylvania, Philadelphia, PA

8:45AM DREAM TEAM & CENTER

A Mechanical Argument for the Differential Performance of Coronary Artery Grafts

D. PRIM¹, B. ZHOU¹, M. ULINE¹, A. HARTSTONE-ROSE², T. SHAZLY¹, AND J. EBERTH¹,² ¹University of South Carolina, Columbia, SC, ²University of South Carolina School of Medicine, Columbia, SC

9:00AM

The Influence of Substrate Hhydrophobicity on Fibrinogen Fiber Formation and Platelet Adhesion

L. ZHANG¹, C. MARMORAT¹, Y. YU¹, D. GALANAKIS¹, AND M. RAFAILOVICH² ¹Stony Brook University, Stony Brook, NY,²stony brook university, stony brook, NY

9:15AM

An *In Vivo* Study Of A Gold Nanoparticle-Tissue Construct For Vascular Repair

S. GRANT¹, A. OSTDIEK¹, D. GRANT¹, AND R. GOPALDAS² ¹University of Missouri, Columbia, MO, ²Prairie Cardiovascular, Springfield, IL

OP = Oral Presentation **Q** = Reviewer Choice Award

P = Poster Session

Track: Stem Cell Engineering OP-Thurs-1-12 - Room 5-6

Stem Cells in Pre-clinical and Clinical Models

Chairs: Jennifer Elisseeff, Stephanie Willerth

8:00AM

Track Overview Talk by chairs

8:15 AM

Placental Mesenchymal Stromal Cells Rescue Ambulation in Ovine Myelomeningocele

A. WANG¹, L. LANKFORD¹, B. KELLER¹, C. PIVETTI¹, AND D. FARMER¹ ¹University of California Davis, Sacramento, CA

8:45AM

Programming Stem Cell Delivery By Single-Cell Encapsulation In Microgels

J-W. SHIN¹, A. S. MAO¹, D. A. WEITZ¹, AND D. J. MOONEY¹ ¹Harvard University, Cambridge, MA

9:00AM

Human Keratinocytes Derived Neural Crest Cells: An Untapped Source of Myelinogenic Schwann Cells for Demyelinating Diseases V. BAJPAI¹, X. WANG¹, R. ZEIGER¹, AND S. ANDREADIS¹ 'SUNY Buffalo, Amherst, NY

9:15AM

Magnetic Targeting Cardiac Stem Cells For The Treatment Of Myocardial Infarction And Exosomes For Treatment Of Dilated Cardiomyopathy

A. VANDERGRIFF $^1,^2$, J. BIZETTO MIERA DE ANDRADE 1 , J. TANG $^1,^3$, M. T. HENSLEY 1 , J. PIEDRAHITA 1 , T. CARANASOS 4 , AND K. CHENG 1

¹North Carolina State University, Raleigh, NC, ²UNC/NCSU, Ralegh, NC, ³Zhengzhou University, Zhengzhou, China, People's Republic of, ⁴University of North Carolina at Chapel Hill, Chapel Hill, NC

Track: Biomedical Imaging and Optics OP-Thurs-I-I3 - Room II

Magnetic Resonance Imaging

Chairs: Samuel Grant, Stephen LaConte

8:00AM

Probing Cellular Specific Microarchitectures Using Double Diffusion Encoded, Relaxation-Enhanced Magnetic Resonance Spectroscopy at 21.

¹ TN. SHEMESH¹, J. ROSENBERG², J-N. DUMEZ³, L. FRYDMAN^{2,4}, AND S. GRANT²,⁵ ¹Champalimaud Centre for the Unknown, Lisbon, Portugal, ²Florida State University, Tallahassee, FL, ³CNRS, Gif-sur-Yvette, France, ⁴Weizmann Institute of Science, Rehovot, Israel, ⁵FAMU-FSU College of Engineering, Tallahassee, FL

8:30AM

Effects of B1+ Inhomogeneity on Liver Iron Estimates in MRI Effects of B1+ Inhomogeneity on Liver Iron Estimates in MRI

E. DOYLE^{1,2} AND J. WOOD^{1,2}

 $^{\rm t}$ University of Southern California, Los Angeles, CA, $^{\rm 2}$ Children's Hospital of Los Angeles, Los Angeles, CA

8:30AM

Surgical Target Selection for Subcallosal Cingulate Region Deep Brain Stimulation Based on Structural Connectivity

K. S. CHOI¹, P. RIVA-POSSE¹, C. MCINTYRE², R. GROSS¹, A. CROWELL¹, S. GARLOW¹, J. RAJENDRA¹, AND H. MAYBERG¹

¹Emory University, Atlanta, GA, ²Case Western Reserve University, Cleveland, OH

8:45AM

MRI Analysis of Inferior Vena Cava Branches in Murine Models of Venous Thrombosis O

PALMER¹, J. DIAZ¹, AND J. GREVE¹ ¹University of Michigan, Ann Arbor, MI

9:00AM

Seed-Based Functional Connectivity to Study Motor Function in Children with Cerebral Palsy

H. Deshpande I, 2, J. Lee Park3, J. Lisinski2, S. DeLuca2, S. Ramey2, and S. LaConte2

¹Virgnia Tech, Blacksburg, VA, ²Virgnia Tech Carilion Research Institute, Roanoke, VA,³Virgnia Tech Carilion School of Medicine, Roanoke, VA

9:15AM

The MRI-Targeted Delivery of Brain-Penetrating Non-Viral GDNF Gene Vectors to the Striatum with Focused Ultrasound Reverses Neurodegeneration in a Parkinson's Disease ModelB.

 $\mathsf{Mead}^1,\mathsf{P},\mathsf{Mastorakos}^2,\mathsf{W},\mathsf{Miller}^1,\mathsf{J},\mathsf{S},\mathsf{Suk}^2,\mathsf{A},\mathsf{Klibanov}^1,\mathsf{J},\mathsf{Hanes}^2,\mathsf{and},\mathsf{R},\mathsf{Price}^1$

¹University of Virginia, Charlottesville, VA, ²Johns Hopkins University, Baltimore, MD

Track: Neural Engineering

OP-Thurs-I-I4 - Room I2

Neural Interfaces: Compatibility, Recording, and Stimulation I

Chairs: Tim Bruns, Abigail Koppes

8:00AM

A Transgenic Mouse Study of the Role of Macrophages from Different Origins in the FBR to Chronically Implanted Microelectrode Arrays B. VELAGAPUDI¹, M. CHRISTENSEN¹, AND P. TRESCO¹ ¹University of Utah, Salt Lake City, UT

8:15 AM

Stretchable Multielectrode Arrays for Conformal Neural Interfacing L. ${\rm GUO^1}$

¹The Ohio State University, Columbus, OH

8:30AM

Perspectives on Using Device Capture Histology (DCHist) for *in situ* Evaluation of Implantable Microelectrodes H. C. LEE¹, J. GAIRE¹, AND K. OTTO¹ 'University of Florida, Gainesville, FL

8:45AM

Flexible Neural Microprobes Coated with a Fast Degrading Polymer as a Tissue Insertion Aid

M-C. LO¹, J. M. ZHENG¹, S. SINGH¹, V. B. DAMODARAN¹, I. AHMED¹, K. COFFEY¹, D. BARKER¹, H. M. KAPLAN¹, D. I. SHREIBER¹, J. KOHN¹, AND J. D. ZAHN¹ *'Rutgers University, Piscataway, NJ*

9:00AM

Anti-oxidant Coatings Improve Microelectrode-induced Neuroinflammation

J. KEENE¹, G. GASKIN¹, J. NYUGEN¹, S. MEADE¹, AND J. CAPADONA¹ ¹Case Western University, Cleveland, OH LATFORN

PLATFORM SESSIONS Thurs-I 8:00AM-9:30AM

9:15AM

Mechanically Matched Hydrogel Coatings for Improved Biocompatibility of Neural Implants K. SPENCER¹, J. SY¹, AND M. CIMA¹ ¹MIT, Cambridge, MA

PLATFORM SESSIONS

Track: Cardiovascular Engineering

OP-Thurs-I-I5- Room I7

Cardiac Electrophysiology

Chairs: Michael Hill, Ellie Rahbar

8:00AM

Simultaneous Optical Pacing and Optical Mapping of Activation Spread in Optogenetic Neonatal Rat Ventricular Myocyte Cultures Q. LI¹, R. NI¹, W. KONG¹, V. FAST¹, AND L. ZHOU¹

¹University of Alabama at Birmingham, Birmingham, AL

8:15AM

Shortening of Action Potential Duration with Increased Work in Contracting Rabbit Heart

K. GARROTT¹, A. WENGROWSKI¹, H. ZHANG², J. ROGERS², AND M. KAY¹ ¹The George Washington University, Washington, DC, ²The University of Alabama at Birmingham, Birmingham, AL

8:30AM DREAM TEAM & CENTER

Handheld Device for ECG Acquisition with Onboard Algorithm for Rapid and Automated Detection of Atrial Fibrillation G. KRUGER¹, R. LATCHAMSETTY¹, N. LANGHALS¹, M. YOKOKAWA¹, H. ORAL¹,

AND O. BERNFELD¹ 'University of Michigan, Ann Arbor, MI

8:45AM

Gap Junctional Coupling Modulates the Conduction Velocity-Ephaptic Coupling Relationship

M. ENTZ II¹, S. GEORGE¹, M. ZEITZ¹, J. SMYTH¹, AND S. POELZING¹ ¹Virginia Polytechnic Institute and State University, Roanoke, VA

9:00AM

Engineering Primary Human Fibroblasts with Customizable Electrical Phenotypes H. NGUYEN¹, R. KIRKTON¹, AND N. BURSAC¹ ¹Duke University, Durham, NC

9:15AM

Analysis of Congestive Heart Failure ECG Signals Using Hilbert-Huang Transform

S. MOHAMED YACIN¹, S. RANJITHA¹, A. C. S. SUCHITHRA¹, AND B. DIVYA¹ ¹Rajalakshsmi Engineering College, Chennai, India

Track: Drug Delivery OP-Thurs-1-16 - Room 10

Responsive Delivery Systems

Chairs: Elizabeth Dirk, Craig Duvall

8:00AM

Externally Controlled Cell Internalization of Magneto-Electric Nanoparticles via Magneto-acoustic Electroporation

B. SHRESTHA^{1,2}, S. BETAL¹, M. DUTTA¹, E. KHACHATRYAN¹, L. F. COTICA³, K. NASH¹, A. BHALLA¹, R. GUO¹, AND L. TANG^{1,2}

¹University of Texas at San Antonio, San Antonio, TX, ²University of Texas Health Science Centre, San Antonio, TX, ³State university of Maringá, Maringá, Brazil

8:15AM

In Situ Transfection by Controlled Release of Lipoplex via Acoustic Droplet Vaporization

B. JULIAR¹, D. JONES¹, A. MONCION¹, M. PILON¹, R. FRANCESCHI¹, AND M. FABIILLI¹ ¹University of Michigan, Ann Arbor, MI

8:15 AM

In Situ Transfection by Controlled Release of Lipoplex via Acoustic Droplet Vaporization

B. JULIAR¹, D. JONES¹, A. MONCION¹, M. PILON¹, R. FRANCESCHI¹, AND M. FABIILLI¹ ¹University of Michigan, Ann Arbor, MI

8:30AM

Design & Development of pH-Responsive Hydrogels: An Oral Delivery Strategy for Protein Therapeutics S. STEICHEN¹, C. O'CONNOR¹, AND N. PEPPAS¹

¹The University of Texas at Austin, Austin, TX

8:45AM

Molecular Engineering of Insulin M. WEBBER¹, D. ANDERSON¹, AND R. LANGER¹ ¹Massachusetts Institute of Technology, Cambridge, MA

9:00AM

pH-Sensitive Elastin-Like RGD-Functionalized Liposomes For Anticancer Drug Delivery E. VENETI¹, D. AUGUSTE¹, AND R. TU¹ ¹The City College of New York, New York, NY

9:15AM

Eudragit-PLGA-PEG Blended Nanoparticles With pH Triggered Drug Release For Oral Delivery Of Insulin

S. CHOPRA¹, A. WANG¹, O. FAROKHZAD², AND R. KARNIK¹ ¹Massachusetts Institute of Technology, Cambridge, MA, ²Harvard Medical School, Boston, MA

Track: Nano and Micro Technologies OP-Thurs-1-17 - Room 7-8

Medical Diagnostics and Screening I

Chairs: Erkin Seker, Vince Beachley

8:00AM

Designing An Assay For Quick Detection Of Ebola Through Nanomanufacturing Of An Ebola Virus Mimic P. LAM¹ AND N. STEINMETZ¹ ¹Case Western Reserve University, Cleveland, OH

8:15 AM

Rapid Detection of Pathogens via Culture-based Detection of Living Micro-organisms Using Impedance Measurements S. PUTTASWAMY¹, R. KARGUPTA¹, A. LEE¹, J. PARDALOS¹, AND S. SENGUPTA¹ ¹University of Missouri, Columbia, MO

8:30AM

Biomarker Detection in a Rat Post-traumatic Osteoarthritis Model using Magnetic Capture

E. YARMOLA¹, H. KLOEFKORN¹, J. DOBSON¹, AND K. ALLEN¹ ¹University of Florida, Gainesville, FL

8:45AM

Solid-state Nanopores for DNA Base Modification Detection and Sequence Selection

A.R. HALL¹, O. K.ZAHID¹, AND R. WANG¹ ⁷Wake Forest University School of Medicine, Winston-Salem, NC

P = Poster Session
 OP = Oral Presentation
 2 = Reviewer Choice Award

PLATFORM SESSIONS

[h-1

9:00AM

Exponentially Amplified Isothermal Immunoassay with Size-based Oligonucleotide Background Reduction J. KONG¹, D. KIM¹, AND D. DI CARLO¹

¹University of California, Los Angeles, Los Angeles, CA

9:15AM DREAM TEAM & CENTER

Nanopore-Based Detection of Biomarker toward Cancer Diagnostics

J. SHIM¹, Y. KIM¹, G. HUMPHREYS¹, A. NARDULLI¹, F. KOSARI², G. VASMATZIS², W. TAYLOR², D. AHLQUIST², S. MYONG¹, AND R. BASHIR¹ ¹University of Illinois at Urbana - Champaign, Urbana, IL, ²Mayo Clinic, Rochester, MN

Track: Neural Engineering OP-Thurs-1-18 - Room I

Device-based Approaches for Axonal Growth and Guidance

Chairs: Treena Arinzeh, Chandra Kothapalli

8:00AM DREAM TEAM & CENTER

Enabling Technologies for Neurons: New Approaches for Axonal and Dendritic Growth and Guidance *(invited)*

M. U. GILLETTE¹, A. JAIN¹, O. V. CANGELLARIS¹, S. C. LIU¹, R. IYER¹, L. J. MILLET¹, T. KIM¹, P. FROETER¹, M. LEE¹, A. ABDEEN¹, K. KILIAN¹, G. POPESCU¹, H. KONG¹, AND X. LI¹

¹University of Illinois, Urbana, IL

8:15AM DREAM TEAM & CENTER

Microchannel Scaffold Technology for Nerve Repair

D. Shahriari¹, D. Lynam², K. Wolf², K. Murakami³, M. Shibayama³, J. Koffler³, M. Tuszynski³, ⁴, W. Campana³, and J. Sakamoto¹

¹University of Michigan, Ann Arbor, MI, ²Michigan State University, East Lansing, MI,³University of California San Diego, La Jolla, CA, ⁴Veterans Administration Medical Center, San Diego, CA

8:30AM

Nebulized Solvent Ablation of Aligned PLLA Fibers for the Study of Astrocyte and Neurite Responses to Anisotropic-to-Isotropic Fiber/ Film Transition Boundaries

J. ZUIDEMA¹,², G. DESMOND¹, C. RIVET¹, K. KEARNS¹, D. THOMPSON¹, AND R. GILBERT¹ ¹Rensselaer Polytechnic Institute, Troy, NY, ²University of California San Diego, La Jolla, CA

8:45AM

Capillary Alginate Gel (Capgel) With Laminin Promotes 3D Schwann Cell Myelination Of DRG Axons

W. ANDERSON¹, A. GOLOUBEV¹, A. BROWN¹, E. ROSS¹, S. LAMBERT¹, AND B. WILLENBERG¹

¹University of Central Florida, Orlando, FL

9:00AM DREAM TEAM & CENTER

Combining Micro-Computed Tomography with Histology to Analyze Biomedical Implants for Peripheral Nerve Repair

S. PIXLEY¹, T. HOPKINS¹, A. HEILMAN¹, J. LIGGETT¹, K. LASANCE¹, K. LITTLE², D. HOM¹, D. MINTEER³, AND K. MARRA³

¹University of Cincinnati, Cincinnati, OH, ²Cincinnati Children's Hospital Medical Center, Cincinnati, OH, ³University of Pittsburgh, Pittsburgh, PA

9:15AM

Homeostatic Plasticity Preserves Network Architecture

M. ADEGOKE¹ AND D. MEANEY¹ ¹University of Pennsylvania, Philadelphia, PA

Track: Biomedical Imaging and Optics OP-Thurs-I-I9 - Ballroom D

Application of Imaging Methods to Tissue Engineering*

Chairs: Eric Brey

8:00AM

Single-Cell Lens-Free Imaging of Cell Migration in Diverse Microenvironments

C. PAUL', E. MATHIEU², R. STAHL², G. VANMEERBEECK², K. KONSTANTOPOULOS¹, AND L. LAGAE²

¹Johns Hopkins University, Baltimore, MD, ² imec, Leuven, Belgium

8:15AM

Development of an Optical Probe for Detection of Chondrocyte Apoptosis Following Cartilage Injury

Y-H. HUANG¹, J. ZHOU¹, H. WENG¹, J. BORRELLI², AND L. TANG¹ ¹University of Texas at Arlington, Arlington, TX, ² Texas Health Arlington Memorial Hospital, Arlington, TX

8:30AM

In Situ Microscale Quantification of Solute Transport via Image Correlation Spectroscopy

B. GRAHAM¹, J. SHOGA¹, AND C. PRICE¹ ¹University of Delaware, Newark, DE

8:45AM

Modified En Bloc Staining and Clearing for Improved Imaging of Musculoskeletal Cells In Situ

I. BERKE¹, J. MIOLA¹, M. SMITH¹, AND C. PRICE¹ ¹ University of Delaware, Newark, DE

9:00AM

Imaging Optically Cleared Whole Tissues with Unprecedented Resolution of Cellular Anatomy and Macroscale Architecture

F. MARINI¹, K. COWDRICK¹, C. M. BOOTH¹, K. NELSON¹, AND G. J. CHRIST¹,² ¹ Wake Forest Institute of Regenerative Medicine, Winston-Salem, NC, ² University of Virginia, Charlottesville, VA

9:15AM

Fluorescent Imaging to Probe MSC Chondrogenesis and Matrix Production in Hydrogels

S. VEGA¹, M. KWON¹, AND J. BURDICK¹

¹ University of Pennsylvania, Philadelphia, PA

Track: Biomedical Engineering Education (BME) OP-Thurs-I-20 - Room 9

ABET Workshop: Criteria for Your Next Accreditation

Chairs: Jim Sweeney and Jay Goldberg

The BMES Accreditation Activities Committee and BMES Education Committee will present a workshop with a panel discussion. The workshop will provide an informational overview of recent and proposed changes to the ABET criteria, including the program specific criteria for bioengineering and biomedical engineering, as well as a panel discussion on best practices for incorporating engineering standards into bioengineering and biomedical engineering capstone design projects

THURSDAY, October 8, 2015

2:00 PM - 3:30 PM PLATFORM SESSIONS - THURS - 2

Track: Cellular and Molecular Bioengineering OP-Thurs-2-1 - Room 18

Cell Adhesion and Interactions with the Extracellular Matrix II

Chairs: Randy Ashton, Chris Jewell

2:00PM

Recognition in Tight Spaces

D. LECKBAND¹, N. SHASHIKANTH², AND M. KISTING² ¹University of Illinois, Urbana, IL, ²Univ of Illinois, Urbana, IL

2:15PM

Recapitulating the Cytoskeletal Architecture of Cells of Interest Using Cell-Derived, Biomimetic Patterns

J. Slater¹, J. Culver², B. Long³, C. Hu³, J. Hu³, T. Birk³, A. Qutub³, M. Dickinson⁴, and J. West⁵

¹University of Delaware, Newark, DE, ²University of California San Francisco School of Medicine, San Francisco, CA, ³Rice University, Houston, TX, ⁴Baylor College of Medicine, Houston, TX, ⁵Duke University, Durham, NC

2:30PM

Transglutaminase Cross-linking Inhibits DDRI and DDR2 Activation on Type I Collagen Extracellular Matrices

D. WANG¹, A. HSIEH², AND K. BHADRIRAJU³

¹River Hill High School, Clarksville, MD, ²University of Maryland, College Park, MD, ³National Institute of Standards and Technology, Gaithersburg, MD

2:45PM

Cell Adhesion Chromatography Reveals Impaired Persistence of Rolling Adhesion of Metastatic Cells to P-selectin

E. HANNEN',², J. OH', P. M. MCCLATCHEY¹, AND S. N. THOMAS^{1,2,3} ¹Georgia Institute of Technology, Atlanta, GA, ²Georgia Institute of Technology and Emory University, Atlanta, GA, ³Emory University School of Medicine, Atlanta, GA

3:00PM

Mechanical Feedback In Cell-Cell Adhesion: Cadherin Conformational Shuttling Captured At The Single Molecule Level.

S. SIVASANKAR¹, K. MANIBOG¹, K. SANKAR¹, AND R. JERNIGAN¹ ¹Iowa State University, Ames, IA

3:15PM

Integrin-Dependent Mechanical Signaling Drives Glycoprotein-Rich

Matrix Production and Aggressiveness in Malignant Brain Cancer M. BARNES¹, Y. MIROSHNIKOVA¹, J. LAKINS¹, AND V. WEAVER¹ *'UCSE San Francisco, CA*

Track: Cellular and Molecular Bioengineering OP-Thurs-2-2 - Room 19

Cancer Cell Mechanics and Engineering

Chairs: Hossein Tavana, Carlos Rinaldi

2:00PM

Cell Motility in a Basement Membrane Gel Concentrates ECM Around Breast Epithelial Cells, a Feature Lost in Malignant Cells

C. ROBERTSON¹ AND M. BISSELL¹ ¹Lawrence Berkeley National Lab, Berkeley, CA

2:15PM

Galectin-I Modulates E-selectin Ligand Function of Breast Cancer Cells N. REYNOLDS¹, C. HALL¹, S. THOMAS¹, AND M. BURDICK¹ ¹Ohio University, Athens, OH

2:30PM

Engineered Multivalency Increases ErbB3 Affibody Efficacy in Cancer Cell Signaling Inhibition J. SCHARDT¹ AND S. JAY¹ 'University of Maryland, College Park, College Park, MD

2:45PM

Bioreactor-Derived Fluid Flow Upregulates Expression Of Genes That Affect Cell Adhesion in Breast Cancer Cells

K. FUH¹, B. KOOISTRA¹, R. SHEPHERD¹, AND K. RINKER¹ ¹University of Calgary, Calgary, AB, Canada

3:00PM

TRAIL-coated Leukocytes That Prevent the Bloodborne Metastasis of Prostate Cancer

E. WAYNE¹, S. CHANDRASEKARAN¹, M. CHAN¹, R. LEE¹, C. SCHAFFER¹, M. KING¹, AND M. J. MITCHELL²

¹Cornell University, Ithaca, NY, ²MIT, Cambridge, MA

3:15PM DREAM TEAM & CENTER

Mechanical Stimulation Of The Cellular Microenvironment Via Active Surface Wrinkling Directly Influences The Control Of Cell Migration Behavior

M. E. Brasch^{1,2}, N. O. Deakin³, M. L. Manning^{1,2}, C. E. Turner³, and J. H. Henderson^{1,2}

¹Syracuse University, Syracuse, NY, ²Syracuse Biomaterials Institute, Syracuse, NY, ³SUNY Upstate Medical University, Syracuse, NY

Track: Cancer Technologies OP-Thurs-2-3 - Room 20

Engineered Models of Cancer and Tumor Environment II

Chairs: Claudia Fischbach, Bobak Mosadegh

2:00PM

Models Cancer and Metastasis (invited) A.SKARDAL Wake Forest University, Winston-Salem, NC

2:30PM

Paper-Based 3D Culture for the Study of Cancer Cells in vitro B. MOSADEGH¹ 'Weill Cornell Medical College, New York, NY

2:45PM

Bioengineered Tissue Microenvironments for Studying Human Tumor Metastasis

J. LEE^{1,2} AND B. PAREKKADAN^{3,4,5}

¹University of Massachusetts-Amherst, Amherst, MA, ²Institute for Applied Life Sciences, Amherst, MA, ³Massachusetts General Hospital & Harvard Medical School, Boston, MA,4Shriners Hospital for Children, Boston, MA, 5Harvard Stem Cell Institute, Boston, MA

3:00PM DREAM TEAM & CENTER

Three-dimensional Vascularized Tumor-fibroblast Co-culture Platform for Drug-testing ApplicationsS.

PRADHAN¹, A. M. SMITH², I. HASSANI¹, K. HENDERSON¹, R. D. ARNOLD¹, B. PRABHAKARPANDIAN², AND E. A. LIPKE¹

¹Auburn University, Auburn, AL, ²CFD Research Corporation, Huntsville, AL

3:15PM

Rational Design of a 3D Tissue-engineered Brain Cancer

MODELJ. YUAN¹, B. PUROW¹, F. BAFAKIH¹, AND J. MUNSON¹ ¹University of Virginia, Charlottesville, VA

Track: Biomaterials OP-Thurs-2-4 - Room 21

Biomaterials Scaffolds II

Chairs: Guohao Dai, Chien-Chi Lin

2:00PM

Polyethylene Glycol (PEG) Affects Mechanical and Biological Properties of Poly(ester amide) Based Fibrous Scaffolds

T. YATSENKO¹, Y. XUE¹, A. PATEL¹, V. SANT¹, AND S. SANT¹ ¹University of Pittsburgh, Pittsburgh, PA

2:15PM

Development of a Peptide-functionalized PEG-based Hydrogels System for Intestinal Organoid Culture

V. HERNANDEZ-GORDILLO¹, G. H. CHOI¹, R. CARRIER², AND L. GRIFFITH¹ ¹Massachusetts Institute of Technology, Cambridge, MA, ²Northeastern University, Boston, MA

2:30PM

An Integrative Paradigm for Remodeling of Decellularized ECM-Derived Surgical Scaffolds

M. CRONCE¹, I. POMERANTSEVA¹, X-H. LIU², S. GOLDMAN², J. VACANTI¹, B. GROTTKAU¹, C. NEVILLE¹, AND C. SUNDBACK¹

¹Massachusetts General Hospital, Boston, MA, ²DSM Biomedical, Exton, PA

2:45PM

Crosslinked Keratin in PEG Matrix for Sequestration of Bone Repair **Growth Factors**

R. DF GUZMAN¹ ¹Hofstra University, Hempstead, NY

3:00PM

A Biomimetic Microsphere System for Bone Regeneration C. MA¹ Y. JING¹ AND X. LIU ¹Texas A&M University Baylor College of Dentistry, Dallas, TX

3:15PM

3-D Constructs For Tissue Engineering or-; Molded Vs. Printed: The Differences From A Cell Based Perspective

K-C. FENG¹ AND M. SIMON¹

¹Stony Brook University, Stony Brook, NY

Track: Biomaterials OP-Thurs-2-5 - Room 22

Therapeutic and Theranostic **Biomaterials I**

Chairs: Mathumai Kanapathipillai, Craig Duvall

2:00PM

Nanoparticle Mediated Delivery of Metabolic Glutamate Enhancers to Restrain Autoimmune Disease

J. M. GAMMON¹ AND C. M. JEWELL^{1,2,3}

¹University of Maryland - College Park, College Park, MD, ²University of Maryland Medical School, Baltimore, MD, ³Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD

2:15PM

Capillary Alginate Gel (Capgel) Biomaterials Enhance Wound Healing B. WILLENBERG¹, A. GOLOUBEV¹, A. BROWN¹, G. SCHULTZ², AND E. ROSS¹

¹University of Central Florida, Orlando, FL, ²University of Florida, Gainesville, FL

2:30PM

Incorporation of Unnatural Amino Acid in Elastin-like Polypeptides by Genomically Recoded E.coli for Efficient Small Molecule Attachment S. COSTA¹ ¹Duke University, Durham, NC

2:45PM

Novel Photoluminescent And Antioxidant UV-protective Biomaterials J. YANG¹, R. VAN LITH¹, W. KASPRZYK¹, AND G. AMEER¹ ¹Northwestern University, Evanston, IL

3:00PM

Dextran Coated Cerium Oxide As A Reactive Oxygen Scavenger

E. ALPASLAN¹, H. YAZICI¹, M. VARGAS², A. ROY¹, J. GALLEGO², T. WEBSTER¹, AND T. WEBSTER^{1,3} ¹Northeastern University, Boston, MA, ²Universidad de Antioquia UdeA, Medellin,

Colombia,³King Abdulaziz University, Jeddah, Saudi Arabia

3:15PM

Tissue Responses to a New Calcium Aluminosilicate Endodontic Cement

L. A. OPPERMAN¹, K. F. WOODMANSEY¹, G. D. KAHOUT¹, R. WHITE¹, AND C. M. PRIMUS

¹Texas A&M University Baylor College of Dentistry, Dallas, TX

Track: Biomaterials OP-Thurs-2-6 - Room 23

Micro and Nano Structured Materials II

Chairs: Jingjiao Guan, Hossein Tavana

2:00PM

Halloysite Nanotube Coatings Suppress Leukocyte Spreading A. HUGHES¹, G. MARSH², R. WAUGH³, D. FOSTER², AND M. KING¹ ¹Cornell University, Ithaca, NY, ²University of Rochester, Rochester, NY, ³University of Rochester, Ithaca, NY

2:15PM

Carbon Nanotube Functionalization and Scaffold Geometry Promote Differentiation of Myoblasts

A. PATEL¹, S. MUKUNDAN¹, W. WANG², A. KARUMURI², V. SANT¹, S. MUKHOPADHYAY², AND S. SANT

¹University of Pittsburgh, Pittsburgh, PA, ²Wright State University, Dayton, OH

PLATFORM SESSIONS Thurs-2 2:00PM-3:30PM

2:30PM

Porous Silicon Nanoparticles: Protein Release, Photoluminescence, and Imaging in the Central Nervous System

J. ZUIDEMA¹, A. NAGAHARA¹, J. JOO¹, G. HOLLETT¹, M. TUSZYNSKI¹,², AND M. SAILOR¹ ¹University of California San Diego, La Jolla, CA, ²Veterans Affairs Medical Center, San Diego, CA

2:45PM

Peptide Nanofiber-Calcium Carbonate Composite Microparticles for Mucosal Vaccine Delivery

J. SNOOK¹, J. RUDRA¹, S. DANN¹, AND A. PENICHE¹ ¹University of Texas Medical Branch, Galveston, TX

3:00PM

PLATFORM

High-throughput Layer-by-layer (LbL) Platform For Assembly And Screening Of Multi-layered Nanofilm Libraries

Z. DONG¹, L. TANG^{1,2}, AND W. Ll¹ ¹Texas Tech University, lubbock, TX, ²Tongji Medical College, Wuhan, China, People's Republic of

3:15PM

Bulk and Nanoscale Polypeptide/ Nucleic Acid Complexes

L. LEON¹, M. LUECKHEIDE¹, J. VIEREGG¹, E. J. CHUNG¹, Y. FANG¹, AND M. TIRRELL¹ ¹University of Chicago, Chicago, IL

Track: Tissue Engineering, Cardiovascular Engineering

OP-Thurs-2-7 - Room I3

Cardiovascular Tissue Engineering II

Chairs: Laura Suggs, Peter McFetridge

2:00PM

Capturing Endothelial Progenitor Cells under Shear with Peptide-grafted Hydrogels W. SEETO¹ AND E. LIPKE¹ 'Auburn University, Auburn, AL

2:15PM

Fabricating 3D Microvascular Structures with Cell & ECM Organization Recapitulating Native Vasculature

S. BARRETO¹, J. FRADKIN¹, J. TRIVERO¹, B. GINN¹,², H-Q. MAO¹,², AND S. GERECHT¹ ¹Johns Hopkins University, Baltimore, MD, ²Johns Hopkins School of Medicine, Baltimore, MD

2:30PM

Endothelial Cell Sprouting in Agarose-Hydroxyapatite-Fibrinogen Microbeads for Vasculogenesis

E. DALEY¹, A. RIOJA¹, A. PUTNAM¹, AND J. STEGEMANN¹ ¹University of Michigan, Ann Arbor, MI

2:45PM

Extracellular Matrix Microstructure And Composition Regulate 3D Endothelial Network Formation

M. MCCOY¹ AND C. FISCHBACH¹ ¹Cornell University, Ithaca, NY

3:00PM

Macrophage Phenotype and CD4+ T-cell Differentiation Impact Endothelial Sprouting

B. KWEE¹, T. RAIMONDO¹, AND D. MOONEY¹ ¹School of Engineering and Applied Sciences and Wyss Institute at Harvard University, Cambridge, MA

3:15PM

Implantable Tissue-Engineered Blood Vessels from Human Induced Pluripotent Stem Cells

L. GUI¹, B. DASH¹, L. QIN¹, L. ZHAO¹, K. YAMAMOTO¹, T. HASHIMOTO¹, H. WU¹, G. TELLIDES¹, A. DARDIK¹, L. NIKLASON¹, AND Y. QYANG¹ 'Yale University, New Haven, CT

Track: Device Technologies and Biomedical Robotics

OP-Thurs-2-8 - Room 14

Biomedical Robotics

Chairs: Helen Huang, Smitha Rao

2:00PM

Bioprinting Viable 3D Cell-Laden Constructs with a Complex Geometry

S. DENNIS¹, M. YOST¹, AND T. TRUSK¹ ¹Medical University of South Carolina, Charleston, SC

2:15PM DREAM TEAM & CENTER

Optogenetic Skeletal Muscle Powered 3D Printed Biological Machines R. RAMAN¹, C. CVETKOVIC¹, S. UZEL², P. SENGUPTA¹, R. D. KAMM², AND R. BASHIR¹ ¹University of Illinois at Urbana-Champaign, Urbana, IL, ²Massachusetts Institute of Technology, Boston, MA

2:30PM

Optimizing the Performance and Lifetime of Muscle-Powered Biological Machines

C. CVETKOVIC¹, C. WILDER², M. FERRALL², R. RAMAN¹, M. PLATT², AND R. BASHIR¹ ¹University of Illinois at Urbana-Champaign, Urbana, IL, ²Georgia Institute of Technology and Emory University, Atlanta, GA

2:45PM

Novel Endoscopic Instrument Manipulator Utilizing Pre-curved Sliding Elements C. BRYSON¹, J. TILL¹, AND C. RUCKER¹ ¹University of Tennessee Knoxville, Knoxville, TN

3:00PM

An Autonomous Robotic System for Rapid Blood Draws and Analysis M. BALTER¹, A. CHEN¹, T. MAGUIRE¹, AND M. YARMUSH¹ ¹Rutgers University, Piscataway, NJ

3:15PM

Design Of A Robotic Assistive Device For Phlebotomy A. KESARI¹ 'Worcester Polytechnic Institute, Worcester, MA

Track: Biomechanics OP-Thurs-2-9 - Room 15

Head Injury Molecular to Macro, Simulation and Protection

Chairs: Susan Margulies, Steve Rowson

2:00PM

Limitations Of Standard Twin-Wire Drop Testing For Modeling Concussion Kinematics In Football F. HERNANDEZ¹, P. SHULL¹, AND D. CAMARILLO¹ 'Stanford University, Stanford, CA

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

2:15PM

Comparing the Ability of Head Impact Sensors to Measure Head Kinematics

A. TYSON¹, B. COBB¹, S. ROWSON¹, AND S. DUMA¹ ¹Virginia Tech, Blacksburg, VA

2:30PM

Mechanical Effects of Dynamic Binding Between Tau Broteins on Axonal Microtubules During Traumatic Brain Injury: Predictions from a Computational Model

H. AHMADZADEH¹, D. SMITH¹, AND V. SHENOY¹ ¹University of Pennsylvania, Philadelphia, PA

2:45PM

Airbag helmets: An Alternative Protective Headgear for Bicycle Accidents

M. KURT¹, K. LAKSARI¹, AND D. CAMARILLO¹ ¹Stanford University, Stanford, CA

3:00PM

Development of a Methodology for Assessing the Biomechanical Performance of Hockey Helmets B. ROWSON¹, S. ROWSON¹, AND S. DUMA¹

¹Virginia Tech, Blacksburg, VA

3:15PM

Real-time Brain Pressure Estimation Via Pre-computation In Translational Head Impact W. ZHAO¹ AND S. JI¹ ¹Dartmouth College, Hanover, NH

Track: Biomechanics

OP-Thurs-2-10 - Room 16

Computational Modeling, Musculoskeletal and Whole Body

Chairs: Alan Eberhardt, Babak Bazrgari

2:00PM

PA Musculoskeletal Shoulder Model With Deformable Humerus, Bone Material Inhomogeneity and Muscle Loading

J. YAO¹, Y. SHI¹, P. SARASWAT¹, M. CHINNAKONDA¹, J. HURTADO¹, V. OANCEA¹, AND D. COOMBS²

¹Dassault Systèmes Simulia Corp., Johnston, RI, ²DePuy Synthes Trauma, West Chester, PA

2:15PM

Simulation Of High Intensity Pressure Transduction In Human Ear Model

K. LECKNESS¹, X. WANG¹, AND R. GAN¹ ¹University of Oklahoma, Norman, OK

2:30PM

Simple Three-Dimensional Geometric Representation of Human Skeletal Muscle Using Finite Element Analysis For The Simulation Of Muscle Contraction.

J. FORD¹, W. LEE¹, D. HILBELINK¹, AND S. DECKER¹ ¹University of South Florida, Tampa, FL

3:00PM

The Effect of Pre-Crash Velocity Reduction on Occupant Response Using a Human Body Finite Element Model

B. GULEYUPOGLU^{1,2}, M. DAVIS^{1,2}, N. VAVALLE^{1,2}, J. SCHAP^{1,2}, K. KUSANO^{2,3}, AND S. GAYZIK^{1,2}

¹Wake Forest University School of Medicine, Winston Salem, NC, ²Virginia Tech - Wake Forest University, Winston Salem, NC, ³Virgnia Polytechnic Institute and State University, Blacksburg, VA

3:15PM

Finite Element Prediction of Heterogeneous Strains Due to

Proteoglycan-Rich Microdomains in Musculoskeletal Fibrous Tissue J. DELUCCA¹, W. HAN², J. PELOQUIN², R. DUNCAN¹, R. MAUCK², AND D. ELLIOTT¹ ¹University of Delaware, Newark, DE, ²University of Pennsylvania, Philadelphia, PA

3:30PM

Analyzing Joint Work Symmetry in the Standing Long Jump with a 3D Full-Body Model

L. HICKOX¹, B. ASHBY¹, AND G. ALDERINK¹ ¹Grand Valley State University, Grand Rapids, MI

Track: Cardiovascular Engineering

OP-Thurs-2-II - Room 3-4

Sickle Cell Disease - Pathophysiology

Chairs: Manu Platt, Edward Botchwey

2:00PM

The Oxygen-Dependent Phase Space of Sickle Blood Rheology in Physiologic Conditions

X. Lu¹, J. HIGGINS²,³, AND D. WOOD¹

¹University of Minnesota, Minneapolis, MN, ²Harvard Medical School, Boston, MA,³Massachusetts General Hospital, Boston, MN

2:15PM

Dysregulated Sphingolipid Metabolism Enhances Microparticle Generation and Monocyte Adhesion in SCD

J. SELMA¹, A. AWOJOODU¹, P. KEEGAN¹, A. LANE¹, S. ZHANG¹, M. PLATT¹, AND E. BOTCHWEY ¹

¹Georgia Institute of Technology, Atlanta, GA

2:30PM

Platelet Nucleation on Arrested Neutrophils Drives Vaso-occlusion in Sickle Cell Disease

M. JIMENEZ¹ AND P. SUNDD¹,²

¹University of Pittsburgh, Pittsburgh, PA, ²Vascular Medicine Institute, Pittsburgh, PA

2:45PM

Platelet-Neutrophil Aggregates Promote Pulmonary Arteriole Microembolism in Sickle Cell Disease

M. BENNEWITZ¹, E. TUTUNCUOGLU¹, M. GLADWIN¹, AND P. SUNDD¹ ¹University of Pittsburgh, Pittsburgh, PA

3:00PM

Adhesion of Deoxygenated Sickle Red Blood Cells in Microscale Flow M. KIM¹, Y. ALAPAN¹, J. LITTLE², AND U. GURKAN¹

¹Case Western Reserve University, Cleveland, OH, ²University Hospitals, Cleveland, OH

3:15PM

Microarchitectural and Mechanical Characterization of Sickle Bone

M. GREEN¹, I. AKINSAMI², A. LIN², S. BANTON², S. GHOSH³, B. CHEN², M. PLATT², I. OSUNKWO⁴, S. OFORI-ACQUAH³, R. GULDBERG², AND G. BARABINO¹,²

¹The City College of New York, New York, NY, ²Georgia Institute of Technology, Atlanta, GA,³University of Pittsburgh School of Medicine, Pittsburgh, PA, ⁴Carolinas Health Care System, Charlotte, NC

PLATFORM SESSIONS Thurs-2 2:00PM-3:30PM

Track: Stem Cell Engineering OP-Thurs-2-12 - Room 5-6 Directing Stem Cell Differentiation I

Chairs: Aijun Wang, Penney Gilbert

2:00PM

Rapid, Multiplexed Generation of Homozygous Gene-Deleted Human Pluripotent Stem Cells Utilizing CRISPR/Cas9

J. CARLSON-STEVERMER¹, M. GOEDLAND¹, R. PRESTIL¹, B. STEYER¹, AND K. SAHA¹ ¹University of Wisconsin-Madison, Madison, WI

2:15PM

PLATFORM

Micropatterned Substrates for Spatiotemporal Control of Neural Tissue Morphogenesis

G. T. KNIGHT^{1,2} AND R. S. ASHTON^{1,2} ¹University of Wisconsin, Madison, WI, ²Wisconsin Institute for Discovery, Madison, WI

2:30PM

Sox10+ Adult Stem Cells Contribute to Both Microvessel Regeneration And Fibrosis

D. WANG¹, A. WANG¹,², Z. TANG¹, F. WU¹, B. LV¹, M. SAWANT¹, X. QIU¹, X. GONG¹, AND S. LI¹

¹UC Berkeley, Berkeley, CA, ²UC Davis, Sacramento, CA

2:45PM

Zone Specific Chondrogenic Differentiation of Human Mesenchymal Stem Cells Using Developmentally Defined Differentiation Factors E. JABBARI¹

¹University of South Carolina, Columbia, SC

3:00PM

Regulation of Arterial Venous Differentiation Through Immobilized and Soluble Developmental Signals

T. DORSEY¹ AND G. DAI¹ ¹Rensselaer Polytechnic Institute, Troy, NY

3:15PM

Development of High Purity V2a Interneurons for Spinal Cord Injury N. IYER¹, C. BROWN¹, J. BUTTS¹, AND S. SAKIYAMA-ELBERT¹ 'Washington University in St. Louis, Saint Louis, MO

Track: Biomedical Imaging and Optics OP-Thurs-2-13 - Room 11

New Ultrasound Imaging Technologies

Chairs: Paul Dayton, Michaelann Tartis

2:00PM

Comparison and Analysis of Multiple Tracking Location and Single Tracking Location Shear Wave Elasticity Imaging in a Rat Model of Liver Fibrosis

J. LANGDON¹, L. O. OSAPOETRA¹, T. FORD¹, E. ELEGBE¹, AND S. MCALEAVEY¹ ¹University of Rochester, Rochester, NY

2:15PM

In Vivo Contrast Specific Intravascular Ultrasound Imaging of Microvascular Vasa Vasorum Surrogate

K. H. MARTIN¹, B. D. LINDSEY¹, J. MA², X. JIANG², AND P. A. DAYTON¹ ¹University of North Carolina and North Carolina State University, Chapel Hill, NC, ²North Carolina State University, Raleigh, NC

P = Poster Session OP = Oral Presentation 2 = Reviewer Choice Award

2:30PM

Dual-Frequency Intravascular Ultrasound Imaging of Coronary Artery M. Yu¹, T. Ma¹, Z. Chen¹, C. Fel², K. K. Shung¹, and Q. Zhou¹

¹University of Southern California, Los Angeles, CA, ²Wuhan University, Wuhan, China, People's Republic of

2:45PM

Evaluation of Spatio-temporal Classification Of Muscle Activity Using Sonomyography

H. HARIHARAN¹, N. AKHLAGHI¹, H. RANGWALA¹, J. KOSECKA¹, J. PANCRAZIO¹, AND S. SIKDAR¹ ¹George Mason University. Fairfax, VA

eorge mason onivers

3:00PM

A Quantitative Approach to Characterizing Malignant Renal Cell Carcinoma using Contrast Enhanced Ultrasound

S. KASOJI¹, E. CHANG², W. CHONG², K. RATHMELL², AND P. DAYTON¹ ¹University of North Carolina Chapel Hill & North Carolina State University, Chapel Hill, NC,²University of North Carolina Chapel Hill, Chapel Hill, NC

3:15PM

Quantifying Hepatic Steatosis Using Ultrasound Thermal Strain Imaging: Animal Model Study

N. FARHAT¹, M. NGUYEN², X. DING¹, J. JARNAGIN¹, J. DELANY¹, AND K. KIM¹ ¹University of Pittsburgh, Pittsburgh, PA, ²University of Pittsburgh Medical Center, Pittsburgh, PA

Track: Neural Engineering

OP-Thurs-2-14 - Room 12

Neural Interfaces: Compatibility, Recording, and Stimulation II

Chairs: Ryan Koppes, Yinghui Zhong

2:00PM

Pallidal Neural Information Increases with Parkinsonian Severity in a Non-Human Primate Model

A. DORVAL¹, A. MURALI², A. JENSEN², K. BAKER², AND J. VITEK² ¹University of Utah, Salt Lake City, UT, ²University of Minnesota, Minneapolis, MN

2:15PM

Syringe Injectable Electronics with Minimally Invasive Delivery and 'Neurophilic' Probe-Neuron Interfaces

G. HONG¹, T-M. FU¹, J. LIU¹, T. ZHOU¹, T. SCHUHMANN¹, AND C. LIEBER¹ ¹Harvard University, Cambridge, MA

2:30PM

Syringe Injectable Macroporous Electronic Networks for *in vivo* BRAIN ELECTROPHYSIOLOGYT-M. FU¹, G. HONG¹, T. ZHOU¹, T. SCHUHMANN¹, J. LIU¹, AND C. LIEBER¹ *'Harvard University, Cambridge, MA*

2:45PM

In-situ Analysis of Intracellular Signaling with Diamond-Nanoneedlebased Biosensors

Z. WANG ¹, Y. YANG¹, W. ZHANG¹, AND P. SHI¹ ¹City University of Hong Kong, Hong Kong, Hong Kong

3:00PM

Modulation of Somatosensory Cortex During Brain Control of an Anthropomorphic Robotic Limb

S. FLESHER¹, A. SCHWARTZ¹, AND R. GAUNT¹ ¹University of Pittsburgh, Pittsburgh, PA

3:15PM

A High Sensitivity Implantable Fully Passive Wireless Neural Recording System S. LIU¹ AND J. CHAE¹

¹Arizona State University, Tempe, AZ

Track: Cardiovascular Engineering OP-Thurs-2-15 - Room 17

OF-Thurs-2-15 - Room

Heart Valves

Chairs: Michael Sacks, Jeffrey Holmes

2:00PM

Valvular Interstitial Cell Sensitivity to TGF- βI is Dependent upon Cellular Sex

C. MCCOY¹, A. QUINN¹, T. WEIS¹, AND K. MASTERS¹ ¹University of Wisconsin-Madison, Madison, WI

2:15PM

Interaction between Innate Immune Cells and Valve Interstitial Cells within 3D Microenvironments: Implication for Valve Calcification and Regeneration

B. DUAN¹, S. DAS¹, D. CHEUNG¹, AND J. BUTCHER¹ ¹Cornell University, Ithaca, NY

2:30PM

Time Profile of Geometric Orifice Area for Artificial Heart Valves in Comparison to Conventional Effective Orifice Area K. CHUN¹, N. RADIA², D. HARRINGTON², AND H. JUSTINO¹

 $^{\rm 1}{\rm Baylor}$ College of Medicine, Houston, TX, $^{\rm 2}{\rm Rice}$ University, Houston, TX

2:45PM

Improved Extracellular Matrix Stabilization Increases Tearing Resistance For Heart Valve Biomaterials

H. TAM¹, K. FEAVER², N. PARCHMENT¹, M. SACKS², AND N. VYAVAHARE¹ ¹Clemson University, Clemson, SC, ²University of Texas Austin, Austin, TX

3:00PM

Fluid-Structure Interaction Modeling of a Patient-Specific Mitral Valve during Left Ventricular Diastole

V. GOVINDARAJAN¹, J. MOUSEL¹, H. KIM², S. VIGMOSTAD¹, AND K. CHANDRAN¹ ¹The Univ. of Iowa, Iowa City, IA, ²The University of Texas Health Science Center, Houston, TX

3:15PM

The Mechanobiological Response of Mitral Valve Interstitial Cells to Stress Overload: Linking Biosynthesis to Cell and Tissue Deformation. S. AYOUB¹, C. HUGHES¹, S. POLETTI¹, AND M. SACKS¹ ¹The University of Texas at Austin, Austin, TX

Track: Drug Delivery OP-Thurs-2-16 - Room 10

Nano to Micro Devices in Delivery I

Chairs: James Lai, Alessandro Grattoni

2:00PM

Nanochannel Platforms for Long-term Tunable Drug Delivery and Immunoprotection of Insulin-producing Allografts A. GRATTONI¹

¹Houston Methodist Research Insitute, Houston, TX

2:15PM

Noncovalent Dispersions of Single Wall Carbon Nanotubes for Enhanced Drug Delivery to Metabolically Active Cells

P. BOYER¹, S. BAKER¹, H. SHAMS², M. MOFRAD², M. ISLAM¹, AND K. DAHL¹ ¹Carnegie Mellon University, Pittsburgh, PA, ²University of California Berkeley, Berkeley, CA

2:30PM

A Unique Microfluidic Technology Can Deliver DNA into Nucleus in High Throughput

X. DING^{1,2}, M. STEWART^{1,2}, A. SHAREI^{1,2}, R. LANGER^{1,2}, AND K. JENSEN¹ ¹Massachusetts Institute of Technology, cambridge, MA, ²David H. Koch Institute for Integrative Cancer Research, cambridge, MA

2:45PM DREAM TEAM & CENTER

Tuning Geometry of the Therapeutic Nanovectors and Thioaptamer Targeting: A Dual Approach to Improve Anti-Tuberculosis Treatment F. LEONARD¹, N. P. HA¹, J. F. ALEXANDER¹, D. G. GORENSTEIN², E. A. GRAVISS¹, AND B.

¹Houston Methodist Research Institute, Houston, TX, ²University of Texas Health Science

'Houston Methodist Hesearch Institute, Houston, IX, 'University of lexas Health Science Center at Houston, Houston, TX

3:00PM

Electrical-Wound Dressing Demonstrates That Low-Voltages Augment Hemostasis and Clot Formation

Y. Wang¹, E. Hardy¹,², T. Chi¹, M-Y. Huang¹, H. Wang¹, A. Brown¹, T. Barker¹, and W. A. Lam¹,²,³

¹Georgia Institute of Technology, Atlanta, GA, ²Emory University School of Medicine, Atlanta, GA, ³Children's Healthcare of Atlanta, Atlanta, GA

3:15PM

IL4 Conjugated Gold Nanoparticles Direct Human Macrophage Polarization *In Vitro*

T. RAIMONDO¹ AND D. MOONEY¹ ¹Harvard University, Cambridge, MA

Track: Nano and Micro Technologiess OP-Thurs-2-17 - Room 17

Medical Diagnostics and Screening II

Chairs: Xiaoming He He, Shramik Sengupta

2:00PM

Extracting The Interface Of An Aqueous Two-Phase System To Improve The Sensitivity Of The Lateral-Flow Immunoassay C. Wu', R. Chiu', A. Thach', B. Wu', and D. Kamei'

C. VVU', R. Chiu', A. Inach', B. VVU', and D. Kamer ¹UCLA, Los Angeles, CA

2:15PM

A Shear Gradient-Activated Microfluidic Device for Real-Time Ouantitative Assessment of Blood Hemostasis in vitro and ex vivo

A. JAIN^{1,2,3}, A. GRAVELINE¹, A. WATERHOUSE¹, A. VERNET¹, R. FLAUMENHAFT², AND D. INGBER^{1,3,4}

¹Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, ²Beth Israel and Deaconess Medical Center, Harvard Medical School, Boston, MA, ³Boston Children's Hospital, Harvard Medical School, Boston, MA, ⁴School of Engineering and Applied Sciences, Harvard University, Cambridge, MA

2:30PM

Spatially Multiplexed Microgel Suspension Assay via Integrated Microfluidics

K. DUAN¹, Z. ZHAO¹, M. A. AL-AMEEN¹, G. GHOSH¹, AND J. LO¹ ¹University of Michigan-Dearborn, Dearborn, MI

2:45PM

High Throughput Screening using Traction Microscopy: Application for Discovery of New Bronchodilators

C.Y. PARK¹, S. BURGER², M. FRYKENBERG², D. TAMBE¹, E. ZHOU¹, R. KRISHNAN³, A. MARINKOVIC¹, D. TSCHUMPERLIN¹, J. BUTLER¹, J. SOLWAY⁴, AND J. FREDBERG¹ ¹Harvard School of Public Health, Boston, MA, ²Northeastern University, Boston, MA, ³Beth Israel Deaconess Medical Center, Boston, MA, ⁴University of Chicago, Chicago, IL

3:00PM

Characterization Of Magnetic-Based Biomarker Extraction For Lateral Flow Assay Enhancement

T. SCHERR¹, N. ADAMS¹, H. RYSKOSKI¹, M. BAGLIA¹, AND F. HASELTON¹ ¹Vanderbilt University, Nashville, TN

3:15PM

High-throughput Analysis of 3D Spheroid Cultures using a Microarray Technique

J. GABRIEL ¹, J. ELISSEEFF², AND V. BEACHLEY¹

¹Rowan University, Glassboro, NJ, ²Johns Hopkins University, Baltimore, MD

SPECIAL SESSION

2:00 PM - 4:00 PM - Ballroom BC Biomedical Engineering Technology for the Elimination of Health Disparities

Chairs: Gilda Barabino, Cato Laurencin.

This session will explore the role of biomedical engineering for use in addressing health disparities. The use of technologies for addressing musculoskeletal conditions such as arthritis and osteoporosis will be explored. New emerging technologies involving mobile health (m-health) present possibilities for treatment of diabetes and hypertension. Finally, the session

will address the use of biomedical technologies in developing countries, with an eye toward the adaptation of technologies to address issues here in the U.S. The 2015 BME Innovation and Career Development Travel Award winners will be announced at the session..

Speakers will include:

Cato T. Laurencin, MD, PhD

Musculoskeletal Conditions: The Role of Biomedical Device Technology in Addressing Health Disparities

Roderick Pettigrew, MD, PhD (invited) and Linda Barry, MD Diabetes and Hypertension: M-Health Technologies for Prevention, Diagnosis and Treatment

Rebecca Richards-Kortum, PhD (invited)

The Use of Biomedical Engineering Technology in Developing Countries: Addressing Health Disparities throughout the World and in the U.S.

Track: Neural Engineering OP-Thurs-2-18 - Room I

Neural Progenitor and Tissue Engineering

Chairs: Nic Leipzig, Stephanie Willerth

2:00PM

Local Cyclosporine Delivery With HAMC After Stroke Stimulates Neural Stem Cells And Protects The Brain

A. TULADHAR¹, C. MORSHEAD¹, AND M. SHOICHET¹ ¹University of Toronto, Toronto, ON, Canada

2:15PM

Hydrogel Scaffolds for 3-D Reprogramming & Transplantation of Human Pluripotent Stem Cell-Derived Neurons

N. BENNETT¹, N. FRANCIS¹, A. HALIKERE¹, Z. PANG¹, AND P. MOGHE¹ ¹Rutgers University, Piscataway, NJ

2:30PM

Hyaluronic Acid Increases Neural Stem Cell Responsiveness to SDF-1 α Signaling

C. ADDINGTON¹, J. HEFFERNAN^{1,2}, R. SIRIANNI², AND S. STABENFELDT¹ ¹Arizona State University, Tempe, AZ, ²Barrow Neurological Institute, Phoenix, AZ

2:45PM

Differential Cytokine Regulation from Shear Stress Stimulated Endothelial Cells on Neural Progenitor Cell Survival, Proliferation, and Differentiation *C. Dumoti*, *G. Dai*, and *D. Thompson*¹

C. Dumont¹, G. Dai¹, and D. Thompson¹ ¹Rensselaer Polytechnic Institute, Troy, NY

3:00PM

Salmon Fibrin-Hyaluronic Acid Hybrid Scaffolds Support Human Neural Stem/Progenitor Cell Function

J. ARULMOLI¹, U. SHETH¹, H. WRIGHT¹, M. PATHAK¹, C. HUANG¹, E. SAWYER², T. ZAREMBINSKI³, D. YANNI¹, O. RAZORENOVA¹, AND L. FLANAGAN¹ ¹University of California, Irvine, Irvine, CA, ²Sea Run Holdings Inc., Freeport, ME, ³BioTime Inc., Alameda, CA

3:15PM

Biomaterials for the Generation of hESC Derived Dopaminergic Neurons

M. Adil¹, T. Vazin¹, B. Ananthanarayanan¹, G. Rodrigues², S. Kumar¹, and D. Schaffer¹

¹University of California Berkeley, Berkeley, CA, ²Technical University of Lisbon, Lisbon, Portugal

3:30PM

Spatially Multiplexed Microgel Suspension Assay via Integrated Microfluidics

K. DUAN¹, Z. ZHAO¹, M. A. AL-AMEEN¹, G. GHOSH¹, AND J. LO¹ ¹University of Michigan-Dearborn, Dearborn, MI

3:45PM

High Throughput Screening using Traction Microscopy: Application for Discovery of New Bronchodilators

C. Y. PAR K¹, S. BURGER², M. FRYKENBERG², D. TAM BE¹, E. ZHOU¹, R. KRISHNAN³, A. MAR INKOVIC¹, D. TSCHUMPERLIN¹, J. BUTLER¹, J. SOLWA Y⁴, AND J. FREDBERG¹ ¹Harvard School of Public Health, Boston, MA, ²Northeastern University, Boston, MA, ³Beth Israel Deaconess Medical Center, Boston, MA, ⁴University of Chicago, Chicago, IL

PLATFORM

3:00PM

Characterization Of Magnetic-Based Biomarker Extraction For Lateral Flow Assay Enhancement

T. SCHERR¹, N. ADAM S¹, H. RYSKOSKI¹, M. BAGLIA¹, AND F. HASELTON¹ ¹Vanderbilt University, Nashville, TN

3:15PM

High-Throughput Analysis Of 3D Spheroid Cultures Using A Microarray Technique

J. Gabriel ¹, J. Elisseeff ², and V. Beachley¹ ¹Rowan University, Glassboro, NJ, ²Johns Hopkins University, Baltimore, MD

Track: Biomedical Imaging and Optics OP-Thurs-2-19 - Room 9

Image Processing and Analysis

Chairs: Jillian Urban, Rosalind Sadleir

2:00PM

Machine Learning Classification of Low and High Head Impact Exposure in Youth Football Using DTI

F. MOKHTARI¹, C. LACK², E. DAVENPORT¹, J. URBAN³, C. WITHLOW², J. STITZEL¹³, AND J. MALDJIAN²

¹Wake Forest University, Winston Salem, NC, ²Wake Forest School of Medicine, Wiston Salem, NC

2:15PM

Novel Method for Three Dimensional Articulating Cartilage Modeling using Statistical Atlas

E. ABDEL FATAH¹ AND M. MAHFUZ¹ ¹University of Tennessee, Knoxville, TN

2:30PM

Collagen Orientation and Density Analysis: A Program for Quantification of Scar Tissue Metrics

. J. MONTGOMERY¹ AND R. GOURDIE² ¹Virginia Tech, Blacksburg, VA, ²Virginia Tech Carilion Research Institute, Roanoke, VA

2:45PM

A Complete Segmentation Pipeline For Anisotropic TDCS Finite Element Modeling

A. Indahlastari¹ and R. J. Sadleir¹ ¹Arizona State University, Tempe, AZ

3:00PM

Idiopathic Inflammatory Myopathies Classification Using Deep Convolution Neural Network

M. SAPKOTA¹, F. XING¹, AND L. YANG¹ ¹University of Florida, Gainesville, FL

3:15PM

Optics Based Signal and Image Processing Algorithms for Real-Time Blood Vessel Localization, Tracking and Quantification A. CHATURVEDI¹

¹Briteseed, LLC, Chicago, IL

SPECIAL SESSION

4:00 PM - 7:30 PM - Ballroom D The 3rd US-Korea Joint Workshop on Biomedical Engineering

Thursday, October 8, 2015 Tampa Convention Center, Tampa, Florida, USA

Invited Oral Session I: 4:00 – 5:10 PM

Co-Chairs: Ho-Wook Jun (University of Alabama at Birmingham), Hak-Joon Sung (Vanderbilt University)

Hanjoong Jo (Georgia Tech & Emory University): Introductory Remarks Christine Schmidt (University of Florida): Plenary Speaker Young-Sup Yoon (Emory University) Hyung-Suk Lee (Yonsei University) Hyun-Kwang Seok (KIST)

Poster Session: 5:10 - 5:50 PM

Co-Chairs: Jungkyu Kim (Texas Tech University), Jennifer Shin (KAIST), Min-Ho Kim (Kent State University)

Invited Oral Session II: 5:50 - 7:10 PM

Chairs: Deok-Ho Kim (University of Washington), James Moon (University of Michigan)

Ravi Bellamkonda (Georgia Tech and Emory University): Plenary Speaker Jungkyu Kim (Texas Tech University) Min-Ho Kim (Kent State University) Claire Hur (Roland Institute, Harvard University) Hyunjoon Kong (University of Illinois at Urbana Champaign)

KBMES-KOSOMBE Dinner: 7:10 - 9:00 PM

After the workshop, all attendees are invited to join us the reception and dinner

SESSIONS

PLATFORM SESSIONS Thurs-3 4:30PM - 6:00PM

THURSDAY, October 8, 2015

4:30 PM - 6:00 PM **PLATFORM SESSIONS – THURS - 3**

Track: Cellular and Molecular Bioengineering OP-Thurs-3-I - Room 18

Cell Adhesion and Interactions with the Extracellular Matrix III

Chairs: Stephanie Seidlits

4:30PM

Disruption of Endothelial Cell-Cell Junctions Independent of Intercellular Tension

C. HARDIN¹, D. TAMBE², E. DEL GADO³, J. BUTLER⁴, J. FREDBERG⁴, K. BIRUKOV⁵, AND R. KRISHNAN⁶

¹Massachusetts General Hospital, Boston, MA, ²University of South Alabama, Mobile, AL,3Georgetown University, Washington, DC, 4Harvard School of Public Health, Boston MA,⁵University of Chicago, Chicago, IL, ⁶Beth Israel Deaconess Medical Center, Boston, MA

4:45PM

ECM Induction of a Mechanosensitive Invasive Epithelial Phenotype S. CAREY¹, K. MARTIN¹, AND C. REINHART-KING¹ ¹Cornell University, Ithaca, NY

5:00PM

Integrins Direct Cell Adhesion in a Substrate-Dependent Manner A. KOUROUKLIS¹ AND H. BERMUDEZ¹

¹University of Massachusetts, Amherst, MA

5:15PM

Mapping Pericellular Stiffness of Naturally-derived Extra Cellular Matrix Around Cells Cultured in 3D

M. KEATING¹, A. KURUP¹, M. ALVAREZ-BEATRIZ², AND E. BOTVINICK¹ ¹University of California, Irvine, Irvine, CA, ²Technion, Haifa, Israel Fibronectin Fibrillogenesis Mediates TGF-&[beta]¹ Induced EMT in Mammary Epithelial Cells L. Griggs¹, R. Malik¹, N. Hassan¹, B. Martinez¹, L. Elmore¹, and C. Lemmon¹ ¹Virginia Commonwealth University, Richmond, VA

5:30PM

Cadherin-II Regulates Collagen and Elastin Synthesis in-vivo and in-vitro by Activating TGF-&B and ROCK Pathways

Y. LIU¹, S. ROW¹, S. ALIMPERTI¹, A. T.GEORGE², S. K. AGARWAL², AND S. ANDREADIS¹ ¹State University of New york at Buffalo, Amherst, NY, ²Baylor College of Medicine, Houston, TX

Track: Cellular and Molecular Bioengineering OP-Thurs-3-2 - Room 19

Mechanotransduction I

Chairs: Rita Alevriadou

4:30PM

Using Micromanipulation To Probe Nucleo-Cytoskeletal Force Transmission & The LINC Complex

G. FEDORCHAK¹, D. OSÓRIO², E. GOMES², AND J. LAMMERDING¹

¹Cornell University, Ithaca, NY, ²Institute for Molecular and Cellular Biology, Porto, Portugal

4:45PM

Nesprin-3 Regulates Vascular Endothelial Cell Shape via an Effect on Microtubules

J. MORGAN¹, D. STARR¹, AND A. BARAKAT²

¹University of California Davis, Davis, CA, ²Ecole Polytechnique, Palaiseau, France

P = Poster Session **OP** = Oral Presentation = Reviewer Choice Award

5:00PM

Endothelial Mitochondria are Required for Cytosolic Calcium Transients Induced by Fluid Shear Stress

C. SCHEITLIN¹, J. JULIAN¹, N. TSOUKIAS², AND B. R. ALEVRIADOU¹ ¹The Ohio State University, Columbus, OH, ²Florida International University, Miami, FL

5:15PM

Increased E-cadherin Forces Promote Epithelial Cell Proliferation and Migration

D. CONWAY¹, A. DUKE¹, AND P. ARSENOVIC¹ ¹Virginia Commonwealth University, Richmond, VA

5:30PM

Systems Analysis of Cardiac Remodeling Through Mechano-Signaling Networks P. TAN¹ AND J. SAUCERMAN¹ ¹University of Virginia, Charlottesville, VA

5:45PM DREAM TEAM & CENTERS

Cellular Tension Activates Piezo I, a Stretch-activated Ion Channel Involved in Neural Stem Cell Fate

D. T. LE1, K. ELLEFSEN1, C. LE1, J. NOURSE1, J. ARULMOLI1, L. A. FLANAGAN1, I. PARKER¹, F. TOMBOLA¹, AND M. PATHAK ¹UC Irvine, Irvine, CA

Track: Nano and Micro Technologies OP-Thurs-3-3 - Room 20

Theranostics and Nanoparticles I

Chairs: Carlos Rinaldi, Nicholas Panaro

4:30PM

Polymerization Amplified Detection for Nanoparticle-Based Biosensing and the Serendipitous Discovery of Enz-RAFT

A GORMLEY¹ B CHAPMAN¹ AND M STEVENS¹ ¹Imperial College London, London, United Kingdom

4:45PM

Lysozyme-Dextran Nanogels Presenting Platelet GPIb lpha Mimic and Enhance Platelet Adhesion

J. MYERSON¹, I. JOHNSTON¹, J. WU¹, R. MCCLINTOCK², Z. RUGGERI², M. PONCZ¹, AND V. MUZYKANTOV¹

¹University of Pennsylvania, Philadelphia, PA, ²The Scripps Research Institute, La Jolla, CA

5:00PM

Enhanced Vascular Imaging via a Polymeric Fastener and Cross-Linkable Liposomes

C. SMITH¹, S. MISRA², S. ZIMMERMAN¹, AND H. KONG¹ ¹University of Illinois at Urbana-Champaign, Urbana, IL, ²Mayo Clinic, Rochester, MN

5:15PM

Biomimetic Modular Assembly of MRI/Fluorescence Imaging Probes S. TONG¹ AND G. BAO²

¹Georgia Institute of Technology, Atlanta, GA, ²Rice University, Houston, TX

5:30PM

Silver Nanoparticle-Embedded Polymersome Nanocarriers for the Treatment of Antibiotic-Resistant Infections B. GEILICH¹, A. VAN DE VEN¹, S. SRIDHAR¹, AND T. WEBSTER¹ ¹Northeastern University, Boston, MA

5:45PM

Three-component Bioactive Nanoparticle as an Image-guided Cancer Nanotheranostic Agent

R. CHAUHAN¹, K. JAMES¹, M. ZHU¹, J. LI¹, D. MILLER¹, R. KEYNTON¹, C. NG¹, P. BATES¹, T. MALIK¹, AND M. O'TOOLE

¹University of Louisville, Louisville, KY

PLATFORM

ESSIONS

Th-3

Biomaterials

OP-Thurs-3-4 - Room 21

Biomaterials Scaffolds III

Chairs: Janet Zoldan, Silviya Zustiak

4:30PM

Enhancing Vascular Integration and Perfusion through Highly Dense, Compliant Hydrogels

R. SCHWELLER¹, B. KLITZMAN¹, AND J. WEST¹ ¹Duke University, Durham, NC

4:45PM

Induction of *In Vitro* and *In Vivo* Vascularization Using a Novel Human-Derived Extracellular Matrix M. MOORE¹, V. PANDOLFI¹, AND P. MCFETRIDGE¹

¹University of Florida, Gainesville, FL

5:00PM

Self-Assembling Peptide Gel Stiffness and Culture Dimensionality Direct hMSC Differentiation

N. HOGREBE¹ AND K. GOOCH¹ ¹The Ohio State University, Columbus, OH

5:15PM DREAM TEAM & CENTER

A Facile Synthetic Extracellular Matrix Approach for Functional 3D Co-Culture of Endometrial Stromal and Epithelial Cells

C. COOK1,², A. HILL1,², M. GUO1, L. STOCKDALE², M. DE GEUS1,², K. ISAACSON³, AND L. GRIFFITH1,²

¹Massachusetts Institute of Technology, Cambridge, MA, ²Center for Gynepathology Research, Cambridge, MA, ³Harvard Medical School and Center for Minimally Invasive Gynecologic Surgery, Newton, MA

5:30PM

Binding Extracellular Matrices in Aqueous Environments using Silica Nanoparticles

L. GOLDBERG¹ AND P. MCFETRIDGE¹ ¹University of Florida, Gainesville, FL

5:45PM

Fabrication of Novel Citric Acid Based Biodegradable Polymer/ Pearl Powder Orthopedic Composites

E. GERHARD¹, M. FERRARO¹, AND J. YANG¹

¹The Pennsylvania State University, University Park, PA

Track: Biomaterials OP-Thurs-3-5 - Room 22

Biomaterials for Immunoengineering I

Chairs: Christopher Jewell, Elizabeth Lipke

4:30PM

Engineering the Local Lymph Node Environment to Promote Systemic, Antigen-specific Immune Tolerance

L. H. TOSTANOSKI¹, Y-C. CHIU¹, J. M. GAMMON¹, AND C. M. JEWELL¹,²,³ ¹University of Maryland - College Park, College Park, MD, ²University of Maryland Medical School, Baltimore, MD, ³Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD

4:45PM

Exogenous Delivery of Indoleamine 2,3 Dioxygenase for the Induction of Immune Tolerance

E. BRACHO-SANCHEZ¹ AND B. KESELOWSKY¹ ¹University of Florida, Gainesville, FL

5:00PM

An Injectable Microparticle Vaccine System Reverses Type 1 Diabetes in NOD Mice and Modulates Cellular Tolerance

J. STEWART¹, J. LEWIS¹, AND B. KESELOWSKY ¹University of Florida, Gainesville, FL

5:15PM

Presence of Endotoxin and Protein Impurities in Alginate Hydrogels Correlate with Immune-mediated Destruction after Islet Transplantation

G. KUMMERFELD¹, R. KRISHNAN¹, K. LAUGENOUR¹, M. ALEXANDER¹, B. DE HAAN², P. DE VOS², AND J. LAKEY¹,³

¹University of Calfornia Irvine, Orange, CA, ²University Medical Center Groningen, Groningen, Netherlands, ³University of Calfornia Irvine, Irvine, CA

5:30PM

Lipid-Biopolymer Hybrid Nanoparticles for Intranasal Vaccination

Y. FAN¹, P. SAHDEV¹, L. OCHYL¹, J. AKERBERG¹, AND J. MOON¹ ¹University of Michigan, Ann Arbor, MI

5:45PM

Design and Characterization of gp140 Envelope Trimer-Coupled Liposomes for an HIV Vaccine

T. TOKATLIAN¹, M. ZHANG¹, A. MUTAFYAN¹, D. KULP², E. GEORGESON², M. KUBITZ², W. SCHIEF², AND D. IRVINE¹

¹Massachusetts Institute of Technology, Cambridge, MA, ²The Scripps Research Institute, La Jolla, CA

Track: Biomaterials OP-Thurs-3-6 - Room 23

Bioinspired and Self Assembling Biomaterials I

Chairs: Emily Day, Delphine Gourdon

4:30PM

The Insect Respiratory System: A Source of Bio-inspiration for Tissue Vascularization

R. DE VITA¹, M. WEBSTER¹, J. SOCHA¹, P. NARDINOCCHI², AND L. TERESI³ ¹Virginia Tech, Blacksburg, VA, ²Sapienza Università di Roma, Rome, Italy, ³Università, Roma Tre, Rome, Italy

4:45PM

Biodistribution And Therapeutic Efficacy Of Highly Angiogenic Peptides V. KUMAR¹, N. WICKREMASINGHE¹, Q. LIU², S. SHI¹, A. AZARES², R. DIXON², AND J.

HARTGERINK¹ ¹Rice University, Houston, TX, ²Texas Heart Institute, Houston, TX

PLATFORM SESSIONS Thurs-3 4:30PM - 6:00PM

5:00PM

Prophylactic Delivery Of Synthetic Platelets Enhance Primary And Secondary Hemostasis For Bleeding Treatment in Severely Thrombocytopenic Mice

U. D. S. SEKHON¹, V. BETAPUDI², C. PAWLOWSKI³, K. MCCRAE², AND A. SEN GUPTA¹ ¹Case Western Reserve University, Cleveland, OH, ²Cleveland Clinic Foundation, Cleveland, OH, ³Case Western reserve Unversity, Cleveland, OH

5:15PM

Bio-inspired Adhesive Hydrogels from Sundew for Wound Healing **Applications**

L. SUN¹, Z. BIAN², Z. FAN³, Y. WANG³, Y. HUANG¹, K. H. PARK⁴, T. YUE², M. SCHMIDT³, J. MA², H. ZHU⁴, AND M. ZHANG³

¹The Ohio State University, Columbus, OH, ²Ohio State University, columbus, OH, ³Ohio State University, Columbus, OH, ⁴The Ohio State University, columbus, OH

5:30PM

I ATFORM

Development and Optimization of PolySTAT, a Factor XIIIa-Inspired Polymer, as an Injectable Hemostat

R. LAMM¹, L. CHAN¹, X. WANG¹, N. WHITE¹, AND S. PUN¹ ¹University of Washington, Seattle, WA

5:45PM

Sustained Response of Human Mesenchymal Stem Cells on Additively Manufactured 3D Porous Ti6Al4V

A. CHENG^{1,2,3}, A. HUMAYUN⁴, B. BOYAN⁴, AND Z. SCHWARTZ^{4,5}

¹Georgia Institute of Technology, Atlanta, GA, ²Emory University, Atlanta, GA, ³Peking University, Beijing, China, People's Republic of, 4Virginia Commonwealth University, Richmond, VA, ⁵University of Texas Health Science Center at San Antonio, San Antonio, TX

Track: Tissue Engineering OP-Thurs-3-7 - Room 13

Engineering Replacement Tissues

Chairs: Ariella Shikanov, Fan Yang

4:30PM

Biomimetic Hydrogels for the Assembly of Salivary Gland Microtissues

T. OZDEMIR¹, E. FOWLER¹, D. ZAKHEIM¹, Y. HAO¹, S. PRADHAN-BHATT¹, D. A. HARRINGTON², R. L. WITT¹, M. C. FARACH-CARSON², AND X. JIA¹ ¹University of Delaware, Newark, DE, ²Rice University, Houston, TX

4:45PM DREAM TEAM & CENTERS

Construction and Characterization of a Pre-vascularized Bioartificial **Pancreas**

J. RHETT¹, H. WANG¹, H. BAINBRIDGE¹, L. SONG¹, S. G. DENNIS¹, C. CZAJKA², AND M. YOST

¹Medical University of South Carolina, Charleston, SC, ²University of Pittsburgh, Pittsburgh, PA

5:00PM

Capsule Geometry, Composition and Transplant Site Affects the Performance of Encapsulated Islets

V. MANZOLI¹, C. VILLA¹, M. ABREU¹, D. MOLANO¹, AND A. TOMEI¹,² ¹Diabetes Research Institute, Miami, FL, ²University of Miami, Miami, FL

5:15PM

Collagen-binding Heparin Significantly Reduces the Thrombogenicity of Decellularized Tissues

B. JIANG¹, J. WERTHEIM¹, AND G. AMEER¹ ¹Northwestern University, Evanston, IL

5:30PM

Translating Conformal Coating of Islets for Transplantation without Immunosuppression in Diabetes

V. MANZOLI^{1,2}, C. VILLA¹, R. D. MOLANO¹, AND A. A. TOMEI^{1,3} ¹University of Miami - Miller School of Medicine, Miami, FL, ²Politecnico di Milano, Milano, Italy, ³University of Miami, Coral Gables, FL

P = Poster Session **OP** = Oral Presentation Reviewer Choice Award

92 BMES 2015

5:45PM

Implantation Of A Chitosan-Based Bioengineered Tubular Neuromuscular Tissue For Gut Lengthening

E. ZAKHEM¹, M. ELBAHRAWY¹, AND K. N. BITAR¹,²

¹Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, ²Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston Salem, NC

Track: Orthopedic and Rehabilitation Engineering

OP-Thurs-3-8 - Room 14

Articular Cartilage and Joint

Chairs: Lucas Lu, Kyle Allen

4:30PM

Understanding The Mechanics Of Focal Chondral Defects In The Hip B. KLENNERT¹, B. ELLIS¹, T. MAAK¹, A. KAPRON¹, AND J. WEISS¹ ¹University of Utah, Salt Lake City, UT

4:45PM

Tribological Rehydration: Maintaining and Rebuilding Interstitial Fluid Pressure in Cartialge A. MOORE¹ AND D. BURRIS¹

¹University of Delaware, Newark, DE

5:00PM

Intervertebral Lumbar Disc Height Measurements for Age and Gender J. FORD¹, R. FOLEY¹, K. BACH¹, AND S. DECKER¹ ¹University of South Florida, Tampa, FL

5:15PM

Assessment of Human Articular Cartilage Issued from Asymptomatic & TKR Donors

I. HADJAB^{1,2}, S. SIM^{1,2}, E. QUENNEVILLE², M. GARON², AND M. D. BUSCHMANN¹ ¹Polytechnique Montréal, Montréal, QC, Canada, ²Biomomentum Inc., Laval, QC, Canada

5:30PM

Determining Tension-Compression Nonlinear Mechanical Properties of Articular Cartilage from Indentation Testing

X. CHEN¹, Y. ZHOU¹, B. ZIMMERMAN¹, L. WANG¹, M. SANTARE¹, L. WAN², AND L. LU¹ ¹University of Delaware, Newark, DE, ²Rensselaer Polytechnic Institute, Troy, NY

5:45PM

A Novel Operant-based Behavioral Assay of Mechanical Allodynia in the Orofacial Region of Rats

E. ROHRS¹, H. KLOEFKORN¹, B. JACOBS¹, E. LAKES¹, J. NEUBERT¹, R. CAUDLE¹, AND K. ALLEN¹ ¹University of Florida, Gainesville, FL

Track: Biomechanics OP-Thurs-3-9 - Room 15

Blast Trauma

Chairs: Pam Vandevord, Raj Prabhu

4:30PM

Development of an Experimental Model to Simulate Shock Wave Induced Pressure in Blood Vessels I of the Brain

S. HASHEMI¹, D. JAHNKE¹, A. SADEGH¹, AND Y. ANDREOPOULOS¹ ¹The City College of New York, New York, NY

PLATFORM

4:45PM

Free Field Blast Induced Mechanical Response, Axonal Injury and Glial Changes in Swine Brain

K. FENG , S. KALLAKURI', X. JIN', A. DESAI', C. CHEN', T. SAIF', L. ZHANG', J. CAVANAUGH', AND A. KING'

¹Wayne State University, Detroit, MI

5:00PM

Characterizing the Role of HIF-I $\!\alpha$ in Blast Neurotrauma: Link with the Blood-Brain Barrier Disruption

B. HUBBARD¹, M. LASHOF-SULLIVAN², J. ECK¹, E. LAVIK², AND P. VANDEVORD¹,³ ¹Virginia Tech, Blacksburg, VA, ²Case Western Reserve University, Cleveland, OH, ³Veterans Affairs, Salem, VA

5:15PM DREAM TEAM & CENTERS

Blast-Induced Cavitation Results in Distinct Injury Patterns S. CANCHI¹, Y. HONG¹, M. KING¹, G. SUBHASH¹, AND M. SARNTINORANONT¹ ¹University of Florida, Gainesville, FL

5:30PM

Behavioral and Inflammatory Consequences of Cerebrovascular Dysfunction in Primary Blast Injury S. YEOH¹

¹University of Utah, Salt Lake City, UT

5:45PM

Eye and Face Response to Blast Overpressure: An Experimental Study Using a 3D-Printed Human Face V. ALPHONSE¹, A. KEMPER¹, AND S. DUMA¹

¹Virginia Tech, Blacksburg, VA

Track: Biomechanics OP-Thurs-3-10 - Room 16

Organ and Cell Biomechanics

Chairs: Adam Engler, Warren Ruder

4:30PM

Endothelial Cell Dual Mechanical Force Integration Through Vector Logic Gates R. STEWARD JR.¹ 'University of Central Florida, Orlando, FL

4:45PM

Quantification of in situ Chromatin Condensation Using Fluorescence Lifetime Imaging (FLIM)

S. SPAGNOL¹ AND K. DAHL¹ ¹Carnegie Mellon University, Pittsburgh, PA

5:00PM

Elastic Behavior and Platelet Retraction In Low- And High-Density Fibrin Gels

A. WUFSUS¹, K. RANA¹, A. BROWN¹, J. DORGAN¹, M. LIBERATORE¹, AND K. NEEVES¹,² ¹Colorado School of Mines, Golden, CO, ²University of Colorado, Aurora, CO

5:15PM

Developing A Mechanical Model For Studying Breast Cancer Metastasis To The Lungs

S. POLIO¹, N. BIRCH¹, J. SCHIFFMANN¹, A. CROSBY¹, AND S. PEYTON¹ ¹University of Massachusetts Amherst, Amherst, MA

5:30PM

Asymmetric Bmp7-regulated Differences in Cell Proliferation Drive Optic Nerve Formation.

B. FILAS¹, L. TABER², AND D. BEEBE¹

¹Washington University School of Medicine, Saint Louis, MO, ²Washington University in St. Louis, St. Louis, MO

5:45PM

Mechanical Origins of Rightward Torsion in Embryonic Chick Brain Z. CHEN^{1,2}, Q. GUO³, E. DAI², N. FORSCH⁴, AND L. TABER²

¹Dartmouth College, Hanover, NH, ²Washington University in St. Louis, St. Louis, MO, ³FuJian University of Technology, Fuzhou, China, People's Republic of, ⁴University of California at San Diego, San Diego, CA

Track: Cardiovascular Engineering

OP-Thurs-3-II - Room 3-4

Sickle Cell Disease - Engineering Therapies

Chairs: Sergey Shevkoplyas, David Wood

4:30PM

Clinical Validation of a Paper-Based Screening and Diagnostic Test for Sickle Cell Anemia in Angola

N. PIETY¹, A. GEORGE², P. PATE¹², D. NIRENBERG², G. AIREWELE², AND S. SHEVKOPLYAS¹ ¹University of Houston, Houston, TX, ²Baylor College of Medicine, Houston, TX

4:45PM

Strokes In Sickle Cell Transgenic Mice Can Be Reduced With Inhibition Of JNK Mediated Proteolytic Fragmentation Of Elastic Lamina

S. ANBAZHAKAN¹, P. KEEGAN¹, S. KEILHOLZ¹,², AND M. PLATT¹ ¹Georgia Institute of Technology, Atlanta, GA, ²Emory University, Atlanta, GA

5:00PM

Nuclease Mediated Genome Editing for Treating Sickle Cell Disease Utilizing Non-Viral Delivery Strategies

R. COTTLE¹, D. ARCHER², AND G. BAO³ ¹Georgia Institute of Technology, Atlanta, GA, ²Emory School of Medicine, Atlanta, GA, ³Rice University, Houston, TX

5:15PM

Vessel Curvature Mediates Endothelial Dysfunction In Sickle Cell Disease

Y. WANG^{1,2,3}, R. MANNINO^{1,2,3}, D. MYERS^{1,2,3}, AND W. LAM^{1,2,3} ¹Georgia Institute of Technology, Emory University, Atlanta, GA, ²Emory University, School of Medicine, Atlanta, GA, ³Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA

5:30PM

Computational Fluid Dynamics Models of the Middle Cerebral Artery to Determine Scenarios Producing Elevated Velocities Linked to Childhood Strokes in Sickle Cell Disease

C. RIVERA¹, A. VENEZIANI², AND M. PLATT¹

¹Georgia Institute of Technology and Emory University, Atlanta, GA, ²Emory University, Atlanta, GA

5:45PM

Microfluidic Probing of Red Cell Adhesion as a Clinical Severity Indicator in Sickle Cell Disease

Y. ALAPAN¹, C. KIM¹, J. LITTLE², AND U. GURKAN¹ ¹Case Western Reserve University, Cleveland, OH, ²University Hospitals, Cleveland, OH

PLATFORM SESSIONS Thurs-3 4:30PM - 6:00PM

Track: Stem Cell Engineering OP-Thurs-3-12 - Room 5-6

Engineering Stem Cell Environments

Chairs: Albert Keung, Ankur Singh

4:30PM

Cell surface Glycoengineering Improves Selectin-mediated Tethering and Adhesion of Mesenchymal Stem Cells (MSCs) and Cardiosphere-Derived Cells (CDCs)

S. NEELAMEGHAM¹, C. LO¹, AND J. CANTY¹ ¹State University of New York at Buffalo, Buffalo, NY

4:45PM

Self-organizing Human Cardiac Microchambers Mediated by Geometric Confinement

Z. MA1, J. WANG1, P. LOSKILL1, N. HUEBSCH2, S. KOO1, F. SVEDLUND1, C. GRIGOROPOULOS¹, B. CONKLIN², AND K. HEALY¹ ¹University of California, Berkeley, Berkeley, CA, ²Gladstone Institute, San Francisco, CA

5:00PM

Evaluating Bone Marrow Mesenchymal Stem Cells as a Cell Source for Liver Tissue Engineering Q. XU¹ AND H. MATTHEW¹

¹Wavne State University, Detroit, MI

5:15PM

Local Production of VEGF by Microencapsulated ASCs is Species Specific

S. LESLIE¹, B. BOYAN¹, AND Z. SCHWARTZ¹ ¹Virginia Commonwealth University, Richmond, VA

5:30PM

Characterizing the Periosteum's Stem Cell Niche

N.Y.C. YU1, I. SLAPETOVA2, R. M. WHAN2, M. L. KNOTHE TATE1

¹ Graduate School of Biomedical Engineering, University of New South Wales (UNSW), Sydney, Australia² Biomedical Imaging Facility, Mark Wainwright Analytical Centre, UNSW, Sydney, Australia

5:45PM

Maturation of Induced Pluripotent Stem Cell-Derived Human Liver Cells in Engineered Co-cultures

S. ALLSUP¹, D. BERGER¹, AND S. KHETANI¹ ¹Colorado State University, Fort Collins, CO

Track: Biomedical Imaging and Optics

OP-Thurs-3-13 - Room 11

Multi-modality Imaging Approaches

Chairs: Wawrzyniec Dobrucki, Fred Epstein

4:30PM

Bimodal 3D Near Infrared and Ultrasound Imaging of Blood Vessels for Real-time Image-Guided Vascular Access

A. CHEN1, M. BALTER1, T. MAGUIRE1, AND M. YARMUSH1

¹Rutgers University, Piscataway, NJ

4:45PM

Guided Medulloblastoma Resection Using An Activated Probe And A Miniaturized Dual-Axis Confocal Microscope (DAC)

S. ROGALLA¹, S. HAAG¹, C. ZAVALETA¹, N. LOEWKE¹, M. MANDELLA¹, K. ORESIC-BENDER¹, M. BOGYO¹, AND C. CONTAG¹ 1Stanford University, Stanford, CA

5:00PM

PET Simulations Allow For Accurate Evaluation Of MRI-based Attenuation Correction Methods

M, JUTTUKONDA¹, B, MERSEREAU¹, H, AN², AND D, LALUSH¹ ¹University of North Carolina at Chapel Hill & North Carolina State University, Chapel Hill, NC,²University of North Carolina at Chapel Hill, Chapel Hill, NC

5:15PM

Engineering of a MRI Contrast Agent for Detection Cerebral Amyloid Deposits Capable of Therapeutic Drug Delivery

J. ROSENBERG¹, K. AHLSCHWEDE²,³, E. AGYARE³, G. CURRAN⁴, K. KANDIMALLA³,⁵, AND S. GRANT¹,⁶

¹Florida State University, Tallahassee, FL, ²University of Minnesota, Minneapolis, MN,³Florida A&M University, Tallahassee, FL, ⁴Mayo Clinic College of Medicine, Rochester, MN,⁵Mayo clinic college of Medicine, Rochester, MN, ⁶FSU-FAMU College of Engineering, Tallahassee, FL

5:30PM

Synthesis, Characterization and In Vivo Evaluation of RAGE Targeted Nanoparticles for Molecular Imaging of Prostate Cancer

C. Konopka¹,²,³, J. Hedhli¹,², L. Lahood¹, A. Patel¹, I. Dobrucka², G. Munirathinam⁴, A. Kajdacsy-Balla⁵, and L. Dobrucki¹,²

¹University of Illinois, Urbana, IL, ²Beckman Institute for Advanced Science and Technology, Urbana, IL, ³University of Illinois College of Medicine, Urbana, IL, ⁴University of Illinois College of Medicine, Rockford, IL, ⁵University of Illinois at Chicago, Chicago, IL

5:45PM

A Time-domain Fluorescence Lifetime Measurement System For Quantifying Ultrasound-switchable Fluorescence Contrast Agents S YU¹

¹University of Texas at Arlington, Arlington, TX

Track: Neural Engineering

OP-Thurs-3-14 - Room 12

Neural Interfaces: Compatibility, Recording, and Stimulation III

Chairs: Jeffrey Capadona, Kyle Lampe

4:30PM

Towards a Retinal Prosthesis with Differential Stimulation of OFF and ON Pathways

J. TROY¹, C. ROUNTREE¹, S. INAYAT¹,², AND L. SAGGERE² ¹Northwestern University, Evanston, IL, ²University of Illinois at Chicago, Chicago, IL

4:45PM

Optically Addressed Wireless Stimulator for Nano-engineered Retinal Prosthesis

S. HA1, M. KHRAICHE1, A. AKININ1, G. SILVA1, AND G. CAUWENBERGHS1 ¹University of California San Diego, La Jolla, CA

5:00PM DREAM TEAM & CENTERS

Porous Polydimethylsiloxane Substrates Demonstrate Feasibility as Regenerative Peripheral Nerve Interface Multi-Channel Electrodes J. Mack¹, S. Woo¹, J. Seymour¹, X. Chen¹, E. Yoon¹, M. Urbanchek¹, P. Cederna¹, and N.

Langhals¹ ¹University of Michigan, Ann Arbor, MI

5:15PM

The Dorsal Root Ganglion: A Promising Neural Target for Somatosensory Neuroprostheses

¹University of Pittsburgh, Pittsburgh, PA

5:30PM

Thermally Drawn Nerve Guidance Channels for PNS Regeneration and Interfacing R. Koppes¹, S. Park¹, T. Hood¹, N. Poorheravi¹, X. Jia¹, and P. Anikeeva¹

¹Massachusetts Institute of Technology, Cambridge, MA

P = Poster Session **OP** = Oral Presentation Reviewer Choice Award

5:45PM

Comparisons of Platinum and CNT-MEA Electrodes as Peripheral Muscular Interface

C. CHEN1, W. YI1, X. MENG2, C. ZHOU1, W. WANG2, B. CHENG2, J. CAVANAUGH1, AND M. CHENG1

¹Wayne State University, Detroit, MI, ²Tsinghua University, Beijing, China, People's Republic of

Track: Bioinformatics, Computational and Systems Biology

OP-Thurs-3-15 - Room 17

From Molecules to Cells and Organs in Health and Disease

Chairs: Denise Kirschner, Jose Vilar

4:30PM

Systems Biology Track Overview L. SAIZ¹ ¹University of California, Davis, CA

4:45PM

QUANTITATIVE ANALYSIS OF IMMUNE CELL CYTOKINE SECRETION REVEALS ROLE OF CELL COMMUNICATION IN REGULATION OF CXCR³ LIGANDS S. SCHRIER¹, A. HILL¹, AND D. LAUFFENBURGER¹ ¹Massachusetts Institute of Technology, Cambridge, MA

5:00PM

The DIONESUS Algorithm Provides Scalable and Accurate Reconstruction of Biological Networks to Reveal New Drug Target M. CIACCIO¹ AND N. BAGHERI¹ "Northwestern University, Evanston, IL

5:15PM

Exploring Cellular Heterogeneity in Development by Single-Cell Transcript Profiling A. COSKUN¹ AND L. CAI¹ ¹Caltech, Pasadena, CA

5:30PM

An Agent-based Vision for Tissue Engineering: Quantifying Biocomplexity Exploit it H. KAUL¹ 'University of Sheffield, Sheffield, United Kingdom

5:45PM

Co-detection and Sequencing of Genomic DNA and Messenger RNA from the Same Single Cells Facilitated by a Microfluidic System

R. FAN¹ ¹Yale University, New Haven, CT

Track: Drug Delivery OP-Thurs-3-16 - Room 10

Nano to Micro Devices in Delivery II

Chairs: Edward Chow, Dean Ho

4:30PM

Nanoparticle-releasing Nanofiber Composites for Enhanced In Vivo Vaginal Retention

E. KROGSTAD¹, R. RAMANATHAN¹, C. NHAN¹, K. THORESON¹, AND K. WOODROW¹ ¹University of Washington, Seattle, WA

4:45PM

Microneedle-Array Patches Loaded with Hypoxia-Sensitive Vesicles for Rapid Glucose-Responsive Insulin Delivery

J. YU^{1,2}, Y. ZHANG^{1,2}, Y. YE^{1,2}, D. RANSON¹, F. LIGLER¹, J. BUSE³, AND Z. GU^{1,2,3} ¹University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, ²University of North Carolina at Chapel Hill, Chapel Hill, NC, ³University of North Carolina School of Medicine, Chapel Hill, NC

5:00PM DREAM TEAM & CENTER

Development of Spray Dried Curcumin Loaded Nanoparticles to Mitigate Radiation Induced Cellular Damage

A. AKALKOTKAR¹, M. O'TOOLE¹, L. LANCETA¹, B. NUNN¹, J. EATON¹, R. KEYNTON¹, AND P. SOUCY¹

¹University of Louisville, Louisville, KY

5:15PM

Release of Erythromycin from Injectable Calcium Polyphosphatederived Brushite Cement

W. REN¹, W. SONG¹,², AND D. MARKEL³

¹Wayne State University, Detroit, MI, ²Virotech Biomaterials Inc., Detroit, MI, ³Providence Hospital, Southfield, MI

5:30PM

Using Affinity Polymers for the Local Slow Release of Corticosteroids in the Treatment of Osteoarthritis E. RIVERA-DELGADO¹, E. LAVIK¹, AND H. VON RECUM¹

¹Case Western Reserve University, Cleveland, OH

5:45PM

Asymmetric Biodegradable Microdevices for Cell-borne Drug Delivery J. XIA¹, Z. WANG¹, D. HUANG¹, Y. YAN¹, Y. LI¹, AND J. GUAN¹ ¹Florida State University, tallahassee, FL

Track: Nano and Micro Technologies OP-Thurs-3-17 - Room 7-8

Nano/Microbiotechnology I

Chairs: Zi Chen, Gabe Kwong

4:30PM

Molecular Typing of Rare Trafficking Leucocytes using a Nanowire Array Microchip for Evaluating Neurodegenerative Pathology M. KWAK¹ AND R. FAN¹ 'Yale University, New Haven, CT

4:45PM

Nanomagnetic Actuation: Remote Control Of Cell Signaling

J. DOBSON¹, H. BIN², AND A. EL HAJ³ ¹University of Florida, Gainesville, FL, ²Keele University, Stoke-on-Trent, United Kingdom,³Keele University, stoke-on-Trent, United Kingdom

5:00PM

Development of Light-Induced Shape Memory Microparticles for Biomedical Applications

Q. GUO¹, C. BISHOP², R. MEYER¹, L. OLASOV¹, D. SCHESINGER¹, J. SPICER¹, J. ELISSEEFF¹, A. KUMAR¹, AND J. GREEN¹
¹Johns Hopkins University, Baltimore, MD, ²Johns Hopkins University, Baltimore, China, People's Republic of

5:15PM

NanoCluster Beacons Enable Enzyme-Free N⁶-MethyladenineDetectionJ. Obliosca I,

Y-A. CHEN¹, C. LIU¹, Y-L. LIU¹, AND H-C. YEH¹ ¹University of Texas at Austin, Austin, TX

5:30PM

Explore Intracellular Dynamics and Behaviors of MBD3 Protein by Single-molecule Fluorescence Tools Y. CUI¹ AND J. IRUDAYARAJ¹

¹Purdue University, West Lafayette, IN

5:45PM DREAM TEAM & CENTER

Single Cell Electroporation via Cell Rotation in Geometrically-Aided Field Amplification Microdevices

M. ZHENG¹, J. SHERBA¹, J. SHAN¹, H. LIN¹, D. SHREIBER¹, AND J. ZAHN¹ ¹Rutgers University, Piscataway, NJ

Track: Respiratory Bioengineering OP-Thurs-3-18 - Room I Surface Tension and Surfactant Function in the Lung

Chairs: Carrie E. Perlman, Donald Gaver

4:30 PM

The Effect of the Hydrophobic Surfactant Proteins on the Curvature of Lipid Leaflets *(invited)*

S. HALL¹, M. CHAVARHA¹, R. LONEY¹, AND S. RANANAVARE² ¹Oregon Health & Science University, Portland, OR, ²Portland State University, Portland, OR

4:45 PM

A Three Dimensional Multiscale Model of Surfactant Replacement Therapy

J. GROTBERG¹ AND M. FILOCHE² ¹University of Michigan, Ann Arbor, MI, ²Ecole Polytechnique, Palaiseau, France

5:00PM

Development of a Realistic Ventilated Infant Lung Model for Assessing the Delivery Efficiency and Effectiveness of Aerosolized Surfactants L. HOLBROOK¹, K. BASS¹, M. HINDLE¹, AND W. LONGEST¹

¹Virginia Commonwealth University, Richmond, VA

5:15PM

Model Gastric Liquid Effect on Pulmonary Alveolar Surface Tension T. NGUYEN¹ AND C. PERLMA N¹

¹Stevens Institute of Technology, Hoboken, NJ

5:30PM

The Influence of Pulsatile Flow on The Uniformity of Pulmonary Airway Recruitment.

E. YAMA GUCHI¹, L. P. NOLAN¹, AND D. P. GAVER III ¹ ¹Tulane University, New Orleans, LA

5:45PM

Microfluidic Evaluation of Mucolytic and Surfactant Therapies for Eustachian Tube Dysfunction

N. HIGUITA-CASTRO¹, J. MALIK¹, V. SHUKLA¹, J. D. SWAR TS², AND S. N. GHADIALI¹ ¹The Ohio State University, Columbus, OH, ²University of Pittsburgh, Pittsburgh, PA

Track: Biomedical Imaging and Optics OP-Thurs-3-19 - Room 9

PET, SPECT, and CT

Chairs: Jonathan Butcher, Guohua Cao

4:30 PM

Using PET Imaging To Quantify Cell-Surface Biomarkers In Cancer Therapy (*invited*)

A. CHANG¹, R. PORT¹, G. FERL¹, AND S. WILLIAM S¹ ¹Genentech, Inc., South San Francisco, CA

4:45PM DREAM TEAM & CENTER

Robust Low-Dose CT Perfusion Deconvolution via Non-Local Tensor Total Variation

R. FANG¹, M. NI², J. HUANG³, Q. LI², AND T. LI¹ ¹Florida International University, Miami, FL, ²Nanjing University of Science and Technology, Najing, China, People's Republic of, ³University of Texas at Arlington, Arlington, TX

5:00PM

Comparison of Metallic Nanoparticles as Exogenous Soft Tissue Contrast for Non-Invasive 3D Live MicroCT Imaging of Avian Morphogensis

C. GREGG¹ AND J. BUTCHER¹ ¹Cornell University, Ithaca, NY

5:15PM

Automated Imaging Algorithms to Identify and Quantify Different Types of Fat

T. SZA BO¹, T. WELLMA N², M. RUTH³, G. MERCIER¹, C. APOVIAN¹, R. SUBRAMA NIAM ⁴, AND P. VERM ILION⁵

¹Boston University, Boston, MA, ²inviCRO, LLC, Boston, MA, ³University of Calgary, Calgary, AB, Canada, ⁴Johns Hopkins Hospital, Baltimore, MD, ⁵University of Rochester Medical Center, Rochester, NY

5:30PM

Scatter Reduction And Correction For Multi-source Cardiac Computed Tomography

H. GONG ¹ AND G. CAO¹

¹Virginia Polytechnic Institute and State University, Blacksburg, VA

P = Poster Session
 OP = Oral Presentation
 = Reviewer Choice Award

9:30AM – 5:00PM **POSTER SESSION Thurs**

Entrance

Registration

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

poster session

POSTER SESSION Thurs 9:30AM – 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

THURSDAY, October 8, 2015

9:30 AM - 5:00 PM POSTER SESSIONS – THURS

Biomedical Education: P-Th-I to P-Th-29

Computational Modeling and Systems Approaches: P-Th-31 to P-Th-131

Device and Sensors: P-Th-132 to P-Th-209

Engineering Materials:

P-Th-246 to P-Th-322

P-Th-323 to P-Th-373

poster session P-Th-210 to P-Th-245 Molecular and Cellular Topics:

Musculoskeletal Injury and Mechanics:

Nano and Micro Technologies:

P-Th-374 to P-Th-520

Neural Engineering: P-Th-529 to P-Th-570

Tissue Engineering: P-Th-571 to P-Th-704

Track: Biomedical Engineering Education (BME) Biomedical Education:

Biomedical Engineering Classroom Experiences Posters

P-Th-I

Student Adaptation to the Modular Use of the Flipped Classroom Model in an Introductory BME Course J. FOO', I. DE VLAMINCK¹, AND K. WILLIAMS¹

¹Cornell University, Ithaca, NY

P-Th-2

Does The Availability Of Recorded Lectures Improve Student Success Rate? S. WILLERTH¹, C. SOUSA¹, AND H. STRUCHTRUP¹ ¹University of Victoria, Victoria, BC, Canada

P-Th-3

Sense Of Community Among BME Undergraduates In A First-Year Program J. PAZ¹, M. COUSINS¹, AND M. MARKEY^{1,2}

¹The University of Texas at Austin, Austin, TX, 2The University of Texas MD Anderson Cancer Center, Houston, TX

P-Th-4

Writing a Peer-Reviewed Article for Publication as a Group A. N. BLAIZE¹ AND C. GOERGEN¹

¹Purdue University, West Lafayette, IN

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

P-Th-5

Student Persistence, Achievement and Attitude in a Flipped Classroom using Web-enabled Tools C. ANKENY1 1/Arizona State University, Tempe, AZ

P-Th-6

Encouraging Curiosity, Connections and the Creation of Value in a Materials/Biomaterials Sequence: Part I Materials Science G. BLEDSOE1 AND S. ZUSTIAK1 1Saint Louis University, St Louis, MO

P-Th-7

Persistence in Biomedical Engineering and STEM in an Undergraduate Program D. GAITAN1, M. F. OLARTE-SIERRA1, AND J. C. BRICENO1

1U de los Andes, Bogota, Colombia

Track: Biomedical Engineering Education (BME) Biomedical Education:

Design in BME Education Posters

P-Th-8 The Teaching Dead, Season II J. LA BELLE¹ 'Arizona State University, Tempe, AZ

P-Th-9

Student-Friendly BME Senior Design Project with Assessment of ABET student Outcomes

J-M. MAAREK¹ ¹University of Southern California, Los Angeles, CA

P-Th-10

Implementing an Electronic DHF for Senior Design: Lessons Learned C. DRUMMOND¹ ¹Case Western Reserve University, Cleveland, OH

P-Th-II

Multi-Phase Integration of Design Elements into the Undergraduate Biomedical Engineering Practical Curriculum at the University of Toronto A. SHUKALYUK¹ AND D. KILKENNY¹ 'Institute of Biomaterials & Biomedical Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, ON, Canada

P-Th-12

Emphasizing Application In Bioelectricity Course D. PEDERSON¹, R. BERCICH¹, AND P. IRAZOQUI¹ ¹Purdue University, West Lafayette, IN

Track: Biomedical Engineering Education (BME) Biomedical Education:

Immersive and Experiential Learning Posters

P-Th-I3

Establishment of the Illinois-Njala Sustainable & Innovative Global Healthcare Technologies (INSIGHT) Program

J. AMOS¹ AND K. LONG¹ ¹University of Illinois at Urbana-Champaign, Urbana, IL

P-Th-I4

Engineering Summer Design Experience Has Greater Impact With International Collaboration

M. RUEGSEGGER¹, G. RUAN², T. NOCERA¹, AND R. JONES¹ ¹The Ohio State University, Columbus, OH, ²Nanjing University, Nanjing City, China, People's Republic of

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-15

Integrating Innovation and Entrepreneurship into the REU Experience D. SHREIBER¹, S. ENGELHARDT¹, T. MAGUIRE¹, AND M. YARMUSH¹ 'Rutgers, The State University of New Jersey, Piscataway, NJ

P-Th-16

Examining the Impact of a Peer-to-peer Mentoring Program Through the Lens of Social Capital Theory

J. LE DOUX¹ ¹Georgia Institute of Technology, Atlanta, GA

P-Th-17

Ph.D. Boot Camp: the Kickoff for Training Innovative Leaders in Biofabrication

K. BILLIAR¹, G. GAUDETTE¹, F. HOY¹, M. ROLLE¹, AND T. CAMESANO¹ ¹Worcester Polytechnic Institute, Worcester, MA

P-Th-18

Enhancing High School STEM Education Through Research-related Bioengineering Experiences

L. TOSTANOSKI¹, A. JONES¹, AND C. JEWELL^{1,2,3} ¹University of Maryland, College Park, MD, ²University of Maryland Medical School, Baltimore, MD, ³Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD

Track: Biomedical Engineering Education (BME) Biomedical Education:

Innovative Learning Modules and Instructional Materials Posters

P-Th-19 DREAM TEAM & CENTER

Improving Peer-Reviewing of Reports Through Calibration and Direct Instructor Feedback

J. LINNES¹, N. BAJAJ¹, A. ABOELZAHAB¹, A. BRIGHTMAN¹, AND A. RUNDELL¹ ¹Purdue University, West Lafayette, IN

P-Th-20

Encouraging Curiosity, Connections, and the Creation of Value in a Materials/Biomaterials Sequence: Part II Biomaterials S. ZUSTIAK¹

¹Saint Louis University, St Louis, MO

P-Th-21

An Interactive Training Tool to Help Reduce Error Rate Associated with Shared Infusion Volume

K. TSANG^{1,2}, S. PINKNEY¹, C. COLVIN¹, AND P. TRBOVICH^{1,2} ¹University Health Network, Toronto, ON, Canada, ²University of Toronto, Toronto, ON, Canada

P-Th-22

Bringing Real World Expertise Into Class: An Industry Partnership To Teach Biomedical Design

L. KHUON¹,², J. B. ²URN³,⁴, G. HERRERA⁵,⁶, AND K. ZURN³,⁷ ¹Drexel University, Philadelphia, PA, ²University of Pennsylvania, Philadelphia, PA, ³Villanova University, Villanova, PA, ⁴Sunshine Labs, Longwood, FL, ⁶Med Associates, Inc., St. Albans, VT^eCatamount Research & Development, Inc., St. Albans, VT, ⁷Florida Research Instruments, Cocoa Beach, FL

P-Th-23

Engaging Students to Enrich their Learning through Developing Course Materials

M. POOL¹ AND K. GRAY²

¹University of Illinois at Urbana Champaign, Urbana, IL, ²West Virginia University Institute of Technology, Montgomery, WV

P-Th-24

The 'Good', the 'Bad', and the 'Ugly' Biostatistics for Bioengineering Students

Y. Kim¹

¹Purdue University, West Lafayette, IN

Track: Biomedical Engineering Education (BME) Biomedical Education:

Laboratory Modules and Instructional Materials Posters

P-Th-25

Flipping the Lab: Introducing a Flipped Classroom Model Into a Laboratory Class A. ABOELZAHAB¹ AND T. KINZER-URSEM¹ 'Purdue University, West Lafayette, IN

P-Th-26

Nanotechnology for Biomedical Engineers and STEM Majors: Bringing Multidisciplinary Nanotechnology into the Classroom R. PEREZ-CASTILLEJOS¹ 'NJIT, Newark, NJ

P-Th-27

Educational Videos Help Improve Student Understanding in a Laboratory Course

R. RAMOS¹, B. GHOSN¹, AND C. LIVINGSTON¹ ¹Rice University, Houston, TX

P-Th-28

Assessment of Student Value and Scientific Literacy in an Introductory Biomaterials Laboratory C. ANKENY¹ AND S. STABENFELDT¹ 'Arizona State University, Tempe, AZ

P-Th-29

A Template for Multi-Disciplinary Team-Based Problem Solving, Design, and Assessment: Application in Biomedical Engineering

S. ZUSTIAK¹, S. SELL¹, AND G. GAUDETTE² ¹Saint Louis University, St Louis, MO, ²Worcester Polytechnic Institute, Worcester, MA

Track: Bioinformatics, Computational and Systems Biology

Computational Modeling and Systems Approaches:

Algorithms for Computational/Systems Biology Posters

P-Th-30

A Unified Sparse High-Dimensional Association Test for Quantitative Traits in Complex Relatedness

S. CAO¹, H. QIN1, A. GOSSMANN¹, H-W. DENG¹, AND Y-P. WANG¹ ¹Tulane University, New Orleans, LA

P-Th-31

Online Remote Monitoring of Heart Rate Variability M. THOME¹, J. SALINET¹, R. RODRIGUES¹, AND D. GOROSO¹ ¹Mogi das Cruzes University, Mogi das Cruzes, Brazil

P-Th-32

Classifying Brain States Using Machine Learning Techniques A. RAJAN¹, S. MEYYAPPAN¹, E. OPRI¹, R. SITARAM¹, AND M. DING¹ 'University of Florida, Gainesville, FL

P-Th-33

NCLX Mitochondrial Exchanger Blocking: Simulation vs Experiment E. T.N.T DA SILVA¹, D. GOROSO¹, AND R. RODRIGUES¹ ¹Mogi das Cruzes University, Mogi das Cruzes, Brazil

POSTER SESSION Thurs 9:30AM – 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-34

Assessing Granger Causality in Electrophysiology: Unipolar vs. Bipolar Signals

B. NANDI¹, A. TRONGNETRPUNYA¹, D. KANG¹, B. KOCSIS2, C. SCHROEDER3, AND M. DING¹

University of Florida, Gainesville, FL, ²Harvard Medical School, Boston, MA, ³Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY

P-Th-35

Use of Smartphone's Accelerometer to Estimate Physical Activity Energy Expenditure

M. ISHIZAKI¹, R. RODRIGUES¹, AND D. GOROSO¹ ¹Mogi das Cruzes University, Mogi das Cruzes, Brazil

P-Th-36

Nexperiment: User Friendly Model-based Design of Experiments Software A. SAI¹, T. MDLULI¹, A. RUNDELL¹, AND G. BUZZARD¹ ¹Purdue University, West Lafayette, IN

P-Th-37

Assessing Effects of Sequencing Depth on ChIP¬seq Quality and Peak Calling Performance

A. L0¹, B. PHAN², D. WALSTEN², R. KARCHIN², B. MAHER³, AND A. JAFFE³ ¹Johns Hopkins University, Holden, MA, ²Johns Hopkins University, Baltimore, MD, ³Lieber Institute for Brain Development, Baltimore, MD

P-Th-38

Use of Existing CAD Models for Radiation Shielding Analysis

J. BARZILLA¹, K. LEE², P. WILSON³, A. DAVIS³, AND J. ZACHMAN³ ¹Lockheed Martin, Houston, TX, ²NASA, Houston, TX, ³University of Wisconsin, Madison, WI

Track: Bioinformatics, Computational and Systems Biology

Computational Modeling and Systems Approaches:

Dynamics of Biological Systems Posters

P-Th-39

Integrative Modeling Identifies VEGFRI as an Essential Regulator of VEGF-Induced Migration

J. WEDDELL¹ AND P. IMOUKHUEDE¹ ¹University of Illinois at Urbana-Champaign, Urbana, IL

P-Th-40

A Crosstalk-Based Linear Filter Design in Biochemical Signal Transduction Pathways

M. LADDOMADA¹, D. MAHAN¹, AND M. PIEROBON² ¹Texas A&M University, Texarkana, Texarkana, TX, ²University of Nebraska-Lincoln, Lincoln, NE

P-Th-41

A Quantitative Analysis of Natural Killer Cell Response to IL-15 Stimulation A. THROM1 AND A. FRENCH1

¹Washington University in St. Louis, St. Louis, MO

P-Th-42 DREAM TEAM & CENTER

Characterizing Chemotherapy Effects on Hematopoietic Stem Cell Differentiation

J. SARKER¹,², S. ROBERTSON², D. UMULIS¹, R. NELSON², AND A. RUNDELL¹ ¹Purdue University, West Lafayette, IN, ²Indiana University School of Medicine, Indianapolis, IN

P-Th-43

Protease Site-directed Mutagenesis Distinguishes Cannibalistic Interactions in Proteolytic Networks

M. FERRALL¹, M. AFFER², AND M. PLATT¹ ¹Georgia Institute of Technology and Emory University, Atlanta, GA, ²Georgia Institute of Technology, Atlanta, GA

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

P-Th-44

Regulation of Integrin Activation in Neovascularization by Basement Membrane Proteins and Inhibitors

N. BAJAJ¹, T-C. WU¹, S. VOYTIK-HARBIN¹, D. UMULIS¹, AND A. RUNDELL¹ ¹Purdue University, West Lafayette, IN

P-Th-45

Spatiotemporal Kinetic Modeling of the Myocardin-Related Transcription Factor-A Regulatory Axis

B. SPAR¹ AND C. NELSON¹ ¹Princeton University, Princeton, NJ

P-Th-46

Regulation of Cell Motility and Proliferation by Cellular Signaling: Role of STAT3

T. ISLAM¹, Z. SPETH¹, K. BANERJEE¹, AND H. RESAT¹ ¹Washington State University, Pullman, WA

P-Th-47

Fluorescence Lifetime Mapping of NADH Reveals DNA Repair Activity in Live Cells

M. MURATA¹, X. KONG¹, K. YOKOMORI¹, AND M. DIGMAN¹ ¹University of California, Irvine, Irvine, CA

P-Th-48

Dynamic Indirect Measurement of the Daily Macronutrient Oxidation Rate, Changes of Fat and Fat Free Mass u/u

Z. ORI¹ ¹Duke University Health System, Durham, NC

P-Th-49

Regulation of Oxidative Stress in Endothelial Cells

H. PATEL¹, C. PRESNELL¹, AND M. KAVDIA¹ ¹Wayne State University, Detroit, MI

P-Th-50

The Role of the Human Amygdaloid Complex in Fear Conditioning: A FUNCTIONAL CONNECTIVITY ANALYSIS S. Yin¹, Y. Liu², A. Keil¹, and M. Ding¹ ¹University of Florida, Gainesville, FL, ²University of California, Davis, Davis, CA

Track: Cancer Technologies Computational Modeling and Systems Approaches:

Computation Modeling of Cancer Growth and Treatment Posters

P-Th-5I

Parametric Analysis of Cancer Dynamics: An Evaluation of Environmental Contributing Factors

R. ABIRI¹, I. ZELLER¹, AND X. ZHAO¹ ¹The University of Tennessee, Knoxville, Knoxville, TN

Track: Respiratory Bioengineering Computational Modeling and Systems

Approaches:

Computational Modeling of the Airway Posters

P-Th-52 DREAM TEAM & CENTER

3D Agent-based Models of Airway Remodeling to Investigate Treatment Courses for Asthma

H. KAUL¹, M. BURKITT¹, C. NEWBY², AND R. SMALLWOOD¹ ¹University of Sheffield, Sheffield, United Kingdom, ²University of Leicester, Leicester, United Kingdom

9:30AM – 5:00PM **POSTER SESSION Thurs**

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-53

A Computation Model of Airflow in the Main Airways of the Lung P. GAMAGE¹ AND H. MANSY

¹University of Central Florida, Orlando, FL

P-Th-54

Non-Stationary Analysis for Tracking Temporal Variations In Impedance During Oscillometry.

H. HANAFI¹, G. MAKSYM², AND K. EL-SANKARY² ¹dalhousie university, halifax, NS, Canada, ²Dalhousie University, halifax, NS, Canada

P-Th-55

A Complete CFD Model of Pharmaceutical Aerosol Deposition in the Lungs: Validations with In vivo Data

W. LONGEST¹, G. TIAN¹, AND M. HINDLE¹ ¹Virginia Commonwealth University, Richmond, VA

P-Th-56

A Statistical Mechanical Model of Spontaneous Airway Constriction B. SUKI¹, A. CHANG², J. PILLOW², AND P. NOBLE²

¹Boston University, Boston, MA, ²University of Western Australia, Perth, Australia

P-Th-57

Experimental and Numerical Analysis of Micro-beads Velocity in a Flow Induced by Cilia Motion

M. BOTTIER¹, M. PEÑA FERNÁNDEZ², G. PELLE², E. BEQUIGNON², D. ISABEY², A. COSTE², E. ESCUDIER³, M. MANOLIDIS⁴, J. B. GROTBERG⁴, J-F. PAPON², B. LOUIS², AND M. FILOCHE⁵

¹Inserm U⁹⁵⁵, Creteil, France, ²Inserm U⁹⁵⁵, Créteil, France, ³Inserm U⁹³³, Paris, France,⁴University of Michigan, Ann Arbor, MI, ⁵Ecole Polytechnique, Palaiseau, France

P-Th-58

Increased Variability in Airway Wall Thickness Can Explain Ventilation Defects (VDefs) at Lower Levels of Airway Smooth Muscle Stimulation T. WINKLER¹ AND J. G. VENEGAS¹

¹Massacusetts General Hospital and Harvard Medical School, Boston, MA

P-Th-59

Pressure and Velocity Relationships of Inspired Air into the Human Lung P. AGHASAFARI¹, I. BIN M. IBRAHIM¹, R. ARAMBAKAM¹, AND R. PIDAPARTI¹ ¹University of Georgia, Athens, GA

P-Th-60

A Novel Computational Fluid-particle Dynamics (CF-PD) Model for Multicomponent Droplet-vapor Aerosol Mixture Transport, Phase Change and Deposition in an Idealized Trachea-to-GI Airway Y. FENG¹ AND C. KLEINSTREUER¹

¹North Carolina State University, Raleigh, NC

Track: Bioinformatics, Computational and Systems Biology Computational Modeling and Systems

Approaches:

General Approaches Posters

P-Th-61

Optimizing Normalization Feature For Volumetric Brain Measurement N. SOBERON¹, M. MARKEY¹, AND N. VERMA¹ ¹The University of Texas at Austin, Austin, TX

P-Th-62

Theta-Rhythmic Drive Between Medial Septum and Hippocampus in Slow Wave Sleep and Microarousal: A Granger Causality Analysis D. KANG¹, M. DING¹, I. TOPCHIY², L. SHIFFLETT², AND B. KOCSIS² ¹University of Florida, Gainesville, FL, ²BIDMC, Harvard Medical School, Boston, MA

P-Th-63

High-Throughput Assessment Algorithm to Predict Skin Sensitization Using In Vitro Alternatives to Animal Testing

S. LEE¹, T. GREENSTEIN¹, T. MAGUIRE¹, R. SCHLOSS¹, AND M. YARMUSH¹ ¹Rutgers University, Piscataway, NJ

P-Th-64

Automatic Cell Selection Method for Pap Smear Test Q. MIAO¹, J. DERBAS², A. EID¹, H. SUBRAMANIAN¹,², AND V. BACKMAN¹,² ¹Northwestern University, Evanston, IL, ²Nanocytomics LLC, Evanston, IL

P-Th-65

5

Protein Osmotic Pressure in the Presence of Sodium-based Salts at Moderate Ionic Strength

C. HALE¹, D. ORNELAS¹, L. CHANG¹, AND V. RODGERS¹ ¹University of California - Riverside, Riverside, CA

Track:	Bioinformat	tics, Compu	tation	al and
System	ns Biology			
Com	outational	Modeling	and	Systems
Appr	oaches:			

Multiscale Modeling Posters

P-Th-66 DREAM TEAM & CENTER 🚆

Computational Human Fetal Growth Model of Hypoplastic Left Heart Syndrome: Reduced Ventricular Growth Due to Decreased Preload S. DEWAN¹, A. KRISHNAMURTHY¹, R. KERCKHOFFS¹, J. OMENS¹, H. SUN², V. NIGAM¹,²,

AND A. MC CULLOCH1 ¹University of California at San Diego, La Jolla, CA, ²Rady Children's Hospital at San Diego, San Diego, CA

P-Th-67

A Predictive Multiscale Model for Simulating Platelets Activation in Shear Flows

P. ZHANG¹, C. GAO¹, N. ZHANG¹, M. SLEPIAN², Y. DENG¹, AND D. BLUESTEIN¹ ¹Stony Brook University, Stony Brook, NY, ²University of Arizona, Tucson, AZ

P-Th-68

Modeling of Neonatal Hemodynamics during PDA Closure

S. SOLEYMANI¹,², M. KHOO¹,³, S. NOORI²,³, AND I. SERI², ¹University of Southern California, Los Angeles, CA, ²Children's Hospital Los Angeles, Los Angeles, CA, ³Keck School of Medicine, USC, Los Angeles, CA, ⁴Sidra Medical and Research Center, Doha, Qatar

P-Th-69

Mathematical Modeling of Laser Irradiation of Port Wine Stain Blood Vessels Containing Erythrocyte-Derived Particles Doped with Indocyanine Green

J. BURNS¹, W. JIA², V. SUN², J. S. NELSON², AND B. ANVARI¹

¹University of California, Riverside, Riverside, CA, ²University of California, Irvine, Irvine, CA

P-Th-70

Quantifying the Consistency of Self-assembly of Single Cardiomyocytes N. DREW¹, D. BALDO¹, J. CORE¹, M. TAGLE RODRIGUEZ¹, AND A. GROSBERG¹ ¹University of California, Irvine, Irvine, CA

P-Th-71

Flexible Tails Regulate the Functions of β -Catenin

B. 7HAO1 AND B. XUE1 ¹University of South Florida, Tampa, FL

POSTER SESSION Thurs 9:30AM – 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

Track: Biomechanics Computational Modeling and Systems

Approaches:

Multiscale Modeling in Biomechanics Posters

P-Th-72

Structural Modeling of Lung Airway Tissue under Ventilation Breathing I. BIN M. IBRAHIM¹, R. PIDAPARTI¹, AND P. AGHASAFARI¹ ¹University of Georgia, Athens, GA

P-Th-73

Phospholipid Deformation Size Effects during Tensile Molecular Dynamics Simulations

M. MURPHY¹, M. F. HORSTEMEYER¹, S. GWALTNEY¹, T. STONE¹, M. LAPLACA², J. LIAO¹, L. WILLIAMS¹, AND R. PRABHU¹

 $^{\rm t}{\rm Mississippi}$ State University, Mississippi State, MS, $^{\rm 2}{\rm Georgia}$ Institute of Technology, Atlanta, GA

Track: Biomechanics Computational Modeling and Systems Approaches:

Computational Modeling in Biomechanics Posters

P-Th-74

Towards Online Detection Of Freezing Of Gait Using Wavelet Transform On Wireless Accelerometer Data S. REZVANIAN¹ AND T. LOCKHART¹ 'Arizona state university, Tempe, AZ

P-Th-75

A Personalized Mechanical Model of Chronic Lung Disease M. ESKANDARI¹, W. KUSCHNER¹, AND E. KUHL¹ ¹Stanford University, Stanford, CA

P-Th-76

Simulating Ligament Deficiency for an Anatomical Elbow Joint in a Multibody Framework

M. RAHMAN¹, A. CIL^{1,2}, AND A. STYLIANOU¹ ¹University of Missouri-Kansas City, Kansas City, MO, ²Truman Medical Center, Kansas City, MO

P-Th-77

Hemodynamics of Healthy vs. Pathological Two Venous-Valves Complex – FSI Computational Model

E. SOIFER¹, D. WEISS¹, U. ZARETSKY¹, AND S. EINAV¹,² ¹Tel Aviv University, Tel Aviv, Israel, ²Stony Brook University, Stony Brook, NY

P-Th-78

Effect of Geometric and Material Property Changes in the Thoracic Skeleton for an Older Occupant Finite Element Model S. SCHOELL¹, A. WEAVER¹, AND J. STITZEL¹ ¹Virginia Tech- Wake Forest University, Winston-Salem, NC

P-Th-79

Three-Dimensional Modeling of Circulating Cell Separation in a Bifurcating Microchannel

S. HYMEL¹, H. LAN², AND D. KHISMATULLIN¹ ¹Tulane University, New Orleans, LA, ²University of California, San Diego, CA

P-Th-80

Finite Element Modeling of the Middle Ear Muscle Effect on Sound Transmission

X. WANG¹ AND R. Z. GAN¹ ¹University of Oklahoma, Norman, OK

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

P-Th-81

Development and Validation of an Atlas-Based Finite Element Model L. MILLER¹, J. URBAN¹, AND J. STITZEL¹

LI MILLER , J. ODBAN , AND S. STITZEL Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Winston-Salem, NC

P-Th-82

Development of the GHBMC 5th Percentile Female Finite Element Model

M. DAVIS¹,², B. KOYA¹, AND F. S. GAYZIK¹,² ¹Virginia Tech - Wake Forest University, Winston-Salem, NC, ²Wake Forest School of Medicine, Winston-Salem, NC

P-Th-83

Modular Use of Validated Organs within a Simplified Human Body Finite Element Model Reduces Computational Cost

D. SCHWARTZ^{1,2}, B. KOYA^{1,2}, W. DECKER^{1,2}, J. STITZEL^{1,2}, AND S. GAYZIK^{1,2} ¹Wake Forest School of Medicine, Winston Salem, NC, ²Virginia Tech – Wake Forest University Center for Injury Biomechanics, Winston Salem, NC

P-Th-84

Investigating Influences on the Ankle-Brachial Index through Massively Parallel Simulation A. RANDLES' AND E. W. DRAEGER'

¹Lawrence Livermore National Laboratory, Livermore, CA

P-Th-85

Determining a Relationship between Femoral Condyle Geometry and ACL Length

BOSWELL¹, B. DAVIS¹, M. KELLY², J. ELIAS², AND D. FILIPKOWSKI² ¹The University of Akron, Akron, OH, ²Akron General Medical Center, Akron, OH

P-Th-86

Comprehensive Literature Review Reveals Insights to Parameters for New Wound Healing Models S. JORGENSEN¹ AND J. SANDERS¹

¹Tennessee Technological University, Cookeville, TN

P-Th-87

The Influence Of Impact Degrees On Pevis Acceleration During Side Impact H. ROH¹, H. KIM¹, Y. LEE¹, AND J. HONG¹ ¹Korea University, Sejong-si, Korea, Republic of

P-Th-88

Design Of Fuzzy Controller For Stapler Of Gastrointestinal Anastomosis S. JUNG¹, T. LEE¹, D. YANG¹, AND J. HONG¹ 'Korea university, Sejong, Korea, Republic of

P-Th-89

Biomechanical Design Of Air-Cell Pillow Considering Side Lying Lateral Position

J. KIM¹, H. KIM¹, H. KIM¹, AND J. HONG¹ ¹Korea University, Sejong-si, Korea, Republic of

P-Th-90

Using A Dynamic Musculoskeletal Model To Explore Human Pinch A. BARRY¹, D. QIU¹, AND D. KAMPER¹,²

¹Illinois Institute of Technology, Chicago, IL, ²Rehabilitation Institute of Chicago, Chicago, IL

Track: Device Technologies and Biomedical Robotics

Computational Modeling and Systems Approaches:

Medical Device Development and Computational Models Posters

P-Th-91

Reduction of Ureteroscopic Complications by Using a Force Feedback Training Device

Z. NAJAFI¹, T. TIEU², A. MAHAJAN¹, AND B. SCHWARTZ² ¹University of Akron, Akron, OH, ²Southern Illinois University School of Medicine, Springfield, IL

9:30AM – 5:00PM **POSTER SESSION Thurs**

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-92

Arrhenius Model of Thermal Damage during Laser Interstitial Thermal Therapy for Renal Cell Carcinoma

M. ISHAHAK¹, L. FONTANEDA¹, S. ARECHAVALA¹, N. SALAS¹,², AND R. J. LEVEILLEE¹,² ¹University of Miami, Coral Gables, FL, ²Miller School of Medicine, Miami, FL

P-Th-93

Operational Consistency Of Medical Linear Accelerator Performance Parameters

C. NGUYEN¹,², C. M. ABLE², A. H. BAYDUSH², S. ISOM², AND M. T. MUNLEY¹,² ¹Virginia Tech - Wake Forest School of Biomedical Engineering and Sciences, Winston Salem, NC, ²Wake Forest School of Medicine, Winston Salem, NC

P-Th-94

Design behind Improving Efficiency in Endotracheal Tube Changes J. MITCHELL¹, P. BROWN¹, AND M. OLYMPIO²

J. MICHELL, F. BROWNY, AND M. OLIMPIO Virginia Tech - Wake Forest University, Winston-Salem, NC, ²Wake Forest Baptist Health, Winston-Salem, NC

P-Th-95

Optimized Musculoskeletal Parameters For Predicting Multi-Joint Wrist And Hand Movement From Limited EMG Signals

D. CROUCH^{1,2} AND H. HUANG^{1,2} ¹North Carolina State University, Raleigh, NC, ²University of North Carolina at Chapel Hill, Chapel Hill, NC

P-Th-96

Detecting Leader-Follower Relationship in EEG Hyperscanning

L. WAN¹, S. DIKKER²,³, D. POEPPEL²,⁴, AND M. DING¹ ¹University of Florida, Gainesville, FL, ²New York University, New York, NY, ³Utrecht University, Utrecht, Netherlands, ⁴Max Planck Institute, Frankfurt, Germany

P-Th-97

Analytical Solution for Time-Dependent Potentials in a Cylindrical Fiber W. $\mathsf{NEU}^{\scriptscriptstyle 1}$

¹Duke University, Durham, NC

P-Th-98

A Conical Antenna for Stimulating Neurological Tissue R. PETRELLA^{1,2} AND S. XIAO^{1,2}

1. FEIRELLA'," AND S. AIAU'," 10Id Dominion University, Norfolk, VA, 2Frank Reidy Center for Bioelectrics, Norfolk, VA

P-Th-99

Design of a Low-cost Wireless Near-infrared Spectroscopy System Using Embedded Linux

D. DIAS¹ AND N. KASHOU¹ ¹Wright State University, Dayton, OH

P-Th-100

Seizure Detection Using Peak Counting In A Fully Implantable Wireless Device For Rodents Seizure Detection Using Peak Counting In A Fully Implantable Wireless Device For Rodents D. PEDERSON¹ AND P. IRAZOQUI¹

¹Purdue University, West Lafayette, IN

P-Th-101

Assessment of Electrode Surface Area in Electrical Impedance Myography Study Using Finite Element Method M. AHAD¹ AND S. BAIDYA¹

¹Georgia Southern University, Statesboro, GA

P-Th-102 DREAM TEAM & CENTER

Identification of Deep Brain Stimulation Targets From a Cohort of Parkinson's Disease Patients

G. DUFFLEY^{1,2}, D. CHEN³, K. FOOTE^{3,4}, M. OKUN^{3,4}, AND C. BUTSON^{1,2} ¹University of Utah, Salt Lake City, UT, ²Scientific Computing and Imaging (SCI) Institute, Salt Lake City, UT, ³University of Florida, Gainesville, FL, ⁴Center for Movement Disorders and Neurorestoration, Gainesville, FL

P-Th-103

Development of Practical Silicone Ventricles for Testing Direct Mechanical Ventricular Actuation

T. FISCHER¹, N. LOEBER¹, L. CHIA¹, B. SCHMITT¹, Y. ZHOU¹, D. REYNOLDS¹, AND M. ANSTADT¹ 'Wright State University, Davton, OH

P-Th-104

Using Human Factors to Redesign a Laparoscopic Suturing Device for Female Surgeons

J. BARIL¹, D. PETERSON², K. HORTON³, AND J. MALKOWSKI³ ¹University of Connecticut, East Granby, CT, ²Texas A&M Texarkana, Texarkana, TX,³Medtronic, New Haven, CT

P-Th-105

The Interaction Model Development and Simulation of Wireless Laparoscopic Camera and Abdominal Wall Tissue

R. YAZDANPANAH ABDOLMALAKI¹, X. LIU¹, AND J. TAN ¹University of Tennessee, knoxville, TN

P-Th-106

Design and Implementation of a Portable ECG Signal Transmission Prototype

S. DEHGHANOJAMAHALLEH¹ AND M. KAYA¹ ¹Florida Institure of Technology, Melbourne, FL

P-Th-107

The Efficacy of a Novel Surgical Tool that Reduces Complications Associated with Spinal Revision Surgery

H. HUANG¹, T. CATULLO¹, S. JOHANNESSON¹, B. KIM¹, E. URIAS¹, E. CHIANG¹, A. SUBRAMANYA¹, AND T. SUN¹ ¹Johns Hopkins University, Baltimore, MD

P-Th-108

Impact of Geometric Variation on Sealing Capability of a Medical Valve $R,\,HE^{_1}$

¹Baxter International Inc., Round Lake, IL

Track: Bioinformatics, Computational and Systems Biology Computational Modeling and Systems

Approaches: Proteomics, Genomics, and Metabolomics Posters

P-Th-109

A Systems Biology Approach to Competitive Metabolism between Omega-3 and Omega-6 Fatty Acids in Inflammatory Macrophages

S. GUPTA¹, Y. KIHARA¹, M. MAURYA¹, P. NORRIS¹, E. DENNIS¹, AND S. SUBRAMANIAM¹ ¹University of California, San Diego, La Jolla, CA

P-Th-110

Evaluating the Impact of Sequencing Error Correction for RNA-seq Data L. TONG^{1,2}, C. YANG^{1,2,3}, P-Y. WU¹, AND M. D. WANG^{1,2} 'Georgia Institute of Technology, Atlanta, GA, ²Emory University, Atlanta, GA, ³Peking University, Beijing, China, People's Republic of

P-Th-III

Oxidative Stress Induced Senescence in Human Umbilical Vascular Endothelial Cells S. RAGHUNANDAN¹

¹University of California, San Diego, La Jolla, CA

P-Th-112

Making Biological Sense of Important Genes in Breast Cancer and their Coordinated Behavior: Preliminary Results

C. MARRERO¹ ¹University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico

POSTER SESSION Thurs 9:30AM – 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

Track: Bioinformatics, Computational and Systems Biology

Computational Modeling and Systems Approaches:

Single-cell Measurements and Models Posters

P-Th-113

Single Cell Western Blotting to Study Stem Cell Heterogeneity

D. $\mathsf{SPeLKe}^{1,2},$ A. $\mathsf{Hughes}^{1,2},$ Z. $\mathsf{Xu}^1,$ C-C. $\mathsf{Kang}^1,$ E. $\mathsf{Connelly}^1,$ A. $\mathsf{Herr}^1,$ and D. $\mathsf{Schaffer}^1$

¹University of California, Berkeley, Berkeley, CA, ²University of California, San Francisco, San Francisco, CA

P-Th-114

Cell Deformation In A Cross-Channel: Integration Of Computational Modeling With DC Experiment

Z. SHENG¹, H. LAN², H. MUNOZ³, D. DI CARLO³, AND D. KHISMATULLIN¹ ¹Tulane University, New Orleans, LA, ²University of California - San Diego, San Diego, CA,³University of California - Los Angeles, Los Angeles, CA

P-Th-115

Modeling the Mitochondrial Control of Shear-Induced Calcium Dynamics in Vascular Endothelial Cells

R. BUCKALEW¹, J. PARIKH², C. SCHEITLIN¹, D. TERMAN¹, N. TSOUKIAS², AND B. R. ALEVRIADOU¹

¹The Ohio State University, Columbus, OH, ²Florida International University, Miami, FL

P-Th-116

Laser Ionization/Desorption Droplet Delivery Mass Spectrometry for Single Cell Analysis

J. K. LEE^{1,2}, H. G. NAM^{2,3}, AND R. ZARE¹ ¹Stanford University, Stanford, CA, ²Institute for Basic Science, Daegu, Korea, Republic of,³DGIST, Daegu, Korea, Republic of

Track: Bioinformatics, Computational and Systems Biology

Computational Modeling and Systems Approaches:

Systems Approaches to Therapy and Therapeutics Posters

P-Th-118

Early Changes in Innate Cytokine Networks Predict Response to Antiretroviral Therapy in HIV

K. ARNOLD¹, L. GAMA², G. SZETO¹, D. IRVINE¹, P. HUNT³, D. LAUFFENBURGER¹, AND E. KALLAS⁴

¹Massachusetts Institute of Technology, Cambridge, MA, ²The Johns Hopkins University, Baltimore, MD, ³University of California, San Francisco, San Francisco, CA, ⁴University of São Paulo, São Paulo, Brazil

P-Th-119

Conserved RTK-Intrinsic Signaling Consequences Result in Distinct Bypass Resistance Capacity

S. MANOLE¹ AND A. MEYER¹ ¹Massachusetts Institute of Technology, Cambridge, MA

P-Th-120

Rat and Human Metabolic Network Models for Comparative Analyses in Toxicology

E. BLAIS¹, K. RAWLS¹, I. LI¹, AND J. PAPIN¹ ¹University of Virginia, Charlottesville, VA

P-Th-121

A Systems View of Hysteresis in the Development of Multidrug Resistance of *Pseudomonas aeruginosa* P.YEN¹ AND J. PAPIN¹ 'University of Virginia, Charlottesville, VA

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

P-Th-122

Multi-Scale Systems Pharmacology Analysis Of Combination Therapy And Drug Desistance In Tuberculosis

E. PIENAAR¹, V. DARTOIS², D. KIRSCHNER³, AND J. LINDERMAN¹

¹University of Michigan, Ann Arbor, MI, ²Public Health Research Institute and New Jersey Medical School, Newark, NJ, ³University of Michigan Medical School, Ann Arbor, MI

P-Th-123

Systems Serology To Dissect The Polyclonal Nature Of Vaccine-Induced Humoral Immunity

M. KUMAR¹, A. CHUNG², K. ARNOLD¹, L. DUNPHY¹, G. ALTER³, AND D. LAUFFENBURGER¹ ¹Massachusetts Institute of Technology, Cambridge, MA, ²University of Melbourne, Melbourne, Australia, ³Ragon Institute, Cambridge, MA

P-Th-124

Experimental and Computational Method Characterizes Non-genetic Drug Resistance Mechanisms

A. CLAAS¹, J. DOWNEY¹, AND D. LAUFFENBURGER¹ ¹Massachusetts Institute of Technology, Cambridge, MA

P-Th-125

Mathematical Model Reveals Increased Protease Following Inhibition Due to Cannibalistic Regulation

W. SHOCKEY¹, C. WILDER¹, M. FERRALL¹, AND M. PLATT¹ ¹Georgia Institute of Technology and Emory University, Atlanta, GA

P-Th-126

Targeting Mitochondrial Biogenesis to Overcome Intrinsic and Acquired Drug Resistance to MAPK Pathway Inhibitors

G. ZHANG¹, L. WU^{1,2}, D. T. FREDERICK³, Z. WEI⁴, Y. C. CHAE¹, X. XU⁵, C. KREPLER¹, G. MILLS⁶, D. C. ALTIERI¹, K. T. FLAHERTY³, AND M. HERLYN¹ ¹The Wistar Institute, Philadelphia, PA, ²University of Pennsylvania, Philadelphia, PA,³Massachusetts General Hospital, Boston, MA, ⁴New Jersey Institute of Technology,

Ny masaanabany serial contain a program and the series of the series of the series of the series of the Masaaria Series and the series of the Series National Series and the series of the Series of Texas MD Anderson Cancer Center, Houston, TX

P-Th-127

The Effect Of Halogenation Of Erythrosine B on Amyloid-Beta 40 Oligomer Aggregation and Neurotoxicity In Alzheimer's Disease Using Molecular Modeling

J. KIM¹, W. LEE¹, S. KANG¹, J. E. SHIN¹, H. JIN¹, I. KWON², AND S. S. JANG¹ ¹Georgia Institute of Technology, Atlanta, GA, ²Gwangju Institute of Science and Technology, Gwangju, Korea, Republic of

Track: Bioinformatics, Computational and Systems Biology Computational Modeling and Systems Approaches:

Theory and Practice of Synthetic Biology Posters

P-Th-128

Computer Capture of Systems of Engineered DNA Strands with Application to DNA Sequence Design R. ATKINSON¹ AND B. LUTZ¹ 'University of Washington, Seattle, WA

P-Th-129

Real-Time Light-Driven Temporal Control Of Gene Expression And Protein Concentration In S. cerevisiae

J. MELENDEZ¹, M. PATEL², B. OAKES³, P. XU⁴, AND M. MCCLEAN^{4,5} ¹Washington University, St. Louis, MO, ²University of North Carolina, Chapel Hill, Chapel Hill, NC, ³University of California, Berkeley, Berkeley, CA, ⁴Princeton University, Princeton, NJ²University of Wisconsin, Madison, Madison, WI

P-Th-130

Dynamic Regulation Of Toxic Synthetic Bacteria Prevents Learning In The Model Nematode *Caenorhabditis elegans*

O. BRACHO¹, C. MANCHERY¹, E. HASKELL¹, C. BLANAR¹, AND R. SMITH¹ Nova Southeastern University, Fort Lauderdale, FL

9:30AM – 5:00PM **POSTER SESSION Thurs**

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-131

Spatial Disturbance As A Driver Of Extinction In Synthetic Cooperative Bacteria

C. WILSON¹, W. DRISCOLL², O. ELDAKAR¹, J. LOPEZ¹, AND R. SMITH¹ ¹Nova Southeastern University, Fort Lauderdale, FL, ²University of Minnesota, Minneapolis, MN

Track: Translational Biomedical Engineering **Devices and Sensors:**

Biomedical Device Design in Translational Research Posters

P-Th-132

Design And Proof Of Concept For A Single Cell Electromagnetic Loading Device

A. VALDEVIT¹, E. NOONAN¹, S. FERRELL¹, AND P. LEOPOLD¹ ¹Stevens Institute of Technology, Hoboken, NJ

P-Th-133

A Simple Approach for Removal of Irreparably Damaged Cells from Stored Blood

H. XIA¹, B. STRACHAN¹, N. PIETY¹, S. GIFFORD¹, AND S. SHEVKOPLYAS¹ ¹University of Houston, Houston, TX

P-Th-134

Pore Size Impacts Cell-Cell Communication and Scar Contraction in 3D-Printed Polyurethane Scaffolds

T. D. RAMCHAL¹, E. R. LORDEN², Z. WANG³, L. BASHIROV¹, M. M. IBRAHIM¹, E. HAMMETT², B. KLITZMAN², J. J. YOO³, H. LEVINSON¹, S. J. LEE³, AND K. W. LEONG²,⁴ ¹Duke University Medical Center, Durham, NC, ²Duke University, Durham, NC, ³Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, ⁴Columbia University, New York, NY

P-Th-135

A Complete Blood Cell Count Biochip from a Drop of Blood

U. HASSAN¹, B. REDDY¹, C. YANG², G. DAMHORST¹, AND R. BASHIR¹ ¹University of Illinois at Urbana Champaign, Urbana, IL, ²University High School Urbana, Urbana, IL

P-Th-136

Quantum Dot Based DNA Nanosensor For The Detection Of Mycobacterium Tuberculosis

M. JEPSEN¹, C. HARMSEN¹, O. FRANCH¹, M. HEDE², B. R. KNUDSEN¹, AND Y.P. HO¹ ¹Aarhus University, Aarhus, Denmark, ²zymonostics, Aarhus C, Denmark

P-Th-137

A Phase Plane Metric For Intracranial Pressure After Traumatic Brain Injury M. QADRI¹, N. H. KIM¹, S. DANISH¹, AND W. CRAELIUS¹ ¹Rutgers, The State University of New Jersey, Piscataway, NJ

P-Th-138

The Foreign Body Immune Response to Implanted Materials is Dependent on Size and Shape in Rodents and Non-Human Primates O. VEISEH¹, R. LANGER¹, AND D. ANDERSON¹ ¹Massachusetts Institute of Technology, Cambridge, MA

P-Th-139

The Sensitivity of Microfluidic Flow Assays to von Willebrand Factor Levels in Type I von Willebrand Disease Patients Compared to Clinical Assays M. LEHMANN¹, C. NG², J. DI PAOLA², AND K. NEEVES¹,²

¹Colorado School of Mines, Golden, CO, ²University of Colorado Denver, Aurora, CO

P-Th-140

Jacquard Weaving Of Scaled Up, Tissue-Replicating Biomaterials And Implants

J. NG¹, R. WHAN¹, AND M. KNOTHE TATE¹ ¹University of New South Wales, Australia, Sydney, Australia

P-Th-141

The Application of BioHeat Perfusion Sensors To Quantify Pressure Ischemia Of Explanted Organs

T. O'BRIEN', A. ROGHANIZAD', J. ROBERTSON', AND T. DILLER' 'Virginia Tech, Blacksburg, VA

P-Th-142

Towards a Point-of-Care Blood Sensor to Quantify Multiple Traumatic Brain Injury Biomarkers

B. HASELWOOD¹, A. LAM¹, AND J. LA BELLE¹,² ¹Arizona State University, Tempe, AZ, ²Mayo Clinic Arizona, Scottsdale, AZ

P-Th-143

Novel, Remote Low Temperature Plasma Hybrid Device For Sterilization And Therapeutic Biomedical Uses

K. A. MORRISON¹, O. ASANBE¹, E. KIERKELS¹, Y. TOYODA¹, W. LANDFORD¹, X. DONG¹, C. GOLKOWSKI², AND J. A. SPECTOR¹,²

¹Weill Cornell Medical College, New York, NY, ²Cornell University, Ithaca, NY

P-Th-144

Posterior Vertebral Fixation: Screw-to-Screw Cross-Connection Concept Investigation

E. MATTUCCI¹, J. JENDRUS¹, M. ANGELUCCI¹, J. NEIDERT¹, J. MAUGER¹, AND J. ISAACS¹ ¹Widener University, Chester, PA

P-Th-145

Development of a Plantar Pressure Postural Analysis & Biofeedback Suite for WMSD Corrective Therapy

N. QUINTERO¹, J. HELWIG¹, K. SVERRISDOTTIR¹, J. RUI2¹, J. MERCIEZ¹, S. GROM¹, L. MARTS III¹, N. SONNENFELD¹, A. DAS¹, AND E. DIVO¹,²

¹Embry-Riddle Aeronautical University, Daytona Beach, FL, ²University of Central Florida, Orlando, FL

Track: Translational Biomedical Engineering Devices and Sensors:

Biomedical Products and Devices Posters

P-Th-146

Plasma Treatment of Dentin Surfaces for Improving Adhesive/Dentin Interface Bonding

Q. YU¹ ¹University of Missouri, Columbia, MO

P-Th-147

Design of Microfabricated Sensor to Measure Lumbar Spinal Fusion D. MUNRO¹, E. TSAI¹, A. LINGLEY², AND M. KHBEIS²

¹University of Portland, Portland, OR, ²University of Washington, Seattle, WA

P-Th-148

Use of Argon as a Tissue Fixation Preservative and RNA Stabilizing Agent

S. JOSHI¹, J-Y. CHUNG², V. RASANAYAGAM¹, M. SUNDAR¹, AND S. HEWITT² ¹Delaware Research and Technology Center, American Air Liquide Inc, Newark, DE,²Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD

P-Th-149

Dissolution of Platinum Electrodes During Electrical Stimulation of Neural Tissue

D. KUMSA¹, P. TAKMAKOV², AND D. BARDOT³

¹US Food and Drug Administration and Medical Device Innovation Consortium, Silver Spring, MD, ²US Food and Drug Administration, Silver Spring, MD, ³Medical Device Innovation Consortium, St. Louis Park, MN

P-Th-150

Personalized 3D Printed Bio-absorbable Drug-eluting Stent for the Treatment of Vascular Disease

S. MISRA¹ AND D. PAN¹

¹university of Illinois at Urbana-Champaign, Urbana, IL

P-Th-151

Inductance Sensing To Detect Tissue Thickness Between Conducting Surfaces For Application In Surgical Instruments

A. ARUN¹, B. GASTON¹, S. CHEN², D. KWIAT¹, J. IMAMURA-CHING¹, R. FETCHER¹, H. JIANG², M. HARRISON¹, AND S. ROY¹

¹University of California San Francisco, San Francisco, CA, ²San Francisco State University, San Francisco, CA POSTER SESSION

POSTER SESSION Thurs 9:30AM – 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-152

Accounting For Individual Differences Of Blind Users in Everyday Mobility Tasks

A. ADEBIYI¹, G. RAGUSA¹, AND J. WEILAND¹ ¹University of Southern California, Los Angeles, CA

Track: Device Technologies and Biomedical Robotics

Devices and Sensors:

Biomedical Robotics Posters

P-Th-153

Isolated Mimosa pudica Mechanosensitive Cells as Tactile-Sensors for a Bio-Inspired E-Skin

Y. WANG¹, S. RINGEL², AND L. GUO²,³

¹Department of Biomedical Engineering, The Ohio State University, Columbus, OH,²Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, ²Department of Neuroscience, The Ohio State University, Columbus, OH

P-Th-154

A Magnetic Actuated Fully Insertable Camera Robot For Single Incision Laparoscopic Surgery

X. LIU¹, R. ABDOLMALAKI¹, G. MANCINI², AND J. TAN¹ ¹University of Tennessee, Knoxville, Knoxville, TN, ²University of Tennessee, Medical Center, Knoxville, TN

P-Th-155

Second Generation In Vivo Joint Tracking Improvements for Robotic Fluoroscopy

W. ANDERSON¹, C. HURST¹, J. SHEWMAKER¹, J. MCNEIL¹, J. PENNEY¹, AND W. HAMEL¹ ¹University of Tennessee - Knoxville, Knoxville, TN

P-Th-156

Controllability of Tendon-Driven Manipulators Does Not Decrease With Increased Complexity

V. R. BARRADAS¹ AND F. J. VALERO-CUEVAS¹ ¹University of Southern California, Los Angeles, CA

Track: Device Technologies and Biomedical Robotics

Devices and Sensors:

Biosensors Posters

P-Th-157

Development of Ultra-sensitive DNA Chip Based on Gold Nanorod Array Z. MEI¹ AND L. TANG¹ ¹University of Texas at San Antonio, San Antonio, TX

Oniversity of lexas at San Antonio, San Ant

P-Th-158

Paper-based Microfluidic Devices for Detecting Biomarkers and Nucleic Acids

X. JIANG¹, C. CASSANO¹, AND H. FAN¹ ¹University of Florida, Gainesville, FL

P-Th-159

Towards the Development of a Dry Eye Point of Care Diagnostic C. LIN¹, B. HASELWOOD¹, A. MEIDINGER¹, B. KALEN¹, G. REPP¹, AND J. LABELLE¹ 'Arizona State University. TEMPE, AZ

P-Th-160

ISFET Operation With Polypyrrole Quasi-Reference Microelectrodes For Miniaturized Label-Free Detection Of Biomolecular Reactions

C. DUARTE-GUEVARA¹, V. SWAMINATHAN¹, M. BURGESS¹, B. REDDY JR¹, E. SALM¹, Y-S. LIU², J. RODRIGUEZ-LOPEZ¹, AND R. BASHIR¹ ¹UIUC, Urbana, IL, ²TSMC, Hsinchu, Taiwan

P-Th-161

Anomaly Detection in EEG Signals for Concussion Diagnosis and Epileptic Seizure Detection N. MALKHASYAN¹ AND P. PARDALOS¹

¹University of Florida, Gainesville, FL

P-Th-162

Development of a Patient Based Point of Care Tacrolimus Biosensor for Transplant Patients

M. DOSHI¹, S. SAIKIA¹, A. LAM¹, K. HICKIE¹, S. SRIDHAR¹, J. LABELLE¹, AND E. STEIDLEY² ¹Arizona State University, Tempe, AZ, ²Mayo Clinic, Phoenix, AZ

P-Th-163

Design Concepts of Nucleic Acid Biosensors for Highly Sensitive miRNA Sensing

N. LARKEY¹ AND S. BURROWS¹ ¹Oregon State University, Corvallis, OR

Track: Cardiovascular Engineering Devices and Sensors:

Cardiovascular Assist Devices Posters

P-Th-164

Simulation and Prototyping of a New Pneumatic-Driven Ventricular Assistant Device

G. XIONG¹, B. MOSADEGH¹, AND J. MIN¹ ¹Weill Cornell Medical College, New York, NY

P-Th-165

Does the Implantation Configurations of Axial Ventricular Assist Devices Matter?

W-C. CHIU¹, A. MCLARTY², S. EINAV¹, M. SLEPIAN³, AND D. BLUESTEIN¹ ¹Stony Brook University, Stony Brook, NY, ²Stony Brook University Hospital, Stony Brook, NY,³Sarver Heart Center, Tucson, AZ

P-Th-166

Continuous and Pulsatile Pediatric Ventricular Assist Device Hemodynamics with a Viscoelastic Blood Model

B. GOOD¹, S. DEUTSCH¹, AND K. MANNING¹ ¹The Pennsylvania State University, University Park, PA

P-Th-167

Magnetic Stents for Coronary Artery Luminal Regeneration

J. S. LEE¹, M. GÜLCHER², A. MATHUR³, J. MARTIN¹, A. SINUSAS¹, AND T. FAHMY¹ ¹Yale University, New Haven, CT, ²QualiMed Innovative Medizinprodukte GmbH, Winsen, Germany, ³Queen Mary University of London, London, United Kingdom

Track: Device Technologies and Biomedical Robotics

Devices and Sensors:

Devices Posters

P-Th-168

Design Of A Highly Efficient Wireless Power Transfer System For Millimeter Sized Implantable Devices H. MEI', YW. HUANG¹, AND P. IRAZOQUI¹

H. MEL', Y-W. HUANG', AND P. IRAZOQUI ¹Purdue University, West Lafayette, IN

P-Th-169

Optimization of Transmitting Banks for Implantable Medical Devices A. VINCA¹, S. DUBEY¹, L. LEE¹, S. RAO¹, AND J-C. CHIAO¹

¹University of Texas at Arlington, Arlington, TX

P-Th-170

Microfluidic Devices with Regular Macroporous Structures for HIV Viral Capture

K. SURAWATHANAWISES¹, K. KUNDROD¹, AND X. CHENG¹ ¹Lehigh University, Bethlehem, PA

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-171

A Point-of-Care Assay for Monitoring Phenylalanine Levels in Serum E. KAZURA¹, B. LUBBERS¹, E. DAWSON², J. PHILLIPS III¹, AND F. BAUDENBACHER¹ ¹Vanderbilt University, Nashville, TN, ²BioVentures, Inc., Murfeesboro, TN

P-Th-172

The Opto-Electronic Nose: A Dual Modality Sensor Enhances Chemical Detection and Identification

N. KATTA¹, J. Hu¹, K-K. LIU¹, B. RAMAN¹, AND S. SINGAMANENI¹ ¹Washington University in St. Louis, St. Louis, MO

P-Th-173

3D Printing Objects with Controllable Radiopacity

B. ALHOSSEINI HAMEDANI¹, K. VAHEESAN¹, S. GADANI¹, AND A. HALL¹ ¹Saint Louis University, St. Louis, MO

P-Th-174

High SNR Contactless Impedance Measurements Using Thin-Film Elastomers

S. EMAMINEJAD¹ AND M. JAVANMARD² ¹University of California Berkeley, Palo Alto, CA, ²Rutgers University, Piscataway, NJ

Track: Device Technologies and Biomedical Robotics

Devices and Sensors:

Prosthetics and Physical-Assist Devices Posters

P-Th-175

EEG-Based Control of a Unidimensional Computer Cursor Using Imagined Body Kinematics

R. ABIRI¹, G. HEISE¹, F. SCHWARTZ¹, AND X. ZHAO¹ ¹University of Tennessee, Knoxville, TN

P-Th-176

Illusory Hand Changes Amputees' Brain Activity

R. BEETEL¹ AND W. CRAELIUS² ¹*RJB*³ Consulting, SanFrancisco, CA, ²*Rutgers University, Piscataway, NJ*

P-Th-177

Angel Arms - The Development of an Exoskeleton Arm Assisting Device S. SCHAEFER¹, J. KISSLING¹, J. FARRIS¹, L. KENYON¹, AND B. NOWAK¹ ¹Grand Valley State University, Grand Rapids, MI

P-Th-178

Impact of Design on Mechanical Properties of Ankle Foot Orthoses

A. WACH¹, M. WANG¹,², T. CURRENT³, D. JEUTTER¹, P. VOGLEWEDE¹, AND B. SILVER-THORN¹

¹Marquette University, Milwaukee, WI, ²The Medical College of Wisconsin, Milwaukee, WI, ³Hanger Prosthetics & Orthotics, Milwaukee, WI

P-Th-179

Evaluation of Optimal Elastic Ankle Exoskeleton Stiffness in Human Gait

¹University of North Carolina - Chapel Hill and North Carolina State University, Raleigh, NC

P-Th-180

Differentiation of Hand Motions by Imaging Residual Limb Muscles of Transradial Amputees Using Ultrasound Imaging

N. AKHLAGHI¹, K. ALMUHANNA¹, J. J. PANCRAZIO¹, AND S. SIKDAR¹ ¹George Mason Univiersity, Fairfax, VA

P-Th-181

The Use Of Ultrasound Imaging To Define A Control Strategy For A Muscle-Computer Interface.

K. MURTHY¹, N. AKHLAGHI¹, W. JOINER¹, AND S. SIKDAR¹ ¹George Mason University, Fairfax, VA

Track: Orthopedic and Rehabilitation Engineering

Devices and Sensors:

Rehabilitation Engineering Posters

P-Th-182

Robotized Method for Comparative Testing of Back Support Devices D. DIANGELO¹ AND J. SIMMONS¹ 'University of Tennessee Health Science Center, Memphis, TN

P-Th-183

An Investigation of the Positive Joint Power Distribution in Above-Knee (AK) Prostheses M. CONRAD¹, M. LIU¹, G. SAWICKI¹, AND H. HUANG¹ 'North Carolina State University, Raleigh, NC

P-Th-184

Generalization of Fuzzy Rule-Based Tuning System Across Above-Knee Powered Prosthesis Designs A. BRANDT¹, M. LIU¹, AND H. HUANG¹ ¹NC State University & UNC Chapel Hill, Raleigh, NC

P-Th-185

The Mechanical Impact of an Instrumented Push-rim on a Wheelchair System

J-T. LIN¹, M. HUANG¹, AND S. SPRIGLE¹ ¹Georgia Institute of Technology, Atlanta, GA

P-Th-186

The Impact of Drive Wheels on Manual Wheelchair Propulsion Torque M. HUANG^1 AND S. $\mathsf{SPRIGLE}^1$

¹Georgia Institute of Technology, Atlanta, GA

P-Th-187

High-Capacity Weighing Instrumentation for Bariatric and Disabled Individuals: Medical Device Market Shifts after the Affordable Care Act and a Proposed New Device B. SHERROD¹, J. RIMMER¹, AND A. EBERHARDT¹

¹University of Alabama at Birmingham, Birmingham, AL

P-Th-188

A Magnetic Electrical Connector to Simplify the Myoelectric User Interface T. REISSMAN¹ AND T. KUIKEN¹ ¹Northwestern University, Chicago, IL

P-Th-189

Limiting the Available Workspace of a Robot-Human Simulation Model to Increase Accuracy

D. MENYCHTAS¹, S. CAREY¹, AND R. DUBEY¹ ¹University of South Florida, Tampa, FL

P-Th-190

Impact Forces During Total Hip Arthroplasty

R. MCCULLOCH¹, P. MENTE², AND S. ROE³ ¹Gonzaga University, Spokane, WA, ²NCSU / UNC, Raleigh, NC, ³NCSU Veterinary School, Raleigh, NC

P-Th-191

Quantitative Analysis of Balance Control in Amputees Using Portable Device

A. ARRINDA¹, J. LOAYZA¹, O. GIL¹, J. PHAM¹, A. THOTA¹, AND R. JUNG¹ ¹Florida International University, Miami, FL

P-Th-192

Chinese Tai Chi Chuan Principle to Enable Human-Robot Symbiosis on Exoskeleton Devices

K-J. WANG¹ ¹University of Pittsburgh, Pittsburgh, PA
THURSDAY | OCTOBER 8 | 2015

POSTER SESSION Thurs 9:30AM – 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-193

Development of a Visual Biofeedback System for Center of Pressure Modification During Gait

M. BROWNE^{1,2} AND G. SAWICKI^{1,2} ¹NC State University, Raleigh, NC, ²UNC Chapel Hill, Chapel Hill, NC

P-Th-194 DREAM TEAM & CENTER

Femoral Anteversion Angle Influence on Severe Grades of Developmental Dysplasia of the Hip using the Pavlik Harness

V. HUAYAMAVE¹, C. ROSE¹, A. KASSAB¹, F. MOSLEHY¹, E. DIVO², AND C. PRICE^{1,3,4} ¹University of Central Florida, Orlando, FL, ²Embry Riddle Aeronautical University, Daytona Beach, FL, ³International Hip Dysplasia Institute, Orlando, FL, ⁴Orlando Health, Orlando, FL

P-Th-195

Repeatability of Fiducial Markers to Define a Joint Coordinate System Using 7T MRI

S. CONE¹, T. RENNARD¹, L. FORDHAM², AND M. FISHER¹ ¹North Carolina State University and University of North Carolina, Raleigh, NC, ²University of North Carolina School of Medicine, Chapel Hill, NC

P-Th-196

Biofeedback Device for Evaluation and Correction of Gait Asymmetry:A Pilot Study with Stroke Survivors

O. ROJAS¹, N. BALAGTAS², I-H. KHOO¹, P. MARAYONG¹, AND V. KRISHNAN¹ ¹California State University, Long Beach, Long Beach, CA, ²California State University, Long Beach, Cypress, CA

Track: Translational Biomedical Engineering **Devices and Sensors:**

Translational Technology: Preclinical Models Posters

P-Th-197

Organ Dysfunction in Conscious Models of Bacteremia and Sepsis in Swine A. WATERHOUSE¹, D. LESLIE¹, D. BOLGEN¹, M. CARTWRIGHT¹, B. SEILER¹, P. LOMBARDO¹, B. MURPHY¹, N. DIMITRAKAKIS¹, B. PAVLOV¹, J. BERTHET¹, S. JUREK¹, N. GAMINI¹, K. DONOVAN², A. NEDDER², M. SUPER¹, AND D. INGBER¹,² ¹Harvard University, Boston, MA, ²Boston Children's Hospital, Boston, MA

P-Th-198

A Tactilely Realistic, Patient-Specific Brain Model for Preoperative Surgical Training

C. PLOCH¹, C. MANSI¹,², AND E. KUHL¹ ¹Stanford University, Stanford, CA, ²King's College Hospital, London, United Kingdom

P-Th-199

A FDA Perspective on Benefit Risk Considerations of Devices for Rare Diseases

G. LIU¹, E. CHEN¹, D. LEWIS¹, AND G. RAO¹ ¹Food and Drug Administration, Silver Spring, MD

Track: Device Technologies and Biomedical Robotics

Devices and Sensors:

Wearable Sensors and Devices Posters

P-Th-200 Author cancellation

P-Th-201

Forearm EMG Activation Classifies Activities of Daily Living E. WADE¹ AND M. TOTTY¹ 'University of Tennessee, Knoxville, TN

P-Th-202 🎗

Microfluidic-Based Interfacial Capacitive Tactile Sensors For Three-Dimensional Force Measurements B. NIE¹, R. LI¹, J. BRANDT², AND T. PAN¹

¹University of California, Davis, Davis, CA, ²University of California, Davis, Sacramento, CA

P-Th-203

Noninvasive Physiologic Occupant Monitoring for Improved Post-Crash Emergency Response

K. JOSEPH¹, K. KUSANO², AND H. GABLER² ¹Oakwood University, Huntsville, AL, ²Virginia Tech, Blacksburg, VA

P-Th-205

Development Of A Sport Utility Vest That Captures Cardiographic Data In Real Time In Relationship To Arterial Pressure

A. OSUNTOKI¹, O. AJIBOLA¹, AND O. BOLARINWA¹ ¹University of Lagos, Lagos, Nigeria

P-Th-206

Wearables and Point-of-View Devices: Applications in Health Sciences and Medicine

A. FERNANDEZ-FERNANDEZ¹, D. STERN¹, K. SMITH¹, H. HETTRICK¹, M. BUCK², M. HOTCHKISS², AND N. SMITH¹ ¹Nova Southeastern University, Fort Lauderdale, FL, ²Ithaca College, Ithaca, NY

P-Th-207 DREAM TEAM & CENTER

Human Motion Tracking Under the Practical Limitations of Bluetooth Low Energy

E. ALLSEITS¹, C. BENNETT¹, V. AGRAWAL¹, D. VIGGIANO¹, AND I. GAUNAURD¹ ¹University of Miami, Coral Gables, FL

P-Th-208

Low Cost Audiometric Device to Test Hearing Loss in Developing Countries

J. GHANNAM¹, M. UDDIN¹, AND A. FABBRI¹ ¹University Of Connecticut, Storrs, CT

P-Th-209

Home Monitoring System for Patients with Parkinson's Disease using Wireless Sensors

S. V. PERUMAL¹ AND R. SANKAR¹ ¹University of South Florida, tampa, FL

P-Th-210

The Design and Development of a Portable Pressure Sensing Insole for Out-of-Clinic Load Capture E. VANDERSTEEN¹, T. PETELENZ¹, AND R. HITCHCOCK¹

¹University of Utah, Salt Lake City, UT

Track: Biomaterials Engineering Materials:

Biomaterials Non-specified Posters

P-Th-211

Amphiphilic Crosslinked Networks: Correlation Between Network Properties and Cell Proliferation.

L. VILLADA¹, C. KIZILKAYA¹, AND A. BRENNAN¹ ¹University of Florida, Gainesville, FL

P-Th-212

Evaluation And Feasibility Of A Biodegradable Magnesium Staple M. NAGELSCHMIDT¹,², A. MIESSE¹, G. HODGKINSON¹, AND D. PETERSON²,³

'Medronic, North Have, CT, ²University of Connecticut, Storrs, CT, ³Texas A&M University-Texarkana, Texarkana, TX

P-Th-213

In Vitro Biocompatibility Evaluation Of Zinc As Stent Material J. MA¹, N. ZHAO¹, AND D. ZHU¹ ¹North Carolina A&T State University, Greensboro, NC

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-214

Comparison of Mechanical Testing Methods for Biomaterials: Nanoindentation, Pipette Aspiration, and Compression Testing K. TONG¹, R. BLAHO¹, C. BUFFINTON¹, AND D. EBENSTEIN¹ ¹Bucknell University, Lewisburg, PA

P-Th-215

Novel Pre-mixed PMMA-CaP Composite Bone Cements for Vertebroplasty

S. AGHYARIAN¹, V. KOSMOPOULOS²,³, I. H. LIEBERMAN⁴, AND D. C. RODRIGUES¹ ¹The University of Texas at Dallas, Richardson, TX, ²University of North Texas Health Science Center, Fort Worth, TX, ³University of North Texas, Denton, TX, ⁴Texas Back Institute, Plano, TX

P-Th-216

Assessment of Pore Size and Histology for Different Types of Explanted Hernia Mesh

E. CASEY¹, K. WILLIAMS¹, X. LU¹, B. T. HENIFORD², A. LINCOURT², AND M. HARMAN¹ ¹Clemson University, Clemson, SC, ²Carolinas Medical Center, Charlotte, NC

Track: Biomaterials

Engineering Materials:

Intelligent/Multifunctional Biomaterials Posters

P-Th-217

Manipulating the Stiffness of Polydimethylsiloxane via an Orthogonal Crosslinking Strategy

YC. YEH¹, R. TRUITT¹, V. KUMAR¹, R. ALVAREZ¹, K. MARGULIES¹, AND J. BURDICK¹ ¹University of Pennsylvania, Philadelphia, PA

P-Th-218

Self-Reporting Phenol Red-Silk Protein Dityrosine Crosslinked Cytocompatible Hydrogels

A. SUNDARAKRISHNAN¹, E. HERRERO ACERO², D. POULI¹, I. GEORGAKOUDI¹, S. YIGIT¹, K. CHWALEK¹, B. PARTLOW¹, AND D. KAPLAN¹

¹Tufts University, Medford, MA, ²Austrian Centre of Industrial Biotechnology ACIB, Granz, Austria

P-Th-219

Prevention of Collagen Induced Platelet Binding and Activation by Thermosensitive Nanoparticles

J. MCMASTERS¹ AND A. PANITCH¹ ¹Purdue University, West Lafayette, IN

P-Th-220

Could Poor Antibiotic Sensitivity Against Bacteria Be A Reason To Biomaterial Related Infections?

N. GHIMIRE¹, Y. SUN², AND Y. DENG¹

¹The University of South Dakota, Sioux Falls, SD, ²University of Masaachusetts, Lowell, MA

P-Th-221

A Shape Memory External Stent To Prevent Dialysis Graft Failure T. BOIRE¹, E. WISE¹, W. KAPLAN¹, C. BROPHY¹, AND H-J. SUNG¹

¹Vanderbilt University, Nashville, TN

P-Th-222

An Ovine Model to Study Osseointegration of Gamma Titanium Aluminide

P. RICHIEZ¹, P. SUNDARAM², N. DIFFOOT³, A. RODRIGUEZ², AND H. PEREZ⁴ ¹University of Puerto Rico Mayaüez Campues, Mayagüez, Puerto Rico, ²University of Puerto Rico Mayaüez Campus, Mayagüez, Puerto Rico, ³University of Puerto Rico Mayaüez Campus, Mayagüez, PR, Puerto Rico, ⁴SVSL, Arecibo, PR, Puerto Rico

P-Th-223

A Synthetic Injectable Hydrogel for MMP-mediated Drug Delivery after Spinal Cord Injury

P. ELIAS¹, H. WEI¹, D. SELLERS¹, S. MANAVI¹, A. FISCHEDICK¹, P. HORNER¹, AND S. PUN¹ ¹University of Washington, Seattle, WA

P-Th-224

Bactericidal Surface Chemistry That Enhances Implant Biointegration S. HOU¹, A. DEYETT¹, AND K. J. JEONG¹

¹University of New Hampshire, Durham, NH

Track: Drug Delivery Engineering Materials:

Novel Materials and Self Assembly Posters

P-Th-225

Gold Nanorod-Coated Double Nanoemulsion for Image-Monitored Controlled Drug Delivery Z. CAO¹ AND Y. PARK¹ ¹University of Cincinnati, Cincinnati, OH

P-Th-226 DREAM TEAM & CENTER

A Nanomedicine Solution for Focal Prostate Cancer Treatment: Nanodroplet Mediated Histotripsy (NMH)

O. AYDIN¹, E. VLAISAVLJEVICH¹, Y. YUKSEL DURMAZ², Z. XU¹, AND M. ELSAYED¹ ¹University of Michigan, Ann Arbor, MI, ²Medipol University, Istanbul, Turkey

P-Th-227

Genetically Encoded Zwitterionic Polypeptides (ZiPPs): Promising Stealth Polymers for Drug Delivery

S. BANSKOTA¹, J. BHATTACHARYYA¹, X. Ll¹, P.YOSEFPOUR¹, AND A. CHILKOTI¹ ¹Duke University, Durham, NC

P-Th-228

Control of Long Term Catheter-Associated Urinary Tract Infections: A Novel Antimicrobial and Anti-Adhesive Catheter Coating

C. NIX¹, S. PATKAR¹, Z. ZHANG¹, AND Y. ZHONG¹ ¹Drexel University, Philadelphia, PA

P-Th-229

ATP-responsive DNA-graphene Hybrid Nanoaggregates For Anticancer Drug Delivery

Y. YE^{1,2}, R. MO^{1,2,3}, T. JIANG^{1,2}, W. SUN^{1,2}, AND Z. GU^{1,2} ¹University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC²University of North Carolina at Chapel Hill, Chapel Hill, NC, ³China Pharmaceutical University, Nanjing, China, People's Republic of

P-Th-230

ON-OFF Fluorescent Micelles as a Transdermal Drug Delivery System D. VELLUTO^{1, 2} AND M. RESMINI²

1. VELLOIO', AND M. RESMIN' 1. University of Miami, Miami, FL, 2Queen Mary University of London, London, United Kingdom

P-Th-231 DREAM TEAM & CENTER

Controlled Drug Release from Random Poly(D,L-lactide-co-glycolide) D. KOO¹, P. ZAVALA², C. KIM³, AND V. BALEMA¹

¹Sigma Aldrich, Milwaukee, WI, ²Concordia University, Mequon, WI, ³University of Wisconsin-Milwaukee, Milwaukee, WI

P-Th-232

Membrane Encapsulated DNA Devices for In Vivo Nanomedicine Applications

S. PERRAULT¹, J. HAHN², AND W. SHIH² ¹WYSS Institute for Biologically Inspired Engineering at Harvard, Boston, MA, ²Wyss Institute at Harvard, Boston, MA

Track: Drug Delivery Engineering Materials:

Delivery Systems for Immune Modulation Posters

P-Th-233

The Local Delivery Of Fingolimod In Islet Transplantation A. FREI¹, P. BUCHWALD², AND C. STABLER¹

¹University of Florida, GAINESVILLE, FL, ²University of Miami, Miami, FL

P-Th-234

Antigen Binding Drives the Specificity of Multivalent Soluble Antigen Arrays Developed for Multiple Sclerosis

B. L. HARTWELL¹, J. O. SESTAK¹, H. SHINOGLE¹, AND C. BERKLAND¹ ¹The University of Kansas, Lawrence, KS

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-235

Tuning Immune Activation with Adjuvant-Loaded Spiky Gold Nanoparticles J. NAM^1 and J. MOON^1

¹University of Michigan, Ann Arbor, MI

P-Th-236

Heparin-based Delivery Of IL-12 Immunotherapy Differs Between Mouse and Human

K. NGUYEN¹, B. KOPPOLU², S. SMITH², S. RAVINDRANATHAN², M. Z. SIDDIQUI³, AND D. ZAHAROFF²

¹Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Fayetteville, AR,²Department of Biomedical Engineering, University of Arkansas, Fayetteville, Fayetteville, AR,³Department of Biological Sciences, University of Arkansas, Fayetteville, AR, Fayetteville,

P-Th-237

AR

A pH-Responsive Polymer Incorporated PLGA Drug Delivery System For Immunotherapy

L. YANG1, B. KESELOWSKY1, AND C. DUVALL2

1J Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, FL, 2School of Biomedical Engineering, Nashville, TN

Track: Biomaterials Engineering Materials:

Therapeutic and Theranostic Biomaterials Posters

P-Th-238

Polymerized Hemoglobin Accelerates Wound Healing in Diabetic Mice P. Krzyszczyk¹, R. Faulknor¹, K. Richardson², M. Yarmush¹, A. Palmer², and F. Berthiaume¹

¹Rutgers University, Piscataway, NJ, ²The Ohio State University, Columbus, OH

P-Th-239

Advanced Nanoparticle-Loaded Antibacterial Gellan Hydrogels for

Treatment of Burn Infections S. SHUKLA¹ AND A. SHUKLA¹

¹Brown University, Providence, RI

P-Th-240

In Vitro Evaluation of Doxorubicin-Loaded, Enzymatically Activated Polymeric NIR-Fluorescent Theranostic Nanoprobes

T. OZEL¹ AND T. BETANCOURT¹ ¹Texas State University, San Marcos, TX

P-Th-241

Effect of pH Variation on the Antimicrobial Activity of Dextran-coated Nanoparticles

H. YAZICI¹, E. ALPASLAN¹, AND T. WEBSTER ¹,² ¹Northeastern University, Boston, MA, ²King Abdulaziz University, Jeddah, Saudi Arabia

P-Th-242

Development of a Collagen Type I Bead Based Injectable with Anti-Cancer Properties

K. KWIST¹, T. NGOBILI¹, C. MOODY¹, AND B. BOOTH¹ ¹Clemson University, Clemson, SC

P-Th-243

Gold-nanoparticles Combinde Alendronate for Inhibition of Bone Resorption

D. LEE¹, D. N. HEO¹, S. J. LEE¹, M. HEO¹, AND Y. W. CHOI¹ ¹Kyung hee university, Seoul, Korea, Republic of

P-Th-244

Degradation of Poly(simvastatin)-Containing Copolymers and Blends T. ASAFO-ADJEI¹, H. FRANKEL¹, T. DZIUBLA¹, AND D. PULEO¹ ¹University of Kentucky, Lexington, KY

P-Th-245

Synthesis And Characterization Of Thiolated Gellan And Hyaluronic Acid To Develop A Permanent Biomimetic Vitreous Substitute

D. LEE¹, J. STRUCKHOFF¹, J. LIANG¹, P. HAMILTON¹, AND N. RAVI¹,² ¹Washington University, St. Louis, MO, ²Department of Veterans Affairs, St Louis Medical Center, St. Louis, MO

P-Th-246

Immunomodulatory Protein-Conjugated PLGA:A Medical Device Implant Material

C. RAPIER1, E. CHEN1, W. LIU1, AND A. LEE1 1University of California Irvine, Irvine, CA

Track: Cellular and Molecular Bioengineering Molecular and Cellular Topics:

Cell Adhesion and Interaction with ECM Posters

P-Th-247

Integrins Involved in Sensing and Adhering to Electrospun Nanofibers D. BOWERS' AND J. BROWN'

¹The Pennsylvania State University, University Park, PA

P-Th-248

Nucleus Pulposus Cell Morphology: Effects of Collagen Substrate Stiffness and Configuration

L. RESUTEK⁷, H. KIM¹, C. LUNA¹, AND A. H. HSIEH¹,² ¹University of Maryland, College Park, MD, ²University of Maryland, Baltimore, MD

P-Th-249

Macrophage Proliferation Rate as a Function of Substrate Stiffness M. MAURER¹ AND H. HAYENGA¹ 'University of Texas at Dallas, Richardson, TX

P-Th-250

Surface Expression of Adhesion Proteins on Adipose Stem Cells Grown in TGF- $\beta 3$ and Cyclic Pressure

C. QUISENBERRY¹, A. NAZEMPOUR¹, B. VAN WIE¹, AND N. ABU-LAIL¹ ¹Washington State University, Pullman, WA

P-Th-251

Characterization of Endothelial Cell-Specific Molecule I (Endocan) as a Novel Anti-Inflammatory Therapeutic Using a Bioinspired Microfluidic Assay F. SOROUSH¹, X. ZHENG², V. BHALLA², AND M. KIANI¹ ¹Temple University, Philadelphia, PA, ²Stanford University School of Medicine, Stanford, CA

P-Th-252

Extracellular Matrix Modification Improves The Adhesion And Phenotype Of iPSC - Derived hBMECs For Use In A 3-D In Vitro Microvessel Model M. KNIGHT¹, Z. XU¹, L. MAYO¹, AND P. SEARSON¹ ¹Johns Hopkins University, Baltimore, MD

P-Th-253

Regulation of Human Nucleus Pulposus Cell Phenotype and Behavior by Laminin-Mimetic Peptide Coupled Substrates

D. BRIDGEN¹, J. SANCHEZ-ADAMS¹, L. JING¹, W. RICHARDSON¹, M. ERICKSON¹, F. GUILAK¹, J. CHEN¹, AND L. SETTON¹ ¹Duke University, Durham, NC

P-Th-254

Evaluation of Mechanical Tension Required for Integrin Activation on Softer Substrates

Z. RAHIL¹, S. HABA¹, T. HA¹, B. HARLEY¹, AND D. LECKBAND¹ ¹University of Illinois at Urbana-Champaign, Urbana, IL

P-Th-255

Expression Of Focal Adhesions In Response To Cyclic Loading Of Substrate In MCF12A Cells

J. SERRANO¹, J. CORA¹, P. SUNDARAM², AND N. DIFFOOT²

¹University of Puerto Rico at Mayaguez, Mayaguez, Puerto Rico, ²University of Puerto Rico at Mayaguez, Mayaguez, PR, Puerto Rico

P = Poster Session
 OP = Oral Presentation
 = Reviewer Choice Award

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-256

Nanoscale Extracellular Matrix Alters Endothelial Function Under Disturbed Flow

K. NAKAYAMA¹,², V. NARAYANAN¹, M. GOLE², T. WALKER³, W. YANG¹, E. LAI¹, M. OSTROWSKI¹, G. FULLER¹, A. DUNN¹, AND N. HUANG¹,²
¹Stanford University, Palo Alto, CA, ²Veterans Administration Palo Alto, Palo Alto, CA,³Oregon

Station of investity, Faio Alto, CA, Veterans Administration Faio Alto, Faio Alto, CA, Oregon State University, Corvallis, OR

P-Th-257

A Chemo-mechanical Model for Extracellular Matrix and Nuclear Rigidity Regulated Size of Focal Adhesion Plaques

X. CAO¹, Y. LIN², T. DRISCOLL¹, J. FRANCO-BARRAZA³, E. CUKIERMAN³, R. MAUCK¹, AND V. SHENOY¹

University of Pennsylvania, Philadelphia, PA, ²University of Hong Kong, Hong Kong, Hong Kong, ³Fox Chase Cancer Center, Philadelphia, PA

P-Th-258

Atrial Natriuretic Peptide Down-Regulates Neutrophil Recruitment on Inflamed Endothelium by Reducing Cell Deformability that Effectively Increases Fracture Force.

V. MORIKIS¹, S. SIMON¹, F.R. CURRY¹, AND V. HEINRICH¹ ¹University of California, Davis, Davis, CA

P-Th-259

Formin-dependent Linear Actin Bundles Preferentially Regulate Mature E-cadherin Adhesions

V. MARUTHAMUTHU¹ AND M. GARDEL²

¹Old Dominion University, Norfolk, VA, ²The University of Chicago, Chicago, IL

P-Th-260

The Role of VEGF-ECM Crosstalk on Neural Stem Cell Migration

C. MILLAR-HASKELL¹, C. ADDINGTON¹, AND S. STABENFELDT¹ $^{\prime}Arizona$ State University, Tempe, AZ

P-Th-261

Induction of Smooth Muscle Phenotype in Human Fibroblast Strain for Smooth Muscle Culture Models

J. MORGAN¹ AND J. GLEGHORN¹ ¹University of Delaware, Newark, DE

P-Th-262

Fabrication of 3D Cell Culture Using Bioactive Scaffolds

¹Kist europe, Saarbrücken, Germany

P-Th-263

Dual Detection of Cells Response Using Fluorescence Microscopy and Impedance Spectroscopy

M. PARVIZ^{1,2}, K. GAUS³, AND J. J. GOODING^{1,2}

¹School of Chemistry, UNSW, Sydney, Australia, ²Australian Centre for NanoMedicine, Sydney, Australia, ³Single Molecule Laboratory, UNSW, Sydney, Australia

P-Th-264

Role of Glutamine Metabolism in Vascular Remodeling in Pulmonary Arterial Hypertension

C. CANEBA¹, N. CHAWLA¹, K. MASTERS¹, AND N. CHESLER¹ ¹University of Wisconsin - Madison, Madison, WI

P-Th-265

Spatial Patterning of EMT is Regulated by Fibronectin Fibrillogenesis L. GRIGGS¹, J. NARANG¹, AND C. LEMIMON¹

¹Virginia Commonwealth University, Richmond, VA

P-Th-266

Effects of Collagen Content on Stem Cell Function: Implications for Vocal Fold Wound Healing

A. ZERDOUM¹, S. LIU¹, R. DUNCAN¹, AND X. JIA¹ ¹University of Delaware, Newark, DE

P-Th-267

Extracellular Matrix Fibronectin Attenuates Platelet-Derived Growth Factor-Signaling C. FARRAR¹ AND D. HOCKING¹

¹University of Rochester, Rochester, NY

P-Th-268

A Bioinspired Microfluidic Assay for Investigation of the Role of Protein Kinase C-delta (PK) in Regulating Human Neutrophil Migration during Acute Inflammation

F. SOROUSH¹, B. PRABHAKARPANDIAN², L. KILPATRICK³, AND M. KIANI¹ ¹Temple University, Philadelphia, PA, ²CFD Research Corporation, Huntsville, AL, ³Center for Inflammation, Translational, and Clinical Lung Research, Philadelphia, PA

P-Th-269

Desmosomes Are Subject To Mechanical Tension S. BADDAM¹, P. ARSENOVIC¹, AND D. CONWAY¹ ¹Virginia Commonwealth University, Richmond, VA

P-Th-270

The Effects of oxLDL and IFN-γ-activated Tissue Resident Cells on the Progression of Atherosclerosis R. JOSI' AND D. KHISMATULLIN'

¹Tulane University, New Orleans, LA

P-Th-271

Cell-Cell and Cell-Matrix Adhesion Regulate TGF&[beta] I-Induced Epithelial-Mesenchymal Transition

J. O'CONNOR¹ AND E. GOMEZ¹ ¹The Pennsylvania State University, University Park, PA

P-Th-272

Non-lipid Amphiphiles Modulate Forces at Focal Adhesions S. SON', G. MORONEY¹, AND P. BUTLER¹ 'Penn State University, State College, PA

P-Th-273

Adult Human Mesenchymal Stem Cell Adhesion on Optically Transparent Carbon Substrates Modified with Electrochemically-Adsorbed Protein M. WECHSLER¹, T. BENAVIDEZ¹, M. FARRER¹, R. BIZIOS¹, AND C. GARCIA¹ ¹University of Texas at San Antonio, San Antonio, TX

P-Th-274

Spreading Responses to Substrate Curvatures of Fibroblasts and Stem Cells Plated on Micro Glass Ball Embedded Gels S. J. LEE¹ AND S. YANG¹

¹Florida Institute of Technology, Melbourne, FL

P-Th-275

The Effect of Substrate Curvature on Myosin-based Frictional Slip and Elongation of Focal Adhesions

T. ARAKI¹, S. YOKOYAMA¹, T. MATSUI¹, T. OHISHI¹, K. KATO², AND S. DEGUCHI¹ ¹Nagoya Institute of Technology, Nagoya, Japan, ²National Institutes of Natural Sciences, Okazaki, Japan

Track: Cellular and Molecular Bioengineering Molecular and Cellular Topics: Cell Motility Posters

P-Th-276

Preosteoblast Migration Under Fluid Shear B. RIEHL¹, J. S. LEE¹, L. HA¹, AND J. Y. LIM¹ 'University of Nebraska-Lincoln, Lincoln, NE

P-Th-277

Constricted Cell Migration Damages DNA and Drives Lamin Segregation

J. IRIANTO', A. ATHIRASALA', R. DIEGMILLER', I. L. IVANOVSKA', R. A. GREENBERG', AND D. E. DISCHER'

¹University of Pennsylvania, Philadelphia, PA

P-Th-278

Directional Collective Migration of the Epithelial Cell Monolayer Under HGF Gradient

H. JANG¹, C. Y. PARK², AND Y. PARK¹ ¹Korea University, Seoul, Korea, Republic of, ²Harvard School of Public Health, Boston, MA

THURSDAY | OCTOBER 8 | 2015

POSTER SESSION Thurs 9:30AM – 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-279

WASP and HSI Contribute to Dendritic Cell Migration and Force Generation

A. BENDELL¹ AND D. HAMMER¹ ¹University of Pennsylvania, Philadelphia, PA

P-Th-280

Migration Assays: Scratch Wound vs. Microfluidics

L. EE1, S. BEAN¹, S. LOH1, M. NASHAWI1, S. RAO1, V. LIN1, AND J-C. CHIAO1 $^{\rm 1}$ University of Texas at Arlington, Arlington, TX

P-Th-281

Alterations of Flagella-Driven Cellular Motility in Stressed Conditions D. FIJALKA¹, K. CLARK¹, N. WAGNER¹, S. KARPOWICZ¹, AND G. XU¹ ¹University of Central Oklahoma, Edmond, OK

Track: Cellular and Molecular Bioengineering Molecular and Cellular Topics: Cellular and Molecular Other Posters

R P-Th-282

The Influence of Genetic Variation on Bone Formation M. VARSHNEY¹ 'Stony Brook University, Smithtown, NY

P-Th-283

A Direct Force Probe Reveals The Mechanics Of Nuclear Homeostasis In The Mammalian Cell

S. NEELAM¹, T. CHANCELLOR², Y. LO², J. NICKERSON³, K. ROUX4, R. DICKINSON¹, AND T. LELE¹

¹university of florida, gainesville, FL, ²University of florida, gainesville, FL, ³University of Massachusetts, Worcester, MA, ⁴Sanford research center, University of South Dakota, sioux fals, SD

P-Th-284

Metabolic Engineering of Cryopreservation Outcome Using Non-reducing Carbohydrates

J. SOLOCINSKI¹, Q. OSGOOD¹, M. WANG¹, A. CONNOLLY¹, AND N. CHAKRABORTY¹ ¹University of Michigan Dearborn, Dearborn, MI

P-Th-285

Characterization of Brain Heterogeneity Using a Novel Fixation/Sorting Method

J. SADICK¹, V. FONSECA¹, M. BOUTIN¹, D. HOFFMAN-KIM¹, AND E. DARLING¹ ¹Brown University, Providence, RI

P-Th-286

Potential Role of Pro-oxidative Mechanism in Cellular Damages in Autism Mice

M. H. HWANG¹, H. J. CHO¹, J. SIMMONS¹, AND Y. W. LEE¹ ¹Virginia Tech, Blacksburg, VA

P-Th-287

Choroidal Endothelial Cell Functions Under Elevated Pressure and High Glucose Concentration

K. HAMALAINEN¹, M. WECHSLER¹, R. BIZIOS¹, AND M. REILLY¹ ¹University of Texas at San Antonio, San Antonio, TX

P-Th-288

The Effect Of Very Low Dose X-Ray Radiation On The Proliferation Of 3T3 Fibroblasts

K. TRUONG¹, S. BRADLEY¹, B. BAGINSKI¹, C. HELLYER¹, J. WILSON¹, K. EARLE¹, S. FLANNERY¹, M. RUSIN¹, E. TAKACS¹, AND D. DEAN² ¹Clemson University, Clemson, SC, ²Clemson University, Central, SC

P-Th-289

The Correlation Between Substrate Stiffness and TGF- β Induced Activation of Hepatic Stellate Cells

S. MARAMPUDI¹, J. NARANG², AND C. LEMMON² ¹Virginia Commonwealth University, Gainesville, VA, ²Virginia Commonwealth University, Richmond, VA

P-Th-290

Microstructural Features Correlate With Improved Clot Strength Of Cold-Stored Platelets

P. NAIR^{1,2}, S. PANDYA^{1,2}, K. REDDOCH^{1,2}, S. DALLO¹, H. PIDCOKE³, A. CAP^{1,3}, AND A. RAMASUBRAMANIAN^{1,2}

¹The University of Texas at San Antonio, San Antonio, TX, ²The University of Texas Health Science Center at San Antonio, San Antonio, TX, ³U.S. Army Institute of Surgical Research, Fort Sam Houston, TX

P-Th-291

Author Cancellation

P-Th-292

Poloxamer 188 Reduces Membrane Defect Size and Restores Membrane Elasticity to Saponin-injured Cells *In Vitro* M. POELLMANN¹, N. GOTHARD¹, M. CHO², AND R. LEE¹

¹University of Chicago, Chicago, IL, ²University of Illinois at Chicago, Chicago, IL

P-Th-293

Investigating the Potential for Cryopreservation of Human Granulocytes with Concentrated Glycerol A. MOSS¹ AND A. HIGGINS¹ 'Oregon State University, Corvallis, OR

P-Th-294

Blue Light Irradiation-induced Escherichia coli Growth Reduction Varies With Growth Phase

C. A. MITCHELL¹, M. HADJIFRANGISKOU², AND B. ROGERS¹ ¹Vanderbilt University, Nashville, TN, ²Vanderbilt University School of Medicine, Nashville, TN

P-Th-295

Attenuation of a β -induced Apoptosis by Tea Polyphenols via Modulation of a β Oligomerization

S. CHASTAIN¹, K. PATE¹, AND M. MOSS¹ ¹University of South Carolina, Columbia, SC

P-Th-296

Rapid Processing to Prepare Cryopreserved Blood for Transfusions J. LAHMANN¹, C. CRUZ-SANCHEZ¹, C. HUNTLEY¹, J. BENSON², AND A. HIGGINS¹ ¹Oregon State University, Corvallis, OR, ²Northern Illinois University, DeKalb, IL

P-Th-297

Mechano-Genetic Network Monitors Shear Stress Sensor Activity And Regulates Transcription Factors Z. KIS¹ AND R. KRAMS¹

¹Imperial College London, London, United Kingdom

P-Th-298

Synergistic Impact of Nicotine and Laminar Shear Stress Induces Cytoskeleton Collapse and Apoptosis in Human Endothelial Cells Y-H. LEE¹, R-S. CHEN¹, C-H. YEH¹, AND F-M. HO² National Central University, Taoyuan, Taiwan, ²Tao-Yuan General Hospital, Taoyuan, Taiwan

P-Th-299

Application Of ATAC-seq For Comparison Of Tumor-Normal Epigenetic State

R. MALPANI¹, I. LEE¹, AND W. TIMP¹ ¹Johns Hopkins University, BALTIMORE, MD

P-Th-300

Shear Stress on Human iPSC-Derived Brain Microvascular Endothelial Cells Z. XU¹, M. KNIGHT¹, J. DESTEFANO¹, AND P. SEARSON¹ ¹Johns Hopkins University, Baltimore, MD

9:30AM – 5:00PM **POSTER SESSION Thurs**

2015 OCTOBER 8 THURSDAY

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-301

Cell Spreading Drives Nuclear Flattening

Y. LI1, D. LOVETT2, Q. ZHANG1, R. A. KUCHIBHOTLA1, S. NEELAM1, R. ZHU3, G. GUNDERSEN3, R. DICKINSON1, AND T. LELE1 1University of Florida, Gainesville, FL, 2Florida Biologix, Alachua, FL, 3Columbia University, New York, NY

P-Th-302

An In Vitro Method To Screen Skin Sensitizers

T. GREENSTEIN1, S. LEE1, L. SHI1, R. SCHLOSS1, AND M. YARMUSH1 1Rutgers University, Piscataway, NJ

Track: Cellular and Molecular Bioengineering Molecular and Cellular Topics:

Mechanotransduction Posters

P-Th-303

A Dynamic Role for the ER Stress Response in the Modulation of VCAM-I Expression by Shear Stress

K. BAILEY¹, D. ZARARIA¹, S. SIMON¹, AND A. PASSERINI¹ 1UC Davis, Davis, CA

P-Th-304

Effect of Matrix Stiffness on Human Pluripotent Stem Cells is Dependent upon Biochemical Cues S. LEE¹, X. TONG¹, AND F. YANG¹

¹Stanford University, Stanford, CA

P-Th-305

In vivo Diametric Regulation of Single Axons Induced by Mechanical Stretch in Drosophila

A. FAN1, A. TOFANGCHI1, AND T. SAIF1 ¹University of Illinois at Urbana-Champaign, Urbana, IL

P-Th-306

TGFb and Anisotropic Stretch Coordinate RhoA Mediated Collagen Fiber Remodeling in Mitral Valve Interstitial cells in a Time Dependent Manner L. PAGNOZZI¹, M. SHIN¹, AND J. BUTCHER¹ ¹Cornell University, Ithaca, NY

P-Th-307

Live-Cell Imaging of Sarcomeric Remolding under Uniaxial Mechanical Loads

H. YANG¹, L. SCHMIDT¹, X. YANG¹, T. BORG², AND B. GAO¹ ¹Clemson University, Clemson, SC, ²Medical University of South Carolina, Charleston, SC

P-Th-308

Gap Junction Protein Localization & Activity Exhibit Glycocalyx Dependence S. MENSAH¹ AND E. EBONG¹ ¹Northeastern University, Boston, MA

P-Th-309

Vinculin Activation- and Tension-dependent Changes in Focal Adhesion Composition

A. LACROIX¹ AND B. HOFFMAN¹ ¹Duke University, Durham, NC

P-Th-310

Force-activated Protein Dynamics in Focal Adhesion Assembly K. ROTHENBERG¹ AND B. HOFFMAN¹ ¹Duke University, Durham, NC

P-Th-311

Force Regulation of Formin-mediated Actin Assembly

H. LEE', Z. LI', S. ONO², S. ESKIN¹, C. ZHU¹, AND L. MCINTIRE¹ 'Georgia Institute of Technology, Atlanta, GA, ²Emory University, Atlanta, GA

P-Th-312 🙎

Locally Modulating Actomyosin Contractility Regulates Cell Proliferation within Epithelial Tissues M. SIEDLIK¹ AND C. NELSON¹ ¹Princeton University, Princeton, NJ

P-Th-313 🙎

Primary Cilia: Sensors of Electrical Field Stimulation S. CAI¹, J. BODLE¹, P. MATHIEU¹, M. HAMOUDA¹, G. MCCARTY¹, AND E. LOBOA¹ ¹North Carolina State University, Raleigh, NC

P-Th-314 🙎

The Role of Vinculin Tension in Mediating Locally-correlated Cell Movement E. GATES¹, A. URS¹, AND B. HOFFMAN¹ ¹Duke University, Durham, NC

P-Th-315

Interstitial Flow Promotes and Directs Macrophage Migration in 3D ECM R. LI1, T. LEE1, AND R. KAMM1

¹Massachusetts Institute of Technology, Cambridge, MA

P-Th-316

Mechanotransmission in a Multicomponent, Multicell Model of the Endothelium

M. DABAGHMESHIN¹, P. JALALI¹, P. BUTLER², AND J. M. TARBELL³ ¹Lappeenranta University of Technology, Lappeenranta, Finland, ²Penn State University, Philedelphia, PA, 3The City College of New York, New York, NY

P-Th-317

Quantitative Analysis of Calcium Dynamics in Endothelial Cell under Elevated Hydrostatic Pressure

Y. R. WU¹, J. W. SHIN ², Y. G. KANG², S. H. PARK², S. R. GU¹, H. Y. BAN², Y. M. KIM², H. L. KIM², AND J-W. SHIN¹,²

Department of Health Science and Technology, Inje University, Gimhae, Korea, Republic of,²Department of Biomedical Engineering, Inje University, Gimhae, Korea, Republic of,³Cardiovascular and Metabolic Disease Center /Institute of Aged Life Redesign/UHARC, Inje University, Gimhae, Korea, Republic of

P-Th-318

Microfluidic Co-Culture Device For Investigating Cell Interactions During Mechanical Stimulation

K. MIDDLETON¹, D. CEN¹, X. MEI¹, AND L. YOU¹ ¹University of Toronto, Toronto, ON, Canada

P-Th-319

Fluid Shear Control of ERK Phosphorylation in MSCs

B. MARMIE¹, B. RIEHL¹, J. S. LEE¹, L. HA¹, AND J. Y. LIM¹ ¹University of Nebraska-Lincoln, Lincoln, NE

P-Th-320

Endothelial Glycocalyx-Mediated Nitric Oxide Production in Response to Selective AFM Pulling

A. M. WEBER¹, R. MATHEWS¹, AND J. TARBELL¹ ¹City College of New York, New York, NY

P-Th-321

Visualizing Shockwave Induced Mechano-activation of Piezo I by FRET Y. PAN¹, L. SHI¹, M. BERNS¹, AND Y. WANG¹ ¹UCSD, La Jolla, CA

P-Th-322

ATP-Stimulated Nitric Oxide Production is Differentially Regulated by Conventional and Novel Protein Kinase C Isozymes T. MUZOREWA¹, D. BUERK¹, D. JARON¹, AND K. BARBEE¹ ¹Drexel University, Philadelphia, PA

P-Th-323

Ultrasound Stimulation of Insulin Release from Pancreatic Beta Cells I. SUAREZ¹, A. JEREMIC¹, AND V. ZDERIC¹

¹The George Washington University, Washington, DC

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

Track: Biomechanics

Musculoskeletal Injury and Mechanics:

Biomechanics of Rehabilitation Posters

P-Th-324

Clinically Obese Human Subjects Have Poorer Postural Stability Than Normal Control Subjects

A. HAIDER¹, A. YANG¹, G. PAGNOTTI¹, S. TIKKIREDDY¹, K. COTTELL¹, D. TELEM¹, A. PRYOR¹, R. TONG², C. RUBIN¹, AND M. L. CHAN¹ 'Stony Brook University, Stony Brook, NY, ²The Chinese University of Hong Kong, Hong

"stony Brook University, Stony Brook, NY, "The Chinese University of Hong Kong, Hong Kong, Hong Kong

P-Th-325

Multiple Plane Motion Tracking Quality Assessment of a Therapy-Based Exer-Gaming System

L. MELLING¹, J. RYLANDER¹, C. RÅBAGO²,³, AND J. WILKEN²,³ 'Baylor University, Waco, TX, ²Center for the Intrepid, Brooke Army Medical Center, Ft. Sam Houston, TX, ³DoD-VA Extremity Trauma and Amputation Center of Excellence, Ft. Sam Houston, TX

P-Th-326

Investigation of Gait Kinematics at Various Elevations in a Virtual Reality Environment A. MARTORI¹ AND S. CAREY¹

A. MARTORI' AND S. CAREY' ¹University of South Florida, Tampa, FL

P-Th-327

Medial-Lateral Center of Mass Displacement Increases in Roll and Pitch Disturbance during Walking in Young Adults J. VAN DEHY¹, T. ONUSHKO¹, E. ZABRE¹, AND B. SCHMIT¹ ¹Marquette University, Milwaukee, WI

P-Th-328

Mechanical Energy Differences in Individual Segments during Arm-Constrained Human Rolling

M. HASSAN¹, L. VU¹, AND N. HAKANSSON¹ ¹Wichita State University, Wichita, KS

P-Th-329

Evaluation of Fall Recovery and Gait Adaptation to Tripping Perturbations M. PETERSON¹, M. JONGPRASITHPORN¹,², AND S. CAREY¹,³

M. PETERSON', M. JONGPRASTIPPORN', AND S. CAREY', ¹HSR&D Center of Innovation on Disability and Rehabilitation Research, James A. Haley VAMC, Tampa, FL, ²King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand,³University of South Florida, Tampa, FL

P-Th-330

Developing Patient-Specific, Dynamic Biomechanical Models of the Knee for Surgical Simulations L. MUSTAFA¹, A. PENA¹, J. BATLLE², AND R. JUNG¹ ¹Florida International University - Adaptive Neural Systems (ANS) Laboratory, Miami,

¹Florida International University - Adaptive Neural Systems (ANS) Laboratory, Miami, FL,²Baptist Health South Florida, Coral Gables, FL

Track: Biomechanics Musculoskeletal Injury and Mechanics:

Biomechanics Other Posters

P-Th-331

Tumor Microenvironment Effects on Cell Adhesion Strength S. MCMASTER¹ ¹University of South Florida, Tampa, FL

P-Th-332

Effect Of Spine Stabilization Exercise Using A 3-D Whole Body Tilt Exercise Device On Muscle Forces In The Spine

C. H. YU¹, K. S. HAN¹, S. H. SHIN¹, AND T. K. KWON¹ ¹Chonbuk National University, Jeonju, Korea, Republic of

P = Poster Session **OP** = Oral Presentation

Reviewer Choice Award

Track: Biomechanics Musculoskeletal Injury and Mechanics:

Concussion and Head Injury Biomechanics Posters

P-Th-333

Electromyography (EMG) Measurement of Blast Induced Chinchilla Middle Ear Muscle Reflex Z. YOKELL¹, D. NAKMALI¹, AND R. GAN¹ ¹University of Oklahoma, Norman, OK

P-Th-334

The Effect of Sulci Depth on Strain Distribution in the Brain Due to Impacts S. ANWAR¹, S. HASHEMI¹, AND A. SADEGH¹ ¹The City College of New York, New York, NY

P-Th-335

An In-Silico Investigation of Soccer-Related Traumatic Brain Injury K. BROWN^{1,2}, A. DESAI¹, Y. MAO³, M. HORSTEMEYER¹, J. LIAO^{1,2}, L. WILLIAMS^{1,2}, H. RHEE², AND R. PRABHU^{1,2} ¹Mississippi State University, Mississippi State, MS, ²Center for Advanced Vehicular Systems, Mississippi State, MS, ³Predictive Design Technologies, Atlanta, GA

P-Th-336

Impact Response Characteristics of the Hybrid III and NOCSAE Headforms B. COBB¹, A. ZADNIK¹, AND S. ROWSON¹ ¹Virginia Tech, Blacksburg, VA

P-Th-337

Do Facemasks Affect Helmet Performance?

S. ROWSON¹ AND E. TERRELL¹ ¹Virginia Tech, Blacksburg, VA

P-Th-338

Shortcoming of Head Impact Power (HIP) Criterion Under Different Acceleration Curves

A. SADEGH¹ AND S. MANSOOR BAGHAEI¹ ¹The City College of New York, New York, NY

Track: Biomechanics Musculoskeletal Injury and Mechanics:

Human Performance/Sports Biomechanics Posters

P-Th-339

Influence Of Tendon Stiffness On Muscle-Tendon Interaction Dynamics During Cyclic Contractions

J. DOERING¹ AND G. SAWICKI¹ ¹UNC-NC State Joint Department of Biomedical Engineering, Raleigh, NC

P-Th-340

Effect of Additional Weight on Upper Limb Pose During Activities of Daily Living

D. LURA¹, S. CAREY², AND R. DUBEY² ¹Florida Gulf Coast University, Fort Myers, FL, ²University of South Florida, Tampa, FL

P-Th-341

Testing of a Functional Glenohumeral Joint Center Location Method to Improve Shoulder Angle Quantification in Elevated Arm Positions J. HOWENSTEIN¹, C. LEVASSEUR¹, AND M. SABICK¹ ¹Saint Louis University, St. Louis, MO

P-Th-342

Street Crossing Time Is Too Short For Older Adults E. VIEIRA¹, D. BRUNT¹, H-H. LIM¹, L. KINSEY¹, AND L. ERRINGTON¹ ¹Florida International University, Miami, FL

P-Th-343

Influence of Head Cooling by Phase Change Materials on the Core Body Temperature and Head Temperature using a 3D Whole Body Model P. BULUSU1

1University of Cincinnati, Cincinnati, OH

9:30AM – 5:00PM **POSTER SESSION Thurs**

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

Track: Biomechanics

Musculoskeletal Injury and Mechanics: Injury Biomechanics Posters

P-Th-344

Use of Anthropometric Data in the Biomechanical Injury Analysis of Vehicular Collisions W. Lee' AND Y. Lu²

¹University of South Florida, Tampa, FL, ²Forensic Engineering Technologies, Lake Mary, FL

P-Th-345 Evaluation of Chiror

Evaluation of Chiropractic Textile Traction Procedure Related to Stretch Injuries of the Brachial Plexus W. ${\sf LEE}^1$

¹University of South Florida, Tampa, FL

P-Th-346

The Effect of Medial Hamstring Weakness on Lateral Hamstring Function During Running L. MOIR¹, D. PIOVESAN¹, AND A. SCHMITZ¹ 'Gannon University, Erie, PA

P-Th-347

Investigation of Torsional Stiffness at Different Angles of Knee Flexion:A Cadaveric Study T. Le¹, V. OWENS¹, B. NGUYEN¹, AND H. VO¹

¹Mercer University, Macon, GA

P-Th-348

Quantification of Rib Fracture Timing During Frontal Sled Tests A. KEMPER¹, S. BEEMAN¹, AND S. DUMA¹ ¹Virginia Tech, Blacksburg, VA

P-Th-349

Anterior and Posterior Shear Tolerance of the Lumbar Spine S. SHIMADA¹ AND N. MERRIER¹

¹Biomechanical Consultants of CA, Davis, CA

P-Th-350

A Finite Element Model of a 50th percentile Male for Simulating Pedestrian Accidents

C. UNTAROIU¹, W. PAK¹, J. SCHAP², AND S. GAYZIK² ¹Virginia Tech, Blacksburg, VA, ²Wake Forest University, Winston-Salem, NC

P-Th-351

The Injury Implications of Evasive Braking prior to Straight Crossing Path Intersection Crashes

J. SCANLON¹, K. KUSANO¹, AND H. GABLER¹ ¹Virginia Tech, Blacksburg, VA

P-Th-352

Effect of Knee Bolsters and Knee Bolster Airbags on Occupant Injury Risk in Frontal Sled Tests D. ALBERT¹, S. BEEMAN¹, AND A. KEMPER¹

¹Virginia Tech, Blacksburg, VA

P-Th-353

Human Volunteer Neck Forces and Moments During Low-Speed Frontal Sled Tests S. BEEMAN¹, A. KEMPER¹, AND S. DUMA¹ 'Virginia Tech, Blacksburg, VA

P-Th-354

Asymmetrical Injury Risk in Frontal Oblique Impact R. CHEN¹ AND H. GABLER¹ ¹Virginia Tech, Blacksburg, VA

P-Th-355

Lateral Shear Tolerance of the Lumbar Spine N. MERRIER¹ AND S. SHIMADA¹ ¹Biomechanical Consultants of California, Davis, CA

P-Th-356

Pelvic Response Of A Total Human Body Finite Element (FE) Model During Simulated Under Body Blast (UBB) Impacts C. WEAVER¹ AND J. STITZEL¹ 'Wake Forest University, Winston-Salem, NC

P-Th-357

Bony and Soft Tissue Injury Risk Sensitivity of Drivers in Simulated Motor Vehicle Crashes

J. GAEWSKY¹, A. WEAVER¹, B. KOYA¹, AND J. STITZEL¹ ¹Virginia Tech - Wake Forest University, Winston-Salem, NC

P-Th-358 🎗

Shoulder Soft TIssue Injury Mechanisms in Vehicular Collisions W. Lee¹ AND S. GUTIERREZ²

¹University of South Florida, Tampa, FL, ²Florida Orthopaedics Institute, Tampa, FL

Track: Biomechanics Musculoskeletal Injury and Mechanics:

Neuromuscular Biomechanics Posters

P-Th-359

The Effects of Military Body Armor on Knee Strength M. PHILLIPS¹, C. STARNES¹, R. SHAPIRO¹, AND B. BAZRGARI¹ ¹University of Kentucky, Lexington, KY

P-Th-360

The Use of Stochastic Resonance in a Two Dimensional Fitts' Task E. DILLER1 AND C. CAO^2

¹Wright State University, Fairborn, OH, ²Wright State University, Dayton, OH

P-Th-361

Control of Balance During Quiet Standing in an Individual with FXTAS J. LEE¹, D. BAKER¹, R. IMAMURA¹, N. MERRIER², AND S. SHIMADA² ¹CSU Sacramento, Sacramento, CA, ²Biomechanical Consultants of CA, Davis, CA

P-Th-362

A Biomechanical Comparison of Intrapelvic and Extrapelvic Fixation for Anterior Column with Posterior-hemitransverse Acetabular Fractures G. GILLISPIE¹, P. BROWN¹, J. STITZEL¹, AND E. CARROLL¹ ¹Virginia Tech/Wake Forest SBES, Winston-Salem, NC

P-Th-363

Human Balance: Study and Evaluation by Motion Capture, EOG and EMG Biopotentials S. CAREY¹ AND A. LOPEZ¹ 'University of South Florida, Tampa, FL

Track: Biomechanics

Musculoskeletal Injury and Mechanics:

Orthopaedic Biomechanics Posters

P-Th-364

Modeling Interfragmentary Strains to Predict Nonunion in High- and Low-Risk Fracture Geometries A. GLASS-HARDENBERGH¹ AND H. DAILEY¹ ¹Lehigh University, Bethlehem, PA

P-Th-365

Biomechanical Variations within the Vertebral Body Under Fatigue Loading in Sagittal Plane

C. MAGLARAS¹, E. NOONAN¹, A. RITTER¹, AND A. VALDEVIT¹ ⁷Stevens Institute of Technology, Hoboken, NJ

P-Th-366

Dynamic Properties of Human Incudostapedial Joint Measured with Frequency Temperature Superposition S. JIANG¹, N. DON¹, AND R. Z. GAN¹ ¹University of Oklahoma, Norman, OK

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-367

Eye, Head, and Trunk Coordination during Target Tracking Tasks -Implications for Whiplash Injury

I. GADOTTI¹, L. ELBAUM¹, Y. JUNG¹, V. GARBALOSA¹, S. KORNBLUTH¹, B. DA COSTA¹, K. MAITRA¹, AND D. BRUNT¹

¹Florida International University, Miami, FL

P-Th-368

Configuration Space Analysis of Elbow and Forearm Motion B. FEIBEL¹, F. UNUKPO², A. HOLLISTER¹, C. STOREY¹, A. DYESS-TREGRE², P. O'NEAL²,

AND A. OGDEN¹ ¹LSU Health Shreveport, Shreveport, LA, ²LATech University, Ruston, LA

P-Th-369

Configuration Space Analysis Of The Human Knee

P. ENSMINGER¹, F. UNUKPO², A. HOLLISTER¹, C. STOREY¹, A. DYESS-TREGRE², P. O'NEAL², AND A. OGDEN¹

¹LSU Health Shreveport, Shreveport, LA, ²LATech University, Ruston, LA

P-Th-370

Falling Onto an Outstretched Hand: A Multibody Model of a Common Injury

M. SHARIFI RENANI¹, M. RAHMAN¹, A. CIL¹,², AND A. STYLIANOU¹ "University of Missouri-Kansas City, Kansas City, Kansas City, MO, ²Truman Medical Centers, Kansas City, MO

P-Th-371

Fine-wire Climbing Exercise Enhances Mechanical Properties of the Mouse Femur

J. JOLL¹, B. VICKERY¹, J. RUPERT¹, K. BIRO¹, J. WALLACE², C. BYRON³, J. ORGAN¹, AND M. ALLEN¹

¹Indiana University School of Medicine, Indianapolis, IN, ²Purdue University School of Engineering and Technology - Indianapolis, Indianapolis, IN, ³Mercer University College of Liberal Arts, Macon, GA

Track: Biomechanics Musculoskeletal Injury and Mechanics:

Orthopaedic: Implant and Prosthetic Biomechanics Posters

P-Th-372

Torso Rotation as a Marker of Limiting Factors on Body Powered Prosthetic Terminal Devices K. LOSTROSCIO¹ 'University of South Florida, Rockledge, FL

P-Th-373

Accuracy Study of a Measurement System to Determine the Leg Length and the Hip Rotation Center During Total Hip Replacement Surgery R. GRUNERT¹,², M. SCHMIDT², T. WENDLER², N. HAMMER², R. MÖBIUS², M. WERNER¹,

AND T. PRIETZEL² ¹Fraunhofer Institute for Machine Tools and Forming Technology, Dresden,

Germany,²University Leipzig, Leipzig, Germany

P-Th-374

Finite Element Model of Implant Press Fit in Humeral Diaphysis for Prosthetic Limb Attachment

D. PAWAR¹, A. DREW¹, AND K. BACHUS¹ ¹University of Utah, Salt Lake City, UT

Track: Nano and Micro Technologies Nano and Micro Technologies: BioMEMS Posters

P-Th-375

Engineer A Functional, 3-D Vascular Niche To Support Neural Stem Cell Regeneration M. WINKELMAN¹ AND G. DAI¹ ¹Rensselaer Polytechnic Institute, Troy, NY

P-Th-376

Experimental Investigation of Enzymatic Stability on Graphene B. HOU¹ AND A. RADADIA¹ *'Louisiana Tech University, Ruston, LA*

P-Th-377

Multimodal Measurement of Electrical Signals in Neuronal Networks N. STONE¹, A. SANTIAGO-LOPEZ¹, AND Y. KIM¹ ¹Georgia Institute of Technology, Atlanta, GA

eorgia institute or recritor

P-Th-378

Microfluidic Platform For The Study Of Water Transport In The Central Nervous System

J. LECHOWICZ¹, J. XU¹, S. ALFORD¹, AND A. LINNINGER¹ ¹University of Illinois at Chicago, Chicago, IL

Track: Nano and Micro Technologies Nano and Micro Technologies:

Cells, Tissues and Organs on a Chip Posters

P-Th-379

Engineering Hybrid Biomaterials for *In Vitro* Blood Brain Barrier Model Development

C. HOVELL¹, C. WEILER¹, G. BARABINO², L. TAITE¹, AND Y. KIM¹ ¹Georgia Institute of Technology, Atlanta, GA, ²City College of New York, New York, NY

P-Th-380

Novel Cell Seeding Funnel And Microelectrode Array (MEA) Arrangement To Separate And Localize Neurons From Different Brain Regions

D. SOSCIA¹, N. FISCHER¹, E. MUKERJEE¹, B. BENETT¹, H. ENRIGHT¹, S. FELIX¹, E. KUHN¹, K. KULP¹, S. PANNU¹, AND E. WHEELER¹

¹Lawrence Livermore National Laboratory, Livermore, CA

P-Th-381

Development of a Fluidic Microdevice for Engineering Pancreatic Islet Microenvironments

G. LENGUITO¹, S. RAWAL¹, P. BUCHWALD¹, AND A. AGARWAL¹ ¹University of Miami, Miami, FL

P-Th-382

A Vascular Injury Model Using Focal Heat-induced Activation of Endothelial Cells

J. SYLMAN¹, D. ARTZER¹, K. RANA¹, AND K. NEEVES¹,² ¹Colorado School of Mines, Golden, CO, ²University of Colorado Denver, Denver, CO

P-Th-383

Lab-On-a-Brane: Physiologically Relevant Planar Blood Vessel Mimics to Study Transendothelial Communication

K. BUDHWANI¹, V. THOMAS¹, AND P. SETHU¹

¹University of Alabama at Birmingham, Birmingham, AL

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-384

Mature, Perfused Microvasculature *In Vitro*: The Role of Pericytes in Vessel Formation and Stability

J. ANDREJECSK¹, D. PHAN¹, AND C. HUGHES¹ ¹University of California, Irvine, Irvine, CA

P-Th-385

Microfluidic Analysis of the Invasite Motility of Glioblastoma Tumor Initiating Cells

J. M. LIN^{1,2}, L. GUILLOU³, AND S. KUMAR^{1,2} ¹UC-Berkeley, Berkeley, CA, ²UC Berkeley-UCSF Graduate Program in Bioengineering, Berkeley, CA, ³Ecole Polytechnique, Palaiseau, France

P-Th-386

Development of a Biomimetic Microfluidic Flow Profile Generator (BioMFG) Enabling Mechanobiological Responses of Valvular Interstitial Cell J. LEE¹, X. WANG¹, C. LACERDA¹, AND J. KIM¹ 'Texas Tech University, Lubbock, TX

P-Th-387

A Multi-Gradient Platform for Chemotactic Analysis of Single Cells S. ROBERTS¹ AND N. AGRAWAL¹ 'George Mason University, Fairfax, VA

P-Th-388

Miniaturized Hepatic Cell Cultures in PuraMatrix on a Micropillar/Microwell Chip Platform for Drug Toxicity Studies A. ROTH¹, P. LAMA¹, AND M-Y. LEE¹ ¹Cleveland State University, Cleveland, OH

P-Th-389

Smoking Lung-on-a-chip: A Microphysiological Model of Cigarette Smokeinduced Airway Disease

M. MONDRINOS¹, W. BYUN¹, C. BLUNDELL¹, AND D. HUH¹ ¹University of Pennsylvania, Philadelphia, PA

P-Th-390

Pumpless Microfluidic Blood Brain Barrier Model for Drug Screening Y. WANG¹, E. ABACI¹, J. HICKMAN², AND M. SHULER¹

¹Cornell University, Ithaca, NY, ²University of Central Florida, Orlando, FL

P-Th-391

Patterning Of Cellular Interfaces With A Self-Healing Substrate A. CURTIS¹, D. Ll¹, M. Y. KIM¹, AND E. HUI¹ ¹University of California, Irvine, Irvine, CA

P-Th-392

Biomimetic Human Respiratory Platform for In Vitro Drug Development J-H. HUANG¹, P. NATH¹, A. AREFIN¹, J. HARRIS¹, Y. SHOU¹, AND R. IYER¹ ¹Los Alamos National Laboratory, Los Alamos, NM

P-Th-393

Engineering a Multi-Functional Cardiac Physiomimetic Microsystem A. ALASSAF¹, V. MAYO¹, K. PIMENTEL², S. BHANSALI², AND A. AGARWAL¹

¹University of Miami, Miami, FL, ²Florida International University, Miami, FL

P-Th-394

Fabrication and Characterization of Ultrathin Transparent Glass Membranes for Cell Culture

A. MAZZOCCHI¹, S. CASILLO¹, R. CARTER¹, AND T. GABORSKI¹ ¹Rochester Institute of Technology, Rochester, NY

P-Th-395

Using Double Emulsion Technology to Study Foam Cell Aggregates in the Pathogenesis of Atherosclerosis

W. LEONG¹, Z. CHEN¹, O. ADEBOWALE¹, S. SURYAPRAKASH¹, AND K. LEONG¹ ¹Columbia University, New York, NY

Track: Nano and Micro Technologies Nano and Micro Technologies:

Medical Diagnostics and Screening Posters

P-Th-396

Targeted Nano-particle Adhesion Studied by Multi-scale Dynamic Simulations M. WANG¹ AND J. HAUN¹ *'UC Irvine, Irvine, CA*

P-Th-397

Tuning Electrochemical Impedance Spectroscopy

C. LIN¹, D. PROBST¹, AND J. LABELLE ¹Arizona State University, Tempe, AZ

P-Th-398

One Step Microfluidic Immunomagnetic Separation of Tumor Initiating Cells Based On Multiple Markers

C. SUN¹ AND C. LU¹ ¹Virginia Tech, Blacksburg, VA

P-Th-399

A Novel Electrical Stimulation Based High Throughput Screening Platform for Muscle Cell Investigation

H. Y. SHIN¹, Y.S. CHOI¹, M. S. KIM², AND S. C. PARK¹ ¹Samsung Advanced Institute of Technology, Suwon-si, Korea, Republic of, ²Konyang University, Daejeon, Korea, Republic of

P-Th-400 🎗

Screening Small Molecule-Membrane Interactions Using Droplet Interface Bilayers G. TAYLOR¹ AND S. SARLES¹ 'University of Tennessee, Knoxville, TN

P-Th-401

Exploring The Effect Of Nanostructure On Electrochemical DNA Sensing: Tuning Dynamic Range With Nanoporous Gold Electrodes P. DAGGUMATI¹, Z. MATHARU¹, AND E. SEKER¹ ¹University of California, Davis, Davis, CA

P-Th-402 🎗

Detection of Synovial Fluid Degradation through Magnetic Particle Collection

Y. SHAH¹, E. YARMOLA¹, D. ARNOLD¹, J. DOBSON¹, AND K. ALLEN¹ ¹University of Florida, Gainesville, FL

P-Th-403

Detection Of Protein Biomarkers Based On Fluorescence Quenching of Polymer-Coated Conjugated Polymer Nanoparticles H. CULVER¹ AND N. PEPPAS¹ ¹University of Texas at Austin, Austin, TX

P-Th-404 DREAM TEAM & CENTER

Label-free Detection of DNA Hybridization Using Capacitive Interdigitated Electrodes

L. WANG¹, L. YANG¹, M. VESELINOVIC¹, Y. OBEIDAT¹, B. GEISS¹, T. CHEN¹, AND D. DANDY¹ ¹Colorado State University, Fort Collins, CO

Track: Biomaterials Nano and Micro Technologies:

Micro and Nano Structured Materials Posters

P-Th-405

Mathematical Rendering of Trabecular Bone Microstructure A. H. MORSHED¹ AND X. WANG¹

¹University of Texas at San Antonio, San Antonio, TX

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-406

Magnesium Based Polycaprolactone (PCL) Nanofiber For Tissue Engineering Applications

N. RIJAL¹ AND N. BHATTARAI¹ ¹North Carolina A&T State University, Greensboro, NC

P-Th-407

PLGA/Chitosan Microspheres for Controlled Release of Therapeutic Drugs S. RAHMAN¹ AND N. BHATTARAI¹

¹North Carolina A&T State University, Greensboro, NC

P-Th-408

Pull Spinning: A Novel Nanofiber Fabrication Technique

N. SINATRA¹, L. DERAVI¹, C. CHANTRE¹, S. DERAVI¹, A. NESMITH¹, T. GREVESSE¹, H. YUAN¹, G. GONZALEZ¹, J. GOSS¹, A. DEITCHE¹, D. WEST², V. PHILLIPS², L. MACQUEEN¹, M. BADROSSAMY¹, M. PHILLIPS², AND K. PARKER¹,²

¹Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Science, Harvard University, Cambridge, MA, ²Department of Mathematical Sciences, United States Military Academy, West Point, NY

P-Th-409

Development of Enzyme-laden Microdevices for Cell-mediated Eenzyme Delivery

J. XIA¹, Z. WANG¹, AND J. GUAN¹ ¹Florida State University, Tallahassee, FL

P-Th-410

Conducting Polymer-Encapsulated Microspheres for Improved Electrical Performance of Bioelectronics.

M. ANTENSTEINER¹, F. FALLAHIANBIJAN¹, M. KHORRAMI¹, AND M. R. ABIDIAN¹ ¹Pennsylvania State University, State College, PA

P-Th-411

Microfiber Fabrication from Nanoparticle Polymeric Solutions for Cellular Encapsulation

C. W. PEAK¹, J. K. CARROW¹, A. THAKUR¹, AND A. K. GAHARWAR¹ ¹Texas A&M University, College Station, TX

P-Th-412

Decreasing Bacterial And Macrophage Density On Nanophase Hydroxyapatite Coated Onto Titanium Surfaces G. BHARDWAJ¹, H. YAZICI¹, AND T. WEBSTER¹

¹Northeastern University, Boston, MA

P-Th-413

Nanostructured Vapor Deposited Surface Treatments Improve Bone-Anchored Hearing Aid Integration

M. STOLZOFF¹, J. E. BURNS², A. ASLANI², E. J. TOBIN², AND T. J. WEBSTER¹ ¹Northeastern University, Boston, MA, ²N² Biomedical, Bedford, MA

P-Th-414

Stimuli-Responsive Polymer Shells on Surface-Modified Gold Nanomaterials for Biosensing Applications

C. N. KOEPKE¹, H. R. CULVER¹, AND N. A. PEPPAS¹ ¹University of Texas at Austin, Austin, TX

P-Th-415

Alginate Encapsulated Islets allow for Adequate Tissue Oxygenation at Hypoxic Conditions

N. NEEL¹, R. KRISHNAN¹, V. FLEMING¹, M. ALEXANDER¹, AND J. LAKEY¹,² ¹University of Calfornia Irvine, Orange, CA, ²University of Calfornia Irvine, Irvine, CA

P-Th-416

Alginate Microcapsules Exhibit Dynamic Changes in Size and Volume with Changes in Temperature

M. NGUYEN¹, A. NAJDAHMADI¹, H-W. TANG¹, R. KRISHNAN¹, K-H. CHAN¹, M. ALEXANDER¹, E. BOTVINICK², AND J. LAKEY¹,²

¹University of Calfornia Irvine, Orange, CA, ²University of Calfornia Irvine, Irvine, CA

P-Th-417

Electrospun Silk Doped with Selenium Nanoparticles to Enhance Antibacterial Properties

S. CHUNG¹, M. STOLZOFF¹, B. ERCAN¹, AND T. WEBSTER¹,²

Northeastern University, Boston, MA, ²King Abdulaziz University, Jeddah, Saudi Arabia

P-Th-418

Cold Atmospheric Plasma (CAP) Surface Modified 3D Printed PLA Scaffolds for Orthopedic Tissue Engineering

M. WANG¹, P. FAVI¹, H. YAZICI¹, A. ROY¹, M. KEIDAR², AND T. WEBSTER¹ ¹Northeastern university, Boston, MA, ²The George Washington University, Washington, DC

P-Th-419

Reverse Micelle based Preparation of Pore-Size-Controllable Porous Electrospun Nanofibrous Meshes

W. MAO¹ ¹Kangwon National University, Chuncheon, Korea, Republic of

P-Th-420 DREAM TEAM & CENTER

Novel Methods for Producing Crosslinked, Bio-absorbable, Micropatterned Gelatin Films

D. NEALE¹, B. WILLENBERG¹,², C. MAGIN³, A. BRENNAN¹,³, AND G. SCHULTZ¹ ¹University of Florida, Gainesville, FL, ²University of Central Florida, Orlando, FL, ³Sharklet Technologies, Inc., Aurora, CO

P-Th-421

Single-cell Encapsulation in Tunable Microgels for Mimicking Stem Cell Niches *In Vitro*

A. MAO¹, J-W. SHIN¹, J. HOGGATT², D. SCADDEN², D. WEITZ¹, AND D. MOONEY¹ ¹Harvard University, Cambridge, MA, ²Harvard Medical School, Boston, MA

P-Th-422

Wet-Stretching' Electrospun Nanofibers to Enhance Macromolecular and Functional Properties

D. BRENNAN¹, M. DEEMER¹, M. HORVATH¹, J. MEDINA¹, M. SIRACUSA¹, N. SWEENEY¹, M. TORCULAS¹, P-T. VU¹, A. WILKINSON¹, X. HU¹, AND V. BEACHLEY¹ *'Rowan University, Glassboro, NJ*

P-Th-423

Bone Regeneration by Rapid Osteoblast Recruitment using Microgrooved Topographed Implant

J-K. YOON¹, H. N. KIM¹,², S. H. BHANG³, J-Y. SHIN¹, N. L. JEON¹, AND B-S. KIM¹ ¹Seoul National University, Seoul, Korea, Republic of, ²Korea Institute of Science and Technology (KIST), Seoul, Korea, Republic of, ³Sungkyunkwan University, Suwon, Korea, Republic of

P-Th-424

Engineered Nanotopography on Electrospun Microfibers Alters Cytokine Production in Macrophages

N. SCHAUB¹, A. D'AMATO¹, E. YUND-HARMON², D. CORR¹, M. LENNARTZ³, AND R. GILBERT¹

¹Rensselaer Polytechnic Institute, Troy, NY, ²Sage College, Albany, NY, ³Albany Medical College, Albany, NY

P-Th-425

Key Factors Influencing Alginate Microcapsule Size, Dimensions And Long-Term Stability

R. KRISHNAN¹, G. KUMMERFELD¹, J. YAKEL¹, A. DALISAY¹, A. YOON¹, K-H. CHAN¹, M. ALEXANDER¹, AND J. LAKEY¹,²

¹University of Calfornia Irvine, Orange, CA, ²University of Calfornia Irvine, Irvine, CA

P-Th-426

Mechanically Tuned Fibrous HA Scaffolds with NGF for Directed Neurite Growth

T. WHITEHEAD¹ AND H. SUNDARARAGHAVAN¹ ¹Wayne State University, Detroit, MI

P-Th-427

Injectable Thermoresponsive Hydrogel for Protein Release

N. JALILI¹, M. JAISWAL¹, AND A. GAHARWAR¹ ¹Texas A&M University, College Station, TX

P = Poster Session
 OP = Oral Presentation
 = Reviewer Choice Award

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-428

Alginate Composition and Temperature Influence Microcapsule Permeability G. KUMMERFELD¹, R. KRISHNAN¹, A. NAJDAHMADI¹, E. BOTVINICK², AND J. LAKEY¹,² ¹University of Calfornia Irvine, Orange, CA, ²University of Calfornia Irvine, Irvine, CA

Track: Nano and Micro Technologies Nano and Micro Technologies:

Micro and Nano Total Analysis Systems Posters

There and Nano Total Analysis Systems I o

P-Th-429

Polymerase Chain Reactions Inside Practically Significant Microfluidic Chips W. WU1, 2 AND A. MANZ1, 2

¹Mechatronics department, University of Saarland, Saarbrücken, Germany, Saarbrucken, Germany, ²KIST Europe GmbH, Saarbrücken, Germany, Saarbrucken, Germany

P-Th-430

Computational Modeling and Design of Microfluidic Cardiovascular Models Integrating On-chip Biosensing

J. WONG¹, E. YOUNG¹, AND C. SIMMONS¹ ¹University of Toronto, Toronto, ON, Canada

P-Th-431

Transport Activity of Multidrug Efflux Pump, P-glycoprotein, in Giant Liposomes

S. PARK¹, Y. J. KANG¹, AND S. MAJD¹ ¹Pennsylvania State University, University Park, PA

P-Th-432

Probing Interclonal Heterogeneities in Patient-derived Glioma Stem Cell Populations via Micro/Nanoscale Technologies

D. GALLEGO-PEREZ¹, L. CHANG¹, J. SHI¹, J. MA¹, S. KIM¹, X. ZHAO¹, V. MALKOC¹, X. WANG¹, K. KWAK¹, D. HANSFORD¹, I. NAKANO¹, AND L. J. LEE¹ ¹The Ohio State University, Columbus, OH

P-Th-433

A Microfluidics Based Magnetic Beads Assay For Label Free Cell Analysis F. LIU¹, P. KC¹, G. ZHANG¹, AND J. ZHE¹ 'The University of Akron, Akron, OH

Track: Cancer Technologies Nano and Micro Technologies:

Micro and Nanotechnologies for Cancer Posters

P-Th-434

Dielectrophoretic High-throughput Gene Expression Profiling of Single Circulating Tumor Cells D. NAWARATHNA¹, D. WIJESINGHE¹, D. EWERT¹, AND C. SUN¹

D. NAWARATHNA', D. WIJESINGHE', D. EWERT', AND C. SUN' North Dakota State University, Fargo, ND

P-Th-435

A Microfluidic Platform That Cultures Primary Cells for Clinical and Preclinical Drug Tests S. ZEINALI ¹ AND M. ELITAS²

¹Sabanci Unversity, Istanbul, Turkey, ²Sabanci University, Tuzla/Istanbul, Turkey

P-Th-436

Development of a Skin Patch Capable of Detecting Melanomas through Protein Capture, Protection and Analysis

A. NIXON¹, A. LUCHINI², L. LIOTTA², AND R. MAGNI² ¹George Mason University, Fairfax, VA, ²George Mason University, Manassas, VA

P-Th-437

Implantable Micro-porous Poly(&[epsilon]-caprolactone) Scaffolds For Early Detection Of Breast Cancer Metastasis

S. RAO¹, S. AZARIN², G. SPICER³, G. BUSHNELL¹, B. AGUADO³, J. STOEHR³, V. BACKMAN³, J. JERUSS¹, AND L. SHEA¹

¹The University of Michigan, Ann Arbor, MI, ²The University of Minnesota, Minneapolis, MN,²Northwestern University, Evanston, IL

P-Th-438

Polymeric Mechanical Amplifiers of Tumor Cell Mechanotransduction and Cell Death M. J. MITCHELL¹ AND R. LANGER¹

¹*MIT, Cambridge, MA*

P-Th-439

Enhancing Target Cell Capture And Minimizing Non-Specific Binding Using Pulsatile Flow For High Efficiency Isolation Of Circulating Tumor Cells. T. HAGLUND¹

¹University of Alabama at Birmingham, Birmingham, AL

P-Th-440

Circulating miR-122 Detection in Patients with Cirrhosis, HCV infection and HCV+Hepatocelluar Carcinoma by Tethered Lipoplex Nanoparticles (TLN)

X. WANG¹, K. KWAK¹, A. ZHANG¹, C. SCHMIDT¹, T. SCHMITGEN¹, AND J. LEE¹ ¹the Ohio State University, columbus, OH

P-Th-441

Targeted Elimination of CD44 Expressing Cells using Ferric Oxide Nanoparticles in Head & Neck Cancer

R. THAPA^{1,2}, J. GORSKI¹, A. BOGEDIN¹, M. MAYWOOD¹, C. CLEMENT¹, S. HOSSAINI NASR³, D. HANNA¹, X. HUANG³, B. ROTH¹, G. MADLAMBAYAN¹, AND G. WILSON² ¹Oakland University, Rochester, MI, ²William Beaumont Hospital, Royal Oak, MI, ³Michigan State University, East Lansing, MI

P-Th-442

Silencing Gli I with Spherical Nucleic Acids to Overcome Multidrug Resistant Cancer

J. MELAMED¹ AND E. DAY¹ ¹University of Delaware, Newark, DF

inversity of Delaware, i

P-Th-443

Wnt/ β Catenin Inhibitory Nanoparticles for Treatment of Triple Negative Breast Cancer

R. EDELSTEIN¹, J. GAGIANAS¹, AND E. DAY¹ ¹University of Delaware, Newark, DE

P-Th-444

Combination Photothermal Immunotherapy for Treating Neuroblastomas

J. CANO-MEJIA¹, L. CHAKRABARTI², K. WRIGHT², C. BOLLARD², A. SANDLER², J. FISHER³, R. Y. CRUZ², AND R. FERNANDES² ¹University of Maryland, Hyattsville, MD, ²Children's National Health System, Washington,

¹University of Maryland, Hyattsville, MD, ²Children's National Health System, Washington, DC, ³University of Maryland, College Park, MD

P-Th-445

Hyaluronic Acid Nanoparticles for the Treatment of Multiple Myeloma

A. JOAQUIN¹, K. SOLOMON¹, M. NAMBIAR¹, C. TU¹, AND J. ZOLDAN¹ ¹University of Texas at Austin, Austin, TX

P-Th-446

Mussel-Inspired Coating of Spiky Gold Nanoparticles for Enhanced Stability and Therapeutic Efficacy

J. NAM¹ AND J. MOON¹ ¹University of Michigan, Ann Arbor, MI

P-Th-447 DREAM TEAM & CENTER

Novel DNA-Graphene Based Biosensor For Colorectal Cancer Diagnosis Via Detection Of Lynch Syndrome

M. D. KHAN¹, A. APHALE¹, I. G. MACWAN¹, J. LIU², M. HINGORANI², AND P. PATRA¹ ¹University of Bridgeport, Bridgeport, CT, ²Wesleyan University, Middletown, CT

P-Th-448

Microraft Array-Based Pancreatic Cancer Cell Proliferation Assay

M. DISALVO',², L. WILLIAMS¹, J. J. YEH¹, C. SIMS¹, AND N. ALLBRITTON¹,² ¹University of North Carolina at Chapel Hill, Chapel Hill, NC, ²North Carolina State University, Raleigh, NC

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-449

Integrated Microfluidic Chip For High Throughput CTC Sorting And Detection With High Specificity

R. JACK¹, M. G. GRAFTON¹, D. RODRIGUES¹, C. GRIFFITH¹, D. JUE¹, R. CIESLAK¹, M. ZEINALI¹, D. SIMEONE¹, AND S. NAGRATH¹ ¹University of Michigan, Ann Arbor, MI

P-Th-450 DREAM TEAM & CENTER

HSP70 Inhibition Synergistically Enhances the Effects of Magnetic Fluid Hyperthermia

K. A. COURT¹, M. LINGEGOWDA², H. HATAKEYAMA², C. RODRIGUEZ-AGUAYO², S. WU², A.
 K. SOOD², C. RINALDI³, AND M. TORRES-LUGO¹
 ¹University of Puerto Rico, Mayaguez, PR, Puerto Rico, ²MD Anderson Cancer Center,

¹University of Puerto Rico, Mayaguez, PR, Puerto Rico, ²MD Anderson Cancer Center, Houston, TX, ³University of Florida, Gainsville, FL

P-Th-451

High Throughput Anti-Cancer Drug Screening With Microprinted Tumor Spheroids

P. THAKURI¹ AND H. TAVANA² ¹The University of Akron, Akron, OH, ²University of Akron, Akron, OH

P-Th-452

In Vivo Tumor Targeting of Brainstem Gliomas with Magnetic Nanoparticles A. BOHORQUEZ¹, F. DELGADO¹, C. PAUL¹, AND C. RINALDI¹ 'University of Florida. Gainesville. FL

P-Th-453

Dielectrophoretic Attraction and Isolation of Circulating Tumor Cells using Graphene Oxide Functionalized Gold Electrodes

T. H. KIM¹, H. J. YOON¹,², M. KOZMINSKY¹, C. RILEY¹, AND S. NAGRATH¹ ¹University of Michigan, Ann Arbor, MI, ²South Dakota State University, Brookings, SD

P-Th-454

Photothermal Ablation of Bladder Cancer using Phosphatidylserine Targeted Carbon Nanotubes

N. VIRANI¹, C. DAVIS², P. HAUSER², R. HURST², J. SLATON², AND R. HARRISON¹ ¹University of Oklahoma, Norman, OK, ²University of Oklahoma Health Sciences Center, Oklahoma City, OK

P-Th-455

Direct, Multiplexed Molecular Profiling Using Fluorescence Lifetime Imaging M. RAHIM¹, R. KOTA¹, E. GRATTON¹, AND J. HAUN¹ ¹University of California Irvine, Irvine, CA

P-Th-456

Optimized High-Energy Dissipating Nanoparticles for Magnetic Hyperthermia in Ovarian Cancer Cells

F. MERIDA¹, A. CHIU-LAM², A. C. BOHORQUEZ², L. MALDONADO-CAMARGO², J. MENDEZ¹, M. SANCHEZ¹, M. TORRES-LUGO¹, AND C. RINALDI² ¹University of Puerto Rico, Mayaguez, Puerto Rico, ²University of Florida, Gainesville, FL

P-Th-457

Comparison of Monte Carlo and Numerical Radiation Dose Enhancement Calculations

A. PARO¹ AND M. SU¹ ¹Northeastern University, Boston, MA

P-Th-458

Nanochannel Platform for Minimally-invasive Implantation and Intratumoral Delivery

R. L. HOOD¹, G. BRUNO¹,², P. JAIN¹, AND A. GRATTONI¹ ¹Houston Methodist Research Institute, Houston, TX, ²Politecnico di Torino, Turin, Italy

P-Th-459

Parsing Apart the Effects of Strain and Alignment in Tumor Cell Invasion J. MILLER', L. HAPACH', AND C. REINHART-KING'

¹Cornell University, Ithaca, NY

P-Th-460

Circulating Tumor Cell Capture Using Dielectrophoresis J. PENDER¹, D. LAUDENBACH¹, B. VERMA¹, AND D. NAWARATHNA¹ ¹North Dakota State University, Fargo, ND

'North Dakota State University, Fargo, ND

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

P-Th-461

Suppressing Migration of Brain Cancer Cells using Laminin Conjugated Gold Nanoparticles

Q. WANG¹, S. K. NG¹, W. LIU¹, AND M. SU¹ ¹Northeastern University, Boston, MA

P-Th-462

Treatment of Cutaneous Malignant Melanoma Using Photothermal Ablation and Targeted Carbon Nanotubes

P. MCKERNAN¹, B. LAVINE², R. RAMESH³, AND R. HARRISON¹ ¹University of Oklahoma, Norman, OK, ²Oklahoma State University, Stillwater, OK,³University of Oklahoma Health Science Center, Oklahoma City, OK

P-Th-463 DREAM TEAM & CENTER

Label-free Dielectrophoretic Binning of Tumor Cells based on their Mitochondrial Phenotype

A. ROHANI¹, Y-H. SU¹, J. KASHATUS¹, D. KASHATUS¹, AND N. SWAMI¹ ¹University of Virginia, Charlottesville, VA

Track: Nano and Micro Technologies Nano and Micro Technologies: Microfluidics Posters

fictonialaics 1 03

P-Th-464

Open-Surface Microfluidics For Nucleic Acid Analysis A. ALMEIDA¹, P. NEUZIL¹, AND A. MANZ¹ 'KIST-europe, Saarbrücken, Germany

P-Th-465

3D-Printed Oxygen Control Insert for a 24-Well Plate

M. BRENNAN¹, M. REXIUS-HALL¹, AND D. EDDINGTON¹ ¹University of Illinois at Chicago, Chicago, IL

P-Th-466

A Chaotic Mixer for Rapid and Continuous Recalcification of Citrated Whole Blood

M. LEHMANN¹, K. RANA¹, A. WUFSUS¹, K. DAVIS¹, AND K. NEEVES¹,² ¹Colorado School of Mines, Golden, CO, ²University of Colorado Denver, Aurora, CO

P-Th-467

Enhanced Microfluidic Immunomagnetic Separation Based on Microfabricated Ferromagnetic Patterns

C. SUN¹, R. YU², H. HASSANISABER ¹, S. MA¹, AND C. LU¹ ¹Virginia Tech, Blacksburg, VA, ²Washington University in St. Louis, St. Louis, MO

P-Th-468

A Negative Pressure Adjustable Microfluidic Oxygen Regulator Based On The Venturi Effect

T. CHRISTOFORIDIS¹ AND D. T. EDDINGTON¹ ¹University of Illinois at Chicago, Chicago, IL

P-Th-469

Continuous and Rapid Plasma Extraction Microfluidic Device for Plasmapheresis

J-C. HYUN¹, Y.G. JUNG¹, AND S. YANG¹ ¹Gwangju Institute of Science and Technology (GIST), Gwangju, Korea, Republic of

P-Th-470

A Simple, Tunable Acoustofluidic Pump via Oscillating Sharp-edge for Cells Delivery

P-H. HUANG¹, N. NAMA¹, Z. MAO¹, P. LI¹, AND T. J. HUANG¹ [†]The Pennsylvania State University, University Park, PA

P-Th-471

Capture of Circulating Tumor Cells (CTCs) in Microfluidic Devices for Patient Treatment Monitoring

J. VARILLAS¹, W. SHENG¹, K. CHEN¹, T. GEORGE¹, C. LIU¹, AND H. FAN¹ ¹University of Florida, Gainesville, FL

9:30AM – 5:00PM **POSTER SESSION Thurs**

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-472

Rapid and Affordable Generation of a Microdroplet Array with an Air-spray gun

L. PHELPS¹, C. DANIELSON¹, G. PAPPAS¹, A. MELVIN¹, AND K. PARK¹ ¹Louisiana State University, Baton Rouge, LA

P-Th-473

Rapid Assembly of Co-Cultures within a Multilayer Microfluidic Platform B. NABLO¹ AND D. REYES¹

¹National Institute of Standards and Technology, Gaithersburg, MD

P-Th-474

Rapid Assembly of Synthetic Lipid Bilayers for Membrane Based Studies M-A. NGUYEN¹ AND S. SARLES¹ ¹University of Tennessee, Knoxville, TN

P-Th-475

Thin Film Polystyrene Microchannels for Long Term Cell Culture P. ERB¹, M. GAMCSIK¹, AND G. WALKER¹ ¹North Carolina State University, Raleigh, NC

P-Th-476

Secondary Anchor Targeted Cell Release Integrated Spiral Mixer for the Selective Isolation of Cell Types A. ANSARI¹ AND P. IMOUKHUEDE ¹University of Illinois at Urbana-Champaign, Urbana, IL

P-Th-477

Use Of Ascorbic Acid To Monitor Effects On Prostate Cancer Migration S. LOH1, L. LEE2, S. BEAN2, M. NASHAWI2, S. RAO2, V. LIN2, AND J-C. CHIAO2 ¹University of Texas at Arlington, Mansfield, TX, ²University of Texas at Arlington, Arlington, ΤX

P-Th-478

Microprocessor-Based Integration of Microfluidic Platforms for the Realization of Multithreaded Optimization Algorithms

E. EZRA¹, I. MAOR¹, I. SHALOM¹, D. BAVLI¹, E. KEINAN¹, AND Y. NAHMIAS¹ ¹The Hebrew University of Jerusalem, Jerusalem, Israel

P-Th-479

Aqueous Micro-droplet Generation using Water Immiscible Room Temperature Ionic Liquids in a Microfluidic Device

J. W. HWANG^{1,2}, Y-S. CHOI², R. BASHIR³, AND W-J. CHANG⁴

¹University of Wisconsin-Milwaukee, Milwaukee, WI, ²CHA University, Seongnam, Korea, Republic of, ³University of Illinois at Urbana-Champaign, Urbana, IL, ⁴University of Wisconsin-Milwaukee, MILWAUKEE, WI

P-Th-480

A High-throughput Microfluidic Device for Leukoreduction of Platelet Rich Plasma

H. XIA¹, B. STRACHAN¹, S. GIFFORD¹, AND S. SHEVKOPLYAS¹ ¹University of Houston, Houston, TX

P-Th-481 DREAM TEAM & CENTER

Enhanced Capture of Particles and Pathogens from Blood in a Bifurcated Microfluidic Device

J. LAHMANN¹, M. RYDER¹, J. FOWLER¹, E. DURANT¹, R. RAMAN¹, B. YU¹, S. SEALS¹, J. BAIO¹, K. SHARP¹, K. SCHILKE¹, A. HIGGINS¹, AND J. MCGUIRE¹ ¹Oregon State University, Corvallis, OR

P-Th-482

Cell Stiffness Based Mechanotyping and Classification from Inertial Microfluidics

Y. DENG¹ AND A. CHUNG¹ ¹Rensselaer Polytechnic Institute, Troy, NY

P-Th-483

Modeling Particle Vaccine And Dendritic Cell Trafficking With "Lymphaticson-a-chip"

A. ATALIS¹,², T. KASSIS¹, J. B. DIXON¹, AND K. ROY¹,² ¹Georgia Institute of Technology, Atlanta, GA, ²Emory University, Atlanta, GA

P-Th-484

Precise Micro-Culture Patterning For Long-Term Single Cell Analysis K. ZAIDI¹ AND N. AGRAWAI ¹George Mason University, Fairfax, VA

P-Th-485

Exciting Multiple Vibration Modes in Resonant Microfluidic Biosensors R. JAIN¹, A. SRIRAM¹, AND B. LUTZ¹ ¹University of Washington, Seattle, WA

P-Th-486

Hybrid Soft/Stereolithography Microfluidic Devices A. AU¹, T. CHANG¹, S. KANG¹, A. KARKAMKAR¹, AND A. FOLCH¹ ¹University of Washington, Seattle, WA

Track: Nano and Micro Technologies Nano and Micro Technologies: Nano and Micro Tech Other Posters

P-Th-487

Analysis of C. elegans Behavior During Aging Using a Microfabricated WorMotel Multi-well Device M. CHURGIN¹ AND C. FANG-YEN¹ ¹University of Pennsylvania, Philadelphia, PA

P-Th-488

Metal Oxide Nanoparticle Ingestion Alters Alkaline Phosphatase Activity N. MARTUCCI¹, R. BURELA², AND G. MAHLER¹ ¹Binghamton University, Binghamton, NY, ²Binghamton University, Binghamton University, NY

P-Th-489

Ultrasensitive Detection of Soluble Proteins from Single Cells Using Chemically Amplified Nanosensors

V. HERRERA¹, M. RAHIM¹, F. MCWHORTER¹, W. LIU¹, AND J. HAUN¹ ¹University of California, Irvine, Irvine, CA

P-Th-490

Development of a Novel, Low-Cost, One-Step Soft Mold Embossing Process for Customized Well- Plates

A. CONWAY^{1,2}, S. SUN², S. MAHER^{1,2}, J. TURGEON^{1,2}, F. SINATRA², J. HSIAO², J. ADAMS¹, D. KYLE¹, AND W. SAADI²

¹University of South Florida, Tampa, FL, ²Draper Laboratory, Tampa, FL

P-Th-491

Micron Resolution Benchtop Fabrication for Applications in Lab on Chip. N. ABBAS¹ AND M. KHRAICHE

¹University of California, San Diego, San Diego, CA

Track: Nano and Micro Technologies Nano and Micro Technologies:

Nano/Microbiotechnology Posters

P-Th-492

Magnetic Micropatterning of Different Types of Cells for Analyzing Their Interactions

K. SHIMIZU¹, S. YAMAMOTO¹, M. OKOCHI², AND H. HONDA¹ ¹Nagoya University, Nagoya, Japan, ²Tokyo Institute of Technology, Tokyo, Japan

P-Th-493

On-Chip Chromatographic Separation and Online Spectroscopic Detection of Protein Mixtures M. GOFL¹ AND S. GUPTA¹

¹Indian Institute of Technology, New Delhi, India

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-494

Towards Development of First LF-CBB-SIST (Label-Free Cell-Based Biosensor using SERS Immuno-Sensor Technology) For Intracellular Proteins Detection

V. BHARDWAJ¹, S. SRINIVASAN¹, AND A. MCGORON¹ ¹Florida International University, Miami, FL

P-Th-495

The Development And Characterization Of SDFI-elastin-like-peptide Nanoparticles For Wound Healing

A. YEBOAH¹, R. COHEN¹, R. FAULKNOR¹, M. YARMUSH¹,², AND F. BERTHIAUME¹ 'Rutgers University, Piscataway, NJ, ²Massachusetts General Hospital and Shriners Burns Hospital, Boston, MA

P-Th-496

Utilization of Gold Nanoparticles and DNA Aptamers to Create a Cross-Reactive Sensor for Illicit Drug Detection

J. YOHO¹,², J. CHÁVEZ², J. HAGEN², AND N. KELLEY-LOUGHNANE² ¹University of Dayton, Dayton, OH, ²Wright-Patterson Air Force Base, WPAFB, OH

P-Th-497

Spatially Patterning and Photo-Releasing Lentivirus on Substrates for Gene Expression

S-H. KIM¹, S. J.YU², S-G. IM², AND N. S. HWANG¹ ¹Seoul National University, Seoul, Korea, Republic of, ²KAIST, Daejeon, Korea, Republic of

P-Th-498

Detection of Specific Nucleic Acid Sequences in a Mixed Solution with Solid-State Nanopores

F. WANG¹, O. ZAHID¹, AND A. HALL¹ ¹Wake Forest University School of Medicine, Winston-Salem, NC

P-Th-499

Dielectrophoresis-assisted 3D nano-electroporation for High-throughput Cell Transfection in Adoptive Immunotherapy

L. CHANG¹, X. WANG¹, P. BERTANI¹, D. GALLEGO-PEREZ¹, X. ZHAO¹, V. MALKOC¹, W. LU¹, AND J. LEE¹

¹the Ohio State University, columbus, OH

P-Th-500

PLA2-responsive and SPIO-loaded Phospholipid Micelles

Q. GAO¹, A. TSOURKAS¹, AND Z. CHENG¹ ¹university of Pennsylvania, Philadelphia, PA

P-Th-501

A Solid-State Nanopore Assay For Investigating Single-Stranded Binding Protein Interactions With DNA

O. ZAHID¹, M. MARSHALL², J. RUZICKA², V. HENRICH², E. TAYLOR², AND A. HALL¹ ¹Wake Forest University School of Medicine, Winston-Salem, NC, ²University of North Carolina at Greensboro, Greensboro, NC

P-Th-502

Novel Graphene Oxide Biocompatible Coatings On 316 Stainless Steel Meshes for Vascular Stent Applications

A. ALCANTARA-GUARDADO¹, B. P. OROPEZA¹, Y. LIN¹, T. BOLAND¹, AND B. JODDAR¹ ¹University of Texas at El Paso, El Paso, TX

P-Th-503

Rotational Diffusivity Of Nanoparticles And Biological Fluid Viscosity In Concentrated Protein Solutions

D. BEJLERI¹, L. SU¹, A. BOHORQUEZ¹, AND C. RINALDI¹ ¹University of Florida, Gainesville, FL

P-Th-504

Understanding the Role of Nanoscale Topography of Polymer Surfaces on Inhibiting Bacterial Adhesion and Growth for Catheter Applications L. LIU¹ AND T. WEBSTER¹ "Northeastern University, Boston, MA

P-Th-505

Parallelization of Microfluidic Mixers for Large-scale Production of Lipidpolymer Nanoparticles

M. TOTH¹ AND Y. KIM¹ ¹Georgia Institute of Technology, Atlanta, GA

P-Th-506

Characterization of Conductive Polymer Nanoparticles as Photothermal Therapy Agents

T. CANTU¹, K. WALSH¹, S. MIRSHRA², J. TRACEY², J. TUNNELL³, J. IRVIN¹, AND T. BETANCOURT¹

 1 Texas State University, San Marcos, TX, 2 North Carolina State University, Raleigh, NC, 3 University of Texas at Austin, Austin, TX

P-Th-507

Development of a Technology Platform based on Combination of Magnetic Quantum Dots and Micropatterned Magnets for Manipulating and Analyzing Single Cells and Molecules

G. RUAN¹ AND J. WINTER² ¹Nanjing University, China, Nanjing City, China, People's Republic of, ²the Ohio State University, Columbus, OH

P-Th-508

Analysis on Penetration of Nano Particles through Polymeric Gloves Using Atomic Force Microscope

S. SINHA¹, S. NALAMATI¹, S. KAEWYOO¹, AND E. KIRKOR¹,² ¹University of New Haven, West Haven, CT, ²Anchor Science LLC, Branford, CT

P-Th-509

Nano-endoscope for Local Light Delivery and Collection from a Single Cell S. CHEEMALAPATI¹, J. WINSKAS¹, K. KONNAIYAN¹, A. PYAYT¹, H. WANG¹, AND A. ZHDANOV¹ 'USF, Tampa, FL

P-Th-510

Microfluidic Biosensor for Diagnosis of Urinary Tract Infections D. WU¹ AND M. THOMAS¹ "Wichita State University, Wichita, KS

vionita State Oniversity, vi

P-Th-511

Characterization and Computational Modeling of Proteins using 2-Port SAW Sensors

V. DHAGAT¹, J. KAHL², P. DUFILIE², D. KALONIA¹, AND F. JAIN¹ ¹University of Connecticut, Storrs, CT, ²Phonon Corp., Simsbury, CT

P-Th-512

Cytotoxic Effects of Zno Nanoparticles in an *InVitro* Human Intestine Epithelium Model

F. MORENO OLIVAS¹, E. TAKO², AND G. MAHLER¹ ¹SUNY Binghamton, Binghamton, NY, ²Agricultural Research Services, USDA, Ithaca, NY

P-Th-513

Development of a Biomolecule-screening Assay to Identify Mucuspenetrating Peptides

F. GAO¹ AND D. GHOSH¹ ¹University of Texas at Austin, Austin, TX

Track: Nano and Micro Technologies Nano and Micro Technologies: Paper Fluidics Posters

P-Th-514

Paper Microfluidic Platform for Detection of Viral Gastroentericis S.WEIGUM¹, A. RANJAN¹, AND Z, LU¹ ¹Texas State University, San Marcos, TX

P = Poster Session
 OP = Oral Presentation
 2 = Reviewer Choice Award

9:30AM – 5:00PM **POSTER SESSION Thurs**

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

Track: Nano and Micro Technologies Nano and Micro Technologies:

Theranostics and Nanoparticles Posters

P-Th-515

Evaluation of Magnetic Nanoparticles for Hyperthermia and Magnetic Particle Imaging by Their Dynamic Hysteresis Curves S. OTA¹, Y. WANG¹, R. KITAGUCHI¹, T. YAMADA¹, AND Y. TAKEMURA¹ 'Yokohama National University, Yokohama, Japan

P-Th-516

Polymeric Theranostic Nanoparticles: Controlled Drug Release and Biocompatability

A. GOODFRIEND¹, T. WELCH¹, K. NGUYEN², C. THOMAS³, A. NUGENT¹, AND J. FORBESS¹ ¹University of Texas Southwestern Medical Center at Dallas, Dallas, TX, ²University of Texas Arlington, Arlington, TX, ³University of Texas Dallas, Dallas, TX

P-Th-517

Nanostructured Glyco-Functional Liposomes to Elucidate Carbohydrate Mediated Targeting

J. CHEN¹, H-N. SON¹, J. HILL¹, P. STAYTON¹, A. CONVERTINE¹, AND D. RATNER¹ ¹University of Washington, Seattle, WA

P-Th-518

Toward Novel Theranostics for Osteoporotic Disease: Bisphosphonate Functionalized Gold Nanoparticles

C. CONNERS¹, V. BHETHANABOTLA¹, AND V. GUPTA¹ ¹University of South Florida, Tampa, FL

P-Th-519

A Facile Method for the Synthesis of Porous Polymeric Pesicles

L. YAN¹, E. HIGBEE¹, A. TSOURKAS¹, AND Z. CHENG¹ ¹University of Pennsylvania, Philadelphia, PA

P-Th-520

Bioconjugated Lipid Polymer Hybrid Nanoparticles Targeting Myocardial Ischemic Reperfusion Injury to Reduce Infarction Size

E. TAKAMI¹, F. EROGBOGBO¹, S. VILLAS-BOAS², E. MCKENZIE², B. READHEAD³, J. DUDLEY⁴, AND P. GLADDING⁵

¹San Jose State University, San Jose, CA, ²University of Auckland, Auckland, New Zealand,³Mount Sinai School of Medicine, New York, CA, ⁴Mount Sinai School of Medicine, New York, NY, ⁶Theranostics Laboratory, Auckland, New Zealand

P-Th-521

In Vitro Antioxidant Activity of Tannic Acid Nanoparticles Prepared by Flash NanoPrecipitation

D. AMIN¹, C. TANG², R. PRUD¹HOMME³, AND P. MESSERSMITH⁴ ¹Northwestern University, Chicago, IL, ²Virginia Commonwealth University, Richmond, VA,³Princeton University, Princeton, NJ, ⁴UC Berkeley, Berkeley, CA

Track: Neural Engineering

Neural Engineering: Device-based Approaches for Axonal Growth and

Guidance Posters

P-Th-529

An Investigation of Glycosaminoglycan Mimetic Scaffolds for Axonal Growth R. MENEZES¹, B. PFISTER¹, AND T. ARINZEH¹ ¹New Jersey Institute of Technology, Newark, NJ

P-Th-530

Carbon Nanotube/Conducting Polymer Coatings for Electrically Stimulated Drug Release in Denervated Muscle J. ELES¹ AND X. CUI¹

¹University of Pittsburgh, Pittsburgh, PA

P-Th-531

Gradient Generation Platform for Schwann Cell and Neuron Migration Guidance in 2D and 3D Cultures

K. KRICK¹, I-M. SIU¹, A. HOKE¹, T. BRUSHART¹, AND H-Q. MAO¹,² ¹Johns Hopkins School of Medicine, Baltimore, MD, ²Johns Hopkins University Whiting School of Engineering, Baltimore, MD

P-Th-533

Promoting Regeneration of Injured Rat Neurites Using Low-Frequency Uniform Electric Field Application

M. PURDY¹, W. ZAIDI¹, N. SYED¹, R. MIDHA¹, AND C. DALTON¹ ¹University of Calgary, Calgary, AB, Canada

P-Th-534

Nanofiber Scaffolds with Integrated Neuronal Progenitors for the Reengineering of Auditory Nerve

S. HACKELBERG¹, S. TUCK¹, A. RASTOGI², C. WHITE¹, L. LIU¹, D. PRIESKORN¹, J. MILLER¹, R. DUNCAN¹, AND J. COREY¹,²

¹The University of Michigan, Ann Arbor, MI, ²VA Ann Arbor Healthcare Center, Ann Arbor, MI

P-Th-535

Collagen-Graphene Film Patterning for Spatial Control of Neuronal Networks

A. SANTIAGO-LOPEZ¹, N. STONE¹, H. LEE¹, AND Y. KIM¹ ¹Georgia Institute of Technology, Atlanta, GA

P-Th-536

Magnetically-Templated Hydrogels for Peripheral Nerve Repair C. LACKO¹, A. GARCIA¹, C. RINALDI¹, AND C. SCHMIDT¹

¹University of Florida, Gainesville, FL

Track: Neural Engineering

Neural Engineering:

Neural Interfaces: Compatibility, Recording and Stimulation Posters

P-Th-537 🎗

The Foreign Body Response to the Utah Slant Electrode Array in Human Peripheral Nerve

M. CHRISTENSEN¹, H. WARK¹, D. HUTCHINSON¹, AND P. TRESCO¹ ¹University of Utah, Salt Lake City, UT

P-Th-538

Synchronization of EEG and Behavioral Recordings in Healthy And Hemi-Parkinsonian Rodents Using a Low Power Micro-Recording Embedded System

C. POLAR¹ AND A. DORVAL¹ ¹University of Utah, Salt Lake City, UT

P-Th-539

Effect of NIR Laser Pulse Width on Gold-nanorod Mediated Photothermal Neural Inhibition

H. JUNG¹, S. YOO¹, AND Y. NAM¹ ¹KAIST, Daejeon, Korea, Republic of

P-Th-540

A Novel Method for Neuron Stimulation - Visible Light Stimulation using Gold Nanoparticles

P. BAZARD¹, R. FRISINA¹, J. WALTON¹, AND V. BHETHANABOTLA¹ ¹University of South Florida, Tampa, FL

P-Th-541

EIROF-coated Carbon Fiber Ultramicroelectrodes for Neural Stimulation and Recording

F. DEKU¹, A. GHAZAVI¹, A. MERTIRI², S. COGAN¹, AND T. GARDNER² ¹University of Texas at Dallas, Richardson, TX, ²Boston University, Boston, MA

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-542

Linear Techniques for Reducing Noise in High Channel Count Feline Sciatic Nerve Data

Z. B. KAGAN¹, V. J. MATHEWS¹, AND D. J. WARREN¹ ¹University of Utah, Salt Lake City, UT

P-Th-543

Local Field Potential Signatures of Stimulation Frequency in Deep Brain Stimulation for Depression

V. TIRUVADI¹,², P. RIVA-POSSE², A. CROWELL², O. SMART², C. INMAN², AND H. MAYBERG² ¹Georgia Institute of Technology, Atlanta, GA, ²Emory University, Atlanta, GA

P-Th-544

Intraoperative Functional Mapping of Hand Premotor Cortex for Chronic Implantation of Subdural Strip Electrodes

R. MOLINA¹, N. MALING², J. SHUTE¹, E. OPRI¹, P. J. ROSSI¹, K. FOOTE¹, M. OKUN¹, AND A GUNDUZ

¹University of Florida, Gainesville, FL, ²Case Western Reserve University, Cleveland, OH

P-Th-545

ECM Coatings to Modulate the Foreign Body Response to Chronically Implanted Microelectrode Arrays

M. POLEI¹, R. OAKES¹, N. NOLTA¹, J. SKOUSEN¹, AND P. TRESCO¹ ¹University of Utah, Salt Lake City, UT

P-Th-546

Magnetic and Conductive Nanocomposite Coatings for an Improved Neural Interface

N. SNYDER¹, T. CUI¹, K. CATT¹, AND L. BRUK¹ ¹University of Pittsburgh, Pittsburgh, PA

P-Th-547

Model Comparing the Effect of the Glial Scar and Electrochemical Interface on Neural Recordings

K. MALAGA¹, K. SCHROEDER¹, P. PATEL¹, Z. IRWIN¹, D. THOMPSON¹, N. BENTLEY², C. CHESTEK¹ AND P PATIL¹

¹University of Michigan, Ann Arbor, MI, ²University of Michigan Health System, Ann Arbor, MI

P-Th-548

In Vivo Impedance Characterization of PEDOT:TFB Coated and Chronically Implanted Multi Electrode Arrays

S. GOK¹, M. SAHIN¹, J. PANCRAZIO², AND H. CHARKHKAR²

¹New Jersey Institute of Technology, Newark, NJ, ²George Mason University, Fairfax, VA

P-Th-549

Development Of A Micro-Channel Sieve Electrode For Bi-Directional Peripheral Nerve Interfacing

R. COKER¹, E. ZELLMER¹, AND D. MORAN¹ ¹Washington University in St Louis, Saint Louis, MO

P-Th-550

A Survey of Individuals with Upper Limb Loss Regarding Novel Prosthetic **Control Techniques**

S. ENGDAHL¹, B. CHRISTIE¹, B. KELLY¹, A. DAVIS¹, C. CHESTEK¹, AND D. GATES¹ ¹University of Michigan, Ann Arbor, MI

P-Th-551

Developing Nerve Electrodes With Low Tissue Adherence

C. STEPHAN¹, J. BERNABEI², M. BOBAN¹, A. TUTEJA¹, AND T. BRUNS¹ ¹University of Michigan, Ann Arbor, MI, ²Duke University, Durham, NC

P-Th-552

Vestibulo-ocular and Vestibulo-sympathetic Reflex Responses Evoked by infrared stimulation of the Vestibular System

W. JIANG¹, G. HOLSTEIN², G. MARTINELLI³, R. RABBITT⁴, AND S. RAJGURU⁵ ¹University of Miami, miami, FL, ²Icahn School of Medicine at Mount Sinai, New Tork, NY,3Icahn School of Medicine at Mount Sinai, New York, NY, 4University of Utah, Salt Lake City, UT, ⁵University of Miami, Miami, FL

P-Th-553

Adjusting Tetramethyl Orthosilicate Layer Composition and Loading Paradigm To Ameliorate The Acute Phase of Inflammation Associated With Microdevice Implantation

M. MCDERMOTT¹,² AND K. OTTO¹,² ¹University of Florida, Gainesville, FL, ²Purdue University, West Lafayette, IN

P-Th-554

Toward High-throughput Neural Engineering: Multielectrode Arraycompatible Microperfusion System for Organotypic Brain Slice Cultures J. LIU¹ AND Y. BERDICHEVSKY¹ ¹Lehigh University, Bethlehem, PA

P-Th-555

Influence of Neural Electrode Metallization on Impedance and Robustness for Long Term Implants

R. CALDWELL¹, L. R. CALDWELL¹, R. SHARMA¹, F. SOLZBACHER¹, AND P. TATHIREDDY¹ ¹University of Utah, Salt Lake City, UT

P-Th-556

Modeling The Behavior of Coated Neural Probes Post-insertion To Predict The Role Of Probe Material And Geometry On Chronic Injury

S. SINGH¹, M-C. LO¹, J. STROHL¹, I. AHMED¹, V. DAMODARAN², H. KAPLAN², J. KOHN², J. ZAHN¹, AND D. SHREIBER¹

¹Rutgers University, Piscataway, NJ, ²New Jersey Center for Biomaterials, Piscataway, NJ

P-Th-557

Long-Term Neuronal Recording And Analysis Of Patterned Activity Using Multi-Electrode Arrays

P. WIJDENES¹, C. DALTON¹, R. ARMSTRONG¹, W. ZAIDI¹, AND N. SYED¹ ¹University of Calgary, Calgary, AB, Canada

P-Th-558

NKCCI Activity in SH-SY5Y Cells using Aldosterone and Bumetanide as Ion Channel Modulators

H. K. CHITTAM¹, P. BAZARD¹, R. FRISINA¹, V. BHETHANABOTLA¹, AND J. WALTON¹ ¹University of South Florida, Tampa, FL

P-Th-559

In Vivo Assay to Evaluate the Cytotoxicity of Platinum Compounds for Stimulating Neural Electrodes

K. KOVACH¹, D. KUMSA², V. SRIVASTAVA², E. HUDAK³, B. HAHN⁴, J. T. MORTIMER², AND J.

¹Louis Stokes Cleveland VA Medical Center, Cleveland, OH, ²Case Western Reserve University, Cleveland, OH, ³Advanced Bionics, Valencia, CA, ⁴Boston Scientific Corporation, Valencia, CA

P-Th-560

A Primitive Neurostimulator Demonstrated with Frog Sciatic Nerve and Gastrocnemius Muscle

A. PARODI¹, L. C. BOSWELL¹, AND J-W. CHOI¹ ¹Louisiana State University, Baton Rouge, LA

P-Th-561

Extracellular Recordings Of Local Field Potentials And Spikes From Clustered Neuronal Networks Using Planar-Type Microelectrode Arrays S. JOO1 AND Y. NAM1

¹KAIST, Daejeon, Korea, Republic of

P-Th-562

EEG Microstate Correlates of Major Depressive Disorder and Response to Seizure Therapy

S. ATLURI^{1,2}, W. WONG¹, D. M. BLUMBERGER^{1,2}, Z. J. DASKALAKIS^{1,2}, AND F. FARZAN^{1,2} ¹University of Toronto, Toronto, ON, Canada, ²Centre for Addiction and Mental Health, Toronto, ÓN, Canada

P-Th-563

Measuring and Modeling Plasmonic Heating by Gold Nanoelectrodes for Stimulation of Neurons

D. CORRAL¹, P. BAZARD¹, K. HALL¹, R. FRISINA¹, J. WALTON¹, AND V. BHETHANABOTLA¹ ¹University of South Florida, Tampa, FL

P = Poster Session **OP** = Oral Presentation Reviewer Choice Award

9:30AM – 5:00PM **POSTER SESSION Thurs**

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-564

Changes in EEG Spectra of Children with Severe Disabilities in Response to Power Mobility Training

N. ZWEIFEL¹, L. K. KENYON¹, J. FARRIS¹, N. ALDRICH¹, AND S. RHODES¹ ¹Grand Valley State University, Grand Rapids, MI

Track: Neural Engineering Neural Engineering:

Neuro-rehabilitation Posters

P-Th-565

Safety and Efficacy of Transcranial Direct Current Stimulation as an Enhancement of Recovery from Motor Deficits following Neonatal Hypoxic-Ischemic Encephalopathy Stroke

C. ANDERSON¹ ¹University of Florida, Gainesville, FL

P-Th-566

Novel MR-Compatible Robot Measuring Ankle Kinematics, Kinetics, And Movement Latencies

J. DALY¹, A. RAVINDRAN², K. ROENIGK³, S. GROVER³, K. HROVAT³, J. ZIMBELMAN³, E. BEALL⁴, AND R. SCHEIDT⁵

¹University of Florida and DVA Medical Center Gainesville, Gainesville, FL, ²university of Florida, Gainesville, FL, ³LS Cleveland VA Medical Center, Cleveland, OH, ⁴Cleveland Clinic Foundation, Cleveland, OH, ⁵marquette university and RIC, Chicago, IL

P-Th-567

Emergence of EMG-EMG Coherence between Shoulder Abductor and Finger Flexors in Individuals with Chronic Stroke: Preliminary Findings Y. LAN¹, J. YAO², AND J. DEWALD²

¹Northwestern University, Chicago, IL, ²Northwestern University, CHICAGO, IL

P-Th-568

A Brain-Machine Interface for Closed-Loop Peripheral Nerve Stimulation to Improve Hand Function in Spinal Cord Injury Patients

C. SCHILDT¹

¹University of Kentucky, Lexington, KY

P-Th-569

Testing A Novel Method To Reduce Muscle Fatigue During Isokinetic Functional Electrically Stimulated Contractions

V. BABBAR^{1,2}, A. BERGQUIST², M. POPOVIC^{1,2}, AND K. MASANI^{1,2}

¹Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada, ²Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada

P-Th-570

Data-Driven Musculoskeletal Hindlimb Model Providing Peripheral Feedback to CPG Network

I. PEREZ¹, D. WON¹, L. TONG¹, N. CARUSETTA¹, J. NATARAJ¹, AND G. DANESHGARAN² ¹California State University, Los Angeles, Los Angeles, CA, ²University of California, Los Angeles, Los Angeles, CA

Track: Orthopedic and Rehabilitation Engineering, Tissue Engineering Tissue Engineering:

Articular Cartilage and Joints Posters

P-Th-571

Effects of Latarjet Repair on Glenohumeral Instability in the Presence of Combined Bony Defects

R. PATEL¹, P. WALIA²,³, L. GOTTSCHALK², M. JONES², S. FENING⁴, AND A. MINIACI² ¹Hinsdale Orthopaedics, Hinsdale, IL, ²Cleveland Clinic, Cleveland, OH, ³Cleveland State University, Cleveland, OH, ⁴Case Western Reserve University, Cleveland, OH

P-Th-572

Intra-articular Transport of Fluorescent Macromolecules in Healthy and Diseased Rats

T. K. MWANGI¹, E. HERNANDEZ-NIEVES¹, S. B. ADAMS², AND L. A. SETTON¹ ¹Duke University, Durham, NC, ²Duke University Medical Center, Durham, NC

P-Th-573

In-Situ Cartilage Characterization with Reduced Computational Demands D. BURRIS¹, A. MOORE¹, J. DELUCCA¹, AND D. ELLIOTT¹ 'University of Delaware, Newark, DE

P-Th-574

Effect of Anisotropy and Tissue Region on Electrical Conductivity in Porcine Meniscus

K. KLEINHANS¹, J. MCMAHAN¹, AND A. JACKSON¹ ¹University of Miami, Coral Gables, FL

P-Th-575

Expansion of Chondrogenic Cells on Decellularized Extracellular Matrix Derived Microcarriers

E. MARR¹, O. BURNSED¹, A. SARAOGEE¹, R. GULDBERG¹, AND T. MCDEVITT² ¹Georgia Institute of Technology, Atlanta, GA, ²Gladstone Institute, San Francisco, CA

P-Th-576

Quantification of Early Structural Joint Changes in a Murine Model of Post-Traumatic Osteoarthritis

M. DAVID¹, M. SMITH¹, A. WHITE¹, R. LOCKE¹, AND C. PRICE¹ ¹University of Delaware, Newark, DE

P-Th-577

Magnetic Depletion-Based Assay of Interleukin I Beta Concentration A. MONSALVE¹, A. GARRAUD¹, K. ALLEN¹, AND J. DOBSON¹ 'University of Florida, Gainesville, FL

P-Th-578

Hypothermically Stored Human Amniotic Membrane Allograft as a Substrate for Articular Cartilage Regeneration

J. VINES^{1,2}, S. TABET³, H. WALTHALL², AND H-W. JUN¹ ¹University of Alabama at Birmingham, Birmingham, AL, ²NuTech Medical, Birmingham, AL,³New Mexico Orthopaedics, Albuquerque, NM

P-Th-579

IL-6 is Primary Regulator of Sensory Neuron Sensitization to Heat Stimuli by Degenerative Disc Tissue

J. STOVER¹, B. LAWRENCE¹, AND R. BOWLES¹

¹University of Utah, Salt Lake City, UT

P-Th-580

Structural Differences Between Distinct Tendon Types Arise During Fetal Development

S. SPARAVALO¹, C. A. M. BRAY¹, T. M. BROCK-FISHER¹, N. M. EASTON¹, C. A. GUINARD¹, S. M. WELLS¹, J. M. LEE¹, AND S. P. VERES¹,²

¹Dalhousie University, Halifax, NS, Canada, ²Saint Mary's University, Halifax, NS, Canada

P-Th-581

Proliferative Therapy-Induced Changes in the Cellular Response of Human Tenocytes

E. EKWUEME¹, M. MOHIUDDIN¹, J. YARBOROUGH¹, P. G. BROLINSON², D. SARIS³, H. FERNANDES³, AND J. FREEMAN¹

¹Rutgers University, Piscataway, NJ, ²Edward Via Virginia College of Osteopathic Medicine, Blacksburg, VA, ³University of Twente, Enschede, Netherlands

P-Th-582

Mechanism for Simulated Motion of the Human Hand

L. LANE¹, R. STOER¹, C. SANCHEZ¹, R. KOEHLER¹, S. COSS¹, J. LEE¹, K. SMITH¹, M. MARTINEZ¹, C. DANG¹, M. PLUGGE¹, AND D. GROW¹ *'New Mexico Tech, Socorro, NM*

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

Track: Orthopedic and Rehabilitation Engineering, Tissue Engineering

Tissue Engineering:

Bone Posters

P-Th-583

Development Of A Hydroxyapatite Reinforced, Load-Bearing Scaffold For Bone Tissue Engineering

P. PATEL¹, B. TAYLOR¹, C. SAHYOUN¹, S. PATEL², A. MONT², AND J. FREEMAN¹ ¹Rutgers University, Piscataway, NJ, ²New Jersey Institute of Technology, Newark, NJ

P-Th-584

Development of a Bone Bioreactor for Forensic Applications

V. MEALING¹, M. HARMAN¹, M. PYSH¹, E. MIKHAILOVA¹, C. DRAPCHO¹, AND K. WEISENSEE¹

¹Clemson University, Clemson, SC

P-Th-585

Sleeve Gastrectomy Reduced Mechanical Strength of Bone in Axial and Bending Directions: A Study Using 4-Point Bending and Finite Element Analysis

J. ABRAHAM¹, B. YU¹, G. PAGNOTTI¹, V. PATEL¹, A. YANG¹, M. ALTIERI¹, A. PRYOR¹, D. TELEM¹, C. RUBIN¹, AND M. L. CHAN¹ 'Stony Brook University, Stony Brook, NY

P-Th-586

Biomechanical Analysis of Coaxial and Cortical Trajectory Pedicle Screws in Lumbar Spine Fusion Constructs

P. BROWN¹, G. GILLISPIE¹, J. MITCHELL¹, J. WEST², J. STITZEL¹, AND W. HSU² ¹VT-WFU School of Biomedical Engineering and Sciences, Winston Salem, NC, ²Wake Forest Baptist Medical Center, Winston Salem, NC

P-Th-587

LRP4 Knockout Induces Canonical Wnt Signaling: Implications for Bone Formation

L. GORRELL¹, A. MIXON¹, A. SRINIVASAN¹, AND S. KOTHA¹ ¹Rensselaer Polytechnic Institute, Troy, NY

P-Th-588

Geometry of the Humerus in Chondrodystrophic, Brachycephalic, and Non-chondrodystrophic Dogs

E. SMITH¹, D. MARCELLIN-LITTLE², O. HARRYSSON², AND E. GRIFFITH² ¹North Carolina State University/University of North Carolina at Chapel Hill, Raleigh, NC,²North Carolina State University, Raleigh, NC

Track: Orthopedic and Rehabilitation Engineering, Tissue Engineering Tissue Engineering:

Musculoskeletal Tissue Engineering Posters

P-Th-589

Targeted Engineering of the Nucleus Pulposus Using a Tissue Specific Acellular Matrix

R. A. WACHS¹, S. XIN¹, H. I. HUDA¹, E. N. HOOGENBOEZEM¹, D. N. STANTON¹, S. L. PORVASNIK¹, AND C. E. SCHMIDT¹ ¹University of Florida. Gainesville. FL

P-Th-590

Broadband Ultrasound Frequency Sensitivity and Composition as Critical Effects of Wave Propagation in Assessment of Musculoskeletal Tissue J. JIAO¹, X. L¹¹, J. MUIR¹, R. SAHUL², E. NESVUSKI², AND YX. QIN¹

¹Stony Brook University, Stony Brook, NY, ²TRS Technologies Inc., State College, PA

P-Th-591

The Role of Hydroxyapatite Nanoparticles in Enhancing Cartilage-Cartilage Integration in Osteoarthritic environments K. COMELLA¹

¹Florida International University, Miami, FL

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

P-Th-592

Estimation of Nutrient Transport in the Intervertebral Disc Using Stains and Mathematical Modeling

M. GIERS¹, B. MUNTER², G. IDE¹, K. EYSTER², M. R. CAPLAN², A. NEWCOMB¹, B. KELLY¹, N. CRAWFORD¹, M. PREUL¹, AND N. THEODORE¹

¹St. Joseph's Hospital and Medical Center, Phoenix, AZ, ²Arizona State University, Tempe, AZ

P-Th-593

Demonstration of Mechanical Integrity in an Acellular Porous Meniscus Replacement

E. LAKES¹, P. MCFETRIDGE¹, AND K. ALLEN¹ ¹University of Florida, Gainesville, FL

Track: Biomechanics, Tissue Engineering Tissue Engineering:

Biomechanics in Tissue Engineering and Regenerative Medicine Posters

P-Th-594

Micropillar Array To Study Microtissue Morphogenesis Under Local And Global Mechanical Stimuli M. ASMANI¹, Y. Li¹, C. KOTEI¹, D. OLSEN¹, F. MENG¹, AND R. ZHAO¹ 'SUNY at Buffalo, Buffalo, NY

P-Th-595

Influences On Felxural Strength And Deformation Behavior Of LED Cured Microhybrid And Nanofilled Dental Resin Composites

A. OSUNTOKI¹, O. AJIBOLA¹, O. ADELEYE¹, O. FAKINLEDE¹, AND I. ADEGBULUGBE¹ ¹University of Lagos, Lagos, Nigeria

P-Th-596

Wound Healing Revealed by a Novel Automated Indentation Technique

S. SIM^{1,2}, M. GARON², E. QUENNEVILLE², AND M. D. BUSCHMANN¹ ¹Polytechnique Montreal, Montreal, QC, Canada, ²Biomomentum Inc., Laval, QC, Canada

P-Th-597

Effects Of Substrate Stiffness On Direct Reprogramming From Fibroblasts To Neurons And The Underlying Molecular Mechanisms

S.Y. WONG^{1,2}, J. SOTO^{1,2}, J. CHU¹, H. PARK¹, M-M. POO^{1,3}, AND S. LI^{1,2} ¹University of California, Berkeley, Berkeley, CA, ²University of California, San Francisco, San Francisco, CA, ³Chinese Academy of Sciences, Shanghai, China, People's Republic of

P-Th-598

Induced Wound Reveals Tension in Human Dermal Equivalents

L. TINNIN¹, C. ANDERSON¹, M. VAUGHAN¹, AND G. XU¹ ¹University of Central Oklahoma, Edmond, OK

Track: Tissue Engineering Tissue Engineering:

Bioreactor Systems for Tissue Engineering Posters

P-Th-599

Native to Engineered Valvular Tissue Integration Under Flex-Flow States D. STEWART¹, K. COMELLA¹, S. RATH¹, AND S. RAMASWAMY¹ ¹Florida International University, Miami, FL

P-Th-600

The Effect of Hydrostatic Pressure and &[beta]-TCP/PCL Scaffold on Osteogenic Differentiation of hMSCs

S. H. PARK¹, S. A. PARK², Y. G. KANG¹, J. W. SHIN¹, H. L. KIM¹, Y. M. KIM¹, S. R. GU³, Y. R. WU³, H. Y. BAN¹, M. W. LEE¹, AND J-W. SHIN¹,³,⁴

¹Department of Biomedical Engineering, Inje University, Gimhae-si, Korea, Republic of²Korea Institute of Machinery & Materials, Daejeon, Korea, Republic of, ³Department of Health Science and Technology, Inje University, Gimhae-si, Korea, Republic of,⁴CMDC/ Institute of Aged Life Redesign/UHRC, Inje University, Gimhae-si, Korea, Republic of

P-Th-601

Design and Tests of a Novel Biaxial Stretch Bioreactor for Tissue-Engineered Heart Valves

Y. LEI¹ AND Z. FERDOUS¹ ¹The University of Tennessee, Knoxville, TN

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-602

MRI Perfusion Culture System For Cartilage Tissue Engineering MRI Perfusion Culture System for Cartilage Tissue Engineering Z. HAN1 AND S. OTHMAN ¹College of Engineering, Lincoln, NE

P-Th-603 DREAM TEAM & CENTER

Quantitative Systems Pharmacology for Microphysiological Systems (MPS): Data Interpretation and Multi-MPS Integration

J. YU¹, N. CILFONE¹, E. LARGE², U. SARKAR¹, J. WISHNOK¹, S. TANNENBAUM¹, D. HUGHES², D. LAUFFENBURGER¹, L. GRIFFITH¹, C. STOKES³, AND M. CIRIT ¹MIT, Cambridge, MA, ²CN Bio Innovation Ltd, Welwyn Garden City, United Kingdom, ³Stokes Consulting, Redwood City, CA

P-Th-604

Metabolite Monitoring as a Method of Real-Time Nondestructive Analysis of Bone Tissue Engineered Constructs for Regenerative Medicine A. SIMMONS¹, C. WILLIAMS¹, AND V. SIKAVITSAS ¹University of Oklahoma, Norman, OK

Track: Tissue Engineering, Cardiovascular Engineering

Tissue Engineering:

Cardiovascular Tissue Engineering Posters

P-Th-605

Regulation of Vascular Smooth Muscle Cell Sheet on Degradable Hydrogel N. G. RIM¹, J. KIM¹, AND J. WONG¹ Boston University, Boston, MA

P-Th-606

Iron Oxide Nanoparticle-mediated Cardiac Priming of MSCs to Treat Myocardial Infarction

J. HAN1, B. KIM2, J-Y. SHIN1, S. RYU1, M. NOH1, J. WOO2, J-S. PARK2, Y. LEE1, N. LEE3, T. HYEON¹, D. CHOI², AND B-S. KIM¹

¹Seoul National University, Seoul, Korea, Republic of, ²Yonsei university, Seoul, Korea, Republic of, ³Kookmin University, Seoul, Korea, Republic of

P-Th-607

Generation of Capillaries in Patterned Type I Collagen Gels In Vitro N. BOLAND¹, R. LINVILLE¹, G. COVARRUBIAS¹, AND J. TIEN¹ ¹Boston University, Boston, MA

P-Th-608

Accelerated Endothelial Differentiation of Stem Cells on Cardiac Matrix Hydrogel with Tailored Properties

M. JEFFORDS¹, J. WU², M. SHAH¹, Y. HONG², AND G. ZHANG¹ ¹University of Akron, Akron, OH, ²University of Texas at Arlington, Arlington, TX

P-Th-609

Combination of Aligned Electrospun PLCL and Fibroblast-Derived Matrix for the Differentiation and Maturation of Cardiomyocytes

M. SUHAERI^{1,2}, R. SUBBIAH^{1,2}, P. DU¹, AND K. PARK^{1,2} ¹Korea Institute of Science and Technology, Seoul, Korea, Republic of, ²Korea University of Science and Technology, Daejon, Korea, Republic of

P-Th-610

Response of Cardiac Cells to Physiologically Relevant Levels of Mechanical Stress

A. ROGERS¹, V. FAST¹, AND P. SETHU¹ ¹University of Alabama at Birmingham, Birmingham, AL

P-Th-611

Highly Aligned Elastin Incorporated Collagen Fibers for Vascular Tissue Engineering

T-U. NGUYEN¹, C. BASHUR¹, AND V. KISHORE¹ ¹Florida Institute of Technology, Melbourne, FL

P-Th-612

Impact of Electrospun Conduit Composition on Vascular Graft Production and Remodeling after Aortal Implantation

M. SHOJAEE¹, K. BIRTHARE¹, AND C. BASHUR¹ ¹Florida Institue of Technology, Melbourne, FL

P-Th-613

MOVED TO ORAL PRESENTATION

P-Th-614

Developing Efficient Recellularization Strategies for Decellularized Porcine Myocardial Scaffold P. KC¹, M. SHAH¹, B. BRAZILE², J. LIAO², AND G. ZHANG¹

¹The University of Akron, Akron, OH, ²Mississippi State University, Starkville, MS

P-Th-615

Heterogeneous Human Placenta Matrix Release from PLGA Microparticles to Modulate Angiogenesis

M. MOORE¹, S. TONELLO¹, B. SHARMA¹, J. DOBSON¹, AND P. MCFETRIDGE¹ ¹University of Florida, Gainesville, FL

P-Th-616

3D Differentiation of Reprogrammed Amniotic Fluid Derived Stem Cells for Congenital Heart Repair

C. TSAO¹, S. POK¹, A. VELASQUEZ-MAO¹, AND J. JACOT¹,² ¹Rice University, Houston, TX, ²Texas Children's Hospital, Houston, TX

P-Th-617

Influence of Porcine Heart Orientation on Its Decellularization Efficiency P-F. LEE¹, E. CHAU¹, R. CABELLO¹, A. T. YEH², L. SAMPAIO¹, A. S. GOBIN¹, AND D. A. TAYLOR¹ ¹Texas Heart Institute, Houston, TX, ²Texas A&M University, College Station, TX

P-Th-618

Development of a Hypertensive Ovine Model to Study Vascular Graft Implantation

S. ROW¹, M. KOOBATIAN¹, A. SHAHINI¹, C. KOENIGSKNECHT¹, S. ANDREADIS¹, AND D. SW/ABT71 ¹State University of New york at Buffalo, Amherst, NY

P-Th-619

Application Of Solar Cell Derived Electrical Stimulation To The Vascular **Tissue Regeneration**

G-J. JEONG Seoul National University, Seoul, Korea, Republic of

P-Th-620

A Microfluidic Platform to Tissue Engineer Arterioles

M. TRAORE¹, R. HONGYI LI¹, AND S. GEORGE¹ ¹Washington University in Saint Louis, Saint Louis, MO

P-Th-621

Nutrient Transport in Dynamic Culture of Engineered Valves

M. SALINAS¹, V. UNNIKRISHNAN², AND S. RAMASWAMY¹ ¹Florida International University, Miami, FL, ²University of Alabama, Tuscaloosa, AL

P-Th-622

Isotropic Silk Patches for Myocardial Repair Following Infarction K. SULLIVAN¹, W. STOPPEL¹, D. KAPLAN¹, AND L. BLACK¹ *Tufts University, Medford, MA*

P-Th-623

Modulating Structure and Function of Vascular Smooth Muscle Cell Sheets E. LEE¹, H. BENDRE¹, M. ROBINSON¹, A. KALMYKOV¹, AND J. WONG¹ ¹Boston University, Boston, MA

P-Th-624

iPSC-Cardiomyocyte Maturation in Cardiac Cell Conditioned Hydrogel Y. GAO¹ AND J. JACOT¹ ¹Rice University, Houston, TX, ²Texas Children's Hospital, Houston, TX

P-Th-625

Using the Embryonic Heart as an Instructive Template for Cardiac Tissue Engineering

I. BATALOV¹, S. KIM¹, AND A. FEINBERG¹ ¹Carnegie Mellon University, Pittsburgh, PA

P-Th-626

Differentiation and Characterization of Adipose Stem Cells for Blood Vessel **Tissue Engineering**

J. ARRIZABALAGA¹ AND M. NOLLERT¹

¹University of Oklahoma, Norman, OK

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

Track: Tissue Engineering Tissue Engineering:

Engineering Replacement Tissues Posters

P-Th-627

Designing Surface Cues of a Synthetic Hydrogel Scaffold for Retinal Pigment Epithelium Tissue Engineering C. WHITE¹ AND R. OLABISI¹ 'Rutgers, The State University of New Jersey, Piscataway, NJ

P-Th-628

Controlled Tissue Transdifferentiation by Nanochannel Electroporation

D. GALLEGO-PEREZ¹, S. GHATAK¹, D. PAL¹, V. MALKOC¹, S. GNYAWALI¹, L. CHANG¹, J. OTERO¹, L. J. LEE¹, AND C. K. SEN¹ ¹The Ohio State University, Columbus, OH

P-Th-629

3D Tissue Engineering Using Template Based Casting T. KRUSE¹, H. STREY¹, AND D. RUBENSTEIN¹ *'Stony Brook University, Stony Brook, NY*

P-Th-630

Developing a Bio-inspired Hybrid Nanosack for the Delivery of Pancreatic Islet and FGF-2 to Improve Islet Engraftment in the Omentum

P. HWANG¹, D-J. LIM¹, A. TAMBRALLI¹, G. ALEXANDER¹, S. GILBERT¹, L. TIAN¹, A. SHALEV¹, AND H-W. JUN¹ ¹University of Alabama at Birmingham, Birmingham, AL

P-Th-631

A Three-Dimensional Anisotropic Tissue Fabricated Using Natural ECM Scaffold in Rotating Wall Vessel Bioreactor

Q. XING¹, Z. QIAN¹, K. YATES¹, M. TAHTINEN¹, AND F. ZHAO¹ ¹Michigan Technological University, Houghton, MI

P-Th-632

Monitoring Decellularization of Rat Livers With Computed Tomography Scanning

S. GEERTS¹, S. OZER¹, M. YARMUSH¹, AND B. UYGUN¹ ¹Massachusetts General Hospital, Harvard Medical School, Boston, MA

Track: Tissue Engineering Tissue Engineering:

Engineering Tissue Interfaces Posters

P-Th-634

Multi-Cellular In Vitro Rat Primary Co-culture System To Mimic Liver Function And Response

S. S. BALE¹, S. GEERTS¹, W. MCCARTY¹, I. GOLBERG¹, O. B. USTA¹, R. JINDAL¹, AND M. L. YARMUSH¹,²

¹Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, ²Rutgers University, Piscataway, NJ

P-Th-635

Simulated Body Fluid Nucleation of 3D Printed Elastomeric Scaffolds for Osteochondral Regeneration N. CASTRO¹ AND L. ZHANG¹

¹The George Washington University, Washington, DC

P-Th-636 MOVED TO ORAL PRESENTATION

P-Th-637

Strategies to Overcome Tissue Hypoxia in Islet Encapsulation

N. NEEL¹, R. KRISHNAN¹, N. CORRALES¹, S. PADAYAO¹, M. ALEXANDER¹, J. MCQUILLING², E. OPARA², AND J. LAKEY¹,³ ¹University of California Irvine, Orange, CA, ²Wake Forest University, Winston-Salem, NC,³University of Calfornia Irvine, Irvine, CA

P-Th-638

Formulation of a Co-differentiation Media for Osteochondral Tissue Engineering

D. DORCEMUS^{1,2} AND S. NUKAVARAPU^{1,2,3} ¹University of Connecticut, Storrs, CT, ²Institute for Regenerative Engineering, Farmington, CT, ³Uconn Health, Farmington, CT

P-Th-639

Electrospinning of Personalized Scaffolds for Wound Healing by Robotic Electrospinner

J. GERSTENHABER¹, Y-E. HAR-EL¹, AND P. LELKES¹ ¹Temple University, Philadelphia, PA

Track: Tissue Engineering, Orthopedic and Rehabilitation Engineering

Tissue Engineering:

Musculoskeletal Tissue Engineering Posters

P-Th-640

Optimization of Mechanical and Electrical Stimuli to Make Stronger 3D Engineered Skeletal Muscles H. KIM¹, V. CHAN¹, D. NEAL¹, AND H. H. ASADA¹ ¹Massachusetts Institute of Technology, Cambridge, MA

P-Th-641

Magnetic Silk Fibroin E-Gel Scaffolds for Bone Tissue Engineering Applications

Z. KARAHALILOGLU¹, E. YALCIN², M. DRMITBILEK¹, AND E. B. DENKBASE¹ ¹Hacettepe University, Ankara, Turkey, ²Pharmaceuticals and Medical Devices Agency, Ankara, Turkey

P-Th-642

Corin is a Key Regulator of Osteogenesis in Mesenchymal Stem Cells via Angiogenic Mechanisms

R. NORDBERG¹, A. CHAROENPANICH¹, AND E. LOBOA¹ ¹University of North Carolina Chapel Hill & North Carolina State University, Raleigh, NC

P-Th-643

Achieving Synergistic Interactions Between Stem Cells And Neonatal Chondrocytes In 3D For Catalyzed Cartilage Formation Requires The Use Of 3D Hydrogels

H. ROGAN¹, J. LAI¹, AND F. YANG¹ ¹Stanford University, Stanford, CA

P-Th-644

Synthesis and Fabrication of Porous PGS-Nanosilicate Scaffolds for Bone Tissue Engineering

P. JOSHI¹, P. KERATIVITAYANAN¹, AND A. K. GAHARWAR¹ ¹Texas A&M University, College Station, TX

P-Th-645

Development of a Real-time Oxygen Tension Measurement System to Accurately Measure Cellular Energy Production via Oxygen Consumption Rates of Engineered, Human Skeletal Muscle Bundles B. DAVIS¹, J. SANTOSO¹, M. WALKER¹, AND G. TRUSKEY¹ ¹Duke University, Durham, NC

P-Th-646

Assessing the Osteogenic Differentiation of Human Mesenchymal Stem Cells Co-Cultured with Human Vein Endothelial Cells on a Peptide Amphiphile Nanomatrix

L. DENG¹, D. PATEL¹, J. VINES¹, A. JAVED¹, S. GILBERT¹, AND H-W. JUN¹ ¹University of Alabama at Birmingham, Birmingham, AL

P-Th-647

Characterization of Glucose Uptake in Human Engineered Skeletal Muscle Bundle Constructs M. GODSEY¹ AND G. TRUSKEY¹ ¹Duke University, Durham, NC

P = Poster Session
 OP = Oral Presentation
 2 = Reviewer Choice Award

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-648

Enhancing Mesenchymal Stem Cell Differentiation in Decellularized Bone Marrow Environments

R. STEPHENSON¹

¹University of Utah, Salt Lake City, UT

P-Th-649

Evaluation of Progenitor Cell Co-culture on Osteogenic Differentiation J. SHAUL 1 AND K. BURG^2

¹Clemson University, Clemson, SC, ²Kansas State University, Manhattan, KS

P-Th-650

Effect of Delayed Treatment on Cranio-maxillofacial Bone Healing

P. CARLISLE¹, D. SILLIMAN¹, T. GUDA¹,², AND P. BROWN BAER¹ ¹US Army Institute of Surgical Research, Ft. Sam Houston, TX, ²University of Texas at San Antonio, San Antonio, TX

P-Th-651

Osteogenic Differentiation of Progenitor Cell Co-cultures on Bone Graft Substitutes

J. SHAUL¹ AND K. BURG² ¹Clemson University, Clemson, SC, ²Kansas State University, Manhattan, KS

P-Th-652

Tendon Grafts using Mechanostimulated Decellularized Human Umbilical Vein Seeded with Adult Stem Cells Z. MUSSETT¹, S. BONHOURE¹, AND V. SIKAVITSAS¹

¹University of Oklahoma, Norman, OK

P-Th-653

Microribbon-Based Hydrogels Guided Mesenchymal Stem Cells To Undergo Endochondral Ossification In Vivo

B. CONRAD¹, LH. HAN², AND F. YANG³ 'Stanford, Stanford, CA, ²Drexel University, Philadelphia, PA, ³Stanford University, Stanford, CA

P-Th-654

Biomechanical Characterization of Porcine Skeletal Muscle Extracellular Matrix

B. BRAZILE¹, S. PATNAIK¹, S. LIN¹, X. SHI¹, S. LIAO¹, R. PRABHU¹, H. RHEE¹, L. WILLIAMS¹, AND J. LIAO¹ ¹Mississippi State University, Mississippi State, MS

P-Th-655

Dynamic Analysis Of Variable Modulus Scaffolds For Bone Regeneration R. CHUNG1 AND A. VALDEVIT1 $\,$

¹Stevens Institute of Technology, Hoboken, NJ

P-Th-656

Lubricin Mimic Reduces Friction on the Articular Cartilage Surface A. LAWRENCE¹, X. XU¹, S. CALVE¹, C. NEU¹, AND A. PANITCH¹ ¹Purdue University, West Lafayette, IN

P-Th-657

The Mechanism of Enhanced Skeletal Muscle Differentiation by Combined Effects of Aligned Topology and Electrical Field

U. H. KO', H. BANG¹, T. L. P. AhH¹, J. LEE¹, M. KIM¹, H. SHIN¹, S. PARK², AND J. SHIN¹ ¹KAIST, Daejeon, Korea, Republic of, ²Korea Institute of Industrial, Cheonan, Korea, Republic of

P-Th-658

Effect Of Myostatin And Follistatin On Human Myoblasts

D. JOGLEKAR¹, D. BROWE¹, E. EKWUEME¹, AND J. FREEMAN¹ ¹Rutgers-The State University of New Jersey, Piscataway, NJ

P-Th-659

Roles of Heat Shock Protein 70 in Osteogenic and Chondrogenic Differentiation of Human Mesenchymal Stem Cells

C. LI¹, K. SUNDERIC¹, AND S. WANG¹ ¹CCNY/CUNY, New York, NY

Track: Tissue Engineering, Neural Engineering Tissue Engineering:

Neural Tissue Engineering Posters

P-Th-660

BDNF Mimetic Peptides Immobilized to Collagen as a Therapeutic Hydrogel for TBI C. LOWE¹ AND D. SHREIBER¹

¹Rutgers University, Piscataway, NJ

P-Th-661

Polypyrrole/Alginate Conductive Hydrogels for Neural Stem Cell Scaffold Application

S. YANG¹, S. KIM¹, J. C. YANG¹, Y. JANG¹, AND J. Y. LEE¹ ¹Gwangju Institute of Science and Technology, Gwang ju, Korea, Republic of

P-Th-662 DREAM TEAM & CENTER

Patterned Extracellular Matrix on "Nerve Friendly" Polymers for Neurite Guidance and Regeneration

G. HARRIS¹, S. BANDINI¹, H. WANG², N. MADIGAN², A. WINDEBANK², M. YASZEMSKI², J. SCHWARZ¹, AND J. SCHWARZBAUER¹

¹Princeton University, Princeton, NJ, ²Mayo Clinic, Rochester, MN

P-Th-663

Hyaluronic Acid Hydrogel is Neuroprotective in Spinal Cord Injury

S. KUSHCHAYEV¹, M. GIERS², D. ENG³, N. MARTIROSYAN², J. ESCHBACHER², M. MORTAZAVI⁴, N. THEODORE², A. PANITCH⁵, AND M. PREUL²

¹Mercy Catholic Medical Center, Philadelphia, PA, ²St. Joseph's Hospital and Medical Center, Phoenix, AZ, ³Arizona State University, Tempe, AZ, ⁴California Neurological Institute, Valencia, CA, ⁵Purdue University, Lafayette, IN

P-Th-664

Tissue Engineered Living Scaffolds Consisting of Aligned Astrocytes for Nervous System Repair

K. KATIYAR^{1,2,3}, C. WINTER¹, N. HERNANDEZ¹, J. HARRIS^{1,2}, L. STRUZYNA¹, AND D. K. CULLEN^{1,2}

¹University of Pennsylvania, Philadelphia, PA, ²Philadelphia Veteran's Affairs, Philadelphia, PA, ³Drexel University, Philadelphia, PA

P-Th-665

Transplantable Engineered Micro-Columns For Controlled Neural Network Delivery into Brain

J. BURRELL^{1,2}, L. STRUZYNA^{1,2}, K. BROWNE^{1,2}, J. HARRIS^{1,2}, AND D. K. CULLEN^{1,2} ¹University of Pennsylvania, Philadelphia, PA, ²Philadelphia Veterans Affairs Medical Center, Philadelphia, PA

P-Th-667

Reconstructing the Nigrostriatal Pathway with Living Micro-Tissue Engineered Axonal Tracts

L. Ā. STRUZYNA^{1,2}, J. P. HARRIS^{1,2}, K. D. BROWNE^{1,2}, J. BURRELL^{1,2}, H. I. CHEN^{1,2}, AND D. K. CULLEN^{1,2}

¹University of Pennsylvania, Philadelphia, PA, ²Philadelphia Veterans Affairs Medical Center, Philadelphia, PA

Track: Tissue Engineering Tissue Engineering:

Printing and Patterning in Tissue Engineering Posters

P-Th-668

Biodegradable Alginate As A Bioink For Bioprinting

J. JIA¹, D. RICHARDS¹, S. POLLARD¹, Y. TAN¹, J. RODRIGUEZ¹, R. VISCONTI², T. TRUSK², M. YOST², H. YAO¹, R. MARKWALD², AND Y. MEI¹ ¹Clemson University, Charleston, SC, ²MUSC, Charleston, SC

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-669

3D Printable Hydrogel Matrix Derived from Decellularized Aortic Valve Leaflets Promotes Fibroblastic Differentiation D. CHEUNG¹, B. DUAN¹, AND J. BUTCHER¹

¹Cornell University, Ithaca, NY

P-Th-670

Collagen Methacrylamide: A Versatile Biomaterial For Multi-Scale Scaffold Control

K. DRZEWIECKI¹ AND D. SHREIBER¹ ¹Rutgers University, Piscataway, NJ

P-Th-671

High-throughput 3D Spheroid Culture using Inkjet Bioprinting J. RODRIGUEZ-DEVORA¹, C. MOODY¹, A. DESAI¹, K. BURG¹, AND D. DEAN¹ ¹Clemson University, Clemson, SC

P-Th-672

Exploiting Temporal Differences in Cell-ECM Adhesion to Pattern Cocultures of Tumor and Endothelial Cells

K. BHADRIRAJU¹, J. HONG¹, AND D. REYES¹ ¹National Institute of Standards and Technology, Gaithersburg, MD

P-Th-673

Process-induced Cell Injury during Laser Cell Printing Z. ZHANG¹, R. XIONG¹, A. COMPAAN¹, W. CHAI¹, L. ZHOU¹, AND Y. HUANG¹ ¹University of Florida, Gainesville, FL

P-Th-674

3D Printing of Novel Gradient Osteochondral Scaffolds to Bridge the Gap between Cartilage and Bone

M. NOWICKI¹, N. CASTRO¹, M. PLESNIAK¹, AND L. G. ZHANG¹ [†]The George Washington University, Washington, DC

P-Th-675

Extrusion of 3D Alginate Tubes using Two-step Gelation Approach

Y. JIN¹, A. COMPAAN¹, T. BHATTACHARJEE¹, T. ANGELINI¹, G. SAWYER¹, AND Y. HUANG¹ ¹University of Florida, Gainesville, FL

P-Th-676

Deformation Compensation during Inkjet Printing of Vascular-like Structures

K. CHRISTENSEN¹, A. COMPAAN¹, C. XU¹, Z. ZHANG ¹, W. CHAI ¹, AND Y. HUANG¹ ¹University of Florida, Gainesville, FL

P-Th-677

A 3D Bioprinting System Based on Visible Light Stereolithography

Z. WANG¹, R. ADULLA¹, B. PARKER¹, S. GHOSH¹, AND K. KIM¹ ¹University of British Columbia Okanagan, Kelowna, BC, Canada

P-Th-678

Tissue Printing of Complex Structures through Micro Extrusion I. GARCIA-SIERRA¹, N. DIFFOOT-CARLO¹, G. NAVARRO-VALE¹, AND P. A. SUNDARAM¹ ¹University of Puerto Rico, Mayaguez, PR

P-Th-679 DREAM TEAM & CENTER

Fiber-Assisted Molding (FAM) of Helical and Curve Surfaces for Cell and Tissue Alignment

V. HOSSEINI¹, P. KOLLMANNSBERGER¹, S. Ahadian², S. Ostervidov², H. Kaji³, V. VOGEL¹, and A. Khademhosseini²,⁴

¹ETH Zurich, Zürich, Switzerland, ²WPI-Advanced Institute for Materials Research, Sendai, Japan, ³Tohoku Unversity, Sendai, Japan, ⁴Harvard Medical School, Boston, MA

P-Th-680

3-D Bio-printed Glioblastoma-Vascular Niche

V. LEE¹, S-S. YOO², H. ZOU³, AND G. DAI¹ ¹Rensselaer Polytechnic Institute, Troy, NY, ²Harvard Medical School / Brigham and Women's Hospital, Boston, MA, ³Icahn School of Medicine at Mount Sinai, New York, NY

P-Th-681

Spatial Manipulation And Patterning Of Micro-Particles And Biological Cells Using Acoustic Forces

J. R. COOPER¹, R. GULDIKEN¹, AND N. D. GALLANT¹ ¹University of South Florida, Tampa, FL

P-Th-682

3D Printing of Human Pigmented Skin

K. REESER¹, S. FREEMAN¹, S-S. YOO², S. JIN¹, AND K. YE¹ ¹Binghamton University, SUNY, Binghamton, NY, ²Harvard Medical School/Brigham and Women's Hospital, Boston, MA

P-Th-683

3D Printing of Complex Biological Scaffolds Using Soft Hydrogels T. J. HINTON¹ AND A. FEINBERG¹

¹Carnegie Mellon University, Pittsburgh, PA

P-Th-684

Using Acoustic Fields To Pattern Cells Or Microparticles In Collagen Hydrogels In Situ

E. COMEAU¹, M. VANDER HORST¹, C. RAEMAN¹, D. HOCKING¹, AND D. DALECKI¹ ¹University of Rochester, Rochester, NY

P-Th-685

Bioactive Composite Living Fibers for Organ Weaving

M. AKBARI¹, A. TAMAYOL², L. SEREX², N. FARAMARZI², E. LESHA², S. R. SHIN², F. TARLAN², AND A. KHADEMHOSSEINI² ¹Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, ²Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, Cambridge, MA

Track: Tissue Engineering Tissue Engineering:

Tissue Engineering Other Posters

P-Th-686

Decellularized Liver Extracellular Matrix for Long-Term Culture of Human Liver Cells

C. LIN¹, D. FAULK², S. BADYLAK², AND S. KHETANI¹ ¹Colorado State University, Fort Collins, CO, ²University of Pittsburgh, Pittsburgh, PA

P-Th-687

Integrated Effects Of Hydroxyapatite And Vascular Endothelial Growth Factor (VEGF) On Angiogenesis

Y. WU¹, R. FU¹, S. MOHANTY¹, AND G. GHOSH¹ ^{1}University of Michigan, Dearborn, Dearborn, MI

P-Th-688

Efficacy Of Electrical Stimulation On Accelerating Wound Repair With Full Thickness *In Vitro* Skin Tissues

Y. ITO¹, R. GIFFORD², P. PEMBERTON³, M. BRENCKLE¹, R. ABBOTT¹, D. KAPLAN¹, AND F. OMENETTO¹

¹Tufts University, Medford, MA, ²Tufts University, Meford, MA, ³UC Berkeley, Berkeley, CA

P-Th-689

Effect of Scale on Initiation of Intracellular Ice Formation during Freezing of 2D Tissue Constructs

S. HARHEN¹ AND J. KARLSSON¹ ¹Villanova University, Villanova, PA

P-Th-690

Development of 3D Microvascular Networks within Gelatin Hydrogels using Thermoresponsive Sacrificial Microfibers

J. B. LEE^{1,2}, X. WANG^{1,2}, B. BAER², S. FALEY², AND L. BELLAN^{1,2} ¹Dept. of Biomedical Engineering, Vanderbilt University, Nashville, TN, ²Dept. of Mechanical Engineering, Vanderbilt University, Nashville, TN

P-Th-691

Characterization of Collagen Type I and II Gels for Articular Cartilage Tissue Engineering

N. VAZQUEZ-PORTALATIN¹, C. KILMER¹, J. LIU¹, AND A. PANITCH¹ ¹Purdue University, West Lafayette, IN

OP = Oral Presentation **Q** = Reviewer Choice Award

P = Poster Session

9:30AM – 5:00PM **POSTER SESSION Thurs**

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-692

Interactions of Type I Collagen with Liquid and Supercritical Carbon Dioxide

D. CASALI¹ AND M. MATTHEWS¹ ¹University of South Carolina, Columbia, SC

P-Th-693

Adipose Particle Size for Lipofilling: Effects on Tissue Metabolism, Necrosis and Long Term Survival

T. JONES¹, L. KOKAI¹, K. MARRA¹, AND J. P. RUBIN¹ ¹University of Pittsburgh, Pittsburgh, PA

P-Th-694

Genetic Engineering of Interleukin-35-secreting Mesenchymal Stromal Cells for Therapeutic Anti-inflammatory Applications

J. BROWN¹, C. RODMAN¹, C. PORADA¹, G. ALMEIDA-PORADA¹, A. MOHS¹, AND E. OPARA¹

¹Wake Forest Institute of Regenerative Medicine, Winston-Salem, NC

P-Th-695

Mechanistic Analysis of Lymphocyte Responses Toward Native and Antigen-Removed Xenogeneic Myocardium K. GATES¹ AND L. GRIFFITHS¹

¹UC Davis, Davis, CA

P-Th-696

The Influence of Fluid Shear Forces, Oxygen, and Nutrient Mass Transport in Osteoblastic 3D Cultures in Perfusion Bioreactors using microcomputer tomography.

C. WILLIAMS¹, A. SIMMONS¹, D. PAPAVASSILIOU¹, AND V. SIKAVITSAS¹ ¹University of Oklahoma, Norman, OK

P-Th-697

Comparison of Imaging Modalities for High Throughput Evaluation in Combinatorial Studies

C. BERTUCCI¹, S. RAMAMOORTHY¹, P. KARANDE¹, AND D. THOMPSON¹ ¹Rensselaer Polytechnic Institute, Troy, NY

P-Th-698

Relating Organization and Morphology of Large Collagen Fibers to Optical Parameters from Quantitative Polarized Light Microscopy D. PADOVA¹, S. CORREA¹, AND C. RAUB¹

¹The Catholic University of America, Washington, DC

P-Th-699

Relating Optical Retardance to Compressive Strain in Collagen Hydrogels S. CORREA¹, R. GARABEDIAN¹, P. GIBBONS¹, R. HUYNH¹, D. PADOVA¹, AND C. RAUB¹ ¹The Catholic University of America, Washington, DC

P-Th-700

Effects of Mild Heating on Mesenchymal Stem Cell Differentiation in a 3D Biphasic Scaffold Mimicking Cartilage and Subchondral Bone K. SUNDERIC¹, D. DAWKINS¹, C. L¹, AND S. WANG¹ 'City College of New York, New York, NY

P-Th-701 DREAM TEAM & CENTER

A Novel Method to Induce Strong Chondrogenesis of BMSCs and Promote Articular Surface Repair using Fluocinolone Acetonide and TGF-&[beta]3 E. HARA¹, M. ONO¹, H. PHAM¹, W. SONOYAMA¹, S. KUBOTA¹, M. TAKIGAWA¹, M. YOUNG², B. OLSEN³, T. MATSUMOTO¹, AND T. KUBOKI¹ ¹Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Japan, ²National Institutes of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD, ³Harvard School of Dental Medicine, Boston, MA

Track: Translational Biomedical Engineering, Translational Biomedical Engineering

Tissue Engineering:

Translational Therapeutics for Regenerative Medicine Posters

P-Th-702

Effects of Matrix Metalloproteinases on the Performance of Platelet Gel Spiked with Cardiac Stem Cells in Heart Repair

J. TANG^{1,2,3}, D. SHEN³, J. ZHANG³, AND K. CHENG^{1,2}

¹University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC,²College of Veterinary Medicine, North Carolina State University, Raleigh, NC, ³The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China, People's Republic of

P-Th-703

Evolving Design of Synthetic Nanomolecular Mutagens and Recombinagens for Precise Genomic and Regenerative Treatment of Hematological Disorders in Disparate Populations

F. REZA¹ AND P. M. GLAZER¹ ¹Yale University, New Haven, CT

P-Th-704

Therapeutic Potential of Lung Stem Cells in Pulmonary Fibrosis J. CORES^{1,2}, E. HENRY^{1,2}, M. HENSLEY¹, AND K. CHENG^{1,2}

¹North Carolina State University, Raleigh, NC, ²University of North Carolina, Chapel Hill, NC

See page 97 for Poster floor plan

TODAY'S HIGHLIGHT

PLATFORM SESSIONS Fri-I 8:00am - 9:30am

See pages 133-140, Convention Center

EXHIBIT HALL OPEN Convention Center, Exhibit Hall

9:30am - 5:00pm

9:30am - 5:00pm

POSTER SESSION Fri See pages 152-186,TCC, Exhibit Hall

Poster Viewing with Authors 9:30am - 10:30am & Refreshment Break

PLENARY SESSION 10:30am - 12:00 noon

Convention Center Ballroom BC NIH NIBIB Lecture Wendy Murray

PLATFORM SESSIONS

WOMEN IN BME Luncheon 12:15pm - 1:30pm Convention Center, Ballroom D Additional ticket purchase required

PLATFORM SESSIONS Fri-2 1:45pm - 2:45pm See pages 141-145, Convention Center

PLATFORM SESSION Fri-3 3:00pm See pages 146-151, Convention Center

3:00pm - 4:00pm

Poster Viewing with Authors 4:00pm - 5:00pm & Refreshment Break

Convention Center Exhibit Hall

PLENARY SESSION 5:15pm - 6:15pm Convention Center, Ballroom BC

Prosthetics Advancements: How One Little Dolphin Learned to Swim Again Kevin Carroll, PhD

BMES BASH 6:30pm - 9:00pm Convention Center, Riverwalk Save time: exchange your ticket for a writstband before the event.

SPECIAL SESSION

Meet the Expert 2015 Schedule

New for 2015 is the "Meet the Expert" theater located on the Exhibition Hall floor. "Meet the Expert" was conceived as a method to allow attendees to explore various biomedical engineering disciplines and career options. The format of the theater allows closer interaction and personal connection with invited experts who will be presenting throughout the week.

Friday, October 9

9:30 – 10:30 AM Industry Career Chat Samit Gupta¹, Paul Torres²

Description: Networking event for students to meet with current industry professionals. Attendees are encouraged to bring business cards; please no resumes.

1:00 - 1:30 PM

Launch Your Big Idea – Research on the International Space Station National Lab Debbie Wells I

¹Center for the Advancement of Science in Space

Description: Hear the latest in space research and opportunities to plug into research activities on the International Space Station

l:45 – 2:45 PM

Systems Biology Highlights Shannon Hughes¹, Michelle Berny-Lang², Chang Liu³

¹NCl, ²NIH, ³UC Irvine

Description: A dynamic panel discussion highlighting funding opportunities and research projects in systems biology, with a special emphasis on cancer and synthetic biology.

3:00 - 4:30 PM

BME Department Showcase: The Industry Connection

Description: Meet faculty and students from various BME departments that have successfully collaborated with industry, and see how they enable their students to launch their careers in industry after graduation.

P = Poster Session
 OP = Oral Presentation
 2 = Reviewer Choice Award

FRIDAY, October 9, 2015

8:00 AM - 9:30 AM **PLATFORM SESSIONS – FRI - I**

Track: Cellular and Molecular Bioengineering, **Stem Cell Engineering**

OP-Fri-I-I - Room 18

Stem Cell Bioengineering

Chairs: Kris Saha, Deak-Ho Kim

8:00AM

Molecular Outcomes Of Biophysical Alterations To The Muscle Stem Cell Niche

R. CHENG¹, H. LIU¹, S. DAVOUDI¹, C. SIMMONS¹, AND P. GILBERT¹ ¹University of Toronto, Toronto, ON, Canada

8:15AM

Vimentin Knockdown in Mesenchymal Stem Cells Modifies Cell Deformability

P. SHARMA¹, Z. BOLTEN¹, D. WAGNER², AND A. H. HSIEH¹,³ ¹University of Maryland, College Park, MD, ²University of Notre Dame, Notre Dame, IN,3University of Maryland, Baltimore, MD

8:30AM

Tensile Forces Induce Differentiation of Human Embryonic Stem Cells T. TOPAL-AYDIN¹, L. G. VILLA-DIAZ¹, S. TAKAYAMA¹, AND P. H. KREBSBACH¹ ¹University of Michigan, Ann Arbor, MI

8:45AM

CAMP and EPAC Signaling Functionally Replace OCT4 During iPSC Reprogramming

A. FRITZ¹, M. ADIL¹, S. MAO¹, AND D. SCHAFFER¹ ¹University of California Berkeley, Berkeley, CA

9:00AM

Live Multiplexed Imaging of Stem Cell Mechanotransduction and Mechanoadaptation

I. JALILIAN¹, R. OLDFIELD¹, P. GUNNING¹, AND M. KNOTHE TATE¹ ¹UNSW, Sydney, Australia

9:15AM

Nanog Restores the Actin Polymerization Capacity of Senescent Cells

P. MISTRIOTIS¹, X. WANG¹, N. RONG¹, A. SHAHINI¹, V. BAJPAI¹, M. ASMANI¹, R. ZHAO¹, AND S. ANDREADIS¹

¹University at Buffalo, Buffalo, NY

Track: Cellular and Molecular Bioengineering OP-Fri-I-2 - Room 19

Mechanotransduction II

Chairs: Eno Ebong

8:00AM

Knockdown of Mechanosensitive miRNA cluster-miR-106b~25 Decreases Vascular Proliferation and Prevents Atherosclerosis in ApoE-/- mice

S. KUMAR¹, C. W. KIM¹, AND H. JO² ¹Emory University, Atlanta, GA, ²Emory University and Georgia Tech, Atlanta, GA

8:15AM

Mechanotransduction-Not Just a Local Affair

D. LECKBAND¹, I. MUHAMED¹, J. WU¹, P. SEGHAL², X. KONG², A. TAJIK², AND N. WANG² ¹University of Illinois, Urbana, IL, ²Univ of Illinois, Urbana, IL

8:30AM

Wnt On, Wnt Off: Aging Limits Wnt/ beta-catenin Signaling By Desensitizing Osteocytes To Repetitive Loading N. HOLGUIN¹, M. BRODT¹, AND M. SILVA¹ ¹Washington University, Saint Louis, MO

8:45AM

Global Endothelial Cell DNA Methylation Patterns Are Differentially Regulated By An Arteriogenesis-Amplifying Shear-Reversal Waveform J. HEUSLEIN¹ AND R. PRICE¹

¹University of Virginia, Charlottesville, VA

9:00AM

Cellular Mechanosensing is Controlled by EMT and Paxillin Splicing in Triple Negative Breast Cancer

M. RUBASHKIN¹, J. MOUW¹, A. MEKHDJIAN², M. PICKUP¹, C. DUFORT¹, G. OU¹, A. DUNN², AND V. WEAVER ¹University of California - San Francisco, San Francisco, CA, ²Stanford University, Stanford, CA

9:15AM

Integrins Mediate Inflammation

M. PREVITERA¹,², A. SENGUTPA¹, AND R. PATEL¹ ¹JFK Medical Center, Edison, NJ, ²Seton Hall University, South Orange, NJ

Track: Nano and Micro Technologies OP-Fri-I-3 - Room 20

Theranostics and Nanoparticles II

Chairs: James Moon, Leon Bellan

8:00AM

Antibacterial Efficacy and Mechanism of Selenium Nanoparticles on **Reducing Infectious Bacteria**

M. STOLZOFF¹, S. Q. WANG², AND T. J. WEBSTER¹

¹Northeastern University, Boston, MA, ²Memorial Sloan Kettering Cancer Center, Basking Ridge, NJ

PLATFORM

PLATFORM SESSIONS Fri-I 8:00AM-9:30AM

8:15AM

Development and Characterization of Oxygenated Microbubbles for Local Delivery of Oxygen

J. KUSUNOSE¹ AND C. CASKEY¹,² ¹Vanderbilt University Institute of Imaging Science, Nashville, TN, ²Vanderbilt University, Nashville, TN

8:30AM

Optical Properties of Erythrocyte-Derived Particles Doped with Indocyanine Green

J. BURNS¹, B. BAHMANI¹, D. BACON¹, R. SAAGER², W. JIA², AND B. ANVARI¹ ¹University of California, Riverside, Riverside, CA, ²University of California, Irvine, Irvine, CA

8:45AM

Engineered Nanoparticles for Theranostics of Malignant Peripheral Nerve Sheath Tumors

E. SWEENEY¹, J. VOJTECH¹, R. SZE¹, C. LI¹, Y. ZHU¹, AND R. FERNANDES¹ ¹Children's National Medical Center, Washington, DC

9:00AM

Semiconductor Quantum Dots as Delivery and Imaging Platforms for Intracellular Assembly

L. FIELD¹,², J. DELEHANTY¹, AND I. MEDINTZ¹ ¹Naval Research Lab, Washington, DC, ²University of Maryland, College Park, MD

9:15AM

PI ATEORN

Rational Design of Surface Modified Gold Nanoparticles for the Modulation of Amyloid- β Aggregation N. VAN DER MUNNIK¹, D. SOTO-ORTEGA¹, M. MOSS¹, AND M. ULINE¹

¹University of South Carolina, Columbia, SC

Tracks: Biomechanics, Biomaterials OP-Fri-I-4 - Room 21

Biomechanics in Biomaterials and Tissue Engineering

Chairs: Roland R. Kaunas, Tony Kim

8:00AM

Radiation Induced Changes in the Extracellular Matrix J. MILLER¹, D. PARKER¹, AND C. REINHART-KING¹ ¹Cornell University, Ithaca, NY

8:15AM

Non-destructive Passive Measurement Of Mouse Embryonic Cardiomyocyte Contraction Metrics Using Phase Contrast Image Analysis N. CALVO¹ AND C. SIMMONS¹ ¹University of Florida, Gainesville, FL

8:30AM

In-vivo Tensile Properties of Remodeled ECM Scaffolds in the Temporomandibular loint

J. LOWE^{1,2}, W. CHUNG^{1,3}, B. BROWN^{1,3}, S. JOHNSON³, S. BADYLAK^{1,3}, AND A. ALMARZA^{1,2,3}

¹University of Pittsburgh, Pittsburgh, PA, ²Center for Craniofacial Regeneration, Pittsburgh, PA, ³McGowan Institute of Regenerative Medicine, Pittsburgh, PA

8:45AM

Quantification and Localization of Damage in Collagenous Tissues using Collagen Mimetic Peptide

J. ZITNAY¹, Y. LI¹, S. M. YU¹, S. REESE¹, AND J. WEISS¹ ¹University of Utah, Salt Lake City, UT

9:00AM

Peak Extraction Force Of Kirschner (K-) Wire And Reference Probe Indentation Parameters As Predictors Of Bone Mineral Density (BMD). S. DENNING¹, A. DINCER¹, R. PISANO¹, T. BOWEN², D. EBENSTEIN¹, AND E. KENNEDY¹

¹Bucknell University, Lewisburg, PA, ²Geisinger Health System, Danville, PA

9:15AM

Mechanical Characterization of Patterned Single Layer Vascular Cell Sheets B. LESAVAGE¹, D. BACKMAN¹, S. SHAH¹, AND J. WONG¹ *'Boston University, Boston, MA*

Track: Biomaterials OP-Fri-I-5 - Room 22

Biomaterials for Immunoengineering II

Chairs: Cheryl Gomillion

8:00AM

Spatially Localized Recruitment Of Anti-Inflammatory Monocytes And Microvascular Network Remodeling By SDF-1 Delivery From Heparin-Based Hydrogels M. Ogle¹, J. KRIEGER¹, J. MCFALINE-FIGUEROA¹, C. SEGAR¹, J. TEMENOFF¹, AND E. BOTCHWEY¹

¹Georgia Institute of Technology, Atlanta, GA

8:15AM

Electrospun Poly(Dimethyl Siloxane)-Based Microfibrous Meshes for Improved T Cell Expansion

A. DANG¹, S. DE LEO¹, D. BOGDANOWICZ¹, H. LU¹, AND L. KAM¹ ¹Columbia University, New York, NY

8:30AM

Bio-inspired Lymphoid tissues for B and T cell Lymphomas Y. TIAN¹, L. CERCHIETTI², AND A. SINGH¹

¹Cornell University, Ithaca, NY, ²Weill Cornell Medical College, New York, NY

8:45AM

Anti-PDI and Artificial Antigen Presenting Cell Dual Therapy for Melanoma

R. MEYER¹, A. KOSMIDES¹, K. AJE¹, J. SCHNECK¹, AND J. GREEN¹ ¹Johns Hopkins University, Baltimore, MD

9:00AM

Macrophages Effect Vessel Development when Encapsulated with Endothelial Cells in a 3D Biomimetic PEG-based Hydrogel E. MOORE¹ AND J. WEST¹

¹Duke University, Durham, NC

9:15AM

Effect Of Lactoferrin and Lysozyme On Mucus Barrier Properties T. CARLSON¹, J. LOCK¹, AND R. CARRIER¹ "Northeastern University, Boston, MA

P = Poster Session
 OP = Oral Presentation
 2 = Reviewer Choice Award

8:00AM - 9:30AM PLATFORM SESSIONS Fri-I

2015 OCTOBER 9 FRIDAY

Track: Biomaterials

OP-Fri-I-6 - Room 23

Bioinspired and Self Assembling Biomaterials II

Chairs: Rachael Sirianni, Feng Zhao

8:00AM

Programmable Biofilm-Based Materials from Engineered Curli Nanofibers

P. NGUYEN^{1,2}, Z. BOTYANSZKI^{1,2}, P. K. TAY^{1,2}, AND N. JOSHI^{1,2} ¹Harvard University, Cambridge, MA, ²Wyss Institute for Biologically Inspired Engineering, Boston, MA

8:15AM

Microfluidic Reconstitution of HDL-apoE for CNS Therapeutics A. SANTIAGO-LOPEZ¹, Y. SEI¹, AND Y. KIM¹

¹Georgia Institute of Technology, Atlanta, GA

8:30AM

8:00AMFabrication of 3D Biomimetic Microfluidic Networks K. HEINTZ¹, J. WEST², AND J. SLATER¹

¹University of Delaware, Newark, DE, ²Duke University, Durham, NC

8:45AM DREAM TEAM & CENTER Multivalent Polymers: From Drug Carriers to Receptor

Oligomerizing Therapeutics A. GORMLEY¹, R. CHANDRAWATI¹, A. CHRISTOFFERSON², C. LOYNACHAN¹, R. CHAPMAN¹, D. AILI³, I. YAROVSKY², AND M. STEVENS¹ ¹Imperial College London, London, United Kingdom, ²RMIT University, Melbourne, Australia,3 Linköping University, Linköping, Sweden

SPECIAL SESSION

8:00 AM - 9:30 AM - Room 39 Whitaker International Program: **Funding Opportunity for Young Biomedical Engineers**

The Whitaker International Program, founded in 2005 provides funding to emerging U.S.-based leaders in biomedical engineering to conduct a study and/or research project, with the underlying objective of building international bridges. Grant projects - including research, coursework, public policy work are intended to enhance both the recipient's career and the BME field. The goal of the Whitaker Program is to assist the development of professional leaders who are not only superb scientists, but who will advance the profession through an international outlook. The Whitaker Program has two sub-programs: Fellows and Scholars Program, and the Summer Program. For more information, including program details, the online application and deadlines, visit: http://www.whitaker.org.

see page 65 for details.

9:00AM

Peptide-Induced Localization of RNA to Protocell Membranes N. KAMAT¹ AND J. SZOSTAK¹

¹Harvard University and Massachusetts General Hospital, Boston, MA

9:15AM

Self-Assembly of Cationic Polymers and Regulatory Nucleic Acids to **Restrain Immune Function**

K. L. HESS¹ AND C. M. JEWELL^{1,2,3}

¹University of Maryland - College Park, College Park, MD, ²University of Maryland Medical School, Baltimore, MD, ³Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD

Track: Tissue Engineering OP-Fri-1-7 - Room 13

Engineering Tissue Interfaces

Chairs: Stelios Andreadis, Michael Detamore

8:00AM

Nanocomposite Gradient Hydrogel for Interface Tissue Engineering L. CROSS¹, S. PALANI¹, AND A. K. GAHARWAR¹

¹Texas A&M University, College Station, TX

8:15AM

On-Demand Dissolution of 3D Synthetic Extracellular Matrix for Systems Biology Assays J. VALDEZ¹, C. CHOPKO-AHRENS¹, AND L. GRIFFITH¹ ¹MIT, Cambridge, MA

8:30AM

A Quantitative, High-Throughput Platform for Investigating Fusion of Multicellular Spheroids M. SUSIENKA¹ AND J. MORGAN¹

¹Brown University, Providence, RI

8:45AM

A Three-Dimensional Culture Model Of The Human Neuromuscular lunction

M. AFSHAR BAKOOSHLI¹, E. LIPPMANN², S. DAVOUDI¹, R. ASHTON², AND P. GILBERT¹ ¹University of Toronto, Toronto, ON, Canada, ²University of Wisconsin-Madison, Madison, WI

9:00AM

Bioinspired Silicate Nanocomposites For Osteochondral Therapy

J. K. CARROW¹, A. THAKUR¹, G. LOKHANDE¹, L. CROSS¹, AND A. K. GAHARWAR¹ ¹Texas A&M University, College Station, TX

9:15AM

Fabrication of a Fibrin-Based Myocardial Layer for Use in a Modular Cardiac Patch

M. O'BRIEN¹, K. HANSEN¹, G. GAUDETTE¹, AND G. PINS¹ ¹Worcester Polytechnic Institute, Worcester, MA

Track: Orthopedic and Rehabilitation Engineering, Tissue Engineering OP-Fri-I-8 - Room I4

Musculoskeletal Tissue Engineering and Mechanobiology

Chairs: Vincent Wang, Robert Bowles

8:00AM

Laminin-functionalized Hydrogels Promote Juvenile Cell Phenotype and Morphology for Nucleus Pulposus Cells of the Intervertebral Disc P. HWANG¹, L. JING¹, R. FITCH¹, R. ISAACS¹, W. RICHARDSON¹, J. CHEN¹, AND L. SETTON¹ ¹Duke University, Durham, NC

PLATFORM

PLATFORM SESSIONS Fri-I 8:00AM-9:30AM

8:15AM

Calcium Signaling of *In Situ* Chondrocytes Under Unconfined Compression

M. LV¹, Y. ZHOU¹, X. CHEN¹, L. WANG¹, AND L. LU¹ ¹University of Delaware, Newark, DE

8:30AM

Treadmill Running Mitigates the Post-Injury Hypoxic Response in a Murine Model of Tendinopathy

K. TRELLA¹,², J. Ll², J. GALANTE², R. WYSOCKI², J. SANDY², A. PLAAS², AND V. WANG¹,² ¹University of Illinois-Chicago, Chicago, IL, ²Rush University Medical Center, Chicago, IL

8:45AM

Incorporation Of Laminin Into Collagen-GAG Scaffolds For Muscle Tissue Engineering

A. MOY¹, W. GRIER¹, K. GARG¹, M. BOPPART¹, AND B. HARLEY¹ ¹University of Illinois at Urbana - Champaign, Urbana, IL

8:45AM

Epigenetic CRISPRi Cell Engineering for the Treatment of Intervertebral Disc Degeneration

N. FARHANG¹, J. BRUNGER², J. STOVER¹, P. THAKORE², C. GERSBACH², B. LAWRENCE¹, F. GUILAK², L. SETTON², AND R. BOWLES¹ ¹University of Utah, SLC, UT, ²Duke University, Durham, NC

9:15AM

I ATFORM

Functional TMJ Disc Engineering: Novel concurrent radial tension – uniaxial compression bioreactor. C. JURAN¹, M. F. DOLWICK¹, AND P. MCFETRIDGE¹ ¹University of Florida, Gainesville, FL

SPECIAL SESSION

8:00 AM - 9:30 AM - Ballroom D Special Session - Best Practices in Leadership and Management

This session will explore best practices of executive leadership and mid-level management. Experience professionals will provide with real world examples and experiences to illustrate topics of discussion.

SPECIAL SESSION 12:45pm - 1:45pm - Room 12 Special Session - Best Practices in Quality & Regulatory

This session will explore the best practices in ensuring highest product quality and navigating the regulatory process:

- Investigational Device Exemption / PMA Application Process
- · Establishing and maintaining Design Controls

Track: Neural Engineering OP-Fri-1-9 - Room 15

Neuro-rehabilitation

Chairs: Anita Singh, Hananeh Esmalbeigi

8:00AM

Perturbation Awareness Cannot Change the Generalization of Treadmill-learning to Overground Walking

D. MARISCAL¹, P. ITURRALDE¹, AND G. TORRES-OVIEDO¹ ¹University of Pittsburgh, Pittsburgh, PA

8:15AM

Motor Unit Coherence Among Muscles Of The Flexion Synergy In Individuals With Chronic Hemiparetic Stroke

L. MILLER¹,², F. NEGRO³, C. HECKMAN¹, D. FARINA³, AND J. DEWALD¹ ¹Northwestern University, Chicago, IL, ²Florida International University, Miami, FL,³ University Medical Center Gottingen, Gottingen, Germany

8:30AM

Using Bioengineering Scaffolds and Body Weight Supported Treadmill Training to Improve Motor Function after Spinal Cord Injury A. SINGH^{1, 2}, B. KING², J. WITKO², A. HERMAN², A. VERNENGO², AND B. TOM¹ ¹Widener University, Chester, PA, ²Rowan Univ, Glassboro, NJ

8:45AM

Gelatin Methacrylate with Graphene Nanoplatelets for Targeting Neural Cell Laden Printing W. ZHU¹, B. HARRIS², AND L. G. ZHANG¹

¹The George Washington University, Washington, DC, ²Georgetown University Medical Center, Washington, DC

9:00AM

Neuronal Response after Injury in Simulated and Cultured Networks K. O'NEILL¹, T. SIU¹, T. SHINBROT¹, AND B. FIRESTEIN¹ 'Rutgers University, Piscataway, NJ

9:15AM

Custom Peptide Modulation of the BK channel Alters Pre- and Postsynaptic Coding in Auditory Midbrain Neurons E. BRECH¹, B. BECK¹,², L. SCOTT³, AND J. WALTON¹

University of South Florida, Tampa, FL, ²University of Florida, Gainesville, FL, ³University of Texas-Austin, Austin, TX

Track: Translational Biomedical Engineering OP-Fri-I-I0 - Room 16

Translational Therapeutics for Regenerative Medicine

Chairs: Jeremy Mercuri, Chao-Min Cheng

8:00AM

Side by Side Comparison of Electrospun Soy-based Scaffolds and Oasis® in a Rat Model of Full Thickness Excisional Wound Healing Y-E. HAR-EL¹, J. A. GERSTENHABER¹, S. M. BAHARLOU¹, T.Y. LO¹, D. HINDIN², AND P. I. LELKES¹

¹Temple University, Philadelphia, PA, ²Temple University School of Medicine, Philadelphia, PA

8:15AM

A Novel Insulin-Mediated Cell Therapy for Chronic Wound Closure A. Aljaz¹, R. Faulknor¹, F. Berthiaume¹, and R. Olabisi¹

¹Rutgers University, Piscataway, NJ

P = Poster Session
 OP = Oral Presentation
 2 = Reviewer Choice Award

8:00AM – 9:30AM PLATFORM SESSIONS Fri-I

2015 OCTOBER 9 FRIDAY

8:30AM

Long-Term Mitigation of Hypertrophic Scar Contraction and Stiffening via a Biodegradable Scaffold

E. Lorden¹, K. Miller², L. Bashirov², M. Ibrahim², E. Hammett¹, Y. Jung³, M. A. Selim², K. W. Leong⁴, and H. Levinson²

¹Duke University, Durham, NC, ²Duke University Medical Center, Durham, NC, ³Korea Institute of Science and Technology, Seoul, Korea, Republic of, ⁴Columbia University, New York, NY

8:45AM

Thin, Elastic Polymer Films Prevent Unwanted Adhesions in a Semi-Laparoscopic Rat Model

S. MAYES¹, S. ZAWKO¹, J. ALI², AND D. PETERSON¹,³ ¹Alafair Biosciences, Austin, TX, ²The University of Texas Dell Medical School, Dept. of Surgery, Austin, TX, ³Austin Brain & Spine, Austin, TX

9:00AM

Personalized Medicine Approach to Improving Reconstructive Surgery Outcomes for Breast Cancer Survivors

K. DEGEN^{1,2}, K. MOYER³, AND R. GOURDIE^{1,2} ¹Virginia Tech, Roanoke, VA, ²Virginia Tech Carilion Research Institute, Roanoke, VA, ³Carilion Clinic, Roanoke, VA

9:15AM DREAM TEAM & CENTER

MK2 Inhibitory Peptide Delivered via Nano-Polyplexes Blocks Inflammation and Modulates Vascular Smooth Muscle Cell Phenotype B. EVANS¹, K. HOCKING¹, M. OSGOOD², I. VOSKRESENSKY², C. BROPHY², AND C. DUVALL¹

¹Vanderbilt University, Nashville, TN, ²Vanderbilt University Medical Center, Nashville, TN

Track: Cardiovascular Engineering OP-Fri-I-II - Room 3-4

Microcirculation

Chairs: Anjelica Gonzalez, Bingmei Fu

8:00AM

Sphingosine-I-phosphate (SIP) Can Preserve Endothelial Surface Glycocalyx (ESG) for the Maintenance of Normal Microvessel Permeability

L. ZHANG¹, J. FAN¹, M. ZENG¹, J. TARBELL¹, F.R. CURRY², AND B. FU¹ ¹The City College of the City University of New York, New York, NY, ²University of California, Davis, Davis, CA

8:15AM

Low Magnitude Shear Stress Stabilizes Microvessel Integrity

P. GALIE¹, A. BAGLEY², P. JANMEY³, AND C. CHEN⁴ ¹Rowan University, Glassboro, NJ, ²MIT, Boston, MA, ³University of Pennsylvania, Philadelphia, PA, ⁴Boston University, Boston, MA

8:30AM

Arteriogenesis And Inflammatory Cell Recruitment In A Murine Flap Delay Model

S. SEAMAN¹, Y. CAO¹, AND S. PEIRCE¹ ¹University of Virginia, Charlottesville, VA

8:45AM

Linking the Cathepsin B-Mediated Cleavage of Mac-I Integrins to the Control of Neutrophil Adhesion by Fluid Shear Stress M. AKENHEAD¹, Z. BRANHAM¹, AND H. SHIN¹

¹University of Kentucky, Lexington, KY

9:00AM

Shape Matters: Effect of Red Blood Cell Shape on Perfusion of an Artificial Microvascular Network

N. PIETY¹, W. REINHART², P. POURREAU¹, R. ABIDI¹, AND S. SHEVKOPLYAS¹ ¹University of Houston, Houston, TX, ²Kantonsspital Graubünden, Chur, Switzerland

9:15AM

A Microfluidic Model of Bleeding

K. RANA¹, A. WUFSUS¹, AND K. NEEVES¹,² ¹Colorado School of Mines, Golden, CO, ²University of Colorado, Aurora, CO

Track: Cellular and Molecular Bioengineering OP-Fri-I-12 - Room 5-6

Young Innovators Session I: Cellular Engineering

Chairs: Michael King

8:00AM

Incorporation Of Retinoic Acid Releasing Microspheres Into Aggregates Of Pluripotent Stem Cells For Inducing Neuronal Differentiation

J. GOMEZ¹, J. EDGAR¹, E. BIBAULT¹, A. MONTGOMERY¹, N. KHADEM MOTARAM¹, AND S. WILLERTH¹

¹University of Victoria, Victoria, BC, Canada

8:15AM

Proteomic Analysis of Pericyte Derived Extracellular Matrix L. BROWN¹, P. SAVA¹, C. GARCIA¹, AND A. GONZALEZ¹

¹Yale University, New Haven, CT

8:30AM

Quantitation of PDGFRs on Fibroblasts Reveals Serum, Intra-Family Ligand, And Cross-Family Ligand Regulation

S. CHEN¹, X. GUO¹, O. IMARENEZOR¹, AND P. IMOUKHUEDE¹ ¹University of Illinois Urbana Champaign, Urbana, IL

8:45AM

Controlling Cell Geometry Affects the Spatial Distribution of Load Across Vinculin

K. ROTHENBERG¹, S. NEIBART¹, A. LACROIX¹, AND B. HOFFMAN¹ ¹Duke University, Durham, NC

9:00AM

Nanotopographically-Controlled Model of Duchenne Muscular Dystrophy Cardiomyopathy

J. Macadangdang¹, X. Guan^{1,2}, S. Czerniecki¹, R. Lucero¹, M. Childers¹, D. Mack¹, and D-H. Kim¹

¹University of Washington, Seattle, WA, ²Wake Forest University, Winston-Salem, NC

9:15AM

Integrin Binding Dictates Smooth Muscle Stiffness Sensing via FAK W. Herrick¹, S. Rattan¹, T. Nguyen¹, M. Grunwald¹, C. Barney², A. Crosby¹, and S. Peyton¹

¹University of Massachusetts, Amherst, Amherst, MA, ²Purdue University, West Lafeyette, IN

Track: Biomedical Imaging and Optics OP-Fri-I-I3 - Room II

Image Guided Focused Ultrasound Therapies

Chairs: Charles Caskey, Kim Butts Pauly

8:00AM

MR-guided Transcranial Focused Ultrasound in the Treatment of Essential Tremor: Comparison of Beam Simulations to MR Thermometry in 23 patients *(invited)*

K. BUTTS PAULY1, U. VYAS1, C. HALPERN1, M. WINTERMARK1, J. ELIAS2, AND P. GHANOUNI1

¹Stanford University, Stanford, CA, ²University of Virginia, Charlottesville, VA

PLATFORM SESSIONS Fri-I 8:00AM-9:30AM

8:30AM

Development of an Optically-Guided System for Transcranial Ultrasound Neuromodulation

V. CHAPLIN¹, L. CLEMENTS², M. MIGA², AND C. CASKEY¹ ¹Vanderbilt University Institute of Imaging Science, Nashville, TN, ²Vanderbilt University, Nashville, TN

8:45AM

Methods to Accelerate Thermal Ablation with MR-guided Focused Ultrasound

V. CHAPLIN¹, P. GAUR¹, P. DAYTON², C. ARENA², W. GRISSOM¹, AND C. CASKEY¹ ¹Vanderbilt University Institute of Imaging Science, Nashville, TN, ²University of North Carolina, Chapel Hill, NC 1

9:00AM

Non-Invasive Estimation Of Acoustic Attenuation For High Intensity Focused Ultrasound Treatments

S. JOHNSON¹, A. FARRER¹, C. DILLON², D. CHRISTENSEN¹, AND A. PAYNE² ¹University of Utah, Salt Lake City, UT, ²Utah Center for Advanced Imaging Research, Salt Lake City, UT

915AM

NDevelopment of MRI-guided Focused Ultrasound for Delivery of Neurotherapy in Mice

T. TROUARD¹, M. VALDEZ¹, S. YUAN¹, R. RATH¹, T. MATSUNAGA¹, AND M. ROMANOWSKI¹ ¹University of Arizona, Tucson, AZ

9:15AM

The MRI-Targeted Delivery of Brain-Penetrating Non-Viral GDNF Gene Vectors to the Striatum with Focused Ultrasound Reverses Neurodegeneration in a Parkinson's Disease Model B. MEAD¹, P. MASTORAKOS², W. MILLER¹, J. S. SUK², A. KLIBANOV¹, J. HANES²,

AND R. PRICE¹ ¹University of Virginia, Charlottesville, VA, ²Johns Hopkins University, Baltimore, MD

Track: Bioinformatics, Computational and Systems Biology OP-Fri-I-I4 - Room 17

Multiscale Approaches

Chairs: Stacey Finley, Victor Rodgers

8:00AM

A Systems Biology Approach to Uncovering Mechanisms Governing Host-Pathogen Interactions: Tuberculosis as a Case Study (invited) D. KIRSCHNER¹

¹The University of Michigan Medical School, Ann Arbor, MI

8:30AM

Hypoxia, Cancer Stem Cells, and CCR5: the Interplay In Triple-Negative Breast Cancer Invasion and Metastasis. K-A. NORTON¹, N. PANDEY¹, T. WALLACE¹, AND A. POPEL¹ 'Johns Hopkins University, Baltimore, MD

8:45AM

Validating An Agent-Based Model Of Collagen Network Remodeling K. GOOCH¹ AND J. REINHARDT¹

¹The Ohio State University, Columbus, OH

9:00AM

Agent-based Modeling Suggests Cell Contraction Drives Organization of Endometriotic Cells

T. JARACZEWSKI¹, A. FLESZAR¹, M. LOHR¹, M. MURRELL¹, AND P. KREEGER¹ ¹University of Wisconsin-Madison, Madison, WI

9:15AM

Solving Multicomponent Reaction-transport with Coupled Cellular Trajectories and Data-driven Cellular Activation Models Y. LU¹, M. Y. LEE¹, T. SINNO¹, AND S. DIAMOND¹ ¹University of Pennsylvania, Phildadelphia, PA

Track: Drug Delivery, Tissue Engineering OP-Fri-1-15 - Room 10

Drug Delivery in Tissue Engineering

Chairs: Elizabeth Dirk, James Moon

8:00AM

Programmable Release of Multiple Growth Factors from Aptamerfunctionalized Hydrogels for Angiogenesis

Y. WANG¹, M. BATTIG¹, X. ZHANG¹, L-J. DUAN², AND G-H. FONG² ¹Penn State University, State College, PA, ²University of Connecticut Health Center, Farmington, CT

8:15AM

Engineering Extracellular Vesicles as Multifactorial Cell-Derived Delivery Vehicles for Therapeutic Vascularization

T. LAMICHHANE¹, D. PATEL¹, A. JEYARAM¹, AND S. JAY¹ ¹University of Maryland, College Park, MD

8:30AM

On-demand Controlled Release of Acoustically-Responsive Scaffolds using Therapeutic Ultrasound

A. $\mathsf{MONCION}^1,$ K. J. $\mathsf{ARLOTTA}^1,$ O. D. $\mathsf{KRIPFGANS}^1,$ R. T. $\mathsf{FRANCESCHI}^1,$ A. J. $\mathsf{PUTNAM}^1,$ and M. L. $\mathsf{FABIILLI}^1$

¹University of Michigan, Ann Arbor, MI

8:45AM

Dietary Lipids and Emulsifiers Affect Particle Transport in Intestinal Mucus

J. LOCK¹, T. CARLSON¹, AND R. CARRIER¹ ¹Northeastern University, Boston, MA

9:00AM

Sustained Release of a P2X7 Receptor Antagonist Using an Injectable Nanohydrogel Improves Locomotion And Bladder Function After Spinal Cord Injury

I. YAZDI¹, A. MUNOZ¹, C. RIVERA¹, N. TAGHIPOUR¹, T. B. BOONE¹, AND E. TASCIOTTI¹ ¹Houston Methodist Research Institute, Houston, TX

9:15AM DREAM TEAM & CENTER

Evaluation of Ciprofloxacin, Metronidazole Encapsulated Injectable Self-Assembled Biomimetic Nanomatrix Gel on Enterococcus faecalis and Treponema denticola

S. KAUSHIK¹, J. SCOFFIELD¹, G. ALEXANDER¹, A. ANDUKURI¹, T. WALKER¹, S. C. CHOI², B. BROTT¹, H-W. JUN¹, J-H. PARK³, AND K. CHEON¹ ¹University of Alabama at Birmingham, Birmingham, AL, ²Kyung Hee University, Birmingham, AL, ³Kyung Hee University, BIrmingham, AL

Track: Nano and Micro Technologies OP-Fri-I-I6 - Room 7-8

Nano/Microbiotechnology II

Chairs: Mandy Esch, Wilbur Lam

8:00AM

Virus-Dendron Hybrid Nanostructures for Cell Delivery and Imaging Applications

A. WEN¹, K. PANGILINAN¹, P. CAO¹, R. ADVINCULA¹, AND N. STEINMETZ¹ ¹Case Western Reserve University, Cleveland, OH

P = Poster Session
 OP = Oral Presentation
 2 = Reviewer Choice Award

8:00AM – 9:30AM PLATFORM SESSIONS Fri-I

2015 OCTOBER 9 FRIDAY

8:15AM

The Sequence-Specific Cellular Uptake of Spherical Nucleic Acids S. NARAYAN¹, C. H. CHOI¹, L. HAO¹, C. CALABRESE¹, AND C. MIRKIN¹ 'Northwestern University, Evanston, IL

8:30AM

MEMS Device Integrated with Vertically Aligned Carbon Nanotubes for Virus Capture and Detection

Y-T. YEH¹ AND S. ZHENG¹ ¹The Pennsylvania State University, University Park, PA

8:45AM

Exosomal miR-122 Detection in Drug Induced Acute Liver Injury Paptients by Tethered Lipoplex Nanoparticles (TLN)

X. WANG¹, K. KWAK¹, A. ZHANG¹, W. LEE², K. GHOSHAL¹, V. CHOWDHARY¹, AND J. LEE¹ ¹The Ohio State University, Columbus, OH, ²UT Southwestern Medical Center, Columbus, OH

9:00AM

Nanoparticle Ingestion Alters Iron and Zinc Absorption in the Small Intestine

Z. GUO¹, E. TAKO², AND G. MAHLER¹ ¹Binghamton University, Binghamton, NY, ²Cornell University, Ithaca, NY

9:15AM

Carbon Nanotube-Based Microdevices for Tracking Single Macrophages by Raman Scattering

Z. WANG¹, J. XIA¹, L. SUN¹, P. TRAN¹, S. LUO¹, Y. REN¹, T. LIU¹, AND J. GUAN¹ ¹Florida State University, Tallahassee, FL

Track: Respiratory Bioengineering, Translational Biomedical Engineering OP-Fri-1-17 - Room I

OF-Fri-I-I/ - Room I

Translational Engineering in Lung Disease

Chairs: Jason H. Bates, Rebecca Heise

8:00AM

Extracellular Matrix Coating of Nanoparticles Modulates Uptake and Payload Release by Lung Cells

P. PUNNAKITIKASHEM¹, P. RAVIKUMAR², J. WU¹, K. NGUYEN¹, C. HSIA², AND Y. HONG¹ ¹University of Texas at Arlington, Arlington, TX, ²University of Texas Southwestern Medical Center, Dallas, TX

8:15AM

Decellularized Lung Extracellular Matrix Electrospun with Poly-L-Lactic Acid for Tissue Engineering

B. YOUNG¹, R. POULIOT¹, B. BLAKENEY¹, B. ALLEN¹, G. SCHREYAK¹, AND R. HEISE¹ ¹Virginia Commonwealth University, Richmond, VA

8:30AM

Biomimetic Alveolar Interstitium Model for Investigation of Nanomaterials-induced Fibrosis

R. MEZAN¹, K. WANG¹, L. WANG¹, Y. ROJANASAKUL¹, AND Y. YANG¹ ¹West Virginia University, Morgantown, WV

8:45AM

Deposition of Liquid Film onto Targeted Airway Surfaces of the Lung J. KIM¹, J. O'NEILL¹, N. V. DORRELLO¹, M. BACCHETTA¹, AND G. VUNJAK-NOVAKOVIC¹

¹Columbia University, New York, NY

9:00AM

Nanoparticle-Facilitated Inhalational Delivery of Erythropoietin Receptor cDNA in Unsedated or Anesthetized Rats

P. RAVIKUMAR¹, P. PUNNAKITIKASHEM², O. MOE¹, K. NGUYEN², AND C. HSIA¹ ¹UT Southwestern Medical Center, Dallas, TX, ²University of Texas at Arlington, Arlington, TX

9:15AM

Time-Dependent Expression of MicroRNA-146a Regulates

Mechanotransduction and Pro-Inflammatory Cytokine Production in Lung Epithelia

K. NELSON¹, B. WHITSON², AND S. GHADIALI¹

¹The Ohio State University, Columbus, OH, ²The Ohio State University Wexner Medical Center, Columbus, OH

Track: Cancer Technologies OP-Fri-1-18 - Ballroom BC

Cancer Immunoengineering

Chairs: Susan Thomas, Shannon Stott

8:00AM

Activation of Microbubbles with Pulsed Ultrasound Elicits An Anti-Tumor Immune Response That Surpasses anti-PD-I Treatment in Murine Melanoma

K. TIMBIE¹, L. BADR¹, B. CAMPBELL¹, J. MCMICHAEL¹, A. BUCKNER¹, T. BULLOCK¹, AND R. PRICE¹

¹University of Virginia, Charlottesville, VA

8:15AM

Vascular Remodeling Enhances the Dissemination of Tumor-Derived Factors to Pre-metastatic Niches

N. ROHNER^{1,2} AND S. N. THOMAS^{1,2,3}

¹George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, ²Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, ³Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA

8:30AM

Nanoscale T cell Activation Platform for Customized Antigen-Specific T cell Stimulation and Biophysical Characterization in Cancer Immunotherapy

A. KOSMIDES¹ AND J. SCHNECK¹ ¹Johns Hopkins University, Baltimore, MD

8:45AM

Therapeutic Tumor Lysate Vaccine for B Cell Lymphoma: Comparative Efficacy and Mechanistic Properties of Various Formulations P. PRADHAN¹, J. LELEUX¹, J. LIU¹, AND K. ROY¹ ¹Georgia Institute of Technology, Atlanta, GA

9:00AM

Biodegradable Hydrogels as A New CD8+T Cell Stimulation Platform J. HICKEY¹, H-Q. MAO¹, AND J. SCHNECK¹ ¹Johns Hopkins University, Baltimore, MD

9:15AM

Quantification of Tumor and T Cell Mass during T Cell Mediated Cytotoxicity for Cancer Immunotherapy

N. H. D. KIM¹, M. TEITELL¹, AND T. ZANGLE¹

¹University of California, Los Angeles, Los Angeles, CA

PLATFORM

PLATFORM SESSIONS Fri-I 8:00AM-9:30AM

Track: Biomedical Engineering Education (BME) OP-Fri-I-I9 - Room 9

Novel Techniques for Incorporating Design into BME Curricula

Chairs: Michealann Tartis, Craig Goergen

8:00AM

Biomedical Engineering Education: Anecdotes from New Mexico Tech (invited)

D. GROW ^{1,2} ¹New Mexico Tech., Socorro, NM²University of New Mexico, Albuquerque, NM

8:15AM DREAM TEAM & CENTER

MedTech Innovation Course: A Mutually Beneficial Model for Physicians, Industry, and Engineers

J. ALI¹, H. LANDAVERDE², AND S. MAYES³ ¹University of Texas at Austin, Dell Medical School, Austin, TX, ²University of Texas at Austin, Austin, TX, ³Alafair Biosciences, Austin, TX

8:30AM

Capstone Projects Have Improved Outcomes From Combined Partnership With Clinical and Commercialization Experts M. RUEGSEGGER¹, C. DIGIOVINE¹, T. BERNER¹, S. METZLER¹, AND T. NOCERA¹

¹The Ohio State University, Columbus, OH

8:45AM

Lessons Learned From A 10-Year Collaboration Between Biomedical Engineering And Industrial Design Students in Capstone Design Projects

J. GOLDBERG¹ AND P. MALASSIGNE² ¹Marquette University, Milwaukee, WI, ²Milwaukee Institute of Art and Design, Milwaukee, WI

9:00AM

Effectively Teaching Engineering Design in the Online Classroom E. LOGSDON¹, A. MAYBHATE¹, A. DRUMMOND¹, AND E. HAASE¹

¹Johns Hopkins University, Baltimore, MD

9:15AM

Spiral Curriculum for Biomedical Engineering - Reinforcing Professional Skills

M. GRIMM¹ AND H. LAI¹ ¹Wayne State University, Detroit, MI

P = Poster Session
 OP = Oral Presentation
 2 = Reviewer Choice Award

FRIDAY, October 9, 2015

I:45 PM - 2:45 PM PLATFORM SESSIONS - FRI - 2

Track: Stem Cell Engineering OP-Fri-2-1 - Room 18

Directing Stem Cell Differentiation II

Chairs: Tim Downing, Eduardo Silva

1:45PM

Lineage Specific Chemo- and Mechanosensitivity of Primary Cilia in Adipose-derived Stem Cells

J. BODLE^{1,2}, M. HAMOUDA¹, AND E. LOBOA^{1,2} ¹North Carolina State University, Raleigh, NC, ²University of North Carolina, Chapel Hill, NC

2:00PM

A Comparative Study Of Chondrogenesis Using Aggregated Or Single Mesenchymal Stem Cells In 3D Biomimetic Hydrogels H. Rogan¹ and F. Yang¹ ¹Stanford University, Stanford, CA

2:15PM

Nanoparticle-mediated Transdifferentiation of Astrocytes into Non-glial Cells

X. L1¹, K. KOZIELSKI ¹, Y-H. CHENG ¹, J. GREEN ¹, AND H-Q. MAO¹ ¹JHU, Baltimore, MD

2:30PM

Enhancing Cardiac Differentiation via Statistically Optimized Engagement of 3D Extracellular Matrix J. JUNG¹ AND B. OGLE¹ ¹University of Minnesota - Twin Cities, Minneapolis, MN

Track: Cellular and Molecular Bioengineering OP-Fri-2-2 - Room 19

Mechanotransduction III

Chairs: Naomi Chesler

1:45PM

Injection of Cross-linked Hyaluronic Acid Alters the Mechanical Environment of Collagen Gel Type I Gels and Activates the Rho/ROCK Pathway in Aged Fibroblasts

A. DE JESUS¹, S. CHINNATHAMBI¹, M. EL-HATTAB¹, AND E. SANDER¹ ¹University of lowa, lowa City, IA

1:45PM

MI-M2 Polarization Alters the Motility and Force Generation of Primary Human Macrophages

L. HIND¹, E. LURIER², K. SPILLER², M. DEMBO³, AND D. A. HAMMER⁴ ¹University of Wisconsin-Madison, Madison, WI, ²Drexel University, Philadelphia, PA, ³Boston University, Boston, MA, ⁴University of Pennsylvania, Philadelphia, PA

1:45PM

Osteocyte Mechanobiology in Live Allograft Biological Systems (LABS)

E. BUDYN^{1,2}, M. BENSIDHOUM³, S. SANDERS¹, E. SCHMIDT², S. SASNOUSKI⁴, P.TAUC¹, E. DEPREZ¹, AND H. PETITE³

¹Ecole Normale Superieure de Cachan, Cachan, France, ²University of Illinois at Chicago, Chicago, IL, ³University Paris ⁷, Paris, France, ⁴Ecole Normale Superieure de Cachan, cachan, France

1:45PM

Time Evolution of Photodamage in Fibroblasts as a Measure of Cell Contractility

S. KNOLL¹, W. AHMED², AND T. SAIF¹

¹University of Illinois at Urbana-Champaign, Urbana, IL, ²Institut Curie, section de recherche, Paris, France

Track: Biomaterials

OP-Fri-2-3 - Room 20

Biomechanics, Injury I - Gait and Motion

Chairs: Kyle Allen, Steve Fening

1:45PM

In Vivo Assessment of Tissue Engineered Myocardial Patch for the Local Dynamic Stability in Single and Dual-Task Concussed Gait: Preliminary Results

P. C. FINO¹, P. G. BROLINSON², AND T. E. LOCKHART³ ¹Virginia Tech, Blacksburg, VA, ²Edward Via College of Osteopathic Medicine, Blacksburg, VA,³Arizona State University, Tempe, AZ

2:00PM

Temporo-Spatial Gait Parameters of Older Adults during Single vs. Dual-Task Gait M. PLEVKA¹, A. WRIGLEY¹, AND E. VIEIRA¹

¹Florida International University, Miami, FL

2:15PM

Quantifying Rodent Locomotion Using Automated Gait Analysis Through Hues and Areas (AGATHA)

H. KLOEFKORN¹ AND K. ALLEN¹ ¹University of Florida, Gainesville, FL

2:30PM

Loss of Anterior Stability of Shoulder Across a Range of Motion Due to Combined Bony Defects

P. WALIA^{1,2}, L. GOTTSCHALK¹, R. PATEL³, M. JONES¹, S. FENING⁴, AND A. MINIACI¹ ¹Cleveland Clinic, Cleveland, OH, ²Cleveland State University, Cleveland, OH, ³Hinsdale Orthopaedics, Hinsdale, IL, ⁴Case Western Reserve University, Cleveland, OH

Tracks: Biomechanics, Cellular and Molecular Bioengineering OP-Fri-2-4 - Room 21

Cell and Tissue Biomechanics I

Chairs: Brandon Dixon, Charles Corey Hardin

1:45PM

Fiber-Enabled, 3D-Printed Cellular Micropatterning for Robust and Affordable Cellular Biomechanics Studies

D. WOLOZNY¹, M. ANDERSON¹, AND W. RUDER¹ ¹Virginia Tech, Blacksburg, VA

2:00PM

Lamin A/C Deficiency Reduces Circulating Tumor Cell Resistance to Fluid Shear Stress

M. J. MITCHELL $^{1,2}_{1,2}$ C. DENAIS 2 , M. CHAN 2 , Z. WANG 2 , J. LAMMERDING 2 , AND M. R. KING 2

¹MIT, Cambridge, MA, ²Cornell University, Ithaca, NY

2:15PM

Modulation of the Sickle Cell Disease Erythrocyte Adhesion via ICAM-4 Activation

J. ZHANG¹, B. ANDEMARIAM², AND G. LYKOTRAFITIS¹ ¹University of Connecticut, Storrs, CT, ²University of Connecticut Health Center, Farminaton, CT

2:30PM

Mechanical Folding Instability Specifies Branch Locations During Airway Branching Morphogenesis

V. VARNER¹ AND C. NELSON¹ ¹Princeton University, Princeton, NJ

PLATFORM SESSIONS Fri-2 1:45PM-2:45PM

Track: Biomaterials OP-Fri-2-5 - Room 22

Biomaterials for Immunoengineering III

Chairs: David Zaharoff, Angela Pannier

1:45PM

Injectable, Tough Alginate Cryogels for Delivery of Immunomodulatory Agents

T-Y. Shihi 2, S. Blacklow 1, W. A. Li 2, S. Bencherif $^1,^2,$ S. Koshy $^1,^2,^3$ and D. Mooney $^1,^2$

¹School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, ²Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, ³Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA

2:00PM

Changes in Material Chemistry Enhance the Immunomodulatory Effect of Biomaterial Surface Energy

K. Hotchkiss¹, S. L. Hyzy¹, S. Brenner², Z. Schwartz¹, B. D. Boyan^{1,3}, and R. Olivares-Navarrete¹

¹Virginia Commonwealth University, Richmond, VA, ²Institut Straumann AG, Basel, Switzerland, ³Georgia Institute of Technology, Atlanta, GA

2:15PM

A Hemostatic, Tissue Adhesive With Immunomodulatory Properties J. SKOUSEN¹, M. POLEI¹, AND P. TRESCO¹ ¹University of Utah, Salt Lake City, UT

2:30PM

PLATFORM

Biomaterials-Based Artificial Germinal Center Niches to Generate Antigen-Specific B Cells for Adoptive Immunotherapy K-H. ROH¹, K. BAI¹, AND K. ROY¹

¹Georgia Institute of Technology, Atlanta, GA

Track: Biomaterials

OP-Fri-2-6 - Room 23

Micro and Nano Structured Materials III

Chairs: Deak-Ho Kim, Jay Henderson

1:45PM

Amorphous Titanium Oxide Nanocoating Directs MSC Differentiation on Microstructured Stainless Steel

V. GARCIA-PEREZ¹, S. L. HYZY², S. E. RODIL¹, A. ALMAGUER-FLORES¹, Z. SCHWARTZ², B. D. BOYAN², AND R. OLIVARES-NAVARRETE²

¹Universidad Nacional Autonoma de Mexico, Mexico City, Mexico, ²Virginia Commonwealth University, Richmond, VA

2:00PM

Controlled Release of bFGF from Nano-film to Maintain Undifferentiated Human iPS Cell Cultures

J. HONG¹ ¹Chung-Ang University, Seoul, Korea, Republic of

2:15PM

The Effects of Physical Cues on Reprogramming of Fibroblasts into Induced Cardiomyocytes J. SIA¹, P.YU², R. SUN¹, AND S. LI¹

¹UC Berkeley, Berkeley, CA, ²Gladstone Institutes, San Francisco, CA

2:30PM

Influence of Synergistic Topographical and Biomolecular Cues on the Differentiation of Mesenchymal Stem Cells in Sparse-Fiber Composites Toward a Ligament Phenotype

P. THAYER¹, S. VERBRIDGE¹, K. EDGAR¹, T. GROVE¹, AND A. GOLDSTEIN¹ ¹Virginia Tech, Blacksburg, VA

P = Poster Session
 OP = Oral Presentation
 2 = Reviewer Choice Award

Track: Tissue Engineering OP-Fri-2-7 - Room 13

Bioreactor Systems for Tissue Engineering

Chairs: Teng Ma, Eun Jung Lee

1:45PM

Bioreactor System With Isolated Compartments Supporting Bilayer Barrier Tissue Models On Gelatin Biopapers.

R. PIRLO¹, L. BISCHEL², P. WU³, AND B. RINGEISEN¹

¹U.S. Naval Research Laboratory, Washington, DC, ²American Society for Engineering Education, Washington, DC, ³Southern Oregon University, Ashland, OR

2:00PM

Bioprocess Development for the Expansion of Skin Derived Precursor Schwann Cells

T. WALSH¹, J. BIERNASKIE¹, R. MIDHA¹, AND M. KALLOS¹ ¹University of Calgary, Calgary, AB, Canada

2:15PM

Strategy for Efficient Perfusion of Microvessel Lumens in Engineered Tissues Using a Novel Perfusion Bioreactor S. RIEMENSCHNEIDER¹ AND R. TRANQUILLO¹

¹University of Minnesota, Minneapolis, MN

2:30PM

Real-Time Monitoring of Oxygen Uptake in Hepatic Bioreactor Shows CYP450-Independent <wbr>Mitochondrial Toxicity of Acetaminophen and Amiodarone

S. PRILL¹, D. BAVLI², G. LEVY², E. EZRA², E. SCHMÄLZLIN³, M. JAEGER¹, M. SCHWARZ⁴, C. DUSCHL¹, M. COHEN², AND Y. NAHMIAS²

¹Branch Bioanalytics and Bioprocesses (Fraunhofer IZI-BB, Potsdam, Germany, ²The Hebrew University of Jerusalem, Jerusalem, Israel, ³Colibri Photonics GmbH, Potsdam, Germany,⁴University of Tuebingen, Tubingen, Germany

Track: Orthopedic and Rehabilitation Engineering OP-Fri-2-8 - Room 14

Bone

Chairs: Susannah Fritton

1:45PM

Progressive Spinal Kyphosis in Perlecan Deficient Mice A. PARAJULI¹, R. MORGAN¹, C. KIRN-SAFRAN¹, AND L. WANG¹ ¹University of Delaware, Newark, DE

2:00PM

Effect of Estrogen Deficiency on Interstitial Fluid Flow around Osteocytes

V. GATTI¹, E. AZOULAY¹, L. CARDOSO¹, AND S. FRITTON¹ ¹City College of New York, New York, NY

1:45PM-2:45PM PLATFORM SESSIONS Fri-2

2015 OCTOBER 9 FRIDAY

2:15PM

Bone Quality Abnormalities in Patients with Low-Energy or High Risk of Fracture

S. PAGANO¹ AND D. PIENKOWSKI¹ ¹University of Kentucky, Lexington, KY

2:30PM

Nanofibrous Mineralized Electrospun Scaffold as a Substrate for Bone Tissue Regeneration

H. PARK¹, D.J. LIM², AND H. PARK¹ ¹Chung-Ang University, Seoul, Korea, Republic of, ²U of Alabama at Birmingham, Birmingham, AL

Track: Neural Engineering OP-Fri-2-9 - Room 15

Closed Loop Control of Neural Interfaces/Networked Neural Sensors, Actuators, and Instrumentation

Chairs: Teresa Murray, Karen Moxon

1:45PM

Open Source System for Controlling Microelectrode Depth within Subcortical Brain Structures L. ROSEDAHL¹ AND M. JOHNSON¹ ¹University of Minnesota, Minneapolis, MN

2:00PM

Using a Biological Reward Signal In Closed-Loop Actor-Critic Reinforcement Learning BMIs

N. PRINS¹, S. DEBNATH¹, J. SANCHEZ¹, AND A. PRASAD¹ ¹University of Miami, Coral Gables, FL

2:15PM

Brain-Controlled Functional Electrical Stimulation for Grasp and Release in Chronic, Complete, Cervical Spinal Cord Injury K. GANT¹, L. ZIMMERMAN¹, Z. XIE¹, J. SANCHEZ¹, AND A. PRASAD¹ 'University of Miami, Miami, FL

2:30PM

Utah Slanted Electrode Array Recording and Stimulation Restores Movement and Sensation to Human Amputees

D. PAGE¹, S. WENDELKEN¹, T. DAVIS¹, H. WARK¹, C. DUNCAN¹, D. WARREN¹, D. HUTCHINSON¹, AND G. CLARK¹

¹University of Utah, Salt Lake City, UT

Track: Device Technologies and Biomedical Robotics

OP-Fri-2-10 - Room 16

Implantable Devices

Chairs: Justin Williams, Kevin Otto

1:45PM

Spin Insertion of Flexible Microelectrode for Neural Recording and Stimulation

M. ARAFAT¹, M. WARD¹, AND P. IRAZOQUI¹ ¹Purdue university, West Lafayette, IN

2:00PM

Transparent Graphene Neural Electrodes for Integrated Electrophysiology, Imaging and Optogenetics

J. WILLIAMS¹, D-W. PARK¹, A. SCHENDEL¹, S. MIKAEL¹, S. BRODNICK¹, T. RICHNER¹, J. NESS¹, J. NOVELLO¹, M. HYAT¹, F. ATRY², S. FRYE², R. PASHAIE², S. THONGPANG³, AND Z. MA¹

¹University of Wisconsin, Madison, WI, ²University of Wisconsin-Milwaukee, Milwaukee, WI,³Mahidol University, Bangkok, Thailand

2:15PM

The Use of Vagus Nerve Stimulation to Treat Cardiovascular and Metabolic Diseases

S. LEE¹, E. ANNONI¹, X. XIE¹, I. LIBBUS², B. KENKNIGHT², AND E. TOLKACHEVA¹ ¹University of Minnesota, Minneapolis, MN, ²Cyberonics Inc, Houston, TX

2:00PM

Tuning the Administration Rate of Therapeutics Delivered Through a Nanochannel Membrane via Electric Field Manipulation

T. GENINATTI¹,², G. BRUNO¹,³, AND A. GRATTONI¹

¹Houston Methodist Research Institute, Houston, TX, ²University of Chinese Academy of Sciences, Beijing, China, People's Republic of, ³Politecnico di Torino, Turin, Italy

Track: Cardiovascular Engineering OP-Fri-2-11 - Room 3-4

Stents

Chairs: Aaron Baker

1:45PM

Mis-sizing of Stent Promotes Intimal Hyperplasia: Impact of Endothelial Shear and Intramural Stress

H. CHEN1, B. BIGELOW 2, D. BHATT 3, AND G. KASSAB1

¹California Medical Innovations Institute, San Diego, CA, ²St. Vincent Hospital, Indianapolis, IN, ³Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
2:00PM

Screening Of Nanoparticles And Nanoparticle Delivery Strategies For Treatment Of Atherosclerosis Via Coated Angioplasty Balloons R. IYER1,², S. YAMAN1,², A. E. KURIAKOSE¹,², AND K. T. NGUYEN1,²

The University of Texas at Arlington, Arlington, TX, ²The University of Texas Southwestern Medical Center at Dallas, Dallas, TX

2:15PM

Delivery of Paclitaxel to Arterial Segments via a Perfusion Catheter: An *ex vivo* and *in vivo* Study

M. ATIGH¹, E. TURNER¹, U. CHRISTIANS², AND S. K. YAZDANI¹ ¹University of South Alabama, Mobile, AL, ²University of Colorado, Auroro, CO

2:30PM

Evaluation of Inflammation on a Self-Assembled Nanomatrix Stent Coating In Vitro

G. ALEXANDER¹, J. VINES¹, M. COLLIER¹, P. HWANG¹, J. KIM¹, B. BROTT¹, AND H-W. JUN¹ ¹University of Alabama at Birmingham. Birmingham. AL

Track: Cellular and Molecular Bioengineering OP-Fri-2-12 - Room 5-6

Young Innovators Session II: Regenerative Medicine and Drug/Cell Delivery Processes

Chairs: Michael King

PLATFORM SESSIONS

I:45PM Micelle Delivery of Parthenolide to Acute Myeloid Leukemia Cells M. Baranello¹, L. Bauer¹, C. Jordan², and D. Benoit¹

¹University of Rochester, Rochester, NY, ²University of Colorado Health Sciences Center, Denver, CO

1:57PM

Design of a Novel 3D Printed Bioactive Nanocomposite Scaffold for Improved Osteochondral Regeneration N. Castro', R. Patel', and L. G. Zhano'

N. Castro¹, R. Patel¹, and L. G. Zhang¹ ¹The George Washington University, Washington, DC

2:09PM

Elastomeric Cell-laded Nanocomposite Microfibers for Engineering Complex Tissues

C. W. Peak¹, J. Carrow¹, A. Thakur¹, A. Singh², and A. K. Gaharwar¹ ¹Texas A&M University, College Station, TX, ²Cornell University, Cornell, NY

2:21PM

Engineering Synthetic Insulin-Secreting Cells Using Hyaluronic Acid Microgels Integrated with Glucose-Responsive Nanoparticles

Dir?, J. Yu?, Y. Ye?, D. Ranson', A. Jindal', and Z. Gu?, J. Dir?, J. Yu?, Y. Ye?, D. Ranson', A. Jindal', and Z. Gu?,²

¹University of North Carolina at Chapel Hill and North Carolina State University, Hale NC,²University of North Carolina at Chapel Hill, Chapel Hill, NC

2:33PM

Shape-engineering of Virus-based Nanomaterials for Applications in Medicine

N. F. Steinmetz¹ ¹Case Western Reserve University, Cleveland, OH

Track: Biomedical Imaging and Optics, Tissue Engineering OP-Fri-2-13 - Room 11

Applications of Imaging in Tissue Engineering

Chairs: Chris Price, Chris Bashur

1:45PM Single-Cell Lens-Free Imaging of Cell Migration in Diverse

Microenvironments C. PAUL¹, E. MATHIEU², R. STAHL², G. VANMEERBEECK², K. KONSTANTOPOULOS¹, AND L. LAGAE²

¹Johns Hopkins University, Baltimore, MD, ²imec, Leuven, Belgium

2:00PM

Development of an Optical Probe for Detection of Chondrocyte Apoptosis Following Cartilage Injury

Y-H. HUANG¹, J. ZHOU¹, H. WENG¹, J. BORRELLI², AND L. TANG¹ ¹University of Texas at Arlington, Arlington, TX, ²Texas Health Arlington Memorial Hospital, Arlington, TX

2:15PM

In Situ Microscale Quantification of Solute Transport via Image Correlation Spectroscopy B. GRAHAM¹, J. SHOGA¹, AND C. PRICE¹

¹University of Delaware, Newark, DE

2:30PM

Modified En Bloc Staining and Clearing for Improved Imaging of Musculoskeletal Cells In Situ

I. BERKE¹, J. MIOLA¹, M. SMITH¹, AND C. PRICE¹ ¹University of Delaware, Newark, DE

Track: Bioinformatics, Computational and Systems Biology OP-Fri-2-14 - Room 17

Molecules and Molecular Systems

Chairs: Ilya Vakser, Leonor Saiz

1:45PM

Exploring the Binding Properties of Proteins by Computational Mapping S. VAJDA1 AND D. KOZAKOV1

¹Boston University, Boston, MA

2:00PM

Three-Dimensional Modeling of Single Stranded DNA Aptamers I. JEDDI¹ AND L. SAIZ¹ ¹University of California, Davis, Davis, CA

2:15PM

Computational Modeling of General RTK Dimerization Kinetics S. B. MAMER¹ AND P. I. IMOUKHUEDE¹

¹University of Illinois at Urbana-Champaign, Urbana, IL

2:30PM

A Computational Model Of Cell-Generated Traction Forces And Fibronectin Assembly

D. MAIR¹, T. PETET¹, L. SCOTT¹, S. WEINBERG², AND C. LEMMON¹ ¹Virginia Commonwealth University, Richmond, VA, ²Old Dominion University, Suffolk, VA

P = Poster Session
OP = Oral Presentation
Q = Reviewer Choice Award

Track: Drug Delivery

OP-Fri-2-15 - Room 10

Translation to the Clinic / Personalized Medicine & Novel Materials and Self Assembly

Chairs: Dean Ho, Eilaf Ahmed

1:45PM

Phenotypic Personalized Medicine: Individualized Drug Interaction Mapping in Patient-Specific Immunosuppression

A. ZARRINPAR¹, D-K. LEE¹, A. SILVA¹, N. DATTA¹, T. KEE¹, C. ERIKSEN¹, K. WEIGLE¹, V. AGOPIAN¹, F. KALDAS¹, D. FARMER¹, R. BUSUTTIL¹, C-M. HO¹, AND D. HO¹ ¹UCLA, Los Angeles, CA

2:00PM

Tenofovir Alafenamide Fumarate Subcutaneous Implants for Long-acting HIV Pre-exposure Prophylaxis

A. AESRAM¹, S. GUNASEKARAN², R. VEAZEY³, T. HOPE², AND P. KISER¹ ¹Northwestern University, Evanston, IL, ²Northwestern University, Chicago, IL, ³Tulane University, New Orleans, LA

2:15PM

Real Time *in vivo* Volumetric Two-Photon Imaging to Study the Effect of Particle Size on Nanoparticle Transport in the Brain

P. GADAMSETTY¹, J. ROSCH¹, C. SCHAFFER¹, AND W. OLBRICHT¹ $^{7}Cornell University, Ithaca, NY$

2:30PM

Targeted CNS Transfection Via The Delivery of Brain-Penetrating Non-Viral Gene Vectors Across the Blood-Brain Barrier with Focused Ultrasound

B. MEAD¹, P. MASTORAKOS², J. S. SUK², J. SONG¹, J. HANES², AND R. PRICE¹ ¹University of Virginia, Charlottesville, VA, ²Johns Hopkins University, Baltimore, MD

Track: Nano and Micro Technologies OP-Fri-2-16 - Room 7-8

Paper Fluidics

Chairs: Dan Ratner, Jacqueline Linnes

1:45PM

Paper-Based Test for Screening Newborns for Sickle Cell Anemia in Resource-Limited Settings

N. PIETY¹, A. GEORGE², P. PATEL², D. NIRENBERG², G. AIREWELE², AND S. SHEVKOPLYAS¹ ¹University of Houston, Houston, TX, ²Baylor College of Medicine, Houston, TX

2:00PM

Home Phenylalanine Monitoring for PKU Therapy in a Paper-based Device from a Sample of Whole Blood

R. ROBINSON¹, L. WONG¹, AND E. FU¹ ¹Oregon State University, Corvallis, OR

2:15PM

Single-step Concentration and Detection of a Malaria Biomarker in Serum

D. PEREIRA¹, R. CHIU¹, S. ZHANG¹, B. WU¹, AND D. KAMEI¹ ¹UCLA, Los Angeles, CA

2:30PM

Paper Lysis, Extraction Support Material and Detection Tool for HPV the Etiologic Agent of Cervical Cancer

M. KARAKAYA¹,², J. C. LINNES³, S. OKUR², AND C. M. KLAPPERICH¹ ¹Boston University, Boston, MA, ²Izmir Katip Celebi University, Izmir, Turkey, ³Purdue University, West Lafayette, IN

Track: Respiratory Bioengineering OP-Fri-2-17 - Room I

Ventilation of the Injured Lung

Chairs: Conne Hsia, Susan Margulies

1:45PM

A Patient-Specific Validation and Computational Lung Model for Predicting Regional Tissue Aeration (invited)

W. WALL¹ AND C. ROTH¹ ¹TU München, Garching b. München, Germany

2:00PM

Actively-Accelerated Deflation During Mechanical Ventilation Promotes Edematous Alveolar Clearance

Y. WU¹ AND C. PERLMAN¹

¹Stevens Institute of Technology, Hoboken, NJ

2:15PM

Effect of Non-uniform Acinar Pressures on the Parenchymal Tethering Airways

H. FUJIOKA¹, J. RYANS¹, D. HALPERN², AND D. GAVER¹ ¹Tulane University, New Orleans, LA, ²University of Alabama, Tuscaloosa, AL

2:30PM

A Disposable Device For Measuring Lung Impedance In Mechanically Ventilated patients

J. BATES¹, B. SMITH¹, G. ROY¹, D. ST. PIERRE¹, AND B. MA¹ ¹University of Vermont, Burlington, VT

Track: Cancer Technologies, Biomedical Imaging and Optics

OP-Fri-2-18 - Room 9

Imaging in Cancer

Chairs: Arthur Gmitro, Erik Taylor

1:45PM

Ultrasound Acoustic Angiography Imaging of Angiogenesis as a Cancer Biomarker

S. SHELTON¹, S. RAO¹, Y. LEE², M. LEE³, E. CHERIN³, S. FOSTER³, S. AYLWARD⁴, AND P. DAYTON¹

¹UNC/NCSU, Chapel Hill, NC, ²UNC, Chapel Hill, NC, ³Sunnybrook Health Sciences Centre, Toronto, ON, Canada, ⁴Kitware Medical Imaging, Carrboro, NC

2:00PM DREAM TEAM & CENTER

Macroscopic Patterns of Glioblastoma Tumor Architecture E. TAYLOR¹, Y. DING², S. ZHU¹, E. CHEN¹, G. ANINWENE¹, M. HOFFMAN¹, C. FULLER², AND R. GILBERT¹ 'Northeastern University, Boston, MA, ²MD Anderson Cancer Center, Houston, TX

2:15PM

Multi-Modality Imaging in a Mammary Window Chamber PDX Tumor Mouse Model

A. GMITRO¹, H. M. LEUNG¹, AND R. SCHAFER¹ ¹University of Arizona, Tucson, AZ

2:30PM

In Vivo, Single Cell Imaging of Drug Target Engagement in Cancer Therapy

M. DUBACH¹, C. VINEGONI¹, AND R. WEISSLEDER¹ ¹Harvard Medical School, Boston, MA

PLATFORM SESSIONS Fri-3 3:00PM - 4:00PM

SPECIAL SESSION

I:45 PM - 5:00 PM - Ballroom A BMES-NSF Special Session on Research in BME & Grant Writing

Pre-registration required

BMES and the National Science Foundation (NSF) will convene a special session focused on innovative research in biomedical engineering and grant writing. The session will bring together NSF Bioengineering and Engineering Healthcare grantees, young investigators, junior and senior faculty, post-doctoral fellows and graduate students for idea exchange and networking related to conducting and funding cutting-edge research in BME. The session will showcase NSF funded research and researchers, foster collaboration and idea exchange, familiarize participants with NSF funding mechanisms, and provide strategies for preparing competitive grant proposals. The research areas where the NSF Biomedical Engineering Program supports fundamental and transformative research will also be discussed. Participants at all levels will gain an increased awareness of NSF funded research, a better understanding of NSF funding opportunities and how to prepare successful grant applications, and a chance to establish new relationships leading to future collaborations. This material is based upon work supported by the National Science Foundation under Grant No.

FRIDAY, October 9, 2015

3:00 PM - 4:00 PM

PLATFORM SESSIONS – FRI - 3

Track: Stem Cell Engineering OP-Fri-3-1 - Room 18

Other Stem Cell Applications

Chairs: Akhilesh Gaharwar, Jin Nam

3:00PM

Non-viral Genetically Engineered Adipose Mesenchymal Stem Cells for Brain Tumor Therapy

A. MANGRAVITI¹, S. TZENG¹, D. GULLOTTI¹, K. KOZIELSKI¹, M. SENG¹, S. ABBADI¹, P. SCHIAPPARELLI¹, R. SARABIA-ESTRADA¹, H. BREM¹, B. TYLER¹, A. OLIVI¹, J. GREEN¹, AND A. QUINONES-HINOJOSA¹

¹Johns Hopkins University, Baltimore, MD

3:15PM

Role For Stiffness In Vascular Fate

L. WONG¹, D. GLASER¹, AND K. MCCLOSKEY¹ ¹UC Merced, Merced, CA

3:30PM

Myosin Binding Protein C Downregulation And Contractile Defects of IPSC-derived Cardiomyocytes

A. RIBEIRO¹, M. MANDEGAR²,³, O. SCHWAB¹, E. BALANDINA²,³, B. CONKLIN²,³, AND B. PRUITT¹

¹Stanford University, Stanford, CA, ²Gladstone Institutes, San Francisco, CA, ³University of California San Francisco, San Francisco, CA

3:45PM

Effect of Local Anesthetics on Human Mesenchymal Stromal Cell Secretion and Macrophage Immunomodulation

I. MARRERO-BERRIOS¹, A. GRAY¹, T. MAGUIRE¹, J. WEINBERG², D. MANCHIKALAPATI², J. SCHIANODICOLA², M. YARMUSH¹, R. SCHLOSS¹, AND J. YARMUSH² ¹Rutgers, The State University of New Jersey, Piscataway, NJ, ²New York Methodist Hospital, Brooklyn, NY

Track: Tissue Engineering OP-Fri-3-2 - Room 19

Inflammation and Immunomodulation in Tissue Engineering II

Chairs: Ankur Singh, Susan Thomas

3:00PM

Immunoprotected Allogeneic Transplantation And Microencapsulation Of Islets In A Hyaluronic Acid And Collagen Hydrogel

S. HARRINGTON $^{1,2,3}_{\prime,\prime,}$ J. WILLIAMS 2 S. RAWAL 2 K. RAMACHANDRAN 3 and L. Stehno-Bittel $^{1,2,3}_{\prime,\prime,}$

¹University of Kansas, Lawrence, KS, ²University of Kansas Medical Center, Kansas City, KS,³Likarda, LLC, Kansas City, KS

3:15PM

T cells are Required for M2-Macrophage Polarization in ECM Scaffold-Treated Volumetric Muscle Injury

K. Sadtler¹, B. Allen¹, K. Estrellas¹, M. Wolf¹, F. Housseau², D. Pardoll², and J. Elisseeff¹

¹Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, ²Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD

P = Poster Session
OP = Oral Presentation
2 = Reviewer Choice Award

3:00PM - 4:00PM PLATFORM SESSIONS Fri-3

2015 OCTOBER 9 FRIDAY

3:30PM

Implications of Low Level Chronic LPS on Vascular Dynamics and **Tumor Progression**

M. COX¹, L. LI², AND S. VERBRIDGE¹ ¹Virginia Tech - Wake Forest University, Blacksburg, VA, ²Virginia Tech, Blacksburg, VA

3:45PM

Microengineered Human Gut-on-a-Chip for Dissecting Intestinal Inflammatory Disease

H. J. KIM¹,² AND D. INGBER² ¹UT Austin, Austin, TX, ²Wyss Institute at Harvard University, Boston, MA

Track: Biomechanics

OP-Fri-3-3 - Room 20

Biomechanics, Injury II: Spine

Chairs: Jason Luck, Gary Bledsoe

3:00PM

Intervertebral Implant Design Can Influence Viscoelastic Response Under Dynamic Loading

A. VALDEVIT¹, R. CHUNG¹, M. DAWOUD¹, P. ULLRICH, JR², M. GALLAGER², AND J. SCHNEIDER²

¹Stevens Institute of Technology, Hoboken, NJ, ²Titan Spine, LLC, Mequon, WI

3:15PM

Lower Back Biomechanics during Manual Material Handling Task; the Effects of Aging

I. SHOJAEI¹, M. VAZIRIAN¹, E. CROFT¹, M. A. NUSSBAUM², AND B. BAZRGARI¹ ¹University of Kentucky, Lexington, KY, ²Virginia Tech, Blacksburg, VA

3:30PM

Age-related Alterations in Trunk Intrinsic Stiffness

M. VAZIRIAN¹, I. SHOJAEI¹, R. TROMP¹, M. NUSSBAUM², AND B. BAZRGARI¹ ¹University of Kentucky, Lexington, KY, ²Virginia Tech, Blacksburg, VA

3:45PM

Viscoelasticity of the Human Lumbar Spine

B. BIGLER¹, A. SCHMIDT¹, J. SHRIDHARANI¹, A. KNIGHT¹, A. ALONSO¹, J. Y. ZHANG², C. BASS¹, AND C. COX ¹Duke University, Durham, NC, ²Johns Hopkins Applied Physics Lab, Laurel, MD

Track: Biomedical Engineering Education (BME) OP-Fri-3-4 - Room 21

Interactive Education: How to Engage, Excite, and Teach BME Students

Chairs: Jacqueline Linnes, Renata Ramos

3:00PM

SimVascular: Open Source Software for Cardiovascular Blood Flow Simulations in Research and Education (invited) A. MARSDEN¹

¹Stanford University, Palo Alto, CA

3:15PM

Teambuilding & Leadership Interventions Improve Undergraduate Bioengineering Students' Leadership Self-Construal D. ROSCH¹ AND P. I. IMOUKHUEDE¹

¹University of Illinois at Urbana Champaign, Urbana, IL

3:30PM

Active Online Learning to Complement Biomedical Engineering Courses

K. DAHI ¹ AND B. JOHNSON² ¹Carnegie Mellon University, Pittsburgh, PA, ²Acrobatiq, Pittsburgh, PA

3:45PM

A Novel Approach To Undergraduate Clinical Exposure: Clinical Immersion

J. D. ACKERMAN¹, J. K. RAINS², AND B. B. FASSE² ¹Emory University, Atlanta, GA, ²Georgia Institute of Technology, Atlanta, GA

Track: Biomaterials OP-Fri-3-5 - Room 22

Therapeutic and Theranostic **Biomaterials II**

Chairs: Rachael Oldinski, Jennifer Leight

3:00PM

Opsonin-coated Hollow Fibers Modified With a Tethered Liquid Perfluorocarbon Layer For Dialysis-like Therapy of Sepsis Using **Reduced Anticoagulants**

T. DIDAR¹, A. GRAVELINE¹, M. CARTWRIGHT¹, M. SUPER¹, A. WATTERS¹, AND D. INGBER¹ ¹Harvard University, Boston, MA

3:15PM

Copolymer Properties Reinstate Stemness and Therapeutic Potential of Human Mesenchymal Stem Cells

S. CROWDER¹, D. BALIKOV¹, S. HYUN LEE¹, AND H-J. SUNG¹ ¹Vanderbilt University, Nashville, TN

3:30PM

Nanoemulsified Volatile Ansesthetics: Formulation and Induction Studies B. ASHRAFI¹, R. D. MOLANO², Z. PENG³, A. PILEGGI², E. PRETTO³, AND C. FRAKER²

¹University of Miami, Miami, FL, ²University of Miami Diabetes Research Institute, Miami, FL,³University of Miami School of Medicine, Miami, FL

3:45PM

Broad-Spectrum Affinity Hemofilter for the Removal of Pathogens in a Porcine Model of Sepsis

D. LESLIE¹, A. WATERHOUSE¹, D. BOLGEN¹, M. CARTWRIGHT¹, A. WATTERS¹, T. DOYLE¹, B. SEILEF¹, P. LOMBARDO¹, B. MURPHY¹, M. RODAS¹, N. DIMITRAKAKIS¹, B. PAVLOV¹,
B. DUSEL¹, J. ORLANDO¹, J. BERTHET¹, S. JUREK¹, N. GAMINI¹, K. DONOVAN², A. NEDDER², M. SUPER¹, AND D. INGBER¹,²

¹Harvard University, Boston, MA, ²Boston Children's Hospital, Boston, MA

Track: Biomaterials OP-Fri-3-6 - Room 23

Biomaterials for Controlling Cell Environment I

Chairs: Yi Hong, Danielle Benoit

3:00PM

Design Of Thiol-ene Hydrogels Using Facile Techniques For Studying Breast Cancer Dormancy L. SAWICKI1 AND A. KLOXIN1

¹University of Delaware, Newark, DE

3:15PM

Bioinspired Proteins Designed as Microenvironments for Cell Differentiation

Y. KIM¹, J. RENNER¹, AND J. LIU¹ ¹Purdue University, West Lafayette, IN

3:30PM DREAM TEAM & CENTER

Development of Novel Anti-Inflammatory Ceramic Coating for Impant S. DAS¹, S. D. O. S. LAUTENSCHLAGER², R. MCCORMACK¹, A. BEHRMANN³, B. RAMACHANDRAN³, T. S. SAKTHIVEL¹, S. SARAF¹, S. BARKAM¹, D. TOWLER³, W. SELF¹, AND S. SEAL

¹University of Central Florida, Orlando, FL, ²State University of Maringá, Maringá, Brazil,3Sanford-Burnham Medical Research Institute, Orlando, FL

3:45PM

Chitosan Interaction with the 'Universal' Bacterial Communication Molecule, Autoinducer-2

M. RHOADS¹,² AND W. BENTLEY¹,²

¹University of Maryland College Park, College Park, MD, ²Institute for Bioscience and Biotechnology Research, College Park, MD

Track: Tissue Engine OP-Fri-3-7 - Room 13

Tissue Engineered Models for Study of Disease and Drug Discovery I

Chairs: Pamela Kreeger, Kristyn Masters

3:00PM

A 3D In Vitro Model Of Microvascular Remodeling In Adipose Tissue E. BELLAS¹,² AND C. CHEN¹,²

¹Boston University, Boston, MA, ²Harvard University, Boston, MA

3:15PM

Engineering an In Vitro Model of Human Non-alcoholic Fatty Liver Disease and Insulin Resistance

M. DAVIDSON¹, K. BALLINGER¹, A. LEJEUNE¹, AND S. KHETANI¹ ¹Colorado State University, Fort Collins, CO

3:30PM PI ATFORM

Tumor Growth Response to Controlled Oxygen Gradients S. LAM¹ AND S. GEORGE¹

¹Washington University in St. Louis, St. Louis, MO

3:45PM

Design And Fabrication Of "EZ Imaging Perfusion Chamber" For Study Of Immune Cell-Endothelium Interaction In Tissue-Engineered Blood Vessel (TEBV)

K. ADEBOWALE¹, Z. CHEN¹, W. LEONG¹, AND K. LEONG¹ ¹Columbia University, New York, NY

P = Poster Session **OP** = Oral Presentation

= Reviewer Choice Award

Track: Orthopedic and Rehabilitation Engineering

OP-Fri-3-8 - Room 14

Rehabilitation Engineering

Chairs: Gregory Sawick

3:00PM

Scoliosis Analog Model for the Evaluation of Bracing Technology D. DIANGELO¹ AND C. CHUNG¹

¹University of Tennessee Health Science Center, Memphis, TN

3:15PM

Voluntary Activation of Tendon Transfers to Restore Elbow Extension in Tetraplegia

C. PETERSON^{1, 2}, M. BEDNAR^{2, 3}, A. BRYDEN^{4, 5}, M. KEITH^{4, 5}, E. PERREAULT^{1, 6}, AND W. MURRAY^{1,2,6}

¹Rehabilitation Institute of Chicago, Chicago, IL, ²Edward Hlnes, Jr. VA Hospital, Hines, IL,³Loyola University, Maywood, IL, ⁴Case Western Reserve University, Cleveland, OH,⁵Cleveland FES Center at MetroHealth, Cleveland, OH, ⁶Northwestern University, Evanston, IL

3:30PM

Acquisition and Analysis of Underfoot Load Data from Lower **Extremity Fracture Patients**

A. LAJEVARDI-KHOSH¹, B. I. TRESCO¹, M. ACKERMAN¹, T. PETELENZ¹, AND R. Нітснсоск

¹University of Utah, Salt Lake City, UT

3:45PM

Children With Cerebral Palsy Achieve Lower Limb Muscle Stretch Through Climbing

J. MILLER¹ AND S. RUSSELL¹ ¹University of Virginia, Charlottesville, VA

Track: Neural Engineering OP-Fri-3-9 - Room 15

Glial Cell Engineering/Addressing Degeneration

Chairs: Stephanie Seidlits, Deanna Thompson

3:00PM

Brief Electrical Stimulation to Delay Onset of Glaucoma

J. STUKEL¹, L. COUGHLIN²,³, R. WILLITS¹, AND D. INMAN² ¹The University of Akron, Akron, OH, ²NEOMED, Rootstown, OH, ³Kent State University, Kent, OH

3:15PM

Quercetin And Metabolites Reduce A&[beta]-Induced Apoptosis Associated With Alzheimer's Disease

K. PATE¹, M. ROGERS¹, AND M. MOSS ¹University of South Carolina, Columbia, SC

3:30PM

Directional Migration of Oligodendrocyte Precursors in an Applied **Electric Field**

Y. LI1, P-S. WANG2, G. LUCAS3, R. LI2, AND L. YAO4

¹Wichita State University, Wichita, KS, ²Stowers Institute of Medical Research, Kansas City, KS,³School of Medicine-Wichita, University of Kansas Medical Center, Wichita, KS, ⁴Wichita State University, Wichita, KS

3:45PM

Fiber Diameter Alters the Initial Astrocyte Response to Electrospun Poly-L-lactic Acid Fibers

C. JOHNSON¹, G. DESMOND¹, J. ZUIDEMA², N. SCHAUB¹, AND R. GILBERT¹ ¹Rensselaer Polytechnic Institute, Troy, NY, ²University of California San Diego, La Jolla, CA

Track: Device Technologies and Biomedical Robotics, Cardiovascular Engineering OP-Fri-3-10 - Room 16

Cardiovascular Devices

Chairs: Dan Moran, Baruch Lieber

3:00PM

Noninvasive Detection System for Estimating Cutaneous Blood Perfusion Level

Y-H. PENG¹ AND J-M. MAAREK¹ ¹University of Southern California, Los Angeles, CA

3:15PM

Evaluation of Cardiac Energetics for a Transmural Cardiac Assist Device

E. HORD¹, C. BOLCH², E. TUZUN³, AND J. CRISCIONE¹ ¹Texas A&M University, College Station, TX, ²CorInnova, Inc., Houston, TX, ³Texas A&M Institute for Preclinical Studies, College Station, TX

3:30PM

3D-printing Elastomeric Bioresorbable Vascular Stents

J. YANG¹, E. BAKER², H. WARE¹, R. VAN LITH¹, F. ZHOU¹, C. SUN¹, AND G. AMEER¹ Northwestern University, Evanston, IL, ²Northwestern University, Evanton, IL

3:45PM

Evaluation of Flow Diversion Performance of Five Commercial Neurovascular Stents Through MicroCT Geometry Based Numerical Modeling in an Idealized Brain Aneurysm Model

R. DHOLAKIA¹, C. SADASIVAN¹, D. FIORELLA¹, H. WOO¹, AND B. LIEBER¹ ¹Stony Brook University, Stony Brook, NY

Track: Cardiovascular Engineering OP-Fri-3-11 - Room 3-4

Imaging in Cardiovascular Systems

Chairs: Albert Titus, Ngan Huang

3:00PM DREAM TEAM & CENTER

Aortic Blood Flow Characterization using Phase Contrast MRIs in Turner Syndrome

G. MYLAVARAPU¹, E. GUTMARK¹,², S. RINGGARD³, C. TROLLE³, C. GRAVHOLT³, P. BACKELJAUW⁴, AND I. GUTMARK-LITTLE⁵

¹University of Cincinnati, Cincinnati, OH, ²University of Cincinnati Medical Center, Cincinnati, OH, ³Aarhus University Hospital, Aarhus, Denmark, ⁴Cincinnati Children's Hospital Medical Center, Cincinnati, OH, ⁵Cincinnati Childrens Hospital Medical Center, Cincinnati, OH

3:15PM

Effect of Core Temperature on Peripheral and Cerebral Vasculature in MRI Studies

A. CROUCH¹ AND J. GREVE¹ ¹University of Michigan, Ann Arbor, MI

3:30PM

Relationship Between Microcalcifications In Fibrous Caps And Calcification Patterns In Human Atheroma

N. MALDONADO¹, A. KELLY-ARNOLD¹, D. LAUDIER¹, L. CARDOSO¹, AND S. WEINBAUM¹ *The City College of New York, New York, NY*

3:45PM

Enzyme-Dependent Fluorescence Recovery after Photobleaching (ED-FRAP) in a Whole Heart

A. MORENO¹, R. JAIMES¹, S. GLANCY¹, AND M. KAY¹ ¹The George Washington University, Washington, DC

Track: Translational Biomedical Engineering, Biomedical Imaging and Optics OP-Fri-3-12 - Room 5-6

Imaging Technologies in Clinical Translation

Chairs: Mark Palmer, Melinda Harman

3:00PM

Patient-Specific Assessment of pre-TPV Angioplasty Coronary Compression Using the Finite Element Method.

S. AMENDOLA¹, P. BHATLA², S. CHAKRAVARTI², A. LUDOMIRSKY², M. ARGILLA², P. BERMAN², D. MCELHINNEY³, AND V. FLAMINI¹

¹NYU, Brooklyn, NY, ²NYU, Manhattan, NY, ³Stanford University, Stanford, CA

3:15PM

Diffuse Optical Measurements of Head and Neck Tumor Hemodynamics for Early Prediction of Radiation Therapy Outcomes

L. DONG¹, D. IRWIN¹, Y. SHANG¹, L. CHEN¹, B. SHELTON¹, S. STEVENS¹, M. KUDRIMOTI¹, AND G. YU¹

¹University of Kentucky, Lexington, KY

3:30PM

Effect of Head impacts on White Matter Fiber Tracts in Youth Football N. Bahrami¹, D. H. Sharma¹, C. T. Whitlow¹, E. M. Davenport¹, J. E. Urban¹, Y. Jung¹, G. A. Gioia², J. D. Stitzel¹, and J. A. Maldjian¹

¹Wake Forest University, Schoold of Medicine, Winston Salem, NC, ²Children's National Medical Center, Washington DC, DC

3:45PM

A Non-Invasive, Image-Based, Smartphone App for Diagnosing Anemia

R. MANNINO^{1,2,3}, E. TYBURSKI^{1,2,3}, J. BOUDREAUX^{2,3}, AND W. LAM^{1,2,3} ¹Georgia Institute of Technology and Emory University, Atlanta, GA, ²Emory University School of Medicine, Atlanta, GA, ³Children's Healthcare of Atlanta, Atlanta, GA

Tracks: Biomedical Imaging and Optics, Biomechanics

OP-Fri-3-13 - Room 11

Applications of Imaging in Biomechanics

Chairs: Elena Talkacheva, Peter Johansen

3:00PM

Architectural Basis of Lingual Muscular Hydrostats

G. ANINWENE II¹, E. TAYLOR¹, M. HOFFMAN¹, AND R. GILBERT¹ ¹Northeastern Unuiversity, Boston, MA

3:15PM

Microstructural Characterization of Human Ocular Tunics for Whole Eye Numerical Modeling

M. SPANG¹, T. SORENSEN², C. WHITFORD³, A. ELSHEIKH³, AND C. BOOTE¹ ¹Cardiff University, Cardiff, United Kingdom, ²Diamond Light Source Ltd, Didcot, United Kingdom, ³University of Liverpool, Liverpool, United Kingdom

3:30PM

Bioprosthetic Heart Valve Leaflet 3D Strain Mapping using Digital Image Correlation

S. Heide-Jørgensen¹, J. Taborsky¹, S. K. Krishna¹, T. Bechsgaard², J. L. Hønge², R. Zegdi³, and P. Johansen¹

¹Faculty of Science and Technology, Aarhus University, Aarhus, Denmark, ²Aarhus University Hospital, Aarhus, Denmark, ³Hôpital Européen Georges Pompidou, Paris, France

3:45PM

Effects of an Exercise Surrogate on Lumen Expansion in Murine Models. P. CASTLE1, U. SCHEVEN1, A. CAO1, AND J. GREVE1 'University of Michigan, Ann Arbor, MI

Track: Bioinformatics, Computational and Systems Biology

OP-Fri-3-14 - Room 17

Cell Signaling and Therapeutics

Chairs: Jose Luis Puglisi, Cheemeng Tan

3:00PM

Quantitative Analysis of the Akt/mTOR Signaling Axis A. RAHMAN¹ AND J. HAUGH¹ 'North Carolina State University, Raleigh, NC

3:15PM

Druggability of Cellular Network Motifs

F. WU¹, C. MA², AND C. TAN¹ ¹University of California Davis, Davis, CA, ²Zhejiang University, Hangzhou, China, People's Republic of

3:30PM

Mechanistic Model of Angiogenesis Inhibitor Thrombospondin-I in Cancer S. FINLEY¹ 'University of Southern California, Los Angeles, CA

3:45PM

Dynamic Phosphorylation Signatures Following Stimulation Distinguish Latent HIV-Infected Primary CD4+ T Cells from Uninfected Cells L. FONG¹, E. SULISTIJO¹, AND K. MILLER-JENSEN¹ 'Yale University, New Haven, CT

Track: Drug Delivery

OP-Fri-3-15 - Room 10

Multifunctional or Hybrid Systems

Chairs: Steven Jay, Tara Deans

3:00PM

PLATFORM

A Multipurpose Prevention Technology or "Virus Trap and Safety Net" for the Delivery of Antivirals, Proteins, and Oligonucleotides against STIs

K. M. TYO¹, T. W. GROOMS-WILLIAMS¹, N. MATOBA¹, AND J. M. STEINBACH¹ ¹University of Louisville, Louisville, KY

3:15PM

Polyelectrolyte Multilayers Assembled from Immune Signals Promote Antigen-specific T Cell Response

P. ZHANG¹ AND C. JEWELL^{1,2,3}

¹University of Maryland, COLLEGE PARK, MD, ²University of Maryland Medical School, Baltimore, MD, ³Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD

3:30PM

Multispectral PLGA Nanoparticles To Assess Cellular Uptake And Distribution In Vitro and In Vivo

D. MEDINA¹, J. YAMAGUCHI¹, K. HOUSEHOLDER¹, T. KOVALIK¹, S. BOWEN¹, AND R. SIRIANNI¹

¹Barrow Neurological Institute, Phoenix, AZ

3:45PM

In vivo Delivery of Transcription Factors with Multifunctional Oligonucleotides

K. LEE¹, M. RAFI², X. WANG², R. TANG², N. LINGAMPALLI², AND N. MURTHY² ¹University of California, Berkeley, Albany, CA, ²University of California, Berkeley, Berkeley, CA

P = Poster Session
OP = Oral Presentation
2 = Reviewer Choice Award

Track: Nano and Micro Technologiesy OP-Fri-3-16 - Room 7-8

Micro and Nano Total Analysis Systems

Chairs: Beth Pruitt, Rong Fan

3:00PM

An Acoustofluidic Device for Liquefying Human Sputum Samples On-chip P-H. HUANG¹, L. REN¹, S. LI¹, AND T. J. HUANG¹

¹The Pennsylvania State University, University Park, PA

3:15PM

Enhancement of Surface Binding by Laser Heating Induced Mass Transport B. WANG¹ AND X. CHENG¹ 'Lehigh University, Bethlehem, PA

3:30PM

Single-Cell, 42-Plex Detection of Immune Effector Proteins Reveals Deep Functional Heterogeneity and Dynamic Population Architecture R. FAN¹ 'Yale University, New Haven, CT

3:45PM

A High-Throughput, Low-Volume, Sensitive Microfluidic Multiplex Immunoassay

M. Ghodbane¹, E. Stucky¹, T. Maguire¹, R. Schloss¹, D. Shreiber¹, J. Zahn¹, and M. Yarmush¹,²

¹Rutgers, The State University of New Jersey, Piscataway, NJ, ²Massachusetts General Hospital, Boston, MA

Tracks: Respiratory Bioengineering OP-Fri-3-17 - Room I

Airway Modeling and Imaging

Chairs: Bernard Sapoval, Gordana Vunjak-Novakovic

3:00PM

Role of Collagen Fibers in Translating Airway Smooth Muscle Force to Narrowing of Airways

H. PARAMESWARAN¹, D. MARQUIS¹, K. DUVAL¹, B. HARVEY¹, AND K. LUTCHEN¹ ¹Boston University, Boston, MA

3:15PM

Collagen Crosslinking Reagent Utilized to Stiffen Soft Palate in Equine Snoring

S. HUNT¹, J. KUO², M. BROWN³, AND T. HEDMAN⁴ ¹University of Kentucky, Lexington, KY, ²Orthopeutics, L.P., Lexington, KY, ³Crosscoat Medical, LLC, Lexington, KY, ⁴University of Kentucky; Orthopeutics, L.P.; Crosscoat Medical, LLC, Lexington, KY

3:30PM

Patterned, Tubular Scaffolds Mimic Longitudinal and Radial Mechanics of the Neonatal Trachea

E. MANSFIELD¹, V. GREENE¹, AND D. AUGUSTE¹ ¹The City College of New York, New York, NY

3:45PM

Minimizing Ventilation Heterogeneity Using Multiple Frequencies of Oscillation

J. HERMANN¹, M. TAWHAI², AND D. KACZKA¹

¹University of Iowa, Iowa City, IA, ²University of Auckland, Auckland, New Zealand

Track: Cancer Technologies OP-Fri-3-18 - Room 9

Personalized Medicine in Cancer

Chairs: Adam Engler, Cynthia Reinhart-King

3:00PM

Sorting Out Tumor Cell Heterogeneity: Phenotypic Isolation of Differentially Invasive Subpopulations

S. CAREY¹, Z. GOLDBLATT¹, L. HAPACH¹, M. LAMPI¹, A. BRAUN¹, A. RAHMAN¹, K. MARTIN¹, AND C. REINHART-KING¹ ¹Cornell University, Ithaca, NY

3:15PM

Metastatic State of Cancer Cells may be Indicated by Attachment Strength

A. FUHRMANN¹, T.TLSTY², AND A. ENGLER¹,³ ¹UC San Diego, La Jolla, CA, ²UC San Francisco, San Francisco, CA, ³Sanford Consortium for Regenerative Medicine, La Jolla, CA

3:30PM

Nanoscale Aptamer-Based Carrier for Personalized Treatment of Small Cell Lung Carcinoma

K. WINDHAM¹, R. WHITENER¹, J. WOWER¹, AND M. BYRNe²

¹Auburn University, Auburn, AL, ²Rowan University, Glassboro, NJ

3:45PM

Isolation And Characterization Of Pancreatic Circulating Tumor Cells By Graphene Oxide Based Chip

Y. WANG¹, H. J. YOON¹, M. MORGAN¹, S. FOULADDEL¹, E. AZIZI¹, M. WICHA¹, K. CUNEO¹, D. SIMEONE¹, AND S. NAGRATH¹ ¹University of Michigan, Ann Arbor, Ann Arbor, MI

Track: Translational Biomedical Engineering OP-Fri-3-19 - Room 25

Biomedical Products and Devices

Chairs: Chao-Min Cheng, Hansen Mansy

3:00PM

Neurological Impairments Following Mild Blast-induced Traumatic Brain Injury: A Multidisciplinary Investigation

R. SHI¹, N. RACE¹, E. LUNGWITZ², S. ALVAREZ¹, S. SONG¹, A. KIM¹, T. ZHANG¹, B. ZIAIE¹, AND W. TRUITT²

 $^1\mathrm{Purdue}$ University, West Lafayette, IN, $^2\mathrm{Indiana}$ University School of Medicine, Indianapolis, IN

3:15PM

Localized Therapeutic Hypothermia Protects Residual Hearing Against Cochlear Implantation Trauma

I. TAMAMES¹, C. KING², F. TELISCHI¹, S. HUYNH¹, J. TRUETTNER¹, D. DIETRICH¹, AND S. RAJGURU¹

¹University of Miami, Miami, FL, ²Lucent Medical Systems, Kirkland, WA

3:30PM

Biocompatibility Evaluation of Modified Tetronic Adhesive for Soft Tissue Applications

L. SANDERS¹, K. WEBB¹, T. MEFFORD¹, AND J. NAGATOMI¹ ¹Clemson University, Clemson, SC

3:45PM

Development And Characterization Of A Rapid Polymerizing Collagen For Soft Tissue Augmentation

S. GRANT¹, D. GRANT¹, J. ZHU², R. BROOKS², AND D. DEVORE² ¹University of Missouri, Columbia, MO, ²Eternogen, LLC, Columbia, MO

> sessions Fri-3

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 4:00PM - 5:00PM

POSTERS - FRIDAY SESSIONS

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 4:00PM - 5:00PM

FRIDAY, October 9, 2015

9:30 AM - 5:00 PM POSTER SESSIONS

Cancer: P-Fr-I to P-Fr-98

Cardiopulmonary Bioengineering: P-Fr-99 to P-Fr-129

Cardiopulmonary Biomechanics: P-Fr-130 to P-Fr-224

Drug Delivery: P-Fr-225 to P-Fr-312

Engineering Materials: P-Fr-316 to P-Fr-427

Imaging: P-Fr-428 to P-Fr-521

Molecular and Cellular Topics: P-Fr-529 to P-Fr-588

Neural Engineering: P-Fr-589 to P-Fr-651

Stem Cell Engineering & Applications: P-Fr-652 to P-Fr-724

Track: Cancer Technologies, Drug Delivery Cancer:

Cancer Drug Delivery Posters

P-Fr-I

Non-thermal Radiofrequency Disrupts Normal Pancreatic Adenocarcinoma Phenotype

V KESHISHIAN1 M WAREL N LABA2 S CUBLEYL AND S COBBL2 1Baylor College of Medicine, Houston, TX, 2Rice University, Houston, TX

P-Fr-2

Enhancing anti-Cancer Drug Uptake in Breast Cancer Tumor GEM Model Using Microbeam Radiation Therapy.

S. CHANG¹, A. J. MADDEN¹, J. N. RIVERA^{1,2}, C. SANTOS¹, D. DARR¹, L. HUNTER¹, AND W. C. ZAMBONI¹

¹University of North Carolina- Chapel Hill, Chapel Hill, NC, ²North Carolina State University, Chapel Hill, NC

P-Fr-3

Polymeric Nanoparticles for Non-Viral Gene Therapy Extend Brain Tumor Survival In Vivo

A. MANGRAVITI¹, S. TZENG¹, K. KOZIELSKI¹, Y. WANG¹, Y. JIN¹, D. GULLOTTI¹, M. PEDONE¹, N. BUARON², A. LIU¹, D. WILSON¹, S. HANSEN¹, F. RODRIGUEZ¹, G-D. GAO³, F. DIMECO⁴, H. BREM¹, A. OLIVI¹, B. TYLER¹, AND J. GREEN¹

¹Johns Hopkins University, Baltimore, MD, ²Ben Gurion University of the Negev, Be'er Sheva, Israel, 3The Fourth Military Medical University, Xi'an, China, People's Republic of, ⁴ "C.Besta" Neuroligica Istituto, Milan, Italy

P-Fr-4

Nano-'Carbobitaceae' for Sustained Inhibition of Cancer Stem Cells via STAT-3 Modulation

F. OSTADHOSSEIN^{1,2}, S. KUMAR MISRA^{1,2}, P. MUKHERJEE¹, R. BHARGAVA¹, AND D. PAN¹ ¹University of Illinois at Urbana Champaign, Urbana, IL, ²Carle foundation hospital, Urbana, IL

P-Fr-5

HIFU in Synergy with Sorafenib-Loaded Thermosensitive Liposomes for Treatment of Prostate Cancer

H. MURAD¹, J. ARORA¹, G. HALLIBURTON¹, S. ASHE¹, V. JOHN¹, AND D. KHISMATULLIN¹ ¹Tulane univeristy, New Orleans, LA

P-Fr-6

Anti-angiogenic Heparin Conjugate on Orthotopic Glioblastoma Mouse Model

J. H. SEOL¹, S. J. PARK¹, AND D. Y. LEE¹ ¹Hanyang university, Seoul, Korea, Republic of

P-Fr-7

Specific Binding of Functionalized Droplets to Integrin Receptor & α v & β^3 N. SMITH¹, M. FABIILLI², R. SEDA¹, D. LI¹, J. PITRE¹, B. FOWLKES¹, AND J. BULL¹ ¹University of Michigan, Ann Arbor, MI, ²University of Michigan Medical School, Ann Arbor,

P-Fr-8

MI

Localized activation of bacterial quorum sensing for bacteria-based drug delivery applications

E. LEAMAN¹, B. GEUTHER¹, AND B. BEHKAM¹ ¹Virginia Tech, Blacksburg, VA

P-Fr-9

CXCR4-overexpressing Adipose-derived Stem Cells Exhibited Enhanced Tropism towards Brain Tumor in an intracranial glioblastoma xenograft model

X. JIANG¹, C. WANG¹, AND F. YANG¹ Stanford University, Stanford, CA

P-Fr-10

The Effect of Nonthermal Atmospheric Pressure Plasma for the Lung Cancer Cells Viability

S. KARKI¹ AND H. AYAN² ¹University of Toledo, Toledo, OH, ²University, Toledo, OH

P-Fr-11

In Vitro Binding Analysis of Phosphonate and Carboxylate Copolymers for Use as Bone-Targeting Radiopharmaceuticals S. SMITH¹ AND C. BATICH¹ ¹University of Florida, Gainesville, FL

P-Fr-12

Targeting Cancer-associated Fibroblasts In Pancreatic Adenocarcinoma L. BRINTON¹, D. BAUKNIGHT¹, S. DASA¹, AND K. KELLY¹

¹University of Virginia, Charlottesville, VA

Track: Drug Delivery, Cancer Technologies Cancer:

Cancer Drug Delivery Posters

P-Fr-13 🙎

Photosensitizer-loaded CD4+ And CD8+ T cells As Living Drug Delivery Vehicles

A-R. BLAUDSZUN¹, G. MOLDENHAUER², M. SCHNEIDER³, AND A. PHILIPPI¹ ¹KIST Europe Forschungsgesellschaft mbH, Saarbrücken, Germany, ²German Cancer Research Center, Heidelberg, Germany, ³Saarland University, Saarbrücken, Germ

P-Fr-14

Viral Nanoparticles For Targeted Delivery To Ovarian Cancer A. CZAPAR¹, M. KNARR¹, A. DIFEO¹, AND N. STEINMETZ¹

¹Case Western Reserve University, Cleveland, OH

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 4:00PM - 5:00PM

P-Fr-15

Targeted Lung Cancer Dual Therapy Using Multi-Drug Core-Shell Nanoparticles

J. MENON¹,², A. KURIAKOSE¹,², R. IYER¹,², D. SAHA², AND K. NGUYEN¹,² ¹The University of Texas at Arlington, Arlington, TX, ²The University of Texas Southwestern Medical Center, Dallas, TX

P-Fr-16

Regulating Tumor Suppressing Gene Using a Pendant-Chain Delivery System K. M. RAO¹, C-S. HA¹, B. J. PARK², AND Y. H. YUN³

¹Pusan National University, Busan, Korea, Republic of, ²Pusan National University, Busan, Korea, Republic of, ³University of Akron, Akron, OH

P-Fr-17

A FRET-Based Imaging Strategy to Rapidly Quantify Biodegradation of Degradable Nanomedicines

D. C. RADFORD¹, J. YANG¹, R. ZHANG¹, AND J. KOPECEK¹ ¹University of Utah, Salt Lake City, UT

P-Fr-19

Intracellular Delivery of Bioactive Chemotherapeutic Using Dual-Crosslinked Alginate Microspheres

S. FENN¹, T. MIAO¹, R. SCHERRER¹, AND R. OLDINSKI¹ ¹University of Vermont, Burlington, VT

P-Fr-20

HIFU-Triggered Sorafenib-Loaded TSLs for Targeted Drug Therapy in Renal Cell Carcinoma

H. MURAD¹, C. ABSHIRE¹, J. LIU¹, J. ARORA¹, V. JOHN¹, B. LEE¹, AND D. KHISMATULLIN¹ ¹Tulane university, New Orleans, LA

P-Fr-21

Multifunctional spherical polymeric nanoconstructs (SPNs) loaded with Docetaxel and Curcumin for cancer therapy and PET/CT imaging.

C. STIGLIANO¹, J. KEY¹,², M. RAMIREZ¹, S. ARYAL^{1,3}, AND P. DECUZZ¹,⁴ ¹Houston Methodist Research Institute, Houston, TX, ²Yonsei University, Gangwon, Korea, Republic of, ³Kansas State University, Manhattan, KS, ⁴IIT, Genova, Italy

P-Fr-22

Development And Implementation Of A Control System For Indocyanine Green (ICG) Injections

G. CARPENTER III¹, E. SHERER¹, P. O'NEAL¹, I. MAGANA¹, P. ADHIKARI¹, H. GRIGSBY¹, AND K. EVANS¹

¹Louisiana Tech University, Ruston, LA

P-Fr-23

Stealth Nanoparticle Interaction with the Extracellular Matrix as a Barrier in Tumour Targeting

H. LABOUTA¹, C. SARSONS¹, T. NGUYEN¹, J. KENNARD¹, W. NGO¹, K. TEREFE¹, K. RINKER¹, AND D. CRAMB¹

¹University of Calgary, Calgary, AB, Canada

P-Fr-24

Pancreatic Cancer Susceptibility to Ascorbate Therapy May be Due to Aquaporins

D. ERUDAITIUS¹

¹University of California Riverside, Riverside, CA

P-Fr-25

Development of Gold-Lipid Nanocomposites to Improve the Delivery of Chemotherapeutics to Tumors

C. DOBSON¹, C. PICKERING¹, A. DAVID¹, P. PANIZZI¹, AND R. ARNOLD¹ ¹Auburn University, Auburn, AL

P-Fr-26 DREAM TEAM & CENTER

Inhibitory Effects of Trans-cinnamaldehyde in the Progression and Aggression of Breast Cancer Cells

M. THOMPSON¹, E. SCHMELZ¹, P. DILLON², AND L. BICKFORD¹ ¹Virginia Tech, Blacksburg, VA, ²University of Virginia, Charlottesville, VA

P-Fr-27

Selective Inhibition of MG-63 Osteosarcoma Cell Proliferation Induced By Curcumin-Loaded Self-assembled Arginine-Rich-RGD Nanospheres R. CHANG¹, L. SUN¹, AND T. WEBSTER¹,²

¹Northeastern University, Boston, MA, ²King Abdulaziz University, Jeddah, Saudi Arabia

P-Fr-28

Development and Characterization of Gold-Lipidic Nanocomposites for Chemotherapeutic Delivery

C. PICKERING¹, C. DOBSON¹, M. EGGERT¹, A. DAVID¹, AND R. ARNOLD¹ ¹Auburn University, Auburn University, AL

P-Fr-30

Nanoparticle Delivery of a Hydrophobic and Highly Toxic Metal Chelator to Cancer Cells

Y. J. KANG¹, C-F. KUO¹, AND S. MAJD¹ ¹Penn State University, University Park, PA

P-Fr-33

Microcarrier Culture Enhances Release of Therapeutic miRNA in Extracellular Vesicles by HEK293T Cells

P. Amaya¹, E. Plencner¹, O. Elgamal¹, D. Sutaria¹, M. Phelps¹, T. Schmittgen¹, and J. Chalmers¹

¹Ohio State University, Columbus, OH

Track: Cancer Technologies

Cancer:

Cancer Immunoengineering Posters

P-Fr-35

Nanodisc Vaccine Platform for Elicitation of Anti-tumor Cytotoxic CD8+T Lymphocytes

R. KUAI¹, A. SCHWENDEMAN¹, AND J. MOON¹ ¹University of Michigan, Ann Arbor, MI

P-Fr-36

Assessment of a Plant Viral Nanoparticle-based HER-2 Breast Cancer

Vaccine Platform S. SHUKLA¹ AND N. F. STEINMETZ¹ ¹Case Western Reserve University, Cleveland, OH

P-Fr-37

Gold Nanoparticles as a Robust Platform for Cancer Vaccines

E. REISER¹, J. P. MATTOS ALMEIDA¹, A. LIN¹, A. FOSTER², AND R. DREZEK¹ ¹Rice University, Houston, TX, ²Bellicum Pharmaceuticals, Houston, TX

P-Fr-38

GP lb $\alpha\text{-Mediated}$ Platelet Adhesion to Highly Metastatic Breast Cancer Cells

S. LYNCH¹ AND D. KHISMATULLIN¹ ¹Tulane University, New Orleans, LA

P-Fr-39

Novel Azurin and p53 Expressing Avirulent Salmonella Typhimurium as Therapeutic against Glioblastoma

N. MEHTA¹, R. BELLAMKONDA¹, K. PATIL¹, AND E. GAUPP¹ ⁷Georgia Institute of Technology, Atlanta, GA

P-Fr-40

TNF-& α and IFN-& γ Immunomodulation of Breast Cancer Cells for Whole Tumor Cell Vaccine Delivery

S. RAVINDRANATHAN¹, K. MAXWELL¹, AND D. ZAHAROFF¹ ¹University of Arkansas, Fayetteville, AR

P = Poster Session
OP = Oral Presentation
Reviewer Choice Award

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM , 4:00PM - 5:00PM

Track: Cancer Technologies

Cancer:

Cancer Mechanobiology Posters

P-Fr-41

The Effect of Fluid Shear Stress on Ovarian Cancer Cell Viability and Organization

A. HYLER¹, R. DAVALOS¹, P. ROBERTS², M. STREMLER¹, AND E. SCHMELZ¹ ¹Virginia Polytechnic Institute and State University, Blacksburg, VA, ²National Institutes of Health, Bethesda, MD

P-Fr-42

The Role of Shear Stress and Matrix Composition on Endothelial to Mesenchymal Transformation

S. MINA¹, B. MURRAY¹, P. HUANG¹, AND G. MAHLER¹ ¹Binghamton University, Binghamton, NY

P-Fr-43

Matrix Compliance Regulates Tetraploidy in Mammary Epithelial Cells

A. SIMI¹, M. CICHON², D. RADISKY², AND C. NELSON¹ ¹Princeton University, Princeton, NJ, ²Mayo Clinic Cancer Center, Jacksonville, FL

P-Fr-44

Focused Ultrasound Decreases Proliferation Rate and Metastatic Potential of Prostate Cancer Cells

H. YU¹, D. LUO¹, H. MURAD¹, AND D. KHISMATULLIN¹ ¹Tulane University, New Orleans, LA

P-Fr-45

A Comparison Between 2D And 3D Platforms For Cancer Drug Screening T. NGUYEN¹ AND S. PEYTON¹ ¹University of Massachusetts Amherst, Amherst, MA

P-Fr-46

Tumor Cell Contractility and Metastatic Potentials

K. H. CHOI¹ AND M. T. A. SAIF¹ ¹University of Illinois at Urbana Champaign, Urbana, IL

P-Fr-47

Micropillars Mimic Collagen Mechanics And Architecture In A SIP Metastasis Model.

J. NARANG¹, S. SPIEGEL¹, AND C. LEMMON¹ ¹Virginia Commonwealth University, Richmond, VA

P-Fr-48

Mechanical Differentiation of Tumor Cells by Squeezing Through Microconstriction Arrays

N. KAMYABI¹, Z. KHAN¹, AND S. A. VANAPALLI¹ ¹¹Texas Tech University, Lubbock, TX

P-Fr-49

Biomechanical Investigation of how Myoferlin Influences Epithelial-to-Mesenchymal Transition and Erlotinib-Resistance in Lung Cancer Cells

L. VOLAKIS¹, V. SHUKLA¹, T. YAMADA², D. KNISS², AND S. GHADIALI² ¹The Ohio State University, Columbus, OH, ²The Wexner Medical Center at The Ohio State University, Columbus, OH

P-Fr-50

The Role Of Cytoskeleton And Nucleus In Cell Decision-Making Under Confinement

A. AFTHINOS¹, P. PACHIDIS¹, AND K. KONSTANTOPOULOS¹ ¹Johns Hopkins University, Baltimore, MD

P-Fr-5l

Decrease of Lamin A/C Expression Enhances Nuclear Deformability and 3-D Migration in Cancer Cells

C. DENAIS¹, R. GILBERT¹, K. ZHANG¹, P. DAVIDSON¹, M. VORTMEYER-KRAUSE², M. KEA-TE LINDERT², K. WOLF², AND J. LAMMERDING¹

¹Weill Institute for Cell and Molecular Biology, Ithaca, NY, ²Radboud University Medical Centre, Nijmegen, Netherlands

Track: Cancer Technologies

Cancer:

Engineered Models of Cancer and the Tumor Microenvironment Posters

P-Fr-52

Contact Inhibition of Locomotion in a Fibrillar-Like Microenvironment During Breast Cancer Progression D. MILANO¹, N. NGAI², S. MUTHUSWAMY², AND A. ASTHAGIRI¹ 'Northeastern University, Boston, MA, ²University of Toronto, Toronto, ON, Canada

P-Fr-53

A 3D Stratified Colon Model for Colorectal Cancer Progression M. DEVARASETTY¹, A. SKARDAL¹, AND S. SOKER¹ ¹Wake Forest University, Winston Salem, NC

P-Fr-54

Engineering an Organotypic Colon through Recellularization for Studying Cancer Driver Genes with Transposon-based Mutagenesis

H. J. CHEN¹, Z. WEI², N. COPELAND², N. JENKINS², AND M. SHULER¹ ¹Cornell University, Ithaca, NY, ²Houston Methodist Research Institute, Houston, TX

P-Fr-55 🎗

A Hydrogel Platform to Understand Features Driving Breast Cancer Metastasis to Bone Marrow

L. JANSEN¹, T. MCCARTHY¹, AND S. PEYTON¹ ¹University of Massachusetts Amherst, Amherst, MA

P-Fr-56

Interstitial Fluid Pressure (IFP) Drives Collective Invasion via Expression of Epithelial-Mesenchymal Transition (EMT) Markers in an Engineered Model of a Human Breast Tumor

A. PIOTROWSKI¹, J. TIEN², AND C. NELSON¹ ¹Princeton University, Princeton, NJ, ²Boston University, Boston, MA

P-Fr-57

Microvesicles Released from Tumor Cells Induce Local Extracellular Matrix Reorganization by Disrupting Epithelium Contractility

F. BORDELEAU¹, B. CHAN¹, M. ANTONYAK¹, R. CERIONE¹, AND C. REINHART-KING¹ ⁷Cornell University, Ithaca, NY

P-Fr-58

Vascularized Organotypic Microfluidic Assays to Study Breast Cancer Cell Extravasation

J. JEON¹,², S. BERSINI³, M. MORETTI³, AND R. KAMM¹ ¹*MIT, Cambridge, MA,* ²*KAIST, Daejeon, Korea, Republic of,* ³*Istituto Ortopedico Galeazzi, Milan, Italy*

P-Fr-59

The Role of Interferon-Beta in Angiogenesis and Cancer Progression D. GLASER¹, J. WEBER¹, AND S. GEORGE¹

¹Washington University, St. Louis, MO

P-Fr-60

Multiplexed Imaging to Study the Inflammatory Breast Cancer Stem Cell Microenvironment

N. Trenton¹, K. Chu², J. Zimak¹, A. Wolfe², W. Woodward², W. Hittelman², and M. Diehl¹

¹Rice University, Houston, TX, ²MD Anderson Cancer Center, Houston, TX

P-Fr-61

Engineered Tumor Microenvironments To Investigate Matrix Rigidity Mediated Angiogenic Activity Of Cancer Cells

J. LI¹, Y. WU¹, M. AL-AMEEN¹, N. SCHIMMEL¹, AND G. GHOSH¹ ¹University of Michigan, Dearborn, Dearborn, MI

P-Fr-62

Hyaluronic acid (HA)-based Scaffold with Electrospun PCL Fibers for Mimicking Brain Tumor Microenvironment

J. CHA¹, H.⁻M. KIM¹, S-G. KANG², AND P. KIM¹ ¹KAIST, Daejeon, Korea, Republic of, ²Yonsei University College of Medicine, Seoul, Korea, Republic of

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 4:00PM - 5:00PM

P-Fr-63

Microfluidic Gastric Micrutumor Formation for High-throughput Drug Screening

M. JANG¹, S. JUNG¹, J-H. CHEONG², S. J. LEE³, AND P. KIM¹ ¹KAIST, Daejeon, Korea, Republic of, ²Yonsei University, Seoul, Korea, Republic of, ³NNFC, Daejeon, Korea, Republic of

P-Fr-64

Anti-migratory Effect of Heparin Derivatives for Using Therapeutic Manner in Glioblastoma Multiforme

D. Y. LEE¹ AND H. H. HWANG¹ ¹Hanyang University, Seoul, Korea, Republic of

P-Fr-65

Extracellular Matrix Control of Metastasis and Dormancy

L. BARNEY¹ AND S. PEYTON¹ ¹University of Massachusetts, Amherst, Amherst, MA

P-Fr-66

In Vitro Breast Tumor Model to Investigate the Role of Tumor Microenvironment in Disease Progression

S. KIDAMBI¹ AND A. DAVEREY¹ ¹University of Nebraska-Lincoln, Lincoln, NE

P-Fr-67

Targeted Cellular Ablation Based On The Morphology Of Malignant Glioblastoma Cells

J. IVEY¹, E. LATOUCHE¹, M. SANO¹,², J. ROSSMEISL¹, R. DAVALOS¹, AND S. VERBRIDGE¹ ¹Virginia Tech-Wake Forest University, Blacksburg, VA, ²Stanford University School of Medicine, Stanford, CA

P-Fr-68 🗣

Cancer-Associated Fibroblasts Mediate Angiongesis Independently of VEGF M. K. SEWELL-LOFTIN¹, S. VAN HOVE¹, B. T. HUGHES¹, G. LONGMORE¹, AND S. GEORGE¹ ¹Washington University in St. Louis, St. Louis, MO

P-Fr-69

Tumor-associated Macrophages Regulate Metastatic Behavior of Ovarian Cancer Cells

M. CARROLL¹, L. STOPFER¹, O. VELAZQUEZ¹, M. PECHMANN¹, AND P. KREEGER¹ ¹University of Wisconsin, Madison, WI

P-Fr-70

Hydrodynamic Analysis of CTC-Cluster Transit Through Capillary Constrictions

S. Au¹, B. Storey², Y.L. Chen³, A. F. Sarioglu¹, S. Maheswaran¹, D. Haber¹, S. Stott¹, and M. Toner¹

¹Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, ²Olin College, Needham, MA, ³Academia Sinica, Taipei, Taiwan

P-Fr-71

Mechanical Characterization and in-vitro Model of Tumor

Microenvironment Maintenance by Pancreatic Stellate Cells A. DE LA PENA¹, A. RUBIANO¹, D. DELITTO¹, S. HUGHES¹, AND C. SIMMONS¹ ¹University of Florida, Gainesville, FL

P-Fr-72

Engineered Cancer Cell Spheroids Display Biological Properties of Tumors S. HAM¹ AND H. TAVANA²

¹The University of Akron, Akron, OH, ²University of Akron, Akron, OH

P-Fr-73

Effects of Astrocytes from Brain Microenvironments on Motility and Morphology of Tumor Cells

M. SHUMAKOVICH¹ AND K. STROKA¹ ¹University of Maryland, College Park, MD

P-Fr-74

A Metastasis-on-a-Chip System for Modeling Colon Carcinoma Metastasis In Vitro

M. DEVARASETTY¹, A. ATALA¹, S. SOKER¹, AND A. SKARDAL¹ ¹Wake Forest School of Medicine, Winston-Salem, NC

P = Poster Session
OP = Oral Presentation
= Reviewer Choice Award

P-Fr-75

A 3-D Primary Hepatocyte and Tumor Organoid Platform for Metastasis Research and Drug Screening

E. WANG¹, M. DEVARASETTY¹, S. SOKER¹, AND A. SKARDAL¹ ¹Wake Forest School of Medicine, Winston-Salem, NC

P-Fr-76

Microengineered Three Dimensional Models Mimic Tumor Microenvironments Associated with Early vs.Advanced Breast Tumors

M. SINGH¹, S. OESTERRIECH², AND S. SANT^{1,3,4} ¹University of Pittsburgh, Pittsburgh, PA, ²Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, ³Swanson School of Bioengineering, Pittsburgh, PA,⁴McGowan Institute for Regenerative Medicine, Pittsburgh, PA

P-Fr-77

Microengineered Breast Cancer Invasion Platform

D. TRUONG¹, A. LIAVE¹, J. PULEO², G. MOUNEIMNE³, R. KAMM⁴, AND M. NIKKHAH¹ ¹Arizona State University, Tempe, AZ, ²University of Arizona, Tempe, AZ, ³University of Arizona, Tucson, AZ, ⁴Massachusetts Institute of Technology, Cambridge, MA

P-Fr-78

Use of a Patient-derived 3D Glioblastoma Model to Assess the Effect of Microenvironmental Factors on Cancer Progression and Response to Radiotherapy

J. YUAN¹, K. KINGSMORE¹, A. BERR¹, AND J. MUNSON¹ ¹University of Virginia, Charlottesville, VA

P-Fr-79

In Vitro Assessment of Cancer Treatments with Three Dimensional Microtissues

J. GAO¹, S. K. NG¹, M. WANG¹, AND M. SU¹ ¹Northeastern University, Boston, MA

P-Fr-80

A Bioengineered 3D Brain Tumor Model To Mimic Microanatomical Architectures Of Tumor-Vasculature Interactions

C. WANG¹, X. JIANG¹, C. WILSON¹, G. GRANT¹, AND F. YANG¹ ¹Stanford University, Stanford, CA

P-Fr-81

Impact of Wnt/ β -catenin Signaling and Lactate on Angiogenesis in the Tissue Engineered Tumor Microenvironment

V. SHIRURE¹, A. LEZIA¹, M. WATERMAN², AND S. GEORGE¹

Washington University in St Loui, St. Louis, MO, ²University of California, Irvine, Irvine, CA

P-Fr-82

Tumors in a Dish: A 3D-printed Breast Cancer Model to Study Tumor Angiogenesis

S. FREEMAN¹, K. REESER¹, V. SHAH¹, C. MA¹, S. JIN¹, AND K. YE¹ ¹Binghamton University, SUNY, Binghamton, NY

P-Fr-83

Silica Nanoparticle Transport in Simulated Tumor Microenvironments: The Role of Surface Functionalization and Cellular Autophagy. A. NAGESETTI', G. DULIKRAVICH', AND A. J. MCGORON' 'Florida International University, Miami, FL

P-Fr-84

Elucidating the Role of Microenvironmental Factors on Cancer Stem Cell Fate to Combat Tumor Growth

D. REYNOLDS¹, K. CHAROEN¹, M. GRINSTAFF¹, AND M. ZAMAN¹ ¹Boston University, Boston, MA

P-Fr-85

Role of Interstitial Flow in Glioma Microenvironment as Assessed by Dynamic Contrast Enhanced MRI

K. KINGSMORE¹, S. CUI¹, F. EPSTEIN¹, AND J. MUNSON¹ ¹University of Virginia, Charlottesville, VA

P-Fr-86 🗣

Glioblastoma Cell Phenotype Influenced by Substrate Nanotopography A. BELIVEAU¹, G. THOMAS¹, Q. WEN¹, AND A. JAIN¹ 'Worcester Polytechnic Institute, Worcester, MA

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM , 4:00PM - 5:00PM

P-Fr-87

Expansion of Patient Derived Glioblastoma Stem Cells in Temperature Responsive Scaffolds

J. HEFFERNAN^{1,2}, D. OVERSTREET^{1,2}, S. BOWEN¹, S. BORWEGE¹, N. SANAI¹, S. MEHTA¹, B. VERNON², AND R. SIRIANNI^{1,2}

¹Barrow Neurological Institute, Phoenix, AZ, ²Arizona State University, Tempe, AZ

P-Fr-88

Elucidating the Perivascular Niche in Glioblastoma: A Role for Extracellular Fluid Pressure

M. CALHOUN¹ AND J. WINTER¹ ¹The Ohio State University, Columbus, OH

P-Fr-89

Investigating the Melanoma Extracellular Matrix Environment

M. FENN¹, G. YE¹, A. ABEDINPOOR¹, S. SEAL², S. DAS², AND V. KISHORE¹ ¹Florida Institute of Technology, Melbourne, FL, ²University of Central Florida, Orlando, FL

P-Fr-91

Bio-adhesive *Ex Vivo* Engineered Organoids for Patient-derived Multiple Myeloma

A. PURWADA¹, A. NERI², G. INGHIRAMI³, AND A. SINGH¹ ¹Cornell University, Ithaca, NY, ²University of Milano and Hematology-CTMO, Milano, Italy,³Weill Cornell Medical College, New York, NY

P-Fr-92

Brain-Mimetic Microenvironments for Culture of Primary Glioblastoma Multiforme Cells

W. XIAO¹, J. LIANG¹, C. WALTHERS¹, A. EHSANIPOUR¹, L. TA¹, D. NATHANSON¹, AND S. SEIDLITS¹

¹University of California Los Angeles, Los Angeles, CA

Track: Cancer Technologies

Cancer:

Personalized Medicine and Biomarkers in Cancer Posters

P-Fr-93

A Continuous Flow Microspotter for the Implementation of a High-Throughput Drug Screening and Cytotoxicity Evaluation System J. ARELLANO¹, J. GAMMON¹, T. HOWELL¹, M-M. JANAT-AMSBURY¹, AND B. GALE¹ 'University of Utah, Salt Lake City, UT

P-Fr-94

The Heterogeneous Response of Bone Marrow Metastases to EGFR Targeting Drugs and Chemotherapy E. BROOKS¹, M. GOLDMAN¹, AND S. PEYTON¹

¹University of Massachusetts Amherst, Amherst, MA

P-Fr-95

Cross-Platform DNA Copy-Number Alterations Predict Astrocytoma Survival and Response to Chemotherapy K. AIELLO¹ AND O. ALTER¹ 'University of Utah, Salt Lake City, UT

Track: Cancer Technologies

Cancer: Cancer Other Posters

P-Fr-96

Irreversible Electroporation for Ovarian Cancer Therapy Can Target Resilient Tumor-Initiating Cells A. ROLONG¹, E. SCHMELZ¹, AND R. DAVALOS¹ 'Virginia Tech, Blacksburg, VA

P-Fr-97

Comparison of Prostate Cancer and Non-Prostate Cancer Exosomes Using Raman Spectroscopy D. VALENZUELA MEDINA¹ AND K. MOORE¹

¹San Jose State University, San Jose, CA

P-Fr-98

The Effect of Radiofrequency and Non-Radiofrequency Induced Hyperthermia on Endothelial Cell Permeability

J. HO¹, R. SERDA¹, L. VERGARA¹, M. WARE¹, S. CORR¹, AND S. CURLEY¹ ¹Baylor College of Medicine, Houston, TX

Track: Cardiovascular Engineering Cardiopulmonary Bioengineering: Angiogenesis Posters

P-Fr-99

Specification of Arterio-Venous Identity in Engineered Constructs Requires Mural Cell Recruitment

W. ALTALHI^{1,2}, X. SUN¹, M. HUSAIN¹, AND S. NUNES^{1,3,4}

¹University health network, Toronto general hospital, Toronto, ON, Canada, ²Laboratory medicine and pathology, University of Toronto, Toronto, Canada, ³University of Toronto, Toronto, ON, Canada, ⁴Heart & Stroke/Richard Lewar Centre of Excellence, Toronto, ON, Canada

P-Fr-100

Quantitation of Angiogenic Receptor Levels and Heterogeneity in Fibroblasts-endothelial Co-culture

S. CHEN¹ AND P. IMOUKHUEDE¹

¹University of Illinois at Urbana-Champaign, Champaign, IL

P-Fr-101

Nanoparticles For Protein Delivery And Gene Therapy: An Alternative Treatment For Hindlimb Ischemia

L. NOUKEU¹,², S. BANERJEE²,³, L. TANG¹,², AND K. NGUYEN¹,²

¹The University of Texas at Arlington, Arlington, TX, ²The University of Texas Southwestern Medical Center, Dallas, TX, ³VA North Texas Health Care System at Dallas, Dallas, TX

P-Fr-102

Acoustic Fields As A Tool For Fabricating Three-Dimensional Microvascular Networks

E. COMEAU¹, D. DALECKI¹, AND D. HOCKING¹ ¹University of Rochester, Rochester, NY

Track: Cardiovascular Engineering Cardiopulmonary Bioengineering:

Cardiovascular Flow Modeling in Health and Disease Posters

P-Fr-103

Comparison of Blood Viscosity Models in Real and Stylized Carotid Arteries with Stenosis

E. ROGERS¹, J. FORD², S. DECKER², D. MCMILLAN³, AND W. LEE³ ¹University of South Florida, St. Petersburg, FL, ²University of South Florida, Morsani College of Medicine, Tampa, FL, ³University of South Florida, Tampa, FL

P-Fr-104

Model of Altered Circulation Time and Wall Shear Stress in Arteriovenous Fistula

L. F. LAQUIAN¹,², Y. HE^{1,2}, AND S. BERCELI^{1,2} ¹University of Florida, Gainesville, FL, ²Malcom Randall Veterans Affairs Medical Center, Gainesville, FL

P-Fr-105

Patient-Specific Computational Fluid Dynamics based on 4D Flow MRI S. GARCIA-RODRIGUEZ¹, C. FRANCOIS¹, AND A. ROLDAN-ALZATE¹

¹University of Wisconsin-Madison, Madison, WI

P-Fr-106

Cerebral Hemodynamics during Apnea R. ALEX¹, F. TIAN¹, H. LIU¹, K. MACHIRAJU², E. ALTUWAIJRI¹, D. WATENPAUGH³, AND K. BEHBEHANI^{1,4}

¹The University of Texas at Arlington, Arlington, TX, ²The University of Texas at Arlington, Arlngtoh, TX, ³Sleep Consultants Inc., Arlington, TX, ⁴UT Arlington, Arlington, TX

FRIDAY | OCTOBER 9 | 2015

POSTER SESSION Fri 9:30AM - 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 4:00PM - 5:00PM

P-Fr-107

Porcine Small Intestinal Submucosal Valve Dynamics In The Aortic Position. O. MANKAME¹, M. LORDEUS¹, AND S. RAMASWAMY¹ ¹Florida International University, Miami, FL

P-Fr-108

Low-cost Method to Create *In Vitro* Surrogates of Common Vessel Bifurcations for Cell Plating and Flow Studies S. KUDERNATSCH¹ AND D. PETERSON¹ '*Texas A&M University - Texarkana, Texarkana, TX*

P-Fr-109

Blood Flow Patterns in Stenosed Coronary Artery Models A. R. KAAZEMPUR-MOFRAD¹ ¹University of California Berkeley, Berkeley, CA

P-Fr-110

Design Principles for Engineered Lymphatics that Drain Type I Collagen Scaffolds

R. THOMPSON¹, B. COISMAN¹, G. PRICE¹, K. WONG¹, AND J. TIEN¹ ¹Boston University, Boston, MA

P-Fr-III

Modelling and Simulation of Fluid Flow through a Dynamic Electrochemical Biodegradation Test Apparatus

S. HUGHES¹ AND A. MAHAPATRO¹ ¹Wichita State University, Wichita, KS

Track: Cardiovascular Engineering Cardiopulmonary Bioengineering:

General Cardiovascular Engineering Posters

P-Fr-112

FXIa and Platelet Polyphosphate as Therapeutic Targets During Human Blood Clotting on Collagen/Tissue Factor Surfaces Under Flow S. ZHU¹, R. TRAVERS², J. MORRISSEY², AND S. DIAMOND¹ ¹University of Pennsylvania, Philadelphia, PA, ²University of Illinois, Urbana, IL

P-Fr-113

Platelet-targeting Sensor Reveals Heterogeneity in Spatial Distribution of Thiol Isomerase Activity in Formed Thrombus in Mice S. ZHU¹, J. WELSH¹, AND S. DIAMOND¹ ¹University of Pennsylvania, Philadelphia, PA

P-Fr-114

Genetic Switching of Vascular Smooth Muscle Cells

A. KAY¹, C. L. SIMPSON¹, AND J. GRANT¹ ¹Mississippi State University, Mississippi State, MS

P-Fr-115

Single-cell Characterization of Endothelial Glycocalyx Mediated Nitric Oxide Production

M. DRAGOVICH¹, D. CHESTER², AND X. F. ZHANG² ¹Lehigh Unversity, Bethlehem, PA, ²Lehigh University, Bethlehem, PA

P-Fr-116

Multi-Objective Optimization of a Fully Conjugate Cooling Preservation System for Human Hearts Destined for Transplantation

A. ABDOLI¹, G. DULIKRAVICH², C. BAJAJ³, AND D. F. STOWE⁴ ¹University of Miami, Miami, FL, ²Florida International University, Miami, FL, ³University of Texas at Austin, Austin, TX, ⁴University of Wisconsin, Milwaukee, WI

P-Fr-117

Ex-Vivo Slaughterhouse Porcine Crystalloid-Perfused Beating Heart Organ via Langendorff Method

R. TALUKDER¹, B. STEWART¹, A. CLINKENBEARD¹, A. BEHESHTIAN², P. AZADANI³, AND A. AZADANI¹

¹University of Denver, Denver, CO, ²Albert Einstein College of Medicine, Bronx, NY,³University of Utah School of Medicine, Salt Lake City, UT

P = Poster Session
OP = Oral Presentation
Q = Reviewer Choice Award

P-Fr-119

Engineered Cardiac Patches for Full-thickness RVOT Repair S. POK¹ 'Bice University, Houston, TX

P-Fr-120

A Novel Optimized Learning Approach to Predict Periventricular Leukomalacia Occurrence in Neonates D. BENDER¹ 'Villanova University, Villanova, PA

P-Fr-121

Time-Frequency Analysis of Vibrocardiographic Signals A. TAEBI¹ AND H. MANSY¹

¹University of Central Florida, Orlando, FL

P-Fr-122

Interpretation of Dispersion in Blood-like and Related Suspension Flows E. ECKSTEIN¹, J. LAVINE¹, M. LEGGAS¹, B. MA¹, V. BHAL¹, AND J. GOLDSTEIN¹ ¹University of Memphis, Memphis, TN

Track: Cardiovascular Engineering Cardiopulmonary Bioengineering:

Heart Valve Repair and Surgery Poster

P-Fr-123

Mitral Valve Repair for Posterior Chordal Rupture: Neochordoplasty vs. Quadrangular Resection

A. CHOI¹, D. MCPHERSON¹, AND H. KIM¹ ¹University of Texas Health Science Center at Houston, Houston, TX

P-Fr-124

Platforms for the *In Vitro* Detection of the Acute Off-Target Effects of Drugs on the Cardiac Valves

A. CAPULLI¹ AND K. K. PARKER¹ ¹Harvard University, Cambridge, MA

P-Fr-125

The Design of Culture and Computational Models for the Study of Hypoxia in Aortic Valve Disease

M. SAPP¹, V. KRISHNAMURTHY¹, G. FATORA¹, AND K. J. GRANDE-ALLEN¹ Rice University, Houston, TX

P-Fr-126

Mitral Valve Repair for Anterior Chordal Rupture: Strut Chordae Transposition vs. Neochordoplasty

A. CHOI¹, D. MCPHERSON¹, AND H. KIM¹ ¹The University of Texas Health Science Center at Houston, Houston, TX

P-Fr-127

Smooth Muscle Cell Proliferation Inhibition Using Drug-Loaded Polymeric Micelles

J. BETALA¹, S. BAE¹, J. LEE¹, E. LANGAN², AND M. LABERGE¹ ¹Clemson University, Clemson, SC, ²Greenville Health System, Greenville, SC

P-Fr-128

Physiological Remodeling of Mitral Valve Chordae Tendinae During Pregnancy B. SCOTT¹ AND S. WELLS¹

¹Dalhousie University, Halifax, NS, Canada

P-Fr-129

A Prototype Of An Aortic Valve Leaflet

S. JANA¹, M. YOUNG¹, AND A. LERMAN¹ ¹Mayo Clinic, Rochester, MN

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM , 4:00PM - 5:00PM

Track: Biomechanics, Cardiovascular Engineering Cardiopulmonary Biomechanics:

Biofluid Mechanics Posters

P-Fr-130

Estimation of Coupled Ventriculo-Arterial Function using ID and 3D Fluid-Structure Interaction Models

K. D. LAU¹, J. ALASTRUEY², AND C. A. FIGUEROA¹ ¹University of Michigan, Ann Arbor, MI, ²King's College London, London, United Kingdom

P-Fr-131

Reabsorption Emerging from Complex Interaction of Proximal Tubule-Capillary Mechanical Properties

T. STILES¹, M. JOHNSON¹, L. FRIESENHAHN¹, D. CHEN¹, G. LESSEN¹, AND C. QUICK¹ ¹Texas A&M University, Bryan, TX

P-Fr-132

Development of Three-dimensional Streamline Image Velocimetry using Superimposed Delaunay Triangulation and Geometrical Fitting E. EZRA¹, E. KEINAN¹, AND Y. NAHMIAS¹ ¹The Hebrew University of Jerusalem, Jerusalem, Israel

P-Fr-133

In Vitro Model of Paravascular Transport in the Brain

H. BOYCO¹ AND F. DE ASIS¹ ¹University of Florida, Gainesville, FL

P-Fr-134

Computational Model of Blood Flow in Embryo-Specific Geometry of the Zebrafish Heart

P. KOZLOVSKY¹, M. ROSENFELD¹, R. BRYSON-RICHARDSON², AND D. ELAD¹ ¹Tel Aviv University, Tel Aviv, Israel, ²Monash University, Clayton, Australia

P-Fr-135

Hemolysis Index Calculations for Different Configurations of Blood Flow Through a Cannula

C. BASCIANO¹, S. BALASUBRAMANIAN¹, P. DOWNIE¹, AND A. BESTELMEYER¹ ¹BD, Research Triangle Park, NC

P-Fr-136

Sinonasal Airflow Characteristics in Pre- and Post-operative Nasal Passages H. KUMAR¹, R. JAIN¹, R. DOUGLAS¹, AND M. TAWHAI¹ ¹The University of Auckland, Auckland, New Zealand

Track: Biomechanics, Cardiovascular Engineering Cardiopulmonary Biomechanics:

Cardiovascular Biomechanics Posters

P-Fr-137

Patient Specific Finite Element Modeling of the Failing Heart. How Computational Mathematical Modeling Can Direct Optimal Surgical Procedures in Children

N. CAMBRONERO¹, M. RATCLIFFE², AND L. GE² ¹UCSF, San Francisco, CA, ²san francisco VA Medical Center, San Francisco, CA

P-Fr-138

Regenerating Zebrafish Myocardium Softens Following Cryoinfarction J. YU¹,², P. SARATHCHANDRA², A. CHESTER², M. YACOUB², T. BRAND², AND J. BUTCHER³ ¹Johns Hopkins School of Medicine, Baltimore, MD, ²Imperial College London, Harefield, United Kingdom, ³Cornell University, Ithaca, NY

P-Fr-139

Biomechanical Investigation of the Two-Layered Carotid Artery Media C. DAVIS¹,², A. PANDYA², AND S. GREENWALD²

Texas A&M University, College Station, TX, ²Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom

P-Fr-140

Pulmonary Mechanics In Hypoxic Pulmonary Hypertension: Decreased Arterial Wall Stress Is Maintained In Recovery From Hypoxia M. DUFVA¹, S. BURGETT¹, B. DODSON¹, J. WALKER¹, AND K. HUNTER¹ ¹University of Colorado Denver, Denver, CO

P-Fr-141

Variable Strain Patterns Mimicking Blood Pressure Fluctuations Maintain Contractility in Rat Aorta

J. IMSIROVIC¹, E. BARTOLAK-SUKI¹, AND B. SUKI¹ ¹Boston University, Boston, MA

P-Fr-142

The Role of the Nucleus in Endothelial Cell Responses to Fluid Shear Stress N. NOLL¹, P. ARSENOVIC¹, I. RAMACHANDRAN¹, AND D. CONWAY ¹Virginia Commonwealth University, Richmond, VA

P-Fr-143

Force Alterations In The Aortic Root After Reconstructive Surgery: An In Vitro Experiment

T. BECHSGAARD¹,², T. S. LADING¹, T. LINDSKOW¹, H. NYGAARD¹, S. LYAGER NIELSEN¹, AND P. JOHANSEN¹,² ¹Aarhus University Hospital, Aarhus N, Denmark, ²Aarhus University, Aarhus N, Denmark

P-Fr-144

Hypertension-Linked Stiffening of Gastrointestinal Tissue in Rat Model A. RUBIANO¹, D. STEWART¹, M. SANTISTEBAN¹, V. SHENOY¹, C. PEPINE¹, M. RAIZADA¹, AND C. SIMMONS¹

¹University of Florida, Gainesville, FL

P-Fr-145

Extracellular Matrix Regulation Of The Structure And Contractility Of **Engineered Cardiac Tissues**

N. ARIYASINGHE¹, A. PETERSEN¹, C. RECK¹, J. HSU¹, D. LYRA-LEITE¹, AND M. MCCAIN¹ ¹University of Southern California, Los Angeles, CA

P-Fr-146

Characterization of the Mechanical Behavior and Microstructural Properties of Partially Ligated Common Carotid Arteries from Wild Type Mice A. POKUTTA-PASKALEVA¹, D. LIU¹, T. CHADID², R. GLEASON¹, AND L. BREWSTER²

¹Georgia Tech, Atlanta, GA, ²Emory University, Atlanta, GA

P-Fr-147

Regulation Of Cardiac Fibroblast Proliferation By Extracellular Matrix Elasticity

N. CHO¹, J. HSU¹, D. LYRA-LEITE¹, AND M. MCCAIN¹ ¹University of Southern California, Los Angeles, CA

P-Fr-148

Growth and Remodeling of Artery under Twisting

Q. LIU1, S. BAEK2, AND H-C. HAN1 ¹Unviersity of Texas, San Antonio, TX, ²Michigan State University, East Lansing, MI

P-Fr-149

Mechanical Properties of Normotensive and Hypertensive Rat Right and Left Ventricular Myocardium

A. RUBIANO¹, C. SIMMONS¹, Y. QI¹, C. PEPINE¹, AND M. RAIZADA¹ ¹University of Florida, Gainesville, FL

P-Fr-150

A Patient-Specific Numerical Approach To Investigate Clinical Complications During Transcatheter Aortic Valve Replacement

M, BIANCHI¹, R, GHOSH¹, G, MAROM¹, M, POON², H, FERNANDEZ², J, TAYLOR², AND D. BLUESTEIN¹

¹Stony Brook University, Stony Brook, NY, ²Stony Brook University Hospital, Stony Brook, NY

P-Fr-151 Mechanical Determinants of Blood Loss during Hypotensive Treatment of

Hemorrhagic Shock

T. STILES¹, Y. TONG¹, R. REBBAPRAGADA¹, M. ZHANG¹, S. MASH¹, M. BARTOCK¹, AND C. QUICK

¹Texas A&M University, Bryan, TX

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 4:00PM - 5:00PM

P-Fr-152

A Novel Constitutive Model for Blood Vessels including Smooth Muscle Cell Contraction

H. CHEN¹

¹The California Medical Innovations Institute, Inc., San Diego, CA

P-Fr-153

Changes in Heart Valve Collagen Fiber Modulus and Recruitment in Pregnancy

B. REGO¹, S. WELLS², AND M. SACKS¹

¹The University of Texas at Austin, AUSTIN, TX, ²Dalhousie University, Halifax, NS, Canada

Track: Cardiovascular Engineering, Biomechanics Cardiopulmonary Biomechanics:

Heart Valve Mechanics Posters

P-Fr-154

Assessment of Viscous Damping Coefficient of Bioprosthetic Valves under Physiological Loading

M. ABBASI¹, M. BARAKAT¹, S. JAVANI¹, AND A. AZADANI¹ ¹University of Denver, Denver, CO

P-Fr-155

Interplay of Fluid Mechanical and Solid Mechanical Considerations in Stent Strut Design F. CORNAT¹, F. BOZSAK¹, AND A. I. BARAKAT¹

¹LadHyX - Ecole Polytechnique, Palaiseau cedex, France

P-Fr-156

Fluid Oscillations: A Key Component to Valvulogenic Gene Expression

S. RATH¹, M. SALINAS¹, A. VILLEGAS¹, AND S. RAMASWAMY ¹Florida International University, Miami, FL

P-Fr-157

Comparative Numerical Analysis of Transcatheter Aortic Valve Mechanics Via Finite Element Method and Fluid-Structure Interaction

R. GHOSH¹, G. MAROM¹, S. PRABHAKAR², M. HORNER³, M. SLEPIAN⁴, AND D. BLUESTEIN¹

¹Stony Brook University, Stony Brook, NY, ²Ansys Fluent India Pvt. Ltd, Pune, India, ³Ansys, Inc, Evanston, IL, ⁴Sarver Heart Center, University Of Arizona, Tucson, AZ

P-Fr-158

Optimization of Mechanical Heart Valve Cavitation Detection

P. WENG¹ AND P. JOHANSEN¹ ¹Aarhus University dept. of eng., Aarhus, Denmark

P-Fr-159

Time-Resolved Particle Image Velocimetry Measurements of a Leakage Flow Near-Hinge in a Clinical St. Jude Medical Bileaflet Mechanical Heart Valve Model

E. KLUSAK¹, I. OKAFOR², V. RAGHAV², A. P. YOGANATHAN², AND N. J. QUINLAN¹ ¹National University of Ireland Galway, Galway, Ireland, ²Georgia Institute of Technology, Atlanta, GA

P-Fr-160

Stress Analysis of Transcatheter Aortic Valves under Dynamic Loading: Impact of Tissue Thickness

M. ABBASI¹, M. BARAKAT¹, S. JAVANI¹, AND A. AZADANI¹ ¹University of Denver, Denver, CO

P-Fr-161

Microstructural Changes In The Tricuspid Valve Anterior Leaflet In Response To Biaxial Mechanical Loading

V. THOMAS¹, A. PANT¹, K. AMINI KHOIY¹, K. ASGARIAN², AND R. AMINI¹ ¹The University of Akron, Akron, OH, ²St. Joseph's Regional Center, Patterson, NJ

P-Fr-162

The Effect of MitraClip on Mitral Leaflet Stress Using Two Finite Element Methods.

W. MACMILLAN¹, S. GULATI², J. GUCCIONE³, L. GE⁴, AND M. RATCLIFFE⁴ ¹UCSF, SF VA Medical Center, San Francisco, CA, ²SF VA Medical Center, San Francisco, CA,³UCSF School of Medicine, UC Berkeley Department of Bioengineering, SF VA Medical Center, San Francisco, CA, ⁴UCSF, SF VA Hospital, San Francisco, CA

Track: Cardiovascular Engineering, Biomechanics Cardiopulmonary Biomechanics: Heart Valves Posters

P-Fr-163

Effect Of Endothelial Cells And Matrix Stiffness On Phenotype Change Of Valvular Interstitial Cells

M. ALI¹, X. WANG¹, AND C. LACERDA¹ ¹Texas Tech University, Lubbock, TX

P-Fr-164

Role Of MiRNA-483-3p In Valvular Endothelial Dysfunction J. FERNANDEZ ESMERATS¹, J. HEATH², S. KUMAR², AND H. JO¹ ¹Georgia Institute of Technology, Atlanta, GA, ²Emory University, Atlanta, GA

P-Fr-165 🗣

Endothelial to Mesenchymal Transformation is Induced by Altered Extracellular Matrix Composition in Aortic Valve Endothelial Cells S. DAHAL¹ AND G. MAHLER¹ 'Binghamton University, Binghamton, NY

P-Fr-166

Stochastic Modeling of Endothelial to Mesenchymal Transformation in the Aortic Heart Valve

J. BRAMSEN¹, G. MAHLER², P-Y. (. HUANG², AND B. MURRAY² ¹Binghamton University, Binghamton, NY, ²Binghamton University, Vestal, NY

P-Fr-167

Magnesium Presence Prevents Removal of Nuclear-Associated Protein Antigens from Bovine Pericardium for Heart Valve Engineering A. DAI GUESH¹

¹University of California: Davis, Davis, CA

Track: Cardiovascular Engineering Cardiopulmonary Biomechanics:

Hemodynamics and Vascular Mechanics Posters

P-Fr-169

Disturbed Flow Induces Autophagy but Impairs Autophagic Flux with relevance to Mitochondrial Homeostasis N. JEN¹, R. LI¹, J. LEE¹, AND T. HSIAI¹ ¹UCLA, Los Angeles, CA

P-Fr-170

Von Willebrand Factor's Shear-and-Time Dependent Degradation under Pulsatile Shear through a Capillary Shear System S. YANG¹, V. TURITTO¹, J. SHERIFF², AND D. BLUESTEIN² 'Illinois Institute of Technology, Chicago, IL, ²Stony Brook University, Stony Brook, NY

P-Fr-171

Age Associated Reductions in the &[beta]-adrenergic Response of Cardiomyocytes

A. CUNHA¹, A. KWAWAZALA², AND S. CAMPBELL² ¹Worcester Polytechnic Institute, Worcester, MA, ²Yale University, New Haven, CT

P = Poster Session
OP = Oral Presentation
Q = Reviewer Choice Award

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM , 4:00PM - 5:00PM

P-Fr-172

Flow-Induced Mechanics And Gene Expression Patterns In Microvascular Great Artery Morphogenesis

S. GOKTAS¹, C. KARAKAYA¹, S. KARAHUSEYINOGLU¹, AND K. PEKKAN¹,² ¹Koc University, Istanbul, Turkey, ²Carnegie Mellon University, Pittsburgh, PA

P-Fr-173

Oscillatory Shear Stress Impairs O-GlcNAc Modification in the Aortic Valve Endothelium

J. HEATH¹, J. FERNANDEZ¹, R. SIMMONS¹, S. KUMAR¹, AND H. JO¹ ¹Emory University, Atlanta, GA

P-Fr-174

Characterization of a Bioprosthetic Bicuspid Venous Valve Hemodynamics: Implications for Mechanism of Valve Dynamics

H. CHEN¹, W-H. TIEN², S. CHAMBERS³, AND G. KASSAB¹

¹California Medical Innovations Institute, San Diego, CA, ²University of Washington, Seattle, WA, ³COOK® Medical, Bloomington, IN

P-Fr-175

RV-PA Coupling Efficiency As A Predictor of Exercise Capacity In Patients With Pulmonary Arterial Hypertension

E. DINGES¹, A. BELLOFIORE², S. SHAH³, M. CUTTICA³, R. SWEIS³, H. MKRDICHIAN³, J. RUNO¹, J. KEEVIL¹, C. FRANCOIS¹, AND N. CHESLER¹ ¹University of Wisconsin-Madison, Madison, WI, ²San Jose State University, San Jose,

CA,³Northwestern University, Chicago, IL

P-Fr-176

Measurement of Carotid-Femoral and Regional Pulse Wave Velocities Using Accelerometers

R. WANG¹, N. KURGAN¹, AND C. ROBINSON¹ ¹Clarkson University, Potsdam, NY

P-Fr-177

High Resolution Analyses of Destabilizing Microcalcifications in Thinning Atherosclerotic Caps

J. HUTCHESON¹, C. GOETTSCH¹, J. RUIZ¹, M. AIKAWA¹, AND E. AIKAWA¹ ¹Brigham and Women's Hospital / Harvard Medical School, Boston, MA

P-Fr-178

Light-Sheet Microscopy to Elucidate Hemodynamic Forces and Modulation of Cardiac Trabeculation: Implications for Embryonic Contractile Function

J. LEE¹, P. FEI¹, H. XU², C. C. J. KUO², D. YELON³, C-M. HO¹, AND T. HSIAI¹ ¹University of California, Los Angeles, Los Angeles, CA, ²University of Southern California, Los Angeles, CA, ³University of California, San Diego, La Jolla, CA

P-Fr-179

Optical Probing of Muscle Damage in Peripheral Artery Disease Hind Limb Ischemia Murine Model

K. HOWARD¹, L. CARSON¹, R. BECKER¹, H. MEHRAEIN¹, AND K. CLUFF¹ ¹Wichita State University, Wichita, KS

P-Fr-180

MRI Assessment Of Main Pulmonary Artery Stiffness During Exercise Stress O. FOROUZAN¹, J. WARCZYTOWA¹, O. WIEBEN¹, C. FRANÇOIS¹, AND N. CHESLER¹ ¹University of Wisconsin, Madison, WI

P-Fr-181

Model-based Assessment of Hemodynamic and Metabolic Risks Factors in Hypertension

P. MOHAN¹, T. PHAN¹, AND J. LI¹ ¹Rutgers University, New Brunswick, NJ

P-Fr-182

Analysis Of Automatically Sampled Aorta Geometry In Turner Syndrome Patients

W. STODDARD¹, G. MYLAVARAPU¹, E. GUTMARK¹, C. GRAVHOLT², C. TROLLE², S. RINGGAARD², P. BACKELJAUW³, AND I. GUTMARK-LITTLE³ ¹University of Cincinnati, Cincinnati, OH, ²Aarhus University Hospital, Aarhus, Denmark,³Cincinnati Children's Hospital, Cincinnati, OH

Track: Cardiovascular Engineering Cardiopulmonary Biomechanics: Cardiac Electrophysiology Posters

P-Fr-183

Reduced-Order Finite Element Modeling of Cardiac Propagation D. VU¹ AND K. NG¹

¹New Mexico State University, Las Cruces, NM

P-Fr-184

Studying Sinoatrial Node Function in Aging: Prediction of Sinoatrial Node Conduction Velocity Using a Fuzzy Neural Network

M. MOGHTADAEI¹, S. RAFFERTY¹, S. HOWLETT¹, AND R. ROSE¹ ¹Dalhousie University, Halifax, NS, Canada

P-Fr-185

Defining Phase Cohesion and Synchrony in the Sinoatrial Node

B. ONAL¹, Z. COULIBALY², A. GELASTOPOULOS³, T. HUND¹, AND X. ZHAO⁴ ¹The Ohio State University, Columbus, OH, ²University of Maryland Baltimore County, Baltimore, MD, ³Boston University, Boston, MA, ⁴University of Tennessee-Knoxville, Knoxville, TN

P-Fr-186

Focal Adhesion Size Correlates With Membrane Ion Channel Distribution and Expression

S. SENGUPTA¹, B. HOFFMAN¹, AND N. BURSAC¹ ¹Duke University, Durham, NC

P-Fr-187

Establishment of a Reentry Model on a Multielectrode Array Z. WANG¹, S. MA¹, AND B. GAO¹ ¹Clemson University, Clemson, SC

ionison onworsity, cionison, oc

P-Fr-188

Implicit Implementation of Volume Boundaries for Element Free Bioelectric Field Simulation

I. STURDEVANT¹ AND K. NG¹ ¹New Mexico State University, Las Cruces, NM

P-Fr-189

Obstructive Fibrosis Related To Conduction Slowing In Chronic Atrial Fibrillation

¹ N. ANGEL¹, L. LI¹, R. MACLEOD¹, N. MARROUCHE¹, R. RANJAN¹, AND D. DOSDALL¹ ¹University of Utah, Salt Lake City, UT

P-Fr-190

Optical Mapping of Cardiac Electromechanics H. ZHANG¹, K. IIJIMA¹, G. WALCOTT¹, AND J. ROGERS¹

¹University of Alabama at Birmingham, Birmingham, AL P-Fr-191

en to Waking versus V

Sleep to Waking versus Waking to Exercise: Resting State Impact on Risk of Sudden Cardiac Death

A. GREER-SHORT¹ AND S. POELZING¹ ¹Virginia Tech Carilion Research Institute, Roanoke, VA

Track: Cardiovascular Engineering Cardiopulmonary Biomechanics: Cardiac Mechanics Posters

P-Fr-192

Effects of Engineered Cardiac Tissue Architecture on Mitochondria Organization and Tissue Function

M. KNIGHT¹, N. JOHNSEN², N. DREW¹, AND A. GROSBERG¹

¹University of California, Irvine, Irvine, CA, ²University of California, Irvine, Huntington Beach, CA

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 4:00PM - 5:00PM

P-Fr-193

Substrate Stiffness Regulates Phenotype of Cardiac Fibroblasts in Volume Overload Heart Failure

R. CHILDERS^{1,2}, P. LUCCHESI^{1,2}, AND K. GOOCH¹ ¹The Ohio State University, Columbus, OH, ²The Research Institute at Nationwide Children's Hospital, Columbus, OH

P-Fr-194

Passive Biaxial Mechanical Properties of Different Anatomical Regions of Normal Ovine Heart

S. JAVANI¹, M. ABBASI¹, M. GORDON¹, AND A. AZADANI¹ ¹University of Denver, Denver, CO

P-Fr-195

As the Beating Heart Stiffens in Development, So Does the Nuclear Lamina

S. MAJKUT¹, S. CHO¹, M. TEWARI¹, J. IRIANTO¹, T. IDEMA¹, A. LIU¹, S. SAFRAN², AND D. E. DISCHER¹

¹University of Pennsylvania, Philadelphia, PA, ²Weizmann Institute of Science, Rehovot, Israel

P-Fr-196

A Cardiothoracic Phantom for the Study of Heart Murmurs

H. BAKHSHAEE¹, J-H. SEO¹, T. KILMAR¹, G. TOGNETTI¹, G. GARREAU¹, W. THOMPSON¹, A. ANDREOU¹, AND R. MITTAL¹

¹Johns Hopkins University, Baltimore, MD

P-Fr-197

Novel Programmable Isolated Perfused Heart Apparatus to Study Heart-Vasculature Interaction *In Vitro*

M. MCDOWALL¹, C. NIPPER¹, A. URQUIA¹, N. STOWE¹, C. QUICK¹, AND R. DONGAONKAR¹ ¹Texas A&M University, College Station, TX

P-Fr-198

Residual Stress Impairs Pump Function After the Dor Procedure: A Finite Element Analysis

J. PANTOJA¹, Z. ZHANG², J. GUCCIONE^{1,2}, W. MACMILLAN², M. TARTIBI², L. GE^{1,2}, AND M. RATCLIFFE^{1,2}

¹University of California San Francisco, San Francisco, CA, ²San Francisco Veterans Affairs Medical Center, San Francisco, CA

P-Fr-199

The Involvement Of Serotonin Receptor And Fibroblast Growth Factor-Mediated Signaling In Single Valve Cell Response To Pathological Stress N. LAM¹ AND K. BALACHANDRAN¹ 'University of Arkansas, Fayetteville, AR

P-Fr-200

Effects of Mechanical Perturbations Approach on the Spiral Wave Dynamics Y. BELHAMADIA¹, S. DUBLJEVIC², AND A. HAZIM¹ ¹University of Alberta, Edmonton, AB, Canada

Track: Respiratory Bioengineering, Biomechanics Cardiopulmonary Biomechanics:

Integrated Respiratory Structure and Function Posters

P-Fr-201

A Computational Model of Lung Fibroblast Migration with In Vitro Validation

J. RATTI¹, A. REYNOLDS², AND R. HEISE¹

¹Virginia Commonwealth University, Richmond, VA, ²Virginia Commonwealth Universi, Richmond, VA

P-Fr-202

Simulation of Airflow Characteristics in the Realistic and Simplified Alveolar Sacs

J. KIM¹, R. HEISE², A. REYNOLDS², AND R. PIDAPARTI¹

¹University of Georgia, Athens, GA, ²Virginia Commonwealth University, Richmond, VA

P = Poster Session
OP = Oral Presentation
= Reviewer Choice Award

P-Fr-203

Thermodynamically-Constrained Computational Model of Lung Mitochondrial Bioenergetics

X. ZHANG¹, R. DASH², V. PANNALA², A. CLOUGH¹, E. JACOBS², AND S. AUDI¹ ¹Marquette University, Milwaukee, WI, ²Medical College of Wisconsin, Milwaukee, WI

P-Fr-204

Finite Deformation Elasticity to Predict Ttissue Density Distribution in the Supine Lung

H. KUMAR¹, E. HOFFMAN², AND M. TAWHAI¹ ¹The University of Auckland, Auckland, New Zealand, ²The University of Iowa, Iowa city, IA

P-Fr-205

Biological Impacts of a Flexible Airway *In vitro* Model of Pulmonary Recruitment Events

T. ITIN¹, M. HARRISON¹, AND D. GAVER¹ ¹Tulane University, New Orleans, LA

P-Fr-206

Influence of Regional Interstitial Disease and Anemia on DLCO from a Time-dependent Novel Approach

B. SAPOVAL¹ AND M-Y. KANG¹ ¹Ecole Polytechnique, Palaiseau, France

P-Fr-207

Endotracheal Tube Compensation for Respiratory Impedance Measurements Using Time-Domain and Frequency-Domain Approaches

A. FONSECA DA CRUZ¹, J. HERRMANN², AND D. KACZKA³ ¹Hospital das Clinicas da FMUSP, Sao Paulo, Brazil, ²University of Iowa, Iowa Clty, IA,³University of Iowa, Iowa City, IA

P-Fr-208

Probing the Angles and Diameters of Pig Airway Branching Using Computed Tomography

H. MANSY¹ AND M. K. AZAD¹ ¹Univ of Central Florida, Orlando, FL

P-Fr-209

Anatomical Re-endothelialization and Cell Adhesion Molecule Expression within Decellularized Rodent Lungs

C. STABLER¹, L. CAIRES², M. MONDRINOS³, C. MARCINKIEWICZ¹, P. LAZAROVICI⁴, AND P. LEIKES¹

¹Temple University, Philadelphia, PA, ²Sao Paolo University, Sao Paolo, Brazil, ³University of Pennsylania, Philadelphia, PA, ⁴Hebrew University of Jerusalem, Jerusalem, Israel

Track: Respiratory Bioengineering, Biomechanics Cardiopulmonary Biomechanics: Surface Tension and Lung Injury Posters

P-Fr-210

Modeling Strain-Induced Leak in an Inhomogeneous Alveolar Epithelial Monolayer

K. HAMLINGTON¹, B. SMITH¹, AND J. BATES¹ ¹University of Vermont, Burlington, VT

P-Fr-211 DREAM TEAM & CENTER

Aging and Mechanical Stretch Increase Inflammatory Gene Expression and ER Stress in In Vitro and In Vivo Models of Lung Injury

J. HERBERT¹, M. VALENTINE¹, P. PATEL¹, J. NKWOCHA¹, A. FOWLER¹, R. PIDAPARTI², A. REYNOLDS¹, AND R. HEISE¹

¹Virginia Commonwealth University, Richmond, VA, ²University of Georgia, Athens, GA

P-Fr-212

Quantification of Airspace Enlargement due to Ventilator Induced Lung Injury in an Aging Lung Model

M. SCHNECK¹, M. VALENTINE¹, J. HERBERT¹, R. PIDAPARTI², A. REYNOLDS¹, AND R. HEISE³

¹Virginia Commonwealth University, Richmond, VA, ²University of Georgia, Athens, GA,³Virginia Commonwealth Universi, Richmond, VA

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM , 4:00PM - 5:00PM

P-Fr-213

The Synergy Between Volutrauma and Atelectrauma in Blood-air Barrier Disruption

B. SMITH¹, G. ROY¹, K. HAMLINGTON¹, AND J. BATES¹ ¹The University of Vermont, Burlington, VT

P-Fr-214

Effects of Negative and Positive Pressure Ventilation on Lung Mechanics and Inflammation During ex-vivo Lung Perfusion (EVLP)

K. NELSON¹, S. GHADIALI¹,², AND B. WHITSON¹,³

¹Ohio State University, Columbus, OH, ²Department of Pulmonary, Allergy, Critical Care, and Sleep, Columbus, OH, ³Department of Surgery and Division of Cardiac Surgery, Columbus, OH

P-Fr-215

Multi-scale Model of Liquid Obstruction Formation and Clearance in the Lung

J. RYANS¹, D. HALPERN², H. FUJIOKA¹, AND D. GAVER III¹ ¹Tulane University, New Orleans, LA, ²University of Alabama, Tuscaloosa, AL

P-Fr-216

Computational Model for Capturing Topological Changes During the Splitting of a Liquid Plug by an Airway Bifurcation

B. VAUGHAN¹ AND J. GROTBERG²

¹University of Cincinnati, Cincinnati, OH, ²University of Michigan, Ann Arbor, MI

Track: Respiratory Bioengineering, Biomechanics Cardiopulmonary Biomechanics:

Upper Airway Mechanics and Mechanobiology Posters

P-Fr-217

Influence of Mechanical Forces and Oxygen Tension on Inflammation and Mucin Secretion in Respiratory Epithelial Cells

N. HIGUITA-CASTRO¹, J. D. SWARTS², AND S. N. GHADIALI¹

¹The Ohio State University, Columbus, OH, ²University of Pittsburgh, Pittsburgh, PA

P-Fr-218

Computational Modelling of Cough Function in Patients with Upper Airway & Neurological Disease

N. KURUPPUMULLAGE¹, O. ILEGBUSI¹, B. HOFFMAN-RUDDY¹, AND E. PEARSON SIVERMANN²

¹University of Central Florida, Orlando, FL, ²University of Florida, Gainesville, FL

P-Fr-219

Assessing The Effectiveness Of Upper Airway Surgery Using Computational Modeling Of Airway Collapse

D. R. SUBRAMANIAM¹, G. MYLAVARAPU¹, AND E. GUTMARK¹ ¹University of Cincinnati, Cincinnati, OH

P-Fr-220

Computational Modeling of Surfactant Transport in the Nasopharyngeal Cavity for Treatment of Eustachian Tube Dysfunction

J. MALIK¹ AND S. GHADIALI¹ ¹The Ohio State University, Columbus, OH

P-Fr-221

Computational Modeling of Sound Transmission in an Upper Respiratory Airway to Evaluate Eustachian Tube Function

J. TORRES-RODRIGUEZ¹ AND S. GHADIALI¹ ¹The Ohio State University, Columbus, OH

P-Fr-222

Merging, Displaying, Recording and Synchronizing Anatomical, Physiological and Audio Data during Continuous Laryngoscopy Exercise Test

E. DIJEMENI¹, J. HULL², AND R. DICKINSON¹

¹Imperial College London, London, United Kingdom, ²Royal Brompton & Harefield NHS Foundation Trust, London, United Kingdom

P-Fr-223

Predictions from Numerical Models Compared to Physical Model Measurements of Upper Airway Pressures Y. HUANG¹, J. WANG¹, Y. AN¹, AND H. WANG¹ ¹Capital Medical University, Beijing, China, People's Republic of

Track: Drug Delivery, Tissue Engineering Drug Delivery:

Drug Delivery in Tissue Engineering Posters

P-Fr-225

Delivery of β -Catenin Agonists via Targeted Poly(Styrene-alt-Maleic Anhydride)-b-Poly(Styrene) (PSMA-b-PS) Micelles to Enhance Fracture Healing

Y. WANG¹, M. BARANELLO¹, AND D. BENOIT¹ ¹University of Rochester, Rochester, NY

P-Fr-226

An Injectable ELP Depot Contributes to Sustained Presence of Curcumin in the Knee Joint Space

R. BELL¹, R. BOWLES², T. MWANGI³, E. LEIMER³, S. ADAMS³, AND L. SETTON³ ¹University of Rochester, Rochester, NY, ²University of Utah, Salt Lake City, UT, ³Duke University, Durham, NC

P-Fr-227

Elastin Based Nanoparticles for Targeted Gene Therapy

D. MONFORT¹ AND P. KORIA¹ ¹University of South Florida, Tampa, FL

P-Fr-228

Cell-Mediated Degradation of Genipin-Crosslinked Gelatin Microspheres for Growth Factor Delivery

P. TURNER¹, R. TIRUVANNAMALAI-ANNAMALAI¹, A. RIOJA¹, AND J. STEGEMANN¹ ¹University of Michigan, Ann Arbor, MI

P-Fr-229

$\label{eq:plga-porous} PLGA-porous Silicon Composite Microspheres as Doubled Controlled Release Platform of TGF-\betaI for Regenerative Medicine Applications.$

L. PANDOLFI^{1,2}, S. MINARDI¹, F. TARABALLI¹, L. XEUWU¹, M. FERRARI¹, AND E. TASCIOTTI¹ ¹Houston Methodist Research Institute, houston, TX, ²Chinese Academy of Science, Beijing, China, People's Republic of

P-Fr-230

Enhanced Wound Healing By Nanoparticle Incorporated Skin Grafts J. DEVALLIERE¹, K. DOOLEY¹, B. UYGUN¹, AND M. YARMUSH¹

¹Massachusetts General Hospital, Shriners Hospitals for Children, Boston, MA

P-Fr-231

BMP-2-ELP Induces Differentiation Of Mesenchymal Stem Cells To Osteoblast Lineage

B. MCCARTHY¹ AND P. KORIA¹ ¹University of South Florida, Tampa, FL

P-Fr-232

A 'Self-navigating' Drug Delivery System for Ischemic Disease Treatment

J. P. J. WU¹, B. CHENG¹, P. CHEN², S. R. ROFFLER¹, AND P. C. HSIEH¹ ¹Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ²Institute of Research Center of Applied Science, Academia Sinica, Taipei, Taiwan

P-Fr-233

Designer Collagen-Fibril Biograft Materials With Tunable Molecular Delivery

R. JOSHI¹, L. WATKINS¹, AND S. VOYTIK-HARBIN⁷ ¹Purdue University, West Lafayette, IN

P-Fr-235

Sustained Release System of Ranibizumab for Transscleral Administration

T. ABE¹, S. YAMADA¹, H. KAJI², A. KATSUYAMA¹, M. NISHIZAWA², AND N. NAGAI¹ ¹Tohoku University, Sendai, Japan, ²Department of Bioengineering and Robotics, Graduate School of Engineering, Sendai, Japan

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 4:00PM - 5:00PM

P-Fr-236

Effects of Electrospun PLLA Fiber Crystallinity on Drug Release for Glial **Cell Applications**

A. D'AMATO¹, J. CARDENAS¹, N. SCHAUB¹, E. FRANZ¹, A. FIUMARA¹, P. TROIANO¹, AND R. GILBERT

¹Rensselaer Polytechnic Institute, Troy, NY

P-Fr-237

Photopolymerized PEG-Heparin-Based Hydrogels for Endothelial Cell Maintenance Culture

J. MILLER¹, S. RABBANY¹, AND R. DE GUZMAN¹ ¹Hofstra University, Hempstead, NY

Track: Drug Delivery, Nano and Micro Technologies

Drug Delivery:

Nano to Micro Devices in Drug Delivery Posters

P-Fr-238

Nanostructured Mucoadhesive Microparticles for Improved Bioavailability of Oral Drug

C. G. PARK¹, B. K. HUH¹, M. PARK¹, S. H. LEE¹, S. N. KIM¹, H. R. HONG¹, K. R. KIM¹, H. WON1 AND Y B CHOY

Seoul National University, Seoul, Korea, Republic of

P-Fr-239

Silicone Hydrogel Contact Lenses Engineered for the Controlled Release of Multiple Therapeutics

M. BYRNE¹, L. WUCHTE¹, AND C. WHITE² ¹Rowan University, Glassboro, NJ, ²Auburn University, Auburn, AL

P-Fr-240

Fibrin Glue Embedded with Biodegradable Microparticles for Sustained Delivery of Bupivacaine

S. N. KIM¹, B. H. CHOI², B. K. HUH¹, C. G. PARK¹, H. K. KIM², AND Y. B. CHOY¹ ¹Seoul National University, Seoul, Korea, Republic of, ²Korea National University, Seoul, Korea, Republic of

P-Fr-241

Sustained Delivery of Nerve Growth Factor by Polyanhydrides Nano/ microparticles for Enhancing Peripheral Nerve Regeneration A. SHARMA¹, M. UZ¹, D. SAKAGUCHI¹, AND S. MALLAPRAGADA¹ ¹lowa State University, Ames, IA

P-Fr-242

Advanced Reconstitution of µHDL using a Series of Microvortices Y. SEI¹ AND Y. KIM¹

¹Georgia Institute of Technology, Atlanta, GA

P-Fr-243

Dissecting the Role of Magnetic Field on Cellular Uptake of Magnetic Nanoparticles

S. TONG¹, Y. QIU¹, L. ZHANG¹, W. LAM¹, AND G. BAO² ¹Georgia Institute of Technology, Atlanta, GA, ²Rice University, Houston, TX

P-Fr-244

Synthesis of Dual-Layered Particles for Tunable, Delayed Protein Release D. DUTTA¹, C. FAUER¹, M. SALIFU¹, AND S. STABENFELDT¹ ¹Arizona State University, Tempe, AZ

P-Fr-245

Adhesion Profile of Dual-Agent Functionalized Nanoparticles in a Synthetic Microvascular Network

Y. TANG¹, F. SOROUSH¹, B. WANG¹,², B. PRABHAKARPANDIAN³, AND M. KIANI¹ ¹Temple University, Philadelphia, PA, ²Widener University, Chester, PA, ³CFD Research Corporation, Huntsville, AL

Track: Drug Delivery Drug Delivery:

Nucleic Acid Delivery Posters

P-Fr-247

Targeted Expression of Tumor Suppressive miRNA-34a in the Brain Achieved by Delivering Tissue-Penetrating Non-Viral Gene Vectors Across the BBB with Focused Ultrasound

C. CURLEY¹, Y. ZHANG¹, P. MASTORAKOS², G. W. MILLER¹, A. KLIBONOV¹, R. ABOUNADER¹, J. HANES², AND R. PRICE¹ ¹University of Virginia, Charlottesville, VA, ²Johns Hopkins University, Baltimore, MD

P-Fr-248

Engineering Stable and Efficient Poly(ethylene glycol)-co-Poly β-amino ester Polyplexes Towards Cancer Gene Therapy J. KIM¹, Y. KANG¹, AND J. GREEN¹ Johns Hopkins University, Baltimore, MD

P-Fr-249

MicroRNA Delivery by Multifunctional Lipoplexes in Lung Cancer Therapy and Imaging

C. LIU¹, Q. WANG¹, J. SPERNYAK², AND Y. WU¹ ¹State University of New York at Buffalo, Buffalo, NY, ²Roswell Park Cancer Institute, Buffalo, NY

P-Fr-250

The Role of Endosomal Buffering in Poly β-Amino Ester Nanoparticle Mediated Transfection

D. WILSON¹ AND J. GREEN¹ ¹Johns Hopkins University, Baltimore, MD

P-Fr-251

Engineering Hydrogel Lenses with Regulated Release of Nucleic Acid Therapeutics

R WHITENER¹ K WINDHAM¹ J WOWER¹ AND M BYRNE² ¹Auburn University, Auburn, AL, ²Rowan University, Glassboro, NJ

P-Fr-252

Design of Polymeric Nanoparticles for the Delivery of siRNA

J. CUI ¹Yale University, New Haven, CT

P-Fr-253

Gold Nanoparticle Mediated Multifunctional Nanoparticles for Gene Therapy with High Selectivity

B. SHRESTHA¹,² AND L. TANG¹,² ¹University of Texas at San Antonio, San Antonio, TX, ²University of Texas Health Science Centre, San Antonio, TX

P-Fr-254

Oral Delivery of siRNA Using Dual Stimuli-Responsive Microparticles L. STRONG¹, J. KNIPE¹, AND N. PEPPAS¹

¹The University of Texas at Austin, Austin, TX

P-Fr-255

Preparation and Characterization of Magnetic Gene Transfection Agents Consisting of Polyethylenimine and Chitosan Coated Iron Oxide Nanoparticles

M. CRUZ-ACUNA¹, L. MALDONADO-CAMARGO¹, J. DOBSON¹, AND C. RINALDI¹ ¹University of Florida, Gainesville, FL

P-Fr-256

Toronto, ON, Canada

Design of DNA Assembled Nanoparticle Superstructures for Cancer Nanomedicine

L. CHOU^{1,2,3,4}, K. ZAGOROVSKY^{3,4}, V. RAEESI⁵, AND W. CHAN^{3,4,5,6} ¹Wyss Institute, Harvard Medical School, Boston, MA, ²Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, ³Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada, ⁴Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada, ⁵Materials Science and Engineering, University of Toronto, Toronto, ON, Canada, Department of Chemistry, University of Toronto,

P = Poster Session **OP** = Oral Presentation 👷 = Reviewer Choice Award

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM , 4:00PM - 5:00PM

Track: Drug Delivery Drug Delivery:

Other Drug Delivery Posters

P-Fr-257

Controlled Drug Release Device Fabricated with PDMS Mold-Based UV Curing of Polyethyleneglycol Dimethacrylates

S. YAMADA¹, N. NAGAI¹, H. KAJI², A. KATSUYAMA¹, M. NISHIZAWA², AND T. ABE¹ ¹Graduate School of Medicine, Tohoku University, Sendai, Japan, ²Graduate School of Engineering, Tohoku University, Sendai, Japan

P-Fr-258 DREAM TEAM & CENTER

Transport, Resealing, and Re-poration Dynamics of Two-Pulse Electroporation-Mediated Delivery

Y. DEMIRYUREK¹, M. YU¹, M. ZHENG¹, J. D. ZAHN¹, D. I. SHREIBER¹, H. LIN¹, AND J. W. SHAN

¹Rutgers University, Piscataway, NJ

P-Fr-259

Battery-less Implantable Drug Infusion Device for On-demand Release of Insulin

Y. B. LEE¹, S. H. LEE¹, AND Y. B. CHOY¹ ¹Seoul National University, Seoul, Korea, Republic of

P-Fr-260

Nanoemulsified Volatile Anesthetics: Large Animal Trials

F. GARCIA-PEREIRA¹, B. ASHRAFI², Z. PENG², A. PILEGGI³, E. PRETTO², AND C. FRAKER³ ¹University of Florida College of Veterinary Medicine, Gainesville, FL, ²University of Miami School of Medicine, Miami, FL, ³University of Miami Diabetes Research Institute, Miami, FL

P-Fr-261

Fluid Flow Magnitude Impacts Nanoparticle Interactions with Endothelial Cells in Angiogenic Vessels

C. SARSONS¹, S. JIANG¹, J. GOMEZ¹, H. LABOUTA¹, B. VAFADAR², D. CRAMB¹, S. CHILDS¹, AND K. RINKER

¹University of Calgary, Calgary, AB, Canada, ²Zymetrix, Calgary, AB, Canada

P-Fr-263

Fast Diffusion of Targeted Carbon Nanotubes in Cellular Spheroids

Y. WANG¹, J. H. BAHNG¹, Q. CHE¹, J. HAN¹, AND N. KOTOV ¹University of Michigan, ann arbor, MI

P-Fr-264

Integrating Exercise and Meal Type into a Novel Glucoregulation Model: **Diabetic Implications**

S. SCHUNK¹ AND J. WINTERS¹ ¹Marquette University, Milwaukee, WI

P-Fr-265

Collagen Hydrogel Implant Coating for Drug Delivery Applications

B. LANE¹, K. HARMON², H. FRIEDMAN², M. ULINE¹, R. GOODWIN³, AND J. EBERTH¹,² ¹University of South Carolina, Columbia, SC, ²University of South Carolina School of Medicine, Columbia, SC, ³University of South Carolina School of Medicine - Greenville, Greenville, SC

P-Fr-266

Sustained Hydrophobic Drug Delivery Platform For Scar Treatment By The Microfluidic Assembly Of Multistage Composites

M. N. HSU^{1,2}, Y. ZHANG^{1,2,3}, AND C-H. CHEN^{2,4} NUS Graduate School for Integrative Sciences and Engineering, Singapore, Singapore,²National University of Singapore, Singapore, Singapore, ³Nanoscience and Nanotechnology Initiative, Singapore, Singapore, ⁴Singapore Institute for Neurotechnology, Singapore, Singapore

P-Fr-267 DREAM TEAM & CENTER

Dexamethasone Drug Delivery System for the Sustained Treatment of Choroidal Neovascularization

A. HIRANI^{1,2}, R. TZEKOV^{2,3}, Y. LEE¹, V. SUTARIYA², AND Y. PATHAK² ¹Virginia Tech, Blacksburg, VA, ²University of South Florida, Tampa, FL, ³The Roskamp Institute, Sarasota, FL

P-Fr-268

Fabrication and Characterization of Hydrogel-Filled Nanoliposomes for Intracellular Delivery E. VANARSDALE 1 AND S. MAJD1

¹Pennsylvania State University, University Park, PA

Track: Drug Delivery Drug Delivery:

Responsive Delivery Systems Posters

P-Fr-269

Sonosensitive Theranostic Emulsions for Targeted Treatment of Crohn's Disease

A. STEINHOFF¹, L. JOHNSON¹, L. MOHR¹, O. KRIPFGANS¹, P. HIGGINS¹, J. RUBIN¹, J. DILLMAN¹, AND M. FABIILLI¹ ¹University of Michigan, Ann Arbor, MI

P-Fr-270

Moved to Oral - OP-Thurs-1-16

P-Fr-271

Nanoparticles with Reducible Crosslinks for Anti-Inflammatory Drug Delivery in Osteoarthritis J. LIN¹, S. POH¹, AND A. PANITCH¹

¹Purdue University, West Lafayette, IN

P-Fr-273

Liposome-Mediated Delivery of Highly Tumor-Penetrating Chelates of Alpha-Particle Generator Actinium-225 Against Vascularized, Metastatic Breast Cancer

C. ZHU¹, T. HOLLERAN¹, F. BRUCHERTSEIFER², A. MORGENSTERN², AND S. SOFOU¹ ¹Rutgers University, Piscataway, NJ, ²Institute for Transuranium Elements, Karlsruhe, Germany

P-Fri-274

Encapsulation of Polyanhydride Nanoadjuvants in Biodegradable Microgels for Oral Delivery

LINDSEY SHARPE¹, OLIVIA MUTAZ-HADDADIN², JEYVIKRAM THIRUMAVALAVAN¹, YASMINE KHAIRANDISH¹ AND NICHOLAS A. PEPPAS^{1,2,3}

¹Department of Biomedical Engineering, ²Department of Chemical Engineering, and ³Division of Pharmaceutics, University of Texas at Austin, Austin, TX

Track: Drug Delivery Drug Delivery:

Targeted Delivery Posters

P-Fr-276

Osteotropic Nanoscale Drug Delivery System via a Single Aspartic Acid as the Bone-targeting Moiety

E. CARBONE¹, T. JIANG¹, H. M. KAN¹, X. YU¹, AND W. H. LO¹ ¹UConn Health Center, Farmington, CT

P-Fr-277

Controlled Delivery of an Antibiotic Using a Localized Affinity Change in Bacterial pH

E. CYPHERT¹ AND H. VON RECUM¹ ¹Case Western Reserve University, Cleveland, OH

P-Fr-278

Platelets as "Micromachines" for Sensing and Actuation of Targeted Drug Delivery of Hemostatic Agents

C. HANSEN^{1,2}, Y. SAKURAI^{1,2}, L. A. LYON³, AND W. LAM^{1,2} ¹Georgia Institute of Technology, Atlanta, GA, ²Emory University School of Medicine, Atlanta, GA, ³Chapman University, Orange, CA

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 4:00PM - 5:00PM

P-Fr-279

A pH-responsive Drug Delivery Platform Based on Glycol Chitosan-coated Liposomes

L. YAN¹, S. CRAYTON¹, A. TSOURKAS¹, AND Z. CHENG¹ ¹University of Pennsylvania, Philadelphia, PA

P-Fr-280

Sticky Liposomes for Selective and Effective Targeting of Otherwise Untargetable Cancers

M. SEMPKOWSKI¹ AND S. SOFOU¹ ¹Rutgers University, Piscataway, NJ

P-Fr-281

The Role of Cell Mechanics and Morphology in Nanoparticle Uptake P. FATTAHI¹, S. ZHANG¹, J. BROWN¹, AND P. BUTLER¹ ¹The Pennsylvania State University, University Park, PA

P-Fr-282

An IPTG-Inducible FtsZ Operon for the Production of Minicells

G. BROWN¹, B. BRUNO¹, C. CAI¹, J. BETHKE¹, J. YOO¹, E. KELLY¹, M. TUCKER¹, C. LANGGUTH¹, J. LEEHAN¹, E. MCMILLEN¹, R. LEE¹, S. GUPTA¹, AND S. MOSHASHA¹ ¹University of Virginia, Charlottesville, VA

P-Fr-283

Targeted Delivery of Pentagalloyl Glucose using Anti-elastin Decorated Nanoparticles Prevents Abdominal Aortic Aneurysm Formation in Rats N. NOSOUDI¹, A. CHOWDHURY¹, S. SICLARI¹, AND N. VYAVAHARE¹ ¹Clemson University, Clemson, SC

P-Fr-284

Bacterial Sepsis Therapeutic Design Guided by a Nanoparticle-Based Model S. MILLER¹, C. BELL¹, R. MEIJAS¹, AND T. GIORGIO¹ ¹Vanderbilt University, Nashville, TN

P-Fr-285

The Effects of Bioconjugation of Calcium Phosphosilicate Nanoparticles on the Delivery to Circulating Breast Cancer Cells

V. GONZALEZ¹, K. HUGHES¹, L. HARTER¹, O. PINTO¹, X. TANG¹, C. DONG¹, AND J. ADAIR¹ ¹The Pennsylvania State University, University Park, PA

P-Fr-286

Computational Modeling Of Drug Delivery Across The Blood-Brain Barrier (BBB) For The Treatment Of Autism Spectrum Disorder (ASD) J. SIMMONS¹, L. ACHENIE¹, AND Y. W. LEE¹

¹Virginia Polytechnic Institute and State University, Blacksburg, VA

P-Fr-287

Multi-Functionalization of Doxorubicin-Loaded Polymeric Nanoparticles for Expanded Targeting C. MUNOZ¹ AND T. BETANCOURT¹ ¹Texas State University, San Marcos, TX

P-Fr-288

Author Cancellation

P-Fr-289

Selective Enhancement of Macropinocytosis for the Delivery of a Glycolytic Inhibitory Peptide to Lung Cancer Cells R. IGLESIAS¹ AND P. KORIA¹ ¹University of South Florida, Tampa, FL

P-Fr-290

Multifunctional Silver Nanoparticles for Targeted Cancer Therapy S. SRINIVASAN¹, V. BHARDWAJ¹, AND A. MCGORON¹ ¹Florida International University, Miami, FL

P-Fr-291

Use of Biocompatible Hydrogel Beads for the Recovery and Delivery of Antibiotics

K. KO1

¹Cushing Academy, Ashburnham, MA

P-Fr-292

Nanoparticle Targeting to Cartilage: Effects of Surface Charge on Nanoparticle Interactions with Joint Tissues S. BROWN¹ AND B. SHARMA¹ 'University of Florida, Gainesville, FL

P-Fr-293

Magnetic Nanoparticles in the Prevention of Neointimal Hyperplasia E. MAPPUS¹, B. FELLOWS¹, O.T. MEFFORD¹, AND D. DEAN¹ 'Clemson University, Clemson, SC

P-Fr-294 DREAM TEAM & CENTER

Development of "Smart" Bone Targeted Micelles for the Treatment of Metastatic Prostate Cancer Lesion in Bone O. Aydın¹, I. A. YOUSSEF¹, H. RAMARAJU¹, G. TIRUCHINAPALLY¹, Y. YUKSEL DURMAZ², K.

O. AYDIN', I. A. YOUSSEF', H. KAMARAJU', G. TIRUCHINAPALLY', Y. YUKSEL DURMAZ², K. KOZLOFF¹, D. KOHN¹, AND M. ELSAYED¹ ¹University of Michigan, Ann Arbor, MI, ²Medipol University, Istanbul, Turkey

P-Fr-295 DREAM TEAM & CENTER

Efficient Identification Of Peptide Targeting Ligands By Phage Display And Next-Generation Sequencing

G. LIU¹, B. LIVESAY¹, N. KACHEROVSKY¹, M. CIESLEWICZ¹, E. LUTZ¹, A. WAALKES¹, M. JENSEN¹,², S. SALIPANTE¹, AND S. PUN¹

¹University of Washington, Seattle, WA, ²Seattle Children's Research Institute, Seattle, WA

Track: Tissue Engineering, Drug Delivery Drug Delivery:

Tissue Engineered Models for Study of Disease and Drug Discovery Posters

P-Fr-297

3D Tissue Engineered Blood Vessels To Model Progeria L. ATCHISON¹, H. ZHANG², K. CAO², AND G. TRUSKEY¹ ¹Duke University, Durham, NC, ²University of Maryland, College Park, MD

P-Fr-298

Engineering Modular 3D Microtissues for Liver-on-a-Chip Applications A. SCHEPERS¹

¹MIT, Cambridge, MA

P-Fr-299

A 3D Perfusable Liver Co-Culture Platform to Assess Chronic Inflammation and Metabolism

T. LONG^{1,2}, R. DUNN³, H. HAMADEH³, C. AFSHARI³, H. MCBRIDE³, AND L. GRIFFITH¹ ¹Massachusetts Institute of Technology, Cambridge, MA, ²Amgen, Inc., Cambridge, MA,³Amgen, Inc., Thousand Oaks, CA

P-Fr-300

Ex Vivo Study of Mouse Intestines using a Novel Organotypic Slice Model L. SCHWERDTFEGER¹ AND S. TOBET¹

¹Colorado State University, Fort Collins, CO

P-Fr-301

A Vascularized Heart-on-a-chip For Studying Drug Delivery Across The Blood-heart Barrier

J. NAWROTH¹, A. SHRIVATS¹, V. KUJALA¹, J. GOSS¹, AND K. K. PARKER¹ ¹Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA

P-Fr-302

RGD Concentration Alters Vocal Fold Fibroblast Gene Expression in 2D and 3D Systems.

T. WALIMBE¹, A. KOSINSKI¹, A. PANITCH¹, AND P. SIVASANKAR¹ ¹Purdue University, West Lafayette, IN

P = Poster Session
OP = Oral Presentation
Q = Reviewer Choice Award

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM , 4:00PM - 5:00PM

P-Fr-303

Development Of A Novel *In Vitro* 3D Model To Investigate Osteocyte Differentiation And Biology

B. GOLZ¹, M. GALLANT¹, H. YANG¹, J. DELGADO-CALLE², T. BELLIDO², S. VOYTIK-HARBIN¹, AND R. MAIN¹

¹Purdue University, West Lafayette, IN, ²Indiana University School of Medicine, Indianapolis, IN

P-Fr-304

A Tissue-Engineered Microphysiological Platform for the Study of Human Organ Fibrosis

M. MONDRINOS¹ AND D. HUH¹ ¹University of Pennsylvania, Philadelphia, PA

P-Fr-305

Cellular Interactions of Pancreatic Cancer Cells to Peripheral Nerves as a Model of Perineural Invasion

A. HENDRICKS¹, L. BUI¹, R. LEVINER¹, AND Y-T. KIM¹ ¹University of Texas at Arlington, Arlington, TX

P-Fr-306

Tissue Engineered Myocardium to Study the Role of Endothelial Cells and HIF-IA in Reperfusion Injury A. ACUN¹ AND P. ZOBLUTUNA¹

A. ACUN' AND P. ZORLUTUNA' ¹University of Notre Dame, South Bend, IN

P-Fr-307

Study of The Stability and Anti-Protease Effect of Elastin Based Material In a Novel Chronic Wound Model $\mathit{InVitro}$

Y. YUAN¹ AND P. KORIA¹ ¹University of South Florida, Tampa, FL

P-Fr-308

Elucidating Tumor-Vasculature Interactions By Co-culturing Brain Tumor Cells With Endothelial Cells Patterned In 3D Hydrogels C. WANG¹, X. JIANG¹, C. WILSON¹, G. GRANT¹, AND F. YANG¹ 'Stanford University, Stanford, CA

P-Fr-309

Microbial-Derived Lithocholic Acid and Vitamin K2 Drive the Metabolic Maturation of Pluripotent Stem Cells-Derived and Fetal Hepatocytes Y. AVIOR¹, G. LEVY¹, M. ZIMERMAN¹, D. KITSBERG¹, R. SCHWARTZ², R. SADEH¹, A. MOUSSAIEF¹, M. COHEN¹, J. ITSKOVITZ-ELDOR³, AND Y. NAHMIAS¹ The Hebrew University of Insurem Lenguem Jsrael 3/Weill Cornell Medical College

¹The Hebrew University of Jerusalem, Jerusalem, Israel, ²Weill Cornell Medical College, New York, NY, ³Technion, Haifa, Israel

P-Fr-310

Long-lived Phenotypic Differences Persist in Cancer Cells Isolated Based on Invasion Dynamics.

L. HAPACH¹, S. CAREY¹, Z. GOLDBLATT¹, AND C. REINHART-KING¹ ¹Cornell University, Ithaca, NY

P-Fr-311

A Scratch Wound Model For Evaluation Of Treatments For Traumatic Brain Injuries

A. MARINO¹, A. DEA¹, R. EGERTER¹, AND E. ORWIN¹ ¹Harvey Mudd College, Claremont, CA

P-Fr-312

Micro-Tissue Arrays Made from Minimal Numbers of Human iPS Cell-Derived Cardiomyocytes

N. HUEBSCH¹, P. LOSKILL², L. JUDGE¹, M. MANDEGAR¹, N. DEVESHWAR², C. FOX³, T. MOHAMMED¹, Z. MA², A. MATHUR², P-L. SO¹, T. DESAI³, K. HEALY², AND B. CONKLIN¹ ¹Gladstone Institute of Cardiovascular Disease, San Francisco, CA, ²University of California, Berkeley, Berkeley, CA, ³University of California, San Francisco, San Francisco, CA

Track: Biomaterials Engineering Materials:

Bioinspired and Self Assembling Biomaterials Posters

P-Fr-316

Peptide Amphiphile Micelle-Mediated Molecular Imaging of Cardiovascular Disease

E. J. CHUNG¹, M. TIRRELL¹, AND S. P.YOO¹ ¹University of Chicago, Chicago, IL

P-Fr-317

Supramolecular Nanoconstructs for Tumor Targeting and Bioimaging A. BROWN¹, Y. MIRANDA-ALARCON¹, AND I. BANERJEE¹ ¹Fordham University, Bronx, NY

P-Fr-318

Understanding the Formation of Novel Biocompatible Lipid-Polymeric Patchy Particles

N. RASHEED¹, A. KHORASANI¹, J. CEBRAL¹, F. MUT¹, R. LOHNER¹, AND C. SALVADOR MORALES¹

¹George Mason University, Fairfax, VA

P-Fr-319

Development of Transferrin-Conjugated Block Copolypeptide Vesicles Encapsulating Doxorubicin

B. LEE¹, A. YIP¹, A. THACH¹, A. RODRIGUEZ¹, T. DEMING¹, AND D. KAMEI¹ ¹University of California, Los Angeles, Los Angeles, CA

P-Fr-320

Biomimetic Adhesive Hydrogel for Minimally Invasive Cell Transplantation J. S. LEE¹, J. SHIN¹, J-H. CHO¹, AND S-W. CHO¹ 'Yonsei University, Seoul, Korea, Republic of

P-Fr-321

Self-Assembling Biomaterials For Nanoengineering Conformal Coatings of Pancreatic Islets

D. VELLUTO¹, A. TOMEI^{1,2}, AND V. MANZOLI^{1,3} ¹University of Miami - Miller School of Medicine, Miami, FL, ²University of Miami, Miami, FL,³Politecnico of Milan, Milano, Italy

P-Fr-322

Nanoparticle Enhanced Adhesion Of Mussel Inspired Hydrogels For Tissue Interfacing

N. PANDEY⁷, P. HARIHARAN¹, Z. HUANG¹, P. ZIMMERN², K. T. NGUYEN¹, AND Y. HONG¹ ¹University of Texas at Arlington, Arlington, TX, ²University of Texas Southwestern Medical center, Dallas, TX

P-Fr-323

Understanding the Integrin-binding and Cell Response to Backbonemodified RGD Peptides

K. ECKES¹, K. BAEK¹, AND L. SUGGS¹ ¹University of Texas at Austin, Austin, TX

P-Fr-324

Peptide Amphiphiles as an Anti-aging and Anti-wrinkle Agent G. MI¹ AND T. WEBSTER^{1,2}

¹Northeastern University, Boston, MA, ²King Abdulaziz University, Jeddah, Saudi Arabia

P-Fr-325

Glycosylated Self-Assembled Nanofibers Bind Selectively to Lectins A. RESTUCCIA¹ AND G. HUDALLA¹

A. RESTUCCIA¹ AND G. HUDALLA¹ ¹The University of Florida, Gainesville, FL

P-Fr-326

Effect of Mechanical Flows on Actin Bundle Organization

S. JO¹, K. LEE¹, F. NAKAMURA², AND H. LEE¹ ¹Yonsei University, Seoul, Korea, Republic of, ²Harvard Medical School, Boston, MA

FRIDAY | OCTOBER 9 | 2015

POSTER SESSION Fri 9:30AM - 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 4:00PM - 5:00PM

P-Fr-327

β-sheet Fibrillized Peptide Microparticles as Protein Delivery Vehicles M. M. FETTIS¹, Y. WEI¹, A. RESTUCCIA¹, AND G. HUDALLA¹ 'University of Florida, Gainesville, FL

P-Fr-328

Mixed Mode Interactions In Nuclear Pore Based Hydrogels Tune Hydrophobic Crosslinking And Selective Transport W. CHEN¹, S. GRINDY¹, N. HOLTEN-ANDERSEN¹, AND K. RIBBECK¹ ¹Massachusetts Institute of Technology, Cambridge, MA

P-Fr-329

Electrospinning a Smart Material Polymer for the Development of a Thermo-Responsive Vascular Graft

J. BRENNAN¹ AND L. ZHANG¹ ¹The George Washington University, Washington, DC

P-Fr-330

Effect of Denaturants and Salts on the Thermal Behavior of Elastin-Like Peptides T. JOHNSON¹ AND P. KOBIA¹

¹University of South Florida, Tampa, FL

Track: Biomaterials Engineering Materials:

Biomaterials Design Posters

P-Fr-331

Homogenization Theory For The Prediction Of Solute Diffusion In Macromolecular Solutions

Y. CHEHREGHANIANZABI¹, P. DONOVAN², M. RATHINAM³, AND S. ZUSTIAK⁴ ¹Saint Louis University, Saint Louis, MO, ²University of Maryland Baltimore County, Baltimore, MD, ³University of Maryland Baltimore County, Baltimore, MD, ⁴Saint Louis University, Saint Louis, MO

P-Fr-332

Engineering of Integrin Recognition Sites in Recombinant Human Collagen III to Control Cellular Response

R. QUE¹, S. W. P. CHAN¹, A. JABAIAH¹, R. LATHROP¹, N. DA SILVA¹, AND S-W. WANG¹ ¹University of California, Irvine, Irvine, CA

P-Fr-333

Optimizing Methods of Nanoparticle Coating to Minimize Non-specific Uptake

A. CHIU LAM¹, L. MALDONADO-CAMARGO¹, H. SUN¹, D. DOBBINS¹, B. SUMERLIN¹, AND C. RINALDI¹

¹University of Florida, Gainesville, FL

P-Fr-334

A Novel Method of Transferring Aligned Single-Walled Carbon Nanotubes on a Hydrogel for Nerve Regeneration Applications M. IMANI NEZHAD¹, S. ZUSTIAK¹, AND I. KULJANISHVILI¹

¹Saint Louis University, St Louis, MO

P-Fr-335

A Glass Polyalkenoate Cement Carrier For Bone Morphogenetic Proteins A. Alhalawani¹, O. Rodriguez¹, D. Curran¹, R. Co¹, S. Kieran¹, S. Arshad¹, T. Keenan², A. Wren², G. Crasto³, S. Peel³, and M. Towler¹,⁴

¹Ryerson University, Toronto, ON, Canada, ²Alfred University, Alfred, NY, ³University of Toronto, Toronto, ON, Canada, ⁴Universaity of Malaya, Kuala Lampur, Malaysia

P-Fr-336

Fabrication of Gradient Hydrogel Using the Mechanical Flow

B. KANG¹, S. JANG¹, S. JO¹, Y. JEON¹, AND H. LEE¹ ¹Yonsei University, Seoul, Korea, Republic of

P-Fr-337

Method for Measuring Anticandidal Drug Release from a Rechargeable Denture Material in Human Saliva

A. MALAKHOV¹, J. WEN², B-X. ZHANG¹, A. LIN¹, H. WANG¹, Y. SUN², AND C-K. YEH¹ ¹UTHSCSA, San Antonio, TX, ²University of Massachusetts, Lowell, MA

P-Fr-338

Hydrogel Properties Affect the Rolling and Adhesion of *E. coli* and *S. aureus* K. KOLEWE¹, S. KALASIN¹, N. MAKO¹, M. SANTORE¹, AND J. SCHIFFMAN¹ *'UMass Amherst. Amherst. MA*

P-Fr-339

Design Of PEC Films To Control Degradation

K. DESAI¹, S. MISTRY¹, J. TUTNAUER¹, R. SCHLOSS¹, AND N. LANGRANA¹ ¹Rutgers, The State University of New Jersey, Piscataway, NJ

P-Fr-340

Hydrogels from Poly(ethylene glycol) Reinforced with Aluminum Oxide Nanoparticles

J. M. GRIFFIN¹, C. W. PEAK¹, A. THAKUR¹, L. CROSS¹, AND A. K. GAHARWAR¹ ¹Texas A&M University, College Station, TX

P-Fr-34I

author cancellation

P-Fr-342

Qualitative and Quantitative Analysis of Cell Proliferation Restriction Due to Metal Trace Elements Released from Oxidized Ti Alloys M. SOTO¹, S. RAMOS¹, P. SUNDARAM¹, AND N. DIFFOOT¹

¹University of Puerto Rico Mayaguez Campus, Mayaguez, PR

P-Fr-343

A Composite Hydrogel-Microparticle Platform for Controlled Delivery of BDNF after Spinal Cord Injury

N. Agrawal¹, J. Park¹, S. Xin¹, K. Lee², J. Grau², C. Schmidt¹, Z. Khaing³, and A. Niemerski²

¹University of Florida, Gainesville, FL, ²Texas A&M University, College Station, TX, ³University of Washington, Seattle, WA

P-Fr-344

Isotropic Swelling of Alginate Microcapsules in Aqueous Sodium Chloride is Neutralized at High pH

R. KRISHNAN¹, H-W. TANG¹, K-H. CHAN¹, M. ALEXANDER¹, E. BOTVINICK², AND J. LAKEY^{1,2}

¹University of Calfornia Irvine, Orange, CA, ²University of Calfornia Irvine, Irvine, CA

P-Fr-345

Analysis of Solvent Retention in Electrospun PLLA Fibers and Potential Methods of Solvent Removal

A. D'AMATO¹, N. SCHAUB¹, E. FRANZ¹, J. CARDENAS¹, AND R. GILBERT¹ ¹Rensselaer Polytechnic Institute, Troy, NY

P-Fr-346

Optimising Thermal Decomposition Synthesis to Enhance Energy Dissipation in Magnetic Nanoparticles M. UNNI¹ AND C. RINALDI¹ ¹University of Florida, Gainesville, FL

P-Fr-347

Degradation of Polypropylene Hernia Repair Meshes

D. GIL¹ AND A. VERTEGEL¹ ¹Clemson University, Clemson, SC

P-Fr-348

Nanoengineered Composite Hydrogels as Hemostatic Agents G. LOKHANDE¹, J. R. XAVIER¹, AND A. K. GAHARWAR¹ ¹Texas A&M University, College Station, TX

P = Poster Session
OP = Oral Presentation
Q = Reviewer Choice Award

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM , 4:00PM - 5:00PM

P-Fr-349

A Highly Elastic and Rapidly Photocrosslinkable Hydrogel

Y. ZHANG^{1,2}, R. K. AVERY¹, Q. VALLMAJÓ MARTÍN¹, A. ASSMANN^{1,2,3,4}, A. VEGH^{1,2}, A. MEMIC⁵, B. D. OLSEN⁶, N. ANNABI^{1,2,3,7}, AND A. KHADEMHOSSEINI^{1,2,3} ¹Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, ²Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, ³Wyss Institute for Biologically Inspired Engineering, Boston, MA, ⁴Department of Cardiovascular Surgery and Research Group for Experimental Surgery, Heinrich Heine University, Duesseldorf, Germany,⁵Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia, ⁶Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, ⁷Northeastern University, Boston, MA

P-Fr-350

Highly Elastic Biocompatible Hydrogels Based On Nanocomposite And IPN Structured Alginate and Gelatin

O. JEON¹, R. MARKS¹, D. WOLFSON¹, AND E. ALSBERG¹ ¹Case Western Reserve University, Cleveland, OH

P-Fr-351

Fabrication of Biodegradable Hybrid pH Meter from Red Cabbage Extract S. LUBNA¹, A. APHALE¹, AND P. PATRA¹ ¹University of Bridgeport, Bridgeport, CT

P-Fr-352 DREAM TEAM & CENTER

Evaluation of Alginate Structure for Superior Encapsulation of Pancreatic Islets

A. NAJDAHMADI¹, R. KRISHNAN¹, C. KUMMERFELD¹, J. R. T. LAKEY¹, AND E. BOTVINICK¹ ¹University of California, Irvine, Irvine, CA

Track: Biomaterials Engineering Materials:

Biomaterials for Controlling Cell Environment Posters

P-Fr-353

Influence of Elastic Moduli of Sparse Aligned Fibers on Bone Marrow Stromal Cells for Ligament Tissue Engineering Applications P. THAYER¹, S. VERBRIDGE¹, L. DAHLGREN¹, S. GUELCHER², AND A. GOLDSTEIN¹ ¹Virginia Tech, Blacksburg, VA, ²Vanderbilt University, Nashville, TN

P-Fr-354

Hydrogel-based Multicellular Cancer Spheroid Models for Drug Screening Applications

A. ASHRAF¹, S. ZUSTIAK¹, S. TILSON², A. BRANYI², AND Y. KIM² ¹Saint Louis University, Saint Louis, MO, ²University of Alabama, Tuscaloosa, AL

P-Fr-355

Simultaneous Control of Cellular Gene Activation and Its PEG-based Hydrogel microenvironment via Conventionla LED Light E. A. LEE¹, J. HEO¹, AND N. S. HWANG¹ 'Seoul National University, Seoul, Korea, Republic of

P-Fr-356

Differential Regulation Of Skin Fibroblasts For Their TGF-beta 1-dependent Wound Healing By Biomimetic Nanofibers

¹Stevens Institute of Technology, Hoboken, NJ

P-Fr-357

Effect of Different Surface Modified Gelatin/Fibrinogen Electrospun Scaffolds on Endothelial Cells Growth

D. ARDILA¹, A. ACUNA², E. TAMIMI², T. DOETSCHMAN², AND J. VANDE GEEST² ¹University of Arizona, Tucson, AZ, ²The University of Arizona, Tucson, AZ

P-Fr-358

Bioengineering Brain Matrix Composition to Establish *in vitro* 3D Physiological Brain Cultures

D. SOOD¹, M. TANG-SCHOMER², K. CHWALEK¹, L. BLACK¹, AND D. KAPLAN¹ ¹Tufts University, Medford, MA, ²Connecticut Children's Medical Center, Farmington, CT

P-Fr-359

Magnetic Particles for Controlling Transforming Growth Factor Beta A. MONSALVE¹, A. BOHORQUEZ¹, C. RINALDI¹, AND J. DOBSON¹ ¹University of Florida, Gainesville, FL

P-Fr-360

The Role of Physical Stabilization in Whole Blood Preservation K. WONG¹, R. SANDLIN¹, T. CAREY¹, A. SHANK¹, K. MILLER¹, R. OKLU¹, D. HABER¹, S. MAHESWARAN¹, D. IRIMIA¹, S. STOT¹, AND M. TONER¹ ¹Massachusetts General Hospital, Harvard Medical School, Charlestown, MA

P-Fr-361

Exploiting Shape Memory to Study the Effect of Change in Fiber Alignment on Cancer Cell Motility J. WANG^{1,2} AND J. HENDERSON^{1,2} 'Syracuse University, Syracuse, NY, ²Syracuse Biomaterials Institute, Syracuse, NY

P-Fr-362

Model Protein Adsorption on Poly-N-isopropylacrylamide Hydrogels M. CROSS¹, O. PARK¹, O. AKINTEWE¹, R. TOOMEY¹, G. MATTHEWS¹, AND N. GALLANT¹ 'University of South Florida, Tampa, FL

P-Fr-363

Controlling Soluble Factor Gradients in a 3D Porous Biomaterial System K. STOJKOVA¹, B. AKAR¹,², S. SOMO¹,², AND E. BREY¹,² 'Illinois Institute of Technology, Chicago, IL, ²Edward Hines, Jr. V.A. Hospital, Hines, IL

P-Fr-364

Conditioning MDA-MB-231 Cells to Microenvironmental Cues S. SYED¹, R. BERA¹, S. ZUSTIAK¹, AND N. CASE¹

¹Saint Louis University, Saint Louis, MO

P-Fr-365

Cell Adhesion Strength Modulated by Tuning Matrix Stiffness A. SHARFEDDIN¹, M. CROSS¹, A. VOLINSKY¹, AND N. GALLANT¹

¹University of South Florida, Tampa, FL

P-Fr-366

Cell Alignment Behavior in Response to Dynamic Topographies via Multiphoton 3D-Imprinting M. ALI¹ AND J. SHEAR¹ 'The University of Texas at Austin, Austin, TX

'The University of Texas at Austin, Austin, TX

P-Fr-367

Suspended and Aligned Fiber Networks for Studying Collective Migration and Gap Closure Dynamics

P. SHARMA¹, B. BEHKAM¹, AND A. NAIN¹ ¹Virginia Tech, Blacksburg, VA

P-Fr-368

Effect of Synthetic Vitreous Substitute on Epithelial Tight-Junctions J. DAVIS^{1,2}, N. ZAPATA^{1,2}, AND N. RAVI^{1,2}

¹Washington University in St Louis, St Louis, MO, ²VA Healthcare Systems, St Louis, MO

P-Fr-369

Leaching of Dopant from Doped Poly(dimethylsiloxane) into Liquid Media S. STONE¹ AND B. HOLLINS¹ ¹Louisiana Tech University, Ruston, LA

P-Fr-370

Multifunctional Dynamic Surfaces for Engineering Cell Microenvironments B. XU¹ AND W. SHEN¹ ¹University of Minnesota, Minneapolis, MN

P-Fr-371

The Development of a Facile Polymer Microbead-based Approach to Promoting Angiogenesis in Dense Epithelial Tissue M. SOFMAN¹, P. HAMMOND¹, AND L. GRIFFITH¹ '*MIT, Cambridge, MA*

BMES 2015 169

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 4:00PM - 5:00PM

Track: Biomaterials Engineering Materials:

Biomaterials for Immunoengineering Posters

P-Fr-372

Educating Dendritic Cell Phenotype To Direct Immune Tolerance Towards Multiple Sclerosis-Specific Antigen S. SRINIVASAN¹ AND J. BABENSEE¹ ¹Georgia Institute of Technology, Atlanta, GA

P-Fr-373

Characterization of Indocyanine Green-Loaded Nanocarriers for the Targeting of Atherosclerotic Plaque-Resident Dendritic Cell Subsets S. ALLEN¹ AND E. SCOTT¹ 'Northwestern University, Chicago, IL

P-Fr-374

Barium-gelled Alginate Microcapsules Do Not Exhibit Sodium-induced Isotropic Swelling Noted with Calcium-gelled Microcapsules

R. KRISHNAN¹, A. DALISAY¹, A. FLORES¹, K-H. CHAN², M. ALEXANDER¹, C. FOSTER III¹, E. BOTVINICK³, AND J. LAKEY¹,³

¹University of California Irvine, Orange, CA, ²University of California Irvine, Orange, CA,³University of California Irvine, Irvine, CA

P-Fr-375

Evaluation of Alginate Biocompatibility by Analyzing Macrophage Activation during *In-vitro* Co-culture

G. FIORE¹, R. KRISHNAN¹, G. KUMMERFELD¹, T. LUU², N. NEEL¹, M. ALEXANDER¹, C. FOSTER III¹, W. LIU², AND J. LAKEY¹,²

¹University of Calfornia Irvine, Orange, CA, ²University of Calfornia Irvine, Irvine, CA

P-Fr-376

Evaluating Alginate Hydrogels and Transplant Sites for Encapsulated Islet Transplantation

K. LAUGENOUR¹, G. KUMMERFELD¹, R. KRISHNAN¹, K-H. CHAN¹, M. ALEXANDER¹, C. FOSTER III¹, AND J. LAKEY¹,²

¹University of Calfornia Irvine, Orange, CA, ²University of Calfornia Irvine, Irvine, CA

P-Fr-377

Keratin Biomaterials Modulate Primary Macrophage Polarization In-Vitro

M. WATERS¹, P. VANDEVORD¹, AND M. VAN DYKE¹ ¹Virginia Polytechnic Institute and State University, Blacksburg, VA

P-Fr-378

Effect of Micro and Nano-patterned Topographical Cues on Macrophage Adhesion and Polarization

T. LUU¹, S. GOTT², M. RAO², AND W. LIU¹ ¹University of California, Irvine, Irvine, CA, ²University of California, Riverside, Riverside, CA

P-Fr-379

Lipid Coated Silica Nanoparticles As CpG Adjuvant Carriers For Lymph

Node Targeting M-G. AN¹ AND H. LIU¹ ¹Wayne State University, Detroit, MI

P-Fr-380

Amphiphilic Copolymers Mimic Molecular Chaperone Activity in Cell Injury Repair

R. LEE¹

¹University of Chicago, Chicago, IL

P = Poster Session
OP = Oral Presentation
2 = Reviewer Choice Award

Track: Biomaterials Engineering Materials:

Biomaterials Scaffolds Posters

P-Fr-381

Carbonized Electrospun Fiber in a Three-Dimensional Coordination for Bone Tissue Regeneration

S. RYU¹, C. LEE¹, J. PARK¹, J. S. LEE¹, S. KANG¹, Y. D. SEO¹, J. JANG¹, AND B-S. KIM¹ ¹Seoul National University, Seoul, Korea, Republic of

P-Fr-382

Biphasic Janus-Type Nanofibers for Tissue Engineering Scaffolds

A. KHANG¹, A. WOODS¹, S. SPEARS¹, P. B. DEVISETTY RAVISHANKAR¹, AND K. BALACHANDRAN¹

¹University of Arkansas, Fayetteville, AR

P-Fr-383

Drug Testing on Dielectrophoresis Induced Cell Assembly in Hydrogel Medium

M. GOEL¹, S. SINGH¹, AND S. GUPTA¹ ¹Indian Institute of Technology, New Delhi, India

P-Fr-384

Stem Cell Delivery from Poly(ethylene glycol) Dimethacrylate Hydrogels - A Band-Aid Approach

R. ASAWA¹, J. MCGEE¹, D. SCHMITT¹, H. BACA¹, M. WATRY¹, AND D. DOROSKI¹ ¹Franciscan University of Steubenville, Steubenville, OH

P-Fr-385

Fabrication Of Biomimetic Vascular Scaffolds For 3D Tissue Constructs Using Vascular Corrosion Casts As A Template J. HULING¹, I. K. KO¹, A. ATALA¹, AND J. YOO¹

¹Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC

P-Fr-386

Biodegradable And Biocompatible Pegylated Poly(Ester Amide) Elastomers With Increased Processability

Y. XUE¹, T. YATSENKO¹, A. PATEL¹, V. SANT¹, AND S. SANT¹ ¹University of Pittsburgh, Pittsburgh, PA

P-Fr-387 DREAM TEAM & CENTER

Investigating Epithelial-Mesenchymal Transition Using Bioactive, Microfibrous Scaffolds

A. RAVIKRISHNAN¹, T. OZDEMIR¹, Y. HAO¹, X. JIA¹, S. PRADHAN-BHATT^{1,2}, D. A. HARRINGTON³, R. L. WITT⁴, AND M. C. FARACH-CARSON¹,³ ¹University of Delaware, Newark, DE, ²Center for Translational Cancer Research, Helen *F.* Graham Cancer Center & Research Institute, Newark, DE, ³Rice University, Houston, *TX*,⁴Thomas Jefferson University, Philadelphia, PA

P-Fr-388

Calcium-accumulated Methacrylate-chondroitin Sulfate-based Hydrogels for Bone Scaffold

H. KIM¹ AND N. HWANG¹ ¹Seoul National University, Seoul, Korea, Republic of

P-Fr-389

Transient Mesenchymal Stem Cell Adhesion To Poly(ethylene glycol) Dimethacrylate Hydrogels

J. MCGEE¹, R. ASAWA¹, H. BACA¹, D. SCHMITT¹, M. WATRY¹, AND D. DOROSKI¹ ¹Franciscan University of Steubenville, Steubenville, OH

P-Fr-390

Development of PLLA Perforated Hollow Fiber Scaffold for Cartilage Regeneration by Electrospinning

Y. MORITA¹, R. NARISADA¹, K. TANAKA¹, T. KATAYAMA¹, AND E. NAKAMACHI¹ ¹Doshisha University, Kyotanabe, Japan

P-Fr-391

Fabrication And Characterization Of An Electrospun PCL And Soy Lecithin Composite Material

J. GOOTEE¹, L. PARR¹, D. GRANT¹, AND S. GRANT¹ ¹University of Missouri, Columbia, MO

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM , 4:00PM - 5:00PM

P-Fr-392

Mechanical Characterization of 3D Twist-Braid Scaffolds for Ligament Replacement

S. MADHAVARAPU¹, R. RAO¹, E. FLEISHER¹, Y. YANKANNAH¹, AND J. FREEMAN¹ ¹Rutgers University, Piscataway, NJ

P-Fr-393

Fabrication of Bioactive Poly(propylene carbonate)-Starch Blend for Biomedical Applications

I. MANAVITEHRANI¹, A. FATHI¹, AND F. DEHGHANI¹ ¹The University of Sydney, Sydney, Australia

P-Fr-394

Relationships between Porosity and Mass Transport and Mechanical Properties of Porous Polyurethane Scaffolds

Y-F, WANG¹, C. M. BARRERA¹, E. A. DAUER¹, W. GU², AND C-Y. C. HUANG¹ ¹Department of Biomedical Engineering, University of Miami, Coral Gables, FL, ²Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL

P-Fr-395

Engineering Microribbon-like Hydrogels with Diverse Biological Cues to Form 3D Scaffolds as Stem Cell Niche

X. TONG¹, C. GEGG¹, AND F. YANG¹ Stanford University, Stanford, CA

P-Fr-396

Development of Elastin-like Polyeptide Based Hydrogel Using Photoreactive Amino Acid Analogs A. LEONARD¹ AND P. KORIA¹

¹University of South Florida, Tampa, FL

P-Fr-397

μ -Particle Scaffolds Support Osteogenic Differentiation

R. CLOHESSY¹, T. ARAPOVIC¹, B. D. BOYAN¹,², AND Z. SCHWARTZ¹,³ ¹Virginia Commonwealth University, Richmond, VA, ²Georgia Institute of Technology, Atlanta, GA, ³University of Texas Health Sciences Center San Antonio, San Antonio, TX

P-Fr-398

Fabrication of Silk Fibroin Cryogel Scaffolds with Osteoconductive Additives for Bone Tissue Regeneration P. KADAKIA¹, E. JAIN¹, K. HIXON¹, AND S. SELL¹

P. KADAKIA¹, E. JAIN¹, K. HIXON¹, AND S. SELL¹ ¹Saint Louis University, St Louis, MO

P-Fr-399

Modular Assembly Approach to Engineer Prevascularized Large 3D Tissue Constructs

J. RIESBERG¹ AND W. SHEN¹ ¹University of Minnesota, Minneapolis, MN

P-Fr-400

Concentrically and Axially Graded Hybrid Polymeric Scaffold A. NAJARZADEH¹ AND D. PULEO¹ ¹University of Kentucky, Lexington, KY

P-Fr-401

Biocompatibility Investigation of Near infrared Light and Gold Nanorodsassisted Photothermal Hydrogel Synthesis for Cell Encapsulation H. LEE¹, S. CHUNG¹, S. KIM¹, AND J. LEE¹ 'GIST, Gwanaju, Korea, Republic of

P-Fr-402

Biodegradable DNA-Enabled Poly(ethylene glycol) Hydrogels Prepared by Copper-Free Click Chemistry

K. BARKER¹, S. K. RASTOGI¹, W. BRITTAIN¹, AND T. BETANCOURT¹ ¹Texas State University, San Marcos, TX

P-Fr-403

Cancer Hyperthermia Studies: On the Aqueous Structure and

Radiofrequency-induced Heating Properties of a Water-soluble [60]fullerene Y. MACKEYEV¹, A. MUTO², M. CHENEY¹,³, R. SERDA³, S. CURLEY¹,³, AND L. WILSON¹ ¹Rice University, Houston, TX, ²Hitachi High Technologies America, Clarksburg, MD, ³Baylor College of Medicine, Houston, TX

P-Fr-404

Electrospun Loose-fiber Polyurethane Scaffolds for Tissue Engineering Applications

J. WU¹, B. BRAZILE², J. LIAO², AND Y. HONG¹ ¹University of Texas at Arlington, Arlington, TX, ²Mississippi State University, Starkville, MS

P-Fr-405

Muscle Regenerative Performance of Extracellular Matrix Scaffolds J. KIM¹, B. KASUKONIS¹, AND J. WOLCHOK¹ ¹University of Arkansas, Fayetteville, AR

P-Fr-406

Osteogenic Differentiation of MC3T3s on Carbon Fiber- and Barium Sulfate-Modified PEEK

S. THEVUTHASAN¹, B. TORSTRICK¹, N. EVANS¹, H. STEVENS¹, K. GALL¹, AND R. GULDBERG¹ ¹Georgia Institute of Technology, Atlanta, GA

P-Fr-407

PEGylated Fibrinogen Electrospun Scaffolds for Cardiomyocyte Culture A. ALLEN¹, A. DUGGER¹, L. SUGGES¹, AND J. ZOLDAN¹ *'University of Texas at Austin, Austin, TX*

P-Fr-408

Fabrication of Growth Factors Immobilized Electrospun Gelatin Nanofibers for Tissue Engineering

H. R. LEE¹, S-H. LEE², W. J. KIM³, I-K. PARK⁴, AND H. PARK¹ ¹Chung-Ang University, Seoul, Korea, Republic of, ²CHA University, Gyeonggi-do, Korea, Republic of, ³POSTECH, Pohang, Korea, Republic of, ⁴Chon-nam National University Medical School, Gwangju, Korea, Republic of

P-Fr-409

Differentiation Capacity of Human Mesenchymal Stem Cell into Discogenic Phenotype using Alginates and PCL Fibers

YM. KANG¹, J-H. KIM², YM. KOOK², S-H. MOON¹,², AND W-G. GOH² ¹Yonsie university, Seoul, Korea, Republic of, ²Yonsei University, Seoul, Korea, Republic of

P-Fr-410

Mechanical Characterization of Riboflavin Crosslinked Collagen Hydrogels B. BORDE¹ AND L. BONASSAR¹ ⁷Cornell University, Ithaca, NY

P-Fr-411

Facile Method for Fabricating a Uniformly Patterned and Porous Nanofibrous Scaffold for Guided Bone Regeneration

M. SIM¹, D-J. LIM², AND H. PARK¹ ¹Chung-Ang University, Seoul, Korea, Republic of, ²U of Alabama at Birmingham, Birmingham, AL

P-Fr-412

Synthesizing A Collagen And Chitosan Nanoparticle "Brain Patch" For Traumatic Brain Injury

F. LEMIRE-BAETEN¹, C. ANGPRASEUTH¹, A. S. BLEE-GOLDMAN¹, M. SPANGLER¹, T. DONNELLY¹, AND E. ORWIN¹ ¹Harvey Mudd College, Claremont, CA

P-Fr-413

Directing Osteoblast Differentiation and Mineralization Using PEGconjugated Proteins Derived from Seashell and Bone K. WHITE¹ AND R. OLABISI¹

¹Rutgers University, Piscataway, NJ

P-Fr-414

Injectable Bbiomimetic Polymer for Optic Nerve Regeneration M. LAUGHTER¹, D. AMMAR¹, AND D. PARK¹ ¹University of Colorado Denver, Aurora, CO

P-Fr-415

The Use of a Hierarchically Layered Biodegradable Tissue Scaffold For Wound Healing

S. KALABA¹, Z. XIE¹, AND J. YANG¹ ¹The Pennsylvania State University, State College, PA

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 4:00PM - 5:00PM

P-Fr-416 🙎

Harnessing Apoptosis for Enhanced Tissue Preservation during Decellularization

C. CORNELISON^{1,2}, J. PARK², R. WACHS², S. WELLMAN², AND C. SCHMIDT² ¹University of Texas at Austin, Austin, TX, ²University of Florida, Gainesville, FL

P-Fr-417

Injectable Microporous Scaffold Diminishes Immune Response and Scar Formation

D. GRIFFIN¹, W. WEAVER¹, P. SCUMPIA¹, D. DICARLO¹, AND T. SEGURA¹ ¹UC Los Angeles, Los Angeles, CA

P-Fr-418

Synthesis of a Biomimetic Reverse Thermal Gel for Neural Tissue Engineering J. BARDILL¹

¹University of Colorado Denver Anschutz Medical, Aurora, CO

Track: Biomechanics, Biomaterials Engineering Materials:

Biomechanics of Biomaterials Posters

P-Fr-419

Long-range Communication between Cells in Fibrous Matrices Enabled by Tension-driven Alignment of Fibers

V. SHENOY¹, H. WANG¹, N. ABHILASH¹, B. BAKER², B. TRAPPMANN², C. CHEN², AND R. WELLS¹

¹University of Pennsylvania, Philadelphia, PA, ²Boston University, Boston, MA

P-Fr-420

Osteogenesis Imperfecta Causes Reduced Intrafibrillar Mineralization and Disengagement of Mineral Phase in Load Bearing in Bone

J. SAMUEL¹, N. FAN¹, AND X. WANG¹ ¹University of Texas at San Antonio, San Antonio, TX

P-Fr-421

Screw Pull Out Under Cyclic Fatigue Loading in Synthetic and Cadaveric Bone

M. BAUMANN¹ AND A. LITSKY¹ ¹Ohio State University, Columbus, OH

P-Fr-422

Analyzing the Link Between F-Actin Arrangement and Stiffness on a Subcellular Level in Undifferentiated Mesenchymal Stem Cells J. KAZLOW^{1,2}, T. BONGIORNO¹, AND T. SULCHEK^{1,2}

¹Georgia Institute of Technology, Atlanta, GA, ²Emory University, Atlanta, GA

P-Fr-423

Creep Properties of Swine Uterosacral and Cardinal Ligaments T. TAN¹, N. CHOLEWA¹, S. CASE¹, AND R. DE VITA¹

¹Virginia Tech, Blacksburg, VA

P-Fr-424

Theoretical Effect of Intracortical Porosity on Long Bone Bending Stiffness, Strength, and Toughness

J. COTTON¹ ¹Ohio University, Athens, OH

P-Fr-425

The Impact of Gold Nanoparticles on the Biomechanical Properties and Function of Endothelial Cells

Y. LIU^{1,2} ¹Binghamton University, Binghamton, NY, ²Binghamton University, Binghamton, NY

P-Fr-426

Measuring Hand Forces During Bone Milling to Improve Haptic Feedback of an Otologic Surgical Simulator B. A. NGUYEN¹ AND A. LITSKY¹

¹Ohio State University, Columbus, OH

P = Poster Session
OP = Oral Presentation
Q = Reviewer Choice Award

P-Fr-427

A Computational Study of Cutting Procedure for Liver Tissue

Y. SHI¹, H. TANG², L. SU², AND Y. FENG² ¹Dassault Systemes Simulia Corp, Johnston, RI, ²Soochow University, Suzhou, China, People's Republic of

Track: Biomechanics, Biomedical Imaging and Optics

Imaging:

Application of Imaging Methods to Biomechanics Posters

P-Fr-428

Non-invasive Biomechanical Property Characterization of Hydrogels using Ultrasound Techniques X. HONG¹, Y-S. HSIAO¹, J. P. STEGEMANN¹, AND C. X. DENG¹

¹University of Michigan, Ann Arbor, MI

P-Fr-429

Mechanically-Induced Fiber Remodeling In the Vitreous Body N. SHAH¹ 'Washington University in St Louis, St Louis, MO

P-Fr-430

Cells Have Feelings too: Microrheology in 3D Hydrogels Reveals Dynamics that Determine Cell Fate

B. H. BLEHM¹, A. DEVINE¹, J. R. STAUNTON¹, AND K. TANNER¹ ¹NIH, Bethesda, MD

P-Fr-43 |

Author Cancellation

P-Fr-432

Mathematical Modeling of Sperm Swimming Patterns in the Mosquito Culex pipiens

C. DE LOS SANTOS¹, R. CARDULLO¹, AND C. THALER¹ ¹University of California, Riverside, Riverside, CA

Track: Cardiovascular Engineering, Biomedical Imaging and Optics

Imaging:

Cardiovascular Imaging Posters

P-Fr-433

Myoarchitectural Basis of Hypertrophic Cardiomyopathy E. TAYLOR¹, M. HOFFMAN¹, D. BAREFIELD², G. ANINWENE¹, A. ABRISHAMCHI¹, T. LYNCH², S. GOVINDAN², S. SADAYAPPAN², AND R. GILBERT¹ 'Northeastern University, Boston, MA, ²Loyola University of Chicago, Maywood, IL

P-Fr-434

Kinematic Decomposition Of Right Ventricular Motion D. SAHU¹, C. MAROULES², R. PESHOCK², AND M. SACKS¹ ¹The University of Texas at Austin, Austin, TX, ²The University of Texas Southwestern Medical

Center at Dallas, Dallas, TX

P-Fr-435

Optical Mapping as a Tool for the Closed-Loop Control of Cardiac Electrical Restitution K. KULKARNI¹ AND E. TOLKACHEVA¹

¹University of Minnesota, Minneapolis, MN

P-Fr-436

Atria Models Enabled By OCT Tissue Characterization

T. LYE¹ AND C. HENDON¹ ¹Columbia University, New York, NY

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM , 4:00PM - 5:00PM

P-Fr-437

Elastin Fiber Network in Porcine Epicardium: 3D Visualization and Ouantification

X. SHI¹, D. LEE¹, B. BRAZILE¹, S. PATNAIK¹, J. COOLEY¹, R. PRABHU¹, H. RHEE¹, L. WILLIAMS¹, S. ZHANG¹, AND J. LIAO¹ ¹Mississippi State University, Mississippi State, MS

P-Fr-438

Prospective Image Gating Acquisition for Non-Invasive Live Imaging of Mid-Late Stage Avian Cardiogensis

C. GREGG¹, J. PALACIOS¹, W. ZIPFEL¹, AND J. BUTCHER¹ ¹Cornell University, Ithaca, NY

Track: Cancer Technologies, Biomedical Imaging and Optics

Imaging:

Imaging Strategies in Cancer Posters

P-Fr-439

Contrast-Enhanced X-ray Detection of Microcalcifications in Radiographically Dense Mammary Tissues using Targeted Gold Nanoparticles

L. COLE¹, T. VARGO-GOGOLA², AND R. ROEDER¹ ¹University of Notre Dame, Notre Dame, IN, ²Indiana University School of Medicine - South Bend, South Bend, IN

P-Fr-440

Developing T Cell Targeted Peptides for Monitoring Immune Response in Melanoma Immunotherapy

D. BAUKNIGHT¹, A. BUCKNER¹, L. BRINTON¹, T. BULLOCK¹, AND K. KELLY¹ ¹University of Virginia, Charlottesville, VA

Track: Translational Biomedical Engineering, Biomedical Imaging and Optics

Imaging:

Imaging Technologies in Clinical Translation Posters

P-Fr-441 🙎

Diffusion Changes in Cerebellar White Matter Microstructure Related to Head Impact Exposure in a Season of High School Varsity Football

D. Sharma¹, N. Bahrami¹, J. STITZEL², J. URBAN², A. POWERS¹, C. WHITLOW¹, and J. MALDJIAN¹

¹Wake Forest University School of Medicine, Winston-salem, NC, ²Wake Forest University School of Biomedical Engineering, Winston-salem, NC

P-Fr-442

Ultrasound Elastography Probe Design for Rotator Cuff Diagnosis

W. HARLEY¹, E. KOWAL¹, K. SHOWERS¹, C. CORBETT¹, H. SCRUGGS¹, G. HEFTER¹, M. MARLOWE¹, N. MATEL¹, D. DEAN¹, AND D. KWARTOWITZ¹ ¹Clemson University, Clemson, SC

Track: Biomedical Imaging and Optics Imaging: MRI Posters

P-Fr-443

Optimization of Magnetic Resonance Angiography for Applications in Studying Peripheral Artery Disease A. CAO¹ AND J. GREVE¹

¹University of Michigan, Ann Arbor, MI

P-Fr-444

Effects of Co-Planar Shielding of Array Elements for High Field MRI M. WILCOX¹, J. RISPOLI¹, AND M. MCDOUGALL¹ ¹Texas A&M University, College Station, TX

P-Fr-445

Quantification of White Matter Hyperintensity and Cerebral Blood Flow in Older Adults with Low or High Risk for Cerebrovascular Disease using MRI A. BAHRANI',², C. SMITH', D. POWELL', W. KONG', E. JOHNSON', Y. SHANG', C. HUANG', A. RAYAPATI', Y. JIANG', R. KRYSCIO', P. NELSON', F. SCHMITT', G. JICHA', AND G. YU' 'University of Kentucky, Lexington, KY, ²University of Baghdad, Baghdad, Irag

P-Fr-446

Effect of Blood-Brain Barrier Leakiness on 9L Pontine Glioma Drug Delivery

K. N. MAGDOOM¹, F. DELGADO¹, A. C. BOHORQUEZ¹, P. R. CARNEY¹, C. RINALDI¹, T. H. MARECI¹, AND M. SARNTINORANONT¹ ¹University of Florida, Gainesville, FL

P-Fr-447

Measuring Magnetic Field Changes Induced In A Hydrogel Using Low Injection Currents With Magnetic Resonance Electrical Impedance Tomography.

A. K. KASINADHUNI¹, R. SADLEIR², C. ANDERSON¹, P. CARNEY¹, AND T. MARECI¹ ¹University of Florida, Gainesville, FL, ²Arizona State University, Tempe, AZ

P-Fr-448

Anatomical Substrate of Fatigue in Parkinson's Disease Q. ZHAO¹, H. HUANG¹, J. TANNER¹, C. PRICE¹, M. DING¹, AND B. KLUGER² ¹University of Florida, GAINESVILLE, FL, ²University of Colorado, Aurora, CO

P-Fr-449

Monte Carlo Simulation of Changes in Diffusion Related to Different Pathologies at Cellular Level after Traumatic Brain Injury

J. ZHONG¹,², M. LIN¹, AND H. HE¹ ¹Zhejiang University, Hangzhou, China, People's Republic of, ²University of Rochester, Rochester, NY

P-Fr-450

Fibrin Glue Does Not Increase Drug Retention in the Spine: A Drug Delivery Study Using MRI

M. GIERS¹, K. CRONK², Q. LUI¹, M. PREUL¹, AND N. THEODORE¹ ¹St. Joseph's Hospital and Medical Center, Phoenix, AZ, ²New England Neurological Associates, PC, Lawrence, MA

P-Fr-451

Ex-vivo Quantitative Evaluation of Catheter Related Thrombophlebitis in a Rabbit Model Using MRI

D. WEISS¹, O. ROTMAN¹, AND S. EINAV² ¹Tel Aviv University, Tel Aviv, Israel, ²Stony Brook University, Stony Brook, NY

Track: Biomedical Imaging and Optics Imaging:

Optical Posters

P-Fr-452

Automated Three Dimensional Segmentation Of Atrial Optical Coherence Tomography Images

Y. GAN¹, D. TSAY², C. FUNG¹, C. C. MARBOE³, AND C. P. HENDON¹ ¹Columbia University, NEW YORK, NY, ²Columbia NY Presbyterian Hospital, NEW YORK, NY,³Columbia University Medical Center, NEW YORK, NY

P-Fr-453

Inverse Spectroscopic Optical Coherence Tomography Study of ECM Interactions in Cancer

G. SPICER¹, J. YI¹, S. AZARIN², S. YOUNG¹, J. WINKELMANN¹, A. EID¹, R. LIU¹, L. SHEA³, AND V. BACKMAN¹

¹Northwestern University, Evanston, IL, ²University of Minnesota, Minneapolis, MN,³University of Michigan, Ann Arbor, MI

P-Fr-454

Detectable Nanoscale Alterations for Prediction of Future Risk of Hepatocellular Carcinoma

A. STAWARZ¹, R. KALMAN², H. SUBRAMANIAN¹, D. ZHANG¹, H. ROY², AND V. BACKMAN¹ ¹Northwestern University, Evanston, IL, ²Boston Medical Center, Boston, MA

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 4:00PM - 5:00PM

P-Fr-455

Speckle Contrast Diffuse Correlation Tomography for Flow Contrast Imaging of Turbid Media

D. IRWIN¹, C. HUANG¹, Y. LIN¹, Y. SHANG¹, L. HE¹, W. KONG¹, J. LUO¹, AND G. YU¹ ¹University of Kentucky, Lexington, KY

P-Fr-456

Optimizing Gold-Silica Nanostars for Multiplexed Surface Enhanced Resonance Raman Spectroscopy Mapping

M. FENN¹, N. ROKI¹, AND J. GOMEZ-FERIA FERREIRO¹ ¹Florida Institute of Technology, Melbourne, FL

P-Fr-457

Photodynamic Therapy in Cutaneous Squamous Cell Carcinoma

J. MILLER^{1,2}, R. GILSON^{1,2}, R. TANG¹, AND S. ACHILEFU^{1,2} ¹Washington University School of Medicine, St. Louis, MO, ²Washington University in St. Louis, St. Louis, MO

P-Fr-458

Non-invasive Quantification of Changes in Cerebral Hemoglobin and Cytochrome Oxidase Induced by Low-level Laser Therapy for Psychiatric Disorders

F. BADAMI¹, T. FENGHUA¹, S. HASE¹, AND H. LIU¹ ¹University of Texas at Arlington, Arlington, TX

P-Fr-459

Bio-inspired Fluorescent Dipeptide Nanoparticles for Label-free Imaging of Tumor Cells and Real-time Monitoring of Drug Release Z. FAN¹, L. SUN¹, Y. HUANG¹, Y. WANG¹, AND M. ZHANG¹ ¹Ohio State University, Columbus, OH

P-Fr-460

$\mu Tsunamis: An Optical Platform For High-Throughput Screening Of Cellular Mechanotransduction$

J. LUO¹, J. COMPTON¹, H. MA¹, E. BOTVINICK¹, AND V. VENUGOPALAN¹ ¹University of California, Irvine, Irvine, CA

P-Fr-461

Hyperspectral Microscopy of Near-Infrared Fluorescence Enables 17-Color Carbon Nanotube Imaging

D. ROXBURY¹, P. JENA¹, R. WILLIAMS¹, B. ENYEDI¹, P. NIETHAMMER¹,², S. MARCET³, M. VERHAEGEN³, S. BLAIS-OUELLETTE³, AND D. HELLER¹,² ¹Memorial Sloan Kettering Cancer Center, New York, NY, ²Weill Cornell Medical College, New York, NY, ³Photon Etc., Montreal, QC, Canada

P-Fr-462

Potential of Optical Coherence Tomography for Early Detection of Meniscal Pathology Relevant to Osteoarthritis

C. DUAN¹, A. DUNLAP¹, L. GOOSSEN¹, M. WILSON¹, M. WINTER¹, H. XIE¹, AND A. POZZI¹ ¹University of Florida, Gainesville, FL

P-Fr-463

Label Free Detection of Oxidative Stress by Fluorescence Lifetime Imaging Microscopy

R. DATTA¹ AND E. GRATTON¹ ¹University of California, irvine, Irvine, CA

P-Fr-464

In Vivo Integrated Imaging Support System V. VOZIYANOV¹ AND T. MURRAY¹ ¹Louisiana Tech University, Ruston, LA

P-Fr-465

Optimization Framework for Time-Gate Selection in FLIM-FRET Imaging T. OMER¹, X. INTES¹, AND J. HAHN¹ ¹Rensselaer Polytechnic Institute, Troy, NY

P-Fr-466

Label-free Quantification Of Neuronal Structural Changes By Optical Scatter Image Analysis

K. PIERRE¹, I. AHMED¹, AND N. BOUSTANY¹ ¹Rutgers University, Piscataway, NJ

P = Poster Session
OP = Oral Presentation
= Reviewer Choice Award

P-Fr-467 DREAM TEAM & CENTER

Two-Photon Excited Fluorescence Imaging of Heart Valves Non-Invasively Identifies Calcific Nodules

L. BAUGH¹, K. QUINN¹, G. HUGGINS², P. HINDS², I. GEORGAKOUDI¹, AND L. BLACK¹ ¹Tufts University, Medford, MA, ²Tufts Medical Center, Boston, MA

P-Fr-468

Combining Bayesian and Single-Emitter Localization (BaSEL) to Reveal T-cell Membrane Domains

Y. HU¹, Z. KATZ¹, B. LILLEMEIER¹, AND H. CANG¹ ¹Salk Institute, La Jolla, CA

P-Fr-469

Comparing Fluorescein Angiography and OCT Angiography

W. LIU¹, H. LI¹, R. SHAH², R. LINSENMEIER¹, A. FAVZI², AND H. ZHANG¹ ¹Northwestern University, Evanston, IL, ²Northwestern University, Chicago, IL

P-Fr-470

Alzheimer 's Disease Diagnosis with Resonance Raman Spectroscopy

L. SHI¹, C-H. LIU¹, S. BOYDSTON-WHITE², A. RODRIGUEZ-CONTRERAS¹, AND R. ALFANO¹ ¹Institute for Ultrafast Spectroscopy and Lasers in CCNY, New York, NY, ²Borough of Manhattan Community College, New York, NY

P-Fr-471

Spatial Frequency Domain Imaging for Noninvasive Assessment of Tissue Hemodynamic Properties

C. SAHYOUN¹ AND M. PIERCE¹ ¹Rutgers, The State University of New Jersey, Piscataway, NJ

P-Fr-472

Localization Accuracy in Fluorescence Microscopy based on Experimentally Acquired Image Sets

A. TAHMASBI¹,², E. S. WARD², AND R. J. OBER¹,² ¹Texas A&M University, College Station, TX, ²Texas A&M Health Science Center, College Station, TX

P-Fr-473

A Cost-Effective Fluorescence Mini-Microscope for Biomedical Applications

Y. S. ZHANG¹, J. RIBAS¹, A. NADHMAN¹, J. ALEMAN¹, S. SELIMOVIC¹, T. WANG¹, V. MANOHARAN¹, S-R. SHIN¹, A. DAMILANO¹, M. R. DOKMECI¹, AND A. KHADEMHOSSEINI¹ ¹Harvard Medical School, Cambridge, MA

P-Fr-474

Development of an Optical System for Rapid Ureter Detection During Surgical Procedures

S. SHUKAIR¹, A. CHATURVEDI¹, K. MILLER², H. SUBRAMANIAN¹, AND J. GUNN¹ ¹Briteseed, LLC, Chicago, IL, ²Northwestern University Feinberg School of Medicine, Chicago, IL

P-Fr-475

Dispersive Raman Spectroscopy to Assess Protein Incorporation and Cellular Remodeling of Tissue Engineered Vascular Grafts K. KERNEY', A. THEUS', M. FENN', AND C. BASHUR'

¹Florida Institue of Technology, Melbourne, FL

P-Fr-476

Spatiotemporal Monitoring of Fibrosis Using Spatial Frequency Domain Imaging

J. Y. HSIEH^{1,2}, R. WILSON^{1,3}, G. KENNEDY^{1,3}, B. TROMBERG^{1,3}, AND W. LIU^{1,2} ¹University of California, Irvine, Irvine, CA, ²The Edwards Lifesciences Center for Advanced Cardiovascular Technology, Irvine, CA, ³Beckman Laser Institute, Irvine, CA

P-Fr-477

3D Printed Miniaturized System for Multispectral Tissue Fluorescence Lifetime Measurements

L. ZOU¹, M. MAHMOUD¹, M. FAHS¹, F. CHOUGHARI¹, K. DUAN¹, AND J. LO¹ ¹University of Michigan-Dearborn, dearborn, MI

P-Fr-478

Efficiency Test Shows Successful Transduction Of Murine MSC With Lentiviral Vector, Making A Viable Fluorescent Tracking Method W. HACKETT¹, M. LOPEZ², V. PATEL², C. RUBIN², AND M. E. CHAN² 'Stony Brook University, Greenlawn, NY, ²Stony Brook University, Stony Brook, NY

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM , 4:00PM - 5:00PM

P-Fr-479

Ultrahigh Resolution Optical Coherence Microscopy: Principle and Application

S. MA¹, R. MARKWALD², T. BORG², R. RUNYAN³, AND B. GAO¹ ¹Clemson University, Clemson, SC, ²Medical university of south carolina, Charleston, SC,³University of Arizona, Tucson, AZ

P-Fr-480

Simulating Measurement Error in Ratiometric Spectral-FRET Imaging P. ARSENOVIC¹ AND D. CONWAY²

Virginia Commonwealth University, richmond, VA, ²Virginia Commonwealth University, Richmond, VA

P-Fr-481

Texture Based Similarity Measure for Multi-modal Co-registration

L. LI¹, M. RUSU¹, AND A. MADAHBSHI¹ ¹Case Western Reserve University, Cleveland, OH

P-Fr-482

Nono-Scale Three Dimensional Mass Density Autocorrelation Function Reconstruction by Correlative Scanning Transmission Electron Microscopy and Atomic Force Microscopy

Y. LI¹, D. ZHANG¹, D. DAMANIA¹, K. HUJSAK¹, I. CAPOGLU², E. ROTH¹, R. BLEHER¹, J. WU¹, V. DRAVID¹, AND V. BACKMAN¹

¹Northwestern University, Evanston, IL, ²Hallibrton Co., Houston, TX

P-Fr-483

Polymeric Nanoparticles as Dual-Imaging Probes for Cancer Management

J. MENON¹,², P. JADEJA¹,², P. TAMBE¹,², D. THAKORE¹,², D. NGUYEN¹,², S. ZHANG², M. TAKAHASHI², J. YANG³, AND K. NGUYEN¹,²

¹University of Texas at Arlington, Arlington, TX, ²UT Southwestern Medical Center, Dallas, TX,³Pennsylvania State University, University Park, PA

P-Fr-484

Nonlinear Hyperspectral Mid-infared Spectroscopy and Imaging A. MERTIRI¹, A. TOTACHAWATTANA¹, M. SANDER¹, M. HONG¹, AND S. ERRAMILLI¹ ¹Boston University, Boston, MA

Track: Biomedical Imaging and Optics Imaging: PET/SPECT/CT Posters

P-Fr-485

CUDA Based Spectral CT Simulation

R. LIU¹ AND H. YU²

VTFWFU School of Biomedical Engineering and Sciences, Wake Forest University Health Sciences, Lowell, MA, ²Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA

P-Fr-486

Investigating Non-Invasive Methods for the Full Quantification of [11C] ABP-688 PET Data

S. ROSSANO¹, F. ZANDERIGO², AND C. DELORENZO¹ ¹Stony Brook University, Stony Brook, NY, ²Columbia University, New York, NY

P-Fr-487

Rat Brain Tumor Imaged by Phase-Contrast X-Ray CT

T.T. LWIN¹,², A. YONEYAMA³, K. TERAZAKI², M. OHBU¹,², H. MARUYAMA¹,², K. HYODO⁴, AND T. TAKEDA¹,²

¹Kitasato University, Sagamihara, Japan, ²Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan, ³Central Research Laboratory, Hitachi Ltd, Hatoyama, Japan,⁴High Energy Accelerator Research Organization, Tsukuba, Japan

Track: Biomedical Imaging and Optics Imaging:

Ultrasound Posters

P-Fr-488

Angll Infusion Does Not Create Aneurysms in ApoE-Deficient Rats A. N. BLAIZE¹, A. YRINEO¹, S. BOPPANA¹, S-C. CHANG¹, S. GORMAN¹, A. SACOPULOS¹, AND C. GOERGEN¹ ¹Purdue University, West Lafayette, IN

P-Fr-489

High-Resolution Harmonic Motion Imaging (HR-HMI) For Tissue Biomechanical Property Characterization

X. QIAN¹, T. MA¹, C. T. CHIU¹, M. YU¹, H. JUNG¹, Y. TUNG¹, K. SHUNG¹, AND Q. ZHOU¹ ¹University of Southern California, Los Angeles, CA

P-Fr-490

Limitations of Speed of Sound Reconstruction in Ultrasound Limited Angle Transmission Tomography

R. JINTAMETHASAWAT¹, W-M. LEE¹, O. KRIPFGANS¹, M. GOODSITT¹, AND P. CARSON¹ ¹University of Michigan, Ann Arbor, Ann Arbor, MI

P-Fr-491

Improved Method to Quantify Perfusion and Assess Therapy in Peripheral Arterial Disease Mouse Models

A. BECKER¹ AND B. FRENCH¹ ¹University of Virginia, Charlottesville, VA

P-Fr-492

Enhancement of Bone Surfaces in Ultrasound Images for Femoroacetabular Impingement (FAI) Surgery

M. NASER¹, C. GATT², AND I. HACIHALILOGLU¹ ¹Rutgers University, Piscataway, NJ, ²Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ

P-Fr-493

Elastography Reconstruction from Ultrasound Brightness Mode Imaging Using Hierarchy Recursive Tracking

M. TAREK¹ AND A. MAHMOUD¹ ¹Cairo University, Giza, Egypt

Track: Biomedical Imaging and Optics Imaging:

Image Processing and Analysis Posters

P-Fr-494

Sensitivity of Semi-Automated Segmentation Algorithms for Upper Airway 3D Modeling

E. SU¹, D. PROTSENKO¹, T. NGUYEN¹, AND B. WONG¹ ¹University of California, Irvine, Irvine, CA

P-Fr-495

Decrease in Functional Brain Connectivity Following Orthopedic Surgery

H. HUANG¹, P. NGUYEN², J. TANNER², N. SCHWAB², H. PARVATANENI³, M. RICE⁴, I. SCHMALFUSS⁵, A. HORGAS⁶, T. MARECI⁷, C. PRICE², AND M. DING¹ ¹Department of Biomedical Engineering, University of Florida, Gainesville, FL, ²Department of *Clinical & Health Psychology, University of Florida, Gainesville, FL, ⁴Department of Orthopaedics and Rehabilitation, University of Florida, Gainesville, FL, ⁴Department of Anesthesiology, University of Florida, Gainesville, FL, ⁵Department of Florida, Gainesville, FL, ⁶Department of Popartment of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL*

P-Fr-496

Classification of Resting State fMRI Network Pre- and Post-Season Connectivity in Youth Football

F. MOKHTARI¹, C. LACK², C. WITHLOW², J. STITZEL³, AND J. MALDJIAN² ¹Wake Forest University, Winston Salem, NC, ²Wake Forest School of Medicine, Wiston Salem, NC, ³Wake Forest University, Wiston Salem, NC POSTER SESSION

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 4:00PM - 5:00PM

P-Fr-497

Estimating Resolution Subject to Prior Knowledge in Tomographic Reconstruction

K. DILLON¹ AND Y-P. WANG¹ ¹Tulane University, New Orleans, LA

P-Fr-498

Application of Scale Invariant Feature Transform in Classification of Lung Images

M. ALEMZADEH¹, C. BOYLAN¹, C. BOYLAN¹, M. V. KAMATH¹, AND M. V. KAMATH¹ ¹McMaster University, Hamilton, ON, Canada

P-Fr-499

Robust Automated Touching Nucleus Segmentation in Brain Tumor Images E XING¹ AND L. YANG¹ 'University of Florida, Gainesville, FL

P-Fr-500

Selection of Salient Features for Autoimmune Myopathy Classification M. McGOUGH¹, H. SU¹, J. CAI¹, S. COCCO¹, AND L. YANG¹ ¹University of Florida, Gainesville, FL

P-Fr-501

A Distributed Deep Learning Framework for High Throughput Muscle Image Segmentation

F. LIU¹, F. XING¹, M. SAPKOTA¹, AND L. YANG¹ ¹University of Florida, Gainesville, FL

P-Fr-502

Structured Learning for Automatic Segmentation of Digitized Muscle Specimens

Z. ZHANG¹, Y. XIE¹, F. LIU¹, AND L. YANG¹ ¹University of Florida, Gainesville, FL

P-Fr-503

Automatic Segmentation of Muscle Fibers in H&E Stained Pathology Specimens

J. CAI¹, S. HAI¹, M. MCGOUGH¹, S. COCCO¹, AND L. YANG¹ ¹University of Florida, Gainesville, FL

P-Fr-504

Robust Nuclei Detection Via Adaptive Dictionary Learning And Sparse Coding

H. SU¹, F. XING¹, Y. XIE¹, AND L. YANG¹ ¹University of Florida, Gainesville, FL

P-Fr-505

Microscopic Muscle Image Enhancement

X. KONG¹ AND L. YANG¹ ¹University of Florida, Gainesville, FL

P-Fr-506

Automatic Tracking and Classification of Time-resolved Facial Expressions from Images

P. G. MENON' AND Y. MA² ¹University of Pittsburgh, Pittsburgh, PA, ²Sun Yat-sen University - Carnegie Mellon University Joint Institute of Engineering, Pittsburgh, PA

P-Fr-507

Neural Network Approach for Lung Nodule Segmentation

P. G. MENON¹ AND Y. HU² ¹University of Pittsburgh, Pittsburgh, PA, ²Sun Yat-sen University - Carnegie Mellon University Joint Institute of Engineering, Pittsburgh, PA

P-Fr-508

Predicting Classifier Performance with Limited Training Data:Validation on the ADNI Dataset

N. AGRAWAL¹, A. BASAVANHALLY¹, S. VISWANATH¹, AND A. MADABHUSHI¹ ¹Case Western Reserve University, Cleveland, OH

P-Fr-509

Analyzing Quality Of Compression Schemes Used In Wirelessly Transmitted Ultrasound Video

P. RUIZ¹, V. HAZELWOOD¹, AND M. GRAY¹ ¹Stevens Institute of Technology, Hoboken, NJ

P-Fr-510

Tracking Whisker Movements in Free-moving Rodents from High-speed Video Recordings

H. J. KIM¹, T. SHI¹, P. VORA¹, S. AKDAGLI², S. MOST², AND Y. YAN¹ ¹Santa Clara University, Santa Clara, CA, ²Stanford, Stanford, CA

P-Fr-511 DREAM TEAM & CENTER

Automatic Tracking and Segmentation of Pelvic Floor Organs on Dynamic Magnetic Resonance Imaging

I. NEKOOEIMEHR¹, S. LAI-YUEN¹, P. BAO¹, A. WEITZENFELD¹, AND S. HART¹ ¹University of South Florida, Tampa, FL

Track: Biomedical Imaging and Optics

Other Imaging Posters

P-Fr-512

Electroencephalographic Source Imaging in Rats: Methodological Aspects and Validation

J. BAE¹, P. VALDES-HERNANDEZ², Y. SONG¹, AND J. RIERA¹ ¹Florida International University, Miami, FL, ²Cuban Neuroscience Center, Havana, Cuba

P-Fr-513

Design and Validation of Magnetic Particle Spectrometer for Nanoparticle Characterization

N. GARRAUD¹, R. DHAVALIKAR¹, L. MALDONADO-CAMARGO¹, D. P. ARNOLD¹, AND C. RINALDI¹

¹University of Florida, Gainesville, FL

P-Fr-514

Quantitative Evaluation Of Optogenetically-Induced Calcium Signaling In Astrocytes

L. BALACHANDAR¹, A. RAYMOND¹, M. NAIR¹, J. SANTANA¹, AND J. RIERA¹ ¹Florida International University, Miami, FL

P-Fr-515

Kinect Accuracy in Abdominal Surface Reconstruction for Robotic Surgery M. MADDAH¹, C. G. CAO², J. WANG², N. KASHOU², M. GALLOWAY², K. LIN², AND K. WATSON²

¹Wright State University, Fairborn, OH, ²Wright State University, Dayton, OH

P-Fr-516

Noncontact Diffuse Optical Assessment of Blood Flow Changes in Head and Neck Free Tissue Transfer Flaps

C. HUANG¹, J. RADABAUGH¹, R. AOUAD¹, Y. LIN¹, T. GAL¹, A. PATEL¹, J. VALENTINO¹, Y. SHANG¹, AND G. YU¹ ¹University of Kentucky, Lexington, KY

,

P-Fr-517

A Computer Assisted Tool for Abdominal Insufflation Measurements Z. TAVAKKOLI¹

¹Wright State University, Fairborn, OH

P-Fr-518

Development of Intra Oral Camera System For Sleep Apnoea Monitoring

E. DIJEMENI¹, S. SINGH², J. COLLIER², AND R. DICKINSON¹ ¹Imperial College London, London, United Kingdom, ²Chelsea and Westminster Hospital, London, United Kingdom

P-Fr-519

Individual Differences in Alpha Power Modulation by Verbal Working Memory Load Z. HU¹, I. SAMUEL¹, AND M. DING¹

Z. HU', I. SAMUEL', AND M. DING' ¹University of Florida, Gainesville, FL

P = Poster Session
OP = Oral Presentation
Q = Reviewer Choice Award

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM , 4:00PM - 5:00PM

P-Fr-520

Focal Adhesion Formation and Reorganization on Nanopatterned Surfaces E. MAH¹, E. LIANG¹, A. YEE¹, AND M. DIGMAN¹ ¹University of California, Irvine, Irvine, CA

P-Fr-521

Ferrohydrodynamic Modeling of Magnetic Relaxation in Magnetic Particle Imaging

R. DHAVALIKAR¹, D. HENSLEY², L. MALDONADO-CAMARGO¹, S. CERON¹, N. GARRAUD¹, L. CROFT², P. GOODWILL², S. CONOLLY², AND C. RINALDI¹ ¹University of Florida, Gainesville, FL, ²University of California, Berkeley, CA

P-Fri-522

Gp2 Scaffold Engineered As A Molecular Probe For Tumor Targeting

V. DUONG¹, M. KRUZIKI¹, AND B. HACKEL¹ ¹University of Minnesota - Twin Cities, Minneapolis, MN

Track: Cellular and Molecular Bioengineering Molecular and Cellular Topics:

Cell and Molecular Immunoengineering Posters

P-Fr-529

Tuning T Cell Activation with Protein-Particle Conjugates E. CAMPBELL¹, S. THOMAS¹, J. MCDONALD¹, AND T. SULCHEK¹ 'Georgia Institute of Technology, Atlanta, GA

P-Fr-530

Complex Cytokine Stimulation Induces Simultaneous M1 and M2 Activation In Macrophages

T. SMITH¹, M. TSE¹, L. MCCARTHY¹, E. READ¹, AND W. LIU¹ ¹UC Irvine, Irvine, CA

P-Fr-531

Inflammatory Stress in Pancreatic Beta Cells Induces Enhanced Immunogencity of the Diabetes Autoantigen GAD65 through Disruption of the Palmitoylation Cycle

E. PHELPS¹, C. CIANCIARUSO¹, M. PASQUIER¹, J. HUBBELL¹,², AND S. BAEKKESKOV¹ ¹Swiss Federal Institute of Technology, Lausanne (EPFL), Lausanne, Switzerland, ²University of Chicago, Chicago, IL

P-Fr-532

CCL21 Beta Cell Expression Alters the Phenotype of Islet Infiltrates and Prevents Type 1 Diabetes

M. ABREU¹, M. NAJJAR¹, V. MANZOLI¹, R. MOLANO¹, A. PUGLIESE¹, AND A. TOMEI¹ ¹University of Miami, Miami, FL

P-Fr-533

Effect of Microscale Geometry of Costimulatory Anti-CD28 Relative to Anti-CD3 in Induction of Regulatory T cells from Conventional T Cells J-H. LEE¹, J. POSTIGO¹, W. JIN¹, H. CHEN¹, S. DASTAGIR¹, R. CREUSOT¹, AND L. KAM¹ ¹Columbia University in the city of New York, New York, NY

P-Fr-534

Modulating Macrophage Phenotype via Biophysical Stimuli: Reduced iNOS for LPS Activated M1 Cells

K. KEARNS¹, N. SCHAUB¹, R. GILBERT¹, AND D. THOMPSON¹ ¹Rensselaer Polytechnic Institute, Troy, NY

P-Fr-535

Electric Field Ablation Influences Anti-tumor Response in Triple Negative Breast Cancer Cells

I. GOSWAMI¹, A. ROLONG¹, R. G. MORRISON¹, S. COUTERMARSH-OTT¹, I. C. ALLEN¹, R. V. DAVALOS¹, AND L. R. BICKFORD¹ ¹Virginia Polytechnic Institute and State University, Blacksburg, VA

P-Fr-536

Engineering T-Cell Receptors (TCRs) with Variable Binding Affinity Using Yeast Display for Development as a Multiple Sclerosis (MS) Therapeutic E. LEONARD¹ AND J. MAYNARD¹ 'University of Texas at Austin, Austin, TX

P-Fr-537

Biomaterials-based Immunoengineered Lymphoid Tissues for B cell Activation

A. PURWADA¹, M. JAISWAL², H. AHN³, A. GAHARWAR², L. CERCHIETTI³, AND A. SINGH¹ ¹Cornell University, Ithaca, NY, ²Texas A&M University, College Station, TX, ³Weill Cornell Medical College, New York, NY

P-Fr-538

Efficient Ex Vivo Generation of Functional Neutrophils from TLR-2 Stimulated Hematopoietic Stem Cells to Combat Staphaureus Infection L. ANDERSON¹, P. FALAHEE¹, AND S. SIMON¹ ¹UC Davis, Davis, CA

Track: Biomechanics, Cellular and Molecular Bioengineering

Molecular and Cellular Topics:

Cell and Tissue Mechanics Posters

P-Fr-539

Inhibition of Platelet Integrin α . IIb β 3 Attenuates Blood Clot Stiffness and Platelet Compaction N. BRACKETT¹, C. WHITAKER WANG¹, AND M. LAWRENCE¹ ¹University of Virginia, Charlottesville, VA

P-Fr-540

Computational Analysis of Amoeboid Migration during Cancer Metastasis: Relative Importance of Nuclear Mechanics R. ZIELINSKI¹ AND S. GHADIALI¹ ¹The Ohio State University, Columbus, OH

P-Fr-541

Keratinocyte Sensitivity to EGF is Regulated by Substrate Mechanics: Potential Implications for Wound Healing L. WICKERT¹, S. POMERENKE¹, K. MASTERS¹, AND P. KREEGER¹ ¹University of Wisconsin Madison, Madison, WI

P-Fr-542

Interaction of Lysosomes and Stretch: Implication for Mechanotransduction Regulated Degradation

E. BARTOLAK-SUKI¹ AND B. SUKI¹ ¹Boston University, Boston, MA

P-Fr-543

Single Molecule AFM Reveals the Presence of SK Channels on Neuronal Axons

K. ABIRAMAN¹, A. TZINGOUNIS¹, AND G. LYKOTRAFITIS¹ ¹University of Connecticut, Storrs, CT

P-Fr-544

An Active Contraction Model of the Valvular Interstitial Cell Y. SAKAMOTO¹ AND M. SACKS¹

¹The University of Texas at Austin, Austin, TX

P-Fr-545

Differences in Creep Response of GBM Cells in Confinement: Actively Migrating vs. Stationary

I. KHAN¹, L. BUI¹, Y-T. KIM¹, AND C-J. CHUONG¹ ¹University of Texas at Arlington, Arlington, TX

P-Fr-546

Inhibition of TLR4 Protects the Nucleus Pulposus Against Inflammatory Induced Mechanobiological Alterations

T. JACOBSEN¹ AND N. CHAHINE¹ ¹Feinstein Institute for Medical Research, Manhasset, NY

einstein institute för ivledical Re

P-Fr-547

Characterization Of Osteoblasts And The Effect Of Osteocytic Soluble Factors On Bone Formation

E. GEORGE¹, S. YORK¹, J. MCPHERSON¹, A. GORE¹, M. COSTA¹, E. GRUTKOWSKI¹, AND M. SAUNDERS¹ ¹The University of Akron, Akron, OH POSTER SESSION

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 4:00PM - 5:00PM

P-Fr-548

Mapping Biomechanical Properties of Living Biological Tissues Using Atomic Force Microscopy and Immunofluorescence Microscopy X. XU1, Z. LI1, S. CALVE1, AND C. NEU1 ¹Purdue University, West Lafayette, IN

P-Fr-549

Nanomechanical Clues of Breast Cancer Cell Invasiveness D. CHERY¹, B. HAN¹, A. SHAH¹, A. SHIEH¹, AND L. HAN¹ ¹Drexel University, Philadelphia, PA

P-Fr-550

Nonlinear Viscoelasticity Of Ligaments Of The Pelvic Floor

A. BAAH-DWOMOH¹, T. TAN¹, AND R. DE VITA¹ ¹Virginia Tech, Blacksburg, VA

P-Fr-551

Extracellular Microvesicles (eMVs) as Biomarkers of BBB Remodeling Following TBI

A. ANDREWS¹, E. LUTTON¹, S. MERKEL¹, R. RAZMPOUR¹, AND S. RAMIREZ¹, ¹Temple University, Philadelphia, PA, ²Shriner's Children's Hospital, Philadelphia, PA

P-Fr-552

Mechanically Unloaded Osteocytes Increase Osteoclastogenesis

L. VONDEAK¹, O. PETREY¹, T. PERO¹, F. MOUSSA², F. SAFADI², AND M. SAUNDERS¹ ¹The University of Akron, Akron, OH, ²Northeast Ohio Medical University, Rootstown, OH

P-Fr-553

Cellular Young's Modulus as a Novel Stemness Marker in the Corneal Limbus

T. BONGIORNO¹, J. CHOJNOWSKI², J. D. LAUDERDALE², AND T. SULCHEK¹ ¹Georgia Institute of Technology, Atlanta, GA, ²University of Georgia, Athens, GA

P-Fr-554

Characterizing Axial and Longitudinal Mechanics of Individual Cardiomyocytes

A. DESAI¹, R. PEYRONNET², P. KOHL², AND D. DEAN³ ¹Clemson University, Clemson, SC, ²Imperial College, London, United Kingdom, ³Clemson University, Central, SC

P-Fr-555

Reduced Skeletal Muscle Function is Associated with Decreased Fiber Area and Increased Connective Tissue in a Rat Model of Progressive Kidney

W. ELKHATIB¹, J. ORGAN¹, A. SRISUWANANUKORN¹, P. PRICE¹, J. JOLL¹, K. BIRO¹, J. RUPERT¹, N. CHEN¹, K. AVIN², S. MOE², AND M. ALLEN² ¹Indiana University School of Medicine, Indianapolis, IN, ²Indiana University School of Health and Rehabilitation Science, Indianapolis, IN

P-Fr-556

The Acute Effects of Statins on Aortic Valve Interstitial Cell Physical State In Situ

R. M. BUCHANAN¹, S. D. LABIANCA¹, AND M. S. SACKS¹ ¹The University of Texas at Austin, Austin, TX

P-Fr-557

Actomyosin Contractility Governs Cellular Mechanosensing Behaviors T. KIM¹

¹Purdue University, West Lafayette, IN

P-Fr-558

Biomechanical Comparison Of Induced Apoptotic And Necrotic Cell Death In Leukemia Cells

R. BYLER^{1,2}, K. PATEL², M. KHOSRAVANIPOUR², F. DAMEN^{2,3}, T. SULCHEK², AND E. BEHRAVESH²

Yale University, New Haven, CT, ²Georgia Institute of Technology, Atlanta, GA, ³Purdue University, West Lafayette, IN

P-Fr-559

Altered Mechanical Properties of Rat Proximal Pulmonary Artery with Pre-conditioning.

S. BURGETT¹, M. DUFVA¹, R. B. DODSON¹, J. S. WALKER¹, AND K. HUNTER¹ ¹University of Colorado Denver, aurora, CO

P = Poster Session **OP** = Oral Presentation = Reviewer Choice Award

P-Fr-560

Application Of Traction Force Microscopy To Patient-Specific Studies Using Induced Pluripotent Stem Cells

S. CARRASQUILLA¹, B. DIVITA¹, N. BIEL¹, N. TERADA¹, AND C. SIMMONS¹ ¹University of Florida, Gainesville, FL

P-Fr-561

Probing the Viscoelasticity of the C. elegans Body F. LOIZEAU¹, S. FECHNER¹, E. MAZZOCHETTE¹, A. NEKIMKEN¹, A. SANZENI²,³, M. VERGASSOLA², M. GOODMAN¹, AND B. PRUITT¹ ¹Stanford University, Stanford, CA, ²University of California San Diego, San Diego, CA,3University of Milano, Milano, Italy

P-Fr-562

Mathematical Model For Bone Turnover

E. GEORGE¹, S. YORK¹, R. MILLER¹, D. OTT¹, M. SAUNDERS¹, AND A. PRIETO-LANGARICA² ¹The University of Akron, Akron, OH, ²Youngstown State University, Youngstown, OH

P-Fr-563

Mechanical Heterogeneity: A New Concept for Cell Adhesion

M. ROEIN-PEIKAR¹, F. CHOWDHURY², Q. XU³, AND T. HA¹,² ¹University of Illinois at Urbana-Champaign, Urbana, IL, ²Carl Woese Institute for Genomic Biology, Urbana, IL, ³Howard Hughes Medical Institute, Urbana, IL

P-Fr-564

Substrate Stiffness Regulates Focal Adhesion Kinase In Direct Conversion Of Fibroblasts Into Neurons

J. SOTO¹, S. WONG¹, J. CHU¹, AND S. LI¹ ¹University of California, Berkeley, Berkeley, CA

P-Fr-565

A Novel Experimental Approach for the Observation of Osteocyte Ca2+ Signaling in vivo

K. J. LEWIS¹, D. FRICKHA-BENAYED¹, D. C. SPRAY², M. M. THI², R. J. MAJESKA¹, S. WEINBAUM¹, AND M. B. SCHAFFLER¹ ¹CUNY - City College, New York, NY, ²Albert Einstein College of Medicine, Bronx, NY

P-Fr-566

Measuring Nonlinear Anisotropic Mechanical Properties of Vascular Smooth Muscle Cells Z. WIN¹ AND P. ALFORD¹

¹University of Minnesota, Minneapolis, MN

P-Fr-567

Mechanics of Intact Bone Marrow

L. JANSEN¹, N. BIRCH¹, J. SCHIFFMAN¹, A. CROSBY¹, AND S. PEYTON¹ University of Massachusetts Amherst, Amherst, MA

Track: Cellular and Molecular Bioengineering **Molecular and Cellular Topics:**

Molecular Bioengineering Posters

P-Fr-569

Inhibition of AB Aggregate Elongation by Piceatannol: A Quartz Crystal Microbalance Analysis Y. WANG¹ AND M. MOSS¹ ¹University of South Carolina, Columbia, SC

P-Fr-570

Novel Variable Modifications to Polyketide Synthase Pathway and Screen Process M. SIMON¹, L. FANG¹, AND B. PFEIFER¹ ¹University at Buffalo, SUNY, Buffalo, NY

P-Fr-571

A Raman Microspectroscopic Investigation of Biopreservation Potential of Trehalose and Glycerol

M. WANG¹ AND N. CHAKRABORTY¹ ¹University of Michigan Dearborn, Dearborn, MI

2015 | OCTOBER 9 | FRIDAY

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM , 4:00PM - 5:00PM

P-Fr-572

A Universal Quantitative FRET Methodology for Biochemical Parameter Determinations

J. LIAO¹, Y. SONG¹,², Y. LIU¹,³, L. JIANG¹,⁴, H. MALIK-CHAUDHRYA^{1,5}, R. KUNG¹, Z. XIONG¹, and G. WAY¹

¹University of California at Riverside, Riverside, CA, ²University of Pennsylvania, Philadelphia, PA, ³California Institute of Biomedical Research, La Jolla, CA, ⁴Heilongjiang University of Chinese Medicine, Harbin, China, People's Republic of, ⁶Pfenex Inc, San Diego, CA

P-Fr-573

Spin Selective Production of Reactive Oxygen Species in Endothelial Cells by Weak Magnetic Fields

C. CHAVARRIAGA¹, I. MCCLURE¹, K. JURIGA¹, AND C. MARTINO¹ ¹Florida Institute of Technology, Melbourne, FL

P-Fr-574

Microdroplet Fusion Mass Spectrometry for Fast Protein Kinetics J. K. LEE¹, H. G. NAM²,³ AND R. ZARE¹

J. N. LEE', T. O. NAWF, AND R. ZARE' 'Stanford University, Stanford, CA, ²Institute for Basic Science, Daegu, Korea, Republic of²DGIST, Daegu, Korea, Republic of

P-Fr-575

Engineering Light Inducible Proteins To Control Biomolecule Activity And Behavior In Live Cells

Z. HUANG¹ AND Y. WANG¹ ¹University of California, San Diego, La Jolla, CA

P-Fr-576

Truncation of O-glycan Biosynthesis by GalNTGc: An Analog of Naturally Occurring N-acetylgalactosamine

S-S. WANG¹, G. STOLFA¹, K. AGARWAL², S. AHMED², G. SAMPATHKUMAR², AND S. NEELAMEGHAM¹.³

¹University at Burfalo SUNY, Buffalo, NY, ²National Institute of Immunology, New Delhi, India,³NY State Center for Excellence in Bioinformatics and Life Sciences, Buffalo, NY

P-Fr-577

author cancellation

P-Fr-578

$\label{eq:Designation} \mbox{Designation of HMGB1-regulatory Protein for Successful Pancreatic Islet} \\ \end{tabular} Xenotransplantation$

W. R. BAE¹, Y. H. HWANG¹, AND D. Y. LEE¹ ¹Hanyang University, Seoul, Korea, Republic of

P-Fr-579

Antimicrobial Efficacy of Non-thermal Dielectric Barrier Discharge Plasma on *Pseudomonas Aeruginosa* Biofilm

T. THAPA¹ AND H. AYAN¹ ¹University of Toledo, Toledo, OH

P-Fr-580

Functional Evaluation of Periodic Peptide That Induces Formation of Cell Aggregation

Y. HIRANO¹, Y. FUTAKI¹, AND S. KAKINOKI¹ ¹Kansai Univ., Osaka, Japan

P-Fr-581

Different Heat-stress Between 2D- and 3D- Cell-culture Environments S. KWAK¹, C. MUN¹, S. CHUN¹, AND T. KIM¹

¹Inje university, Gimhae, Korea, Republic of

P-Fr-582

Rapid Affinity Resin Production and Protein Purification with Azide-tagged Calmodulin

J. FRASEUR¹, T. KINZER-URSEM ¹, AND C. KULKARNI² ¹Purdue University, West Lafayette, IN, ²California Institute of Technology, Pasadena, CA

P-Fr-583

Comparison of Target Specificity of Orthogonal CRISPR/Cas9 Systems

C. LEE¹,², H. DESHMUKH¹,², T. CRADICK¹,³, AND G. BAO¹,² ¹Georgia Institute of Technology, Atlanta, GA, ²Rice University, Houston, TX, ³CRISPR Therapeutics, Cambridge, MA

P-Fr-584

Regulation of Endogenous Transmembrane Receptors Through Optogenetic Cry2 Clustering

D. SPELKE¹,², L. BUGAJ¹,², D. BLONDEL³, E. CONNELLY¹, C. MESUDA¹, M. VAREDI¹, R. KANE⁴, AND D. SCHAFFER¹

¹University of California, Berkeley, Berkeley, CA, ²University of California, San Francisco, San Francisco, CA, ³École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland,⁴Rensselaer Polytechnic Institute, Troy, NY

P-Fr-585

Loss of Giant Obscurins Enhance Migration and Cell Dynamics in Pancreatic Ductal Epithelial Cells

D. SHEA¹, K. KONSTANTOPOULOS¹, AND A. KONTROGIANNI-KONSTANTOPOULOS² ¹Johns Hopkins University, Baltimore, MD, ²University of Maryland School of Medicine, Baltimore, MD

P-Fr-586

DNA Aptamer Assembly As A Vascular Endothelial Growth Factor Receptor Agonist

V. RAMASWAMY¹, A. MONSALVE¹, L. SAUTINA¹, M. SEGAL¹, J. DOBSON¹, AND J. ALLEN¹ ¹University of Florida, Gainesville, FL

P-Fr-587

Amplifying Riboswitch Biosenors

A. BENNETT¹ AND M. GOODSON² ¹University of Dayton, Springfield, OH, ²Wright Patterson Air Force base, Dayton, OH

P-Fr-588

Transition State Model of Kinetochore/Microtubule Attachments in Budding Yeast

E. TUBMAN¹, S. BIGGINS², AND D. J. ODDE¹

¹University of Minnesota, Minneapolis, MN, ²Fred Hutchinson Cancer Research Center, Seattle, WA

Track: Neural Engineering Neural Engineering:

Closed-loop Control of Neural Interfaces Posters

P-Fr-589

Detection of Tourette Syndrome Tics via Centromedian Thalamus LFP and Acute Trial of Closed Loop Stimulation

J. SHUTE¹, E. OPRI¹, R. MOLINA¹, J. ROSSI¹, M. OKUN¹, K. FOOTE¹, AND A. GUNDUZ¹ ¹University of Florida, Gainesville, FL

P-Fr-590

Closed-Loop Paradigms for Hybrid Neural Systems using a Bidirectional Neural Interface

Z. CHOU¹, J. LIM¹, S. BROWN¹, J. BUGBEE¹, M. KELLER¹, F. BROCCARD¹, M. KHRAICHE^{1,2}, G. SILVA^{1,2}, AND G. CAUWENBERGHS^{1,2}

¹University of California, San Diego, La Jolla, CA, ²Institute of Engineering in Medicine, La Jolla, CA

P-Fr-591

Towards Closed-Loop Deep Brain Stimulation for the Treatment of Essential Tremor

E. OPRI¹, J. SHUTE¹, R. MOLINA¹, K. FOOTE¹, M. OKUN¹, AND A. GUNDUZ¹ ¹University of Florida, Gainesville, FL

P-Fr-592

See page 152 for Poster floor plan

Investigation of the Effect of Visual LED Stimuli as BCI Alert System on Subject's (drivers) Brain Signals Detection in Emergency Situations P. RIYAHI' AND A. ESKANDARIAN'

¹The George Washington University, Washington, DC
POSTER SESSION Fri 9:30AM - 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 4:00PM - 5:00PM

Track: Neural Engineering

Neural Engineering:

CNS Disease: Addressing Degeneration/Glial Engineering Posters

P-Fr-593

Olive Oil Phenylethanoids Modulate A β Aggregation Though Targeting of Oligomeric Species S. Z. VANCE¹, C. MOORE¹, AND M. MOSS¹ 'University of South Carolina, Columbia, SC

P-Fr-594

Dispersion of Amyloid Beta Peptide Fiber via Cactus Mucilage as a Potential Disruptor in the Kinetic Formation of Alzheimer's Disease Plaques T $_{\mathsf{PENG}^1}$

¹University of South Florida, Odessa, FL

P-Fr-595

The Ames Window Illusion in Schizophrenia

M. E. KARAKATSANI¹, T. V. PAPATHOMAS², B. P. KEANE², Y. WANG², M. DE HEER³, AND S. M. SILVERSTEIN² ¹Columbia University, New York, NY, ²Rutgers University, Piscataway, NJ, ³Non Affiliated, Amsterdam, Netherlands

P-Fr-596

High Throughput Evaluation of 3D Composite Materials for Optimization of Glial and Neuronal Behavior

C. BERTUCCI¹, S. RAMAMOORTHY¹, P. KARANDE¹, AND D. THOMPSON¹ ¹Rensselaer Polytechnic Institute, Troy, NY

P-Fr-597

Astrocytic Response To Nanoporous Anodized Alumina Surfaces D. GANGULY¹, C. JOHNSON¹, R. GILBERT¹, AND D. BORCA-TASCIUC¹ ¹Rensselaer Polytechnic Institute, Troy, NY

P-Fr-598

Electrospun Fiber Nanotopography Alters Oligodendrocyte Expression of Myelin Basic Protein and PDGF-α R A. D'AMATO¹, J. CARDENAS¹, AND R. GILBERT¹ ¹Rensselaer Polytechnic Institute, Troy, NY

P-Fr-599

Oligodendrocyte Survival, Proliferation, and Maturation is Dependent on 3D Hydrogel Mechanics L. RUSSELL¹ AND K. LAMPE¹

¹University of Virginia, Charlottesville, VA

Track: Neural Engineering
Neural Engineering:

CNS Injury: SCI, Stroke, TBI and Concussions Posters

P-Fr-600

Acute Plasmalemmal Disruptions in Perivascular Domains is Exacerbated After Repetitive TBI in Swine

K. BROWNE^{1,2}, E. KUO^{1,2}, C. MIETUS¹, J. HARRIS^{1,2}, J. WOLF^{1,2}, D. SMITH², J. DUDA¹, AND D. K. CULLEN^{1,2}

¹Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, ²University of Pennsylvania, Philadelphia, PA

P-Fr-601

ABR Gap Responses Show Hormonal Influences and Sexual Dimorphism in CBA/CaJ Mice

T. WILLIAMSON¹, X. ZHU¹, J. WALTON¹, AND R. FRISINA¹ ¹University of South Florida, Tampa, FL

P-Fr-602

Development of Non-invasive Method for Cerebrovascular Regulation Assessment

S. MILLER¹, I. RICHMOND², J. BORGOS², AND K. MITRA¹

¹Florida Institute of Technology, Melbourne, FL, ²Brain Check Medical LLC, Shoreview, MN

P-Fr-603

Aligned Paclitaxel-Eluting Microfibers Promote Axonal Extension Over an Inhibitory Substrate from a Spinal Cord Injury J. ROMAN¹ AND H-Q. MAO¹ 'Johns Hopkins University, Baltimore, MD

P-Fr-604

Estimating Axonal Strain Following Tissue-level Stretch From Displacement Of Axon Proteins As Fiduciary Markers S. SINGH¹, A. PELEGRI¹, AND D. SHREIBER¹

¹Rutgers University, Piscataway, NJ

P-Fr-605

Disrupted Executive Control Network of Female Soccer Players Found Using Dual-Regression ICA

T. SHENK¹, T. BALKE¹, K. ABBAS¹, AND T. TALAVAGE¹ ¹Purdue University, West Lafayette, IN

P-Fr-606

Alginate Microencapsulation of Mesenchymal Stromal Cells Activates Neuroinflammatory Mediation E. STUCKY¹, R. SCHLOSS¹, M. YARMUSH¹, AND D. SHREIBER¹ 'Rutgers, The State University of New Jersey, Piscataway, NJ

P-Fr-607

Exploring the Mechanobiology of Astrocytes Under Traumatic Brain Injury Conditions

A. WALKER¹, J. WYATT¹, AND J. WOLCHOK¹ ¹University of Arkansas, Fayetteville, AR

P-Fr-608

Traumatic Brain Injury Resulted in Increased Aquaporin-4 Expression -Relevance to Post Injury Edema N. STURDIVANT¹, J. WOLCHOK¹, AND K. BALACHANDRAN¹

N. STURDIVANT', J. WOLCHOK', AND K. BALACHANDRAN ¹University of Arkansas, Fayetteville, AR

P-Fr-609

History of Concussion Reduces Brain Resting State Network Efficiency K. ABBAS¹, J. GONI², AND T. TALAVAGE¹ ¹Purdue University, West Lafayette, IN, ²Indiana University, Indianapolis, IN

P-Fr-610

Sagittal Brain Rotations Enhance the Axonal Injury Risk in the Infant Brain L. ATLAN¹ AND S. MARGULIES¹

¹University of Pennsylvania, Philadelphia, PA

P-Fr-611

Correlating Sub-concussive Brain Injuries with Decreased Grey Matter Volume

M. U. SADIQ¹, K. ABBAS¹, AND T. TALAVAGE² 'School of Electrical and Compter Engineering, Purdue University, West Lafayette, IN, West Lafayette, IN, ²Weldone School of Biomedical Engineering, Purdue University, West Lafayette, IN

P-Fr-612

Cerebrovascular Reactivity Changes in Asymptomatic Football Athletes C. JOSHI¹, D. SVALDI¹, E. NAUMAN¹, AND T. TALAVAGE¹ ¹Purdue University, West Lafayette, IN

P-Fr-613

Directional Sensitivity of Corpus Callosum Fiber Strain to Head Rotational Impulse Based on a Pre-computed Atlas

W. ZHAO¹ AND S. JI¹ ¹Dartmouth College, Hanover, NH

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

9:30AM - 5:00PM POSTER SESSION Fri

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM , 4:00PM - 5:00PM

P-Fr-614

Stretch Induced Hyperexcitability of Mice Callosal Pathway

A. FAN¹, K. STEBBINGS¹, D. LLANO¹, AND T. SAIF¹ ¹University of Illinois at Urbana-Champaign, Urbana, IL

Track: Neural Engineering Neural Engineering:

Neural Coding and Modeling Posters

P-Fr-615 🗣

Dexterous Neural Prosthetics: Peripheral and Cortical Decoding of Finger Movement

Z. IRWIN¹, P. VU¹, A. BULLARD¹, I. SANDO¹, N. BENTLEY¹, M. URBANCHEK¹, P. PATIL¹, P. CEDERNA¹, AND C. CHESTEK¹

¹University of Michigan, Ann Arbor, MI

P-Fr-616

Experimental Characterization of the Rat Electroretinogram S. DAVIS¹, X. TANG¹, R. TZEKOV^{1,2}, AND C. PASSAGLIA¹

¹University of South Florida, Tampa, FL, ²The Roskamp Institute, Sarasota, FL

P-Fr-617

A Sleep and Wake State Dependent On/Off Switch for Electrocorticographic Brain Computer Interface Applications

M. PAHWA¹, M. KUSNER¹, C. HACKER¹, D. BUNDY¹, K. WEINBERGER¹, AND E. LEUTHARDT¹

¹Washington University, Saint Louis, MO

P-Fr-618

Functional Role of Neuron Adaptation in Encoding Context Information C. LIU¹, G. FOFFANI¹,², A. SCAGLIONE¹,³, AND K. MOXON¹

¹School of Biomedical Engineering, Science and Health system, Drexel University, Philadelphia, PA, ²Neurosignals Group, Hospital Nacional de Parapléjicos, Toledo, Spain,³National Institute on Aging, National Institutes of Health, Baltimore, MD

P-Fr-619

Driving Neural Networks: The Benefit of Controllability

L. WILES¹, D. BASSETT¹, AND D. MEANEY¹ ¹University of Pennsylvania, Philadelphia, PA

P-Fr-620

Spatial Motifs in a Living Engineered Hippocampal Circuit A. BHATTACHARYA¹, B. WHEELER², T. DEMARSE², AND G. BREWER¹ ¹University of California, Irvine, Irvine, CA, ²University of Florida, Gainesville, FL

P-Fr-621

Transmission of Information Among Cell-Assemblies Within Engineered Hippocampal Networks

T. DEMARSE¹, A. BHATTACHARYA², G. BREWER², AND B. WHEELER¹ ¹University of Florida, Gainesville, FL, ²University of California Irvine, Irvine, CA

P-Fr-622

Analysis of Dorsal Root Ganglia Cell Density Towards Electrode Array Development

A. OSTROWSKI¹, Z. SPERRY¹, AND T. BRUNS¹ ¹University of Michigan, Ann Arbor, MI

P-Fr-623

Functional Network Dynamics of the Language System

L. CHAI¹, M. MATTAR¹, I. BLANK², E. FEDORENKO²,³, AND D. BASSETT¹ ¹University of Pennsylvania, Philadelphia, PA, ²Massachusetts Institute of Technology, Cambridge, MA, ³Massachusetts General Hospital, Boston, MA

P-Fr-624

Finite Element Modeling of a Custom Rodent-Sized Transcranial Magnetic Stimulation Coil

A. LOWE¹, J. RODGER², A. TANG², AND J. WALTON¹ ¹University of South Florida, Tampa, FL, ²The University of Western Australia, Crawley, Australia

P-Fr-625

Dynamic Role Of Individual Neurons In Representing Vocalizations In Background Noise R. NI¹, D. BENDER¹, J. GAMBLE¹, AND D. BARBOUR¹

¹Washington University in St. Louis, St. Louis, MO

P-Fr-626

Virtual Cortical Resection of the Epileptic Network Reveals Controllers of Seizure Dynamics

A. KHAMBHATI¹, B. LITT¹,², AND D. BASSETT¹ ¹University of Pennsylvania, Philadelphia, PA, ²Perelman School of Medicine, Philadelphia, PA

P-Fr-627

Suppression of Action Potentials by External Current in a Bidomain Model of Neural Tissue

S. F. KEIM¹, F. FU¹, AND R. J. SADLEIR¹ ¹Arizona State University, Tempe, AZ

Track: Neural Engineering Neural Engineering:

Neural Progenitor Cell and Tissue Engineering Posters

P-Fr-628

Novel *In Vitro* Characterization Of Embryonic Stem Cell-Derived Neural Circuit Connectivity

J. GAMBLE¹, N. IYER¹, S. SAKIYAMA-ELBERT¹, AND D. BARBOUR¹ ¹Washington University in St Louis, St. Louis, MO

P-Fr-629

Two-Photon Imaging of Remyelination by Transplanted Neural Precursor Cells in a Viral Model of Multiple Sclerosis

M. GREENBERG¹, J. WEINGER¹, S. YANDAMURI², M. MATHEU¹, K. CARBAJAL¹, I. PARKER¹, W. MACKLIN³, AND T. LANE²

¹University of California, Irvine, Irvine, CA, ²University of Utah, Salt Lake City, UT, ³University of Colorado, Aurora, CO

P-Fr-630

Systematic Design for Prediction of Shielding Distance of Astrocytes Impacted from Localized Collapse of Microbubbles

B. CHEN¹, S. SUN¹, J. KANAGARAJ¹, AND M. CHO¹ ¹University of Illinois at Chicago, Chicago, IL

P-Fr-631

Biomimetic Injectable 3D Hydrogels with Aligned Topography for Neural Tissue Engineering

L. KOBELT¹, L. CATES¹, C. HOFSTETTER¹, AND Z. KHAING¹ ¹The University of Washington, Seattle, WA

P-Fr-632

Development Of An *In Vitro* Model Of Brain Reward Pathway For Drug Addiction Research

J. FANTUZZO¹, L. DEFILIPPIS², R. HART¹, J. ZAHN¹, AND Z. PANG² ¹Rutgers University, Piscataway, NJ, ²Robert Wood Johnson Medical School, New Brunswick, NJ

P-Fr-633

A Defined and Scalable System for Differentiation of Oligodendocyte Precussors from hESCs

G. RODRIGUES^{1,2}, T. GAJ¹, M. DIOGO², J. SAMPAIO CABRAL², AND D. V. SCHAFFER¹ ¹University of California Berkeley, Berkeley, CA, ²Technical University of Lisbon, Lisbon, Portugal

P-Fr-634

Development of Native Retinal ECM Hydrogels for Increased Cell Viability During Transplantation

J. SCARALIA¹, R. CARRIER¹, J. KUNDU¹, AND A. KOPPES¹ ¹Northeastern University, Boston, MA SESSION

POSTER SESSION Fri 9:30AM - 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 4:00PM - 5:00PM

P-Fr-635

Hyaluronic Acid Hydrogels for Spinal Cord Regeneration

C. WALTHERS¹, J. LIANG¹, A. EHSANIPOUR¹, AND S. SEIDLITS¹ ¹UCLA, Los Angeles, CA

P-Fr-636

In Vitro Neuronal Logic Circuits as a Tool for Neuronal Network Functionality Assessment

B. MAOZ¹, S-J. PARK¹, B. DABIRI¹, M. HEMPHILL ¹, S. DAUTH ¹, A. CAPULLI¹, A. GREER ¹, AND K. PARKER¹ ¹Harvard University, Cambridge, MA

Track: Neural Engineering Neural Engineering:

Neural Engineering Other Posters

P-Fr-637 🗣

Preventive Effects of Poloxamer P188 in Astrocytes Exposed to Controlled Microcavitation

J. KANAGARAJ¹, B. CHEN¹, A. PAUL¹, S. XIAO², AND M. CHO¹ ¹University of Illinois at Chicago, Chicago, IL, ²Old Dominion University, Norfolk, VA

P-Fr-638 🗣

Sleep Apnea and Cognitive Dysfunction: Effects of Hypoxia and Apnea Duration

N. MOUSAVI¹, R. ALEX¹, K. MACHIRAJU², S. MANCHIKATLA¹, V. KANAL¹, E. ALTUWAIJRI¹, D. WATENPAUGH³, AND K. BEHBEHANI¹,⁴

¹The University of Texas at Arlington, Arlington, TX, ²The University of Texas at Arlington, Arlngtoh, TX, ³Sleep Consultants Inc., Arlington, TX, ⁴UT Arlington, Arlington, TX

P-Fr-639

Changes in Delta Oscillations during a Prolonged Cognitive Task

J. CAGLE¹, I. BABU HENRY SAMUEL¹, C. WANG¹, AND M. DING

¹University of Florida, Gainesville, FL

P-Fr-640

Neural Substrate of Omitted Stimulus Response: A Simultaneous EEG-fMRI Study

I. BABU HENRY SAMUEL¹, H. HUANG¹, A. RAJAN¹, AND M. DING¹ ¹University of Florida, Gainesville, Virgin Islands (U.S.)

P-Fr-641

A Wireless Intraocular Pressure Sensor For Rats

S. BELLO¹ AND C. PASSAGLIA² ¹University of South Florida, Tampa, FL, ²University of South Florida, tampa, FL

P-Fr-642

Effects of Transcranial Direct Current Stimulation on Somatosensory Evoked Potentials in Uninjured Rats

R. DENG^{1,2}, Y. MA³, L. YOUNG^{1,2}, AND X. JIA² ¹Johns Hopkins University, Baltimore, MD, ²University of Maryland School of Medicine, Baltimore, MD, ³Columbia University, New York, NY

P-Fr-643

Assessing Performance of EEG Systems for Event-Related Potentials in Seated and Walking Conditions

A. OLIVEIRA¹, B. SCHLINK¹, W. HAIRSTON², P. KÖNIG³, AND D. FERRIS¹ ¹University of Michigan, Ann Arbor, MI, ²U.S. Army Research Laboratory, Aberdeen, MD, USA, Aberdeen, MD, ³University of Osnabrück, Osnabrück, Germany

P-Fr-644

Delays in Visually Evoked Positive Deflections in EEG Depends on the Ways Errors and Unexpected Outcomes in Mental Arithmetic are Represented A. CHIU¹, M. THAKKER¹, M. FRONDORF¹, AND W-W. JEONG¹

¹Rose-Hulman Institute of Technology, Terre Haute, IN

P-Fr-645

Aqueous Humor Dynamics in the Brown Norway Rat via a Novel Perfusion Technique

K. FICARROTTA¹, S. BELLO¹, AND C. PASSAGLIA¹ ¹University of South Florida, Tampa, FL

P = Poster Session
OP = Oral Presentation
Q = Reviewer Choice Award

P-Fr-646

Decoding ECoG Signal Using Non-convex Regularization And Pathwise Coordinate Optimization Z. XIE¹, J. SANCHEZ¹, AND A. PRASAD¹ ¹University of Miami, Coral Gables, FL

P-Fr-647

Dynamic Balance of Excitation and Inhibition Allows for Rapid Modulation of Spiking Properties

S. WAHLSTROM-HELGREN¹ AND V. KLYACHKO¹ ¹Washington University in St. Louis, Saint Louis, MO

P-Fr-648

A Finite Difference Beamformer Software for EEG Source Imaging I. STURDEVANT¹ AND K. NG¹ *New Mexico State University, Las Cruces, NM*

P-Fr-649

Unique Distribution Of ECM Proteins In The Rodent CNS And Their Influence On Neurite Outgrowth

S. DAUTH¹, T. GREVESSE¹, H. PANTAZOPOULUS², P. CAMPBELL¹, B. M. MAOZ¹, S. BERRETTA², AND K. K. PARKER¹ ¹Harvard University, Cambridge, MA, ²Harvard Medical School, Belmont, MA

P-Fr-650

Three Dimensional Analysis of Potential Field Through Bidomain Tissue in a Conducting Medium B. SCHWARTZ¹ AND R. SADLEIR¹

B. SCHWARTZ' AND R. SADLEIR' 'Arizona State University, Tempe, AZ

P-Fr-65 |

Towards *In Situ* Measurements Of Platinum Dissolution Using Methallothionein-Based Biosensor

S. CERNERA¹ AND H. LEE¹ ¹Purdue University, West Lafayette, IN

Track: Stem Cell Engineering

Stem Cell Engineering & Applications:

Directing Stem Cell Differentiation Posters

P-Fr-652

Nanofiber Electrospinning Device for Use in Stem Cell Studies Z. ZAHEER¹, B. JONES¹, A. PACHECO-FIGUEROA¹, Z. HUSAYNI¹, AND D. HATCH¹ 'George Mason University, Fairfax, VA

P-Fr-653

Acceleration of Human Neural Stem Cell Differentiation using Graphene Oxide Nanoparticles

J. KIM¹, K. YANG¹, J. S. LEE¹, Y. H. HWANG², D. Y. LEE², AND S-W. CHO¹ ¹Yonsei university, Seoul, Korea, Republic of, ²Hanyang University, Seoul, Korea, Republic of

P-Fr-654

Adipose Stem Cell Proliferation After Gamma Irradiation

M. RUSIN¹, E. TAKACS¹, AND D. DEAN²

¹Clemson University, Clemson, SC, ²Clemson University, Central, SC

P-Fr-656

Fractal Analyses of Mitochondrial Networks Endothelial Differentiationinduced hMSCs

J. W. SHIN¹, Y. G. KANG¹, S. H. PARK¹, Y. R. WU², S. R. GU², H. Y. BAN¹, Y. M. KIM¹, H. L. KIM¹, J. H. PARK², AND J-W. SHIN¹,²,³

¹Department of Biomedical Engineering, Inje University, Gimhae, Korea, Republic of,²Department of Health Science and Technology, Inje University, Gimhae, Korea, Republic of,³Cardiovascular and Metabolic Disease Center/ Institute of Aged Life Redesign/UHARC, Inje University, Gimhea, Korea, Republic of

P-Fr-657

Chondrogenesis of MSCs Co-cultured with Chondrocytes under the Synergistic Impacts of Oscillating Hydrostatic Pressure and TGF- β 3 in a Novel Centrifugal Bioreactor

A. NAZEMPOUR¹, C. R. QUISENBERRY¹, N. ABU-LAIL¹, AND B. VAN WIE¹ ¹Washington State University, Pullman, WA

9:30AM - 5:00PM POSTER SESSION Fri

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM , 4:00PM - 5:00PM

P-Fr-658

Understanding Substrate Mediated Signaling Mechanisms to Augment Tendon Regeneration

B. BANIK¹ AND J. BROWN¹ ¹The Pennsylvania State University, University Park, PA

P-Fr-659

Investigation of the Cardiomyocyte Differentiation from Dedifferentiated Fat (DFAT) Cells by using Electrical Stimulation

M. CHAN¹, C. CHANG¹, AND W. LIU¹ ¹University of California, Los Angeles, Los Angeles, CA

P-Fr-660

In Vitro Differentiation Of Adipose Derived Stem Cells Into Smooth Muscle And Urothelial Lineages

C. AMBROSE¹, J. TURNER¹, R. VISCONTI², AND J. NAGATOMI¹ ¹Clemson University, Clemson, SC, ²Medical University of South Carolina, Charleston, SC

P-Fr-661

Static Stretching Increases Adipogenesis of Mesenchymal Stem Cells J. S. LEE1, L. HA1, AND J. Y. LIM1

¹University of Nebraska-Lincoln, Lincoln, NE

P-Fr-662

Human Embryonic Stem Cell-Derived Insulin-Producing Cells Maintain Viability and Function after Alginate Encapsulation

S. PADAYAO¹, R. KRISHNAN¹, M. ALEXANDER¹, N. NEEL¹, C. FOSTER III¹, AND J. LAKEY¹,² ¹University of Calfornia Irvine, Orange, CA, ²University of Calfornia Irvine, Irvine, CA

P-Fr-663

Controllable Nanotopographical Cues from Electrospun PCL/PEO Polymer Blends Facilitate Endothelial Cell Sub-type Differentiation of Human Pluripotent Stem Cells

J. KIM¹, N. MEZAK², AND N. HUANG¹ ¹Stanford University, Palo Alto, CA, ²Veterans Affairs Palo Alto Health Care System, Palo Alto,

P-Fr-664

CA

Effect of Sodium Tungstate on Mesenchymal Stem Cells Chondrogenesis A. KHADER¹ AND T. ARINZEH¹

¹New Jersey Institute of technology, Newark, NJ

P-Fr-665

Umbilical Cord Tissue-derived Mesenchymal Stem Cells Differentiation Towards Endothelial Cells: Effect of Physiologically-modeled Shear Stress M. GUREL¹

¹University of Florida, Gainesville, FL

P-Fr-666

The Effects of Substrate Pattern and Cyclic Stretch on Cardiomyogenic Differentiation of hMSCs

S. R. GU¹, Y. G. KANG², J. W. SHIN², S. H. PARK², Y. M. KIM², H. L. KIM², Y. R. WU¹, H. Y. BAN², J. H. PARK¹, AND J-W. SHIN¹,²,³

¹Department of Health Science and ¹Echnology, Inje University, Gimhae-si, Korea, Republic of, ²Department of Biomedical Engineering, Inje University, Gimhae-si, Korea, Republic of,²Cardiovascular and Metabolic Disease Center/Institute of Aged Life Redesign/UHARC, Gimhae-si, Korea, Republic of, Gimhae-si, Korea, Republic of

P-Fr-667

Geometry Guides Histone State at the Perimeter of Model 2D Tissues Y. LI¹, C. TANG¹, AND K. KILIAN¹

¹University of Illinois at Urbana Champaign, Urbana, IL

P-Fr-668

Directed Differentiation of Human Pluripotent Stem Cells into Functional Kidney Cells that Form Nephron Structures in Kidney Scaffolds D. MAXIM¹, A. LAM¹, R. MORIZANE¹, AND J. BONVENTRE¹

¹Brigham and Women's Hospital, Harvard Medical School, Boston, MA

P-Fr-669

Adult Human Neural Stem Cell Differentiation in Photocrosslinked Hyaluronic Acid Hydrogels

W. MA¹, G-W. JIN¹, AND W. SUH¹ ¹Temple University, Philadelphia, PA

P-Fr-670

The Effect of Cellular Background Noise on Cell Fate Decisions A. LAM¹, R. GOLDSTEIN¹, AND T. DEANS¹ ¹University of Utah, Salt Lake City, UT

P-Fr-67 |

3D Collagenous Matrix and 5-Azacytidine Regulate the Evolution of Cardiomyogenesis from Human Bone Marrow-derived Mesenchymal Stem Cells

J. JOSHI¹ AND C. KOTHAPALLI¹ ¹Cleveland State University, Cleveland, OH

P-Fr-672

Changes in Mitochondrial Characteristics during Stem Cell Differentiation induced by Mechanical Stretching

H. L. KIM¹, J. W. SHIN¹, Y. G. KANG¹, S. H. PARK¹, Y. M. KIM¹, S. R. Gu², H. BAN¹, Y. R. WU², M. J. KIM², AND J-W. SHIN¹,²,³

¹Department of Biomedical Engineering, Inje University, Gimhae-si, Korea, Republic of ²Department of Health Science and Technology, Inje University, Gimhae-si, Korea, Republic of, ³CMDC/Institute of Aged Life Redesign/UHRC, Inje University, Gimhae-si, Korea, Republic of

P-Fr-673

Multifunctional Nanoparticles For Improved Stem Cell Function And Photoacoustic Tracking

I. ADJEI¹, H. YANG¹, L. MALDONADO-CAMARGO¹, J. DOBSON¹, C. RINALDI¹, H. JIANG¹, AND B. SHARMA¹

¹University of Florida, Gainesville, FL

P-Fr-674

Decellularized ECM Niches Enhance Human Pluripotent Stem Cell Pancreatic Differentiation

H. BI¹, K. YE¹, AND S. JIN¹ ¹Binghamton University, SUNY, Binghamton, NY

Track: Cardiovascular Engineering, Stem Cell Engineering

Stem Cell Engineering & Applications:

Cardiac Regeneration and Stem Cells Posters

P-Fr-675

Cardiac Patches for Heart Attack Treatment: Are Stem Cells Really Needed? M. LAM¹, E. MEIER¹, AND B. WU¹ 'Wayne State University, Detroit, MI

P-Fr-676 DREAM TEAM & CENTER

Engineered Cardiac Tissue Using Graphene Composite Nanostructured Scaffolds

P. HITSCHERICH¹, A. APHALE², R. GORDAN³, R. NARULA¹, LH. XIE³, P. PATRA², AND E. J. LEE¹

¹New Jersey Institute of Technology, Newark, NJ, ²University of Bridgeport, Bridgeport, CT³Rutgers New Jersey Medical School, Newark, NJ

P-Fr-677

Enhanced Myocardial Tissue Formation in Cardiac Fibers Generated from Human Heart Matrix Reseeded with Human iPS-derived Cardiomyocytes J. GUYETTE^{1,2}, J. CHAREST², AND H. OTT^{1,2}

¹Harvard Medical School, Boston, MA, ²Massachusetts General Hospital, Boston, MA

P-Fr-678

Assembly of Induced Pluripotent-derived Cardiomyocytes into Functional Muscle Strips

R. HATANO¹, V. CHAN², H. ASADA², AND K. MCCLOSKEY¹ ¹UC Merced, Merced, CA, ²Massachusetts Institute of Technology, Cambridge, MA

P-Fr-679

Functional Studies of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes on Engineered Heart Slices

A. BLAZESKI¹, R. ZHU¹, K. BOHELER¹,², G. TOMASELLI¹, AND L. TUNG¹ ¹Johns Hopkins University, Baltimore, MD, ²Hong Kong University, Hong Kong, China, People's Republic of

SESSION
Fri

POSTER SESSION Fri 9:30AM – 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 4:00PM - 5:00PM

P-Fr-680

Primary and Stem Cell Derived Cardiomyocyte Coupling in a Cell Therapy On-a-Chip Model

F. PASQUALINI¹, Y. ARATYN-SHAUS², H. YUAN², M. MCCAIN², G. YE², S. SHEEHY², P. CAMPBELL², AND K. K. PARKER² ¹Harvard University, Boston, MA, ²Harvard University, Cambridge, MA

P-Fr-681

Effects of Macrophage-derived BMP Proteins on Cardiac Repair Cells in 3D in vitro Models

I. PALLOTTA¹, B. SUN¹, AND D. FREYTES¹ ¹The New York Stem Cell Foundation Research Institute, New York, NY

P-Fr-682

Construction of CABG Graft Using Decellularization and Recellularization Techniques

N. ALLEN1, E. CHAU1, L. SAMPAIO1, A. S. GOBIN1, AND D. A. TAYLOR1 ¹Texas Heart Institute, Houston, TX

P-Fr-683

Optimization of Re-Endothelialization of Acellular Rabbit Whole-Heart Scaffold

E. CHAU1, P-F. LEE1, A. M. CHANDLER1, L. SAMPAIO1, A. S. GOBIN1, AND D. A. TAYLOR1 ¹Texas Heart Institute, Houston, TX

P-Fr-684

Integrated Analysis of the Contractile Kinetics, Force Generation, and Electrical Activity in Single Human Pluripotent Stem Cell Derived Cardiomyocytes

J. D. KIJLSTRA¹,²,³, D. HU¹,^{3,4}, N. MITTAL⁵, P. VAN DER MEER², A. GARAKANI⁶, AND I. DOMIAN^{1,3,7}

¹Massachusetts General Hospital, BOSTON, MA, ²University of Groningen, Groningen, Netherlands, ³Harvard Medical School, Boston, MA, ⁴Boston University, BOSTON, MA,⁵Institute of Bioengineering and Nanotechnology, singapore, Singapore, ⁶Reify Corporation, Saratoga, CA, ⁷Harvard Stem Cell Institute, Cambridge, MA

P-Fr-685

Single-Cell Clonal Analysis of Vascular Stem Cells & Smooth Muscle Cells via Optoelectronic Tweezers

T. DAI¹, S. N. PEI¹, M. WU¹, AND S. LI¹ UC Berkeley, Berkeley, CA

P-Fr-686

Smart Nanoscaffolds or In Situ Endothelial Regeneration After PCI

A. KURIAKOSE^{1,2}, P. RAJNIKANT^{1,2}, Z. XIE^{2,3}, J. YANG^{2,3}, S. BANERJEE^{2,4}, AND K. NGUYEN^{1,2}

¹University of Texas at Arlington, Arlington, TX, ²The University of Texas Southwestern Center at Dallas, Dallas, TX, ³The University of Pennsylvania, Philadelphia, PA, ⁴VA North Texas Health Care System, Dallas, TX

Track: Stem Cell Engineering Stem Cell Engineering & Applications:

Engineering Stem Cell Environments Posters

P-Fr-687

Impact Of Obesity On Hematopoietic Stem Cell Engraftment S. ARJUN¹, D. KRISHNAMOORTHY¹, E. CHAN¹, AND C. RUBIN¹ 1Stony Brook University, Stony Brook, NY

P-Fr-688

Development of an Algorithm-Guided Search Strategy for the Identification of Defined Conditions for Stem Cell Expansion

M. KIM¹ AND J. AUDET¹ ¹University of Toronto, Toronto, ON, Canada

P-Fr-689

Micro-Engineered 3D ECM Array for Investigating Cell-ECM Interaction During Stem Cell Differentiation

S-K. GOH, S. BERTERA², V. VAIDYA¹, T. RICHARDSON¹, L. YANG¹, AND I. BANERJEE¹ ¹University of Pittsburgh, Pittsburgh, PA, ²Allegheny Health Network, Pittsburgh, PA

P = Poster Session **OP** = Oral Presentation = Reviewer Choice Award

P-Fr-690

High Fat Diet Compromises Bone Phenotype And Increases Mesenchymal Stem Cell Migration To Abdominal Fat Region, While Low-Level Mechanical Signals Disrupt Diet Induced Cell Migration L. VASADI¹

¹Stony Brook University, Stony Brook, NY

P-Fr-691

Engineering the Mechanical Niche of Induced Pluripotent Stem Cells to Enhance Lineage-Specific Differentiation

M. MALDONADO¹, K. LOW¹, G. ICO¹, M. RAMOS², AND J. NAM¹ ¹University of California-Riverside, Riverside, CA, ²California State University, San Bernardino, CA

P-Fr-692

Alginate Capsule Composition Influences the Pancreatic Differentiation of Human Embryonic Stem Cells

T. RICHARDSON¹, S. BARNER¹, J. CANDIELLO¹, P. N. KUMTA¹, AND I. BANERJEE¹ ¹University of Pittsburgh, Pittburgh, PA

P-Fr-693

Developing a Co-Culture System Mimicking Niche Compartments for Effective Ex Vivo Expansion of HSPCs

Y. G. KANG¹, J. W. SHIN¹, S. R. GU², S. H. PARK¹, Y. M. KIM¹, H. L. KIM¹, Y. R. WU², H. Y. BAN¹, M. J. KIM², AND J-W. SHIN¹,²,³

¹Department of Biomedical Engineering, Inje University, Gimhae-si, Korea, Republic of,²Department of Health Science and Technology, Inje University, Gimhae-si, Korea, Republic of, 3CMDC/Institute of Aged Life Redesign/UHARC, Inje University, Gimhae-si, Korea, Republic of

P-Fr-694

The Effect of Simulated Microgravity on the Function of Porcine Blood **Derived Vascular Stem Cells**

V. RAMASWAMY¹ AND J. ALLEN¹ ¹University of Florida, Gainesville, FL

P-Fr-695

A 3D in vitro Assay to Evaluate Neural Stem Cell Sensitivity to **Environmental Heavy Metals**

K. FARRELL¹, S. TASNEEM¹, M-Y. LEE¹, AND C. KOTHAPALLI¹ ¹Cleveland State University, Cleveland, OH

P-Fr-696

Higher Efficiency in Reprogramming Somatic Cells into iPS can be Obtained when Mechanically Strained

Y. M. KIM¹, S. H. PARK¹, Y. G. KANG¹, J. W. SHIN¹, H. L. KIM¹, S. R. GU², Y. R. WU², H. Y. BAN1, M. W. LEE1, AND J-W. SHIN1,2,3

¹Department of Biomedical Engineering, Inje University, Gimhae-si, Korea, Republic of,²Department of Health Science and Technology, Inje University, Gimhae-si, Korea, Republic of, ³Cardiovascular and Metabolic Disease Center /Institute of Aged Life Redesign/ UHARC, Inje University, Gimhae-si, Korea, Republic of

P-Fr-697

Colony Size of Embryonic Stem Cells Regulates Neural Differentiation in a Heterocellular Niche

R. JOSHI¹ AND H. TAVANA¹ ¹The University of Akron, Akron, OH

P-Fr-698

Identification of IL-1 β and LPS as Optimal Activators of Monolayer and Alginate-Encapsulated Mesenchymal Stromal Cell Immunomodulation Using Design of Experiments and Statistical Methods

A. GRAY¹, T. MAGUIRE¹, R. SCHLOSS¹, AND M. YARMUSH¹ ¹Rutgers University, Piscatway, NJ

P-Fr-699

Mesenchymal Stem Cell Spheroids for Treatment of Glioblastomas

S. SURYAPRAKASH¹, H. F. CHAN², S. HINGTGEN³, AND K. LEONG¹ Columbia University, New York, NY, ²Duke University, New York, NY, ³University of North Carolina, Chapel Hill, NC

9:30AM - 5:00PM POSTER SESSION Fri

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM , 4:00PM - 5:00PM

P-Fr-700

Silicon Nanowires-induced Maturation of Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells

Y. TAN¹, D. RICHARDS¹, D. MENICK², B. TIAN³, AND Y. MEI¹,² Clemson University, Clemson, SC, ²Medical University of South Carolina, Charleston, SC,³University of Chicago, Chicago, IL

Track: Stem Cell Engineering Stem Cell Engineering & Applications:

Scaling Up Stem Cell Production / Stem Cell Derived **Progenitors Posters**

P-Fr-701

Computational Fluid Dynamic Modeling of Scaled-down Stirred Suspension Bioreactor for Pluripotent Stem Cell Bioprocessing

A. LE^{1,2}, D. RANCOURT^{1,3}, I. GATES^{1,4}, AND M. KALLOS^{1,4} ¹University of Calgary, Calgary, AB, Canada, ²Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, AB, Canada,³Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, ⁴Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada

P-Fr-702

The Effects Of ROCK Inhibitors On The In Vitro Expansion Of Glioblastoma Stem Cells

S. TILSON¹, E. HALEY¹, C. LANGFORD², G. Y. GILLESPIE², AND Y. (. KIM¹ ¹University of Alabama, Tuscaloosa, AL, ²University of Alabama at Birmigham, Birmingham, AL

P-Fr-703

Structural Phenotyping for Stem Cell Derived Cardiomyocyte Quality Assessment

F PASOLIALINI¹ S SHEEHY² A AGARWAI ¹ Y ARATYN-SHALIS² AND K K PARKER² ¹Harvard University, Boston, MA, ²Harvard University, Cambridge, MA

P-Fr-704

Cell Mechanics-based Microfluidic Enrichment of Pluripotent Embryonic Stem Cells

T. BONGIORNO¹, J. GURA¹, G. WANG¹, T. C. MCDEVITT², AND T. SULCHEK¹ ¹Georgia Institute of Technology, Atlanta, GA, ²Gladstone Institutes, San Francisco, CA

P-Fr-705

Assessing the Reprogramming of Gata-I in ES Cells to Derive Red Blood Cells

A. SHIMPI¹, M. FITZGERALD¹, AND T. DEANS¹ ¹University of Utah, Salt Lake City, UT

Track: Cellular and Molecular Bioengineering, **Stem Cell Engineering**

Stem Cell Engineering & Applications: Stem Cell Bioengineering Posters

P-Fr-706

The Effect of a Simulated Diabetic Wound Environment on Keratinocyte Migration

W. KOSOL¹, R. FAULKNOR¹, AND F. BERTHIAUME¹ ¹Rutgers University, Piscataway, NJ

P-Fr-707

Preservation of Osteogenic Capacity Following Shape Memory Triggering of Foam and E-spun Scaffolds

J. WANG^{1,2}, LF. TSENG^{1,2}, R. BAKER^{1,2}, AND J. HENDERSON^{1,2} ¹Syracuse University, Syracuse, NY, ²Syracuse Biomaterials Institute, Syracuse, NY

P-Fr-708

Live Tissue Imaging Reveals Dynamic Interplay of Spectrosome and Centrosome during Asymmetric Stem Cell Divisions

J. CHENG¹ AND C. BANG

¹University of Illinois at Chicago, Chicago, IL

P-Fr-709

Scar Eraser: Mechano-Responsive Cell System to Study, Detect and Treat **Tissue Fibrosis**

S. ZHANG¹, L. LIU¹, AND W. ZHAO¹ ¹University of California - Irvine, Irvine, CA

Track: Stem Cell Engineering **Stem Cell Engineering & Applications:**

Stem Cells in Pre-clinical and Clinical Models Posters

P-Fr-710

Effect of Pericytes on Skin Wound Healing in Diabetic (db/db) Mice M. MARJANOVIC¹, J. LI¹, A. BOWER¹, Y. PINCU¹, E. CHANEY¹, M. BOPPART¹, AND S. BOPPART ¹University of Illinois at Urbana-Champaign, Urbana, IL

P-Fr-711

ARCAS: A Tool to Identify Enriched Spatial Colocalization in Biomedical Images

B. CORLISS¹, H. RAY¹, S. CRONK¹, P. YATES¹, AND S. PEIRCE¹ ¹University of Virginia, Charlottesville, VA

P-Fr-712

Kindling Increases Type-IProgenitor Cell Division In The Dentate Gyrus Of Adult Rats

J. LEIBOWITZ¹, G. NATARANJAN¹, A. ASOKAN², M. KING¹, P. CARNEY¹, AND B. ORMEROD¹ ¹University of Florida, Gainesville, FL, ²Stanford University, Stanford, CA

P-Fr-713

Introduction of Extracellular Matrix for Improved Hepatic Differentiation of Human Induced Pluripotent Stem Cells

M. JARAMILLO¹, M. YARMUSH¹, AND B. UYGUN¹ ¹Massachusetts General Hospital, Boston, MA

Track: Tissue Engineering, Stem Cell Engineering Stem Cell Engineering & Applications: Stem Cells in Tissue Engineering Posters

P-Fr-714

Three-dimensional Neural Differentiation from Human Induced Pluripotent Stem Cells

Y. YAN1, J. BEJOY1, Y. ZHOU1, AND Y. LI1 ¹Florida State University, Tallahassee, FL

P-Fr-715

Effects of Physiological Oxygen on Vascular Network Formation on Human Mesenchymal Stem Cell Sheets

M. TAHTINEN¹, L. ZHANG¹,², Q. XING¹, Z. QIAN¹, S. QI², AND F. ZHAO¹ ¹Michigan Technological University, Houghton, MI, ²First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China, People's Republic of

P-Fr-716

Structural Changes in Bone Marrow Stem Cells to Oscillatory Flow: Relevance to Valve Development

G. CASTELLANOS¹, L. NASSAR¹, S. RATH¹, AND S. RAMASWAMY¹ ¹Florida International University, Miami, FL

POSTER SESSION Fri 9:30AM - 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 4:00PM - 5:00PM

P-Fr-717

Assessing an Engineered Periosteum in Reconstructing a Critical-Sized Femur Defect in Mice

R. ROMERO¹, L. CHUBB¹, J. TRAVERS¹, E. ASBURY¹, A. PENNYBAKER¹, R. ROSE¹, N. EHRHART¹, AND M. KIPPER¹ ¹Colorado State University, Fort Collins, CO

P-Fr-718

Cartilage Microenvironments Influence Mesenchymal Stem Cell Phenotype A. MATUSKA¹ AND P. MCFETRIDGE¹ ¹University of Florida, Gainesville, FL

P-Fr-719

Transdifferentiation of Human Endothelial Progenitors into Functional Smooth Muscle Cells

H. JI¹, L. ATCHISON², N. CHRISTOFOROU³, Z. CHEN¹, Y. JUNG⁴, AND K. LEONG¹ ¹Columbia University, New York, NY, ²Duke University, Durham, NC, ³Khalifa University of Science, Technology & Research, Abu Dhabi, United Arab Emirates, ⁴Korea Institute of Science and Technology, Seoul, Korea, Republic of

P-Fr-720

Spatially-Patterning Human Induced Pluripotent Stem Cell-Derived Endothelial Cells and Cardiomyocytes in a Co-Cultured, Microvascular Tube

V. CHAN¹, R. HATANO², L. WONG², K. MCCLOSKEY², AND H. ASADA³ ¹Massachusetts Institute of Technology, Cambridge, MA, ²University of California, Merced, Merced, CA, ³Massachusetts Institute of Technology, Massachusetts Institute of Technology, MA

P-Fr-721

Effect Of Alginate Microcapsule Stiffness On Encapsulated Ovarian Cell Viability

K. ENCK¹, J. MCQUILLING¹, S. SIVANANDANE¹, AND E. OPARA¹ ¹Wake Forest University, Winston-Salem, NC

P-Fr-722

Tissue Engineered Blood Vessels Using Human iPS Cells: Effect Of Pulsatile Stretch On iPS-derived Smooth Muscle Cells

S. SUNDARAM¹ AND L. NIKLASON¹ ¹Yale University, New Haven, CT

P-Fr-723

Differentiation of Human Embryonic Stem Cells into Pancreatic Lineage in Whole Organ Pancreatic Scaffold

S-K. GOH¹, S. BERTERA², AND I. BANERJEE¹

¹University of Pittsburgh, Pittsburgh, PA, ²Allegheny Health Network, Pittsburgh, PA

P-Fr-724

Mesenchymal Stromal Cells In Alginate Dressings To Enhance Chronic Wound Healing

R. FAULKNOR¹, M. OLEKSON¹, E. EKWUEME¹, AND F. BERTHIAUME¹ ¹Rutgers University, Piscataway, NJ

Annals of Biomedical Engineering

The Annals of Biomedical Engineering is an interdisciplinary, international journal which presents original and review articles in the major fields of bioengineering and biomedical engineering.

- The flagship journal of BMES
- Impact factor: 3.195
- 240 papers published per year out of 1,100 submissions
- Average turnaround time: 21 days

2015 Awards

Porous implants modulate healing and induce shifts in local macrophage polarization in the foreign body reaction

Eric M. Sussman, Michelle C. Halpin, Jeanot Muster, Randall T. Moon, Buddy D. Ratner July 2014, Volume 42, Issue 7, pp 1508-1516.

Smartphones for cell and biomolecular detection

Xiyuan Liu, Tung-Yi Lin, Peter B. Lillehoj November 2014, Volume 42, Issue 11, pp 2205-2217.

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

TODAY'S HIGHLIGHT

PLATFORM SESSION Sat I 8.00am - 9.30am See pages 188-194, Convention Center

EXHIBIT HALL OPEN 9:30am - 1:30pm Convention Center, Exhibit Hall

POSTER SESSION SAT 9:30pm -1:00pm

See pages 208-226, TCC, Exhibit Hall

Poster Viewing with Authors 9:30am - 10:30am & Refreshment Break

PLENARY SESSION

10:30am - 12:30pm **Convention Center Ballroom BC**

Rita Schaffer Memorial Young Invesigator Lecture ENGINEERING SELF-ASSEMBLED PORPHYRIN NANOPARTICLES FOR BIOMEDICAL APPLICA-TIONS IN IMAGING AND DRUG DELIVERY Jonathan F. Lovell, PhD

Diversity Lecture The City University of New York

PLATFORM SESSION Sat 2 1:30pm - 3:00pm See pages 195-201, Convention Center

PLATFORM SESSION Sat 3 3:15pm - 4:15pm See pages 202-207, Convention Center

SPECIAL SESSION 8:00 AM - 9:30 PM - Ballroom A **BMES Industry Update**

An update from the Industry Committee Chair on industry trends, current BMES Industry offerings, and the Industry Committee's future plans for expansion of BMES industry programs and services. All BMES members are welcome to attend.

SATURDAY, October 10, 2015

8:00 AM - 9:30 AM **PLATFORM SESSIONS – SAT - I**

Track: Drug Delivery OP-Sat-I-I - Room 18

Delivery Systems for Immune Modulation

Chairs: Christopher Jewell, Kim Woodrow

8:00AM

S-Nitrosated Poly(Propylene Sulfide) Nanoparticles Exhibit Thiol-Dependent Transnitrosation and Toxicity Against Adult Female B. malayi Filarial Worms

A. SCHUDEL¹, T. KASSIS¹, J. DIXON¹, AND S. THOMAS¹ ¹Georgia Institute of Technology, Atlanta, GA

8:15AM

Immunogenicity of Rapidly Degrading Polymers Evolves During Degradation

J. I. ANDORKO¹ AND C. M. JEWELL^{1,2,3}

¹University of Maryland - College Park, College Park, MD ²University of Maryland Medical School, Baltimore, MD, ³Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD

Modulation of Macrophage Polarization at the Tissue-Implant Interface by Local Release of IL-4 from a Nanometer Thickness Coating on **Polypropylene Meshes**

D. HACHIM¹, S. LOPRESTI¹, D. MANI¹, AND B. BROWN¹,² ¹McGowan Institute/University of Pittsburgh, Pittsburgh, PA, ²Department of Obstetrics, Gynecology, and Reproductive Sciences, Pittsburgh, PA

8:45AM

Synthetic Glycopolymer-Antigen Conjugates Induce Antigen-Specific Tcell Deletion

D. WILSON¹, M. DAMO¹, S. KONTOS², G. DIACERI¹, AND J. HUBBELL²,³ ¹EPFL, Lausanne, Switzerland, ²Anokion, Lausanne, Switzerland,³The University of Chicago, Chicago, IL

9:00AM

Dlivery of Mycobacterium Tuberculosis Lipid Antigens for CDIrestricted T Cell Vaccination

D. KATS¹, D. VELLUTO¹, S. SHANG², C-R. WANG², AND E. SCOTT¹ ¹Northwestern University, Evanston, IL, ²Northwestern University, Chicago, IL

9:15AM

Delivery Of Engineered LPS-Free Recombinant Outer Membrane Vesicle Vaccine Protects Mice Against Lethal Influenza Challenge H. WATKINS¹, C. RAPPAZZO¹, C. GUARINO¹, G. WHITTAKER¹, M. DELISA¹, AND D. PUTNAM¹ ¹Cornell University, Ithaca, NY

Track: Cancer Technologies, Drug Delivers OP-Sat-I-2 - Room I9

Cancer Drug Delivery

Chairs: Michael King, Vivek Gupta

8:00AM

Erlotinib-cyclodextrin Complex loaded PLGA Nanoparticles for Enhanced Anti-proliferative Efficacy against Lung Cancer Cell Lines B. VAIDYA¹ AND V. GUPTA¹ ¹Keck Graduate Institute, Claremont, CA

ATFORM

8:15AM

Targeted Delivery of MicroRNA by Engineered Lipid Nanoparticles for the Treatment of Metastatic Breast Cancer S HAYWARD¹ D FRANCIS¹ AND S KIDAMBI¹

¹University of Nebraska-Lincoln, Lincoln, NF

8:30AM

Super Natural Killer Cells That Target Metastases in the Tumor Draining Lymph Nodes

S. CHANDRASEKARAN¹, M. CHAN¹, J. LI¹, AND M. KING¹ ¹Cornell University, Ithaca, NY

8:45AM

Integrating Cold Atmospheric Plasma and Core-shell Nanoparticle Drug Delivery System for Breast Cancer Treatment W. ZHU¹, S-J. LEE¹, M. KEIDAR¹, AND L. G. ZHANG¹ ¹The George Washington University, Washington, DC

9:00AM

Tunneling Nanotubes as a Conduit for Drug Resistance Transfer

M. WARE¹, V. KESHISHIAN¹, S. CORR^{1,2}, B. GODIN³, AND S. CURLEY¹ ¹Baylor College of Medicine, Houston, TX, ²Rice University, Houston, TX, ³Methodist Research Institute, Houston, TX

9:15AM

Determining The Influence Of Dynamic Paracrine Signaling On Tumor Progression In An Evolving Microenvironment M. GADDE¹ AND M. RYLANDER¹ ¹University of Texas at Austin, Austin, TX

Track: Cancer Technologies, Nano and Micro Technologies

OP-Sat-I-3 - Room 20

Micro and Nanotechnologies for Cancer I

Chairs: Marissa Rylander, Rong Fan

8:00AM

M. NICHOLE BYLANDER University of Texas at Austin

8:15AM

Tumor Engineering to Elucidate The Effect of Mild Hyperthermia on Transport of Carbon Nanohorns

M. DEWITT¹, D. MARRINAN², A. PEKKANEN¹, R. DAVALOS¹, AND M. N. RYLANDER² ¹Virginia Tech-Wake Forest, Blacksburg, VA, ²University of Texas at Austin, Austin, TX

8:30AM

Abnormal Cytokine Functions in "Normal" Hematopoietic Cells Contribute to MPN Pathogenesis Revealed by Single-Cell, High-Plex Cytokine Analysis

R. FAN¹

¹Yale University, New Haven, CT

8:45AM

Programmable Bacteria for Diagnosis and Treatment of Cancer

C. BUSS¹, T. DANINO¹, M. O. DIN², A. PRINDLE², J. HASTY², AND S. BHATIA¹,³ ¹Massachusetts Institute of Technology, Cambridge, MA, ²University of California, San Diego, La Jolla, CA, ³Howard Hughes Medical Institute, Cambridge, MA

9:00AM

Monitoring Protein Synthesis in Single Live Cancer Cells

C. TU¹, J. ZOLDAN¹, Z. SMILANSKY², AND N. RAJE³ ¹University of Texas at Austin, Austin, TX, ²Anima Cell Metrology, Inc, Kfar Sava, Israel,³Massachusetts General Hospital, Boston, MA

P = Poster Session **OP** = Oral Presentation 🔵 = Reviewer Choice Award

9:15AM

Inhalable Protease Nanosensors For Urinary Monitoring Of Lung Cancer A. WARREN¹, T. TAMMELA¹, T. JACKS¹, AND S. BHATIA ¹Massachusetts Institute of Technology, Cambridge, MA

Track: Biomaterials

OP-Sat-I-4 - Room 21

Biomaterials Design

Chairs: Nasim Annabi, Chandra Kothapalli

8:00AM

Writing in the Granular Gel Medium T. BHATTACHARJEE¹, K. ROWE¹, T. ANGELINI¹, AND W. G. SAWYER¹ ¹University of Florida, Gainesville, FL

8:15AM

Engineering Sliding Hydrogels with Molecular Mobility as 3D Stem Cell Niche X. TONG¹ AND E YANG¹ ¹Stanford University, Stanford, CA

8:30AM

The Toughening Mechanism of the Aquatic Caddisworm Silk N. ASHTON¹ AND R. STEWART²

¹university of utah, SLC, UT, ²university of utah, Salt Lake City, UT

8:45AM

Novel Swelling Technique to Create Nitric Oxide (NO) Releasing Surfaces for Improved Hemocompatibility E. BRISBOIS¹, T. MAJOR¹, H. HANDA², AND R. BARTLETT¹

¹University of Michigan, Ann Arbor, MI, ²University of Georgia, Athens, GA

9:00AM DREAM TEAM & CENTER

Effect of Hydroxyapatite Materials Properties on Fibronectin Adsorption and Breast Cancer Metastasis

F. WU¹, K. WANG¹, J. H. CHANG¹, C. FISCHBACH¹,², L. ESTROFF¹,², AND D. GOURDON¹ ¹Cornell University, Ithaca, NY, ²Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY

9:15AM

FEM based Multiphysics Modeling of Oxygen Release and Transport from OxySite for Pancreatic Islet Implants M. CORONEL¹ AND C. STABLER¹ ¹University of Florida, Gainesville, FL

Track: Device Technologies and Biomedical Robotics

OP-Sat-1-5 - Room 22

Biosensors

Chairs: Saion Sinha, Daniel Ratner

8:00AM

Sub-Wavelength Gratings For Label-Free Biological Sensing

S. SCHMIDT¹, J. FLUECKIGER², V. DONZELLA², L. CHROSTOWSKI², AND D. RATNER¹ ¹University of Washington, Seattle, WA, ²University of British Columbia, Vancouver, BC, Canada

8:15AM

Random And Aligned Buckypaper As Bionanosensor For DNA Detection

S. SINHA¹, S. KAEWYOO¹, AND Y. YOU¹ ¹University Of New Haven, West Haven, CT

8:30AM

Cell-Based, Label-Free Screening With Self-Assembled Monolayers and MALDI-Mass Spectrometry

E. BERNS¹, M. CABEZAS¹, A. EISENBERG¹, AND M. MRKSICH¹ ¹Northwestern University, Evanston, IL

8:45AM

RT-LAMP On a Chip for Bloodborne Viral Load Diagnostics

G. DAMHORST¹, W. CHEN¹, C. DUARTE-GUEVARA¹, B. CUNNINGHAM¹, AND R. BASHIR¹ ¹University of Illinois at Urbana-Champaign, Urbana, IL

9:00AM

Effects of Different Modes of Vibratory Feedback on Muscle Use During a Redundant, One-Dimensional Myocontrol Task

S. LIYANAGAMAGE¹, M. BERTUCCO¹, N. BHANPURI², AND T. SANGER¹,³ ¹University of Southern California, Los Angeles, CA, ²NorthShore University HealthSystem, Chicago, IL, ³Children's Hospital Los Angeles, Los Angeles, CA

9:15AM

Smartphone-Based Absorption Spectroscopy: Moving Toward a Truly Handheld Device

K. LONG¹,² ¹University of Illinois at Urbana-Champaign, Urbana, IL, ²University of Illinois College of Medicine, Urbana, IL

Track: Biomaterials OP-Sat-I-6 - Room 23

Biomaterials for Controlling Cell Environment II

Chairs: John Slater, Amrinder Nain

8:00AM

Poly(ethylene glycol) Hydrogels To Promote *In Vitro* Salivary Gland Morphogenesis From Primary Submandibular Gland Cells A. SHUBIN¹, T. FELONG¹, C. OVITT¹, AND D. BENOIT¹ ¹University of Rochester, Rochester, NY

8:15AM

Gold Nanorod Incorporated Gelatin-based Hybrid Hydrogels for Myocardial Tissue Engineering A. NAVAEI¹, R. SULLIVAN¹, AND M. NIKKHAH¹ ¹Arizona State University Tempe. A7

8:30AM

Injectable Hydrogels with Double Network Formation To Promote Angiogenesis

L. CAI¹ AND S. HEILSHORN¹ ¹Stanford University, Stanford, CA

8:45AM

Modulating Kinetics of Vasculogenesis Through Control of MMP2 Activity J. HAMMER¹, R. SCHWELLER¹, AND J. WEST¹

¹Duke University, Durham, NC

9:00AM

Macroporous Microribbon-Based Hydrogels Accelerate Neocartilage Formation By Mesenchymal Stem Cells *In Vitro*o

B. CONRAD¹, L-H. HAN², AND F. YANG¹ ¹Stanford University, Stanford, CA, ²Drexel University, Philadelphia, PA

9:15AM

A 3D-printed Polymeric System for Cell Encapsulation and Controlled Drug Release

M. FARINA¹, C. FILGUEIRA¹, U. THEKKEDATH¹, D. FRAGA¹, O. SABEK¹, AND A. GRATTONI¹ ¹Houston Methodist Research Institute, Houston, TX

Track: Tissue Engineering

OP-Sat-I-7 - Room I3

Printing and Patterning in Tissue Engineering

Chairs: Adam Feinberg, Jordan Miller

8:00AM DREAM TEAM & CENTER

DNA Programmed Assembling of Multiscale and Multicomponent 3D Tissues

M. TODHUNTER¹, N. JEE¹, A. HUGHES¹, M. COYLE¹, A. CERCHIARI¹, J. GARBE¹,², T. DESAI¹, M. LABARGE², AND Z. GARTNER¹ 'University of California, San Francisco, San Francisco, CA, ²Lawrence Berkeley National Lab, Berkeley, CA

8:15AM DREAM TEAM & CENTER

Engineered Ectopic Human Livers Organize And Proliferate In Vivo In Response To Regenerative Cues

V. RAMANAN¹, K. STEVENS¹, M. SCULL², R. CHATURVEDI³, C. FORTIN¹, Y. DE JONG², C. CHEN³, C. RICE², AND S. BHATIA¹,⁴

¹Massachusetts Institute of Technology, Cambridge, MA, ²The Rockefeller University, New York, NY, ³Boston University, Boston, MA, ⁴Howard Hughes Medical Institute, Cambridge, MA

8:30AM DREAM TEAM & CENTER

High-Resolution 3D Bio-Printing Apparatus for Applications in Patterning of Microvasculature

R. RAMAN¹, B. BHADURI¹, M. K. LEE¹, A. SHKUMATOV¹, G. POPESCU¹, H. J. KONG¹, AND R. BASHIR¹

¹University of Illinois at Urbana-Champaign, Urbana, IL

8:45AM

Engineering Aligned Muscle Tissues in 3D using Microribbon-based Hydrogels

S. LEE¹, X. TONG¹, L-H. HAN¹, AND F. YANG¹ ¹Stanford University, Stanford, CA

9:00AM

Complex Cellular Manifolds in a Granular Gel

T. BHATTACHARJEE¹, K. ROWE¹, W. G. SAWYER¹, AND T. ANGELINI¹ ¹University of Florida, gainesville, FL

9:15AM

Vascularized Skin Tissue with Dynamic Perfusion Created through 3D Bioprinting

V. LEE1, P. KARANDE1, S-S. YOO2, AND G. DAI1

¹Rensselaer Polytechnic Institute, Troy, NY, ²Harvard Medical School / Brigham and Women's Hospital, Boston, MA

LATFORM

Track: Tissue Engineering, Drug Delivery OP-Sat-I-8 - Room 14

Tissue Engineered Models for Study of Disease and Drug Discovery II

Chairs: Claudia Fischbach, David Wood

8:00AM

Physiologically Relevant Drug Testing *In Vitro* - An Integrated Multiple Organoid-on-a-chip Approach

A. ŠKARDAL¹, A. KLEENSANG², M. DEVARASETTY¹, H-W. KANG¹, I. MEAD¹, C. BISHOP¹, T. SHUPE¹, S-J. LEE¹, J. JACKSON¹, J. YOO¹, T. HARTUNG², S. SOKER¹, AND A. ATALA¹ ¹Wake Forest School of Medicine, Winston-Salem, NC, ²Johns Hopkins University, Baltimore, MD

8:15AM

Engineering an In Vitro 3D Brain Inflammation Model

Y. LEE¹ AND H. CHO¹ ¹Virginia Tech, Blacksburg, VA

8:30AM

Characterization of Magnetic Nanoparticle Permeability by a Triple Cocultured InVitro Blood-Brain Barrier Model

D. SHI¹, G. MI¹, S. BHATTACHARYA², N. SUPRABHA², AND T. WEBSTER¹ ¹Northeastern University, Boston, MA, ²Materials Science and Technology Division, Jamshedpur, India

8:45AM

Synergistic Regulation of Breast Cancer Paclitaxel Resistance by 3D Culture, Hypoxia, and Bacterial Quorum-Sensing Signals B. BALHOUSE¹ AND S. VERBRIDGE¹

¹Virginia Tech, Blacksburg, VA

9:00AM

Microengineered Co-cultures of Human Liver Cells for Studying Drug-Inflammation Interactions C. LIN¹ AND S. KHETANI¹

¹Colorado State University, Fort Collins, CO

9:15AM

Human Mature White Adipose Tissue Model for Studying Lipolytic Responses

R. ABBOTT¹, R. WANG¹, M. REAGAN², F. BOROWSKY¹, I. GHOBRIAL², AND D. KAPLAN¹ ¹Tufts University, Medford, MA, ²Harvard Institute, Boston, MA

Sat-1

Track: Neural Engineering OP-Sat-I-9 - Room I5

Neural Coding and Modeling

Chairs: Ayesgul Gunduz, Samhita Rhodes, Cynthia Chestek

8:00AM

Computational Modeling of Neural Excitability at Colorectal Afferent Endings and Somata B. FENG¹ 'University of Connecticut, Storrs, CT

8:15AM

Prediction of the Outcome of Subthalamic Nucleus Deep Brain Stimulation in Patients with Parkinson's Disease K. KOSTOGLOU¹ AND G. MITSIS¹

¹Mcgill University, Montreal, QC, Canada

P = Poster Session OP = Oral Presentation 2 = Reviewer Choice Award

8:30AM

Characterization of Quantitative Electroencephalography and Heart Rate Variability during Simulated Drowsy Driving

C. $\mathsf{CHen}^1,$ C. $\mathsf{ZHang}^2,$ W. $\mathsf{WAng}^2,$ C. $\mathsf{Zeng}^3,$ X. $\mathsf{Meng}^2,$ B. $\mathsf{CHeng}^2,$ and J. $\mathsf{Cavanaugh}^1$

¹Wayne State University, Detroit, Ml, ²Tsinghua University, Beijing, China, People's Republic of, ³Shihezi University, Shihezi, China, People's Republic of

8:45AM

Near Field Axonal Communication Networks And Their Role In Neurodegenerative Diseases S. MORGERA¹

¹University of South Florida, Tampa, FL

9:00AM

Automated Classification of ECoG Signals using Component Analysis and Support Vector Machines

P. BALASUBRAMANIAN¹, P. FISHBACK², R. BOSSEMEYER¹, K. ELISEVICH³, AND S. RHODES¹

¹Grand Valley State University, Grand Rapids, MI, ²Grand Valley State University, Allendale, MI, ³Spectrum Health Medical Group, Grand Rapids, MI

9:15AM

Technologies for Engineering Neuronal Architectures to Study Information Processing in Living Networks B. Wheeler¹, T. DeMarse¹, A. Bhattacharya², and G. Brewer² 'University of Florida, Gainesville, FL, ²University of California, Irvine, Irvine, CA

Track: Device Technologies and Biomedical Robotics

OP-Sat-I-I0 - Room 16

Wearable Sensors and Devices

Chairs: Helen Huang, Smitha Rao

8:00AM

Noninvasive, Long-term Wearable, Multiparametric Epidermal Sensor Systems (ESS) N. Lu¹, S. Yang¹, Y-C. Chen¹, and L. Nicolini¹

¹University of Texas at Austin, Austin, TX

8:15AM

Combined Shear/Pressure Sensor for Monitoring of Prosthetic Socket Interface Stresses

F. AHMED¹, S. EILBEIGI¹, AND H. HUANG¹ ¹University of Texas Arlington, Arlington, TX

8:30AM

Iontronic Film: Flexible Transparent Ionic Gel for Interfacial Capacitive Pressure Sensing

B. NIE¹, J. CAO¹, P. LI¹, J. BRANDT², AND T. PAN¹ ¹University of California, Davis, Davis, CA, ²University of California, Davis, Sacramento, CA

8:45AM

Advancing the State of the Heart - ;the Integrated Vector cardiogram (iVCG)

C. PERUMALLA¹, T. KETTERL¹, R. GITLIN¹, P. FABRI¹, AND G. ARROBO¹ ¹University of South Florida, Tampa, FL

9:00AM

Non-destructive and Rapid Plant Chlorophyll Quantification Using Google Glass

B. CORTAZAR¹, H. CEYLAN KOYDEMIR¹, D. TSENG¹, S. FENG¹, AND A. OZCAN¹ ¹UCLA, Los Angeles, CA

9:15AM

Telemedical Wearable Sensing Platform for Management of Chronic Venous Disorder

R. LI¹, B. NIE¹, C. ZHAI¹, J. CAO¹, J. PAN^{1,2}, J. LI¹, YW. CHI³, AND T. PAN¹ ¹University of California, Davis, Davis, CA, ²Zhejiang University of Technology, Hangzhou, China, People's Republic of, ³UC Davis Medical Group, Sacramento, CA

Track: Nano to Micro Technologies, Device Technologies and Biomedical Robotics OP-Sat-I-II - Room 3-4

Cardiac Regeneration and Stem Cells

Chairs: Renita Horton, Lauren Black

8:00AM

3D Tissue-engineered Microenvironment Enhances Efficiency of Direct Cardiac Reprogramming

Y. LI¹, S. DAL-PRA¹, T. JAYAWARDENA¹, C. HODGKINSON¹, M. MIROTSOU¹, V. DZAU¹, AND N. BURSAC¹

¹Duke University, Durham, NC

8:15AM

Development of Human Cardiac Tissues through Direct Hydrogel Encapsulation of Pluripotent Stem Cells

P. KERSCHER¹, I. TURNBULL², A. HODGE¹, J. KIM¹, D. SELIKTAR³, C. EASLEY¹, K. COSTA², AND E. LIPKE¹

¹Auburn University, Auburn, AL, ²Icahn School of Medicine at Mount Sinai, New York, NY,³Technion-Israel Institute of Technology, Haifa, Israel

8:30AM

A Computational Model of Neuregulin-Induced Proliferation Signaling Predicts Novel Drug Target Combinations for Cardiac Myocyte Regeneration.

L. WOO¹

¹University of Virginia, Charlottesville, VA

8:45AM DREAM TEAM & CENTER

Modeling Familial Dilated Cardiomyopathy Using Human Pluripotent Stem Cells

C. WEAVER^{1,2}, H. TAYLOR-WEINER^{1,2}, D. DEACON³, P. MALI¹, E. ADLER³, N. CHI³, AND A. ENGLER^{1,2}

¹UC San Diego, San Diego, CA, ²Sanford Consortium for Regenerative Medicine, San Diego, CA, ³UC San Diego School of Medicine, San Diego, CA

9:00AM

Design and Validation of a Biomimetic Human Whole-Heart Bioreactor

J. CHAREST¹, J. GUYETTE¹,², AND H. OTT¹,² ¹Massachusetts General Hospital, Boston, MA, ²Harvard Medical School, Boston, MA

9:15AM

Microenvironmental Control of Cardiac Reprogramming

Y. KONG¹, A. RIOJA¹, Y. SUN¹, J. FU¹, AND A. PUTNAM¹ ¹University of Michigan, Ann Arbor, MI

Track: Biomedical Imaging and Opticsg OP-Sat-I-I2 - Room 5-6

Molecular Imaging

Chairs: Terry Matsunaga, Sourabh Shukla

8:00AM

Label-Free Molecular Imaging by Nanotip Ambient Ionization Mass Spectrometry

J. K. LEE^{1,2}, Z. ZHOU¹, H. G. NAM^{2,3}, AND R. ZARE¹

¹Stanford University, Stanford, CA, ²Institute for Basic Science, Daegu, Korea, Republic of,²DGIST, Daegu, Korea, Republic of

8:15AM

High Resolution Imaging of Biofunctionalized Rare-Earth Nanocomposites for Tumor Detection

L. HIGGINS¹, M. ZEVON¹, V. GANAPATHY¹, R. RIMAN¹, C. ROTH¹, P. MOGHE¹, AND M. PIERCE¹

¹Rutgers, The State University of New Jersey, Piscataway, NJ

8:30AM

Design of Switchable Interpolymer Complex - Superparamagnetic Iron Oxide Nanoparticles (IPC-SPIOs) Based on Environmental Conditions with Potential for MR contrast Agents E. Yoo¹

¹Binghamton University (SUNY), Binghamton, NY

8:45AM

Evidence for Intracellular Delivery and Ultrasound-Mediated Activation of Folate Receptor-Targeted Phase-Change Contrast Agents in Breast Tumor Cells *In Vitro*.

J. MARSHALEK¹, D. ROBLES¹, P. INGRAM¹, J. NETHERTON², R. WITTE¹, P. DAYTON³, P. SHEERAN⁴, AND T. MATSUNAGA¹

¹University of Arizona, Tucson, AZ, ²University of ARizona, Tucson, AZ, ³University of North Carolina Chapel Hill, Chapel Hill, NC, ⁴University of Toronto, Toronto, Canada

9:00AM

Characterization of the Structural Morphology of PEG on Filamentous Viral Nanoparticles

N. GULATI¹, K. LEE¹, N. STEINMETZ¹, AND P. STEWART¹ ¹Case Western Reserve University, Cleveland, OH

9:15AM

Photoacoustic Microscopy of Gold Nanoparticles: Uptake Dynamics

E. YANG¹, H. ZHANG¹, AND B. DONG¹ ¹Northwestern University, Evanston, IL

Track: Biomedical Imaging and Optics

OP-Sat-I-I3 - Room II

Optical Imaging I

Chairs: Jonathan Gunn, Javier A. Jo

8:00AM

Time-Reversed Ultrasonically Encoded (TRUE) Optical Focusing Deep Inside Dynamic Scattering Media

Y. LIU¹, P. LAI¹, C. MA¹, X. XU¹, A. GRABAR², AND L. WANG¹ ¹Washington University in St. Louis, Saint Louis, MO, ²Uzhgorod National University, Uzhgorod, Ukraine

8:15AM

Quantitative Fluorescence Molecular Tomography for *In Vitro* Measurement of Targeted and Activatable Near Infrared Fluorescent Molecular Probes.

D. MAJI¹, M. ZHOU¹, P. SARDER¹, M. SHOKEEN¹, J. P. CULVER¹, AND S. ACHILEFU¹ ¹Washington University in St. Louis, St. Louis, MO

8:30AM

Fast Optimization Algorithm for High Resolution Diffuse Optical Tomography

T. BHOWMIK¹, Z. YE¹, H. LIU¹, AND S. ORAINTARA¹ ¹University of Texas at Arlington, Arlington, TX

8:45AM

Optical Super Resolution Imaging in Deep Tissue

B. URBAN¹, Y. KOZOROVITSKIY¹, S. DEVRIES², AND H. ZHANG¹ ¹Northwestern University, Evanston, IL, ²Northwestern University, Chicago, IL

9:00AM

Real-Time Optical Characterization of Vasculature for Surgical Applications

J. GUNN¹

¹Briteseed, LLC, Chicago, IL

9:15AM

Longitudinal Two-Photon Imaging of Cortical Microvessels And Neural Activation in Awake Marmoset Monkeys

T. SANTISAKULTARM¹, C. KERSBERGEN¹, D. BANDY¹, D. IDE¹, S-H. CHOI¹, AND A. SILVA² ¹National Institutes of Health, Bethesda, MD, ²National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD

Track: Neural Engineering OP-Sat-1-14 - Room 12

CNS Injury: SCI, Stroke, TBI and Concussions I

Chairs: Stephanie Seidlits, Kyle Lampe

8:00AM

Correlation of Impact Acceleration and Neuropsychological Performance in Unconcussed High School and Collegiate Football Players

M. LAPLACA¹, T. ESPINOZA², N. CIARAVELLA², K. HENDERSHOT², B. LIU³, S. SMITH³, A. KOBIC², C. CROOKS³, R. GORE³, A. KNEZEVIC², S. PHELPS³, AND D. WRIGHT² ¹Georgia Tech /Emory, Atlanta, GA, ²Emory University, Atlanta, GA, ³Georgia Tech Research Institute, Atlanta, GA

8:15AM

In Vitro Injury Characterization of Brain Cells to Overpressure Insult N. HLAVAC¹, S. MILLER¹, AND P. VANDEVORD¹,²

¹Virginia Tech, Blacksburg, VA, ²Salem Veteran Affairs Medical Center, Salem, VA

8:30AM

Magnitude Susceptibility-weighted Imaging Analysis on Neurophysiological Changes of High School Female Soccer Athletes X. MAO¹, J. MURRAY², AND T. TALAVAGE¹

¹Purdue University, West Lafayette, IN, ²General Electric Healthcare, Waukesha, WI

8:45AM

Long-Interval Inhibition, Not Cortical Silent Period, Reveals Sub-Populations Among Stroke Survivors E. WALKER^{1,2}, V. LITTLE², AND C. PATTEN^{1,2}

¹University of Florida, Gainesville, FL, ²Malcom Randall VAMC, Gainesville, FL

9:00AM

Quantitative Electroencephalography Analysis of Blast Induced Brain Injury in A Swine Model

C. CHEN¹, C. ZHOU¹, J. CAVANAUGH¹, S. KALLAKURI¹, A. DESAI¹, L. ZHANG¹, AND A. KING¹ ¹Wayne State University, Detroit, MI

9:15AM

Trans-system Neuroprotective Mechanisms Against Ischemic Injury S. LIU¹, B. ZHANG¹, AND Y. WU¹ 'Northwestern University, Evanston, II

Track: Biomechanics, Cellular and Molecular Bioengineering

OP-Sat-I-I5 - Room I7

Cell and Tissue Biomechanics II

Chairs: Taher Saif, Robert Steward

8:00AM

Single Molecular Forces Activate Notch Signaling F. CHOWDHURY¹, I. T. S. LI¹, T. NGO¹, B. J. LESLIE¹, X. WANG¹, Y. R. CHEMLA¹, T. M. LOHMAN² AND T. HA¹

¹University of Illinois at Urbana-Champaign, Urbana, IL, ²Washington University in Saint Louis, St. Louis, MO

8:15AM

Dynein-Generated Forces Bend and Reorient Microtubules by Acting upon Stationary Points

I. KENT¹, P. RANE¹, R. DICKINSON¹, A. LADD¹, AND T. LELE¹ ¹University of Florida, Gainesville, FL

8:30AM

Tissue Stiffness Regulates Tumor Cell Metabolism Through Cell Adhesion Signaling

L. CASSEREAU¹, M. BARNES¹, J. MOUW¹, J. LAKINS¹, AND V. WEAVER¹ ¹UCSF/UC Berkeley, San Francisco, CA

8:45AM

Tissue Transglutaminase 2 Regulation of Tumor Cell Tensional Homeostasis

F. BORDELEAU $^1\!,$ M. ANTONYAK $^1\!,$ A. SIMMONS $^1\!,$ M. LAMPI $^1\!,$ R. CERIONE $^1\!,$ and C. REINHART-KING 1

¹Cornell University, Ithaca, NY

9:00AM

Cell-generated Forces and Fibronectin Remodeling Drive Wound Closure in Engineered Microtissues

J. EYCKMANS¹,², M. SAKAR³, R. PIETERS³, D. EBERLI³, B. NELSON³, AND C. CHEN¹,² ¹Boston University, Boston, MA, ²Harvard University, Boston, MA, ³ETH Zurich, Zurich, Switzerland

9:15AM

The Effects of Stretch on N-cadherin in Stem Cell-derived Cardiomyocytes

R. WILSON¹, A. RIBEIRO¹, AND B. PRUITT¹ ¹Stanford University, Stanford, CA

Track: Drug Delivery OP-Sat-I-I6 - Room 10

Nucleic Acid Delivery

Chairs: James Moon, Kim Woodrow

8:00AM DREAM TEAM & CENTER

Zein-Chitosan Micro/Nanoparticles for Oral Gene Delivery and DNA Vaccination

E. FARRIS¹, A. RAMER-TAIT¹, D. BROWN¹, AND A. PANNIER¹ ¹University of Nebraska-Lincoln, Lincoln, NE

8:15AM

Targeted RNA Interference for Traumatic Brain Injury E. J. KWON¹, M. SKALAK¹, R. LO BU¹, AND S. N. BHATIA¹

¹Massachusetts Institute of Technology, Cambridge, MA

PLATFORM SESSIONS

8:30AM

Nanoparticles for miRNA Delivery as a Potent and Combinatorial Treatment for Glioblastoma

K. Kozielski¹, H. Lopez-Bertoni¹, B. Lal¹, H. Vaughan ¹, J. Laterra¹, and J. Green¹

¹Johns Hopkins University, Baltimore, MD

8:45AM

DNA Nanotechnology for Molecularly Self-assembled Nanoparticles and Theirs Drug Delivery Applications

B. JANG¹, C. A. HONG¹, AND H. LEE¹ ¹*Ewha Womans University, Seoul, Korea, Republic of*

9:00AM

Microbubbles and Ultrasound for Improved Gene Transfer to the Brain

J-K. Y. TAN¹, B. PHAM¹, D. L. SELLERS¹, D. O. MARIS¹, N. COULSON¹, P. D. MOURAD¹, P. J. HORNER¹, AND S. H. PUN¹ ¹University of Washington, Seattle, WA

9:15AM

Local Delivery of siRNA from ROS-Degradable Scaffolds to Promote Angiogenesis in Diabetic Wounds

J. MARTIN¹, C. NELSON¹, M. GUPTA¹, F. YU², J. DAVIDSON²,³, S. GUELCHER¹, AND C. DUVALL¹

¹Vanderbilt University, Nashville, TN, ²Vanderbilt University Medical Center, Nashville, TN, ³Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN

Track: Nano and Micro Technologies OP-Sat-I-I7 - Room 7-8

Cell/Material Interfaces

Chairs: Jia Yao, Chong Xie

8:00AM

Microfluidic Tools to Probe the Interdependence of Phagocytosis and Chemotaxis in Human Neutrophils

D. IRIMIA¹,²,³

¹Massachusetts General Hospital, Charlestown, MA, ²Shriners Burns Hospital, Boston, MA,³Harvard Medical School, Boston, MA

8:15AM

Development of the Highly Flexible Au Electrode on the Medical Band-aid as a Disposable Skin Sensor

B. J. KIM¹ AND S. YANG¹ ¹Gwangju Institute of Science and Technology, Gwangju, Korea, Republic of

8:30AM

Single-Cell Interfaces for Intracellular Measurements

K. GARDE¹, J. YAN¹, P. CHINNAPPAN¹, AND S. ARAVAMUDHAN¹ ¹North Carolina A&T State University, Greensboro, NC

8:45AM

Probing Single Macrophage Secretion In Controlled Adhesive Microenvironment

F. MCWHORTER¹, T. SMITH¹, L. MCCARTHY¹, AND W. LIU¹ ¹University of California, Irvine, Irvine, CA

9:00AM

Drug Delivery In Nanochannels: Exploring Novel Phenomena In Nanoscale Fluidics Through Scaling Degrees Of Spatial And Electrostatic Confinement

G. BRUNO^{1,2}, R. HOOD¹, AND A. GRATTONI¹

¹Houston Methodist Research Institute, Houston, TX, ²Politecnico di Torino, Turin, Italy

9:15AM

The Significance of the Protein Corona for Plant Virus-Based Nanoparticles' Bio-Nano Interactions.

A. PITEK¹, A. WEN¹, AND N. STEINMETZ¹ ¹Case Western Reserve University. Cleveland. OH

Track: Cardiovascular Engineering

OP-Sat-I-18 - Room I

Cardiovascular Flow Modeling in Health and Disease

Chairs: Cynthia Reinhart-King, Lashan Simpson

8:00AM

Matrix Stiffening Inhibits Endothelial Cell Nitric Oxide Production and Decreases Barrier Integrity in Response to Fluid Shear Stress

J. KOHN¹, D. ZHOU¹, F. BORDELEAU¹, A. ZHOU¹, B. MASON¹, M. MITCHELL¹, M. KING¹, AND C. REINHART-KING¹ ⁷Cornell University, Ithaca, NY

8:15AM

Simulation of the Microscale Process of Stent Thrombosis with Stent Malapposition

J. CHESNUTT¹ AND H-C. HAN¹,² ¹The University of Texas at San Antonio, San Antonio, TX, ²UTSA-UTHSCSA, San Antonio, TX

8:30AM

Effect of Different Diode Type Mitral Valve Models on Left Ventricular Flow Pattern

A. SLOTOSCH¹, J. KRIEGSEIS¹, AND B. FROHNAPFEL¹ ¹Karlsruhe Institute of Technology, Karlsruhe, Germany

8:45AM

Wavelength of Light Stimulus Determines Effectiveness of Optogenetics-Based Ventricular Defibrillation in a Computational Model of the Human Heart

T. KARATHANOS¹, P. BOYLE¹, J. BAYER², D. WANG¹, AND N. TRAYANOVA¹ ¹Johns Hopkins University, Baltimore, MD, ²University of Bordeaux, Pessac, France

9:00AM

Analytical Modeling of The Feto-Placental Vasculature

P. MIRBOD¹, Z. WU¹, AND M. JIRKOVSKA² ¹Clarkson University, Potsdam, NY, ²Institute of Histology and Embryology, Charles University, Prague, Czech Republic

9:15AM

Modeling Changes in Flow Conditions throughout Simulated Aneurysm Expansions

D. PETERSON¹, S. NIDADAVOLU², AND S. KUDERNATSCH¹ ¹Texas A&M University - Texarkana, Texarkana, TX, ²CD-adapco, Melville, NY

Track: Undergraduate Research, Design and Leadership

Special Session - Room 9

Undergraduate Research, Design and Leadership I

Chairs: Hans van Oostrom, Walter O'Dell

8:00AM

Lipid Bilayer Formation In PDMS Microfluidics Towards Highly Stable Artificial Cell Membrane A. LAPRADE¹, X. LOU¹

¹The Catholic University of America, Washington, DC

8:09AM

Image Viewer for a Genome-Wide shRNA Cardiomyocyte Proliferation Screen

J. HULSE¹, P.TAN², J. SAUCERMAN³, AND J. VAN BERLO⁴ ¹University of Virginia, Charlottesville, VA, ²University of Virginia, ²²³⁰⁴, VA, ³University of Virginia, Chalrottesville, VA, ⁴University of Minnesota, Minneapolis, MN

8:18AM

Infant Pelvis and Femur Models Representing All Severities of DDH from Ortolani's Collection

B. JONES¹, G. RODRIGUEZ¹, AND S. SERRA¹ ¹University of Central Florida, Orlando, FL

8:27AM

Contralateral Limb Differences In Knee Kinetics After Anterior Cruciate Ligament Reconstruction

A. SIVAPRAKASAM¹, J. IRRGANG¹, F. FU¹, AND S. TASHMAN¹ ¹University of Pittsburgh, Pittsburgh, PA

8:36AM

Mechanical Characterization of Aligned Fibrin Gels by Dynamic Mechanical Shear, Indentation, and Magnetic Resonance Elastography

A. BENEGAL¹, J. SCHMIDT¹, C. WALKER¹, R. OKAMOTO¹, AND P. BAYLY¹ ¹Washington University in St. Louis, St. Louis, MO

8:45AM

Sat-

Regional Variations of Residual Strain Within the Murine Female Reproductive System

D. BIVONA¹ AND K. MILLER¹

¹Tulane University, New Orleans, LA

8:54AM

Custom MATLAB Doppler Processing Provides a Valuable Tool in Hemodynamic Analysis

A. MEDINA¹, R. VANDERPOOL¹, R. TARANTELLI¹, K. NORRIS¹, AND M. SIMON¹ ¹University of Pittsburgh, Pittsburgh, PA

9:03AM

The Effect Of Mitral Valve Prosthesis Design On Intraventricular Fluid Dynamics: An *In Vitro* Study

J. CAMPOS¹

¹San Diego State University, San Diego, CA

9:12AM

Engineering Artificial Mechanosensitive Cells by Combining Cell Free Expression and Ultrathin Double Emulsion Template

D. GEBREZGIABHIER¹, D. GEBREZGIABHIER¹, AND A. LIU²

¹Grand Rapids Community College, Grand Rapids, MI, ²University of Michigan, Ann Arbor, MI

9:21AM

Three-dimensionally Printed Antibiotic-Eluting Prosthesis for the Treatment of Superior Canal Dehiscence Syndrome

M. COTLER^{1,2}, N. BLACK^{1,2}, E. KOZIN^{3,4}, D. LEE^{3,4}, A. REMENSCHNEIDER^{3,4}, AND J. LEWIS^{1,2}

¹Harvard University, Cambridge, MA, ²Wyss Institute For Biologically Inspired Engineering, Boston, MA, ³Massachusetts Eye and Ear Institute, Boston, MA, ⁴Harvard Medical School, Boston, MA

P = Poster Session
 OP = Oral Presentation
 2 = Reviewer Choice Award

1:30PM - 3:00PM PLATFORM SESSIONS Sat-2 2015 OCTOBER 10 SATURDAY

SATURDAY, October 10, 2015

I:30 PM - 3:00 PM PLATFORM SESSIONS - SAT - 2

Track: Drug Delivery, Cancer Technologies OP-Sat-2-1 - Room 18

Cancer Drug Delivery I

Chairs: Susan Thomas, Steve Jay

1:30PM

DNA Nanostructures as Targeted and Modular Delivery Vehicles for Cancer

P. CHAROENPHOL¹ AND H. BERMUDEZ¹ ¹University of Massachusetts, Amherst, MA

1:45PM

Novel Polypeptide-Based Gold Nanoshells For Photothermal Therapy

K. CHEN¹, K. MAYLE¹, K. DERN², V. WONG¹, S. SUNG¹, K. DING¹, A. RODRIGUEZ¹, H. ZHOU¹, Z. TAYLOR², W. GRUNDFEST², T. DEMING², AND D. KAMEl² ¹University of California Los Angeles, Los Angeles, CA, ²University of California at Los Angeles, Los Angeles, CA

2:00PM

Development Of A Filamentous Carrier For Chemotherapeutic Delivery

K. LEE¹, S. SHUKLA¹, K. WEBER BONK¹, R. KERI¹, AND N. STEINMETZ¹ ¹Case Western Reserve University, Cleveland, OH

2:15PM

Photodynamic Therapy of Skin Tumors using 5-Aminolevulinic Acid Coated Microneedles

A. JAIN¹, C. H. LEE¹, AND H. GILL¹ ¹Texas Tech University, Lubbock, TX

2:30PM

Cellular Protease-Mediated Programmed Delivery of Anticancer Cytokine and Small-Molecule Drug

Q. HU¹,², H. BOMBA¹, W. SUN¹,², T. JIANG¹,², R. MO¹,², AND Z. GU¹,²,³ ¹University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC,²University of North Carolina at Chapel Hill, Chapel Hill, NC, ³University of North Carolina School of Medicine, Chapel Hill, NC

2:45PM

Polymeric Nanoparticle-engineered Human Adipose-derived Stem Cells for Eradicating Brain Tumor in an Intracranial Xenograft Model of Glioblastoma

X. JIANG¹, C. WANG¹, S. FITCH², AND F. YANG¹ ¹Stanford University, Stanford, CA, ²Humboldt State University, Arcta, CA

Track: Cellular and Molecular Bioengineering OP-Sat-2-2 - Room 19

Molecular Bioengineering

Chairs: Mike Gower, Shiva Kotha

1:30PM

Increased Specificity Of microRNA Detection Using A Double Molecular Beacon Approach: Distinguishing Between Mature And Precursor miRNAs *in vitro*

A. M. JAMES ^{1,2}, M. BAKER¹, G. BAO², AND C. SEARLES¹

¹Emory University School of Medicine, Decatur, GA, ²Georgia Institute of Technology, Atlanta, GA

1:45PM

Transport of Amyloid- β Across the Blood Brain Barrier by P-glycoprotein

H. HOLT¹, E. MOORE¹, M. FAUCETT¹, F. GONZALEZ¹, AND M. MOSS¹ ¹University of South Carolina, Columbia, SC

2:00PM

Direct Measurement of Kinesin-I Mechanochemistry Using High Resolution Single-Molecule Microscopy

K. MICKOLAJCZYK¹, J. ANDRECKA², J. ORTEGA-ARROYO², P. KUKURA², AND W. HANCOCK¹

¹Penn State University, University Park, PA, ²Oxford, Oxford, United Kingdom

2:15PM

Comparison of Human and Mouse E-Selectin Binding to Sialyl-Lewisx: Theory and Experiment

A. ROCHELEAU¹, T. CAO¹, T. TAKATANI¹, AND M. KING¹ ¹Cornell University, Ithaca, NY

2:30PM

Requirements for Dynamic Instability and the Mechanisms of Microtubule-targeting Agents

B. CASTLE¹, S. MCCUBBIN², L. PRAHL¹, J. BERNENS¹, D. SEPT², AND D. ODDE¹ ¹University of Minnesota Twin Cities, Minneapolis, MN, ²University of Michigan, Ann Arbor, MI

2:45PM

Homogenous Amplified Digital Immunoassay D. KIM¹, A. OZCAN¹, O. GARNER¹, AND D. DI CARLO¹ ¹University of California, Los Angeles, Los Angeles, CA

Track: Cancer Technologies, Nano and Micro Technologies OP-Sat-2-3 - Room 20

Micro and Nanotechnologies for Cancer II

Chairs: Marissa Rylander, Rong Fan

1:30PM

Cell Mechanics-based Microfluidic Fractionation of Leukemia Cell Lines T. SULCHEK¹, G. WANG¹, C. TURBYFIELD¹, K. CRAWFORD¹, AND A. ALEXEEV¹ ¹Georgia Tech, Atlanta, GA

I:45PM

A Three Dimensional Micropatterned Tumor Model to Study Breast Cancer Cell Invasion

F. S. Sam 1, N. Peela 1, W. Christenson 1, D. Truong 1, A. Watson 2, G. Mouneimne 2, R. Ros 1, and M. Nikkhah 1

¹Arizona State University, Tempe, AZ, ²University of Arizona, Tucson, AZ

2:00PM

Synthetic Tumor Networks For Evaluating Tumor Metastasis A. SMITH¹, C. GARSON¹, S. PRADHAN², E. LIPKE², R. ARNOLD², B. PRABHAKARPANDIAN¹, AND K. PANT¹

¹CFD Research Corporation, Huntsville, AL, ²Auburn University, Auburn, AL

2:15PM

Multi Parametric Isolation Of Circulating Tumor Cells

A. MEUNIER¹, K. TURNER¹, J. A. HERNANDEZ CASTRO¹,², T. VERES¹,², AND D. JUNCKER¹ ¹McGill University, Montreal, QC, Canada, ²National Research Council of Canada, Boucherville, QC, Canada ATFORM.

2:30PM

Transferrin-modified Single Walled Carbon Nanohorns for Cellular Uptake

A. PEKKANEN¹, M. DEWITT¹, T. LONG¹, AND M. N. RYLANDER² ¹Virginia Tech, Blacksburg, VA, ²University of Texas at Austin, Austin, TX

2:45PM

Microfluidic Device for Mechanical Dissociation of Tumor Tissues into Single Cells

X. QIU¹, T. WESTERHOF¹, M. PENNELL¹, E. NELSON¹, AND J. HAUN¹ ¹University of California, Irvine, Irvine, CA

Track: Cancer Technologies OP-Sat-2-4 - Room 21

Computation Modeling Strategies and Other Topics in Cancer

Chairs: Jennifer Munson

1:30PM

Treatment Planning Algorithms for Irreversible Electroporation of Advanced Pancreatic Malignancies in Human Patients E. LATOUCHE¹, A. ROLONG¹, M. SANO², R. MARTIN³, AND R. DAVALOS¹

¹Virginia Tech, Blacksburg, VA, ²Stanford University, Palo Alto, CA, ³University of Louisville, Louisville, KY

1:45PM

Reconstruction of a Cellular Signaling Network in Embryonic Fibroblasts from Time-course Gene Expression Profiles Reveals the Mechanism of the SPRY2 Tumor-suppressor J.D. FINKLE¹, M. CIACCIO¹ AND N. BAGHERI¹

¹Northwestern University, Evanston, IL

2:00PM

Lymphatic Induced Stromal Activation Identified in a 3D in vitro Coculture Breast Cancer Model Translates to Similar Findings in vivo Using Mouse Models

J. MUNSON¹, M. BROGGI², I. VAN MIER², AND M. SWARTZ³ ¹University of Virginia, Charlottesville, VA, ²EPFL, Lausanne, Switzerland, ³University of Chicago, Chicago, IL

2:15PM

Characterization of ex vivo Health of MB231 and MCF7 Human Breast Cancer Xenograft Tumors in Mice

S. WILLETT¹, D. SMITH¹, C. EITEL¹, L. SCHWERDTFEGER¹, S. TOBET¹, R. BARTELS¹, AND D. GUSTAFSON¹

¹Colorado State University, Fort Collins, CO

2:30PM

The NCI's Provocative Questions Initiative: Program Outcomes and Current Opportunities

M. A. BERNY-LANG¹, J. S. H. LEE¹, AND E. J. GREENSPAN¹ ¹Center for Strategic Scientific Initiatives, Office of the Director, National Cancer Institute, National Institutes of Health, Bethesda, MD

2:45PM

Innovative Technologies for Cancer Research – NCI Strategy for Supporting Next Generation of Tools Needed Against Cancer A. DICKHERBER¹

¹National Institutes of Health, Marietta, GA

Track: Device Technologies and Biomedical Robotics

OP-Sat-2-5 - Room 22

Medical Device Development and Computational Models I

Chairs: Vittoria Flamini, Stephanie Fraley

1:30PM

Increasing Patient Compliance of an Incentive Spirometer through Gamification C. Dean¹, K. Weaver¹, P. Veliyara¹, J. Farris¹, and B. Nowak¹ Grand Valley State University, Grand Rapids, MI

1:45PM

Design and Testing of Specialized Bottles for Children Born with Cleft Lip and Palate

T. TRAN¹, K. SHAH¹, A. LU¹, M. HUIZENGA¹, C. PELLAND¹, K. KNAUS¹, K. BOROWITZ¹, AND S. BLEMKER¹ ¹University of Virginia, Charlottesville, VA

2:00PM

Acoustic Tweezing Thromboelastometry

D. LUO¹, R. G. HOLT², AND D. KHISMATULLIN¹ ¹Tulane University, New Orleans, LA, ²Boston University, Boston, MA

2:15PM

Rapid Hemolysis Detection for Diagnosis of Pregnancy Complications E. ARCHIBONG¹, K. KONNAIYAN¹, AND A. PYAYT¹

¹USF, Tampa, FL 2:30PM

Smart Automated Platform for Precise Manipulation of Population **Dynamics**

E. FONG^{1,2}, J. PENA¹, C. HUANG¹, S-Y. JUNG³, L. WEINBERGER^{3,4}, AND M. SHUSTEFF¹ ¹Lawrence Livermore National Laboratory, Livermore, CA, ²Boston University, Boston, MA,3The Gladstone Institutes, San Francisco, CA, 4University of California, San Francisco, San Francisco, CA

2:45PM DREAM TEAM & CENTER

Digital High Resolution Melt and Machine Learning Enable Broad-Based Molecular Profiling

S. FRALEY¹, P. ATHAMANOLAP², B. MASEK², J. HARDICK², K. CARROLL², Y.H. HSIEH², R. ROTHMAN², C. GAYDOS², T.H. WANG², AND S. YANG³ ¹University of California, San Diego, La Jolla, CA, ²Johns Hopkins University, Baltimore,

MD,3Stanford University, Stanford, CA

Track: Biomaterials OP-Sat-2-6 - Room 23

Biomaterials for Controlling Cell Environment III

Chairs: Kyle Allen, Jennifer Patterson

1:30PM

Sequential Interpenetrating Networks for Examination of the Dependence of MSC Differentiation on Cell Shape D. MUNOZ PINTO¹, A. JIMENEZ VERGARA¹, AND M. HAHN¹

¹Rensselaer Polytechnic Institute, Troy, NY

1:45PM

Nanoscale Topographies Of Protein Distributions In 3D Using Magnetic Field-induced Self-assembly To Mimic in vitro Tissue Microenvironment J. KIM¹ AND K. TANNER¹

¹National Institute of Health North Bethesda MD

P = Poster Session **OP** = Oral Presentation 👷 = Reviewer Choice Award

2:00PM

Mechanically Dynamic, Viscoelastic Hydrogels for Investigating Cellular Mechanotransduction

S. R. CALIARI¹, C. B. RODELL¹, M. PEREPELYUK¹, R. G. WELLS¹, AND J. A. BURDICK¹ ¹University of Pennsylvania, Philadelphia, PA

2:15PM

Micropatterned Multiwell Plates for High-Content Imaging and Mechanobiology of Human Cells

T. HARKNESS', J. D. MCNULTY', R. PRESTIL', S. K. SEYMOUR', T. KLANN', M. MURRELL', R. S. ASHTON', AND K. SAHA' 'University of Wisconsin-Madison, Madison, WI

"University of Wisconsin-Madison, Madison

2:30PM

Directed Migration of Schwann Cells on Durotactically Designed Biomaterials

E. EVANS¹, S. BRADY¹, AND D. HOFFMAN-KIM¹ ¹Brown University, Providence, RI

2:45PM

Regulating Stem Cell Fate Using Hydrogels with Tunable Stress Relaxation

L. Gu¹, O. Chaudhuri², M. Darnett¹, S. Young¹, D. Klumpers¹, J. Weaver¹, S. Bencherif¹, N. Huebsch³, and D. Mooney¹

¹Harvard University, Cambridge, MA, ²Stanford University, Stanford, CA, ³Gladstone Institute of Cardiovascular Disease, San Francisco, San Francisco, CA

Track: Tissue Engineering, Stem Cell Engineering OP-Sat-2-7 - Room 13

Stem Cells in Tissue Engineering

Chairs: Randolph Ashton, Sharon Gerecht

1:30PM

Influence of N-Cadherin Peptide Dose and Timing on MSC Chondrogenesis in 3D HA Hydrogels M. KWON¹, S. VEGA¹, R. MAUCK¹, AND J. BURDICK¹ ¹University of Pennsylvania, Philadelphia, PA

1:45PM

Molecular Mechanism for Endothelial Differentiation of Mesenchymal Stem Cells Driven By *In Situ* Crosslinkable Gelatin Hydrogels S. H. LEE¹, Y. LEE², K. PARK², AND H-J. SUNG¹

¹Vanderbilt University, Nashville, TN, ²Ajou University, Suwon, Korea, Republic of

2:00PM

Nanog Restores the Effects of Senescence on Extracellular Matrix Molecule Expression

N. RONG¹, P. MISTRIOTIS¹, X. WANG¹, G. TSEROPOULOS¹, AND S. T. ANDREADIS¹ ¹University at Buffalo (SUNY-Buffalo), Buffalo, NY

2:15PM

Construction of Islet-like Organoids and Maturation of hESCs-Derived Pancreatic Cells within 3D Biomimetic Scaffolds

K. YE¹, S. JIN¹, AND W. WANG² ¹Binghamton University, SUNY, Binghamton, NY, ²University of Arkansas, Fayetteville, AR

2:30PM

Tissue Engineering of 3D Vascularized Tissues Using iPS-derived Cells

Y. KUROKAWA¹, C. TU², L. LOCK², C. HUGHES², B. CONKLIN³, AND S. GEORGE¹ ¹Washington University in St. Louis, St. Louis, MO, ²University of California, Irvine, Irvine, CA,³Glastone Institute of Cardiovascular Disease, San Francisco, CA

2:45PM

Promoting Vascularized Bone Tissue Regeneration on Composite Scaffolds Using Spatial and Temporal Control

R. RODRIGUEZ¹, L. GAVIRIA¹, J. ONG¹, AND T. GUDA¹ ¹The University of Texas at San Antonio, San Antonio, TX

Track: Tissue Engineering OP-Sat-2-8 - Room 14

Tissue Engineered Models for Study of Disease and Drug Discovery III

Chairs: Scott Verbridge, Jamal Lewis

1:30PM

Pentosidine Crosslinks in Biomimetic Matrices Impair Osteogenic Potential of Mesenchymal Stem Cells

D. MITRA¹, H. FATAKDAWALA¹, L. MARCU¹, AND J. K. LEACH¹ ¹University of California, Davis, CA

1:45PM

Suppression of Osteogenic Differentiation of hMSCs by Osteolytic Tumor Cells

R. REESE¹, A. TONDON¹, C. GREGORY², AND R. KAUNAS¹ ¹Texas A&M University, College Station, TX, ²Texas A&M Health Science Center, Temple, TX

2:00PM

Biomaterial-guided Patient-specific Cardiac Disease Modeling and Drug Toxicity Screening

Z. MA¹, S. KOO¹, P. LOSKILL¹, N. HUEBSCH², A. MATHUR¹, C. GRIGOROPOULOS¹, B. CONKLIN², AND K. HEALY¹

¹University of California, Berkeley, Berkeley, CA, ²Gladstone Institute, San Francisco, CA 2:15PM

Creating Tissue Engineered Blood Vessels as Disease Models and Drug Screening Platforms

Z. CHEN¹, W. LEONG¹, O. ADEBOWALE¹, H. JI¹, Y. JUNG², AND K. LEONG¹ ¹Columbia University, New York, NY, ²Korea Institute of Science and Technology, Seoul, Korea, Republic of

2:30PM

Engineered Neuromuscular Junction Co-cultures Using Mechanically Patterned Substrates

C. WEAVER¹,² AND A. ENGLER¹,²

¹University of California San Diego, San Diego, CA, ²Sanford Consortium for Regenerative Medicine, San Diego, CA

2:45PM

The Third Dimension: Using the Right Mechanical Model for Mammary Morphogenesis

A. KURUP¹, T. TRAN¹, M. KEATING¹, P. GASCARD², L. VALDEVIT³, T. TISTY², AND E. BOTVINICK¹

¹University of California, Irvine, Irvine, CA, ²University of California, San Francisco, San Francisco, CA, ³Univeristy of California, Irvine, Irvine, CA

Track: Biomechanics, Cardiovascular Engineering

OP-Sat-2-9 - Room 15

Cardiovascular Biomechanics I

Chairs: Adam Feinberg, Pat Alford

1:30PM

Early Fatigue Damage of Valve Tissue at Different Peak Strains

C. MARTIN¹, B. GONZALEZ¹, F. SULEJMANI¹, AND W. SUN¹ ¹Georgia Institute of Technology, Atlanta, GA

1:45PM

Characterization of Gel-Spun Silk Vascular Grafts

M. RODRIGUEZ¹, J. KLUGE², D. SMOOT², P. KIM³, C. PAETSCH², AND D. KAPLAN² ¹Tufts University, Somerville, MA, ²Tufts University, Medford, MA, ³New England Baptist Hospital, Boston, MA

2:00PM

A Structural Model for Ascending Thoracic Aortic Wall Suggests Heterogeneous Stress State in Collagen Fibers

J. THUNES¹, S. PAL², J. E. PICHAMUTHU³, J. A. PHILLIPPI³, T. G. GLEASON³, D. A. VORP³, AND S. MAITI³

¹University of Pittsburgh, Pittsburgh, PA, ²Indian Institute of Technology, Roorkee, India,³University of Pittsburgh, Pittsbrugh, PA

2:15PM

Losartan Treatment Preserves Aorta and Lung Tissue Micromechanics in a Mouse Model of Severe Marfan Syndrome

J-J. LEE^{1,2}, S. RAO¹, J. GALATIOTO¹, F. RAMIREZ¹, AND K. COSTA¹ ¹Icahn School of Medicine at Mount Sinai, New York, NY, ²The City College of New York, New York, NY

2:30PM

Estimation of the Mitral Valve *In Vivo* Stresses in the Normal and Surgically Modified States

C-H. LEE¹, K. FEAVER¹, W. ZHANG¹, R. GORMAN², J. GORMAN², AND M. SACKS¹ ¹The University of Texas at Austin, Austin, TX, ²University of Pennsylvania, Philadelphia, PA

2:45PM DREAM TEAM & CENTER

Diameter Variation of Aortic Aneurysms Over the Cardiac Cycle K. SHAPERO¹, N. REDDY¹, K. YUCEL², M. IAFRATI², L. DORFMANN³, AND R. PEATTIE² ¹Tufts University, Boston, MA, ²Tufts Medical Center, Boston, MA, ³Tufts University, Medford, MAI

Track: Biomechanics, Orthopedic and Rehabilitation Engineering OP-Sat-2-10 - Room 16

Orthopedic I: Implants, Prosthetics, and Bone

Chairs: Ferris Pfeiffer, Andrew Kemper

1:30PM

Phantom-less Bone Mineral Density Measures and Correlation with Age and Fracture Incidence

A. WEAVER¹, R. C. HIGHTOWER¹, A. MILLER², K. BEAVERS³, AND J. STITZEL¹ ¹Wake Forest University Center for Injury Biomechanics, Winston-Salem, NC, ²Wake Forest University School of Medicine, Winston-Salem, NC, ³Wake Forest University, Winston-Salem, NC

1:45PM

Low Intensity Vibrations Improve the Mechanical Strength of Cortical Bone Compromised in Diet-Induced Obese Mice: Evaluation of Regional Differences in Material Properties Using Nanoindentation C. H. CHEUNG¹

¹State University of New York at Stony Brook, Stony Brook, NY

2:00PM

Skull Cortical Thickness Morphing For An Age And Sex Specific FE Model Of The Skull

D. JONES^{1,2}, J. URBAN^{1,2}, E. LILLIE^{1,2}, AND J. STITZEL^{1,2} ¹Wake Forest University School of Medicine, Winston-Salem, NC, ²Virginia Tech - Wake Forest University Center for Injury Biomechanics, Winston-Salem, NC

2:15PM

Low Intensity Vibration Improves Endoprosthesis Osseointegration in an Ovine Model

G. NOBLE¹, K. BODNYK¹, A. LITSKY¹, J. FINE¹, G. PAGNOTTI², C. RUBIN², N. FITZPATRICK ³, M. ALLEN⁴, AND R. HART¹

¹The Ohio State University, Columbus, OH, ²Stony Brook University, Stony Brook, NY,³Fitzpatrick Referrals, Godalming, United Kingdom, ⁴University of Cambridge, Cambridge, United Kingdom

2:30PM

Mechanical Origins of Fracture Nonunion: Implant Tests and Finite Element Models of Callus Strains

H. DAILEY^{1,2}, C. DALY², AND A. GLASS-HARDENBERGH¹ ¹Lehigh University, Bethlehem, PA, ²Cork Institute of Technology, Cork, Ireland

2:45PM

The Effect Of Oblique Screw Placement At Plate Ends for Internal Fixation of Long Bones - A Biomechanical Study Of Cadaveric Bone B. NGUYEN¹, H. VO¹, E. O'BRIEN¹, AND L. WEBB²

¹Mercer University, Macon, GA, ²Medical Center Navicent Health, Macon, GA

Track: Cardiovascular Engineering OP-Sat-2-11 - Room 3-4

Angiogenesis I

Chairs: Princess Imoukhuede, Damir Khismatullin

1:30PM

Venous Marker COUP-TFII Regulates the Distinct Pathologic Potentials of Arteries and Veins G. DAI¹

¹Rensselaer Polytechnic Institute, Troy, NY

1:45PM

Angiogenic Secretion Profile of Valvular Interstitial Cells is Dependent upon Cellular Sex

C. MCCOY¹, K. SCHMIDT¹, T. WEIS¹, AND K. MASTERS¹ ¹University of Wisconsin-Madison, Madison, WI

2:00PM

Prevascularization of Injectable Fibrin Microbeads for Ischemic Conditions

A. RIOJA¹, E. DALEY¹, S. PARIS¹, J. STEGEMANN¹, AND A. PUTNAM¹ ¹University of Michigan, Ann Arbor, MI

2:15PM

Exploring Hydrostatic Pressure as a Mechanobiological Stimulus of Endothelial Sprouting

M. SONG¹, J. WALLIN², AND H. SHIN¹ ¹University of Kentucky, Lexington, KY, ²Lafayette High School, Lexington, KY

2:30PM

The Dynamics of Protein Kinase C& Σ -Induced Autophagy for Mitochondrial Homeostasis and Vascular Regeneration

T. BEEBE¹, H. YEN¹, A. KABOODRANGI¹, R. LI¹, N. JEN¹, J. LEE¹, P. FEI¹, AND T. HSIAI¹ ¹University of California, Los Angeles, Los Angeles, CA

2:45PM DREAM TEAM & CENTER

Extracellular Matrix Stiffness Regulates Tumor Vasculature Phenotype F. BORDELEAU', B. MASSON', M. MAZZOLA', S. SOMASEGAR', J. CALIFANO', C. MORTAGUE', D. LAVALLEY', J. HUYNH', Y. NEGRÓN ABRIL', R. WEISS', L. BONASSAR', J. BUTCHER', AND C. REINHART-KING' 'Cornell University, Ithaca, NY

P = Poster Session
 OP = Oral Presentation
 Reviewer Choice Award

Track: Nano and Micro Technologies OP-Sat-2-12 - Room 5-6

Cells, Tissues and Organs on a Chip I

Chairs: Dan Huh, Mohammad Kiani

1:30PM

Angiotensin II Induced Cardiac Dysfunction on a Chip

R. Horton^{1,2,3}, M. Yadid^{2,3}, M. McCain⁴, S. Sheehy^{2,3}, F. Pasqualini^{2,3}, S-J. Park^{2,3}, A. Cho^{2,3}, P. Campbell^{2,3}, and K. Parker^{2,3}

¹Mississippi State University, Starkville, MS, ²Wyss Institute for Biologically Inspired Engineering, Boston, MA, ³Harvard University, Cambridge, MA, ⁴University of Southern California, Los Angeles, CA

1:45PM

Chemo-Predictive Cell-Based Microarrays Targeting Patient-Derived Colon Cancer Stem Cells

M. CARSTENS¹, A. ACHARYA², E. HUANG³, AND B. KESELOWSKY¹ ¹University of Florida, Gainesville, FL, ²University of Pittsburgh, Pittsburgh, PA, ³Cleveland Clinic, Cleveland, OH

2:00PM

Low Cost Cell Culture Platforms for Body-on-a-Chip Applications M. Esch¹, D. APPLEGATE², AND M. SHULER³

¹Syracuse University, Syracuse, NY, ²RegeMed Inc., San Diego, CA, ³Cornell University, Ithaca. NY

2:15PM

Organotypic Hippocampal Epilepsy-on-a-chip Model for Drug Discovery

Y. BERDICHEVSKY¹ AND J. LIU¹ ¹Lehigh University, Bethlehem, PA

2:30PM

Microfluidic Platform for 3D Human Primary Liver Cell Culture with Inflammation Capability

M. B. ESCH¹, J-M. PROT², Y. WANG², P. MILLER², D. APPLEGATE³, AND M. SHULER² ¹Syracuse University, Syracuse, NY, ²Cornell University, Ithaca, NY, ³RegeneMed Inc., San Diego, CA

2:45PM

Microtissue Array to Screen the Impact of Carbon Nanotube on Lung Cellular and Tissue Biomechanics

Z. CHEN¹, Q. WANG¹, M. ASMANI¹, Y. LI¹, Y. WU¹, AND R. ZHAO¹ ¹SUNY at Buffalo, Buffalo, NY

Track: Biomedical Imaging and Optics, Cancer Technologies OP-Sat-2-13 - Room 11

Optical Imaging II: Oncology Applications

Chairs: Mark Pierce, Javier A. Jo

1:30PM

Mapping Tetramerization of p53 and Changes of Metabolism Upon DNA Damage with the Number and Molecular Brightnesss and Phasor FLIM Methods

M. DIGMAN¹, S. BAGILTHAYA¹, L. BARDWELL¹, AND J. BARDWELL¹ ¹University of California Irvine, Irvine, CA

1:45PM

Noncontact Diffuse Correlation Tomography of Human Breast Tumor L. HE¹, Y. LIN¹, C. HUANG¹, D. IRWIN¹, M. SZABUNIO¹, AND G. YU¹ ¹University of Kentucky, Lexington, KY

2:00PM

Rare-Earth Albumin Nanocomposites For Improved Deep Tissue *In Vivo* Optical Imaging And Micrometastatic Lesion Detection

M. ZEVON¹, V. GANAPATHY¹, H. KANTAMNENI¹, L. HIGGINS¹, X. ZHAO², S. YANG², M. C. TAN², M. PIERCE¹, R. RIMAN¹, C. ROTH¹, AND P. MOGHE¹ ¹Rutgers University, Piscataway, NJ, ²Singapore University of Technology and Design, Singapore, Singapore

2:15PM

High-Resolution Volumetric Imaging of Lumpectomy Tissue for Radiation Treatment Planning

M. PIERCE¹, L. KIM², AND A. KHAN² ¹Rutgers, The State University of New Jersey, Piscataway, NJ, ²Rutgers Cancer Institute of New Jersey, New Brunswick, NJ

2:30PM

Multimodality Imaging Of Colon Cancer Using Fluorescent Fiberscope And Dual-Axis Confocal Microscope (DAC)

S. ROGALLA¹, C. ZAVALETA¹, N. LOEWKE¹, M. MANDELLA¹, K. ORESIC-BENDER¹, M. BOGYO¹, AND C. CONTAG¹ *'Stanford University, Stanford, CA*

2:45PM

Computer Extracted Nuclear Features from Feulgen and H&E Images Predict Prostate Cancer Outcomes

A. GAWLIK¹, G. LEE¹, J. WHITNEY¹, J. EPSTEIN², R. VELTRI², AND A. MADABHUSHI¹ ¹Case Western Reserve University, Cleveland, OH, ²The Johns Hopkins University School of Medicine, Baltimore, MD

Track: Neural Engineering

OP-Sat-2-14 - Room 12

CNS Injury: SCI, Stroke, TBI and Concussions II

Chairs: Michelle LaPlaca, Bryan Pfister

1:30PM

Development of an *in vitro* Model of the Human Reflex Arc for Understanding Disease and Injury in the Spinal Cord J. HICKMAN¹, X. GUO¹, A. SMITH¹, C. LONG¹, AND A. COLON¹ 'University of Central Florida, Orlando, FL

1:45PM

Combination Therapy Of Stem Cell Derived Neural Progenitors And Drug Delivery Of Anti-Inhibitory Molecules For Spinal Cord Injury T. WILEMS¹, J. PARDIECK¹, AND S. SAKIYAMA-ELBERT¹

¹Washington University in St. Louis, Saint Louis, MO

2:00PM

Chondroitin Sulfate Glycosaminoglycan Hydrogel-Based Neural Stem Cell Carriers for Traumatic Brain Injury

M. BETANCUR¹, M. ALVARADO², R. BELLAMKONDA², L. KARUMBAIAH¹, AND M. LOGUN¹ ¹The University of Georgia, Athens, GA, ²Georgia Institute of Technology, Atlanta, GA

2:15PM

In Vivo Assessment of Nanoparticle Extravasation After Brain Injury: Effect of Particle Size

V. N. BHARADWAJ1, J. LIFSHITZ2, D. ADELSON3, V. D. KODIBAGKAR1, AND S. E. STABENFELDT1

¹Arizona State University, Tempe, AZ, ²University of Arizona, Phoenix, AZ, ³Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ

2:30PM

Intrathecal Delivery Of Brain-Derived Neurotrophic Factor Via Implanted Mini-Pump Promotes Hindlimb Stepping F. MARCHIONNE¹

¹Temple University, Philadelphia, PA

2:45PM

Immuno-suppressive Hydrogels for Neural Stem Cell Delivery after Traumatic Brain Injury

M. ALVARADO-VELEZ¹, J. CHU², M. LAPLACA¹, AND R. BELLAMKONDA¹ ¹Georgia Institute of Technology, Atlanta, GA, ²Emory University School of Medicine, Atlanta, GA

Track: Biomechanics, Cellular and Molecular Bioengineering

OP-Sat-2-15 - Room 17

Cell and Tissue Biomechanics III

Chairs: Jiro Nagatomi, Allen Ehrlicher

1:30PM

Effect of Strain on Myelination

A. JAGIELSKA¹ AND K. J. VAN VLIET¹ ¹Massachusetts Institute of Technology, Cambridge, MA

1:45PM

Distributed Computation using Mechanically Tunable Fluidic Ecosystems S-H. PAEK¹ AND W. C. RUDER¹

¹Virginia Tech, Blacksburg, VA

2:00PM

Predictions of Sprouting Angiogenesis within Heterogeneous Extracellular Environments

L. Edgar¹, J. Hoying², and J. Weiss¹ ¹University of Utah, Salt Lake City, UT, ²University of Louisville, Louisville, KY

2:15PM

Mucin Antibody Complexes Enhance Potency of Antibodies That Bind to the HIV Envelope

A. ROSEMARY BASTIAN¹, K. FAHBARCH¹, M. ANDERSON¹, E. MATHIAS¹, S. GUNASHEKARAN¹, T. HOPE¹, P. KISER¹, G. PICASSO², AND I. SZLEIFER² ¹Northwestern University, Chicago, IL, ²Northwestern University, Evanston, IL

2:30PM

Alpha Actinin Binding Kinetics Modulate Cellular Mechanics and Force Generation

A. EHRLICHER^{1,2,3}, R. KRISHNAN², M. GUO³, C. BIDAN², D. WEITZ³, AND M. POLLAK² ¹McGill University, Montreal, QC, Canada, ²Beth Israel Deaconess Medical Center, Boston, MA, ³Harvard University, Cambridge, MA

2:45PM

Probing a Complex 3D Embryonic Tissue Through Novel Spatiotemporal Controlled Bio-Etching

M. HAZAR¹, Y. KIM², L. DAVIDSON³, P. LEDUC¹, AND W. MESSNER⁴ ¹Carnegie Mellon University, Pittsburgh, PA, ²Georgia Institute of Technology, Atlanta, GA,³University of Pittsburgh, Pittsburgh, PA, ⁴Tufts University, Medford, MA

Track: Drug Delivery OP-Sat-2-16 - Room 10

Targeted Delivery I

Chairs: Ed Chow

I:30PM DREAM TEAM & CENTER

Platelet-like Proteoliposomes Enable Macrophage Targeting Therapy B. CHENG¹, E. TOH¹, E. CHEN¹, YC. CHANG¹, L-Y. CHAU¹, P. CHEN¹, AND P. HSIEH¹ 'Academia Sinica. Taipei. Taiwan

1:45PM

Retinylamine Modified Multifunctional Lipid DNA Delivery System for the Treatment of LCA2

D. SUN¹, B. SAHU¹, S-Q. GAO¹, A. MAEDA¹, K. PALCZEWSKI¹, AND Z-R. LU¹ ¹Case Western Reserve University, Cleveland, OH

2:00PM

Targeted Chelation Therapy with EDTA-loaded Albumin Nanoparticles to Reverse Arterial Calcification in a Chronic Kidney Disease Rat Model S. KARAMCHED¹, N. NOSOUDI¹, AND N. VYAVAHARE¹ ¹Clemson University, Clemson, SC

2:15PM

Development of a Foam-Based Mucosal Pre-Exposure Prophylaxis (PrEP) Therapy for HIV Prevention A. NELSON¹, D. MYERS¹, D. ADLER¹, Z. SZEKELY¹, X. ZHANG¹, AND P. SINKO¹

A. INELSON, D. MITERS, D. ADLER, Z. SZEKELT, A. ZHANG, AND F. SINKO 'Rutgers University, Piscataway, NJ

2:30PM

A Versatile Platform for Pulmonary Drug Delivery Using Hydrogel Microparticles

E. SECRET¹, S. KELLY¹, K. CRANNELL¹, AND J. ANDREW¹ ¹University of Florida, Gainesville, FL

2:45PM

Simplified Lipid Coating on Mesoporous Silica Nanoparticles by Conjugation of Hydrophobic Aliphatic Monolayer

P. DURFEE¹, S. CHOU², A. LOKKE¹, A. MUNIZ¹, YS. LIN³, AND C. BRINKER¹,² ¹University of New Mexico, Albuquerque, NM, ²Sandia National Laboratories, Albuquerque, NM, ³Oncothyreon Inc., Seattle, WA

Track: Nano and Micro Technologies OP-Sat-2-17 - Room 7-8

Microfluidics I

Chairs: Sergey Shevkoplyas, Kazunori Hoshino

1:30PM

Network-Level Protease Activity Analysis for System Biology By Using a Picoinjector Array

E. X. NG¹, M. MILLER², AND C-H. CHEN¹

¹National University of Singapore, Singapore, Singapore, ²Massachusetts General Hospital, Boston, MA

1:45PM

A Versatile Microscale Molecular Delivery System Based on Electroporator Array

M. OUYANG¹, J. H. LEE², W. HILL¹, AND S. C. HUR¹ ¹Rowland Institute at Harvard University, Cambridge, MA, ²Massachusetts General Hospital, Cambridge, MA

2:00PM

Rapid Formation of Size-controllable Cell Spheroids via Surface Acoustic Waves K. CHEN¹

¹Pennsylvania State College, State College, PA

2:15PM

Neutrophils are Primed by Chemoattractant Gradients for Blocking Growth of Aspergillus fumigatus

C. Jones^{1,2}, L. Dimisko¹, K. Forrest³, K. Judice³, M. Poznansky¹, J. Markmann⁴, J. Vyas⁴, and D. Irimia¹

¹Harvard Medical School, Charlestown, MA, ²Virginia Polytechnic Institute and State University, Blacksburg, VA, ³Cidara Therapeutics, San Diego, CA, ⁴Harvard Medical School, Boston, MA

P = Poster Session
 OP = Oral Presentation
 2 = Reviewer Choice Award

2:30PM

An Ultrahigh Throughput Cell Sorter Using Standing Surface Acoustic waves (SSAW)

L. REN¹, Y. CHEN¹, P. LI¹, Z. MAO¹, J. RUFO¹, P-H. HUANG¹, F. GUO¹, AND T. J. HUANG¹ ¹Pennsylvania State University, State College, PA

2:45PM

Tunable Chemical Stimulator for Studying Cellular Response to Stimuli via Oscillating Sharp-edges P-H. HUANG¹, C. Y. CHAN¹, P. LI¹, AND T. J. HUANG¹

¹The Pennsylvania State University, University Park, PA

Track: Bioinformatics, Computational and Systems Biology

OP-Sat-2-18 - Room I

Big Data, Single-Cell Measurements, and Clinical Applications

Chairs: Leonor Saiz, Olivier Elemento

1:30PM

Automated Diagnosis of Leukemia (invited) J. VILAR¹

¹University of the Basque Country, Bilbao, Spain

2:00PM

Chemical-Genetic Inference of Antibiotic Interactions for Combination Therapies

S. CHANDRASEKARAN^{1,2}, J. COLLINS^{1,2,3}, AND M. COKOL⁴ ¹Harvard University, Cambridge, MA, ²Broad Institute of MIT and Harvard, Cambridge, MA,³Massachusetts Institute of Technology, Cambridge, MA, ⁴Sabanci University, istanbul, Turkey

2:15PM

Hypoxic Response in Age-Related Diseases: Uncovering Cellular Phenotypes Hypoxic Response in Age-Related Diseases: Uncovering Cellular Phenotypes A. QUTUB¹

¹Rice, Houston, TX

2:30PM

Tensor GSVD Predicting Ovarian Cancer Survival and Response to Platinum-Based Chemotherapy

T. SCHOMAY^{1,2}, K. AIELLO^{1,2}, AND O. ALTER^{1,2}

¹University of Utah, Salt Lake City, UT, ²Scientific Computing and Imaging (SCI) Institute, Salt Lake City, UT

2:45PM

Adaptive Regulation of Cancer Cell Fate Following Targeted Inhibition of the Oncogenic Pathway

M. FALLAHI-SICHANI¹, V. BECKER¹, S. BOSWELL¹, AND P. SORGER¹ ¹Harvard Medical School, Boston, MA

Track: Undergraduate Research, Design and Leadership

Special Session - Room 9

Undergraduate Research, Design and Leadership II

Chairs: Scott Verbridge, Pam VandeVord

1:30PM

Incorporation Of Poly(ethylene-glycol) Based Microparticles With Tunable Size And Degradation Into Chondrocytic Cell Aggregates B. PHILBRICK¹, T. RINKER¹, AND J. TEMENOFF¹

¹Georgia Institute of Technology and Emory University, Atlanta, GA

1:39PM

The Effects of Terminal Sterilization On the Mechanical and Biologic Properties of Extracellular Matrix Hydrogels

A. SMOULDER¹, T. KEANE¹, L. WHITE¹, A. CASTLETON¹, L. ZHANG¹, AND S. BADYLAK¹ ¹University of Pittsburgh, Pittsburgh, PA

1:48PM

Incorporation of Nano-sized Bioactive Glass Enhances the Mechanical Properties of Electrochemically Aligned Collagen Fibers

M. PASTAKIA¹, T-U. NGUYEN¹, AND V. KISHORE¹ ¹Florida Institute of Technology, Melbourne, FL

1:57PM

Double Wall Microsphere Controlled Delivery System for Adipose Tissue Retention and Enhancement

C. MCBRIDE¹, A. KELMENDI-DOKO¹, C. DAVENPORT¹, AND K. MARRA² ¹University of Pittsburgh Adipose Stem Cell Center, Lumberton, NJ, ²University of Pittsburgh, Pittsburgh, PA

2:06PM

Crosslinked Core-Shell Nanogels as Vehicles for Drug Delivery

J. TOWSLEE¹, J. MYERSON², V. MUZYKANTOV², D. ECKMANN², AND R. COMPOSTO² ¹Case Western Reserve University, Cleveland, OH, ²University of Pennsylvania, Philadelphia, PA

2:15PM

Raman Microspectroscopy Assesses Human Embryonic Stem Cell Cardiac Differentiation and Maturation

A. LEE^{1,2}, N. SHEN^{2,3}, E. BRAUCHLE^{2,3}, AND K. SCHENKE-LAYLAND^{2,3,4} ¹Boston University, Boston, MA, ²Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany, ³Research Institute of Women's Health, University Hospital of the Eberhard Karls University, Stuttgart, Germany, ⁴Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA, Los Angeles, CA

2:24PM

Effects of Kartogenin and Thalidomide on Chondrogenesis in Mesenchymal Stem Cells and Mesenchymal Stem Cells derived from Human Induced Pluripotent Stem Cells

M. BLOOM¹, A. KEOGH², M. XU², M. DETAMORE¹, AND F. BARRY²

¹University of Kansas, Lawrence, KS, ²National University of Ireland Galway, Galway, Ireland

2:33PM

Self-Organizing Structure Formation in High Density Neuronal Human iPSC Culture

W. MCALLISTER¹, J. BUTTS²,³, AND T. MCDEVITT²,³ ¹Georgia Institute of Technology, Atlanta, GA, ²The Gladstone Institutes, San Francisco, CA,³University of California – San Francisco, San Francisco, CA

2:42PM

Encapsulation And Differentiation Of Human Induced Pluripotent Stem Cells To Form 3D Engineered Cardiac Tissue Using Methacrylated Gelatin

S. HEAD¹, J. KACZMAREK¹, P. KERSCHER¹, AND E. LIPKE¹ ¹Auburn Univesity, Auburn, AL

2:5 | PM

Coculture of hMSCs and HUVECs to aid in prevascularization of bone tissue

R. MORIARTY¹, B. NGUYEN¹, AND J. FISHER¹ ¹University of Maryland- College Park, College Park, MD

SATURDAY | OCTOBER 10 | 2015 PLATFORM SESSIONS Sat-3 3:15PM-4:45PM

SATURDAY, October 10, 2015

3:15 PM - 4:45 PM PLATFORM SESSIONS – SAT - 3

Track: Drug Delivery, Cancer Technologies OP-Sat-3-1 - Room 18

Cancer Drug Delivery II

Chairs: Eilaf Ahmed, Christopher Jewell

3:15PM

Platelet Membrane-Functionalized Particles to Target Tumor Cell-Associated Microthrombi for the Prevention of Lung Metastasis J. LI¹, B. WUN¹, S. ROY¹, Q. WU¹, C. SHARKEY¹, AND M. KING¹ ¹Cornell University, Ithaca, NY

3:30PM

Non-Immunogenic Targeted Drug Delivery Agents for Advanced Pancreatic Cancer Treatment

¹Drexel University, Philadelphia, PA

3:45PM

Migration Inhibition of Triple Negative Breast Cancer by Liposomes Presenting a D- enantiomer, CXCR4 Binding Peptide D. Liu¹ AND D. AUGUSTE¹

¹The City College of New York, New York, NY

4:00PM

Albumin Binding Micelles for Delivery of Cancer Chemotherapeutics P. YOUSEFPOUR¹ AND A. CHILKOTI¹ ¹Duke University, Durham, NC

4:15PM

Liposomal Cisplatin With Triggered Intratumoral Release For Selective And Effective Treatment Of Triple Negative Breast Cancer S. STRAS¹ AND S. SOFOU¹

¹Rutgers University, Piscataway, NJ

4:30PM

ICAM-I Targeting, Multi siRNA Encapsulating Liposomes Inhibit Proliferation and Migration of TNBC Cells B. WANG¹ AND D. AUGUSTE¹ ¹The City College of New York, New York, NY

Track: Cellular and Molecular Bioengineering OP- Sat - 3-2 - Room 19

Cell and Molecular Immunoengineering

Chairs: David Zaharoff

3:15PM

Inflammatory Activation Of Monocytes In Patients With Myocardial Infarction (MI) Is Associated With Decreased Cardiac Function And Increased Risk For Recurrent MI.

G. FOSTER¹, S. SODERBERG¹, G. SINGH², E. ARMSTRONG³, AND S. SIMON¹ ¹University of California Davis, Davis, CA, ²University of California Davis Medical Center, Davis, CA, ³University of Colorado and Veterans Affairs Eastern Colorado Health Care System, Denver, CO

3:30PM

A Microfluidic Platform Reveals Differential Response of Regulatory T Cells to Micropatterned Costimulation Arrays

J-H. LEE¹, M. DUSTIN², AND L. KAM¹

¹Columbia University in the city of New York, New York, NY, ²The University of Oxford, Oxford, United Kingdom

3:45PM DREAM TEAM & CENTER

In Vitro Model of Macrophage Differentiation and Activation in the Context of Endometriosis

A. HILL¹,², C. COOK¹,², M. GUO¹, N. OGUTVEREN¹, S. BENING³, K. ISAACSON²,⁴, L. GRIFFITH¹,², AND D. LAUFFENBURGER¹,²

¹Massachusetts Institute of Technology, Cambridge, MA, ²Center for Gynepathology Research, Cambridge, MA, ³University of Minnesota, Minneapolis, MN, ⁴Center for Minimally Invasive Gynecologic Surgery, Newton-Wellesley Hospital, Newton, MA

4:00PM

CCL21 Local Immunomodulation and Lymph Node Mimicry for Antigen-Specific Tolerance Induction

M. ABREU¹, M. NAJJAR¹, V. MANZOLI¹, D. MOLANO¹, A. PUGLIESE¹, AND A. TOMEI¹,² ¹Diabetes Research Institute, Miami, FL, ²University of Miami, Miami, FL

4:15PM

Sugar-based OA Drug Modulates ECM Deposition and Inflammatory Signaling in hOA Chondrocytes

L. SHORES¹, C. KIM¹, Q. GUO¹, A. ALY¹, D. KIM¹, O. JEON¹, K. YAREMA ¹, AND J. ELISSEEFF¹

¹Johns Hopkins School of Medicine, Baltimore, MD

4:30PM

Modular Design of Polyelectrolyte Multilayer Vaccine Capsules Built from Polyionic Immune Signals

Y-C. CHIU¹, J. I. ANDORKO¹, L. H. TOSTANOSKI¹, AND C. M. JEWELL¹,²,³
¹University of Maryland - College Park, College Park, MD, ²Marlene and Stewart Greenebaum Cancer Center, College Park, MD, ³University of Maryland Medical School, College Park, MD

Track: Cancer Technologies OP-Sat-3-3 - Room 20

Cancer Mechanobiology

Chairs: Aleksander Skardal, Jan Lammerding

3:15PM

Cancer Cell Migration Through 3-D Environments Causes Nuclear Rupture and DNA Damage

C. DENAIS¹, R. GILBERT¹, P. ISERMANN¹, A. MCGREGOR¹, P. DAVIDSON¹, K. WOLF², M. TE LINDERT², AND J. LAMMERDING¹

¹Cornell University, Ithaca, NY, ²Radboud University Nijmegen Medical Center, Nijmegen, Nijmegen, Netherlands

3:30PM DREAM TEAM & CENTER

Force Engages Vinculin and Promotes Tumor Progression by Enhancing PI3K Activation of PIP3

M. RUBASHKIN', L. CASSEREAU', R. BAINER', C. DUFORT', G. OU', Y. YUI', M. PASZEK², M. DAVIDSON³, Y-Y. CHEN', AND V. WEAVER'

¹University of California - San Francisco, San Francisco, CA, ²Cornell University, Ithaca, NY,³Florida State University, Tallahasse, FL

3:45PM DREAM TEAM & CENTER

Tissue Stiffness Regulates SR Protein-Mediated Splicing of the EDB-Fibronectin Isoform in Tumors

F. BORDELEAU¹, J. CALIFANO¹, Y. NEGRÓN ABRIL¹, B. MASON¹, D. LAVALLEY¹, S. SHIN², R. WEISS¹, AND C. REINHART-KING¹

¹Cornell University, Ithaca, NY, ²Weill Medical College of Cornell University, New York, NY

P = Poster Session
 OP = Oral Presentation
 2 = Reviewer Choice Award

4:00PM

Integrin Alpha 6 and Calpain 2 are Mechanosensitive Proteins in Breast Cancer

A. SCHWARTZ¹ AND S. PEYTON¹ ¹University of Massachusetts Amherst, Amherst, MA

4:15PM

Activating Mutation of PDGFR&[alpha] in Stromal Fibroblasts Alters Extracellular Matrix Mechanics

V. SHUKLA¹, A. MATHUR¹, G. SIZEMORE¹, M. OSTROWSKI¹, AND S. GHADIALI¹,² ¹The Ohio State University, Columbus, OH, ²The Ohio State Wexner Medical Center, Columbus, OH

4:30PM

Metabolic Response To Drugs Modeled in a Human 3D Tumor Microenvironment

A. SOBRINO GREGORIO¹, R. DATTA², D. PHAN², S. C. GEORGE³, AND C. C. HUGHES² ¹University California, irvine, Irvine, CA, ²University of California, Irvine, Irvine, CA,³Washington University in St. Louis, St. Louis, MO

Track: Device Technologies and Biomedical Robotics

OP-Sat-3-4 - Room 22

Medical Device Development and Computational Models II

Chairs: Cheng Sun, Richard Gitlin

3:15PM

Subnormothermic Machine Perfusion Preconditions Discarded Human Livers for Reperfusion Injury

G. SRIDHARAN¹, J. AVRUCH¹, B. BRUINSMA¹, N. KARIMIAN¹, H. YEH¹, J. MARKMANN¹, M. YARMUSH¹, AND K. UYGUN¹

¹Harvard Medical School - Massachusetts General Hospital, Boston, MA

3:30PM

Targeting Thalamic Circuits During Deep Brain Stimulation for Traumatic Brain Injury

A. JANSON¹, N. SCHIFF², J. BAKER², K. PURPURA², J. HENDERSON³, AND C. BUTSON¹ ¹Scientific Computing and Imaging Institute, Salt Lake City, UT, ²Brain and Mind Research Institute, New York, NY, ³Department of Neurosurgery, Stanford, CA

3:45PM

Simulation Based Design of Scalp Cooling Systems to Prevent Chemotherapy-Induced Alopecia

B. PLISKOW¹, M. KAYA¹, AND K. MITRA¹ ¹Florida Institute of Technology, Melbourne, FL

4:00PM

Dual-layer Cerebral Stents: Mechanical Characterization via Computational Analyses

A. I. ALHERZ¹, Z. P. LUCIENNE¹, O. TANWEER², AND V. FLAMINI¹ 'NYU, Brooklyn, NY, ²NYU, Manhattan, NY

4:15PM

MARVEL- A Wireless Miniature Robot for Networked Expedited Laparoscopy

R. GITLIN^{1,2}, T. KETTERL¹, G. ARROBO¹, S. ROSS³, A. ROSEMURGY³, P. SAVAGE², C. He¹, AND Y. LIU¹

¹University of South Florida, Tampa, FL, ²Innovatia Medical Systems, Tampa, FL, ³Florida Hospital, Tampa, FL

4:30PM

Imaging-driven Fabrication of a Patient-Specific Contact Lens Utilizing 3D Printing

R. TALATI¹, A. CHILDS¹, D. LEWITTES¹, H. LI¹, H. ZHANG¹, AND C. SUN¹ Northwestern University, Evanston, IL

Track: Biomaterials OP-Sat-3-5 - Room 23

Intelligent/Multifunctional Biomaterials

Chairs: Jay Henderson, Jennifer Patterson

3:15PM

Exploring Naturally Occurring Ivy Nanoparticles as Alternative Biomaterials

Y. HUANG¹, L. SUN¹, AND M. ZHANG¹ ¹The Ohio State University, Columbus, OH

3:30PM

Mechanically Stiff Hydrogels Using Nanoparticles as Crosslink Epicenter at Ultralow Content

M. JAISWAL¹, J. R. XAVIER¹, P. DESAI¹, J. CARROW¹, D. ALGE¹, AND A. K. GAHARWAR¹ ¹Texas A&M University, College Station, TX

3:45PM

Engineering a Highly Elastic Surgical Sealant

N. ANNABI^{1,2,3,4}, Y. ZHANG^{2,3}, A. VEGH^{2,3}, B. DEHGHANI^{2,3}, A. ASSMANN^{2,3,4,5}, A. WEISS⁶, AND A. KHADEMHOSSEINI^{2,3,4}

¹Northeastern University, Boston, MA, ²Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, ³Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, ⁴Wyss Institute for Biologically Inspired Engineering, Boston, MA,⁵Department of Cardiovascular Surgery and Research Group for Experimental Surgery, Heinrich Heine University, Duesseldorf, Germany, ⁶The University of Sydney, Sydney, Australia

4:00PM

Photo-Carbon Monoxide Releasing Molecules within Electrospun Scaffolds for Modulating Vascular Cells

E. MICHAEL¹, A. PATEL¹, N. ÅBEYRATHNA¹, Y. LIAO¹, AND C. BASHUR¹ ¹Florida Institue of Technology, Melbourne, FL

4:15PM

Self-Healing and Thermo-Responsive Alginate Hydrogels for Biomedical Applications

T. MIAO¹, S. FENN¹, P. CHARRON¹, AND R. OLDINSKI¹ ¹University of Vermont, Burlington, VT

4:30PM

Synthesis and Characterization of Smart Molecularly Imprinted Polymers, Using Structural Analogue Templates, for the Capture and Detection of Biomolecules

J. CLEGG¹, H. CULVER¹, J. ZHONG¹, A. IRANI¹, AND N. PEPPAS¹ ¹University of Texas at Austin, Austin, TX

Track: Tissue Engineering OP-Sat-3-6 - Room 13

Musculoskeletal Tissue Engineering

Chairs: Rhima Coleman, Daniel Alge

3:15PM

Improved Cellular Functions and Reduced Bacterial Infection on MgO Nanocomposites

D. HICKEY¹ AND T. WEBSTER¹,²

¹Northeastern University, Boston, MA, ²King Abdulaziz University, Jeddah, Saudi Arabia

3:30PM

Decellularized Muscle Grafts Promote New Muscle Growth in a Rat Gastrocnemius Defect Model

M. MCCLURE¹, D. COHEN¹, Y. C. HUANG², M. SUNWOO², J. ISAACS¹, S. MALLU¹, B. BOYAN¹,³, AND Z. SCHWARTZ¹,⁴

¹Virginia Commonwealth University, Richmond, VA, ²Musculoskeletal Transplant Foundation, Edison, NJ, ³Georgia Institute of Technology, Atlanta, GA, ⁴The University of Texas Health Science Center at San Antonio, San Antonio, TX

3:45PM

The Development and Characterization of a Pre-Vascularized Osteoinductive Scaffold for Bone Tissue Regeneration

B. TAYLOR¹ AND J. FREEMAN¹

¹Rutgers, the State University of New Jersey, Piscataway, NJ

4:00PM

The Use Of Conductive Polypyrrole-Polycaprolactone Fibers For Skeletal Muscle Regeneration D. BROWE¹ AND J. FREEMAN¹

¹Rutgers University, Piscataway, NJ

4:15PM

siRNA Delivery from in situ Forming Degradable Hydrogels for Repairing Rat Cranial Bone Defects

M. K. NGUYEN¹, O. JEON¹, P. DANG¹, A. MCMILLAN¹, C. T. HUYNH¹, D. VARGHAI¹, H. RIAZI¹, AND E. ALSBERG¹

¹Case Western Reserve University, Cleveland, OH

4:30PM

Cell Seeded Collagen Gels for Annulus Fibrosus Repair

B. Borde¹, Y. Moriguch², R. Hart^p, and L. Bonassar¹ ¹Cornell University, Ithaca, NY, ²Weill Cornell Medical Center, New York, NY

Track: Tissue Engineering, Neural Engineering OP-Sat-3-7 - Room 14

Neural Tissue Engineering

Chairs: Jennie Leach

3:15PM

Using Extracellular Matrix Technology to Regenerate Primary Central Nervous System Neurons

T. REN¹,², A. NAQVI¹,², A. FAUST¹,², V. REDDY¹,², A. KANDAKATLA², L. HULEIHEL¹,³, S. BADYLAK¹,₄, AND M. STEKETEE¹,²

¹McGowan institute of regenerative medicine, Pittsburgh, PA, ²Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, ⁹Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, ⁴Department of surgery, University of Pittsburgh, Pittsburgh, PA

3:30PM

An Engineered Protein Hydrogel for Promoting Neurite Growth C. HARRIS¹ AND K. LAMPE¹

¹University of Virginia, Charlottesville, VA

3:45PM

Tissue Engineered Constructs Sustain Pro-Regenerative Schwann Cells in Distal Nerve After Axotomy

D. K. Cullen¹,², K. D. Browne¹,², Z. S. All¹, J. C. Burrell¹,², K. S. Katiyar¹,², H. C. Ledebur³, and D. H. Smith¹

¹University of Pennsylvania, Philadelphia, PA, ²Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, ³Axonia Medical, Kalamazoo, MI

4:00PM

BDNF Mimetic Peptides Immobilized to Collagen as a Therapeutic Hydrogel for TBI

C. LOWE¹ AND D. SHREIBER¹ ¹Rutgers University, Piscataway, NJ D. Lee¹ and D. Park¹ ¹University of Colorado Denver | Anschutz Medical Campus, Aurora, CO

P = Poster Session
 OP = Oral Presentation
 2 = Reviewer Choice Award

4:15PM

Tissue Engineered Nerve Grafts Facilitate Regeneration and Functional Recovery Following a 5 cm Peripheral Nerve Lesion in Swine

D. K. CULLEN¹,², K. D. BROWNE¹,², J. C. BURRELL¹,², M. I. EZRA¹, L. S. STRUZYNA¹,², K. S. KATIYAR¹,², H. C. LEDEBUR³, AND D. H. SMITH¹

¹University of Pennsylvania, Philadelphia, PA, ²Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, ³Axonia Medical, Kalamazoo, MI

Track: Biomechanics, Cardiovascular Engineering

OP-Sat-3-8 - Room 15

Cardiovascular Biomechanics II

Chairs: Robert Mauck, Dhananjay T.Tambe

3:15PM

Elucidating the Mechanical Role of Cell-Matrix Adhesions in Age-related Cardiac Dysfunction

A. SESSIONS¹, G. KAUSHIK¹, A. CAMMARATO², AND A. ENGLER¹ ¹University of California, San Diego, La Jolla, CA, ²Johns Hopkins University, Balitmore, MD

3:30PM

Estimation of Fully Three-Dimensional Properties of Passive Myocardium: A Coupled Inverse Model-Experimental Study. R. AVAZMOHAMMADI¹, S. RAUT¹, J. LESICKO¹, AND M. SACKS¹ ¹University of Texas at Austin, Austin, TX

3:45PM

Anatomically Informed Multiscale Model of Ascending Thoracic Aorta Applied to Shear Lap Testing

V. BAROCAS¹, C. WITZENBURG², R. DHUME¹, S. SHAH¹, AND C. KORENCZUK¹ ¹University of Minnesota, Minneapolis, MN, ²University of Virginia, Charlottesville, VA

4:00PM

Biomechanical Properties of Four Human Valves T. PHAM¹, E. SHIN¹, F. SULEJMANI¹, AND W. SUN¹ ¹Georgia Institute of Technology, Atlanta, GA

4:15PM

Instantaneous Surface Tension-Induced Displacement of a Small-Volume Liquid in a Capillary

J. KIM¹, J. O'NEILL¹, AND G. VUNJAK-NOVAKOVIC¹ ¹Columbia University, New York, NY

4:30PM

Macro- and Micro-scale Comparison of Aortic Stiffness Indicates that Micro-Heterogeneities Develop with Age and Decrease with Exercise J. KOHN¹, A. CHEN¹, S. CHENG¹, AND C. REINHART-KING¹ ¹Cornell University, Ithaca, NY

Track: Biomechanics, Orthopedic and Rehabilitation Engineering

OP-Sat-3-9 - Room 16

Orthopedic II: Neuromuscular and Musculoskeletal

Chairs: Alicia Fernandez-Fernandez, Vinay Abhyankar

3:15PM

An Interim Analysis of Virtual Reality used to Enhance Prosthetic Training and Rehabilitation A. KNIGHT¹ ¹University of South Florida, Tampa, FL

'University of South Florida, Tampa, FL

3:30PM

Electromyographic Characterization Reveals Sustained Muscle Contractions and Abnormal Co-contractions in a Mouse Model of Dystonia

A. TRONGNETRPUNYA¹, M. P. DEANDRADE², C. C. CHEETHAM³, F. YOKOI⁴, N. PENG³, Y. Li⁴, AND M. DING³

¹University of Florida, Gainesville, FL, ²Brigham and Women's Hospital, Boston, MA,³University of Alabama at Birmingham, Birmingham, AL, ⁴College of Medicine, University of Florida, Gainesville, FL

3:45PM DREAM TEAM & CENTER

NemaFlex: A Microfluidic Tool for Phenotyping (Neuro)muscular Strength in *C. elegans* across Lifespan

M. RAHMAN¹, J. E. HEWITT¹, F. VAN BUSSEL¹, J. BLAWZDZIEWICZ¹, N. SZEWCZYK², M. DRISCOLL³, AND S. A. VANAPALLI¹ ¹Texas Tech University, Lubbock, TX, ²University of Nottingham, Derby, United

' lexas lech University, Lubbock, LX, "University of Nottingham, Derby, United Kingdom,³Rutgers University, Piscataway, NJ

4:00PM

Cyclic Mechanical Loading Enhances Transport of Antibodies Through Articular Cartilage

C. DIDOMENICO¹, Z. X. WANG¹, AND L. BONASSAR¹ ¹Cornell University, Ithaca, NY

4:15PM

Medial Tibial Stress Syndrome FEA Model Development R. WESLEY¹ AND M. MCCULLOUGH¹ ¹North Carolina A&T State University, Greensboro, NC

4:30PM DREAM TEAM & CENTER

Poroelastic Mechanical Changes in the Achilles Tendon due to Insertional Achilles Tendinopathy

I. BAH¹, S. KWAK¹, R. CHIMENTI¹, M. RICHARDS¹, J. KETZ¹, A. FLEMISTER¹, AND M. BUCKLEY¹

¹University of Rochester, Rochester, NY

Track: Cardiovascular Engineering

OP-Sat-3-10 - Room 3-4

Angiogenesis II

Chairs: Stacey Finley, Ngan Huang

3:15PM DREAM TEAM & CENTER

Stem Cell-Based Anisotropic Scaffolds Promote Arteriogenesis K. Nakayama¹,², G. Hong¹, J. Lee¹, J. Patel¹, B. Edwards¹, T. Zaitseva³, M. Paukshto³, H. Dai¹, J. Cooke¹,⁴, J. Woo¹, and N. Huang¹,²

¹Stanford University, Stanford, CA, ²Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, ³Fibralign Corporation, Union City, CA, ⁴Houston Methodist Research Institute, Houston, TX

3:30PM

Hypoxia Augments Outgrowth Endothelial Cell (OEC) Angiogenesis in Response to Sphingosine-1-phosphate (S1P)

P. A. WILLIAMS¹ AND E. A. SILVA¹ ¹University of California, Davis, Davis, CA

3:45PM

Aged Bone Marrow-Derived Stem Cells Display Increased Pericyte Fate in a Microvascular Network Model *Ex Vivo*

M. AZIMI¹, A. STRONG¹, B. BUNNELL¹, AND W. MURFEE¹ ¹Tulane University, New Orleans, LA

4:00PM

Fixation Affects Angiogenic Receptor Levels on Endothelial Cells and Fibroblasts *in vitro*

S. CHEN¹ AND P. IMOUKHUEDE² ¹University of Illinois at Urbana-Champaign, Champaign, IL, ²University of Illinois at Urbana-Champaign, Urbana, IL

4:15PM

Identification And Quantification Of Novel VEGF-PDGF Cross-family Binding

S. B. MAMER¹ AND P. I. IMOUKHUEDE¹ ¹University of Illinois at Urbana-Champaign, Urbana, IL

4:30PM

Effects of Disturbed Flow on Nanoparticle Localization in Angiogenic Vessels

J. GOMEZ¹, C. SARSONS¹, B. VAFADAR¹, S. JIANG¹, D. CRAMB¹, S. CHILDS¹, AND K. RINKER¹

¹University of Calgary, Calgary, AB, Canada

Track: Nano and Micro Technologies OP-Sat-3-11 - Room 5-6

Cells, Tissues and Organs on a Chip II

Chairs: Daniel Irimia, Ruogang Zhao

3:15PM

Elevated Microjet Gradient Device for Directing Spatiotemporal Differentiation of Embryonic Stem Cells

N. BHATTACHARJEE¹, N. PALPANT¹, C. MURRY¹, AND A. FOLCH¹ ¹University of Washington, Seattle, WA

3:30PM

Interstitial Fluid Pressure Dynamics in Microfluidic Devices

J. TIEN¹, L. LI¹, O. OZSUN¹, AND K. EKINCI¹ ¹Boston University, Boston, MA

3:45PM

A Novel Dynamic Neonatal Blood Brain Barrier on a Chip

S. Deosarkar¹, B. Prabhakarpandian², B. Wang³, J. Sheffield¹, B. Krynska¹, and M. Kiani¹

 $^{1}\text{Temple}$ University (PA), Philadelphia, PA, ^{2}CFD Research Corporation, Huntsville, AL, $^{3}\text{Widener}$ University, Chester, PA

4:00PM

Hepatocyte Metabolic Zonation in vitro

W. MCCARTY¹, O. B. USTA¹, AND M. YARMUSH¹ ¹Massachusetts General Hospital, Harvard Medical School, and Shriners Hospitals for Children-Boston, Boston, MA

4:15PM

Magneto-Active Dynamic Screening For Drug Discovery

A. LISELLA¹, A. EL HAJ¹, AND J. DOBSON² ¹Keele University, Stoke-on-Trent, United Kingdom, ²University of Florida, Gainesville, FL

4:30PM

TEER Measurement Predicts Small Molecule Transport In SynVivo-BBB

J. ROSANO¹, A. SMITH¹, C. GARSON¹, K. BHATT¹, M. CULBRETH², M. ASCHNER², B. PRABHAKARPANDIAN¹, AND K. PANT¹

¹CFD Research Corporation, Huntsville, AL, ²Albert Einstein College of Medicine, Brox, NY

Track: Biomedical Imaging and Optics OP-Sat-3-12 - Room 11

Optical Imaging III: Microscopy Advances

Chairs: Qingshan Wei, Tim Yeh

3:15PM

Improving Z-tracking Accuracy in TSUNAMI 3D Tracking Microscope C. LIU¹, Y-L. LIU¹, E. PERILLO¹, A. DUNN¹, AND H-C. YEH¹ ¹University of Texas at Austin, Austin, TX SATURDAY | OCTOBER 10 | 2015

PLATFORM SESSIONS Sat-3 3:15PM-4:45PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

3:30PM

A Hybrid Imaging Approach for Label-Free, Optical Detection of **Genetic Alterations**

M. NASER¹, M. T. GRAHAM², K. PIERRE¹, O. IPAYE¹, AND N. N. BOUSTANY¹ ¹Rutgers University, Piscataway, NJ, ²University of Scranton, Scranton, PA

3:45PM DREAM TEAM & CENTER

Multiphoton Microscopy Reveals Altered Cell Metabolism During Skin Wound Healing

K. QUINN^{1,2}, E. LEAL³, A. TELLECHEA³, A. KAFANAS³, J. DEFURIA⁴, M. AUSTER³, J. GARLICK⁴, A. VEVES³, AND I. GEORGAKOUDI¹

¹Tufts University, Medford, MA, ²University of Arkansas, Fayetteville, AR, ³Beth Israel Deaconess Medical Center, Boston, MA, ⁴Tufts University, Boston, MA

4:00PM

Computational Imaging of Pathology Slides Using Wide-Field On-Chip Microscopy

Y. ZHANG¹, A. GREENBAUM², A. FEIZI¹, P-L. CHUNG¹, W. LUO¹, S. KANDUKURI¹, AND A. OZCAN

¹University of California, Los Angeles, Los Angeles, CA, ²California Institute of Technology, Pasadena, CA

4:15PM

Dynamic 3D Structure of Beating Embryonic Zebrafish Heart Captured with Light Sheet Microscopy and Macroscopic Phase Stamping

S. MADAAN¹, V. TRIVEDI², D. HOLLAND¹, T. TRUONG¹, L. TRINH¹, AND S. FRASER¹ ¹University of Southern California, Los Angeles, CA, ²California Institute of Technology, Pasadena, CA

4:30PM

Mobile-Phone Based Microscopy for Imaging and Sizing of Single DNA Molecules

Q. WEI1, W. LUO1, S. CHIANG1, T. KAPPEL1, C. MEJIA1, D. TSENG1, R. Y. L. CHAN1, E. YAN1, H. QI1, F. SHABBIR1, H. OZKAN1, S. FENG1, AND A. OZCAN1 ¹University of California, Los Angeles, Los Angeles, CA

Track: Neural Engineering OP-Sat-3-13 - Room 12

Neural Interfaces: Compatibility, Recording, and Stimulation IV/CNS Injury: SCI, Stroke, **TBI Belieand Concussion III**

Chairs: Kevin Otto, D. Kacy Cullen

3:15PM

The Effect of Antioxidant-Releasing Mechanically-Adaptive Implants on Modulating the Neural Tissue Response

J. NGUYEN^{1,2}, M. JORFI³, K. BUCHANAN^{1,2}, D. PARK¹, E. J. FOSTER³, C. WEDER³, AND J. CAPADONA^{1,2}

¹Case Western Reserve University, Cleveland, OH, ²Louis Stokes Cleveland VA Medical Center, Cleveland, OH, ³University of Fribourg, Marly, Switzerland

3:30PM DREAM TEAM & CENTER

Evaluating Bioactive Intervention Strategies using In vivo Multiphoton Microscopy for Improved Neural Interface Device

T. KOZAI¹, A. JAQUINS-GERSTL¹, A. VAZQUEZ¹, A. MICHAEL¹, G. BRUNETTE¹, J. ELES¹, N. SNYDER¹, C. LAGENAUR¹, AND X. T. CUI¹ ¹University of Pittsburgh, Pittsburgh, PA

3:45PM

Chronic In Vivo Stability Assessment of Carbon Fiber Microelectrode Arrays

P. PATEL¹, H. ZHANG¹, M. ROBBINS¹, J. NOFAR¹, S. MARSHALL¹, M. KOBYLAREK¹, T. KOZAI2, N. KOTOV1, D. KIPKE3, AND C. CHESTEK1 ¹University of Michigan, Ann Arbor, MI, ²University of Pittsburgh, Pittsburgh, PA,3NeuroNexus Technologies, Ann Arbor, MI

4:00PM

Systemic Assessment of Markers of Inflammation to Intracortical Microelectrodes

J. GAIRE¹ AND K. OTTO ¹University of Florida, Gainesville, FL

4:15PM

Ca2+ influx in Mild Stretch Neuronal Injury Causes Caspase-I Dependent Neuroinflammation and Cell Death

P. M. ABDUL-MUNEER¹, M. LONG¹, A. A. CONTE¹, N. CHANDRA¹, AND B. J. PFISTER¹ ¹New Jersey Institute of Technology, Newark, NJ

4:30PM

Cerium Oxide Nanoparticles Reduce Oxidative Stress and Preserve Cognitive Function Following Mild Traumatic Brain Injury

Z. BAILEY¹, A. OYALOWO¹, P. VANDEVORD¹, K. HOCKEY², V. S. S. S. SAJJA¹, C. THORPE², A. FREY², J. BATES², C. SHOLAR², B. LOCKLER², B. DUNN², A. HERMUNDSTAD¹, AND B. RZIGALINSKI

¹Virginia Tech, Blacksburg, VA, ²Virginia College of Osteopathic Medicine, Blacksburg, VA

Track: Biomechanics, Cellular and Molecular Bioengineering

OP-Sat-3-14 - Room 17

Cell and Tissue Biomechanics IV

Chairs: Gang Bao, Amy Brock

3:15PM

Tissue Surface Tension Drive Mesenchymal-to-epithelial Transition in Embryonic Cell Aggregates

H. Y. KIM¹, T. JACKSON¹, AND L. DAVIDSON¹ ¹University of Pittsburgh, Pittsburgh, PA

3:30PM

Cytoskeletal Tension Induces Spatial Reorganization Of The Nuclear Architecture

D-H. KIM¹,² AND D. WIRTZ¹ ¹Johns Hopkins University, Baltimore, MD, ²Harvard University, Cambridge, MA Modeling Tensional Homeostasis In Cells S. N. Tam¹, M. Smith¹, and D. Stamenovic¹ Boston University, Boston, MA

3:45PM

Dynamic Mechanical Measurement Of The Viscoelasticity Of Single Adherent Cells

O. ADENIBA¹, E. CORBIN¹, AND R. BASHIR¹ ¹University of Illinois, Urbana Champaign, Urbana, IL

4:00PM

Engineered Cardiomyocytes Derived From Human IPSCs To Model Myocardial Contractility

A. RIBEIRO¹, Y-S. ANG²,³, R. WILSON¹, R. RIVAS²,³, D. SRIVASTAVA²,³, AND B. PRUITT¹ ¹Stanford University, Stanford, CA, ²Gladstone Institutes, San Francisco, CA, ³University of California San Francisco, San Francisco, CA

4:15PM

Quantifying Drug-induced Nano-mechanics and Mechanical Effects to Single Cardiomyocytes for Clinical Applications

T. YUE¹, K. H. PARK², H. ZHU², S. LYON¹, J. MA², P. MOHLER¹, AND M. ZHANG¹ ¹The Ohio State University, Columbus, OH, ²The Ohio State University, columbus, OH

P = Poster Session **OP** = Oral Presentation = Reviewer Choice Award

PLATFORM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

Track: Drug Delivery OP-Sat-3-15 - Room 10

Targeted Delivery II

Chairs: Susan Thomas, James Lai

3:15PM DREAM TEAM & CENTER

Personalized Carbon Nanomedicine against Hepatocellular Carcinoma E. CHOW¹, X. WANG¹, W. HOU¹, AND L. NURRUL ABDULLAH¹ ¹National University of Singapore, Singapore, Singapore

3:30PM

Mechanism of Intracellular Delivery of Exogenous Molecules Using High Frequency Ultrasound M. G. KIM¹, S. YOON¹, AND K. K. SHUNG¹

¹University of Southern California, Los Angeles, CA

3:45PM

Using Magnetic Forces to Enhance Targeted Delivery of SPIOs by **Disrupting Endothelial Cell-Cell Interactions**

Y. QIU1,2, S. TONG2, Y. SAKURAI1,2, D. MYERS1,2, G. BAO2, AND W. LAM1,2 ¹Emory University, Atlanta, GA, ²Georgia Institute of Technology, Atlanta, GA

4:00PM

Polymer-based Nanoparticle Mediated Delivery of Beta-Galactosidase in the Treatment of a Neurodegenerative Disorder, GMI Gangliosidosis J. LARSEN¹, E. PEARCE¹, D. MARTIN¹, AND M. BYRNE¹,²

¹Auburn University, Auburn, AL, ²Rowan University, Glassboro, NJ

4:15PM

Nebulized and Aerosol Synthesis of Optimized Targeted Drug Delivery Composites

D. DENMARK¹, M. MAMONE¹, D. MUKHERJEE¹, K. BISHT¹, S. WITANACHCHI¹, AND P. MUKHERJEE¹

¹University of South Florida, Tampa, FL

4:30PM

Immunoliposome-Based Delivery Of Inflammatory Serine Protease Inhibitor Offers Cardiac Protection After Myocardial Ischemia In Mice B. HOOSHDARAN¹, M. KOLPAKOV¹, X. GUO¹, T. WANG¹, L. VLASENKO¹, Y. TANG¹, M. KIANI¹, AND A. SABRI¹

¹Temple University, Philadelphia, PA

Track: Nano and Micro Technologies OP-Sat-3-16 - Room 7-8

Microfluidics II

Chairs: Smitha Rao, Chia-Hung Chen

3:15PM

Automation of Serial Dilution by Microfluidic Digital Logic M. RAJE¹, S. AHRAR¹, AND E. HUI¹ ¹University of California Irvine, Irvine, CA

3:30PM

A High-Throughput Microfluidic Device for Removal of Activated Granulocytes from Recirculating Blood during Cardiopulmonary Bypass B. STRACHAN¹, H. XIA¹, S. GIFFORD¹, AND S. SHEVKOPLYAS¹ ¹University of Houston, Houston, TX

3:45PM

Static Gradients Generated with Biofabricated Semi-permeable Biopolymer Membranes in Microfluidics for Bacterial Chemotaxis Studies X. LUO¹, C. WOLFRAM², H-C. WU², W. BENTLEY², AND G. RUBLOFF²

¹Catholic University of America, Washington, DC, ²University of Maryland, College Park, MD

Track: Undergraduate Research, Design and Leadership

Special Session - Room 9

Undergraduate Research, Design and Leadership III

Chairs: Michelle Grimm, Pam VandeVord

3:15PM

The Yin and Yang of Apathy: Using a Novel 3D Statistical Method to Map Motivation and Movement in the Subthalamic Nucleus A. GOURISAN KAR¹

¹Washington University in St. Louis, St. Louis, MO

3:24PM

Subject-Specific Atlas of Human Brainstem Structures K. BRINTZ¹, L. M. ZITELLA¹, K. PAONE¹, AN D M. D. JOHNSON¹ ¹University of Minnesota, Minneapolis, MN

3:33PM

A Microfluidic Device For Concurrent Measurement Of Hemoglobin Concentration And HIV Antigens

R. PATNA IK¹, T. GUO¹, K. KUHLMANN¹, A. RAI², AN D S. SIA¹ ¹Columbia University, New York, NY, ²Columbia University Medical Center, New York, NY

3:42PM

Changes in Vessel Properties During Early Progression of Murine Abdominal Aortic Aneurysms from In Vivo Ultrasound

L. AVILA^{1,2}, E. PHILLIPS¹, M. BERSI³, P. DI ACHILLE³, AN D C. GOERGEN¹ ¹Purdue University, West Lafayette, IN, ²Florida International University, Miami, FL, ³Yale University, New Haven, CT

3:51PM

PET-Optical Imaging Of Receptor For Advanced Glycation End-Products (RAGE) In Androgen-Sensitive Prostate Cancer

C. MIZZ ONI^{1,2}, C. KONOPKA², L. LAHOOD², A. PATEL², I. LEE², A. PLOSKA²,³, J. HEDHLI², I. T. DOBRUCKA², L. KALINOWSKI³, AN D L. W. DOBRUCKI²

¹Wenworth Institute of Technology, Boston, MA, ²University of Illinois, Urbana-Champaign, Urbana-Champaign, IL, ³Department of Laboratory Diagnostics, Medical University of Gdansk, Poland, Gdansk, Poland

4:00PM

Optical imaging of Cancer Cell Metabolism in a Matched Model of Radiation Resistance

K. ALHALLAK¹, R. DING S², AN D N. RAJA RAM ¹

¹University of Arkansas, Fayetteville, AR, ²University of Arkansas for Medical Sciences, Little Rock, AR

4:09PM

Development Of Non-Occluding Cerebral Shunts For The Treatment Of Pediatric Hydrocephalus

R. IZZO¹, N. GRIFFIN¹, R. SHAW¹, J. LEONARDO², R. REYNOLDS², C. IONITA^{1,3}, AND M. SPRINGER⁴

¹The State University of New York at Buffa Io, Buffa Io, NY, ²University at Buffa lo Neurosurgery, Buffa lo, NY, ³Toshiba Stroke an d Vascular Research Center, Buffa lo, NY, ⁴The Jacobs Institute, Buffa lo, NYT

POSTER SESSION Sat 9:30AM - 1:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

SATURDAY | OCTOBER 10 | 2015

208 BMES 2015

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

Saturday, October 10, 2015 - 9:30 AM - 1:00 PM

Track: Undergraduate Research, Design and Leadership

Bioinformatics, Computational and Systems Biology Posters

P-Sat-51

Agent-based Model of CD⁴T Cell Depletion in Lymphoid Tissue During **HIV** Infection

N. REDDY¹ AND S. PILLAI² ¹University of California, Berkeley, Berkeley, CA, ²University of California, San Francisco, San Francisco, CA

P-Sat-52

Graphical User Interface That Analyzes RNA Sequencing Data In MATLAB L. SINGELMANN¹, J. HANSEN¹, AND D. EWERT¹

¹North Dakota State University, Fargo, ND

P-Sat-53

The Role of the ErbB Signaling in Chronic Mild Stress Induced Behavioral Dysfunction in Mice

S. MOED^{1,2}, H. TADMOR^{3,4}, A. WEINSTEIN^{1,2}, O. AVIEL⁵, I. GOLANI², I. KREMER^{4,6}, AND A. SHAMIR⁴,⁶

¹University of Pittsburgh, Pittsburgh, PA, ²Ort Braude College of Engineering, Karmiel, Israel, 3Bar-Ilan University, Tsfat, Israel, 4Mazra Mental Health Center, Akko, Israel, 5The Academic College, Tell Aviv Yaffo, Israel, 6 Technion- Israel Institute of Technology, Haifa, Israel

P-Sat-54

Determining Transcriptional Regulators Of Peroxisome Biogenesis Via In Silico Analysis

C. MAH¹ AND M. RAGSAC²

¹UC San Diego, Saratoga, CA, ²UC San Diego, San Mateo, CA

P-Sat-55

Single-cell Cytokine and Transcriptome Profiling of Circulating Tfh Cells in Patients with Systemic Lupus Erythematosus

S. KIM¹, M. KWAK¹, J-Y. CHOF, L. HAN¹, I. XHANGOLLI¹, J. CRAFT², AND R. FAN¹,² ¹Yale University, New Haven, CT, ²Yale School of Medicine, New Haven, CT

P-Sat-56

Estimating Human Metabolism with Symbolic Regression Software B. SHANER

¹Vanderbilt University, Nashville, TN

P-Sat-57

Detecting Gene-Deletion Events that Result in Beneficial Mutations in Next-generation Genomic Sequences M SALLOUM¹

¹University of Washington, Seattle, WA

P-Sat-58

Computational Analysis of Clipping Mitral Valve Leaflets with Increasing Papillary Muscle Displacement

S. CARROLL¹, M. TOMA¹, D. EINSTEIN², A. YOGANATHAN¹, R. COCHRAN³, AND K. KUN7FI MAN³

¹Georgia Institute of Technology, Atlanta, GA, ²Pacific Northwest National Laboratory, Richland, WA, ³University of Maine, Orno, ME

P-Sat-59

Computational Model of VEGF-stimulated MAPK Signaling in Cancer Cells S. LAI1 AND S. FINLEY1

¹University of Southern California, Los Angeles, CA

P-Sat-60

High Content Analysis of Diverse Cardiomyocytes: Segmentation, Subtype Determination, and Sarcomere Organization Measurement

M. SUTCLIFFE¹, P. TAN¹, N. MUNSHI², Y.J. NAM³, AND J. SAUCERMAN¹ ¹University of Virginia, Charlottesville, VA, ²University of Texas Southwestern, Dallas, TX,3Vanderbilt University, Nashville, TN

P-Sat-61

Determining the Accuracy of Density Functional Theory Calculations for c-x& π Interactions

C. MILLER¹ AND K. RILEY²

¹Tulane University, New Orleans, LA, ²Xavier University of Louisiana, New Orleans, LA

P-Sat-62

Mechanistic Model of Thrombospondin-I Intracellular Apoptosis Signaling A. AYIOTIS¹ AND S. FINLEY¹

¹University of Southern California, Los Angeles, CA

P-Sat-63

A Statistical Computational Model To Investigate The Degradation Kinetics Of Composite Scaffold Systems For Bone Tissue Engineering

S. TOBIAS¹, C. LU¹, B. AKAR¹, E. BAYRAK¹, AND A. CINAR¹ ¹Illinois Institute of Technology, Chicago, IL

P-Sat-64

Cardiac Inverse Problem Verification through Induced Arrhythmia with Body Surface Mapping M. WANG¹, J. TATE¹, AND R. MACLEOD¹

¹University of Utah, Salt Lake City, UT

P-Sat-65

CFD-based Characterization of Gravity-Dependent Renal Calculi Transport Dynamics

D. SATHYANABAYAN¹ AND M. KASSEMI¹ ¹NASA - Glenn Research Center, Cleveland, OH

P-Sat-66

Docking Of Purine-scaffold Series Of Heat Shock Protein 90 Inhibitors M. NGUYEN¹,²

¹The University of Texas at Austin, Austin, TX, ²Rice University, Houston, TX

P-Sat-67

author cancellation

P-Sat-68

A Computational Model for the Metabolism of Inositol Hexakisphosphate J. SMITH¹,², C. WILLIAMS², G. GILLASPY³, J. DUCOSTE², B. PHILLIPPY², AND I. PERERA² ¹The University of North Carolina at Chapel Hill, Chapel Hill, NC, ²North Carolina State University, Raleigh, NC, 3Virginia Tech, Blacksburg, VA

P-Sat-69

VEGF-A Splice Variants Bind VEGFR2 with Differential Affinities A. WITTENKELLER¹, S. MAMER¹, AND P. IMOUKHUEDE¹ ¹University of Illinois Urbana-Champaign, Urbana, IL

P-Sat-70

Partial Least Squares Regression Analysis of VEGFR Adapter Model to Determine Therapeutic Potential of Adapter Protein Targeting C. BLASSICK, J. WEDDELL, AND P. IMOUKHUEDE University of Illinois at Urbana-Champaign, Champaign, IL

Track: Undergraduate Research, Design and Leadership **Biomaterials Posters**

P-Sat-76

Porous Three-Dimensional Carbon Nanotube Scaffolds For Tissue Engineering

M. D'AGATI1, G. LALWANI1, AND B. SITHARAMAN1 ¹Stony Brook University, Stony Brook, NY

P-Sat-77

PEG-Reinforcement of Alginate Hydrogels Improves Capsule Stability for Pancreatic Islet Transplantation

C. VERHEYEN¹, A. TOMEI^{1,2}, AND V. MANZOLI^{2,3}

¹University of Miami, Coral Gables, FL, ²Diabetes Research Institute, Miami, FL, ³Politecnico di Milano, Milano, Italy

Sat

SATURDAY | OCTOBER 10 | 2015

POSTER SESSION Sat 9:30AM – 1:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

P-Sat-78

Analysis of Alginate Gels as a Medium for Immunoassay Cancer Screening Systems

J. QUINLAN¹, N. NEAVLING¹, AND B. KAZAOKA¹ ¹Drexel University, Philadelphia, PA

P-Sat-79

Delivery of Anti-Invasive Drugs To Prevent Invasion of Cancer Cells J. NAM¹, E. RIVERA-DELGADO¹, AND H. A. VON RECUM¹ 'Case Western Reserve University, Cleveland, OH

P-Sat-80

PEGylated Fibrinogen Electrospun Scaffolds for Cancer Cell Culture S. MARIS¹, A. ALLEN², J. ZOLDAN², AND L. SUGGS²

¹Louisiana State University, Baton Rouge, LA, ²The University of Texas at Austin, Austin, TX

P-Sat-81

Fabrication and Characterization of Electrospun PLLA & PCL Braided Scaffolds

B. LAURO¹ ¹University of Pittsburgh, Pittsburgh, PA

P-Sat-82

Mechanical and Structural Properties Of Bilayer Hydrogels For Therapeutic Biomaterial Applications

M. MAHENDRARATNAM¹, D. MALCOLM¹, AND D. BENOIT¹,² ¹University of Rochester, Rochester, NY, ²Department of Chemical Engineering, Rochester, NY

P-Sat-83

Profiling the Liposomal Release of Dyes via Surface Plasmon Resonance from Gold Nanorods

S. LIBRING^{1,2}, S. ALLEN¹, AND L. SUGGS¹ ¹The University of Texas at Austin, Austin, TX, ²Rutgers, The State University of New Jersey, Piscataway, NJ

P-Sat-84

Engineering Compartmentalized Microfluidic Biomaterials

H. MCCLINTOCCK¹, T. VALENTIN¹, AND I. WONG¹ ¹Brown University, Providence, RI

P-Sat-85

Impact Of Matrix Stiffness On Pro-angiogenic Signaling From Fibroblasts H. EL-MOHRI¹, Y. WU², AND G. GHOSH²

¹University of Michigan-Dearborn, Dearborn, MI, ²University of Michigan, Dearborn, Dearborn, MI

P-Sat-86

Analysis Of The Effect Of Saliva On The Degradation Of Absorbable Sutures

L. RIEXINGER¹, J. BRIDDELL², AND D. EBENSTEIN¹ ¹Bucknell University, Lewisburg, PA, ²Geisinger Medical Center, Danville, PA

P-Sat-87

Evaluation of the Host Response to Mesh Implantation in Mice K. BROWN¹, D. MANI², D. HACHIN¹,², S. LOPRESTI¹, AND B. BROWN¹,² 'University of Pittsburgh, PIttsburgh, PA, ²McGowan Institute for Regenerative Medicine, Pittsburgh, PA

P-Sat-88

Effect of Extracts from Mg Alloys on ACL Fibroblasts

J. MAHONEY¹, K. FARRARO¹, C. ZHANG¹, AND S. L-Y. WOO¹ ¹University of Pittsburgh, Pittsburgh, PA

P-Sat-89

Hemocompatibility Of Drug-Releasing Vascular Graft Materials E. MIHALKO', M. LAWTON², E. FINKELSTEIN², AND P. MATHER²

¹University of Pittsburgh, Pittsburgh, PA, ²Syracuse Biomaterials Institute, Syracuse, NY

P-Sat-90

Viability of Pancreatic Stellate Cells on Polyacrylamide Gels F. LIANG¹, A. DE LA PENA¹, AND C. SIMMONS¹

¹University of Florida, Gainesville, FL

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

P-Sat-91

Self-Assembly of Cell-Encapsulated Alginate Microgels

Y. E. HU¹, A. MAO¹, R. DESAI¹, AND D. MOONEY¹ ¹Harvard University, Cambridge, MA

P-Sat-92

Synthesis And Characterization Of Superporous Hydrogels

J. COYNE¹, X. ZHANG², AND Y. WANG³ ¹Pennsylvania State University, Schuylkill Haven, PA, ²Pennsylvania State University, State College, PA, ³Pennsylvania State University, University Park, PA

P-Sat-93

Improved Astrocyte Alignment in a Poly-L-lactic acid Fiber-Fibrin Hydrogel Construct

S. MCCARTHY¹, C. JOHNSON¹, AND R. GILBERT¹ ¹Rensselaer Polytechnic Institute, Troy, NY

P-Sat-94

Enhancing Hepatocyte Function Using Liver Extracellular Matrix Derived from Various Species

A. LONEKER¹, D. FAULK¹, AND S. BADYLAK¹ ¹University of Pittsburgh, Pittsburgh, PA

P-Sat-95

Release Of 17- β Estradiol From Electrospun PLLA Fibers For Increasing Axonal Extension

J. CARDENAS¹, A. D'AMATO¹, AND R. GILBERT¹ ¹Rensselaer Polytechnic Institute, Troy, NY

P-Sat-96

AFM Characterization of PEG Hydrogels

H. CEBULL¹, J. STUKEL¹, AND R. KUNTZ WILLITS¹ ¹The University of Akron, Akron, OH

P-Sat-97

Breast Cancer Single-Cell Motility on STEP Suspended Fibers

G. VAARTSTRA¹, P. SHARMA², AND A. NAIN² ¹Syracuse University, Syracuse, NY, ²Virginia Tech, Blacksburg, VA

P-Sat-98

Optimization of Intervertebral Disc Decellularization

A. BALUBAID^{1,2} ¹University of Pittsburgh, Pittsburgh, PA, ²McGowan Institute for Regenerative Medicine, Pittsburgh, PA

P-Sat-99

Chitosan-Magnesium Composite Scaffolds

R. VANSICKLE¹, U. ADHIKARI², S. KHANAL², AND N. BHATTARAI² ¹Washington State University, Pulman, WA, ²North Carolina A&T State University, Greensboro, NC

P-Sat-100

Enhancing Nerve Regeneration and Functional Recovery with a Natural, Tissue-Derived Scaffold $$M.WYATT^1$$

¹University of Pittsburgh, Pittsburgh, PA

P-Sat-101

Evaluation of Alginate Microbead Stability A. AVILA¹, S. SOMO¹, AND E. BREY¹ 'Illinois Institute of Technology, Chicago, IL

P-Sat-102

Characterization and Degradation of Magnesium and Biopolymer Composites for Bone Tissue Engineering E. MCBRIDE¹, J. OHODNICKI¹, AND P. KUMTA¹

¹University of Pittsburgh, Pittsburgh, PA

P-Sat-103

Characterization And Bonding Mechanism Analysis Of Laser Activated Solder For Tissue Adhesion K. ALHADDAD¹ AND C. WAGNER¹ 'The College of New Jersey, Ewing, NJ

9:30AM – 1:00PM POSTER SESSION Sat 2015 OCTOBER 10 SATURDAY

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

P-Sat-104

Utilizing Natural Crosslinking Molecules to Improve Stiffness of Lung-Derived Extracellular Matrix Hydrogels

N. MIKHAIEL¹, R. POULIOT¹, P. LINK¹, AND R. HEISE¹ ¹Virginia Commonwealth University, Richmond, VA

P-Sat-105

Surface Morphology of Magnesium Based Alloys in a Simulated *in vivo* Environment Using Microfluidics

E. BENLISA¹ AND Y. YUN²

 $^{\rm 1}$ Western New England University, Springfield, MA, $^{\rm 2}$ North Carolina A&T State University, Greensboro, NC

P-Sat-106

Au-some Nanosheets: Interfacial Adsorption is Crucial for the Assembly of Gold Nanoparticle Embedded Peptoid Nanosheets

C. KANG¹, E. ROBERTSON², M. QIAN², AND R. ZUCKERMANN² ¹Oregon State University, Corvallis, OR, ²Molecular Foundry, LBNL, Berkeley, CA

P-Sat-107

Modulating the Mechanical Properties of Composite Fibrin Scaffolds

M. VRATSANOS¹, M. O'BRIEN², G. GAUDETTE², AND G. PINS² 'Case Western Reserve University, Cleveland, OH, ²Worcester Polytechnic Institute, Worcester, MA

P-Sat-108

Characterization of Multi-Arm Poly(ethylene glycol) Hydrogels for a Three-Dimensional Lymphoid Stromal Network J. CLAFLIN¹, J. KIM¹, AND A. SHIKANOV¹ ¹University of Michigan, Ann Arbor, MI

P-Sat-109

Formation and Release of Polyplexes for Non-Viral Transfection of Fibroblasts

M. CHAMBERS¹ ¹Binghamton University, Binghamton, NY

P-Sat-110

Development of a Malaria Transmission Blocking Nanoparticle Vaccine

K. SMOLYAR¹, C. O'NEIL¹, P. ILYINSKII¹, T. KISHIMOTO¹, D. NARUM², P. DUFFY³, K. MIURA², C. LONG², AND L. JOHNSTON¹ ¹Selecta Biosciences, Boston, MA, ²Laboratory of Malaria and Vector Research, NIAID,

¹Selecta Biosciences, Boston, MA, ²Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, MD, ³Laboratory of Malaria Immunology and Vaccinology, NIAID, National Institutes of Health, Rockville, MD

P-Sat-III

ECM Nanoparticles Activate Adaptive Immune Responses

C. ANDERSON¹, M. WOLFE¹, J. KRILL¹, T. WANG¹, L. CHUNG¹, AND J. ELISSEEFF¹ ¹Johns Hopkins University, Baltimore, MD

P-Sat-112

A Novel Bio-Inspired Functionally Graded Material For Impact Mitigation A. Kovach¹, N. Lee¹, J. YOUNG¹, B. JEMERSON¹, K. JOHNSON¹, A. RUSH¹, M.

HORSTEMEYER¹, AND R. PRABHU¹ ¹Mississippi State University, Starkville, MS

TWISSISSIPPI State University, Starkville, IVIS

Track: Undergraduate Research, Design and Leadership

Biomechanics Posters

P-Sat-II3

Surface Reconstruction Of A Female Human Model In Four Military Relevant Postures

C. MOAWAD^{1,2}, N. HRISTOV³, AND S. GAYZIK^{1,4}

¹Wake Forest University School of Medicine, Winston-Salem, NC, ²The City College of New York, New York, NY, ³University of North Carolina, Winston-Salem, NC, ⁴Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Winston-Salem, NC

P-Sat-114

Oculomotor Analysis for mTBI in High School Football Players

K. SHAH¹, J. LUCK¹, C. LAMBERT¹, E. GINALIS¹, I. LAKE¹, D. O'CONNELL¹, C. ECKERSLEY¹, J. KAIT¹, A. MEHLENBACHER¹, AND C. BASS¹ ¹Duke University, Durham, NC

P-Sat-115

Spatial Variation in the Microstructure of Healthy and Dystrophic Diaphragm Muscle Changes Non-linearly over Time C. HENRY¹, K. MARTIN¹, S. PEIRCE¹, AND S. BLEMKER¹ ¹University of Virginia, Charlottesville, VA

P-Sat-116

Elasticity of Metastatic Breast Cancer Cells after Shear Adhesion Selection Z. ZHU¹, A. SPENCER¹, P. VOYVODIC¹, AND A. BAKER¹ *'The University of Texas, Austin, TX*

P-Sat-117

Material Identification Of Human Rib Cortical Bone Using Finite Element Optimization

K. SCHECK^{1,2} AND C. UNTAROIU² ¹Michigan Technological University, Houghton, MI, ²Virginia Tech, Blacksburg, VA

P-Sat-118

Examining Joint Control in Multi-joint Movements in Patients with Stroke S. RAJ¹, N. DOUNSKAIA², AND A. SETHI¹

S. RAJ¹, N. DOUNSKAIA², AND A. SETHI¹ ¹University of Pittsburgh, Pittsburgh, PA, ²Arizona State University, Tempe, AZ

P-Sat-119

Computational Modeling Of Wall Stress In Ascending Thoracic Aortic Aneurysms With Different Valve Phenotypes

T. KAPPIL¹, J. PICHAMUTHU^{1,2,3}, J. WEINBAUM^{1,2}, J. PHILLIPPI^{1,2,3}, T. GLEASON^{1,2,3}, AND D. VORP^{1,2,3}

¹University of Pittsburgh, Pittsburgh, PA, ²McGowan Institute for Regenerative Medicine, Pittsburgh, PA, ³Center for Vascular Remodeling and Regeneration, Pittsburgh, PA

P-Sat-120

Non-linear In-Vivo Deformations Of Optic Nerve Head Tissues With Changes In Intraocular Pressure

J. TEICHMANN¹, H. TRAN^{1,2}, A. VOORHEES², J. WALLACE³, J. TEN EYCK⁴, D. TSUI⁵, J. DROBITCH⁵, Y. SHI⁶, W. WALTERS³, B. WANG^{1,2}, M. A. SMITH^{1,2}, E. TYLER-KABARA⁷, J. S. SCHUMAN^{1,2}, G. WOLLSTEIN^{1,2}, and I. A. SIGAL^{1,2}

¹Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, ²UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA, ³Department of Biology, University of Pittsburgh, Pittsburgh, PA, ⁴Department of Microbiology, University of Pittsburgh, PA, ⁵Department of Computer Science, University of Pittsburgh, PA, Pittsburgh, PA, ⁵Department of Neurological Surgery, University of Pittsburgh, PA, Pittsburgh, PA, ⁷Department of Neurological Surgery, University of Pittsburgh, PI, Pittsburgh, PA, ⁷Department of Neurological Surgery, University of Pittsburgh, PA, Pittsburgh, PA, ⁷Department of Neurological Surgery, University of Pittsburgh, PA, Pittsburgh, PA, ⁷Department of Neurological Surgery, University of Pittsburgh, PA, ⁴Department of Neurological Surgery, University of Pittsburgh, PA,

P-Sat-121

Individualized Visual Correction Based On Optical And Biomechanical Responses Of The Cornea

C. QUITER^{1,2}, M. XU^{2,3}, G. YOON^{1,2}, AND A. LERNER^{1,3} ¹Department of Biomedical Engineering, University of Rochester, Rochester, NY, ²Flaum Eye Institute, Rochester, NY, ³Department of Mechanical Engineering, University of Rochester, Rochester, NY

P-Sat-122

Experimental Analysis of Supercoiling in Twisted Polymer Line

A. STILLER¹, M. MAHENDRARATNAM¹, AND S. BURNS¹ ¹University of Rochester, Rochester, NY

P-Sat-123

Mechanics of Anesthetic Needle Penetration into Human Sciatic Nerve

M. GAN¹, J. PICHAMUTHU^{1,2,3}, S. OREBAUGH¹, AND D. VORP^{1,2,3} ¹University of Pittsburgh, Pittsburgh, PA, ²McGowan Institute for Regenerative Medicine, Pittsburgh, PA, ³Center for Vascular Remodeling and Regeneration, Pittsburgh, PA

P-Sat-124

An Atomic Force Microscopy Study of Ebola Virus-host Cell Interaction D. MOYER¹, M. DRAGOVICH¹, Y. XU¹, K. SCHUTT¹, AND X. F. ZHANG¹ 'Lehigh University, Bethlehem, PA

SATURDAY | OCTOBER 10 | 2015

POSTER SESSION Sat 9:30AM – 1:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

P-Sat-125

Comparison of Human Articular Cartilage Properties in the Humeral Head of Normal and Osteoarthritic Samples

A. POLK¹, R. NEWMAN¹, J. COOK¹, M. SMITH¹, F. PFEIFFER¹, AND A. STOKER¹ ¹University of Missouri, Columbia, MO

P-Sat-126

A Spine Correcting Brace With Increased Mobility

¹Bucknell University, Hopatcong, NJ

P-Sat-127

Assessment of Shrinkage of Packable Dental Composite Resin Fillings Using Photoelasticity

T. STEVENS^{1, 2}, T. STEVENS², AND S. SAHA³ ¹SUNY Downstate Medical Center, Brooklyn, NY, ²Central State University, Wilberforce, OH,³SUNY Downstate Medical Center, Brookyln, NY

P-Sat-128

Cortical Bone Loss In L5 Vertebrae Of Obese Rats Following Sleeve Gastrectomy

G. SINGH¹, O. QADIR², G. PAGNOTTI³, C. RUBIN³, AND M. CHAN³ 'Stony Brook University, Maspeth, NY, ²Stony Brook University, Mt. Sinai, NY, ³Stony Brook University, Stony Brook, NY

P-Sat-129

Effect of Simulated Hamstring Strength Adaptations on Hamstring Muscle Function

V. WAHLQUIST¹ AND A. KULAS² ¹University of Wisconsin-River Falls, Baldwin, WI, ²East Carolina University, Greenville, NC

P-Sat-130

Modeling the Effect of Strain-induced Collagen Damage on Tendon Scar Structure

B. KEGERREIS¹, W. RICHARDSON¹, AND J. HOLMES¹ ¹University of Virginia, Charlottesville, VA

P-Sat-131

Effect of Body Weight Support on Single Leg Stance Times during Self-Paced Walking in Healthy Older Adults

R. WALKER¹, G. CHAPARRO¹, K. JEAN¹, L. PITON¹, V. PASSARELLI¹, AND M. HERNANDEZ¹ ¹University of Illinois Urbana-Champaign, Urbana, IL

P-Sat-132

Optimizing Quadriceps Muscle Parameters for a Subject-Specific Model of Human Movement

H. DESMITT¹ AND Z. DOMIRE² ¹SUNY Geneseo, Geneseo, NY, ²East Carolina University, Greenville, NC

P-Sat-133

Dietary And Handedness Effects On Bone Microstructure

J. TEVENAN¹, T. BUTLER¹, J. JOHNSON¹, AND K. TROY¹ ¹Worcester Polytechnic Institute, Worcester, MA

P-Sat-134

Novel Fourier Transform Deflectometry For Characterizing Cell Migratory Patterns And Forces

J. STECKENRIDER¹,², J. STECKENRIDER¹, AND A. NAIN² ¹Taylor University, Upland, IN, ²Virginia Tech, Blacksburg, VA

P-Sat-135

The Effect of Hardness and Contact Area on the Overall Hysteresis COF in a Multi-Scale Computational Model

A. ACHARYA¹ ¹University of Pittsurgh, Pittsburgh, PA

P-Sat-136

Lower Extremity Injuries in Low-Speed Motor Vehicle Accidents

W. BLISS^{1,2}, O. KOMARI², N. TOOSI², AND K. TOOSI² ¹Robert Morris University, Moon Township, PA, ²Pittsburgh Biomechanics, Pittsburgh, PA

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

P-Sat-137

High Frequency Ultrasound Evaluation Of Bone Motion In Prosthetic Sockets

A. OBEROI¹, L. DIDIER¹, S. PATHAK¹, A. HOLLISTER², P. O'NEAL¹, AND D. MOLLLER¹ ¹Louisiana Tech University, Ruston, LA, ²Lousiana State University Health Science Center, Shreveport, LA

P-Sat-138

Examining the Effects of Boundary Stiffness on Valvular Interstitial Cells in ${\rm 3D}$

M. LASSO¹, F. BENESCH-LEE¹, AND K. BILLIAR¹ ¹Worcester Polytechnic Institute, Worcester, MA

P-Sat-139

Statistical Analysis Of Soft-Matter Tissue Characterization E. Shepherd¹, C. Simmons¹, N. Ruzycki¹, and A. Rubiano¹

¹University of Florida, Gainesville, FL

P-Sat-140

Mechanical and Structural Characteristics of Demineralized and Deproteinized Porcine Bones with Age Effects

Y. LING¹, C. LINDEMAN¹, AND I. JASIUK¹ ¹University of Illinois at Urbana Champaign, Urbana, IL

P-Sat-147

Exploring The Influence Of Surface Tension On Mesenchymal-to-Epithelial Transition (MET) In Mesenchymal Sheets N. CHO¹, H. Y. KIM¹, AND L. DAVIDSON¹

¹University of Pittsburgh, Pittsburgh, PA

P-Sat-148

Constitutive Modeling of Adipose Tissue for Varying Loading Conditions C. SCHINER¹, X. JIN¹, AND K. YANG¹ ¹Wayne State University, Detroit, MI

P-Sat-149

Accuracy of Single-Plane versus Biplane Fluoroscopy in Determining 3D Femorotibial Kinematics in Rats

A. LIPAT¹, E. LAKES¹, S. KIM¹, S. BANKS¹, AND K. ALLEN¹ [']University of Florida, Gainesville, FL

P-Sat-150

Peak Stress Induced by Medications in Aortic Dissection Patients Z. LUCIENNE¹, V. FLAMINI¹, A. DEANDA², B. E. GRIFFITH³, AND P. URSOMANNO²

YNYU School of Engineering, New York, NY, ²New York University School of Medicine, New York, NY, ³University of North Carolina at Chapel Hill, Chapel Hill, NC

P-Sat-151

Accessory Vein Characterization to Assess Influence on Native Arteriovenous Fistula Hemodynamics.

M. BARTLETT¹, Y. HE², D. PIKE³, Y-T. SHIU³, P. ROY-CHAUDHURY⁴, S. BERCELI², A. CHEUNG³, AND C. TERRY³ ¹University of Utah, Salt Lake City, UT, ²University of Florida, Gainesville, FL, ³University of Utah, Salt Lake City, UT, ⁴University of Cincinnati, Cincinnati, OH

P-Sat-152

Computational Models of Muscle Length Changes during Tree Pose Compared to Current Yoga Models

K. CRUMP¹, K. VIRGILIO¹, T. FISCHER-WHITE¹, J. MILLER¹, S. RUSSELL¹, A. TAYLOR¹, AND S. BLEMKER¹

¹University of Virginia, Charlottesville, VA

P-Sat-153

Effects Of Adaptation Speed And Age Of Patient On The Transfer Of Treadmill Learning To Over Ground Walking M. BOTYRIUS¹

¹University of Pittsburgh, Pittsburgh, PA

P-Sat-154

The Effect Of Heat Application On The Viscosity Of Human Milk D. ALATALO¹

¹The University of Texas at Dallas, Plano, TX

9:30AM – 1:00PM POSTER SESSION Sat 2015 OCTOBER 10 SATURDAY

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

P-Sat-155

Energy Absorption and Dissipation Differ by Anatomic Direction in Porcine Mandibular Cancellous Bone A. MFISTER¹ AND J. COTTON¹

¹Ohio University, Athens, OH

P-Sat-156

Tensile Forces Applied to Cells within Valvular Interstitial Cell Aggregates Reduces Apoptosis

V. LIANG¹, H. CIRKA¹, AND K. BILLIAR¹ ¹Worcester Polytechnic Institute, Worcester, MA

P-Sat-157

Biomechanical Characterizations of Leukemia and Healthy White Blood Cells to Develop a New Diagnostic Technique K. CRAWFORD¹ AND C. TURBYFIELD¹

¹Georgia Institute of Technology, Atlanta, GA

P-Sat-158

Effect of Aggregate Size and Substrate Stiffness on Apoptosis Rate in VICs Aggregates

J. URIBE¹, H. CIRKA², AND K. BILLIAR² ¹University of Massachusetts Dartmouth, New Bedford, MA, ²Worcester Polytechnic Institute, Worcester, MA

P-Sat-159

A Cone and Plate Apparatus to Study the Effects of Shear Stress on Endothelial Cell-Adipocyte 3D Co-Culture N. HOURIET¹ ¹Drexel University, Philadelphia, PA

P-Sat-160

The Effect of Capsular Integrity On Glenohumeral And Subacromial Forces And Kinematics In A Cadaveric Model Of Abduction With Variable Loading P. WILLIAMSON¹

¹Beth Israel Deaconess Medical Center, Boston, MA

P-Sat-161

Foul Tip Impact Attenuation of Baseball Catcher Masks Using Head Impact Metrics

C. ECKERSLEY¹, T. WHITE¹, H. CUTCLIFFE¹, J. SHRIDHARANI¹, AND D. BASS¹ ¹Duke University, Durham, NC

P-Sat-162

Heterogeneous Material Mapping of Magnesium Implants

N. FRANTZ¹, A. JACKSON², AND M. MCCULLOUGH² ¹Illinois Institute of Technology, Chicago, IL, ²North Carolina A&T State University, Greensboro, NC

P-Sat-163

Role of Tendon Size in Viscoelastic Heating

A. TIAN¹, A. STILLER¹, I. BAH¹, AND M. BUCKLEY¹ ¹University of Rochester, Rochester, NY

P-Sat-164

Modified Wheelchair Gives Teen With Arthrogryposis Independent Mobility

M. DIMOFF¹, C. PETLOWANY¹, C. SHAW¹, D. SMITH¹, J. ELINGER¹, R. THORNBURG¹, A. SATERBAK¹, G. GOGOLA², M. WETTERGREEN¹, AND M. ODEN¹ ¹Rice University, Houston, TX, ²Shriners Hospital Houston, Houston, TX

P-Sat-165

Sleeve Gastrectomy Leads to Trabecular Degradation in Vertebrae

O. QADIR¹, C. RUBIN², G. PAGNOTTI ², M. CHAN², AND G. SINGH³ ¹SUNY Stony Brook, Mt.Sinai, NY, ²SUNY Stony Brook, Stony Brook, NY, ³SUNY Stony Brook, Maspeth, NY

P-Sat-166

Quantifying Muscle Spasticity in the Elbow Joint

C. STUMP¹, W. JOINER¹, S. SIKDAR¹, AND M. HARRIS-LOVE² ¹George Mason University, Fairfax, VA, ²MedStar National Rehabilitation Hospital, Washington, DC

P-Sat-167

Addressing Challenges in Building Robust Transmural Data Sets of Soft Tissue Microstructure

¹University of Texas at Austin, Austin, TX

P-Sat-168

Image-Based Strain Quantification for Cell Stretching Experiments J. Wesley Garrett, Nicholas Calvo, Chelsey Simmons University of Florida J. GARRETT¹ ¹University of Florida, Titusville, FL

Track: Undergraduate Research, Design and Leadership Biomedical Engineering Education (BME) Posters

P-Sat-197

3D Ultrasound-based Analysis of the Location of Maximum Activation of Forearm Muscles

C. TRUONG¹, N. AKHLAGHI¹, K. ALMUHANNA¹, AND S. SIKDAR¹ ¹George Mason University, Fairfax, VA

P-Sat-198

Predicting Lower Extremity Loads Through Biomechanical Modeling

A. MCGIRT^{1,2,3}, P. DEVITA¹, E. GUADAGNO¹, K. HOOKS¹, AND J. MCDONNELL¹ ¹East Carolina University, Greenville, NC, ²University of North Carolina at Charlotte, Charlotte, NC, ³University of North Carolina at Pembroke, Pembroke, NC

P-Sat-199

The Effect Of Left-Heart Valve Pathologies On ECHO-based Pressure Estimation

L. FREDERICKS¹, M. PLYLER², AND S. GEORGE² ¹North Carolina Central University, Durham, NC, ²East Carolina University, Greenville, NC

P-Sat-200

Defining Cancerous Margins On The Skin Using A PSFDI

P. CASTILLO¹,², W. GOTH¹, B. YANG¹, A. MOY¹, M. FOX³, J. REICHENBERG⁴, AND J. TUNNELL¹

¹The University of Texas at Austin, Austin, TX, ²The University of Texas - Pan American, Edinburg, TX, ³Austin Dermatologic Surgery Center, Austin, TX, ⁴Seton Healthcare Family, Austin, TX

P-Sat-201

Role of Host Cellular Response on Calcification of Heart Valve Biomaterials J. VAN SWOL¹

¹Clemson, Clemson, SC

P-Sat-202

Effect of Key Polyphenol Functional Groups on Oligomer Formation in Alzheimer's Disease

R. GEISER¹, S. CHASTAIN¹, M. ROGERS¹, K. PATE¹, AND M. MOSS¹ ¹University of South Carolina, Columbia, SC

P-Sat-203

Membrane-Free Biofuel Cell Fueled by Glucose-Gel Electrolyte Fabricated Into a "Patch"

A. UESHIRO¹, B. LENG², AND Z. IOBAL³ 'New Jersey Institute of Technology, Farmingville, NY, ²New Jersey Institute of Technology, Kearny, NJ, ³New Jersey Institute of Technology, Morris Plains, NJ

P-Sat-204

Elucidating the Cathepsin Proteolytic Networks with Informed Mutagenesis and Purified Strategies

M. SHULER¹, M. FERRALL², M. AFFER², AND M. PLATT² ¹The Pennsylvania State University, Philadelphia, PA, ²Georgia Institute of Technology, Atlanta, GA

POSTER SESSION Sat 9:30AM – 1:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

P-Sat-205

Preparation and Optimization of Brain Glioma Spheroid Models D. KIM^{1}

¹Pennsylvania State University, state college, PA

Track: Undergraduate Research, Design and Leadership

Biomedical Imaging and Optics Posters

P-Sat-212

Phase-Sensitive Optical Imaging: Diffraction Phase Microscopy to Reduce Phase Noise

R. CHOWDHARY¹ ¹University of Illinois at Urbana-Champaign, Hoffman Estates, IL

P-Sat-213

Attenuation Errors Due To Bone And Arm Truncation In Pelvic PET-MR K OZGUN¹ J. EIELDING² AND D. LALUSH¹

N. OZGUN', J. FIELDING', AND D. LALUSH' 'North Carolina State University, Raleigh, NC, ²The University of North Carolina at Chapel Hill, Chapel Hill, NC

P-Sat-214

Task and Resting-State Functional Magnetic Resonance Imaging

G. AROSEMENA OTT¹, T. BLAZEY¹, A. MITRA^T, B. SHANNON², A. SNYDER², AND M. RAICHLE²

¹Washington University in St. Louis, St. Louis, MO, ²Washington University School of Medicine, St. Louis, MO

P-Sat-215

Filtering of Anti-Scatter Grid Line Artifacts from Digital X-ray Breast Tomosynthesis Images

H. SPORKIN¹, T. PATEL¹, H. PEPPARD¹, AND M. WILLIAMS¹ ¹University of Virginia, Charlottesville, VA

P-Sat-216

Mapping The Extracellular Matrix: An Automated Analysis Of The Striatal Distribution Of Thrombospondin

J. LIU¹ AND M. MODO¹ ¹University of Pittsburgh, Pittsburgh, PA

P-Sat-217

Development of a Computer Model for an Innovative Magnetoencephalography (MEG) Brain Phantom

L. EAST^{1,2}, P. BROWN³, E. DAVENPORT^{1,3}, J. URBAN³, J. STITZEL^{3,4}, C. WHITLOW^{1,5,6}, AND J. MALDJIAN^{1,5}

¹Wake Forest ⁵School of Medicine Advanced Neuroscience Imaging Research (ANSIR) Laboratory, Winston-Salem, NC, ²University of Virginia Biomedical Engineering Department, Charlottesville, VA, ³Wake Forest School of Medicine Virginia Tech-Wake Forest School of Biomedical Engineering, Winston-Salem, NC, ⁴Wake Forest School of Medicine Childress Institute for Pediatric Trauma, Winston-Salem, NC, ⁶Wake Forest School of Medicine Department of Radiology-Neuroradiology, Winston-Salem, NC, ⁶Wake Forest School of Medicine Translational Science Institute, Winston-Salem, NC

P-Sat-218

Creating a Scalable Tibial Model from Magnetic Resonance Images to Predict Tibial Stresses

L. GOEL¹, J. WILLSON², AND S. MEARDON²

¹East Carolina University, Raleigh, NC, ²East Carolina University, Greenville, NC

P-Sat-219

Characterization Of Structural Changes In Cortical GABAergic Markers In Epilepsy

E. MOORE^{1, 2}, F. TESSEMA^{2, 3}, W. JANSSEN², J. MORRISON², AND P. HOF² *University of South Carolina, Columbia, SC, ²lcahn School of Medicine at Mount Sinai, New York City, NY, ³Yale University, New Haven, CT*

P-Sat-220

Synthesis of Fluorocarbon Droplets Cohabited With Mesoporous Silica Nanoparticles For Use In Diagnostic Ultrasound Imaging

E. LU¹, A. DIXON¹, AND J. HOSSACK¹ ¹University of Virginia, Charlottesville, VA

P = Poster Session
 OP = Oral Presentation
 Q = Reviewer Choice Award

P-Sat-221

Feasibility of Ultra-Cheap Imaging: Designing Ultrasound for the Developing World

E. KWAN^{1,2,3,4} AND C. CASKEY^{1,3,4}

¹Vanderbilt University Institute of Imaging Science, Nashville, TN, ²University of Rochester, Rochester, NY, ³Vanderbilt University Medical Center, Nashville, TN, ⁴Vanderbilt University, Nashville, TN

P-Sat-222

Real-Time Implementation of fMRI Based Eye Tracking S. MCGHEE¹, J. LISINSKI¹, C. CRADDOCK¹, AND S. LACONTE¹,² ¹Virginia Tech, Roanoke, VA, ²Virginia Tech, Blacksburg, VA

P-Sat-223

Rapid Characterization of Volumetric Focused Ultrasound Pressure Fields Using Background-Oriented Schlieren Tomography.

M. KREMER¹, C. CASKEY¹, AND W. GRISSOM¹ ¹Vanderbilt University, Nashville, TN

P-Sat-224

moved to Friday

P-Sat-225

Low Cost Multiphoton Microscopy On Inverted Microscope

S. SATPATHY¹, E. PERILLO², AND A. DUNN² ¹University of Illinois Urbana-Champaign, Urbana, IL, ²The University of Texas at Austin, Austin, TX

P-Sat-226

Measurements of microfluidic *M. smegmatis* Biofilm Growth Using Electrical Impedance Spectroscopy by Benjamin Hawkins and Hoang Nguyen

H. NGUYEN¹ AND B. HAWKINS² ¹San Jose State University, san jose, CA, ²San Jose State University, San Jose, CA

P-Sat-227

Noninvasive Imaging To Model Progression Of Pressure Overload Left Ventricular Hypertrophy

N. WAKIM¹, L. HERBERT¹, Y. Ll¹, N. HOWELL¹, R. ROY¹, N. NARESH¹, R. CAREY¹, F. EPSTEIN¹, H. TAEGTMEYER², S. KELLER¹, AND B. KUNDU¹ ¹University of Virginia, Charlottesville, VA, ²University of Texas Houston, Houston, TX

P-Sat-228

Comparison of Segmentation Software for 3D Heart Reconstruction T. CHLEBOWSKI¹, C. BUFFINTON¹, AND R. MANGANO²

¹Bucknell University, Lewisburg, PA, ²Geisinger Medical Center, Danville, PA

P-Sat-229

Automated High-Content Imaging of Live Human Cells on Micropatterned Multiwell Plates

S. SEYMOUR ^{1,2}, T. HARKNESS ^{1,2}, J. MCNULTY^{1,2}, R. PRESTIL^{1,2}, T. KLANN^{1,2}, M. MURRELL^{1,3}, R. ASHTON^{1,2}, AND K. SAHA^{1,2} ¹University of Wisconsin-Madison, Madison, WI, ²Wisconsin Institute for Discovery, Madison, WI, ³Yale University, New Haven, CT

P-Sat-230

Validation of Hepato-Renal Index for Detection of Hepatic Fat by Ultrasound

O. COSSIO¹ AND A. KUMAR²

¹Inova Fairfax Medical Campus, Falls Church, VA, ²Inova Fairax Medical Campus, Falls Church, VA

P-Sat-23 I

Looking for Gold in Metastasis Using a Gold Nanoparticle and Radionuclide Imaging

G. DORON¹, P. PEIRIS¹, AND E. KARATHANASIS¹ ¹Case Western Reserve University, Cleveland, OH

P-Sat-232

Measuring The Biomechanical Properties Of Tissue Phantoms Using Optical Coherence Tomography

M. ARONES¹, M. PIERCE², AND F. SILVER² ¹University of Florida, Gainesville, FL, ²Rutgers, Piscataway, NJ

9:30AM - 1:00PM POSTER SESSION Sat 2015 OCTOBER 10 SATURDAY

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

P-Sat-233

Improved Subset Selection For Texture Based Deformation Mapping Techniques

M. CHAMPER¹, D. MOSHER¹, AND B. BAY¹ ¹Oregon State University, Corvallis, OR

P-Sat-234

Multiple Scattering in Optical Coherence Tomography for Enhanced Tissue Discrimination

L. FUNK^{1,2}, N. URIBE-PATARROYO^{1,2}, P-C. HUI^{1,2}, AND B. BOUMA^{1,2} ¹Massachusetts General Hospital, Boston, MA, ²Harvard Medical School, Boston, MA

P-Sat-235

Can We Detect Chronic Inflammatory Lesions in Multiple Sclerosis Through Quantification of Perfusion and Permeability?

K. SELVAGANESAN¹,², D. REICH², AND G. NAIR² ¹University of California, Berkeley, Berkeley, CA, ²National Institutes of Health, Bethesda, MD

P-Sat-236

A Novel Optical Transducer for Ultrasound Imaging Based On Photoacoustic Effect

R. ZAMAN¹ ¹George Mason University, Herndon, VA

P-Sat-237

Mobile Automated Analysis of Sperm Quality M. MESSINA¹, C. YANG¹, S. SINGH¹, S. KNOWLTON¹, AND S. TASOGLU¹ ¹University of Connecticut, Storrs, CT

P-Sat-238

In Vivo Measurement of Extensor Carpi Ulnaris Fascicle Lengths using Extended Field-of-View Ultrasound P. FRANKS¹,², A. ADKINS¹,², AND W. MURRAY¹,² ¹Northwestern University, Evanston, IL, ²Rehabilitation Institute of Chicago, Chicago, IL

P-Sat-239

Viability Of Lung Cancer Cells and Human Mesenchymal Stem Cells with Nanodiamonds

A. CHEN¹, L. YANG¹, H. JAYAKUMAR¹, S. WANG¹, AND C. MERILES¹ ¹City College of New York, New York, NY

P-Sat-240

Optimization And Characterization Of IRPEG For Use In NIR Imaging Of The Lymphatic System M. Ross

¹Georgia Institute of Technology, Lawrenceville, GA

P-Sat-241

Imaging Studies Of Lung Clearance In Pediatric Subjects With Cystic Fibrosis

R. LACY ¹University of Pittsburgh, Pittsburgh, PA

P-Sat-242

Using AFM to investigate assembly of A β in Alzheimer's disease C. STARK^{1,2} ¹Yale University, New Haven, CT, ²National Institutes of Health, Bethesda, MD

P-Sat-243

Phantom Development to Verify Ultrasound Scattering Simulation for High-Intensity Focused Ultrasound

M. HOLBROOK¹, D. CHRISTENSEN¹, A. PAYNE¹, AND C. DILLON¹ ¹University of Utah, Salt Lake City, UT

P-Sat-244

Barcoding Cells for Quantitative Live Cell Imaging

R. TAITANO¹, H. J. CHOI², AND K. LEE² ¹Virginia Polytechnic Institute and State University, Burke, VA, ²Worcester Polytechnic Institute, Worcester, MA

P-Sat-245

Customizing CLARITY For HIV Associated Neurocognitive Disorders Y. WU¹, N. TONG¹, S-M. LU¹, AND H. GELBARD¹ ¹University of Rochester, Rochester, NY

P-Sat-246

Ultrasound Stimulation of Neurons V. MOTT¹, S. JOSE¹, N. PEIXOTO¹, AND P. CHITNIS¹ ¹George Mason University, Fairfax, VA

P-Sat-247

Using A Dual-Ligand Nanoparticle To Target The Dynamic Environment Of Micrometastasis

A. GOLDBERG¹, E. DOOLITTLE¹, P. PEIRIS¹, AND E. KARATHANASIS¹ ¹Case Western Reserve University, Cleveland, OH

Track: Undergraduate Research, Design and Leadership

Cancer Technologies Posters

P-Sat-252

Targeted SiRNA Delivery To Bone Marrow Endothelial Cells Using Polymeric Nanoparticles For Bone Metastasis Inhibition

N. LOU COMANDANTE¹, M. MITCHELL², AND R. LANGER² ¹University of Washington, Seattle, WA, ²Massachusetts Institute of Technology, Cambridge, MA

P-Sat-253

Morphological Single-Cell Profiling of the Epithelial to Mesenchymal Transition

J. RUBINS¹, S. LEGGETT¹, K. WILLIAMS¹, AND I. WONG¹ ¹Brown University, Providence, RI

P-Sat-254

Emergent Single Cell Dynamics in Heterotypic Epithelial-Mesenchymal Co-Cultures

M. GAMBOA CASTRO¹, Y. IZRAYELIT¹, S. LEGGETT¹,², AND I. WONG¹,² ¹Center for Biomedical Engineeing, Brown University, Providence, RI, ²Pathobiology Graduate Program, Brown University, Providence, RI

P-Sat-255

Targeting Morphological Changes In Glioblastoma With EphrinA1/EphA2 And The Effect On Electroporation Therapies

M. RICHARDS¹, J. IVEY², E. LATOUCHE², R. DAVALOS², AND S. VERBRIDGE² ¹Kansas State University, Manhattan, KS, ²Virginia Tech- Wake Forest University, Blacksburg, VA

P-Sat-256

Cell-Mediated Stiffening of Synthetic Biomaterials

T. MCCARTHY¹, L. JANSEN¹, AND S. PEYTON¹ ¹University of Massachusetts Amherst, Amherst, MA

P-Sat-257

author cancellation

P-Sat-258

Antifibrotic Effects Of Angiotensin-(1-7) Treatment On Irradiated Skeletal Muscle

H. REAVIS¹, J. MOORE², V. PAYNE², E. A. TALLANT², P. GALLAGHER², M. CALLAHAN², C. EMORY², AND J. WILLEY² ¹University of North Carolina at Chapel Hill, Chapel Hill, NC, ²Wake Forest School of

Medicine, Winston-Salem, NC

P-Sat-259

Tumorigenic Expression and Morphology of Breast Cancer Cells in 3D PEG-fibrinogen Hydrogels

K. HENDERSON¹, S. PRADHAN¹, AND E. A. LIPKE¹ ¹Auburn University, Auburn, AL
POSTER SESSION Sat 9:30AM – 1:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

P-Sat-260

Residence Time Distribution Analysis of Size-Dependent Molecular Transport Using Microfluidics for the Optimization of Sentinel Lymph Node-Targeted Drug Delivery

A. ANILKUMAR¹,², N. ROHNER²,³, AND S. THOMAS¹,²,³,⁴

¹Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, ²Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, ³George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, ⁴Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA

P-Sat-261

The Effect of a Novel Sigma-2 Ligand on SK-N-SH Neuroblastoma Microtissue Aggregation and Death

V. BEHNAM¹ AND W. BOWEN² ¹Brown University, Arlington, VA, ²Brown University, Providence, RI

P-Sat-262

The Wound Healing Response Promotes Tumor Cell Invasion and Metastasis

M. GOLLA¹, M. RAFAT¹, AND E. GRAVES¹ ¹Stanford School of Medicine, Stanford, CA

P-Sat-263

Determining The Effect Of Hydrostatic Pressure On HeLa Cell Spheroids K. ETTEN¹, J. NAGATOMI¹, AND K. CHAMPAGNE¹ ¹Clemson University, Clemson, SC

P-Sat-264

Microbioreactors for Examining the 3D Tumor Microenvironment M. Rogers¹, T. Sobolik¹, D. Schaffer¹, P. Samson¹, J. Wikswo¹, and A. Richmond^{1,2}

¹Vanderbilt University, Nashville, TN, ²Tennessee Valley Healthcare System, Nashville, TN

P-Sat-265

Modifying Gold Nanoparticle Surfaces to Improve Biocompatibility and Enhance Localization to the Nucleus of MCF10a Cells

R. RAGHAVAN¹, B. DEVETTER², AND R. BHARGAVA² ¹MIT, Cambridge, MA, ²University of Illinois-Urbana Champaign, Urbana, IL

P-Sat-266

Digital Morphometry Quantifies Phenotypic Heterogeneity in Threedimensional Culture

M. BORTEN¹ ¹University of Virginia, Charlottesville, VA

P-Sat-267

Influence of Substrate Stiffness on Myoferlin Induced Changes in the Migration of MDA-MB-231 Breast Cancer Cells K. WATTS¹, V. SHUKLA¹, D. KNISS¹, AND S. GHADIALI¹ ¹The Ohio State University, Columbus, OH

P-Sat-268

Characterizing Breast Cancer Progression Cell Lines through Immunofluorescence Microscopy and Infrared Spectroscopy M. DAWSON¹ 'University of Illinois at Urbana-Champaign, Urbana, IL

P-Sat-269

The Effects of Hemodynamic Shear Stress on Stemness of Acute Myelogenous Leukemia

A. RADDATZ¹, U. TRIANTAFILLU¹, AND Y. KIM¹ ¹The University of Alabama, Tuscaloosa, AL

Track: Undergraduate Research, Design and Leadership

Cardiovascular Engineering Posters

P-Sat-272

Changes in Myocardial Wall Stiffness in a Mouse Model of Persistent Truncus Arteriosus

K. R. MERCON¹, R. K. BLAHO¹, A. N. FIRMENT², E. M. BUFFINTON³, A. M. MOON², AND C. M. BUFFINTON¹ ¹Bucknell University, Lewisburg, PA, ²Geisinger Medical Center, Danville, PA, ³Cornell

University, Ithaca, NY

P-Sat-273

Inhibition of microRNA-199a to Enhance Perfusion Downstream of Arterial Occlusions

R. LEIPHART¹, J. HEUSLEIN¹, AND R. PRICE¹ ¹University of Virginia, Charlottesville, VA

P-Sat-274

Imaging and Reconstruction Methods for a Mouse Model of Persistent Truncus Arteriosus

A. BENJAMIN¹, A. ABAY¹, A. FIRMENT², A. MOON², AND C. BUFFINTON¹ ¹Bucknell University, Lewisburg, PA, ²Geisinger Medical Center, Danville, PA

P-Sat-275

The Role Of Hypoxia In Aortic Valve Calcification S. BHATNAGAR¹, M. SAPP¹, V. KRISHNAMURTHY¹, AND J. GRANDE-ALLEN¹ ¹Rice University, Houston, TX

P-Sat-276

Automated ECG Signal Analysis and Arrhythmia Classification

J. NG¹ ¹New Mexico State University, Las Cruces, NM

P-Sat-277

Age Associated Reductions in the &[beta]-adrenergic Response of Cardiomyocytes

A. CUNHA¹, A. KWAWAZALA², AND S. CAMPBELL² ¹Worcester Polytechnic Institute, Worcester, MA, ²Yale University, New Haven, CT

P-Sat-278

Platelet Lysis, Hemolysis, and Thrombin Generation under Pathological Shear Stress

M. IGE¹, W. GAO¹, J. SHERIFF¹, AND D. BLUESTEIN¹ ¹Stony Brook University, Stony Brook, NY

P-Sat-279

Ambient Ultrafine Particles Impair Vascular Repair via Notch Signaling

A. KABOODRANGIDAEM¹, T. BEEBE¹, K. BAEK¹, R. Ll², AND T. K. HSIAI¹, ² ¹Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA,²Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, Los Angeles, CA

P-Sat-280

Investigation of Spherical and Cylindrical Geometries of Monocyte Chemoattractant Protein Micelles For Monocyte-Targeting

S. P.YOO¹, E. J. CHUNG¹, AND M. TIRRELL¹ ¹University of Chicago, Chicago, IL

P-Sat-281

Pericyte Recruitment in a Diabetic Mouse Model of Corneal Neovascularization

D. TAVAKOL¹, M. KELLY-GOSS¹, P. YATES¹, AND S. PEIRCE-COTTLER¹ ¹University of Virginia, Charlottesville, VA

P-Sat-282

Implementation Of Butterworth Filtering To Improve Beat Selection For Hemodynamic Analysis

M. JACUS¹, T. BACHMAN¹, R. VANDERPOOL¹, AND M. SIMON¹ ¹University of Pittsburgh, Pittsburgh, PA

P = Poster Session
OP = Oral Presentation
= Reviewer Choice Award

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

P-Sat-283

Syndesomes Enhance pdfg- $\beta\beta$ Wound Healing Activity In Obese And Diabetic Mice

M. MAJID¹, S. DAS¹, AND A. BAKER¹ ¹University of Texas at Austin, Canton, TX

P-Sat-284

Inhibition of Local MMP Activity Using Targeted Delivery of Batimastat Loaded Nanoparticles

A. CHOWDHURY¹, N. NOSOUDI¹, P. NAHAR-GOHAD¹, AND N. VYAVHARE¹ ¹Clemson University, Clemson, SC

P-Sat-285

Using Phase-Contrast MRI to Calculate Wall Shear Stress in Pulmonary Hypertension

C. HORNBECK¹, J. CAHILL², AND S. GEORGE² ¹Illinois Institute of Technology, Chicago, IL, ²East Carolina Unversity, Greenville, NC

P-Sat-286

A Method To Electrically Stimulate Human Induced Pluripotent Stem Cell Derived Cardiomyocytes Seeded Fibrin Microthreads

V. TRAN¹, K. HANSEN², AND G. GAUDETTE²

¹University of Rhode Island, Kingston, RI, ²Worcester Polytechnic Institute, Worcester, MA

P-Sat-287

Characterizing The Seeding Distribution Of Microspheres In Tissue Engineered Vascular Grafts

A. JOSOWITZ¹, J. KRAWIEC¹, M. FEDORCHAK¹, A. D'AMORE¹,², J. WEINBAUM¹, J. P. RUBIN¹,², W. WAGNER¹,², S. LITTLE¹, AND D. VORP¹,² 'University of Pittsburgh, Pittsburgh, PA, ²University of Pittsburgh Medical Center, Pittsburgh, PA

P-Sat-288

Seeding Of Microspheres Into A Porous Tubular Scaffold As A Tissue Engineered Vascular Graft

D. PEZZONE^{1,2}, J. KRAWIEC^{1,2}, A. JOSOWITZ¹, M. FEDORCHAK¹, A. D'AMORE^{1,2}, J. WEINBAUM^{1,2}, W. WAGNER^{1,2}, S. LITTLE^{1,2}, AND D. VORP^{1,2} 'University of Pittsburgh, Pittsburgh, PA, ²McGowan Institute for Regenerative Medicine, Pittsburgh, PA

P-Sat-289

Using Cardiac Progenitor Cell Derived Exosomes to Improve Cardiac Function Post-Myocardial Infarction

A. GEORGE¹, U. AGARWAL², S. GHOSH-CHOUDHARY ¹, M. BROWN¹, Y. MEHTA¹, AND M. DAVIS^{1,2,3}

¹Georgia Institute of Technology, Atlanta, GA, ²Emory University, Atlanta, GA, ³Children's Healthcare of Atlanta, Atlanta, GA

P-Sat-290

Prediction of Acute Hypotensive Episodes in the Intensive Care Unit to Improve Patient Outcomes

J. DIECK¹, S. HASSAN¹, AND G. MIRSKY¹ ¹Benedictine University, Lisle, IL

P-Sat-291

Modulation Of The Canonical Wnt Pathway Affects The Morphology Of hiPSC 3D Aggregates

N. VOTAW¹,², T. HOOKWAY², AND T. MCDEVITT²

¹Georgia Institute of Technology, Atlanta, GA, ²Gladstone Institutes, San Francisco, CA

P-Sat-292

Effects of Strain Gradient on Mesenchymal Stem Cell Alignment and Migration

G. MOLICA¹ AND J. GERSHLAK¹ ¹Worchester Polytechnic Institute, Worcester, MA

P-Sat-293

Electromagnetic Driven Accelerated Wear Testing of Tissue-based Materials D. INFANTE¹

¹Clemson University, Clemson, SC

P-Sat-294

Development of a Novel Apparatus to Study Heart-Vascular Interaction In Vitro

C. NIPPER¹, M. MCDOWALL¹, S. HELMCAMP¹, K. MITCHELL¹, S. SHANNON¹, J. SIMPSON¹, C. QUICK¹, AND R. DONGAONKAR¹ ¹Michael E. DeBakey Institute, Texas A&M University, College Station, TX

P-Sat-295

High Throughput Investigation of Stem Cell Differentiation by Shear Stress and Growth Factors

C. DEB^{1,2}, J. LEE², A. SPENCER², L. SAMARNEH², AND A. BAKER² ¹Massachusetts Institute of Technology, Cambridge, MA, ²The University of Texas at Austin, Austin, TX

P-Sat-296

Computational Examination of the Hemodynamics in a Patient-Specific Growing Cerebral Aneurysm

C. HYSLOP¹, P. NAIR¹, J. RYAN¹, D. FRAKES^{1,2}, B. CHONG^{1,3}, J. PLACENCIA¹, AND E. KOSTELICH⁴

¹SBHSE, Arizona State University, Tempe, AZ, ²ECEE, Arizona State University, Tempe, AZ, ³Mayo Clinic Hospital, Phoenix, AZ, ⁴SoMSS, Arizona State university, Tempe, AZ

P-Sat-297

author cancellation

P-Sat-298

Endothelial Cell Responses to Flow Profiles after Balloon Aortic Valvuloplasty

A. ESTRADA¹ ¹Florida International University, Miami, FL

P-Sat-299

Pollution and Cardiac Health

M. TAGLE RODRIGUEZ', A. GROSBERG¹, W. TUET², AND N. L. NG² ¹University of California Irvine, Irvine, CA, ²Georgia Institute of Technology, Atlanta, GA

P-Sat-300

Consequences of Elevated Serotonin in Angiotensin-II-induced Hypertensive Mice

J. MORALES¹, N. DIAZ¹, AND K. BALACHANDRAN¹ ¹University of Arkansas, Fayetteville, AR

Track: Undergraduate Research, Design and Leadership Cellular and Molecular Bioengineering

Cellular and Molecular Bioengineering Posters

P-Sat-306

Chronic Heavy Alcohol Consumption Has A Detrimental Effect On Bone Mechanical Properties In Actively Growing Rats, While LIV Mitigates This Degenerative Effect

J. QIAN¹, J. Abraham¹, T. Pamon¹, C. H. Cheung¹, R. T. Turner², C. Rubin¹, and M. F. Chan¹

¹Stony Brook University, STONY BROOK, NY, ²Oregon State University, Corvallis, OR

P-Sat-307

Characterization Of CI-/H+ Coupling Properties Of CIC-5 Mutants And Transport Stoichiometry

M. BROWN¹,², M. ROMERO², J. LIESKE², AND M-H. CHANG² ¹Wayne State University, Detroit, MI, ²Mayo Clinic School of Medicine, Rochester, MN

P-Sat-308

Nanoparticle Ingestion Affects Glucose Transportation in *InVitro* Model of the Intestinal Epithelium

G. SHULL¹, J. RICHTER ¹, AND G. MAHLER¹ ¹Binghamton University, Binghamton, NY

POSTER SESSION Sat 9:30AM – 1:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

P-Sat-309

Overexpression Of The Mcm3 And Mcm7 Subunits Causes Genomic Instability

Y. MU¹ AND A. SCHWACHA¹ ¹The University of Pittsburgh, Pittsburgh, PA

P-Sat-310

Acidosis Modulates MenaINV mRNAAnd Protein Expression

M. MOUFARREJ¹, A. SOLTIS¹, F. GERTLER¹, AND D. LAUFFENBURGER¹ ¹Massachusetts Institute of Technology, Cambridge, MA

P-Sat-311

CRISPR/Cas9 Knockout Of CD47 To Promote Macrophage Clearance Of Solid Tumors

J. HSU¹, C. ALVEY¹, J. IRIANTO¹, C. PFEIFER¹, AND D. DISCHER¹ ¹University of Pennsylvania, Philadelphia, PA

P-Sat-312

CRISPR Genetic Engineering to Investigate Extracellular Proteolysis in Synaptic Development J. SHILTS¹ AND K. BROADIE¹ 'Vanderbilt University, Nashville, TN

P-Sat-313

The Use Of Draq5 To Inhibit Bacterial Toxin Activity J. WEBB¹ AND A. BROWN¹ ¹Lehigh University, Bethlehem, PA

P-Sat-314

The Effects Of Cell Division On Early Neural Plate Formation In *Xenopus laevis* Embryos

E. KIEFFER¹, D. VIJAYRAGHAVAN¹, AND L. DAVIDSON¹,² ¹University of Pittsburgh, Pittsburgh, PA, ²Department of Developmental Biology, Pittsburgh, PA

P-Sat-315

Developing And Proving A Drug Assay For Influenza Treatment

K. CALLAHAN¹, P-C. SU¹, AND B. BERGER¹ ¹Lehigh University, Bethlehem, PA

P-Sat-316

Efficiency of the CRISPR/Cas9 System in Performing Site-specific Knockout S. BANSKOTA¹, I. AKINSANMI¹, AND G. GIBSON¹ ¹Georgia Institute of Technology, Atlanta, GA

P-Sat-317

Galectin-7 Human Fc-Fusion Protein Can Be Isolated From Transfected Freestyle 293-F Cells

S. THOMAS¹, C. DIMITROFF², S. BARTHEL², AND M. BURDICK¹ ¹Russ College of Engineering and Technology, Ohio University, Athens, OH, ²Brigham and Women's Hospital, Boston, MA

P-Sat-318

Microparticles in Three Dimensional Thrombus Formation C. DEZERGA¹, D. YOUNG², G. PAPAVASILIOU², AND C. HALL¹

¹The College of New Jersey, EWING, NJ, ²Illinois Institute of Technology, Chicago, IL

P-Sat-319

Amperometric Detection Of Ultrasound-Induced Secretory Events From Pancreatic Beta Cells

B. BALTEANU¹ AND T. SINGH¹ ¹The George Washington University, Washington, DC

P-Sat-320

Identification And Characterization Of Novel C-myc Activators For Inner Ear Hair Cell Regeneration

M. BARTEL¹,², G. KULKARNI², AND J. JACKSON² ¹North Carolina State University, Raleigh, NC, ²Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC

P-Sat-321

Gold Nanoparticles Alter Immune Response in Murine Retina Model S. PETCHUL¹, B. CORLISS¹, AND S. PEIRCE¹ ¹University of Virginia, Charlottesville, VA

P-Sat-322

EGFR Antibodies Affect Adhesion of Breast Cancer Cells to E-selectin Under Flow Conditions K. TURNER¹ AND M. BURDICK¹ ¹Ohio University, Athens, OH

P-Sat-323

3D Analysis of Nuclear Morphology of Mesenchymal Stem Cells with Disrupted LINC complexes.

A. GUDURU¹ ¹University of North Carolina, Raleigh, NC

P-Sat-324

Forces Across The Nuclear LINC Complex Are Increased In Elongated Nuclei

K. BATHULA¹, E. ERIC BUCHANAN¹, P. ARSENOVIC¹, AND D. CONWAY¹ ¹Virginia Commonwealth University (VCU), Richmond, VA

P-Sat-325

Development of an Injectable Hydrogel for Encapsulation of Islets to Treat Streptozotocin-Induced Diabetes in Mice J. BRUNS¹ J.Sint Louis Liniversity, Saint Louis, MO

¹Saint Louis University, Saint Louis, MO

P-Sat-326

Investigating Glycosphingolipids as Potential Functional Biomarkers of Head and Neck Carcinoma Cells Using Optical Tweezers N. SOVA¹, J. ROBINSON¹, L. NIMRICHTER², N. BESSA VIANA², D. F. TEES¹, AND M. BURDICK¹ ¹Ohio University, Athens, OH, ²Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

P-Sat-327

Fibronectin Fibrillogenesis, EMT, and Breast Cancer Progression M. AZAM¹, L. GRIGGS¹, C. LEMIMON¹, AND L. ELMORE¹ ¹Virginia Commonwealth University, Richmond, VA

P-Sat-328

Characterization Of Microvascular Endothelial Cell-Fibroblast Co-culture: Quantifying Receptors & Sprouting.

B. MATHIAS¹, X. GUO¹, S. CHEN¹, AND P. IMOUKHUEDE¹ ¹University of Illinois at Urbana-Champaign, Champaign, IL

P-Sat-329

The Effect of Cathepsin B on Neutrophil-Mediated Cytotoxicity E. BALL¹, K. ANDERSON², AND H. SHIN²

¹University of South Carolina, Columbia, SC, ²University of Kentucky, Lexington, KY

P-Sat-330

Rehydration of Mammalian cells Desiccated via Spin-Drying Q. OSGOOD¹, J. SOLOCINSKI¹, AND N. CHAKRABORTY¹ ¹University of Michigan-Dearborn, Dearborn, MI

Track: Undergraduate Research, Design and Leadership Device Technologies and Biomedical Robotics Posters

P-Sat-352

Integration of Pressure Sensors in Compression Garment for the Treatment of Hypertrophic Scars.

Z. LLANERAS 1 , J. CALDERON 1 , A. JALAL 1 , P. ROMAN 1 , S. BHANSALI 1 , AND J. RAMELLA-ROMAN 1

¹Florida Internaational University, Miami, FL

P = Poster Session
OP = Oral Presentation
Q = Reviewer Choice Award

9:30AM - 1:00PM POSTER SESSION Sat 2015 OCTOBER 10 SATURDAY

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

P-Sat-353

Miniaturizing Photoplethysmography For Use In A Multifunctional Health Monitoring Device With Applications In Asthma Analysis B. BENT¹, J. DIEFFENDERFER¹, H. GOODELL¹, AND A. BOZKURT¹

¹North Carolina State University, Raleigh, NC

P-Sat-354

Creating a Platform for Combining Wireless Electrophysiological Signals and Physiological Responses

T. BENIGNI¹, C. WASSAF², AND J. DIAZ³

¹Florida international university, Miami, FL, ²Florida International University, miami, FL,³Florida International University, Miami, FL

P-Sat-355

Development of a Low-cost Video-based Diagnostic System for Early Detection and Monitoring of Movement Disorders

H. ZANDER^{1,2,3}, J. KAKAREKA³, J. KRYNITSKY³, R. PURSLEY³, L. LEGGIO⁴, T. POHIDA³, AND B. HARVEY⁵

¹University of Minnesota, St. Paul, MN, ²National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD, ³Center for Information Technology, Bethesda, MD, ⁴National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, ⁵National Institute on Drug Abuse, Baltimore, MD

P-Sat-356

Biomedical Summer Aid Program in the Dominican Republic

L. PORTILLO¹, A. MONTES DE OCA², AND M. A. ALEGRÍA² ¹ITESM, Chihuahua, Mexico, ²ITESM, Guadalajara, Mexico

P-Sat-357

A Chemically Patterned Paper-Based Microfluidic Device for Glucose Assays J. VAUGHN¹, J. LEE¹, AND J. KIM¹ ¹Texas Tech University, Lubbock, TX

P-Sat-358

Cell Separation Performance Comparison Between Magnetic Deposition Microscopy Devices

J. LAZZARA¹, M. ZBOROWSKI², AND L. MOORE² ¹The University of Akron, Akron, OH, ²Cleveland Clinic Lerner Research Institute, Cleveland, OH

P-Sat-359

Use of Force Sensing Resistors to Determine Position Within a Gastrointestinal Model

A. HAXO¹, K. BIERYLA¹, E. GEIST¹, AND D. DIEHL² ¹Bucknell University, Lewisburg, PA, ²Geisinger Health System, Danville, PA

P-Sat-360

Movement Detection with Smart Phone Accelerometers

E. RAEKER-JORDAN¹, J. LEUNG¹, H. HA¹, K. BIERYLA¹, AND M. THOMPSON¹ ¹Bucknell University, Lewisburg, PA

P-Sat-361

Handheld Device for Electrochemical Detection in Resource-Limited Settings

M-N. TSALOGLOU¹, A. NEMIROSKI¹, G. CAMCI-UNAL¹, D. CHRISTODOULEAS¹, L. MURRAY¹,², M. T. FERNÁNDEZ-ABEDUL³, AND G. WHITESIDES¹ ¹Harvard University, Cambridge, MA, ²Bucknell University, Hopkinton, MA, ³Universidad de Oviedo. Asturias. Soain

P-Sat-362

Sensor and Expert-Model Based Training System for Laparoscopic Suturing and Knot Tying

C. GARROW¹,², K-F. KOWALEWSKI², F. NICKEL², S. BODENSTEDT³, H. G. KENNGOTT², M. WAGNER², A-L. WEKERLE², S. SPEIDEL³, R. DILLMANN³, AND B. P. MUELLER-STICH² ¹University of Missouri, Columbia, MO, ²University of Heidelberg Hospital, Heidelberg, Germany, ³Karlsruhe Institute of Technology, Karlsruhe, Germany

P-Sat-363

Optimization of a Capacitive-Sensing Organic Electrochemical Transistor-Based Immunoassay

L. HU¹, A-M. PAPPA², X. STRAKOSAS², A. HAMA², B. MARCHIORI², AND R. OWENS² ¹University of California, Berkeley, Berkeley, CA, ²E[']cole Nationale Supérieure des Mines de Saint-Étienne, Gardanne, France

P-Sat-364

Electroencephalograph-Based Neural Interface to Control a Portable Robotic Exoskeleton for Neuromuscular Rehabilitation K. STRANGE¹, C. SPARKS¹, S. KUDERNATSCH¹, T. ASAKI¹, AND D. PETERSON¹ 'Texas A&M-Texarkana, Texarkana, TX

Track: Undergraduate Research, Design and Leadership Drug Delivery Posters

P-Sat-372

Vertical Spray-Dry Synthesis of Nebulized Smart Polymer Carriers of Nano-Therapeutics

N. BERNAL¹, S. WITANACHCHI¹, AND D. DENMARK¹ ¹University of South Florida, Tampa, FL

P-Sat-373

Electrospun Drug Release Film for the Targeted Delivery of Chemotherapeutic Agents

G. RABADAM¹, M. WANG¹, AND T. WEBSTER¹ ¹Northeastern University, Boston, MA

P-Sat-374

In Vivo Properties Of Plant Viral Nanoparticles After Repeat Administration S. WOODS¹, S. SHUKLA¹, D. DORAND¹, J. MYERS¹, A. HUANG¹, AND N. STEINMETZ¹ ¹Case Western Reserve University, Cleveland, OH

P-Sat-375

CRISPR-Cas9 Mediated Knockout of MELK in Panc-1 Cells

K. LEE¹, I. MCDONALD², AND L. GRAVES² ¹University of Pittsburgh, Pittsburgh, PA, ²University of North Carolina - Chapel Hill, Chapel Hill, NC

P-Sat-376

Development of a Next-Generation Topical Pre-Exposure Prophylactic (PrEP) Technology Using siRNA-Encapsulated, Surface-Modified Nanoparticles H. VUONG¹ AND J. STEINBACH¹

¹University of Louisville, Louisville, KY

P-Sat-377

Effect of Surface Charge Density and Shear Stress on the Targeting Efficacy of Cationic Liposomes as Drug Delivery Carriers for Anti-Vascular Therapy. I. VALENCIA^{1,2}, M. SEMPKOWSKI², AND S. SOFOU²

¹University of Texas at San Antonio, San Antonio, TX, ²Rutgers, The State University of New Jersey, Piscataway, NJ

P-Sat-378

Ultrasound and Microbubble-Mediated Delivery of Therapeutic miRNA Inhibitor to Promote Angiogenesis

D. WHITEHURST¹, J. KOPECHEK¹, AND F. VILLANUEVA¹ ¹Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA

P-Sat-379

Vibrational Spectroscopy and Imaging Reports Concurrent Cellular Trafficking of Co-localized Doxorubicin and Deuterated Niosomes. A. OHOKA^{1,2}, S. MISRA^{1,2,3}, P. MUKHERJEE^{1,3}, A. SCHWARTZ-DUVAL^{1,2}, S. TIWARI^{1,3}, R.

BHARGAVA^{1,3}, AND D. PAN^{1,2,3} ¹University of Illinois at Urbana-Champaign, Urbana, IL, ²Carle Foundation Hospital, Urbana,

IL, ³Beckman Institute for Advanced Science and Technology, Urbana, IL

P-Sat-380

High Payload Delivery Of Potent Anti-Mitotic Chemotherapeutic Using Rod-Shaped Nanoparticles

D. KERNAN¹, A. WEN¹, AND N. STEINMETZ¹

¹Case Western Reserve University, Cleveland, OH

POSTER SESSION Sat 9:30AM - 1:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

P-Sat-381

Optimization of Polymeric Nanoparticles for Intracranial Delivery of **Radiosensitizing Agents**

E. CHEN¹, A. KING¹, AND M. SALTZMAN¹ ¹Yale University, New Haven, CT

P-Sat-382

Amphiphilic Poly(β -amino ester) –Poly(ethylene glycol) Block Copolymer Micelles for Anti-tumor Drug Delivery

J. SHAMUL¹, Y. KANG¹, J. KIM¹, AND J. GREEN¹ ¹Johns Hopkins University, Baltimore, MD

P-Sat-383

Localized Immunotherapy Delivery Using Injectable in situ Forming Chitosan Hydrogel S WASHISPACK

¹University of Arkansas, Fayetteville, AR

P-Sat-384

Effects of Encapsulation by Halloysite/Polymer Composite Materials on Antibiotic Release

S. BITTNER¹, L. ROBESON¹, AND E. DAVIS¹ ¹Auburn University, Auburn, AL

P-Sat-385

Local Delivery Of CTLA-4 Blockade Inhibits Growth Of Pancreatic Tumors J. BALTZ¹, S. SMITH¹, AND D. ZAHAROFF ¹University of Arkansas, Fayetteville, AR

P-Sat-386

Development Of 'Stealth' And 'Camouflage' Techniques For Improved Pharmacokinetics Of Nanoparticle-Based Drug Delivery Systems S. JAMESON¹

¹Case Western Reserve University, Cleveland, OH

P-Sat-387

Controlled Release Of Recombinant Human Transforming Growth Factor Beta One

A. ENELI¹, A. D'AMICO², AND A. PETERSON² ¹The Ohio State University, Columbus, OH, ²Worcester Polytechnic Institute, Worcester, MA

P-Sat-388

Fabrication Of Lipid Vesicles Containing Curcumin and N-(2mercaptopropionyl)-glycine

M. KELECY¹, A. AKALKOTKAR¹, E. MARTIN¹, W. EHRINGER², AND P. SOUCY¹ ¹University of Louisville, Louisville, KY, ²Energy Delivery Solutions, Jeffersonville, IN

P-Sat-389

Experiments Involving Pharmaceutical Concepts for Undergraduate Laboratory Courses: Students' Perspective on Development and Implementation

N. HADEN¹ AND D. INFUSINO¹ ¹Rowan University, Glassboro, NJ

Track: Undergraduate Research, Design and Leadership

Nano and Micro Technologies Posters

P-Sat-401

Lysosomal Reacidification via Degradation of PLGA Nanoparticles in a Lipotoxic Cardiomyopathy Model

F. M. ZASADNY^{1,2}, J. A. ANKRUM^{1,2}, AND E. D. ABEL^{2,3} ¹University of Iowa College of Engineering-Biomedical Engineering, Iowa City, IA, ²University of Iowa Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA, ³University of Iowa Carver College of Medicine, Iowa City, IA

P-Sat-402

Three-Dimensional Stereolithographic Patterning of Cells Within A Microfluidic Device A. WILLIAMS¹, R. RAMAN¹, C. CVETKOVIC¹, AND R. BASHIR¹

¹University of Illinois at Urbana-Champaign, Urbana, IL

P-Sat-403

Using Atomic Force Microscopy to Determine the Young's Modulus of Single Alginate and Polyethylene Glycol Microcapsules for Long-Term Immunoisolation of Pancreatic Islets K PALINOVSKA

¹University of Miami, Coral Gables, FL

P-Sat-404

Reduction Of Viscoelastic Membrane Deflection In Microraft Arrays

S. KANTESARIA¹, M. DISALVO^{1,2}, C. SIMS¹, AND N. ALLBRITTON^{1,2} ¹University of North Carolina at Chapel Hill, Chapel Hill, NC, ²North Carolina State University, Raleigh, NC

P-Sat-405

Experimental Design of Iron Oxide Nanoparticle Shapes and Structures for Use in Magnetic Resonance Imaging

Y. BAO 1, J. SHERWOOD 1, AND A. WILLIAMS2

¹The University of Alabama, Tuscaloosa, AL, ²North Carolina State University, Raleigh, NC

P-Sat-406

3D Printed Microfluidic Device for Dynamic Investigation of the Blood Brain Barrier

H. S. NOOR¹, V. H. HARBOUR¹, M. G. TORALBA¹, N. S. RIAZ¹, AND S. BASURAY¹ ¹New Jersey Institute of Technology, Newark, NJ

P-Sat-407

Simplified Lipid Coating On Mesoporous Silica Nanoparticles By Conjugation Of Hydrophobic Aliphatic Monolayer

J. ERSTLING^{1,2}, P. DURFEE², S. CHOU³, A. LOKKE², A. MUNIZ², Y-S. LIN⁴, AND C. J. BRINKER².³

¹Florida International University, Miami, FL, ²University of New Mexico, Albuquerque, NM,3Sandia National Laboratories, Albuquerque, NM, 4Oncothyreon Inc, Seattle, WA

P-Sat-408

Microfluidic Pipette Array for Single Cell Mechanics Studies

D. CHASE¹, L. M. LEE², AND A. LIU² ¹University of Minnesota, Minneapolis, MN, ²University of Michigan, Ann Arbor, MI

P-Sat-409

A Rapid and Low-Cost Microfluidic Method for Detecting and Isolating Exosomes

B. LI^{1,2}, F. RIVEST², S. LEONG², D. YANG², AND L. SOHN² ¹The University of Texas at Austin, Austin, TX, ²University of California, Berkeley, Berkeley, CA

P-Sat-410

Paper Based Rheological Flow Assay For Simplified Sickle Cell Diagnosis K. CYR¹ AND C. MARASCO¹,²

¹Vanderbilt University, Nashville, TN, ²Vanderbilt Institute for Integrative Biosystems Research and Education, Nashville, TN

P-Sat-411

Probing The Efficacy Of Transwells And Spheroids As In Vitro Models Of The Blood Brain Barrier

C. WEILER¹, C. HOVELL¹,², AND Y. KIM¹,² ¹Georgia Institute of Technology, Atlanta, GA, ²Emory University, Atlanta, GA

P-Sat-412

Characterization of Superparamagnetic Iron Oxide Nanoparticle-Lipid **Bilayer Interactions**

N. GAY¹, E. FREEMAN², AND X. WANG² ¹University of Connecticut, Somers, CT, ²University of Georgia, Athens, GA

P = Poster Session **OP** = Oral Presentation 👷 = Reviewer Choice Award

9:30AM - 1:00PM POSTER SESSION Sat 2015 OCTOBER 10 SATURDAY

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

P-Sat-413

Optical Properties Of DNA: G-Quadruplex And Comparison Of Purine/ Pyrimidine Interactions

J. SCHIMELMAN¹

¹Case Western Reserve University, Cleveland, OH

P-Sat-414

Optimization of a Cell Array for Capture of Single Thyroid or Parathyroid Cells

S. AHMAD^{1,2}, S. MESTRIL², M. DISALVO², C. SIMS², AND N. ALLBRITTON² ¹University of Florida, Gainesville, FL, ²University of North Carolina, Chapel Hill, NC

P-Sat-415

Optimization Of Square Channel Micromixer For A Variety Of Reynolds Numbers With Two-Phase Liquid-Liquid Flow

J. BROOKS¹ AND T. ABDEL-SALAM² ¹High Point University, Monkton, MD, ²East Carolina University, Greenville, NC

P-Sat-416

Nanoplasmonic Biosensing Microfluidics For Immune Status Monitoring Of Critically III Children

T. PAULS¹, R. NIDETZ², AND K. KURABAYASHI² ¹University of Arkansas, fayetteville, AR, ²University of Michigan, Ann Arbor, MI

P-Sat-417

Optimizing Synthesized Nanoparticles for Applications in Drug Delivery M. VASQUEZ^{1,2}, D. SPENCER¹, A. WAGNER¹, AND N. PEPPAS¹

¹The University of Texas at Austin, Austin, TX, ²Prairie View A&M University, Prairie View, TX

P-Sat-418

PEGylating Extracellular Matrix Nanoparticles Delays Macrophage Uptake T. WANG¹, M. WOLF¹, J. KRILL¹, AND J. ELISSEEFF¹ ¹Johns Hopkins University, Baltimore, MD

P-Sat-419

Backpacking Bacteria to Target and Treat Tumors

E. MCCAFFREY¹, A. NOU¹, AND R. FERNANDES^{1,2,3} ¹University of Maryland-College Park, College Park, MD, ²Children's National Health System, Washington, D.C., MD, ³George Washington University, Washington, D.C., DC

P-Sat-420

A Novel Hepatocyte-Alignment Microfluidic Device

R. O'HARA¹, E. SHAW¹, Z. BEI^{1,2}, AND J. LIPPMANN³ ¹SUNY Buffalo, Buffalo, NY, ²NYS Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, ³SUNY University at Buffalo, Buffalo, NY

P-Sat-421

Hollow Microspheres For Density-based Bioseparation of CEA Tumor Biomarker

E. OSTA¹, L. Ll², A. CHILKOTI², G. LOPEZ², AND S. WEIGUM¹ ¹Texas State University, San Marcos, TX, ²Duke University, Durham, NC

P-Sat-422

Optimizing Cell Isolation Via Surface Functionalization

K. SCHULTHEIS¹, A. SRIDARAN², A. ANSARI¹, AND P. IMOUKHUEDE¹ ¹University of Illinois at Urbana-Champaign, Champaign, IL, ²University of Texas at Austin, Austin, TX

P-Sat-423

Microfluidics For Magnetic Filtration of Blood In Sepsis Patients J. MUSLER¹, J. GREER¹, S. MILLER¹, C. BELL¹, T. GIORGIO¹, AND C. MARASCO¹

¹Vanderbilt University, Nashville, TN

P-Sat-424

Lipid Coated Nanoparticles for Targeted Drug Delivery to Cancer Cells Using Copper-Free Click Chemistry

O. REN¹, R. MEYER¹, M. MATHEW¹, K. YAREMA¹, AND J. GREEN¹ ¹Johns Hopkins University, Baltimore, MD

P-Sat-425

Passive and High-throughput Inertial Particle and Cell Sorter B-J. JUNG¹ AND A. CHUNG¹ ¹Rensselaer Polytechnic Institute, Troy, NY

P-Sat-426

Visualization of Endothelial Focal Adhesion Formation on Transparent Porous Membranes

S. CASILLO¹ AND T. GABORSKI¹ ¹Rochester Institute of Technology, Rochester, NY

P-Sat-427

Electron Paramagnetic Spectroscopy for the Quantitative Analysis of Magnetic Nanoparticles

C. FRENCH¹, A. CHIU-LAM¹, K. CLARK¹, T. CASEY¹, G. FANUCCI¹, AND C. RINALDI¹ 'University of Florida, Gainesville, FL

P-Sat-428

Piezoelectric Actuation For Microfluidic Mixing Applications

F. ALHAJI¹, M. NASIR¹, AND J. MYNDERSE¹ ¹Lawrence Technological University, Southfield, MI

P-Sat-429

Author Cancellation

P-Sat-430

Low Cost Method for Patterning Proteins onto Porous Materials J. IMDIEKE¹ AND E. FU¹ 'Oregon State University, Corvallis, OR

P-Sat-431

The Design Of A Microfluidic Platform For The Evaluation Of A Nanopore Device

O. ANJONRIN-OHU¹, S. BEARDEN², AND G. ZHANG² ¹University of Tennessee, Kingsport, TN, ²Clemson University, Clemson, SC

P-Sat-432

Fluorescence in Situ Hybridization (FISH) with Compact Quantum Dots M. HOLM¹, S. CHITOOR², AND A. SMITH²

¹Arizona State University, Tempe, AZ, ²University of Illinois, Urbana-Champaign, IL

P-Sat-433

Towards Multiplexed Quantitative Flow Cytometry: Optimizing Nanosensor Binding Saturation

R. WHITE¹, S. CHEN², AND P. IMOUKHUEDE² ¹University of Delaware, Newark, DE, ²University of Illinois, Urbana-Champaign, IL

P-Sat-434

Formation Of Alginate Microparticles For Cell Encapsulation Via Electrospraying

A. SIMONSON¹, X. MA², AND Y. WANG¹ ¹Pennsylvania State University, State College, PA, ²Beijing Institute of Technology, Beijing, China, People's Republic of

P-Sat-435

Benchtop Fabrication of Flexible Indium-based Electrodes A. S. ALI¹, C. B. KING¹, B. KLINE¹,², K. T. ASHONG¹, AND R. PEREZ-CASTILLEJOS¹ ¹New Jersey Institute of Technology (NJIT), Newark, NJ, ²Interamerican University of Puerto Rico, Bayamón, PR

P-Sat-436

Design and Synthesis of Polymer Blend Electrospun Fibers for Sustained Release of siRNA to the Female Reproductive Tract

J. HEIDEL¹ ¹University of Louisville, Louisville, KY

P-Sat-437

Stable Rapid Formation of a Stable, Large Area Hypoxia Gradient R. FAVOT¹, M. ZHOU¹, AND J. LO¹

¹University of Michigan at Dearborn, Dearborn, MI

POSTER SESSION Sat 9:30AM – 1:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

Track: Undergraduate Research, Design and Leadership

Neural Engineering Posters

P-Sat-439

Neural Precursor Cell Proliferation In Response To Apoptotic Targets For Phagocytosis

E. CRUMMY¹, B. CARTER², AND F. HICKMAN² ¹University of South Carolina, Columbia, SC, ²Vanderbilt University, Nashville, TN

P-Sat-440

Soy Isoflavones Target Amyloid- β Oligomers Associated With Alzheimer's Disease

C. MOORE¹, S. Z. VANCE¹, K. PATE¹, AND M. MOSS¹ ¹University of South Carolina, Columbia, SC

P-Sat-44I

Automated Algorithms For Restoring Touch And Proprioception To Human Amputees Through Peripheral Nerve Multi-channel Arrays

J. GEORGE¹, D. PAGE², H. SAAL³, S. BENSMAIA³, AND G. CLARK² 'The University of Texas, Austin, TX, ²The University of Utah, Salt Lake City, UT, ³The University of Chicago, Chicago, IL

P-Sat-442

Investigating the Mechanism of Platinum-Induced Cell Death for Stimulating Neural Electrodes

V. SRIVASTAVA¹, K. KOVACH², AND J. CAPADONA¹ ¹Case Western Reserve University, Cleveland, OH, ²Louis Stokes Cleveland VAMC, Cleveland, OH

P-Sat-443

A Biophysical Model to Explain Sustained Oscillations in the Transmembrane Current of Cytomegalic Neurons

E. BENK¹, D. ESTUMANO², AND J. RIERA¹

¹Florida International University, Miami, FL, ²Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

P-Sat-444

Predicting The Far-Field Effects Of Deep Brain Stimulation: New Targets For Sub-threshold Neuromodulation

M. ABOSERIA¹, D. TRUONG¹, A. MOURDOUKOUTAS¹, AND M. BIKSON¹ ¹The City College of New York, New York, NY

P-Sat-445

Identifying Neuronal Pathways for Generating Saccades to Stationary Targets

L. DRNACH¹, U. JAGADISAN¹, AND N. GANDHI¹ ¹University of Pittsburgh, Pittsburgh, PA

P-Sat-446

Brain Regions Matter In Vitro and In Vivo: A Proteomics Based Evaluation

T. MURTY¹, B. MAOZ¹, S. DAUTH¹, S. SHEEHY¹, M. HEMPHILL¹, T. GREVESSE¹, B. BUDNIK¹, AND K. K. PARKER¹ ¹Harvard University, Cambridge, MA

P-Sat-447

Development Of A Real-Time Hollow Organ Measurement System To Quantify The Effect Of Stimulation On Colonic Activity

K. AAMOTH^{1,2,3}, D. BOURBEAU^{1,2,3}, AND K. GUSTAFSON^{1,2,3} ¹Case Western Reserve University, Cleveland, OH, ²Louis Stokes Cleveland VA Medical Center, Cleveland, OH, ³Cleveland VA FES Center, Cleveland, OH

P-Sat-448

Peripheral Nerve Stimulation for Female Sexual Dysfunction: Slow Oscillations in Vaginal Blood Flow I. RICE¹, S. ROSS¹, AND T. BRUNS¹

I. RICE', S. ROSS', AND I. BRUNS' ¹University of Michigan, Ann Arbor, MI

P-Sat-449

Protoplasmic Astrocyte Conditioned Media Promotes Motoneuron Growth M. SAUNDERS^{1,2}

¹Johns Hopkins University, Baltimore, MD, ²Washington University in St. Louis, St. Louis, MO

P-Sat-450

Automated Analysis Of Sleep And Sensory Responses In Adult C. Elegans A. MARLEY^{1,2}, D. LAWLER², AND D. ALBRECHT²

¹Arizona State University, Tempe, AZ, ²Worcester Polytechnic Institute, Worcester, MA

P-Sat-451

Mapping and Modeling EEG Signals Before and After a Craniotomy Procedure

D. ISSAR¹, A. SNYDER¹, AND M. SMITH¹ ¹University of Pittsburgh, Pittsburgh, PA

P-Sat-452

Co-modulating the Mechanical and Bioactive Properties of CMHAS-PEGDA Hydrogels for Neural Tissue Engineering

A. LEBRON-GARCIA¹, M. GODESKY², AND D. SHREIBER² ¹University of Puerto Rico-Mayaguez, Mayaguez, PR, ²Rutgers, The State University of New Jersey, Piscataway, NJ

P-Sat-453

Fabricating and Evaluating Carbon Fiber Microelectrode Arrays for Recording and Stimulation of Muscle Activity W. McFadden¹, T. D. Y. KoZAI¹, AND X. T. CUI¹

¹University of Pittsburgh, Pittsburgh, PA

P-Sat-454

Resting State fMRI Data and Bayesian Network Diagnostic Capability M. YEATTS¹, L. PRICE², K. BALLARD³, AND D. ROBIN^{1,4}

¹University of Texas at San Antonio, San Antonio, TX, ²Texas State University, San Marcus, TX,³Neuroscience Research Australia and University of New South Wales, Randwick, Australia,⁴University of Texas Health Science Center, San Antonio, San Antonio, TX

P-Sat-455

Null And Potent Patterns Of Activity In Superior Colliculus During Saccadic Eye Movements.

D. STARKMAN¹, U. JAGADISAN¹, AND N. GANDHI¹ ¹University of Pittsburgh, Pittsburgh, PA

P-Sat-456

Neural Representation of Objects During Brain-Computer Interface S. NEENO¹, J. DOWNEY², AND J. COLLINGER²

¹Worcester Polytechnic Institute, Worcester, MA, ²University of Pittsburgh, Pittsburgh, PA

P-Sat-457

Systemic Inhibition Of Innate Immunity Pathways Improves Intracortical Microelectrode Performance

A. SOFFER¹, J. HERMANN^{1,2}, C. WONG¹, J. CHANG¹, G. PROTASIEWICZ¹, AND J. CAPADONA^{1,2}

¹Case Western Reserve University, Cleveland, OH, ²Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH

P-Sat-458

Optimal Receptive Fields For The Classification Of Conspecific Vocalizations P. HAGGERTY¹ AND S. SADAGOPAN¹ 'University of Pittsburgh, Pittsburgh, PA

niversity of Pittsburgh, Pittsi

P-Sat-459

Local Changes in Expression of Markers of Excitability in Brain Tissue Surrounding Neuroprostheses

J. SALATINO¹, D. MONCREASE¹, M. SASS¹, AND E. PURCELL¹ ¹Michigan State University, East Lansing, MI

P-Sat-460

Investigating Inflammatory Response Of Neural Tissue Between Implantable Electrode Architectures

B. KOO^{1,2}, K. PATEL^{2,3}, G. KNAACK², V. KRAUTHAMER², E. CIVILLICO², AND C. WELLE² ¹George Mason University, Fairfax, VA, ²Food and Drug Administration, Silver Spring, MD,³University of Maryland, College Park, MD

P = Poster Session
OP = Oral Presentation
Q = Reviewer Choice Award

9:30AM - 1:00PM POSTER SESSION Sat 2015 OCTOBER 10 SATURDAY

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

P-Sat-461

Electrical Characterization of a Flexible, Ultra-fast Degrading Polymer Coated Neural Microelectrode Probe

J. LEIPHEIMER¹, M-C. ¹. LO², M. ¹. ZHENG², AND J. ZAHN² ¹Robert Morris University, Pittsburgh, PA, ²Rutgers University, Piscataway, NJ

P-Sat-462

Monitoring The Temperature Of The Skin During Transcranial Direct Current Stimulation

A. ZANNOU¹, F. ZUNARA¹, N. KHADKA¹, AND M. BIKSON¹ ¹City University of New York, CUNY, New York, NY

P-Sat-463

Nonlinear Encoding of Movement by Motor Neurons in Rhesus Monkeys $N. \ \mathsf{CARD}^1$

¹University of Pittsburgh, Pittsburgh, PA

P-Sat-464

A System For Identifying Modulators Of Neural Activity In A Whole-Organism Channelopathy Model

C. DICK¹,², R. LAGOY², AND D. ALBRECHT² ¹Massachusetts Institute of Technology, Cambridge, MA, ²Worcester Polytechnic Institute, Worcester, MA

P-Sat-465

Development of a Leakage Testing Apparatus for Evaluation of Electrode Encapsulation

A. KUMAR¹ AND S. COGAN¹ ¹University of Texas at Dallas, Richardson, TX

P-Sat-466

Increased Postsynaptic Response Resulting From High Frequency Stimulation In Cortical Networks

R. GRAHAM¹, F. HAMILTON¹, S-A. ZAIDI¹, S. JOSE², AND N. PEIXOTO¹ 'George Mason University, Fairfax, VA, ²Thomas Jefferson High School For Science and Technology, Alexandria, VA

P-Sat-467

Planar Electrodes with Koch Snowflake Geometries Increase Stimulation Efficiency of Neural Tissue

S. KUCHIBHATLA¹, M. MELLER¹, M. BENMASSAOUD¹, AND X. WEI¹ [†]The College of New Jersey, Ewing, NJ

Track: Undergraduate Research, Design and Leadership

Orthopedic and Rehabilitation Engineering Posters

P-Sat-544

Associations between Intentional Weight Loss and Bone Quality in Obese, Older Adults

D. JAIN', A. MARSH², D. BEAVERS², W. REJESKI², A. WEAVER³, J. STITZEL³, AND K. $\mathsf{BEAVERS}^2$

¹University of Maryland, College Park, College Park, MD, ²Wake Forest University, Winston-Salem, NC, NC, ³Virginia Tech-Wake Forest University Center for Injury Biomechanics, Winston-Salem, NC

P-Sat-545

Finite Element Study: Novel Acetabular Fracture Reconstruction Plate Alignment Uniformly Distributes Strains across the Fracture Surface T. DI PAULI VON TREUHEIM¹ 'Union College, Schenectady, NY

P-Sat-546

A Possible Mechanism for Morning Stiffness/Pain in Insertional Achilles Tendinopathy

M. Bucklin 1, R. Chimenti², A. S. Flemister³, J. Ketz³, M. Richards³, and M. Buckley 1

 $^{\rm 1}$ University of Rochester, Rochester, NY, $^{\rm 2}$ University of Iowa, Iowa City, IA, $^{\rm 3}$ University of Rochester Medical Center, Rochester, NY

P-Sat-547

Surgical Instrument for Reduction and Fixation of Pediatric Tibial Eminence Fractures

M. DIMOFF¹, G. GILLISPIE¹, S. MANNAVA², A. STONE², AND P. BROWN¹ ¹Virginia Polytechnic Institute and State University-Wake Forest University, Winston-Salem, NC, ²Wake Forest Baptist Medical Center, Winston-Salem, NC

P-Sat-548

Using Simulation to Quantify Errors in a 2D Lidar Terrain Reconstruction System

S. KING¹, M. LIU¹, AND H. (. HUANG¹ ¹North Carolina State University, Raleigh, NC

P-Sat-549

Towards Better Control of Upper Prosthetic Limbs: A Force-Myographic Approach

K. CHELLAMUTHU¹ ¹Johns Hopkins University, Overland Park, KS

P-Sat-550

Design of a Self-Paced Motorized Treadmill (SPMT) to Simulate Over Ground Walking

N. PATEL¹ AND D. LURA¹ ¹Florida Gulf Coast University, Fort Myers, FL

P-Sat-55I

Rapid Manufacturing Of Custom Foot Orthoses for Reduction Of Peak Plantar Pressure

K. WALKER¹, B. PRZESTRZELSKI¹, B. KALUF², N. HOOKS², W. BALLARD II³, T. PRUETT⁴, S. HOEFFNER⁵, R. FITZGERALD⁶, AND J. DESJARDINS¹

¹Clemson University, Clemson, SC, ²Ability Prosthetics and Orthotics, Inc., Exton, PA, ³Upstate Pedorthic Services, Greer, SC, ⁴Engineering/MTS, Clemson, SC, ⁶Hoeffner Consulting, Easley, SC, ⁶Greenville Health System, Greenville, SC

P-Sat-552

Characterization of the Antimicrobial Effects of a Silver-Doped Titanium Dioxide-PDMS Hybrid Coating on the Adherence and Proliferation of Multi-Drug Resistant A. baumannii on Spinal Implant Rods of Varying Compositions

A. MINNAH¹, E. M. NGUYEN¹, D. R. GARCIA¹,²,³, J. JARRELL¹,³, AND C. BORN¹,²,³ ¹Brown University, Providence, RI, ²Rhode Island Hospital, Providence, RI, ³BionIntraface, Inc., North Kingston, RI

P-Sat-553

Examining the Gerwin and Pritzker OARSI Scoring Methods in the MIA and MMT Rodent Models of OA

M. PIRES-FERNANDES¹, B. JACOBS¹, AND K. ALLEN¹ ¹University of Florida, Gainesville, FL

P-Sat-554

Dual Quadriceps And Hamstring Loading Instrument For *ExVivo* MRI Models Of Knee Extension

L. LANE¹, L. BERTOY², M. BLACK², E. MCWALTER², G. GOLD², AND M. LEVENSTON² ¹New Mexico Tech, Socorro, NM, ²Stanford University, Stanford, CA

P-Sat-555

Depth- vs. Width-Wise Quantification Of Cartilage Damage Following Joint Destabilizing Surgery In The Mouse

A. WHITE¹, C. PRICE², M. DAVID², M. SMITH², R. PILACHOWSKI², AND R. LOCKE² ¹University of Delaware, Wilmington, DE, ²University of Delaware, Newark, DE

P-Sat-556

Graph Theoretical Analysis of Intramuscular Fat in the Suprapinatus Y. Ho¹, B. SULLIVAN¹, K. SAUL¹, AND B. MORK¹ North Carolina State University, Raleigh, NC

P-Sat-557

Kinematic Effects of 3 Commercially Available Ankle Stabilizing Orthoses. E. DE LA ROSA JR.¹ AND N. GAMSO¹

¹Florida Gulf Coast University, Fort Myers, FL

POSTER SESSION Sat 9:30AM – 1:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

P-Sat-558

Chondrogenesis Deficiency in Matrilin-I Knock-out Mice

G. CALIXTE¹;²,³, Y. GAO²,³, Y. CHEN²,³, AND Q. CHEN²,³ University of Miami, North Miami Beach, FL, ²Rhode Island Hospital, Providence, RI, ³Brown University, Providence, RI

P-Sat-559

Smart Sensor-Driven CGI Physical Therapy System For Fine Motor Skill Disabilities

J. REY¹, O. LEDEZMA¹, E. ORELLANA¹, K. BELKNAP¹, B. LEE¹, N. CARUSETTA¹, AND D. WON¹

¹California State University, Los Angeles, Los Angeles, CA

P-Sat-560

Real-Time Tracking with Virtual Reality Headset

J. KEIME¹, K. LADIA¹, J. SHAH¹, AND D. LURA¹ ¹Florida Gulf Coast University, Fort Myers, FL

Track: Undergraduate Research, Design and Leadership

Respiratory Bioengineering Posters

P-Sat-561

Intact Airways as a Platform for Assessing Long Term Airway Reactivity S. SATISH¹, J. SHELOFSKY¹, M. TORRES¹, H. PARAMESWARAN¹, AND K. LUTCHEN¹ ¹Boston University, Boston, MA

P-Sat-562

Creating a Hybrid Scaffold for Lung Modeling and Regeneration B. ALLEN¹, B. YOUNG¹, B. BLAKENEY¹, R. POULIOT¹, AND R. HEISE¹

¹Virginia Commonwealth University, Richmond, VA

P-Sat-563

Bicarbonate Hemodialysis for Low-Flow CO2 Removal: Dialysate Recycling L. MARRA¹, A. MAY¹, AND W. FEDERSPIEL¹,²

University of Pittsburgh, Pittsburgh, PA, ²The McGowan Institute of Regenerative Medicine, Pittsburgh, PA

Track: Undergraduate Research, Design and Leadership

Stem Cell Engineering Posters

P-Sat-564

The Effects of Mechanical Stimulation on Encapsulated Mesenchymal Stem Cells

B. MCCLARREN¹, A. AIJAZ¹, S. MEHTA¹, AND R. OLABISI¹ ¹Rutgers University, Piscataway, NJ

P-Sat-565

Laminar Shear Stress and Inhibition of DNA Methylation Induce the Protein Expression of von Willebrand Factor in Human Mesenchymal Stem Cells L. LOU¹, C. PAN², R. NEREM², AND Y. FAN²

¹The Ohio State University, Columbus, OH, ²Georgia Institute of Technology, Atlanta, GA

P-Sat-566

Multi-transgenic Human Stem Cells Permit Live Visualization of Cytomechanical and Intranuclear Dynamics

R. PRESTIL^{1,2}, T. HARKNESS^{1,2}, AND K. SAHA^{1,2} ¹Wisconsin Institute for Discovery, Madison, WI, ²University of Wisconsin-Madison, Madison, WI

P-Sat-567

Inducing Mechanical Stresses in Electro-active PEGDA Hydrogels to Influence the Fate of Encapsulated Human Mesenchymal Stem Cells K. GUPTA¹, R. MOJOYINOLA OLABISI¹, K. WHITE¹, AND S. MEHTA¹ 'Rutgers University, Piscataway, NJ

P = Poster Session OP = Oral Presentation Q = Reviewer Choice Award

224 BMES 2015

P-Sat-568

Understanding the Role of Primary Cilia Mechanosensing in Human Adipose Derived Stem Cells M HAMOUDA¹

¹North Carolina State University, Raleigh, NC

P-Sat-569

Standardizing A Protocol For Cytotoxicity Testing With Mouse Embryonic Stem Cells

K. KLETT^{1,2}, N. SHEN^{2,3}, M. MONAGHAN^{2,3}, AND K. SCHENKE-LAYLAND^{2,3,4} ¹University of Pittsburgh, Pittsburgh, PA,²Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany, ³Research Institute for Women's Health, Eberhard Karls University, Tübingen, Germany, ⁴Cardiovascular Research Laboratories, University of California, Los Angeles, CA

P-Sat-570

The Effects Of The Biophysical Microenvironment On Human Mesenchymal Stem Cell Behavior During Simulated Microgravity

J. WANG¹, C. LUNA², A. HSIEH², AND A. YEW³ ¹University of California Los Angeles, Los Angeles, CA, ²University of Maryland, College Park, MD, ³NASA Goddard Space Flight Center, Greenbelt, MD

Track: Undergraduate Research, Design and Leadership

Tissue Engineering Posters

P-Sat-620

A Novel Bioreactor System for Rotator CuffTendon Tissue Engineering J. LIU¹, J. ARRIZABALAGA¹, H. POARCH¹, A. LUANSING¹, AND M. NOLLERT¹ ¹University of Oklahoma, Norman, OK

P-Sat-621

Effects of Matrix Mechanics on the Secretion of Leukocyte Chemoattractants from Bone Marrow-Derived Mesenchymal Stromal Cells

M. COOPER¹ ¹Harvard John A. Paulson School of Engineering & Applied Sciences, Cambridge, MA

P-Sat-622

Characterization of an *in vitro* Colon-on-a-Chip Model M. LEBHAR¹ 'UNC Chapel Hill, Chapel Hill, NC

P-Sat-623

Collagen Coated Architectural Gradient Scaffolds for Subchondrial Restoration

D. CASTILLO¹, J. PEARSON¹, S. MONTELONGO¹, J. ONG¹, AND T. GUDA¹ ¹UTSA, San Antonio, TX

P-Sat-624

Determining the Effects of Pegylated Epidermal Growth Factor on RPE Cells

R. DRAKE^{1,2}, C. WHITE², AND R. OLABISI² ¹California Lutheran University, Thousand Oaks, CA, ²Rutgers, The State University of New Jersey, Piscataway, NJ

P-Sat-625

Viability and Quantification of Nuclei in Engineered Skeletal Muscle Bundles during Maturation

J. SANTOSO¹, M. WALKER¹, B. DAVIS¹, AND G. TRUSKEY¹ ¹Duke University, Durham, NC

P-Sat-626

Optimizing Porosity Of Fast Degrading Small-Diameter Synthetic Vascular Grafts

J. ZHUANG¹, R. ALLEN¹, C. STOWELL¹, AND Y. WANG¹ ¹University of Pittsburgh, Pittsburgh, PA

P-Sat-627

Characterization Of Aligned Collagen Scaffolds Produced From Fibrillar Collagen Hydrogels

I. REUCROFT¹, C. LOWE¹, AND D. SHREIBER¹ ¹Rutgers, The State University of New Jersey, Piscataway, NJ

9:30AM - 1:00PM POSTER SESSION Sat 2015 OCTOBER 10 SATURDAY

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

P-Sat-628

Optimization Of The Hanging Drop Method For Production Of M231 Multicellular Tumor Spheroids

S. DUONGTRAN¹, D. KINGSLEY¹, AND D. CORR¹ ¹Rensselaer Polytechnic Institute, Troy, NY

P-Sat-629

The Effect of Organ Specific ECM on Endothelial Cell Phenotype J. DELAFONTAINE¹

¹University of Rochester, Rye Brook, NY

P-Sat-630

Biocompatible Acetalated Dextran Scaffolds Loaded with Gelatin for Enhanced Cellular Adhesion G. COLLINS¹ 'UNC, Chapel Hill, NC

P-Sat-631

Release Of Conditioned Medium Encapsulated In PEGDA Hydrogels For Tendon Healing J. ZHINGRE SANCHEZ¹ ¹Rensselaer Polytechnic Institute, Briarwood, NY

P-Sat-632

In Situ Crosslinking Gelatin Hydrogel For Vasculogenesis And Delivery Of Mesenchymal Stem Cells

A. HWANG^{1,2}, S. H. LEE¹, D. BALIKOV¹, AND H-J. SUNG¹ ¹Vanderbilt University, Nashville, TN, ²SyBBURE-Searle Undergraduate Research Program, Nashville, TN

P-Sat-633

author cancellation

P-Sat-634

The Effect Of Cell Division On Tissue Spreading C. WILLIAMS¹, J. SHAWKY¹, AND L. DAVIDSON¹ ¹University of Pittsburgh, Pittsburgh, PA

P-Sat-635

The Calcification Potential of Cryogel Scaffolds Incorporated with Hydroxyapatites for Bone Regeneration

C. EBERLIN¹, K. HIXON², S. MCBRIDE-GAGYI¹, AND S. SELL² ¹Saint Louis University, St. Louis, MO, ²Saint Louis University, St Louis, MO

P-Sat-636

Extrinsic Hyaluronic Acid Affects Early Compaction of Fibrin Gels by Valvular Interstitial Cells

P.TARBOTON¹, L. BORTOLIN², F. BENESCH-LEE², AND K. BILLIAR² ¹University of Utah, Salt Lake City, UT, ²Worcester Polytechnic Institute, Worcester, MA

P-Sat-637

Improving The Creation Of Functional In-Vitro Skeletal Muscle Tissue C. HUGHES-OLIVER¹, J. FORTE², AND R. PAGE²

¹University of Virginia, Charlottesville, VA, ²Worcester Polytechnic Institute, Worcester, MA

P-Sat-638

Miniaturization of a Microtissue Bioreactor System to Optimize Tissue Engineering Research

B. ROMELL¹, R. GOTTARDI², AND R. TUAN² ¹University of Pittsburgh, Pittsburgh, PA, ²Center for Cellular and Molecular Engineering, Pittsburgh, PA

P-Sat-639

Analyzing Shape and Size of Alginate Microbeads for Preadipocyte Encapsulation

K. WALKER¹, V. IBARRA¹, M. VAICIK¹,², AND E. BREY¹,² Illinois Institute of Technology, Chicago, IL, ²Department of Veterans Affairs Hines, Hines, IL

P-Sat-640

Mechanical Characterization Of Decellularized Cardiac Slices For Myocardial Infarction Treatment

E. MULVANY¹, H. CEBULL¹, P. KC¹, R. WILLITS¹, AND G. ZHANG¹ ¹The University of Akron, Akron, OH

P-Sat-641

Construction of a Bioartificial Kidney using Organ ECM and Naïve Pluripotent Stem Cells P. DESHPANDE', R. XU', A. ALLEN', AND J. ZOLDAN' 'University of Texas at Austin, Austin, TX

P-Sat-642

The Effect of Nanofiber Manufacturing Parameters on the Effective Porosity of Biological Scaffolds

T. BRAZELL¹, J. WARD¹, V. PHILLIPS¹, AND K. TALTY¹ ¹United States Military Academy, West Point, NY

P-Sat-643

The Effects of a Fiber Density on Adherens Junctions and Localization of -Catenin

R. WOLFE¹ ¹The Pennsylvania State University, University Park, PA

P-Sat-644

Intact Acellular Dermal ECM Scaffold Supports Tenogenic Dechanodifferentiation

A. BALDWIN-LECLAIR ¹ AND C. WAGNER¹ ¹The College of New Jersey, Ewing, NJ

P-Sat-645

Induced Osteoclastogenesis in Murine Bone Marrow for 3D Osteocyte Network Culture

K. SAVITSKY¹, Q. SUN¹, J. ZILBERBERG², AND W. LEE¹ ¹Stevens Institute of Technology, Hoboken, NJ, ²Hackensack University Medical Center, Hackensack, NJ

P-Sat-646

Influence Of Electrical Stimulation On Gene Expression Of Human Dermal Fibroblasts

A. CASELLA¹, S. SNYDER¹, AND R. K. WILLITS¹ ¹The University of Akron, Akron, OH

P-Sat-647

Engineered Co-cultures of Primary Human Liver Sinusoidal Endothelial Cells and Hepatocytes

M. DURHAM¹, B. WARE¹, AND S. KHETANI¹ ¹Colorado State University, Fort Collins, CO

P-Sat-648

Characterization Of Cryptochrome/spCRE System For Optogenetic Control of Myogenesis T. CHIEN¹, K. ALI¹, AND E. HUI¹ 'University of California, Irvine, Irvine, CA

P-Sat-649

Measuring the Migration of Mesenchymal Stems Cells from Fibrin Microthreads to Different Protein Substrates

J. JONES¹, K. HANSON¹, J. GERSHLAK¹, AND G. GAUDETTE¹ ¹Worcester Polytechnic Institute, Worcester, MA

P-Sat-650

Long-Term Culture of Engineered Skeletal Muscle on Micromolded Gelatin Hydrogels

G. SUH^T, A. BETTADAPUR¹, H. HUBER¹, C. HUA¹, E. WANG¹, A. VISCIO¹, J. Y. KIM¹, J. STRICKLAND¹, AND M. MCCAIN¹ ¹University of Southern California, Los Angeles, CA

P-Sat-65 I

Development of a Novel Hepatocyte Culture Platform for High Throughput Pharmacokinetic Screening

R. MINES¹, F. BERTHIAUME², AND G. YARMUSH² ¹University of South Alabama, Mobile, AL, ²Rutgers University, Piscataway, NJ

P-Sat-652

Biofabrication of a Vascular Network: Applying AC Electrospinning to 3D Printing for Tissue Engineering

V. GILCHRIST¹, R. BAILEY¹, S. BASKERVILLE¹, I. MCCLURE¹, AND M. KWAN¹ ¹Florida Institute of Technology, Melbourne, FL Sat

POSTER SESSION Sat 9:30AM – 1:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM

P-Sat-653

Designing a More Effective in vitro Model for 3D Artificial Tumor Growth A. CROSS¹, C. WILLIAMS¹, AND V. SIKAVITSAS¹ ¹University of Oklahoma, Norman, OK

P-Sat-654

Macromolecular Crowding Effects On Collagen Deposition By MG-63 Cells J. SCHWEIKART¹ AND N. CASE¹ ¹Saint Louis University, Saint Louis, MO

P-Sat-655

Role of Hydroxyapatite Nanoparticles on the Vascularization of 3D Scaffolds for Bone Tissue Engineering

I. ARIAS¹, B. ROUX¹,², AND E. BREY¹,² ¹Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL,²Research Service, Hines VA Hospital, Chicago, IL

P-Sat-656

Modular Tissue Engineering With GAG-Chitosan Complex Hollow Fibers A. GAGLIARDI¹ AND H. MATTHEW¹ 'Wayne State University, Detroit, MI

P-Sat-657

Use of Fibrin Beads in a Tubular Perfusion Bioreactor for Formation of Mineralized Tissue

R. RODRIGUEZ¹, J. GANDHI², B. ROUX², AND E. BREY² ¹St. Mary's University, San Antonio, TX, ²Illinois Institute of Technology, Chicago, IL

P-Sat-658

Effects of Glycosaminoglycan Surface Composition on MSC Differentiation to Valvular Lineages

A. SZPYTMAN¹, A. JACOB¹, AND H. MATTHEW¹ ¹Wayne State University, Detroit, MI

P-Sat-659

Maintaining In Vitro Myotube Cultures by Genipin Modification of

Micropatterned Fibronectin Lines S. CHANG¹, R. DUFFY¹, AND A. FEINBERG¹ ¹Carnegie Mellon University, Pittsburgh, PA

P-Sat-660

Tracking Cell-generated Compaction Strains in 3D Tissue using Fibronectin Based Nanomechanical Biosensors

S. LIU¹, A. TSAMIS¹, R. DUFFY¹, T. J. HINTON¹, AND A. FEINBERG¹ ¹Carnegie Mellon University, Pittsburgh, PA

P-Sat-661

Engineered Cardiac Tissue For Regenerative Medicine And Drug Testing B. MAKAVANA¹, A. ALASSAF¹, V. MAYO¹, AND A. AGARWAL¹

¹Department of Biomedical Engineering, Department of Pathology, University of Miami, Miami, FL

P-Sat-662

Primary Chondrocytes and Particulated Cartilage Contract Collagen Gel in Vitro

O. WROBLEWSKI^{1,2}, E. BIRD ², B. SCHUMACHER², C. ONG³, W. DAVIS-BETANZOS², F. HSU², V. WONG², A. CHEN², A. RALEIGH², AND R. SAH²

¹Yale University, New Haven, CT, ²University of California-San Diego, La Jolla, CA, ³Wright State University, Dayton, OH

Track: Undergraduate Research, Design and Leadership

Translational Biomedical Engineering Posters

P-Sat-666

Implementation and Validation of Discrete Neck Musculature in a Simplified Human Body Model

M. BOSWELL^{1,2,3}, B. KOYA^{2,3}, AND F. S. GAYZIK^{2,3}

¹The University of Akron, Copley, OH, ²Wake Forest University School of Medicine, Winston-Salem, NC, ³Virginia Tech – Wake Forest University School of Biomedical Engineering and Sciences, Winston-Salem, NC

P-Sat-667

3D-Printed Micropipette F. BOKHARI¹, M. BRENNAN¹, AND D. EDDINGTON¹ ¹University of Illinios at Chicago, Chicago, IL

P-Sat-668

In Vitro **Models for Convection Enhanced Delivery to the Putamen** C. NORSIGIAN¹, P. HARDY², AND L. BRADLEY²

¹University of Virginia, Charlottesville, VA, ²University of Kentucky, Lexington, KY

P-Sat-669

Medical Device Industry Characteristics and Trends N. Le¹, B. JOHNSTON ¹, AND N. LEMME¹

¹Brown University, Providence, RI

P-Sat-670

Quantification of Microvasculature Blood Flow in Diabetes Mellitus in Relation to Vascular Endothelial Growth Factor

K. MICHELSON^{1,2}, E. DOSMAR¹, M. LIU¹, C. OSSWALD¹, J. J. KANG-MIELER¹, AND K. M. TICHAUER¹

¹Illinois Institute of Technology, Chicago, IL, ²University of North Dakota, Grand Forks, ND

P-Sat-671

A Brain Phantom Prototype For Cortical Surface Cooling Device Development

M. FRITZ^{1,2}, P. BROWN^{1,3}, G. POPLI¹, AND F. S. GAYZIK^{1,3} ¹Wake Forest University School of Medicine, Winston-Salem, NC, ²University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, ³Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Winston-Salem, NC

P-Sat-672

Ebstein's Anomaly: Right Ventricle Mapping, Volume, and Flow

S. LO¹, A. NIQUETTE¹, V. FLAMINI¹, A. SHORE¹, AND P. BHATLA² ¹New York University, Brooklyn, NY, ²New York University, New York, NY

P = Poster Session
OP = Oral Presentation
2 = Reviewer Choice Award

Tampa Marriott Waterside

700 South Florida Avenue Tampa, FL 33602 (813-221-4900)

TAMPA CONVENTION CENTER

Tampa Convention Center

PROGRAM AT-A-GLANCE 2015 | OCTOBER 8 | THURSDAY

Track	8:00am – 9:30am	2:00pm – 3:30pm	4:30pm – 6:00pm
BIOINFORMATICS, COMPUTATIONAL AND SYSTEMS BIOLOGY			From Molecules to Cells and Organs in Health and Disease Room 17
BIOMATERIALS	Biomaterials Scaffolds I Room 21	Biomaterials Scaffolds II Room 21	Biomaterials Scaffolds III Room 21
	Micro and Nano Structured Materials I Room 23	Micro and Nano Structured Materials II Room 23	Bioinspired and Self Assembling Biomaterials I Room 23
		Therapeutic and Theranostic Biomaterials I Room 22	Biomaterials for Immunoengineering I Room 22
BIOMECHANICS	Concussion and Head Impact Measurement and Mitigation in Sports	Head Injury Molecular to Macro, Simulation and Protection Room 15	Blast Trauma Room 15 Organ and Cell Biomechanics
	Computational and Multiscale Modeling, Cellular and Cardiovascular Room 16	Computational Modeling, Musculoskeletal and Whole Body Room 16	Room 16
BIOMEDICAL ENGINEERING EDUCATION	ABET Workshop: Criteria for Your Next Accreditation Room 9		
BIOMEDICAL IMAGING & OPTICS	Magnetic Resonance Imaging Room 11	New Ultrasound Imaging Technologies Room 11 Image Processing and Analysis Room 9	Multi-modality Imaging Approaches Room 11 PET, SPECT, and CT Room 9
CANCER TECHNOLOGIES	Engineered Models of Cancer and Tumor Environment I Room 20	Engineered Models of Cancer and Tumor Environment II Room 20	
		Cancer Cell Mechanics and Engineering Room 19	
CARDIOVASCULAR ENGINEERING	Hemodynamics and Vascular Mechanics Room 3-4	Sickle Cell Disease – Pathophysiology Room 3-4	Sickle Cell Disease - Engineering Therapies Room 3-4
	Cardiac Electrophysiology Room 17	Heart Valves Room 17	
	Cardiovascular Tissue Engineering I Room 13	Cardiovascular Tissue Engineering II Room 13	
CELLULAR & MOLECULAR BIOENGINEERING	Cell Adhesion and Interactions with the Extracellular Matrix I Room 18	Cell Adhesion and Interactions with the Extracellular Matrix II Room 18	Cell Adhesion and Interactions with the Extracellular Matrix III Room 18
	Cell Motility Room 19	Cancer Cell Mechanics and Engineering	Mechanotransduction I Room 19
	Computational and Multiscale Modeling, Cellular and Cardiovascular Room 16	Room 19	
DEVICE TECHNOLOGIES AND BIOMEDICAL ROBOTICS	Biomedical Device Design in Translational Research Room 22	Biomedical Robotics Room 14	

THURSDAY | OCTOBER 8 | 2015

PROGRAM-AT-A-GLANCE

Track	8:00am – 9:30am	2:00pm – 3:30pm	4:30pm – 6:00pm
DRUG DELIVERY	Responsive Delivery Systems Room 10	Nano to Micro Devices in Delivery I Room 10	Nano to Micro Devices in Delivery II Room 10
NANO AND MICRO TECHNOLOGIES	Medical Diagnostics and Screening I Room 7-8	Medical Diagnostics and Screening II Room 7-8	Theranostics and Nanoparticles I Room 20
		Nano to Micro Devices in Delivery I Room 10	Nano/Microbiotechnology I Room 7-8
			Nano to Micro Devices in Delivery II Room 10
NEURALENGINEERING	Neural Interfaces: Compatibility, Recording, and Stimulation I Room 12	Neural Interfaces: Compatibility, Recording, and Stimulation II Room 12	Neural Interfaces: Compatibility, Recording, and Stimulation III
	Device-based Approaches for Axonal Growth and Guidance Room 1	Neural Progenitor and Tissue Engineering Room 1	Room 12
ORTHOPEDIC AND REHABILITATION ENGINEERING			Articular Cartilage and Joint Room 14
RESPIRATORY BIOENGINEERING			Surface Tension and Surfactant Function in the Lung Room 1
STEM CELL ENGINEERING	Stem Cells in Pre-clinical and Clinical Models Room 5-6	Stem Cells in Pre-clinical and Clinical Models Room 5-6	Engineering Stem Cell Environments Room 5-6
TISSUE ENGINEERING	Cardiovascular Tissue Engineering I Room 13	Cardiovascular Tissue Engineering II Room 13	Engineering Replacement Tissues Room 13
	Inflammation and Immunomodulation in Tissue Engineering I Room 14		
TRANSLATIONAL BIOMEDICAL ENGINEERING	Biomedical Device Design in Translational Research Room 22		
OTHER	ABioM SIG Meeting Room 35	2-4pm – Room 24 Biomedical Engineering Technology for the Elimination of Health Disparities	
STUDENT AND EARLY CAREEER	8-9am – Ballroom A How to Find a Job in Industry 9:15-10:15am – Ballroom A BME Careers in Industry, Government and Academia	2-4pm - Ballroom BC Resume Review & Critique	4-5:30pm – Ballroom A Transitioning from Academia to Industry Panel

PROGRAM AT-A-GLANCE 2015 | OCTOBER 9 | FRIDAY

Track	8:00am – 9:30am	l:45pm – 2:45pm	3:00pm – 4:00pm	
BIOINFORMATICS, COMPUTATIONALAND SYSTEMS BIOLOGY	Multiscale Approaches Room 17	Molecules and Molecular Systems Room 17	Cell Signaling and Therapeutics Room 17	
BIOMATERIALS	Bioinspired and Self Assembling Biomaterials II Room 23	Biomaterials for Immunoengineering III Room 22	Therapeutic and Theranostic Biomaterials II Room 22	
	Biomechanics in Biomaterials and Tissue Engineering Room 21	Micro and Nano Structured Materials III Room 23	Biomaterials for Controlling Cell Environment Room 23	
BIOMECHANICS	Biomaterials for Immunoengineering II Room 22	Biomechanics, Injury I - Gait and Motion Room 20	Biomechanics, Injury II: Spine Room 20	
	Biomechanics in Biomaterials and Tissue Engineering Room 21	Cell and Tissue Biomechanics I Room 21	Biomechanics Room 1	
BIOMEDICAL ENGINEERING EDUCATION	Novel Techniques for Incorporating Design into BME Curricula Room 9		Interactive Education: How to Engage, Excite, and Teach BME Students Room 21	
BIOMEDICALIMAGING & OPTICS	Image Guided Focused Ultrasound Therapies Room 11	Applications of Imaging in Tissue Engineering Room 11	Applications of Imaging in Biomechanics Room 11	
		Imaging in Cancer Room 9	Imaging Technologies in Clinical Translation Room 5-6	
			Imaging in Cardiovascular Systems Room 3-4	
CANCER TECHNOLOGIES	Cancer Immunoengineering Ballroom BC	Imaging in Cancer Room 9	Personalized Medicine in Cancer Room 9	
CARDIOVASCULAR ENGINEERING	Microcirculation Room 3-4	Stents Room 3-4	Imaging in Cardiovascular Systems Room 3-4	
			Cardiovascular Devices Room 16	
CELLULAR & MOLECULAR	Stem Cell Bioengineering Room 18	Cell and Tissue Biomechanics I Room 21		
BIOENGINEERING	Mechanotransduction II Room 19	Mechanotransduction III Room 19		
	Young Innovators Session I: Cellular Engineering Room 5-6	Young Innovators Session I: Regenerative Medicine and Drug/ Cell Delivery Room 5-6		
DEVICE TECHNOLOGIES AND BIOMEDICAL ROBOTICS		Verification and Validation of Computational Models of Medical Devices Room 201 Peripheral Neural Interfaces:	Cardiovascular Devices Room 16	
		Simulation & Recording Room 001B		
DRUG DELIVERY	Drug Delivery in Tissue Engineering Room 10	Translation to the Clinic / Personalized Medicine & Novel Materials and Self Assembly Room 10	Multifunctional or Hybrid Systems Room 10	
NANO AND MICRO TECHNOLOGIES	Theranostics and Nanoparticles II Room 20 Nano/Microbiotechnology II Room 7-8	Paper Fluidics Room 7-8	Micro and Nano Total Analysis Systems Room 7-8	
NEURAL ENGINEERING	Neuro-rehabilitation Room 15	Closed Loop Control of Neural Interfaces/ Networked Neural Sensors, Actuators, and Instrumentation Room 15	Glial Cell Engineering/Addressing Degeneration Room 15	

FRIDAY | OCTOBER 9 | 2015

PROGRAM AT-A-GLANCE

Track	8:00am – 9:30am	l:45pm – 2:45pm	3:00pm – 4:00pm
ORTHOPEDIC AND REHABILITATION ENGINEERING	Musculoskeletal Tissue Engineering and Mechanobiology Room 14	Bone Room 14	Rehabilitation Engineering Room 14
RESPIRATORY BIOENGINEERING	Translational Engineering in Lung Disease Room 1	Ventilation of the Injured Lung Room 1	Airway Modeling and Imagin Room 1
STEM CELL ENGINEERING	Stem Cell Bioengineering Room 18	Directing Stem Cell Differentiation II Room 18	Other Stem Cell Applications Room 18
TISSUE ENGINEERING	Engineering Tissue Interfaces Room 13 Biomechanics in Biomaterials and Tissue Engineering	Bioreactor Systems for Tissue Engineering Room 13	Inflammation and Immunomodulation in Tissue Engineering II Room 19
	Room 21 Musculoskeletal Tissue Engineering and Mechanobiology Room 14		Tissue Engineered Models for Study of Disease and Drug Discovery I Room 13
	Drug Delivery in Tissue Engineering Room 10		
TRANSLATIONAL BIOMEDICAL ENGINEERING	Translational Therapeutics for Regenerative Medicine Room 16		Imaging Technologies in Clinical Translation Room 5-6
	Translational Engineering in Lung Disease Room 1		Biomedical Products and Devices Room 25
OTHER	Whitaker International Session Room 39 Best Practices in Leadership and Management	12:45 – 1:45pm Best Practices in Quality & Regulatory Room 12	
	Ballroom A	1:45 – 5pm BMES – NSF Special Session on Research & Grant Writing Room 12	
STUDENT AND EARLY CAREER	8:30 - 9:30am / 9:30 - 10:30am BMES Student Chapter Best Practices • Outstanding Chapter • Outreach and Mentoring Room 12 9:00 - 10:30am What You Need to Know to Get a Job in Industry, Government and Academia After Your PhD Ballroom A	1:45 - 3:15pm Undergraduate Student Design Competition Room Ballroom BC 2:00 - 4:00pm Resume Review & Critique Room 24 2:00 - 3:00pm Start - Ups and Venture Capital: Navigating the Funding Process and Investment Pitches	3:15 – 5:00pm Tech Transfer & Licensing – Best Practices in Transferring Technologies from Academia and the Clinic into Industry Room 12

PROGRAM AT-A-GLANCE 2015 | OCTOBER 10 | SATURDAY

Track	8:00am – 9:30am	l:30pm – 3:00pm	3:15pm – 4:45pm
BIOINFORMATICS, COMPUTATIONAL AND SYSTEMS BIOLOGY			Big Data, Single-Cell Measurements, and Clinical Applications Room 1
BIOMATERIALS	Biomaterials Design Room 21	Biomaterials for Controlling Cell Environment III	
	Biomaterials for Controlling Cell Environment II Room 23	Room 23	
BIOMECHANICS	Cell and Tissue Biomechanics II Room 1	Cardiovascular Biomechanics I Room 15	
		Orthopedic I: Implants, Prosthetics, and Bone Room 16	
		Cell and Tissue Biomechanics III Room 17	
BIOMEDICAL IMAGING & OPTICS	Molecular Imaging Room 5-6	Optical Imaging II: Oncology Applications	
	Optical Imaging I Room 11	Room 11	
	Cancer Drug Delivery Room 19	Cancer Drug Delivery I Room 18	
	Micro and Nanotechnologies for Cancer I Room 20	Micro and Nanotechnologies for Cancer II Room 20	
		Computation Modeling Strategies and Other Topics in Cancer Room 21	
		Optical Imaging II: Oncology Applications Room 11	
CARDIOVASCULAR ENGINEERING	Cardiac Regeneration and Stem Cells Room 3-4	Cardiovascular Biomechanics I Room 15	
	Cardiovascular Flow Modeling in Health and Disease Room 1	Angiogenesis I Room 3-4	
CELLULAR &	Cell and Tissue Biomechanics II	Molecular Bioengineering	
BIOENGINEERING		Cell and Tissue Biomechanics III Room 17	
DEVICE TECHNOLOGIES	Biosensors Room 22	Medical Device Development and Computational Models I	
AND BIOMEDICAL ROBOTICS	Wearable Sensors and Devices Room 16	Room 22	
DRUG DELIVERY	Delivery Systems for Immune Modulation	Cancer Drug Delivery I Room 18	
	Room 18 Cancer Drug Delivery	Targeted Delivery I Boom 10	
	Room 19		
	Tissue Engineered Models for Study of Disease and Drug Discovery II Room 14		
	Nucleic Acid Delivery Room 10		

Track	8:00am – 9:30am	l:30pm – 3:00pm	3:15pm – 4:45pm
NANO AND MICRO TECHNOLOGIES	Micro and Nanotechnologies for Cancer I Room 20	Micro and Nanotechnologies for Cancer II Room 20	
	Cell/Material Interfaces Room 7-8	Cells, Tissues and Organs on a Chip I Room 5-6	
		Microfluidics I Room 7-8	
NEURAL ENGINEERING	Neural Coding and Modeling Room 15	CNS Injury: SCI, Stroke, TBI and Concussions II	
	CNS Injury: SCI, Stroke, TBI and Concussions I Room 12	Room 12	
ORTHOPEDIC AND REHABILITATION ENGINEERING		Orthopedic I: Implants, Prosthetics, and Bone Room 16	
STEM CELL ENGINEERING	Cardiac Regeneration and Stem Cells Room 3-4	Stem Cells in Tissue Engineering Room 13	
TISSUE ENGINEERING	Printing and Patterning in Tissue Engineering	Stem Cells in Tissue Engineering Room 13	
	Room 13 Tissue Engineered Models for Study of Disease and Drug Discovery II Room 14	Tissue Engineered Models for Study of Disease and Drug Discovery III Room 14	
TRANSLATIONAL BIOMEDICAL ENGINEERING			
UNDERGRADUATE	Undergraduate Research, Design & Leadership I Room 9	Undergraduate Research, Design & Leadership II Room 9	Undergraduate Research, Design & Leadership III Room 9
OTHER	9:30 – 10:30am BMES Industry Update Ballroom A		

7:00am – 6:00pm	VentureWell / BME – IDEA 2015 – affiliate event	Marriott, Florida Salon V	
8:30am – 4:30pm	BMES Board of Directors Meeting	TCC, Room 24	
1:00pm – 7:00pm	Registration	TCC, Exhibit Hall	
11:30am – 3:30pm	AIMBE Board of Directors Meeting – affiliate event	TCC, Room 36	
3:30pm – 5:00pm	Match Up Mentoring (invitation only)	TCC, Ballroom D	
3:30pm – 5:30pm	Meet the Faculty Candidates	TCC, Exhibit Hall	Plenary Sessions
4:30pm – 5:30pm	AIMBE Academic Council Meeting –	TCC, Room 36	Platform Sessions
	affiliate event		Posters
5:30pm – 7:00pm	Welcome Reception	TCC, 2nd Floor Foyer	Special Sessionss
6:30pm – 7:30pm	VIP Reception (invitation only)	Marriott, II Terrazzo	Student & Early Career
7:00pm – 10:00pm	Annals of Biomedical Engineering Editorial	Marriott, Florida Salon I	Exhibits
	Board Meeting & Dinner (Springer) –		Special Events
			Committee Meetingsl
7:30pm – 8:30pm	Industry Committee Planning Meeting	Marriott, Room 7	-
7:30pm – 10:30pm	Council of Chairs Dinner & Meeting (invitation only)	Marriott, Florida Salon II/III	
8:00pm – 9:00pm	LGBT Dessert Social (ticket purchase required)	Marriott, Room 4	

WEDNESDAY, October 7, 2015

SCHEDULE AT-A-GLANCE

THURSDAY, October 8, 2015

Plenary Sessions
Platform Sessions
Posters
Special Sessionss
Student & Early Career
Exhibits
Special Events
Committee Meetingsl

Be sure to turn your BMES BASH ticket in for an admission wristband before the event at either the Information Counter (level 1) or at BMES registration.

7:00am – 6:00pm	Registration	TCC, Exhibit Hall
7:00am – 8:00am	Diversity Committee Meeting	TCC, Room 36
8:00am – 10:00am	National Meetings Committee Meeting	TCC, Room 31
8:00am – 9:30am	ABioM SIG Meeting	TCC, Room 35
8:00am – 9:30am	PLATFORM SESSIONS - Thurs-I	TCC – 19 sessions
8:00am – 9:30am	ABET Workshop	TCC, Room 9
8:00am – 9:00am	Student & Early Career: How to Find a Job in Industry	TCC, Ballroom A
9:15am – 10:15am	Student & Early Career: BME Careers in Industry, Government and Academia	TCC, Ballroom A
9:30am – 5:00pm	Exhibit Hall Open	TCC, Exhibit Hall
7:00am – 8:00am	Diversity Committee Meeting	TCC, Room 36
9:30am – 5:00pm	POSTER SESSION	TCC, Exhibit Hall
9:30am – 10:30am	POSTER VIEWING with AUTHORS & Refreshment Break	TCC, Exhibit Hall
10:30am – 12:15pm	PLENARY SESSION: Pritzker Distinguished Lecture & State of the Society	TCC, Ballroom BC
12:30pm – 1:45pm	Celebration of Minorities in BME Luncheon (ticket purchase required)	TCC, Ballroom D
12:00pm – 1:30pm	Cellular & Molecular Bioengineering Editorial Board Luncheon - <i>affiliate</i>	Marriott, Florida Salon I
12:15pm – 1:45pm	Lunch on Your Own	
1:30pm – 2:30pm	Membership Committee Meeting	TCC, Room 36
1:30pm - 2:30pm	International Affairs Committee	TCC, Room 31
2:00pm – 3:30pm	PLATFORM SESSIONS – Thurs - 2	TCC – 19 sessions
2:00pm – 4:00pm	Rapid Resume Review and Critique	TCC, Room 24
2:00pm – 4:00pm	Biomedical Engineering Technology for the Elimination of Health Disparities	TCC, Ballroom BC
3:30pm – 4:30pm	POSTER VIEWING with AUTHORS & Refreshment Break	TCC, Exhibit Hall
4:00pm – 5:00pm	AEMB Annual Convention - affiliate	TCC, Room 25
4:00pm – 5:30pm	Student & Early Career: Transitioning from Academia to Industry Panel	TCC, Ballroom A
4:00pm – 7:30pm	US-Korea BMES Workshop 2015	TCC, Ballroom D
4:30pm –6:00pm	PLATFORM SESSIONS – Thurs - 3	TCC – 19 sessions
5:30pm – 7:00pm	AEMB Reception - affiliate	Embassy Suites
6:15pm – 7:30pm	PLENARY SESSION: Models for Funding Research	TCC, Ballroom BC
8:00pm – 9:30pm	University Receptions - Invitations Extended by Hosts	Marriott Hotel

FRIDAY, October 9, 2015

7:00am – 6:00pm	Registration	TCC, Exhibit Hall		
7:00am – 8:00am	Education Committee Meeting	TCC, Room 36		
8:00am – 10:00am	2016 Annual Meeting Planning Committee Meeting	TCC, Room 31		
8:00am – 9:30am	PLATFORM SESSIONS - Fri-I	TCC – 19 sessions		
8:00am – 9:30am	Whitaker Session	TCC, Room 39		
8:00am – 9:30am	Best Practices in Leadership and Management	TCC, Ballroom D		
8:30am –9:30am	BMES Student Chapter: BMES Student Chapter/Outstanding Chapter Best Practices	TCC, Room 12		Plenary Sessions
9:00am - 10:30am	Student & Early Career: What You Need to Know to Get a Job in Industry, Government and Academia after Your PhD	TCC, Ballroom A		Platform Sessions Posters
9:00am – 10:30am	AEMB MINDS Workshop - affiliate	TCC, Room 25		Special Sessionss
9:30am –10:30am	BMES Student Chapter: Outreach and Mentoring Best Practices	TCC, Room 12		Student & Early Career Exhibits
9:30am – 10:30am	Ethics Meeting	TCC, Room 36		Special Events
9:30am – 5:00pm	Exhibit Hall Open	TCC, Exhibit Hall		Committee Meetingsl
9:30am – 5:00pm	POSTER SESSION	TCC, Exhibit Hall		
9:30am – 10:30am	POSTER VIEWING with Authors & Refreshment Break	TCC, Exhibit Hall		
10:30am – 12:00noon	PLENARY SESSION – NIBIB Lecture / DEBUT Awards Ceremony	TCC, Ballroom BC	Be si BME	ure to turn your IS BASH ticket in for
12:00noon – 1:30pm	Lunch on Your Own		an a befo	dmission wristband re the event at either
12:15pm – 1:30pm	Women in BME Luncheon - (ticket purchase required)	TCC, Ballroom D	the l	nformation Counter
12:30pm – 1:30pm	Medical Devices SIG Meeting	TCC, Room 39	regis	tration.
12:45pm – 1:45pm	Best Practices in Quality & Regulatory	TCC, Room 12		
1:00-pm – 5:00pm	Career Fair	TCC, Exhibit Hall		
1:45pm – 3:15pm	Student & Early Career: Undergraduate Student Design Competition	TCC, Ballroom BC		
1:45pm – 2:45pm	PLATFORM SESSIONS – Fri - 2	TCC – 17 sessions		
2:00pm – 3:00pm	AEMB Annual Ethics Session - affiliate	TCC, Room 25		
2:00pm – 4:00pm	Rapid Resume Review and Critique	TCC, Room 24		
2:00pm – 3:00pm	Student & Early Career: Start-ups and Venture Capital: Navigating the Funding Process and Investment Pitches	TCC, Room 12		
1:45pm – 5:00pm	BMES-NSF Special Session on Research & Grant Writing & Reception	TCC, Ballroom A		
3:00pm – 4:00pm	PLATFORM SESSIONS – Fri - 3	TCC – 17 sessions		
3:15pm – 5:00pm	Student & Early Career: Tech Transfer and Licensing - Best Practices in Transferring Technologies from Academia and the Clinic Into Industry	TCC, Room 12		
4:00pm – 5:00pm	POSTER VIEWING with AUTHORS & Refreshment Break	TCC, Exhibit Hall		
5:15pm – 6:15pm	PLENARY SESSION – Prosthetics Advancements: How One Little Dolphin Learned to Swim Again	TCC, Ballroom BC		
6:30pm – 9:00pm	BMES BASH	TCC, Riverwalk		

SATURDAY, OCTOBER 10, 2015

	7:00am – 2:00pm	Registration	TCC, Exhibit Hall
	8:00am – 9:30am	PLATFORM SESSIONS - Sat-I	TCC – 18 sessions
	8:00am – 9:30am	Undergraduate Research, Design & Leadership Orals #1	TCC, Room 9
	8:30am – 9:30am	Industry Advisory Committee (invitation only)	TCC, Room 39
	9:30am – 1:30pm	Exhibit Hall Open	TCC, Exhibit Hall
	9:30am – 1:00pm	POSTER SESSION	TCC, Exhibit Hall
	9:30am – 10:30am	POSTER VIEWING with AUTHORS & Refreshment Break	TCC, Exhibit Hall
	9:30am – 10:30am	Student Affairs Committee Meeting	TCC, Room 36
	9:30am – 10:30am	BMES Industry Update	TCC, Ballroom A
	10:30am – 12:30pm	PLENARY SESSION – Rita Schaffer Young Investigator Lecture & Diversity Award Winner	TCC, Ballroom BC
	12:30pm – 1:30pm	Lunch on Your Own	TCC
	1:00pm – 3:30pm	BMES Board of Directors Meeting	TCC, Room 24
	1:30pm – 3:00pm	PLATFORM SESSIONS - Sat-2	TCC – 18 sessions
	1:30pm – 3:00pm	Undergraduate Research, Design & Leadership Orals #2	TCC, Room 9
	3:15pm – 4:45pm	PLATFORM SESSIONS - Sat-3	TCC – 17 sessions
	3:15pm – 4:45pm	Undergraduate Research, Design & Leadership Orals #3	TCC, Room 9

JOURNALS FOR THE

Biomedical Engineering Community

ACS Publications

ACS Biomaterials Science & Engineering David Kaplan

Editor-in-Chief "This new journal is timely as it reflects the tremendous growth in the field of biomaterials over the past decade and the importance of biomaterial designs on biological outcomes."

pubs.acs.org/biomaterials

ACS Publications

S Biomaterials SCIENCE & ENGINEERING

Bioconjugate Chemistry Vincent Rotello Editor-in-Chief

"Bioconjugate Chemistry is the one journal poised exactly at the interface of the biological and synthetic worlds, positioning the journal to contribute to advances in fields including drug delivery, bionanotechnology, and synthetic biology."

BC Bioconjugate Chemistry

pubs.acs.org/bioconjugate

pubs.acs.org

Cellular and Molecular Bioengineering SPECIAL INTEREST GROUP

2016 CMBE and ABioM Joint Conference Biomanufacturing of Stem Cells and Regenerative Medicine

January 6-10, 2016

Royal Sonesta New Orleans

Conference Chair

Roland R. Kaunas Texas A&M University

Keynote Speakers

Dawn Applegate RegeneMed, Inc

Conference Co-Chair

Kaiming Ye Binghampton Univeristy

Kam Leong Columbia University

Ali Khademhosseini Harvard University

Krishnendu Roy Georgia Institute of Technology

Doris Taylor Texas Heart Institute Texas A&M University

Gordana Vunjak-Novakovic Columbia University

Registration

Early Registration Deadline: Novermber 19, 2015 For more information: www.bmes.org/cmbe16registration

Sponsorships

For sponsorship and exhibit opportunities:

www.bmes.org/cmbe16sponsorships or contact Roland Kaunas at (979) 845-2412 or rkaunas@tamu.edu

Hotel

Royal Sonesta New Orleans New Orleans, LA

Conference Rate: \$189

Conference Rate Deadline: December 8, 2015 or until the block is sold out

To make your reservation: www.bmes.org/cmbe16hoteltravel or call 1-855-463-3092 and reference "CMBE Conference"

Conference Information www.bmes.org/cmbeconfl6