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Abstract

Recently, a computer model has been developed by the Swiss Federal Institute for Snow and Avalanche Research that
simulates the evolution of a natural snow cover. Using common meteorological parameters as input, SNOWPACK predicts
characteristics such as snowpack temperature and density, in addition to snow microstructure and layering. An investigation
was conducted to evaluate the effectiveness of SNOWPACK in a Montana climate. A weather station was constructed in the
Bridger Mountains near Bozeman, Montana, to provide the meteorological parameters necessary to run SNOWPACK.
Throughout the 1999–2000 winter, weekly snow profiles were performed in undisturbed snow to provide a benchmark for
the model output. Density, grain size, and crystallography were recorded on 10-cm intervals over the full snow depth, and
the temperature profile was monitored with a thermocouple array. Finally, the meteorological parameters were input into
SNOWPACK, and a statistical comparison was performed comparing the predicted snowpack to the observational data.
Snowpack temperatures are predicted reasonably accurately by SNOWPACK. The modeled and observed densities
correlated well, but the model typically underestimates snowpack settlement. Comparison of grain size and shape was
problematic due to different definitions utilized by the model and observer, but still demonstrated some agreement. q 2001
Published by Elsevier Science B.V.
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1. Introduction

Recent advances in snow research, as well as the
increasing availability of powerful computer sys-
tems, have led to the development of computer

Ž Ž .models i.e. CROCUS Brun et al., 1992 , SNOW-
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Ž .PACK Lehning et al., 1998 , and SNTHERM
Ž ..Jordan, 1991 that are becoming better at predicting
the evolution of a mountain snowpack. Most of these
programs use common meteorological parameters as
inputs and provide as output predicted snowpack
temperature, density, grain size, and crystal type.
The more advanced models have already been used
operationally and provide avalanche hazard forecast-
ers and other mountain safety experts with yet an-
other tool for evaluating the alpine snowpack.
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The focus of this paper is SNOWPACK, a numer-
ical snow cover model developed by the Swiss Fed-
eral Institute for Snow and Avalanche Research.
SNOWPACK is a predictive model that uses La-
grangian finite elements to solve for heat and mass
transfer, stresses, and strains within the snowpack
Ž .Lehning et al., 1998 . Snow is modeled as a three-
phase porous media consisting of volumetric frac-
tions of ice, water, and air. Using a microstructure-
dependent viscosity, the settlement and density of the
snow cover are computed. The temperature profile of
the snowpack is determined based on the thermal
conductivity formulation developed by Adams and

Ž .Sato 1993 . The model contains both equilibrium
and kinetic-growth metamorphism routines that cal-
culate the time rate of change of grain shape parame-

Ž .ters sphericity and dendricity Fig. 1 , grain radius,
and bond radius which define the microstructural
characteristics of the snow. Other variables such as
coordination number and bond neck length are com-
puted from these primary quantities. Phase change of
the ice and water components is taken into account,
and a simple procedure for meltwater percolation
through the snowpack is also utilized. Importantly,
the conservation laws for mass, energy, and momen-
tum are adhered to in all aspects of the code. Cur-
rently, wet snow metamorphism is still under devel-
opment, and the models for dry snow metamorphism

Ž .are being improved Lehning et al., 1998 .

Fig. 1. Relation of the model parameters sphericity and dendricity
Ž .to the ISCI symbols Colbeck et al., 1990 .

The SNOWPACK model is executed using
weather and snowpack data measured at automatic
weather stations. Required inputs are air temperature
and relative humidity, snow surface temperature,
reflected solar radiation, total snow depth, and wind

Ž .speed Lehning et al., 1999 . Utilizing the reflected
solar radiation allows the solarimeter to be mounted
pointing downwards towards the snow surface, elim-
inating problems with the sensor becoming covered
with new snowfall. SNOWPACK then uses an em-
pirical estimation of the snow surface albedo to
back-calculate the incoming shortwave radiation
Ž .Lehning et al., 1999 . When the temperature of the
surface snow is below 0 8C, the snow surface tem-
perature is used as a Direchlet boundary condition.
Otherwise, the Neumann boundary condition is uti-
lized; in this case, the net longwave radiation is
calculated from the snow surface temperature using
an estimation of the atmospheric emissivity and the

Ž .Stefan–Boltzmann constant Bartelt et al., 1999 .
One problem associated with efforts to model the

evolution of a mountain snowpack is the lack of a
meaningful comparison of the model predictions to
an actual snowpack. Plots of simulated and measured
snowpack parameters are abundant in the literature
Ž .Brun et al., 1992; Lehning et al., 1998 , but simply
comparing these graphs visually does not provide a
meaningful or consistent evaluation of the similarity
between observed and predicted values. Introducing
statistical methods using well-established measures
provides a means of quantifying the accuracy of the
models

2. Purpose

To date, validation of the snowpack simulation
models has not been adequately addressed using an
objective and numerical approach. This will continue
to limit their improvement and acceptance, since few
users are willing to expend the resources necessary
to operationalize a snowpack model without first
having access to an extensive evaluation of the pro-
gram.

To complete an objective validation of SNOW-
PACK, a weather station was constructed to provide
the meteorological parameters necessary to run the
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model. During the 1999–2000 winter, regular snow
profiles were conducted to provide a benchmark for
the model output. The meteorological data was then
input into SNOWPACK, and a ApredictedB snow-
pack was computed. Finally, the use of statistical
methods allows a thorough and objective comparison
of the model output to field observations.

3. Methods

3.1. Description of field site

The field research site is located approximately 1
km north of the Bridger Bowl Ski Area near Boze-
man, Montana, in an area known as Wolverine Basin.
This region falls within the continental climate regime

Ž .as defined by McClung and Schaerer 1993 . An
average annual snowfall of approximately 6.5 m is
measured at the adjacent ski area. The site is a large,
open, relatively flat meadow situated at an elevation

Ž .of 2240 m Fig. 2 .
A weather station was constructed at the site to

obtain the necessary input data for the SNOWPACK
model. From 17 November 1999 to 6 April 2000, the
following were collected on 30-min intervals:

v Air temperature
v Snow surface temperature
v Relative humidity

v Wind speed
v Reflected shortwave radiation
v Total snow depth.

Additionally, a temperature-measurement array
was utilized to obtain a real-time temperature profile
within the snowpack. It was constructed from a 3-m
PVC tube fitted with thermocouples on 5-cm inter-
vals, standing vertically with the bottom thermocou-
ple at ground level. The PVC tube is filled with foam
so that the entire unit has a low thermal conductivity.

3.2. Collection of snow profile data

On a weekly basis, snowpits were excavated in
undisturbed snow near the instrument tower. Density
was measured with a triangular density box of known
volume, and weighed on a portable digital scale.
Grain size was measured by disaggregating a sample
from the layer under observation, and visually esti-
mating the mean maximum dimension of the snow
particles in the sample. A 25= Pentax hand lens
with built-in millimeter scale was used to facilitate
this measurement. The crystal type was classified

Ž .according to the ISCI system Colbeck et al., 1990 .
The snowpack temperature profile was read from the
thermocouple array at approximately the same time
as the snow profile was performed. All observations
were obtained on 10-cm intervals through the full
depth of the snowpack.

Fig. 2. Aerial photo showing location of Wolverine Basin weather station.
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3.3. Comparison of the predicted snowpack to the
obserÕed snowpack

While SNOWPACK includes a graphical user
interface that presents a visual description of the
snowpack predicted by the model, a simple visual
comparison of the model results to the snowpit data
is not adequate to objectively evaluate the model. A
better method is to employ familiar statistical mea-
sures to evaluate the level of agreement between the
modeled and observed parameters:

v Temperature
v Density
v Grain size
v Grain type.

The model itself was configured to output the
snow profile data for each day at 1100 h, which
corresponded with the time at which the snowpits
were typically performed in the field. It is this
modeled profile data that is compared to the weekly
snowpit observations.

Observations from the snow profiles were taken at
regular 10-cm intervals; however, the data calculated
by SNOWPACK are irregularly spaced with depth.
As a result, before any comparison of the predicted
and observed snowpacks can be undertaken, pre-
dicted model data must be calculated at the same
depths within the snowpack as the snowpit observa-

Ž .tions i.e. on 10-cm intervals . To accomplish this

task, a technique was devised to obtain model results
at desired locations.

From the start, difficulty arises in that the mod-
eled and observed snowpack heights may be differ-
ent. Although the predicted snowpack height is set
equal to the measured depth during periods of snow-
fall, the simulated depth is otherwise predicted inde-
pendent of the measured height. To develop a basis
for comparing the predicted and observed snowpack
heights, even if the total depths differ, a normaliza-
tion of depth is performed. The modeled and mea-
sured snowpack heights are each assigned a unit
height, and the depths at which observed or modeled
values occur are adjusted accordingly so that they

Ž .are expressed as a fraction of the unit depth Fig. 3 .
This can be easily expressed in mathematical terms.
First, let zXmod describe the heights of the data outputk

by the model, where m is the number of levels and k
is an index ranging 0-k-m, and define zXmod ask

the predicted total snow depth. Then the normalized
heights, z mod, are given by:k

zXmod
kmodz s . 1Ž .k Xmodzm

An identical procedure is performed for the observa-
tion heights:

zXobs
iobsz s , 2Ž .i Xobszn

where n is the number of observations levels and i is
an index that varies from 0- i-n.

Fig. 3. Normalization of the modeled and observed snowpack depths, creating a basis for comparing the profiles even if the total depths
differ.
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Once a common basis for comparing the observed
and modeled depths is established, linear interpola-
tion is applied to obtain model results at depths that
correspond with the observations taken on 10-cm
intervals. For a series of observations such as tem-
perature T obs, at snow depths z obs, a linear interpola-i i

tion between the two neighboring normalized model
mod mod Ž mod obs mod.heights, z and z z -z -z , yieldsk ky1 ky1 i k

a modeled temperature at the observed height:

T mod z obsŽ .i i

z modyz obs z obsyz mod
k i i ky1mod mods T q T . 3Ž .ky1 kmod mod mod modz yz z yzk ky1 k ky1

The equations for calculating density and grain size
are identical. Since grain type is not measured on a
continuous numeric scale, interpolation is not possi-
ble and the only feasible technique is to use the grain
type value that occurs at the height closest to the
observed location.

3.4. Statistical measures of model performance

A detailed summary of statistical descriptors that
evaluate a model’s ability to match an observational

Ž .dataset is provided in Imam et al. 1999 . These
goodness-of-fit indicators fall loosely into one of two
categories: residual-based and statistical association-
based. By employing statistical measures from both
categories, a more complete description of the
model’s performance is obtained.

Ž .In the residual-based category, the mean bias B
Ž .and the root mean square error RMSE are com-
Žmonly used for model verification Sorooshian et al.,

.1983; Imam et al., 1999 . These are defined as
Ž .Imam et al., 1999 :

y
mod obsx yxŽ .Ý i i

is1Bs 4Ž .
y

y
2mod obsx yxŽ .Ý i i

is1)RMSEs 5Ž .
y

where x mod and x obs are a set of y predicted andi i

measured data pairs. The mean bias indicates the
direction of the expected model error, and is a useful

measure of a model’s tendency towards overestima-
tion or underestimation. In contrast, the RMSE esti-
mates the expected magnitude of error associated
with a model’s prediction.

Among indicators of statistical association, Pear-
son’s correlation coefficient is perhaps the most

Ž .common Box et al., 1978 :
y

mod obsx yxÝ i i
is1rs . 6Ž .y y

2 2mod obsx xŽ . Ž .Ý Ýi i(
is1 is1

The correlation coefficient has an upper bound of 1,
indicating perfect positive linear correlation, and a
lower bound of y1, corresponding to negative linear
correlation. Although Pearson’s r is familiar among
many scientists and often used for validation pur-
poses, other researchers have provided arguments

Žagainst its use for model verification Imam et al.,
.1999; Imam, 1994; Fox, 1981; Willmott, 1981 .

Another measure of association is the Nash–Suttc-
Žliffe coefficient of efficiency Nash and Suttcliffe,

.1970 :
y y

2 2obs obs modx ym y x yxŽ . Ž .Ý Ýi obs i i
is1 is1Es , 7Ž .y

2obsx ymŽ .Ý i obs
is1

where m is the mean of the observed dataset. E isobs

upper bounded by 1, and yields higher magnitudes
with increasing model accuracy. The coefficient of
efficiency can also assume negative values, which
have a less intuitive interpretation. To address this,

Ž .Willmott and Wicks 1980 proposed an index of
agreement:

y
2obs modx yxŽ .Ý i i

is1ds1y , 8Ž .y
2mod obs< < < <x ym q x ymŽ .Ý i obs i obs

is1

w xwhich is bounded by 0 1 so that it does not produce
negative values.

The preceding statistical indicators are applicable
to numeric parameters such as temperature, density,
and grain size, but not to grain type which is mea-
sured on a categorical scale. Instead, Cramer’s Phi, a
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Ž 2 .Chi-Square X -based statistic, is used to ascertain
the degree of association between the observed and
predicted grain types. Cramer’s Phi is given by
Ž .Agresti, 1996 :

2X
Vs , 9Ž .( n ay1Ž .

where n is again the number of samples in the
population, and a is the number of categories present
in the two populations, whichever is smaller. In this
case as6, corresponding to six different grain clas-
sifications. Computation of Cramer’s V is conve-
nient as it ranges from 0 to 1 and is interpreted in the
same fashion as Pearson’s r. Another measure of
association based on the Chi-Square statistic is

ŽSakoda’s adjusted contingency coefficient Agresti,
.1996 :

2X( 2X qyC
)C s s , 10Ž .

ay1 ay1( (
a a

where C is the unadjusted contingency coefficient.
The adjusted contingency coefficient is also bounded

w xby 0 1 , with higher values indicating better associa-

tion. Both V and C) are computed twice; once for
the majority grain type F1, and again for the minor-
ity classification F2.

The preceding discussion serves to emphasize that
there is no single statistical descriptor that will effec-
tively assess a model’s ability to predict observed
data. Only by combining the merits of several differ-
ent measures can a complete model evaluation be
obtained.

4. Results and discussion

The measured and predicted total snow depths are
plotted for the research period in Fig. 4. it is appar-
ent from this graph that during periods of increasing

Ž .snow depth snowfall , the modeled snow depth is
matched to that measured at the weather station.
Conversely, during settlement periods when the depth
is decreasing, the model predicts depth independent
of the measurement. Early in the winter, SNOW-
PACK predicts the settlement curves quite accu-
rately. From mid-winter to early spring, however, the
model underestimates snowpack consolidation.

Table 1 summarizes the results of the descriptive
statistical analysis for the numerical parameters tem-

Fig. 4. Output from the SNOWPACK graphical user interface presenting modeled and measured snowpack depth over the course of the
winter.
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Table 1
Statistical measures comparing the predicted and observed snow-
pack parameters

n B RMSE r E d

Temperature 196 0.10 8C 0.97 8C 0.90 0.77 0.95
Density 177 y48.15 69.15 0.85 0.30 0.76

3 3kgrm kgrm
Grain size 179 y0.08 mm 0.42 mm 0.30 0.05 0.38

perature, density, and grain size. While there are no
hard-and-fast rules for interpreting these measures,
the utilization of several different statistical descrip-
tors allows meaningful conclusions to be drawn
regarding the performance of the SNOWPACK. Ad-
ditionally, the analysis provides a consistent frame-
work for comparing different versions of the model,
or evaluation of the model using datasets from dif-
ferent seasons or geographical locations.

4.1. Temperature

By all statistical measures, the SNOWPACK
model predicts the snow cover temperatures reason-
ably well. The RMSE is only 0.97 8C, and the mean
bias B shows very little tendency toward over or
underestimation. Since the temperature measure-

Fig. 5. Observed versus modeled temperature.

ments are accurate to within "0.5 8C, the RMSE
demonstrates that the model does a good job of
predicting temperature.

The measures of association r and d are nearly
one and the coefficient of efficiency E is fairly high,
suggesting a high degree of correlation between the
observed snowpack temperatures and those predicted
by the model. Referring to Fig. 5, the observed–pre-
dicted data pairs lie very close to the 1:1 line, which
represents perfect agreement. It should also be noted
from Fig. 5 that there are several instances where
SNOWPACK predicts isothermal temperatures, but
colder temperatures were measured. The graphs pre-
sented in Fig. 6 provide additional evidence that a
close correlation exists between the predicted and
measured temperatures, but reveal that model accu-
racy decreases slightly near the snowpack surface,

Fig. 6. Modeled and measured temperature versus snowpack depth
for three different dates.
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Fig. 7. Observed versus modeled density.

where often there is a greater variation of tempera-
ture over time.

4.2. Density

It is apparent from the RMSE of 69.15 kgrm3

that SNOWPACK has some difficulty predicting the
snow cover density. A mean bias B of y48.15
kgrm3 confirms that the majority of the error pre-
sent in the model’s prediction is due to a consistent
underestimation of the measured snowpack density.
Fig. 7 illustrates that the observed–predicted data
pairs are somewhat centered on the 1:1 line until the
observed density approaches 250 kgrm3. For densi-
ties greater than 250 kgrm3, the data diverges
markedly from the 1:1 line as the model increasingly
underpredicts the measured density.

Despite the discrepancy in the magnitudes of the
predicted and observed density, the correlation mea-
sures yielded more positive results. The coefficient
of efficiency E is fairly low at 0.30, but r and d are
fairly high at 0.85 and 0.76, respectively. The high r
shows that there is a tendency toward a linear rela-
tionship; however, Fig. 7 reveals that the linear
relationship does not follow the 1:1 line. This means
that the general theory for densification may be
sound, but that an adjustment of parameters may be

all that is needed to improve the accuracy of density
prediction.

4.3. Grain size

The comparison of predicted and observed grain
size was problematic and does not supply conclusive
information about the accuracy of the model. Most
of the statistical measures for grain size given in
Table 1 give poor results. The RMSE is large at 0.42
mm, but shows little or no bias with B equaling
y0.08 mm. The statistical association scores r, E,
and d are well below acceptable values.

The problem in this comparison lies partly in the
differing definitions of grain size used by the model
and the field observer. The model chooses 0.6 mm as
the size of new snow particles, and allows only the
growth of these grains. As a result, it is evident from
Fig. 8 that SNOWPACK never predicts a grain
diameter less than 0.6 mm, but on several occasions,
grain sizes less than this were reported in the field
observations. Furthermore, grain sizes greater than 1
mm are seldom predicted by the model, but were
routinely observed in the field. SNOWPACK uses a
grain diameter that is independent of the crystallog-
raphy; essentially, all grains are treated as spheres.
This is not true of the field observer, whose estima-
tion of grain size is often tied to the shape of the
snow grain, especially for faceted crystals. The esti-

Fig. 8. Observed versus modeled grain size.
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Table 2
Statistical association measures for the majority and minority
grain types

)n V C

Ž .Majority F1 206 0.41 0.71
Ž .Minority F2 206 0.34 0.66

mation of grain size in the field is unavoidably a
subjective measurement. Despite these contrasting
definitions of grain size and the possibility of ob-
server error, the low statistical measures suggest the
need for model refinement in this area.

4.4. Grain type

Cramer’s V for both F1 and F2 are both low and
indicate only a weak correlation between the pre-

Ž .dicted and observed values Table 2 . The adjusted
contingency coefficients C) of 0.71 and 0.66 sug-
gest a somewhat larger amount of association is
present, but the relationship is still not very strong.

Similar to grain size, SNOWPACK uses an alter-
nate grain classification scheme, namely, dendricity
and sphericity. Since there is little basis for estimat-
ing these parameters during field observation, the
model must choose a standard ISCI grain shape
according to various combinations of dendricity and
sphericity. A more desirable technique would be to
develop a common classification system employed
by both the SNOWPACK model and the observer.
Another alternative is to focus less on the crystallog-
raphy, and more on the microstructural parameters
that actually define the physical properties of the
snow. Crystal type is observed in the field primarily
as an indicator of the degree of bonding and strength
possessed by the snow. For instance, when rounded
grains are encountered, a high degree of bonding and
strength is assumed; the opposite is true when faceted
crystals are observed. If a reliable method was devel-
oped for measuring bond size, and perhaps bond
density, the classification of grain shape may be less
important.

5. Conclusion

From 17 November 1999 to 6 April 2000, meteo-
rological data were collected from a mountain

weather station adjacent to Bridger Bowl Ski Area
near Bozeman, MT. During the same period, full
snowpack profiles were performed on a weekly basis
within a short distance from the weather station. By
running the SNOWPACK model using the collected
weather data and comparing the output to the snow
profiles, a thorough evaluation of the predictive ca-
pabilities of the model was possible. Statistical tests
were utilized to make the comparison objective and
consistent.

The statistical measures utilized in the analysis
indicate that the SNOWPACK model predicts the
temperature profile within the snow cover fairly
accurately. However, inspection of the plot of pre-
dicted and measured temperature reveals a slightly
diminishing model accuracy with colder tempera-
tures, and additional difficulty when the modeled
temperatures approach 0 8C. The ability of the model
to effectively simulate snowpack temperature is cru-
cial since most snowpack processes are strongly
temperature dependent.

Though snowpack density is predicted less suc-
cessfully than temperature, two of the three measures
of statistical correlation give reasonable values. The
data also demonstrates that the model significantly
underpredicts the actual snowpack density when the
densities exceeds about 250 kgrm3. Still, our results
provide information that might be useful for improv-
ing density prediction in future versions of the model.

A meaningful comparison of predicted and ob-
served grain size is difficult due to different defini-
tions of grain size and the subjectivity of human
measurement. The statistical measures gave gener-
ally poor results and indicate little correlation be-
tween the simulated and observed values. Therefore,
the results of the comparison indicate not only the
need to improve the model, but also the utility of a
more standardized observation technique using a def-
inition of grain size similar to that employed by
SNOWPACK.

Since snow crystallography is not measured on a
continuous or numeric scale, the use of alternative
statistical measures is required. The results of the
statistical association measures demonstrate a weak
correlation between the modeled and observed grain
types. Like grain size, crystal shape is a subjective
observation; therefore developing a classification
scheme that can be both utilized by the model and
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accurately measured in the field would be advanta-
geous.

This analysis does not evaluate the model’s pre-
diction of surface hoar since we inactivated the
routine during model execution. This portion of the

Žmodel is still under development Lehning et al.,
.1998 and reportedly overpredicts surface hoar oc-

Ž .currence Pielmeier et al., 2000 . Another area of the
model needing improvement is wet snow metamor-
phism. Currently, SNOWPACK has only rudimen-
tary provisions for simulating wet snow metamor-
phism. Since this routine influences the grain size,
crystal shape, and density, its effects are included in
the analysis. Future work on the wet snow capabili-
ties of SNOWPACK will be important for ablation
prediction, hydrological purposes, and for applying
the model to warmer, maritime climates.

In its present form, the SNOWPACK model can
become a useful tool for avalanche forecasters and
other practitioners who need to know the properties
and structure of the snow cover, but do not always
have the ability to conduct frequent snow profiles in
a given location. Of course, users of the model must
understand the limitations of the current version of
SNOWPACK. Future model improvements and vali-
dation should increase the overall accuracy of
SNOWPACK and its usefulness as a tool for snow
practitioners.
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