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Abstract

Spatial patterns are an inherent property of most naturally occurring materials at a large range of scales. To describe

spatial patterns in the field, several observations are made according to a certain sampling design. The spatial structure can

be described by the semivariogram range, and nugget and sill variances. We test how reliably seven sampling designs

estimate these parameters for simulated spatial fields with predefined spatial structures using a Monte Carlo approach.

Five designs have been used previously in the field for snow cover sampling, whereas two designs with semi-random

sampling locations have not been used in the field. The designs include 84–159 sampling locations covering small mountain

slopes typical of snow avalanche terrain. The results from the simulations show that all designs: (a) give reasonably

unbiased estimates of the semivariogram parameters when averaged over many simulations, and (b) show considerable

spread in the semivariogram parameter estimates, causing large uncertainty in the semivariogram estimates. Our results

suggest that any comparisons of the estimated semivariogram parameters made with the sampling designs will be

associated with large uncertainties. To remedy this, we suggest that optimal sampling designs for sampling slope scale snow

cover parameters must include more sampling locations and a stratified randomized sampling design in the future.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Spatial patterns are an inherent property of most
naturally occurring materials at a large range of
scales. In snow cover, such patterns are important
for several processes that are driven by local, rather
than average, properties (Colbeck, 1991). Under-
standing and modeling such processes requires an
e front matter r 2007 Elsevier Ltd. All rights reserved
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accurate description of the spatial variation found
in the snow.

It has long been recognized that snow is not a
spatially homogeneous material (Seligman, 1936).
At the slope-scale, which is important for snow
avalanche release, inhomogeneities parallel to the
ground within snow layers are produced primarily
by differences in snow depths, substrate, and the
influence of wind (Sturm and Benson, 2004). Field
surveys have been done to describe quantitatively
the variation in snow at the slope scale (Conway
and Abrahamson, 1984; Birkeland et al., 1995;
Campbell and Jamieson, 2004; Kronholm et al.,
2004; Landry et al., 2004; Logan et al., 2007). While
.
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recent advances in instrumentation have enabled
field crews to obtain a large number of objective
measurements compared to earlier studies, the
destructive sampling and dynamic nature of the
snow cover (snow properties can change signifi-
cantly in a matter of hours) limits the number of
sampling locations on a slope. The sample size has
implications for the reliability of the experimental
semivariogram and for the parameters of the fitted
model, nugget and sill variances, and range of
spatial dependence (Webster and Oliver, 1992).
These three parameters describe the spatial struc-
ture of the data and must be known to predict
values at unmeasured locations using kriging. To
address this, previous field surveys used different
nested sampling designs to optimize the reliability of
the semivariogram. Optimization of the sampling
design is done by changing the sample spacing,
extent and support. The extent and spacing are
defined by the maximum and minimum distance,
respectively, between sampling sites, and the sample
support is the integration volume of a sample.
Optimization of sampling designs in a spatial setting
has been addressed by a number of studies (e.g.
Oliver and Webster, 1986).

Despite optimization of the sampling designs used
in snow surveys, the accuracy of the semivariogram
obtained is still a concern. In this study, we
investigate how reliably different sampling designs
estimate the semivariogram range, and nugget and
sill variances. This information is important when
deciding which sample design to use, and when
comparing semivariogram estimates from different
studies. First, we point out some of the general
considerations specific to sampling designs for snow
at the slope scale. We then use a Monte Carlo
approach to investigate how reliably previously
used sampling designs and two random designs
resolve spatial patterns at the slope scale. Although
our focus is on sampling designs used to describe
spatial variability in snow cover studies, our
approach is generally applicable to similar spatial
studies.

2. Practical design limitations

Dry snow slab avalanches, which are the most
dangerous snow avalanche type for skiers, are likely
to release once a crack in a weak layer reaches
0.1–10m in length (Schweizer, 1999). When con-
cerned with snow stability, spatial variation within
this range is, therefore, the most important to
describe and spatial extent can be limited to o30m.
To reduce the avalanche hazard associated with
snow stability investigations, slopes larger than
15–30m should be avoided during unstable snow
conditions. Further, measurements should be at
least 0.5m apart in a field survey to avoid sampling
disturbed snow. Sample support is determined by
the method used, and hence by the objective of the
study. For example, if the aim is to study the spatial
variation of point stability, a test method, which
involves a significant volume of snow must be used.
This could typically involve a method, which tests a
surface area of 30� 30 cm and a depth down to the
critical weak layer. If the objective is to study the
variation of strength of bonds between snow grains,
the test method must involve a sample volume
smaller than the scale of the bonds.

Reliable estimation of spatial structure from field
surveys sometimes relies on re-sampling certain
areas of the study site according to the results from
a preliminary field survey (e.g. Oliver and Webster,
1987). The destructive nature of snow cover
measurements makes returning to a site for un-
disturbed measurements impossible, and one set of
samples must suffice to reveal the spatial structure.
This makes optimal design of the sample scheme
crucial.

Increased measurement density generally im-
proves the reliability of the sample semivariogram
(Webster and Oliver, 1992). For the sampling
designs tested here, the investigators generally were
able to make 100–150 measurements in a day.
Making more measurements than this with avail-
able snow instruments is difficult, and for some
instruments the number of possible measurements is
considerably smaller. In slope-scale snow surveys,
sample sites are much easier to locate if they are in a
regular pattern and are spaced at regular intervals.
Random sampling designs for field surveys are,
therefore, less practical than regular grids. Finally,
the sampling design must enable a description of
potentially anisotropic spatial structures in two
dimensions, which measurements along a single
transect cannot do. In this study, we did not test
sampling designs involving multiple transects (e.g.
Oliver and Webster, 1987).

3. Methods

First, we decided on the spatial structure that the
sampling designs had to reproduce. The structure
was defined by the generating semivariogram range
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and nugget and sill variances. Second, one realiza-
tion of this structure was simulated and the
semivariogram parameters estimated from the ex-
haustive simulated field. If the estimated parameters
differed too much (see definition below) from the
generating parameters, the realization was discarded
and another independent realization produced.
Third, when a realization with useable parameters
was found, this field was sampled with each of the
seven sampling designs. Finally, from these samples
we estimated the semivariogram parameters. To
obtain a robust estimate of the reliability of each
sampling design, a total of 5000 useable simulations
were produced and used in the analysis.

3.1. Sampling designs tested

Five of the seven sampling designs tested here
have been used previously for field surveys. Sum-
mary information for all seven designs tested is
given in Table 1, together with relevant references
and Fig. 1 shows the layout of sampling designs.
For comparison with the semi-regular sampling
designs used in previous field surveys, we tested two
designs with semi-randomly located sampling sites
within an area of 12m� 12m (Random12) and
30m� 30m (Random30). The locations on these
designs were chosen randomly from all possible
locations on a 0.5m� 0.5m grid.

3.2. Simulation of the autocorrelated random field

The spatial structure of all simulations was
described by a Gaussian marginal distribution
around a mean value of 0 and an isotropic spherical
semivariogram g given by (Cressie, 1993):

gðhÞ ¼
c0 þ c 3h

2a
� 1

2
h
a

� �3n o
; hpa;

c0 þ c; h4a:

8<
:

Table 1

Summary information about sampling designs

Design Reference S

LH1 Birkeland et al. (2004a, b), Landry et al. (2004)

LH2 Birkeland et al. (2004a, b), Landry et al. (2004) 1

Random12 1

Random30 1

MT2004 Birkeland et al. (2004a), Logan et al. (2007) 1

MT2005 1

Swiss Kronholm (2004), Kronholm et al. (2004) 1
The parameter y ¼ (a, c0, c) defined the semivar-
iogram shape over the lag distances h by the range
aX0 the partial nugget variance 0pc0p1, and the
partial sill variance cX0. In the results presented
here we fixed the nugget at c0 ¼ 0, the sill at c ¼ 1,
and the range at a ¼ 5m. We chose a spherical
semivariogram model because it describes the
variation in natural phenomena well, and is found
to fit snow cover measurements better than other
models in most cases (Kronholm, 2004; Kronholm
et al., 2004).

Although field experiments have observed mostly
isotropic structures (e.g. Kronholm et al., 2004), this
is probably an over-simplification of natural condi-
tions. Similarly, the assumption of a Gaussian
marginal distribution is an over-simplification as
some properties of snow layers, such as their
penetration resistance, have been shown to be
non-Gaussian (Kronholm et al., 2004).

For the simulations we used the circular embed-
ding method (Dietrich and Newsam, 1993) imple-
mented in the RandomFields package (Schlather,
2001) for R (R Development Core Team, 2005).
The simulations were made on a rectangular grid
with 61� 61 cells, which is comparable to a
30m� 30m grid with 0.5m spacing. For each
simulation all 3721 cells were assigned a simulated
value.
3.3. Sample semivariogram

To calculate the sample semivariogram, the
simulated field was sampled to each design at the
sampling locations z(xi), i ¼ 1,2,3,y. The classical
sample semivariogram was calculated by (Webster
and Oliver, 2001)

ĝðhÞ ¼
1

2mðhÞ

XmðhÞ
i¼1

fzðxiÞ � zðxi þ hÞg2.
ampling points Minimum spacing (m) Extent (m)

84 1.0 30.9

25 0.5 38.2

44 0.5 16.6

44 0.5 40.0

59 0.5 18.4

45 0.5 19.8

13 0.5 19.0
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Fig. 1. Sample designs tested in this study. All designs are drawn to same scale. See Table 1 for references.
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All semivariograms were computed to a lag
distance of 8m using 13 equally spaced bins with
0.2m as the lowest bin limit and 8.0m as the upper
bin limit, and a bin width of 0.6m. Each bin had
m(h) point pairs. A fixed upper limit for sample
semivariograms was used despite the different
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Table 2

Generating values and criteria for spread of exhaustive simulated

fields satisfied by 5000 realizations used for analysis

Parameter Generating value Allowed range

Mean 0 Generating mean 70.2

Range a 5m Generating range 70.2m

Nugget c0 0 Generating nugget 70.05

Sill c 1 Generating sill 70.1
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extents of the sampling designs. We chose this to
facilitate direct comparison of the sample semivar-
iograms for all sample designs.

3.4. Model semivariogram

A spherical function was fitted to each sample
semivariogram. The parameters for the best fitting
semivariogram ȳ ¼ ðā; c̄0; c̄Þ were determined by
minimizing the weighted residual sum of squares
(WRSS) function given by (Cressie, 1993)

WRSSðȳÞ ¼
XK

j¼1

jNðhðjÞÞj
ĝðhðjÞÞ
ḡðhðjÞ; ȳÞ

� �2

.

The function calculates the sum of the differences
between the semivariogram estimate ĝ and the
semivariogram model ḡ for each of the K bins
(j ¼ 1, 2,y,K). This function gives more weight to
bins with more paired comparisons and to bins at
shorter lag distances. Calculation of the sample
semivariogram and function fitting was done with
the geoR package (Ribeiro and Diggle, 2001) for R
(R Development Core Team, 2005). As an initial
estimate for the minimization function we used the
semivariogram parameters initially used for the
simulations.

3.5. Monte Carlo simulations

Simulations were made using a Monte Carlo
approach. For the set of generating semivariogram
parameters y ¼ (a, c0, c), 5000 independent simula-
tions were made. Some realizations had a spatial
structure, which differed significantly from the
generating process. These realizations were identi-
fied by calculating the semivariogram range, and
nugget and sill variances for the exhaustive dataset
using the same method as described above. In
addition, we calculated the mean for the exhaustive
dataset. The realization was used for further
analysis only if the model parameters estimated
from the exhaustive dataset satisfied the criteria set
for the spread of the mean, the sill and nugget
variance and the range. The criteria are listed in
Table 2.

4. Results

The process of calculating the sill and nugget
variances and the range and mean for each
exhaustive simulation and selecting only those that
were within the limits shown in Table 2 resulted in
25827 simulations of which only 5000 (19%) were
used in the analysis.

4.1. Semivariance in lag distance bins

The number of point pairs in each lag distance bin
is shown in Fig. 2 and the spread of the 5000
observed semivariance values in each lag distance
bin is shown in Fig. 3. The LH1 design did not have
any point pairs in the first lag distance bin (Fig. 2)
and, therefore, only had nine bins whereas the other
six sampling designs had 10 bins. The semivariance
values in most bins were positively skewed and the
median value was below that of the value expected
from the generating value (shown with a line). The
bin median value in the Random30 design was
closest to that expected from the generating model.

In Fig. 4 the standard deviation of the semivar-
iance in each of the lag distance bins is compared for
all designs. A plot of a more robust measure of the
spread in each bin, such as the inter-quartile range,
shows the same trends as the plot of standard
deviation despite the skew in the data of each bin.
The standard deviation generally increases with the
lag distance for lag distances smaller than the
generating range. For the LHs1 and 2 designs the
standard deviation shows peaks corresponding to
the bins with relatively few point pairs (Fig. 2). For
the bins at lag distances o2m the MT2005 and the
Random12 designs had the lowest standard devia-
tion but for bins with lag distances 42m the lowest
standard deviation was found for the Random30

design.

4.2. Estimated range

Histograms of the estimated range values are
shown in Fig. 5, which demonstrates a considerable
spread and positive skew for all designs. In a few
cases, the spherical function fitted the sample
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Fig. 2. Number of point pairs in each of fixed lag distance bins.
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Fig. 3. Spread of 5000 observations of semivariance within each of the fixed bins.
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Fig. 4. Standard deviation for observed variance in each bin

shown in Fig. 3.
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semivariograms poorly, resulting in an unreason-
ably large estimated range combined with either a
large nugget variance or a large sill variance. The
Swiss design resulted in the largest number of
unreasonably large estimates of the range.

Table 3 gives standard measures of the spread
and central tendency for a subset of the estimated
values. Because of the occasional outliers we
truncated the upper and lower 5% of the distribu-
tions before calculating the measures of spread and
central tendency. Robust measures of spread and
central tendency show similar results. The spread of
the range estimated from data sampled by the
designs shows much higher variation than the
spread in the ranges estimated from the exhaustive
datasets, which were within 5m70.2m. The Ran-

dom30 design had the smallest spread. According to
the mean of the truncated estimates, all designs
overestimated the range with between 13% and 5%.
This may, however, be partially due to the non-
normal distribution of the values, and the histo-
grams in Fig. 5 show that the mode of the values is
close to the generating range of 5m.

4.3. Estimated sill variance

Fig. 6 shows histograms of the estimated sill
variances and Table 3 shows the mean and spread of
the estimates after truncation of the upper and
lower 5% of the data values. The spread of the
estimated values was large compared to the spread
in the estimates from the exhaustive datasets, which
were within 170.1 units. The distributions from all
designs had a positive skew but a mode and mean
(of the truncated values) located close to the
generating sill variance of 1. The Random30 design
had the lowest spread while the Swiss design had the
largest number of unreasonably large estimates of
the sill variance.

4.4. Estimated nugget variance

The estimates of the nugget variance (Fig. 7) had
more spread than the estimates from the exhaustive
datasets, which were within 070.05 units. Because
of the distribution of the estimates of the nugget, we
did not calculate central and spread parameters as
for the estimated range and sill variance. Of the
seven tested designs, the MT2005 and Random12

designs had the largest density of estimates in the
histogram closest to 0.

5. Discussion

There is good agreement between the central
values for the sill and nugget variance and the range
found by the sampling designs and the generating
values, but the spread in the estimated parameters
was relatively large (Figs. 5–7). Since the selection of
the realizations used for sampling ensured that the
estimates from the exhaustive dataset were close to
the generating values, most of the spread in the
parameters estimated from the sampled datasets
must be due to the sampling design and the sample
size. From a practical perspective, this spread
quantifies the difficulty of taking one sample (as is
done in field snow studies) and comparing that to
another sample. Even if the conditions being
sampled are the same, we may see sizable differences
between two samples due to the sampling design
alone.

Our methods may contain two possible sources of
error. First, simulating spatial fields of given
statistical parameters is difficult. We have mini-
mized this issue by selecting only those simulated
fields, which satisfied strict limits on the parameters
on the exhaustive field. Second, the automated
routine used to fit a semivariogram model to the
sample semivariogram may result in more spread in
the estimated semivariogram parameters than if
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Fig. 5. Distribution of estimated range for the exhaustive dataset and for seven tested sample designs.
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Table 3

Summary statistics for estimates of sample semivariogram range and sill variance

Design Range a (m) Sill c

Mean Variance Coefficient of

variation

Mean Variance Coefficient of

variation

LH1 5.67 1.708 0.23 1.023 0.048 0.214

LH2 5.55 1.538 0.224 0.989 0.058 0.244

MT2004 5.33 1.054 0.192 0.996 0.0645 0.255

MT2005 5.42 1.642 0.236 1.004 0.0729 0.269

Random12 5.26 1.243 0.212 1.001 0.075 0.274

Random30 5.23 0.521 0.138 0.986 0.018 0.136

Swiss 5.74 2.576 0.28 1.027 0.0891 0.291

Statistics were calculated from 5000 realization with upper and lower 5% truncated, and are therefore based on 4500 datapoints.
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each semivariogram was fitted by an expert. For
example, some spread in our estimates may be due
to fitting a spherical semivariogram model to a
sample semivariogram when another type of model,
such as an exponential model, would have provided
a better fit. Yet, our approach seems reasonable
because we know the model type used to generate
the simulated fields. Further, our technique of
truncating the most extreme values of the estimated
range and sill variance should remove most of the
worst misfit cases from the dataset used for
the statistics in Table 3. Finally, the spread of the
estimates of the nugget and sill variances and
the range follows what we would expect from the
variance within each lag distance bin (Fig. 2). From
the spread within each bin we would expect that the
Random12 and MT2005 designs which have the
smallest spread in the bins at short lag distances
would be the most reliable designs for estimating the
nugget, while the Random30 design with the lowest
spread within the bins at longer lag distances would
be the best design for reliable estimation of the
sill variance and the range. This is indeed the case
(Figs. 5–7), indicating that the variance is already
introduced before the fitting routine is applied.

Choosing a good sample design helps decrease the
spread of the estimated variogram parameters.
However, we have shown this can only be accom-
plished to a certain degree. In addition to choosing a
good design, including more sampling locations,
either by using faster sampling techniques or more
instruments simultaneously, will also decrease the
spread as shown by Webster and Oliver (1992). Our
results suggest that the Random30 design was
generally the most reliable design and the Ran-
dom12 design also gave relatively low spread in the
estimated values. Yet, a random design is not
practical for some field surveys, for example on
snow. A possible solution is to use semi-random or
stratified sampling where only a part of the design is
randomized. This approach was used by the CLPX
experiment to sample snow cover properties at
larger scales than the ones targeted in our simula-
tions (Cline et al., 2003), but the approach would be
similar if employed at the slope-scale.

The observed spread in the semivariogram model
parameters has implications for estimates of these
values from field surveys with the tested sample
designs. First, the spread means that an estimate of
the spatial structure of a single sample (for example
from one field day) can only be a rough estimate of
the true spatial structure. Second, the lack of
reliability in the estimates means that direct
comparison of spatial structures obtained on
different slopes must be made with care, even if
the same sampling design is used. The estimated
bias and spread presented here is useful for
addressing the uncertainty in the parameter esti-
mates when a comparison of parameters is made.

Our approach based on simulation is not exactly
the same as might be applied to data from a field
survey. For example, we assumed that there were no
inaccuracies associated with the data values at a
given sampling location, which is possible only in
theory and with simulated data. We also assumed
that all measurement locations in a sampling design
could be used for geospatial analysis. In reality this
is unlikely because typically some data might be
discarded because they are considered faulty or
because of instrument problems. To simulate this, a
number of randomly chosen measurement locations
could be left out of the simulations. In spite of the



ARTICLE IN PRESS

Fig. 6. Distribution of estimated sill for exhaustive dataset and for seven tested sample designs.
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Fig. 7. Distribution of estimated nugget for exhaustive dataset and for seven tested sample designs.
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differences between our use of simulated data and
field surveys, we believe our analysis of sampling
designs can be used when designing field surveys.

Our results suggest that the sample designs with
point measurements used in the past to characterize
spatial structure of snow slopes (e.g., Kronholm
et al., 2004; Logan et al., 2007) might be inadequate
to accurately characterize the true spatial structure
of snow slopes. Instead, new methods that allow
nearly continuous spatial measurements might be
necessary. One promising possibility for such
continuous measurements is the use of radar
(Marshall et al., 2004), though the sensitivity of
this instrument is still less than for some instruments
used for point measurements.

6. Conclusions

Using Monte Carlo style stochastic simulations, we
tested how reliably various sampling designs estimated
the spatial structure of a field of data with known
spatial structure. Our simulations suggest that:
�
 When averaged over many simulations, all the
tested designs tend to have a relatively low bias
with the estimated range being overestimated up
to 13% compared to the generating value and the
sill being slightly underestimated, but within 5%
of the generating value.

�
 Estimates of range, nugget and sill have a

relatively large spread. This clearly limits our
ability to compare estimates of these values
obtained on different slopes or by different
studies, even when studies use the same sample
design. To decrease the spread in the estimates,
greater measurement density is needed, some-
thing that is not possible with snow given current
instrumentation and a one-day sampling period
to limit temporal changes in the snowpack.
However, recent instrumentation advances, such
as radar, might allow adequate sampling to
characterize the true spatial structure for some
snowpack parameters.

�
 The previously used field survey designs tested

were less reliable at characterizing spatial struc-
ture than a design with randomly chosen
sampling locations. Random sampling designs
have not been used in the field due to the
difficulty in implementing them. However, we
suggest that some degree of randomization
should be included in future sampling designs
of slope-scale snow properties.
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