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Skiers caught in a slab avalanche often trigger the avalanche themselves. Preventing those accidents
necessitates a better understanding of the factors contributing to the failure of the snowpack under the action
of a skier. In the present work, a mathematical model based on the principles of mixed-mode anticracking is
proposed for skier triggering. The respective influences of the slope-normal and slope-parallel components of
the load exerted by a skier on the prospective fracture plane are taken into account. A criterion for fracture
propagation under typical skier loads is derived. It manifests a small number of factors that, combined,
multiply the risk of triggering an avalanche. The criterion indicates, contrary to a common perception, that
fracture is not more difficult to trigger in gentle slopes than in steep slopes. This major result of the model is

Snow confirmed by data obtained from field experiments.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Each year, snow avalanches cause hundreds and occasionally
thousands of fatalities worldwide. In both Europe and North America,
professional and recreational skiers represent a large proportion of
avalanche fatalities over the past decades. In about 9 out of 10
accidents, the avalanche victims or members of their party trigger the
avalanche in which they are caught (e.g.,, McCammon and Haegeli,
2006). Thus, understanding what conditions favor skier triggering is
important for both educational purposes and avalanche forecasting.

Slab avalanches develop when a weak subsurface layer fractures
over a large area. The fracture process can occur with or without shear
loading and for arbitrary amounts of crack face friction (Heierli et al.,
2008; Heierli and Zaiser, 2008). During the fracture process, the
snowpack layers above the fracture plane are quickly debonded from
the layers below. If the slope is steep enough, the frictional contact
forces in the freshly formed fracture plane are insufficient to balance
the gravitational pull and the snow begins to slide (van Herwijnen
and Heierli, 2009). The prospective fracture plane is in general
identified with weak subsurface layers including both persistent and
non-persistent forms (see Jamieson, 1995, p. 10). Persistent weak
layers consist of surface hoar, depth hoar, and faceted crystals and can
be triggered for weeks or months. Non-persistent weak layers consist
of new and decomposing snow crystals. These layers typically
stabilize within hours or days.
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For many years, the approach to skier triggering of snow slab
avalanches has been based on the principle that the snowpack fails if
the shear stress exerted by slab and skier on the prospective fracture
plane exceeds the shear strength of the material in this plane (F6hn,
1987, “stability index”). Since the shear stress increases with
increasing slope angle while the strength remains a constant or
decreases, this assumption implies that fracture should be easier to
initiate on steeper slopes. The approach suffers two conceptual
problems: first, by assuming a reproducible stress limit, local stress
concentrations near flaws and heterogeneities in the material are
discarded (e.g., Lawn, 1993). Second, the fact that weak snowpack
layers most often collapse during fracture is not taken into account.
The decrease in volume enables failure by anticrack propagation
(Heierli et al., 2008). Anticracks, as opposed to simple shear cracks,
allow for mechanical work to be done by the compressive component
of the load since the collapse provides a small but sufficient room for
slope-normal displacements in the crack region. (In simple shear
mode, since the displacements are in slope-parallel direction, the
compressive loads are perpendicular to the displacements and no
mechanical work results.) Experimental evidence has shown that the
particular fracture mode of anticracking is likely the rule for the failure
of persistent weak subsurface layers and that it also takes place in
non-persistent weak layers (van Herwijnen and Jamieson, 2005; van
Herwijnen et al., 2010).

Field experiments on skier triggering are not abundant. van
Herwijnen and Jamieson (2005) measured the deformation and
deformation rate of the snowpack under skier loading and observed
crack propagation within the weak layer on two occasions. Schweizer
et al. (1995) and Schweizer and Camponovo (2001) measured the
normal stress applied by a skier on a horizontal snowpack. These
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studies are mainly descriptive and provide no physical framework
aimed at the understanding of the fracture process. Numerical
simulations presenting insights into the process of skier triggering
have recently been carried out by Mahajan et al. (2010). The
simulations indicate that collapse propagation by anticracking of the
weak layer is the predominant mechanism for fracture initiation
unless the fracture energy for mode Il is about an order of magnitude
smaller than that for the anticrack mode.

In the present article, we develop a detailed mathematical model
of skier triggering based on the principles of mixed-mode anticracking
(Fletcher and Pollard, 1981). The slope-normal and slope-parallel
components of the stress field exerted by a skier in the prospective
fracture plane and the depth to which the skis penetrate into the
snowpack are taken into account. The calculation is based on the
superposition principle for linear materials and leads to a criterion for
fracture initiation in dry weak layers by a skier. We especially
investigate the influence of the slope angle on the triggering of
fracture in persistent weak layers and validate the theoretical results
with field experiments. Conceptually, the present calculation resolves
a singularity in the stress field, which was contained in an earlier
model of skier triggering by collapse of the weak layer (Heierli and
Zaiser, 2008, Appendix B).

2. Mathematical model

The two-dimensional situation shown in Fig. 1 is considered. On a
slope of angle 6 with the horizontal, a homogeneous slab of uniform
thickness h and bulk density o rests on a weakly aggregated, cohesive-
granular subsurface layer. The cohesion between the grains compos-
ing the weak layer prevents the grains from instantly rearranging in a
tighter packing order (e.g., Kadau et al., 2009). This maintains a sparse,
collapsible microstructure until cohesion is lost and suspends the slab
in a metastable state. The slab material is assumed linear-elastic and
deforming in plane strain relative to the z-direction. Extensive
quantities are therefore given per unit length in z. The Young's
modulus is denoted by E, and Poisson's ratio by v. We assume that slab
and substrate have comparable stiffness, so that the effect of the
elastic mismatch is small. The load acting on the undisturbed weak
layer is uniform and composed of a compressive (negative) stress
0. = —0gh cos 0 and a shear stress 7.=ggh sin 0, where g is the
acceleration of gravity.

We assume that the skier, positioned at x = X, acts as a line load p
applied at a depth a of the snowpack (Fig. 1). This depth corresponds
to the penetration depth of the skis (Jamieson, 1995). The slope-
parallel and slope-normal components of the line load are denoted by

Fig. 1. A skier with position X is assumed to sink into a slab of thickness h by an amount
a<h. Under plain strain conditions, he/she acts as a line load with slope-parallel
component p, and slope-normal component p,. The load causes an additional
compressive stress o(x) and shear stress 7(x) at an arbitrary point in the weak layer
plane.

px and py, respectively. The direction of loading is ¢ = arctan(p./py).
The static load pg of a motionless skier is typically around 400 N/m.
Due to the accelerated motion while skiing, the instant magnitude
p=(p?+p3)""? can be larger than p,. The load causes a compressive
stress 0(x) and a shear stress T(x) in the weak layer plane. Applying
the superposition principle, the stress components can be partitioned
into:

o(x)
T(%)

=0, + 0, (x—Xg) + 0y(x—Xp) (1)
=T, + T, (x—Xy) + T,(x—Xp)

where 0y is the compressive stress in the weak layer plane exerted by
an exclusively slope-parallel line load (p,#0, py=0) and o, is the
compressive stress in the weak layer plane exerted by an exclusively
slope-normal line load (p, =0, p, # 0). The shear stresses 7y and 7, are
defined accordingly. The functions 0, and 7, depend linearly on p,,
while the functions oy and 7, depend linearly on p,. We note that o,
and 7, are even functions of their argument, while o, and 7, are odd
functions. For a linear isotropic slab material, o(x) and 7(x) are
independent of the elastic modulus E of the slab. They can be
estimated according to Melan (1932), as given in Appendix A and
illustrated in the next section. An advantage of Melan's equation over
previous load models (Salm, 1977; F6hn, 1987) is that the load can be
applied both at the surface and inside the snowpack. This is, in
accordance with ski penetration, more realistic than always applying
the load on the surface. However, since the incision of the skier into
the snowpack is not taken into account in Melan's equations, the
accuracy of the calculation decreases with increasing penetration
depth.

In order to determine the energy barrier for crack propagation in
the weak layer under the action of a skier, we consider the stress
intensity factors K; and Kj; associated with the tips of a mixed-mode
anticrack of half-length r, located in the weak layer plane with center
at x=0 and loaded by o(x) in compression and by 7(x) in shear. We
begin the analysis with the loading situation shown in Fig. 2a, in
which a concentrated line force g« + g€, expressed in unit force
per unit length acts on the crack faces at x=x;. In mode I, in which
qy>0 and g, =0, the solution is given by (e.g., Tada et al. 2001):

_ Gy (rEx)\}
Kl<qy7X]) - \/ﬁF<T$X1> (2)

The upper sign of the 4 operator refers to the crack tip on the
right-hand side, the lower sign, to the crack tip on the left-hand side.
For mode I, the same relation as for K; applies, but gy is replaced by qy.
The stress intensity factor for antimode I is obtained by reverting the
sign of q,. In common materials, this operation is not permissible as a
reaction force to g, immediately appears for g,<0. In cohesive-
granular materials such as snow (Blackford, 2007),which are disposed
to collapse in volume as the grain aggregate fails, the reaction force is
delayed until tighter packing resists compaction. In practice, persis-
tent weak snowpack layers collapse by one to several millimeters
under fracture (van Herwijnen and Jamieson, 2005). This is enough
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Fig. 2. Discrete loading of a crack of half-length r. (a) Unilateral line loading at x =x;.
(b) Symmetric loading at x = 4-x;. (c) Antisymmetric loading at x = £x;.
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room for anticracks in the weak layer to become critical under typical
loads before resistance to compaction sets in Heierli et al. (2008).
For symmetric line loading (Fig. 2b) and for antisymmetric line
loading (Fig. 2c), the stress intensity factors are directly deduced by
application of the superposition principle, K* : =K(q,x;) + K(q, — x1),

respectively K~ : =K(q,x;) + K(—q, —x;). Thus:
2q,r _ 2q,x
K = #7 K= = T o B 3)
mr(r2—x3) r(r2—x3)

For Kif and Kj; in mode II, the same functional dependency holds,
except that gy is replaced by q,. In order to obtain the stress intensity
factors for an arbitrary distributed load, we decompose the distributed
load into its symmetric and antisymmetric components, substitute
these into Eq. (3), and integrate over x; from 0 to r:

K = \/r/n/ o) + o(=x) g X1, 4)
\Jrr—x2
K= EL [T OM)Z0M), g 5)

Var Jo \/m

For mode II, ois replaced by 7. These expressions can be integrated
numerically. In order to obtain simple analytical expressions, we
observe that the integration is greatly simplified by expanding the
distributed loads o(x) and 7(x) in a Taylor series around the crack
center: o(x)=Y o.x"/n!, T7(x)=> .x"/n!, n=0,1,2..., where
0, =0"0/0x"|x— o and accordingly for 7,,. We note that the summands
with even power in x correspond to a symmetrical loading of the
crack, whereas the terms with odd powers correspond to an
antisymmetrical loading. Unequal contributions to the stress intensity
factor of each crack tip apply to the case of antisymmetrical loading
only. Using the superposition principle for K (ie., K=K +K,
Ky=Kii +Ki) and carrying out the integration we obtain:

1 1 2
K = ﬁ(ooiiolr + 207 11603r + ), o

Ky = ﬁ(-ro :t%

T+ All'rzr2 + 1673r + )

As previously, the upper sign of the 4 operator refers to the crack
tip on the right-hand side, the lower sign, to the crack tip on the left-
hand side. For small crack half-width r, these expressions converge
to K = /mrop and K; = v/mrty and, in absence of a skier, to
K, = v/mro. and Ky = /Tirt-. The higher order terms in the brackets
improve on the accuracy of the calculation for r>0, but it is
understood that r < h.

Using these expressions for K; and Kj; and assuming brittle fracture,
the energy release rate G of the cracked system is obtained from the
relation for plane strain G=K#/E’' + Ki/E', where E' =E/(1 —1?) (e.g.,
Tada et al., 2001). The energy release rate is computed for both crack
tips, and the larger is retained. Thus, we assume the crack to expand if
either one of its crack tips is unstable. We remark that the value of G
both depends on crack size r and on skier position xo (through the
intermediate of the Taylor coefficients). Therefore, in the worst case,
the condition for crack propagation is:

é(r,ﬁ) = max

_max__{G(r.p.x)} 2wy (7)
where wr is the fracture energy of the weak layer. Unlike Mahajan
et al. (2010), we assume that the macroscopic energy release rate for
the anticrack mode and for mode II are approximately equal (Heierli
and Zaiser, 2008, Section 5.2). The value of r for which G(r,p) = ws
defines the critical half-length r. under the load p. The value of p for

which é(n D) = wy defines the critical load p for a crack of half-length
r. The value of xo which maximizes the middle expression for a fixed
value of r and p, defines the most effective position of the skier with
respect to the crack.

Combined with Eq. (6), Eq. (7) provides a criterion for pre-existing
flaws or cracks freshly induced by the skier to expand under the
additional load exerted by the skier. This is the case when the half-
width rp of the flaw or crack exceeds the critical half-width r. resulting
from Eq. (7). For loads typical of skiers, the present model leads to
critical widths up to a few decimeter and down to a few centimeter.
Our formalism thus requires that the weak layer material must be
close to ideally brittle.

We note that the present skier model can be used not only to
determine the stability of a mixed-mode anticrack but also to
determine the stability of a simple shear crack. Simple shear cracking
is contained as a limiting case in the model and is obtained by (i)
forcing K; to zero when the weak layer is not collapsible under fracture
and (ii) applying residual crack face friction of the order of 0.6 times
the local normal stress in the cracked weak layer (van Herwijnen and
Heierli, 2009). Formally, this can be done by subtracting 0.60(x) from
7(x) in Eq. (1).

3. Illustration of the model

In order to illustrate the model, we consider the snowpack situation
given in Table 1. We assume a skier of mass 70 kg on 1.70 m skis,
exerting a static force pp=400 N/m at a depth a of the snowpack. To
begin with, we assume the force to act vertically. Fig. 3 shows the stress
distributions o and 7 exerted by the skier in the weak layer plane. The
three colors - black, red, and blue - in Fig. 3 correspond to different ski
penetrations of a/h=0, 1/3, and 2/3, respectively, the four panels
correspond to different slope angles # =0, 30°,45°, and a theoretical 90°.
The graphs show the compressive stress o (full lines) and the shear
stress T (dotted lines). The width of the zone of influence of the skier in
the weak layer plane — defined as full width at half peak value - is on the
order of one meter for shallow penetration (Fig. 3). This finding is
confirmed by field data measured by Schweizer and Camponovo (2001).
The width of the zone decreases with increasing penetration depth and
tends to increase with slope angle. The shape and range of the zone are
very different for the induced shear component of stress and the
induced compressive component of stress. In slopes up to about 60°, the
shear component 7(x) is smaller in peak value but wider in range than
that of the compressive component o(x), which is larger in peak value
but narrower in range. The compressive component peaks almost
directly under the skier near x = xo, while the shear component peaks at
two extrema of opposite sign on either side of the skier and goes through
zero in between (N.B. see the fourth panel of Fig. 3 in which 6 =90’ for
peaks of 7 of the same sign and peaks of o with opposite sign, indicating
a zone of compressive stress with negative o, and a zone of tensile stress
with positive o). Since we observe that, in skiable slopes, 03> 73 at the
most effective position of the skier with respect to the crack (see Fig. 3),
a large part of the energy to overcome the energy barrier for crack
propagation comes from the compressive component exerted by the
skier and only a small part from the shear component.

The stress calculations can be compared with field data in which
the normal load exerted by a skier was measured with load cells
(Schweizer et al., 1995). Applying Melan's model with the field data
published therein, a skier of mass 70 kg, standing motionless atop of

Table 1
Snowpack characteristics for illustration of the skier triggering model.

0 h E v Wy
[kg/m’] [m] [Pa] - [/m?]
200 0.50 40x10° 025 0.1
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Fig. 3. Skier-induced stress components 0 — 0. (full lines) and 7 — 7.. (dotted lines) in the weak layer plane. The colors represent ski penetration: a/h =0 (black), a/h=1/3 (red),
a/h=2/3 (blue). The size and position of the critical crack are shown as thick colored segment. The juxtaposed figure indicates the critical half-length in meters. The thin segment
indicates the critical size in the absence of the skier. (a) =0, (b) 6=30, (c) 6 =45, (d) #=90. Data: Table 1, p=po =400 N/m. Terms up to the first order in r were taken into

account in Eq. (6).

the snowpack, sinking in by 0.11 m vertically above a load cell of
dimensions 0.5 mx0.5 m=0.25m?, located at a depth of 0.48 m
below the slab of density 180 kg/m>, exerts an additional load of
105N on the cell, which compares favorably with the measured
110 N. Based on the same field data, we find that the skier quickly
flexing the knees corresponds to an increase of p by a factor of 1.6
compared to the static skier load po, whereas the skier jumping once
corresponds to an increase of p by a factor of 2.2 with respect to po.
These values give an estimation of the range in which p can be
expected to vary during the action of skiing.

In Fig. 3, we show the critical crack widths as calculated with the
present model. The thick segment indicates the critical size in the
presence of the skier, while the thin segment represents the critical
size in the absence of the skier. The printed figure is the critical half-
width r. in the presence of the skier (for comparison, the critical half-
width without skier is in our example r.=0.13 m). The skier reduces
the critical width the most in horizontal terrain (a=0) and deep
penetration (a/h=2/3), and the least in steep terrain (§=290") and
shallow penetration (a/h=0,1/3). The position of the crack, as
indicated on the graph, corresponds to the most effective position
with respect to the skier. The steeper the slope, the more sideways the
critical crack is located in relation to the skier, especially for shallow
penetration. The pre-condition r<<h is satisfied in all cases.

In order to give a concrete example for critical skier loads, we
assume that the largest flaw a skier will hit, in a day of skiing, has an
expected size of [y =2ro=0.08 m in diameter. We ask whether this
flaw remains stable or expands upon the passage of the skier. (If the
mathematical expectation of the maximum flaw size were smaller

than 0.08 m, the calculated critical load would be higher and
reciprocally.) We thus substitute rq for r in Eq. (7) and calculate the
critical load the skier must exert on the snowpack in order to trigger a
flaw of this size. Also, we assume for simplicity that the thickness of
the slab at different points of the snowpack is proportional to the
cosine of the slope angle, heoccos6. This corresponds to an idealized
snowpack in which the snow has been deposited homogeneously
without local drift snow accumulations. Using these assumptions, the
dependency of the critical skier load with the slope angle is shown in
Fig. 4. If the weak layer fails by propagation of a mixed-mode anticrack
(full curves), the critical load to trigger the fracture process is virtually
independent of slope angle up to angles of about 60°. In that range, the
critical load slightly increases with slope angle, but the increase is very
small and may be difficult to detect given the usual spatial fluctuations
of the snow cover. In our example, the critical loads for avalanche-
prone slopes between 30° and 45° are between one and two times the
static line load of a typical skier and decrease with increasing
penetration depth. For a slab of approximately half a meter in
thickness, a penetration depth of 1/3 through the slab only marginally
reduces the critical load with respect to no penetration. On the other
hand, a penetration depth of 2/3 through the slab very substantially
reduces the critical load by 40%. By contrast, if the weak layer were to
fail by propagation of a simple shear crack (dotted curves), the critical
loads to trigger fracture are much larger, between 7 and 20 times the
static line load of a typical skier in the 30-45° window, and,
importantly, rapidly decrease with increasing slope angle. In our
example, the critical load decreases between 30° and 45° by a factor of
1.5 or more (Fig. 4, dotted curves).
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Fig. 4. Critical skier load in units of a typical load po =400 N/m, in terms of slope angle 6 and for a flaw size of 0.08 m. (a) a/h =0, (b) a/h =1/3, (c) a/h =2/3. Full line: critical load for
mixed-mode anticrack. Dotted line: critical load for simple shear crack. In the scenarios (a) and (b), skiing sharply or jumping triggers anticracking; in scenario (c), anticracking is

already triggered by the static load. The load is assumed to act vertically (¢ =6).

Thus, two contrary messages emerge from the comparison of the
results: if the weak layer fails in anticrack mode, then fracture is not
easier to trigger on steep slopes than on gentle slopes but equally or
marginally more difficult. By contrast, if the weak layer fails in simple
shear mode, then fracture becomes easier to trigger the steeper the
slope. Since the finding that weak layer fracture is not necessarily
easier to trigger in steep slopes than in gentle slopes relates to safe
travel in avalanche terrain, we tested this proposition in field
experiments.

4. Field experiments

In order to measure the difficulty of triggering fracture in a natural
test sample, we utilized the “extended column test” method (ECT)
and slightly modified the sample size (Simenhois and Birkeland,
2006). In addition to the ECT experiments, we used a layout in which
the load is applied in the center of the sample and at various depths
(Fig. 5). This layout is denoted by CECT for “centered” ECT. For both
layouts, a vertical column of snow with rectangular base is isolated
with a snow saw on all four sides from the surrounding snowpack. For
ECT layouts, we cut to a size of 2h + 0.25 m, but no less than 0.9 m, in
cross-slope width, and to 0.3 m in the direction of the slope gradient.
For CECT layouts, we cut to a cross-slope width of 4h+0.11 m. The

Fig. 5. CECT experiment. The test sample (contour enhanced) is cut free from the
surrounding snowpack. A small trench of variable depth and fitting the ski is dug into
the center of the sample. Fracture in the weak layer is initiated by tapping on the ski.

reason to size the samples wider than usual is to reasonably reduce
size and boundary effects, while compromising on the amount of
preparation work for the samples under occasionally dangerous
exposure. The samples are tested by placing the blade of a snow
shovel (0.25 m in width) or a ski (0.11 m in width) flat on the column
and vertically tapping on them repeatedly following a precise
procedure in which the strength of the tapping is increased every
ten taps (Simenhois and Birkeland, 2009; Greene et al., 2009) (Fig. 6).
The number of taps until the sample fractures is recorded. This
method is suitable for our issue since, like a skier, it tests the intact
snowpack. For consistency in loading, the same observer conducted
all the experiments of each measurement series.

The experiments were conducted on selected slopes in Colorado,
Montana, and Alaska, USA, in which gentle changes in slope angle or

a)

2h

2h 2h

Fig. 6. (a) ECT experiment. (b) CECT experiment. The test sample (light grey) is cut free
from the surrounding snowpack. In case (a), the blade of a snow shovel is placed on top
at one edge (dark grey) and tapped according to prescriptions (black arrow). In case
(b), a ski is used instead of the shovel. Tapping is stopped when the weak layer (dashed
line) fractures. The test score is ECTP/CECTP if the weak layer fractured from one end of
the sample to the other at one go.
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rollovers allowed for sampling a variety of slope angles with minimal
changes in snow structure. Altogether, the slope angles ranged from
7° to 44° (Table 2). On one slope in Alaska the observers roped up to
improve safety while conducting the tests. Sighting upslope on the
snow surface with a Suunto clinometer prior to each test allowed us to
quantify slope angles to an accuracy of + 1°. Almost all experiments
were conducted immediately adjacent to each other in the uphill
direction in order to reduce spatial variations from one sample to the
other. The structure of the snowpack was reasonably consistent at the
test sites. The characteristic data are given in Table 2. In dataset 1 to 4,
the weak layer consisted of buried surface hoar crystals with crystal
sizes varying from 4 to 10 mm on the different slopes, while in
datasets 5 and 6 the slab rested on a thin layer of facets. For our
analysis, we only considered experiments in which the sample
fractured at one go across the entire column on the weak layer of
interest (a score denoted as ECTP or CECTP, respectively, where P
stands for 'propagate’).Thus, two experiments in dataset 1 for which
the samples fractured on a layer of depth hoar on the ground were
discarded. The snowpack at test site 4 was challenging due to the
presence a second layer of buried surface hoar that occasionally
fractured. Altogether, 18 of a total of 32 experiments at test site 4 fully
fractured on the surface hoar layer of interest (i.e., classified as ECTP),
and this subset was used for our analysis. In the datasets 2, 3, 5, and 6,
all experiments were used for our analysis, as all samples fully
fractured at one go on the layer of interest. Dataset 6 was obtained by
placing the ski at various depths of the snowpack before tapping. To
this end, a small trench was dug into the center of the sample, just
wide enough to hold the ski (Fig. 5). Varying depth a of the trench
allowed us to investigate the effect of ski penetration on triggering
fracture.

The results from datasets 1 to 5 show that the number of taps
required to fracture the weak layer remained reasonably constant, or
increased slightly, with increasing slope angle (Fig. 7). For dataset 1,
ECT scores varied from 12 taps to 16 taps. There is a slight tendency
toward an increasing number of taps on the steeper parts of the slope.
Dataset 2 was collected 2 days later and on the same slope as
dataset 1. The results are again consistent, ranging from 12 taps to 15
taps. Like the previous dataset, there is a slight tendency toward an
increasing number of taps with slope angle. Dataset 3 covers the
smallest range of slope angles, varying from 38° to 43°. The ECT scores
were either 12 taps or 13 taps at all locations, and no trend appears for
these data. We investigated the steepest slopes at test site 4, where a
large rollover allowed us to sample from 30° to 44°. This dataset has
the largest range of ECT scores, ranging from 12 taps to 22 taps, and
shows a stronger increase with steepness. Below 39°, all ECT scores
were 14 taps or less. Above 39°, all ECT scores were 15 taps or more.
Dataset 5 also samples a large range of slope angles, from 12° to 32°.
The CECT score gradually increases by five taps as the slope angle
increases by 20°. In summary, none of the five datasets shows a
tendency for a decreasing number of taps with increasing slope angle.

The results from dataset 6 show that the number of taps required
to fracture the weak layer decreases as the penetration depth
increases (Fig. 8). We also observe that, for shallow penetration

Table 2

a), b)_
™7 ™7
0 el
[aVh| N
o o
[] o
[6] (6]
?N o ? o
= N7 |- Al
8] O
L 1]
0o GDGED
24 e} @O o @)
o 00 @ O @ QDOGmD
00 00 O 0ap0 @AO00
e} 00 O 00
o | o |
T T T T T T T T T T T T T T
5 10 20 30 10 20 30 40
0 [deg] 0 [deg]
o). d)g
Yol Yol
[aVh| [V |
o o
8 8 °
= & - &4
[$) [$)
L L (@)
o) 8 le)
24 o4 le)
o 000
000000 lele] o
o o
T T 1 T T 1
35 40 45 30 35 40 45
0 [deg] 0 [deg]
e)gﬁ
0o
o}
00 ©
&4 0 © 00
o & o
3 3
= -
O [aV)
L
o
w |
52;
T T T T T T
10 15 20 25 30 35

6 [deg]

Fig. 7. ECT scores in number taps versus slope angle 6. (a) Dataset 1, (b) dataset 2,
(c) dataset 3, (d) dataset 4, (e) dataset 5. The grey lines represent linear regression.

(a/h=0), the number of taps always exceeded 20 when fracture
initiated. That is, the taps were hit from the shoulder according to ECT
prescriptions. For deep penetration instead (a/h>1/3), the number of

Geographical location and snowpack characteristics of field experiments. N: number of experiments, F: weak layer crystal type (SH: surface hoar, FC: facets), e: weak layer grain size.
Other symbols as defined in Section 2. Uncertainty on last digit in brackets (standard deviation).

Set Mountain range Type N 0 (h) (a) o F e

- [ (m] [m] (kg/m’] - (mm]
1 Henry, MT ECT 26 7-34 027 (1) NA 180 SH 4-8
2 Henry, MT ECT 30 14-35 0.30 (2) 0.13 180 SH 4-8
3 Chugach, AK ECT 10 38-43 0.24 (1) 0.11 NA SH 6-10
4 Chugach, AK ECT 18 30-44 0.27 (4) NA 160 SH 4-6
5 Copper, CO CECT 18 12-32 0.38 (3) 0.01 300 FC 0.5-1
6 Copper, CO CECT 42 12-32 0.38 (3) Variable 300 FC 0.5-1
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Fig. 8. Decrease of CECT score with increasing ski penetration a/h. The six symbols
represent measurement series at six different locations in the test slope.

taps was always less than 20 when fracture initiated. In this case, the
taps were hit from the elbow. Thus, not only the number of taps
decreased with increasing penetration depth but also the magnitude
of the tapping force.

5. Discussion

In Section 2, we derived a criterion for a crack or flaw to expand
under the action of a skier. We left aside the question whether or not
the skier induces cracks in seemingly intact portions of the weak layer.

A few assumptions were used to build the theoretical model.
Firstly, the model is based on the linearity and isotropy of the slab
material, allowing for the superposition principle to be applicable.
This principle is used (i) in Melan's equations for the stress field
exerted by a skier in the snowpack, (ii) to add the stress fields due to
the slope-parallel and slope-normal components of the skier load, and
(iii) to determine the stress intensity factors for distributed loads on
the crack faces. The comparison with field measurements collected by
Schweizer et al. (1995) in Section 3, which shows a difference of 5% for
the average stress on the load cell, indicates that this approximation is
acceptable. Secondly, the skier load is modeled as a single line force. In
a linear material, the load can, in principle, easily be modeled as a
surface load, corresponding to one ski, or as a double line load,
respectively, a double surface load corresponding to two skis.
However, there is no advantage in doing so since the skis are often
pressed into the snow with unequal force, so that one ski prevails over
the other. In addition, as we shall see, the single line load situation
appropriately corresponds to a worst-case scenario for triggering. We
note that modeling the ski as a line force limits the model to
penetration depths on the order of approximately one or two ski
widths away from the weak layer.

Another assumption we used is that the granular aggregate
constituting the weak layer fails by brittle fracture, a case that is
well supported for dry snow (e.g., Narita, 1980; Kirchner et al., 2004)
and references therein). Others regard dry snow as a quasi-brittle
material (Bazant et al., 2003). Accordingly, a finite fracture process
zone should be taken into account in the modeling. However, so far no
reliable measurements of the finite size of a plastic zone embedding
the crack tip exist for natural weak layers. Therefore, until dependable
proof for the existence and the size of a process zone is available,
brittle fracture remains the most plausible fracture mechanism for
skier triggering in dry snow.

We further assumed that both the shear stress 7 and the normal
stress o are interrupted across the anticrack, as the granular debris in
the cracked weak layer is neither compressed nor sheared in the
course of compaction. Thus, although the same friction law applies
during collapse and after completed collapse, the amount of friction is
0 in the first case (because o(x)=0 between the anticrack faces) and

no(x) in the second, where o(x) # 0 and u~ 0.6 (van Herwijnen and
Heierli, 2009). In fact, field experiments indicate that friction drops to
a small residual value during the collapsing phase, but not exactly to
zero (van Herwijnen and Heierli, 2009). Thus, some amount of friction
should be associated with anticracks even during the course of
collapse. However, the experimental values for the residual friction
are small throughout and therefore neglected in the present
formulation. The calculated critical anticrack sizes therefore indicate
the smallest possible values (corresponding to the worst case).

The model distinguishes between the effect of the slope-normal
and slope-parallel components of the skier on triggering fracture in
the weak layer. The load causes a compressive component o(x) and a
shear component 7(x) of the stress tensor in the fracture plane. We
have seen in Section 3 that the shape, range, and value of o(x) and
7(x) are different. Given flaws, microcracks, or other sharp hetero-
geneities in the weak layer, a critical load can be associated to each
flaw of known size. The critical load depends on the direction of
loading. Assuming the load to act vertically and assuming a spatially
homogeneous snowpack deposited without wind accumulations, the
critical load for anticracking remains constant (or increases very
slightly) with increasing slope angle until about 60° (Fig. 4). In this
case, the difficulty of triggering fracture remains virtually constant
with slope angle. If the weak layer fails in simple shear mode instead,
the critical load decreases monotonically and rapidly with increasing
slope angle (Fig. 4). In that case, it becomes gradually easier to trigger
fracture with increasing slope angle. Approaching a theoretical 90°,
the shear crack and anticrack models converge.

The influence of the loading direction ¢ is shown in Fig. 9 for a
slope of 40°. The graph shows a broad minimum for the critical load.
The most effective loading direction is not far from slope-normal
(¢p=0), and the least effective directions are the slope-parallel
directions ¢ = + 90" and ¢ = — 90". These results remain qualitatively
valid for other, skiable slope angles and emphasize the major role of
the compressive stress in the failure of the weak layer.

The field experiments show that triggering fracture in the weak
layer by conducting an ECT takes the same number of taps or slightly
more taps as the slope angle increases (Fig. 7). The results are similar
across all four ECT datasets, as well as one CECT dataset. Of course, a
dynamical and not yet fully understood mechanical process causes
fracture to initiate in ECT experiments. However, comparative field
experiments indicate that an increasing ECT score goes in concert
with a higher stability against skier triggering (Simenhois and
Birkeland, 2009). In addition, field data obtained by another, static
method for fracture initiation show the same trend with slope angle
(Gauthier and Jamieson, 2008). In those experiments, fracture across

10 -
8 -
6 -
o
[oN
~
[oN
4 -
2 0.33
0.67
O .
T T T T T T 1
-90  -60  -30 0 30 60 90
¢ [deg]

Fig. 9. Critical skier load in units of a typical load po=400 N/m, in terms of load
direction ¢. The slope angle 6 is 40 . The figures indicate the relative penetration depth
a/h. The graph indicates that the triggering of fracture is distinctly easier under
compressive loads (¢ =0) than under shear loads (¢ = +90). Data are as in Fig. 4.
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the entire test sample is initiated statically by saw-cutting into the
weak layer from an edge until the crack tip ahead of the saw becomes
unstable and propagates. Regarding the traditional rutschblock test,
Campbell and Jamieson (2007) obtained significant negative correla-
tion of rutschblock stability scores with slope angle for only 2 out of 9
series of experiments (p-value: 0.05), while the remaining 7 series are
non-significant or positive and conform to our field data. The bottom
line is that different kinds of field experiments confirm the theoretical
expectation for anticracks that fracture is equally or more difficult to
trigger in the weak layer as the slope angle increases, regardless of the
method to initiate fracture. We note that other results have been
obtained in the past. Jamieson and Johnston (1993) found significant
negative trends in 10 of 24 rutschblock datasets, concluding that
rutschblock scores decreased on steeper slopes. However, in the
remaining 14 datasets, no significant trend existed. Jamieson (1999)
suggested a decrease of approximately 1 tap in the compression test
scores for each 10° increase in slope angle based on finding a
significant trend in 7 of 11 datasets. The decrease was attributed to
snowpack variability and not to increasing shear stress with slope
angle.

Another aspect of our interpretation of the field data is the spatial
variability of the snowpack (Simenhois and Birkeland, 2009). In our
field experiments, the test sites were carefully selected to ensure a
small spatial variability of the mechanical properties of the slab across
the area. Nevertheless, spatial variability of some kind almost
certainly remained. However, the probability to find a non-decreasing
difficulty of triggering the weak layer by chance in 5 series is a priori
1—(1/2)>~0.97. Therefore, the confidence that the result is not
obtained purely by chance is rather high.

We interpret these results as a strong indication that persistent
weak layers fail by propagation of mixed-mode anticracks and not by
propagation of simple shear cracks. Both the shear load to shear
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strength ratio ("stability index") and the fracture mechanical simple
shear models predict a decreasing difficulty of triggering fracture in
steeper slopes (Fig. 4). Since the field data show otherwise, we infer
that these approaches are unsuitable for understanding the failure of
persistent weak layers.

On a practical note, one may ask what strategies skiers can employ
to reduce the risk of triggering fracture. The best strategy among all, of
course, is to identify and avoid suspect slopes. Besides this, the
calculations indicate two complementary strategies. Firstly, Figs. 3
and 9 signal that any technique that reduces the peak slope-normal
load, and, in accordance with established experience (Jamieson and
Johnston, 1998), reduces the penetration depth into the slab also
reduces the odds of triggering fracture. This result is consistent with
observations from ski guides in Alaska and elsewhere who have
noticed that skiing light and fast, making long, arcing turns is less
likely to trigger an avalanche than making sharp, bouncy turns.
Secondly, Fig. 10 signals that the width of the stance and the load
distribution on the skis significantly affect the critical crack length: a
skier alternately loading one ski and then the other, e.g., during
downhill turns or when travelling uphill with climbing skins,
represents the worst scenario in the sense that the critical half-
width is the smallest when the load is entirely on one ski (Fig. 10a).
Spreading the skis by half a meter (a rather wide but reasonable
stance) and loading them equally increase the critical length by as
much as 30% (Fig. 10b). Increasing the spread to 1 m and still loading
the skis equally, the critical length would increase by another 10% (in
Fig. 10c). Spreading the skis any further is neither practicable and nor
does it increase the critical crack size substantially (Fig. 10d). These
figures are obtained for equal penetration depth. Thus, by spreading
the skis half a meter apart (or slightly more if the skier is comfortable
with it) and paying attention to loading both skis evenly, the risk of
triggering fracture is decreased. Nevertheless, we emphasize that,
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Fig. 10. Influence of spreading the skis apart and loading them evenly. (a) Loading all weight on one ski, (b) spreading the skis 0.5 m apart and loading them evenly, (c) skis 1 m apart,
evenly loaded, (d) spreading the skis more than 1 m apart does not increase the critical crack size substantially. The result is shown for 6 =0 and a/h =0 but remains qualitatively
valid for all slope angles and deeper penetration. The dots indicate the x-position of the loads. Data: see Table 1. Symbols are as in Fig. 3.
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depending on the skier's aptitude, taking a wider stance can increase
the difficulty of skiing steep slopes. If using the technique is likely to
result in a fall, its use is counter-productive.

A second implication of Fig. 10 is that the interaction of loads more
than 2 m apart is negligible regarding the effect on critical crack size.
Thus, a couple of meters' distance between the skiers implies virtually
no greater risk than the sum of the risks, taken individually. If the
distance is closer than 1m, the interaction between the skiers
decreases the critical crack size substantially and therefore increases
the odds of triggering fracture. Thus, the model reproduces the well-
known precaution that skiers in avalanche terrain or in any location
where fracture can be triggered should not group too closely.

Clearly an increase of the critical crack length decreases the risk of
triggering fracture under equal loads, but is the decrease in risk
substantial? In order to outline the answer, we consider a persistent
weak layer of surface hoar with typically A=150 m~! supporting
bonds per unit length. Assuming the bonds to be positioned randomly,
the probability P(I) of a defect of length [ =2r or more is P(I) =e~ ™,
The average distance d(I) to be covered by the skier to hit a defect of
length | or more is therefore d(I)=(AP(l))~'=e/A. In order to
compare the risks involved with scenarios of different critical lengths,
such as alternately loading one ski then the other (Fig. 10a, [; = 0.11
m) or loading the skis evenly and taking a stance of half a meter
(Fig. 10b, l,~0.14m), we find d(l,) : d(l;) = = =), In our example d
() :d(ly) is on the order of 100:1. That is, if the skier covers the same
terrain in both cases, he or she is on the order of 100 times less likely
to trigger fracture in the second scenario than in the first. This simple
analysis indicates that even a small increase of the critical crack length
can be a very substantial element of risk evaluation.

The results question the traditional understanding that steeper
slopes are more dangerous because of easier fracture initiation, since,
given similar snow structure, fracture appears to be equally difficult or
even more difficult to initiate in steeper terrain. We think that the true
reason that steep slopes are dangerous is because it is more likely on
steep slopes to overcome the residual contact forces between the
freshly debonded slab and the basal plane, as well as the contact forces
at the periphery of the debonded slab. Thus, the steeper the slope, the
greater the odds of releasing an avalanche. The gentler the slope, the
greater the odds of releasing an alarming, but harmless whumpf
instead (unless it propagates far enough to release a remote
avalanche). In this sense, the perception of steep slopes being
dangerous to ski remains valid.

Using a pragmatic approach, one can employ the present method
to investigate possible skier triggering scenarios given a broad
knowledge of snowpack conditions. In order to obtain a relative
ranking of a selection of scenarios by the difficulty of skier triggering,
two schemes are possible: (i) either one ranks the scenarios by the
value of r. given p (lowest r. indicating lowest stability) or (ii) one
ranks the scenarios by the value of p. given ro (lowest p. indicating
lowest stability). In both schemes, the critical level is determined by
Eq. (7).

6. Conclusion

In the present work, a mathematical model of skier triggering
based on the principles of mixed-mode anticracking is proposed. The
model can be used to determine the critical size of a crack in the
prospective fracture plane under loads like those exerted by skiers.
Combined with empirical data on flaw sizes, the model may be
employed to assess the snowpack stability associated with potential
skier triggering scenarios.

According to the model, the combination of a small number of
factors increases the risk of triggering fracture: the intensity and the
direction of the skier load, the depth of the weak layer, the stiffness
and penetrability of the slab, the fracture energy of the weak layer,
and the size of flaws. Depending on the snowpack conditions and the

route chosen by the skiers, the combination of these factors is more or
less likely to occur.

Regarding how load superposition alters the risk of triggering
fracture, we find that if two skiers gather closely, they substantially
decrease the critical size for which a crack starts to propagate.
According to the calculation, approaching each other by less than
about 1 m increases the triggering risk, while remaining apart by a
couple of meters or more implies virtually no greater risk than the
sum of the risks taken individually. This confirms that parties should
not gather too closely (e.g., for reading a map). Of course, it remains
wise to only expose one skier at a time on potential avalanche slopes
to eliminate the chances of being caught in the same avalanche.

The present model of skier triggering confirms strategies for
traveling on potentially dangerous terrain, if unavoidable (e.g., during
a rescue): the skier should avoid all actions that increase the
instantaneous load (especially the slope-normal component) and
penetration depth, such as falling, jumping, wedelling, decelerating,
and alike. In addition, taking a wider stance and equally dividing the
load on both skis increases the critical length and therefore decreases
the risk of triggering fracture. The model also explains why any
actions that load the skis very unequally, such as travelling uphill with
climbing skins, can trigger avalanches even though they involve small
dynamic loads.

A major practical result of the present work is that, given similar
snowpack conditions, fracture is equally difficult to trigger on steep
and gentle slopes. The tendency of an increasing difficulty with
increasing slope angle is marginal and not practically relevant. While
most practitioners know that fracture can be triggered on low-angle
slopes and anticipate the consequences, it is not commonly realized
that fracture can be triggered as easily on low angle slopes as on
steeper ones. On the contrary, critical loads are often presumed to
decrease with increasing slope, a perception that conceptually
emerges both from the classical stability index and from the shear
models of weak layer fracture: mathematically, both indicate that the
critical loads decrease with increasing slope angle. Due to the obvious
practical reach for safe travel of this new paradigm, we validated this
result experimentally in the field. The experimental results mirror
those of the model and show that triggering fracture in a weak layer is
equally or slightly more difficult on steep slopes in comparison with
gentler slopes. Field data obtained by another method for fracture
initiation also show the same trend with slope angle. We therefore
advise skiers to be aware that triggering fracture can be equally easy
in a 30° slope than in 45° slope and not invariably more difficult in a
gentle slope than in a steep slope, as implied by the traditional views
supported by the shear model and the stability index.

The field data indicate that there is a fundamental lack of
understanding in the traditional approaches of skier triggering, whether
based on a shear stress to shear strength ratio (“stability index”) or on
simple shear cracking models. These models indicate a false trend for the
difficulty of triggering fracture in persistent weak layers in terms of
slope angle. Instead, the present model provides a new framework to
understand skier triggering of slab avalanches, which is in accordance
with the field data at hand.

From an operational perspective, the results show that, as long as
the snow structure remains reasonably consistent in space, snowpack
observers can conduct dependable tests on persistent weak layers in
gentler, safer terrain before committing themselves to exposed areas.
This is only possible when failure is propagated by anticracks, since
shear cracks cannot develop in the low-angle terrain.
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Appendix A
According to Melan (1932), the components of the stress tensor

generated by a line load in a homogeneous, isotropic material in a
half-space are:
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The variables are as defined in Section 2.
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