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ABSTRACT

Snow microstructure significantly influences the mechanical, thermal, and
electromagnetic properties of snow. The microstructure is constantly evolving from the
time it is deposited on the surface until it sublimates or melts.  The resulting time variant
material properties make the study of snow metamorphism of fundamental importance to
a wide variety of snow science disciplines.  Dry snow metamorphism has traditionally
been classified by the thermal gradient encountered in the snowpack.  Snow experiencing
a predominantly equi-temperature environment develops different microstructure than
snow that is subjected to a temperature gradient. As such, previous research has evaluated
snow metamorphism based upon select thermal gradient dependent processes, when in
reality, there is a continuum of physical processes simultaneously contributing to
metamorphism.  In previous research, a discrete temperature gradient transition between
the two thermal environments has been used to activate separate morphological analyses.
The current research focuses on a unifying approach to dry snow metamorphism that is
applicable to generalized thermal environments.  The movement of heat and mass is not
prescribed, but is allowed to develop naturally through modeling of physical processes.
Heat conduction, mass conservation, and phase change equations are derived in a
simplified two-dimensional approach.  Each differential equation is non-linearly coupled
to the others through phase change.  The microstructural network is then discretized into
elements and nodes.  Finite difference equations are developed for the network, and
numerically solved using iterative techniques.  The finite difference model provides a
unique platform to study the influence of numerous geometric and thermodynamic
parameters relating to dry snow metamorphism.  Numerical metamorphism studies in an
equi-temperature environment agree well with established trends and published
experimental results.  A smooth transition between equi-temperature and temperature
gradient environments is defined and influencing parameters are examined.  In the
temperature gradient environment, a dominant grain theory based on crystallographic
orientation is postulated through numerical modeling, and is supported by experimental
observation.  Several specific metamorphism applications, ranging from avalanche debris
sintering to model integration in a full scale snowpack, are presented.  The
microstructural model has proven to be capable of evaluating metamorphism for a broad
range of geometric parameters and thermal environments, yet is flexible enough to
accommodate additional scenarios.  
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CHAPTER 1

 BACKGROUND AND LITERATURE REVIEW

Introduction

The snow that perennially or annually blankets temperate and polar latitudes has a

significant impact on our everyday lives.  Snow is a substance of extremes: providing

unique recreational opportunity and beauty, yet threatening the safety of individuals and

communities. Snow can paralyze major geographic regions by restricting travel, causing

property damage, and by creating life-threatening avalanche hazards.  Snowcover can

influence local as well as global climate changes (Berry,1981) due to interactions with

the atmosphere through emissive, reflected, and absorbed radiation (Warren, 1982;

Dozier et al., 1988). Snow also provides vital moisture reserves for the world.  It is

estimated that three-quarters of the world’s terrestrial water resources are currently stored

in snow and ice (Committee on Opportunities in the Hydrologic Sciences, 1991) and that

snow supplies one third of the world’s agricultural irrigation water (Stepphun, 1981).

Snow’s influence in vast and diverse areas of our world makes the study of snow

mechanics a uniquely rewarding endeavor. 
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Microstructure Significance

The formal scientific study of snow dates back to the early 1800’s (Colbeck,

1991).  It was recognized early on that the response of snow to its environment depends

upon its thermal, mechanical, and electromagnetic properties (Arons and Colbeck, 1995).

Dry snow is composed of an ice network with interstitial pores filled with a mixture of air

and water vapor.  Wet snow includes a liquid phase of water that may occupy the bond

areas or fill the pore spaces, depending upon the water content.  This unique construction

makes the microscopic details of the ice and pore spaces a major influence in snow’s

physical behavior.  The microstructure of snow (defined as structures on the scale of

individual ice grains, inter-granular bonds and pores) determines the mechanical (Yosida,

1963; Hobbs, 1965; Keeler, 1969; Yen, 1969; Kry, 1975; Gubler, 1978 a,b;  Brown,

1980; Armstrong, 1980;  St Lawrence and Lang, 1981; Adams and Brown, 1982a; Salm,

1982; Hansen and Brown, 1988; Brown and Edens, 1991; Edens and Brown, 1991;

Mahajan and Brown, 1993; Shapiro, 1997; Johnson and Schneebeli, 1999),

thermodynamic (Yosida, 1955, 1963; Colbeck 1980;  Adams and Brown, 1990; Adams

and Sato, 1993; Arons, 1994) and electromagnetic (Warren, 1982; McClung and

Schaerer, 1993) properties of snow.  The intergranular bonding of snow grains

comprising a snowcover affects the strength, viscosity, creep, thermal, optical and

electromagnetic properties (Adams et al., 2001).

Snow Metamorphism

Snow is a unique granular material.  From the time it touches the earth until it

either transitions to liquid (melts) or to vapor (sublimates), the snow microstructure is
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continually changing in a process called metamorphism.  The time-varying

microstructural quantities result in nonlinear material responses, making the study,

understanding, and prediction of snow metamorphism vital to nearly all areas of snow

science.  The critical dependence of snow properties on microstructure makes

metamorphism an extremely important area of study.  Microstructural changes were first

described and documented in detail by Paulke (1934), although casual observations of

snowpack metamorphism came much earlier (de Quervain, 1963).  In recent times,

efforts to understand the evolving microstructure in snow intensified.  The combination

of large crystal surface area to volume ratio and homologous temperature (T/Tmelt>0.9

generally) makes snow a very nonlinear and a highly temperature dependent material

(Colbeck, 1983a).  Because of the relatively warm temperatures in seasonal snow, water

vapor is free to migrate and diffuse in the pore spaces of the ice matrix.  Specific surface

areas as large as 10,000 m2/m3 (Edens, 1997) result in snow continually trying to reduce

that ratio, thereby reducing the overall surface free energy (de Quervain, 1963; Hobbs,

1965; Colbeck, 1980; Langham, 1981).

In general, we will consider two categories of metamorphism depending upon the

thermal environment.  In a snowpack where the temperature is nearly uniform,

metamorphism is termed “equi-temperature”.  If a significant temperature gradient is

applied (frequently found in alpine snow), then “temperature gradient” metamorphism

results.  Traditionally, each of these conditions has been treated as separate and distinct

since each results in a unique microstructure (Sommerfeld and LaChapelle, 1970).  Use

of the temperature environment to describe the metamorphic process is not universally

accepted.  In fact, the categorization of metamorphism has resulted in heated discussion
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and debate.  Colbeck (1980, 1982, 1983a) used crystal forms and driving forces to

describe metamorphism.  The current research reported here does not require a distinction

between the different types of metamorphism, rather it (as a preview) uses physical

processes common to both.  The resulting unified approach makes the discussion

somewhat obsolete and irrelevant.  But, in order to present past efforts in a logical

manner, the equi-temperature and temperature gradient terminology will be used with no

opinion offered on its validity.

Equi-temperature Environment. “Equi-temperature” or “radius-of-curvature”

metamorphism results when only very small microscale temperature gradients exist in a

snowpack.  The characteristic microstructure resulting from this environment is smooth

rounded grains connected by smooth reverse curvature necks.  An example is given in

figure 1 in chapter 2.  The resulting snow tends to strengthen and densify with time.  In

the absence of a macroscopic temperature gradient, ice particles are observed to sinter by

growing the bonds between the individual grains.  This sintering process is commonly

referred to as equi-temperature metamorphism.  Colbeck (1980) correctly pointed out that

truly equi-temperature metamorphism is impossible for any process involving phase

change.  Heat must flow in order for phase change to occur, thereby requiring

microscopic temperature gradients.  Colbeck (1980) introduced the term “radius-of-

curvature” metamorphism (for reasons that will be obvious later).  “Equi-temperature”

metamorphism will be used here with the understanding that some (even though very

small and highly localized) temperature gradients must exist for phase change

metamorphic processes to take place.
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There are several physical processes available for the movement of water

molecules in snow metamorphism.  Maeno and Eblnuma (1983) summarized six potential

mechanisms that contribute simultaneously to the growth of necks between sintering ice

particles: surface diffusion from a surface source (Kuczynski, 1949), volume diffusion

from a surface source (Kuczynski, 1949), vapor transport from a surface source (Hobbs

and Mason, 1964), boundary diffusion from a grain boundary source (Johnson, 1969;

Colbeck, 1998; Adams et al., 2001), volume diffusion from a grain boundary source

(Ashby, 1974), and volume diffusion from dislocation sources (Ashby, 1974).  The

question that arises is which (if any) are predominant and can any of these mechanisms

be neglected?  Several studies, theoretical and experimental, have addressed this issue.

Kingery (1960) showed ice particles brought together at subfreezing temperatures

remain together even when the unifying force was removed.  He claimed that surface

diffusion from the grain surfaces to the newly formed bonds resulted in “regelation” of

the particles.  It was previously believed that pressure melting or a liquid-like surface

layer was required for bonding, but Kingery disproved this.  Kuroiwa (1961) conducted

experiments similar to Kingery, but came to different conclusions on the mass transport

mechanisms.  Kuroiwa concluded that volume diffusion was dominant above -10°C with

surface diffusion emerging and then dominating below -15°C.  Hobbs and Mason (1964)

and Hobbs (1974) also conducted ice sintering experiments with entirely different

interpretation of results.  They brought together several sizes of uniform spheres in a

vapor-saturated environment.  They then observed particles optically and measured bond

sizes in time. Each mechanism was assumed to conform to the following law:
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where t is time, B(T) is a temperature dependent function,  rg is the grain radius, rb is the

bond radius, m and n are integers that depend upon the mass transport mechanism. Hobbs

and Mason (1964) claimed that it is impossible to experimentally distinguish (find

independent m and n coefficients) between the sintering rates of vapor, surface, or

volume diffusion.  In fact, they show similar rate dependence for each case.  Hobbs and

Mason presented convincing arguments pointing to vapor diffusion as the dominant

sintering mechanism (by four orders of magnitude) based on the size of the respective

coefficients. Maeno and Eblnuma (1983) confirmed the vapor transport dominance

except under certain temperature and geometric conditions where surface diffusion may

be significant.  The small bond size required for significant surface diffusion would be

very short-lived since the sintering rates are so high with small bonds.  As a consequence,

experiments and analysis have focused on the vapor diffusion regime.  Maeno and

Eblnuma (1983) have shown (analytically) the significance of surface diffusion when rb/

rg < 0.06, yet Hobbs and Mason (1964) didn’t report measured ratios less than 0.1.  The

sintering progressed so quickly (a few minutes), that the very small bond to grain ratios

were not visually captured. Until recently, the prevailing consensus, over at least the

previous 20 years, is that vapor diffusion is the primary sintering mechanism during

metamorphism of a macroscopically equi-temperature snow pack.  Other mechanisms are

probably at work, but at rates much lower than vapor diffusion.  The only exception is the

potential short-term contribution of surface diffusion under specific temperature and

geometrical conditions.
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Recently, grain boundary diffusion has been given more attention as a potential

sintering mechanism. Grain boundary diffusion is a sintering process that occurs at the

interface of two crystals, whereby mass migrates from the center of the contact to the

surface of the bond.  Sintering takes place when surface tension forces pull the grains

together resulting in a stress gradient from the center to the surface of the bond.  Colbeck

(1998;1997) applied a grain boundary diffusion model (Zhang and Schneibel, 1995) to

ice.  His model assumed the presence of a grain boundary stress gradient producing

molecular flux, which redistributes mass evenly onto spherical ice grain surfaces.

Intergranular necks were not considered.  Colbeck’s analysis raised the question of grain

boundary diffusion significance, but did not attempt to provide physical evidence of its

existence.  He recognized the need for better physical constants defining grain boundary

molecular mobility before the significance of grain boundary diffusion can be evaluated.

Adams et al. (2001) used a scanning electron microscope to examine bonds between

sintering ice grains.  They discovered a grain boundary “ridge” protruding into the pore at

the grain boundary surface.  This ridge is thought to result from the migration of

molecules from the bond center to the surface, providing the first physical confirmation

of grain boundary diffusion in ice. Adams et al. (2001) also presented a mass balance

analysis which brought into question the validity of grain boundary physical parameters

and, potentially, our understanding of sintering.

For the current effort, sintering due to vapor diffusion is the accepted dominant

mechanism, conforming to current data.  Colbeck (1980) suggested a process of vapor

diffusion between surfaces of different radii of curvature. He derived the vapor pressure
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over curved surfaces as a function of surface curvature through the chemical potential.

Vapor pressure over curved surfaces is given by the familiar form of Kelvin’s equation:









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

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
=

s
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where P is the equilibrium vapor pressure over the surface, P0 is the equilibrium vapor

pressure over a flat surface at a reference temperature, and ρs is the average surface

curvature.  ρs is defined by:

21

112
rrs

+=
ρ

,

where r1 and r2 are radii of curvature measured in any two orthogonal planes on the

surface separating the phases (Colbeck, 1980). Vapor sintering takes place when vapor

sublimates from a high surface energy site (a convex grain), diffuses through the pore

space and then condenses on a lower surface energy site (concave bond).  For convex

surfaces, radii are positive; conversely, radii are negative for concave surfaces.  At a

given temperature, vapor pressures over convex surfaces are greater than vapor pressures

over concave surfaces.  Molecules will sublimate from the convex surfaces, travel

through the vapor, and deposit on the concave neck between grains.  This is also the

mechanism for the rapid decay of dendritic snow particles when they initially fall on the

snowpack.  The sharp convex corners have very high vapor pressure compared to the

surrounding vapor and other surfaces.  These sharp features decay quickly and rounded

forms develop.  The same processes are responsible for the sintering of grains. This

process was described by Colbeck (1980) as “radius of curvature” metamorphism.
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Temperature Gradient Environment.  In seasonal snow, it is common for snowpack

temperature gradients to develop, resulting in “temperature gradient” or “kinetic growth”

metamorphism.  The combination of heat stored in the ground over the summer months

and geothermal warming keep the layer near the ground close to 0°C for most of the

winter season (McClung and Schaerer, 1993), yet the upper surface of the snowpack is

subjected to diurnal temperature fluctuations.  Depending upon snow depth, surface

thermal interaction and thermal penetration (both dependent upon microstructure), large

temperature gradients can develop within the snowpack.  Temperature differences

produce water vapor concentration (density) gradients within the pore space.  If a large

enough pore space is present (as is generally the case for lower density snow), a

substantial vapor flux from the warmer to colder regions develops.

Vapor can be transported through the pore by molecular diffusion or convection.

Field studies (Trabant and Benson, 1972; Sturm, 1991; Sturm and Johnson, 1991) have

shown that convection can be significant under certain extreme conditions.  Trabant and

Benson (1972) concluded convection was present because one-dimensional diffusive

models failed to account for the total observed mass transport.  Palm and Tveitereid

(1979) examined thermal convection analytically and concluded convection only occurs

in snow with strong temperature gradients and large air permiabilities.  Follow-on

diffusion models accounted for the increased flux (Sommerfeld, 1983; Colbeck, 1983a;

Gubler, 1985), and authors have generally rejected convection contributions.  Akitaya’s

(1974a, 1974b) experiments led him to the conclusion that natural convection occurred

only when snow contained very large pore spaces.  In fact, Akitaya found no convection

in natural and sieved snow samples subjected to temperature gradients 170 – 200 °C/m. 
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While the issue of convection is not clearly settled or widely agreed upon, it clearly is not

a significant transport mechanism in most commonly incurred temperature gradient

scenarios.  One exception may occur at the upper snow surface where very large

temperature gradients in low density snow develop when conditions are favorable for

surface hoar growth (Lang et al., 1984). General agreement remains for the dominance of

diffusional vapor transport for seasonal snow conditions.

The diffusion of water vapor through the interstitial pore space changes the nature

of metamorphism significantly.  A temperature gradient (and resulting vapor pressure

gradient) in the pore produces unique snow morphologies.  As the temperature gradient

increases, the snow microstructure can change from smooth rounded grains with smooth

interconnections to large, highly faceted, angular crystals with large surrounding pore

spaces and poor bonding.  Even though research on the bonding of faceted crystals is

sparse, the presence of these crystals has been attributed to lower material strength

(Bradley et al., 1977a; Armstrong, 1980; Adams and Brown, 1982) and increased chance

of avalanche release (Bradley et al., 1977b; Satyawali, 1998; McElwaine, 2000).  These

crystal forms are often referred to as facets, temperature gradient metamorphism forms,

kinetic forms, recrystallized snow, and depth hoar.

The temperature gradient required to transition from a smooth and rounded

microstructure to sharp and faceted forms is dependent upon density, grain size, pore

size, and temperature (Colbeck, 1983b).  Experimental observations generally show a

temperature gradient transition between 10 and 20 °C/m (Akitaya, 1974a; Armstrong,

1980; Colbeck, 1983a, 1983b) or >25°C/m (Marbouty, 1980).  There has been little

theoretical research on the physical rationale for this transition.  Below the transition
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temperature gradient, Colbeck (1980,1983a) showed vapor transport due to temperature

gradients quickly outpaces transport due to differences in curvature.  As the temperature

gradient increases, so does the growth rate of faceted crystals.  The process has been

conceptualized by Yosida el al. (1955) as “hand-to-hand” vapor transport.  In this

scenario, mass is transported by sublimation from the top of an ice grain, diffusion

through the pore space, then condensation on the bottom of a neighboring grain.  If the

sublimation and condensation rates for a grain are not in balance, the grain grows or

shrinks.   In the early stages, angular grains with sharp edges appear.  As metamorphism

continues, the crystals can grow parallel to the temperature gradient and can develop

large striated hollow structures.  Depending upon crystal orientation, large hollow cups or

columns may develop parallel to the temperature gradient.  As these grains develop, they

are commonly linked in large chains surrounded by elongated pore spaces, commonly

referred to as macropores (Arons and Colbeck, 1995).

Larger crystals tend to grow in low density snow with large pore spaces (Akitaya,

1974a,b).  For snow density exceeding approximately 350 kg/m3, pore spaces are very

small and the kinetic growth process is limited.  “Hard” depth hoar develops (Akitaya,

1974a,b; Marbouty, 1980) under these conditions.  Hard depth hoar crystals are

comprised of sharp angular crystals, but are considerably smaller and stronger (due to

higher degree of bonding) than classic depth hoar.

The increased avalanche danger posed by the development of depth hoar has

stimulated extensive experimental research on temperature gradient metamorphism.

Akitaya (1974a) conducted a series of depth hoar growth experiments in the laboratory

with artificial snow and in the field with natural snow.  He categorized crystals as
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skeleton or solid type depth hoar.  Solid type depth hoar grew under temperature

gradients <25°C/m while skeleton type grew under larger temperature gradients when

large air space was available.  By examining thin sections, Akitaya identified linkages in

the direction of the temperature gradient between the crystals.  Marbouty’s (1980)

experiments quantified critical parameters in temperature gradient metamorphism.  He

found crystal growth rates increasing with temperature, temperature gradient (with a

lower limit of 25 °C/m), and decreasing density (lower limit 150 kg/m3, upper limit 350

kg/m3).  His experiments confirmed Akitaya’s observations that lack of large pores

results in hard depth hoar.  The temperature gradients in Marbouty and Akitaya’s

experiments were less than 100 °C/m, yet temperature gradients near snow surfaces may

be much greater.  Fukuzawa and Akitaya (1993) conducted hoar crystal growth

experiments with temperature gradients greater than 100 °C/m but less than 300 °C/m.

These large temperature gradients can be found under a variety of conditions depending

upon radiation balance conditions.  They found linearly increasing crystal size with time

at rates allowing rapid development of large crystals.  Sturm and Benson (1997)

presented an extensive study and analysis of depth hoar in the subarctic snow.  They

observed a grain size increase of a factor of 2-3 over the winter season.  Initially, growth

rates were high, but decreased by the end of the season.  At season’s end, the entire

snowpack had metamorphosed through five different depth hoar textures.  Sturm and

Benson found layer-to-layer vapor fluxes to be ten times greater than inter-particle fluxes,

potentially explaining field measurements of constant snow density during depth hoar

formation.  Kamata et al. (1999) quantified the effects of temperature and temperature

gradient (size and direction) on crystal growth during low temperatures (-65 °C to –15
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°C) and large temperature gradients (500 °C/m).  Under these conditions, they concluded

that crystal habit was primarily dependent upon temperature and secondarily upon

temperature gradient.

Heat and Mass Modeling Efforts

Many researchers have studied snow transport modeling in the last 50 years.  The

complex nature of snow has resulted in many unique approaches including analytical as

well as numerical solutions.  From the perspective of snow metamorphism, an approach

that not only accurately accounts for heat and mass distributions, but also includes the

important influences of realistic microstructure and phase change is desired.  In their

review of snow heat and mass transfer research, Arons and Colbeck (1995) concluded

that an integrated heat and mass transfer model using realistic geometry currently does

not exist, but is needed.  The following review of past efforts is presented to frame the

importance and significance of the current research.

Bader (1939) developed a transport model between two parallel plates of ice.

This is considered one of the first attempts to model temperature gradient or kinetic

growth metamorphism.  One-dimensional vapor diffusion and mass conservation between

the plates made Bader’s study an important first step in understanding the physical

processes at work.  Giddings and LaChapelle (1962) used a similar approach but

inadvertently retained upward diffusing vapor at the next higher level (Sommerfeld,

1983).  de Quervain (1963, 1973) incorporated three different ice structures when

evaluating heat and mass flow.  de Quervain’s first structure was a series of cylindrical
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pores in the ice running parallel to the temperature gradient.  He then presented a set of

parallel plates aligned perpendicular to the temperature gradient.  His final structural

model was a combination of the first two with cylindrical channels intersected by

rectangular vapor “traps”.  These simplified geometries were clearly inadequate for actual

snow, but provided a starting point for more advanced approaches. 

The critical consideration of snow microstructure in any metamorphism research

led to many studies in the early 1980’s where differing assumptions and complexities led

to several models.  Perla (1978) recognized the importance of the granular nature of snow

and incorporated a more realistic geometry in metamorphism models.  Sommerfeld

(1983) developed a temperature gradient metamorphism model based on the evolution of

branch grains.  A “branch” grain was defined as a grain poorly connected to the ice

matrix making it favorable for phase change.  Sommerfeld formalized a process

envisioned by de Quervain (1973) whereby branch grains protruding into the warmer

pore spaces will grow while those protruding into the colder spaces will shrink.  Colbeck

(1983a) developed an analytic metamorphism theory with a geometric “enhancement”

factor between source and sink grains during hand-to-hand vapor transport.  This was the

first real step forward into meaningful microstructure modeling.  He calculated diffusion

using a potential field solution for electrostatically charged particles.  Colbeck noted that

as some grains grow faster than others and nearby sources disappear, new sources

develop in warmer parts of the snowpack.  This is a feedback mechanism whereby the

grains that initially grow rapidly would continue to grow rapidly.  He also noted that one-

dimensional diffusion under predicts crystal growth rates, an observation previously

attributed to the presence of convection (Trabant and Benson, 1972).  The onset of kinetic
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growth forms was noted from experimental data, but Colbeck’s analysis did not provide

insight into the value of the temperature gradient at kinetic growth onset.  Gubler (1985)

developed an analytic metamorphism model based on observed stereological interparticle

structures (Gubler, 1978a).  He defined chains, clusters, and end particles based on

coordination number, but was forced to identify source and sink grains during the

metamorphism process.  Gubler used an electrostatic analog with a geometric factor,

similar to Colbeck’s (1983a), but used a more realistic, measurable, microstructural

geometry.  Adams and Brown (1982b, 1983) presented a crystal growth model in a

temperature gradient environment accounting for pore size and crystal shape.  They used

excess vapor density, as a function of temperature and surface curvature, as the primary

driving mechanism.  While analytic models provide insight into physical phenomena,

they can be limited in their utility for broad-based application to variable snow

conditions.

Numerical models have been developed to explain and predict snow

metamorphism.  Christon et al. (1990) presented a 2-D finite element model with a

deforming mesh.  They developed coupled heat conduction for the ice and vapor

diffusion for the pore.  The three linear coupled differential equations resulting from

energy balance, mass conservation, and phase change boundary conditions were solved

using finite element techniques. Their results supported Yosida’s (1955) hand-to-hand

transfer analogy for temperature gradient metamorphism.  Christon et al. (1994) extended

their 2-D theory to three dimensions.  They verified the existence of a diffusive geometric

enhancement factor postulated by Colbeck (1983a) and Gubler (1985).  The finite

element solution did not include surface curvature effects, but in most temperature
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gradient regimes, curvature may not be a significant factor (Colbeck, 1980).  Christon’s

models did use a simplified geometry, but also explored the possibility of solving

geometrically meaningful problems with coupled heat and mass transfer.  Theoretically,

one could explore realistic geometries using this approach, but it may be computationally

burdensome as the number of degrees of freedom required can become large.  Christon et

al.(1994) considered 3-D periodic cell geometries to aid in simplicity and efficiency, yet

their model still required 40,000-80,000 degrees of freedom.  They found that the

majority of computation time was spent solving the system of equations, followed by

mesh movement, flux calculations, and coefficient matrix assembly calculations.  By the

nature of the studies and discussion presented, limited computational resources were

clearly an issue for this finite element technique.

Several authors have used continuum mixture theory to describe various aspects

of a phase changing snowpack.  Morland et al. (1990) presented a four constituent

continuum theory of mixtures to describe a three dimensional natural snowpack.  They

utilized four phases (ice, water, air and water vapor) and modeled their interactions

through the mass, linear momentum, and energy conservation equations for the mixture.

Constitutive relationships for each phase were presented and retained individual phase

identity. Morland et al. (1990) related conservative law’s partial variables with the

constitutive law’s intrinsic variables.  Several reasonable simplifications resulted in

seventeen partial differential equations in terms of fifty-three independent variables.  Due

to the complexity of the general problem presented, Morland et al. (1990) did not attempt

to solve the set of equations.  Simplified one-dimensional solutions were presented by

Jordan (1991) and Bader and Weilenmann (1992).  They reduced the three-dimensional
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mixture theory by assuming lateral uniformity with only vertical gradients present,

eliminating a number of independent variables.  Bader and Weilenmann (1992) assumed

zero gas (vapor and air) velocity and neglect sensible and latent heat contributions.

Jordan (1991) also assumed no gas velocity but made provisions for heat exchanges

during phase change.  Gray and Morland (1994) improved the one-dimensional approach

by including more complete gaseous phase modeling, but eliminated two phases by only

considering ice and dry air.  The mixture theories discussed so far do not consider any

microstructural properties.  Without even the most elemental microstructural properties

such as grain, bond, or pore geometries, these approaches could not be used to predict the

metamorphism of snow.  They are useful (with various levels of success) in determining

macroscopic temperature distributions.  One significant strength to the rigor of mixture

theory is the first principles approach and lack of empirical corrections.

Adams and Brown (1989, 1990) were the first to use the mathematical discipline

of mixture theory, plus they included microstructural considerations.  They developed

three-dimensional conservation and constitutive relationships for immiscible phase

changing snow consisting of ice and vapor as the major constituents.  A consideration for

spherical grains was included, but bonds or necks were not explicitly addressed.  Adams

and Brown (1989) analyzed ideal homogenous snow then extended the approach to a

complex layered snowpack experiencing a thermal gradient (Adams and Brown, 1990).

Heat and mass flux in a snowpack with layered stratigraphy were found by numerically

solving the one-dimensional versions of their equations.  Brown et al. (1999) developed a

mixture theory for equi-temperature metamorphism with four constituents: ice grains,

intergranular ice necks, air, and water vapor.  Brown modeled snow as a distribution of
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different sized particles with each size representing a separate phase.  The theory

predicted the sintering of spherical ice grains based largely on microstructural

parameters.  The ice constituents were defined by specific unique geometrical parameters

such as grain radius, bond radius, and neck length.  Geometric assumptions lead to other

important parameters such as surface curvature.  This approach directly linked

microstructural parameters to mechanical and thermodynamic processes.  Brown et al.

(1999) were able to grow larger grains at the expense of smaller grains without explicitly

designating source and sink grains.  Intergranular necks grew at the expense of all grains,

with decreasing growth rates as sintering progressed.  The complicated mass transfer

process was highly coupled to the microstructure, leading the authors to the conclusion

that accurate textural descriptions are required in any sophisticated metamorphism

modeling.  This model has not been applied to a temperature gradient environment, but

the development was not limited to equi-temperature conditions.

The need for accurate avalanche forecasting has led to the development of several

snowcover models able to predict mountain snowpack evolution.  Most of the research

efforts described thus far were focused on scientific understanding of snow processes.

The models used in avalanche forecasting have an “operational” focus.  The goal of these

models is the prediction of snowcover response to commonly available inputs, such as

measurements from remote meteorological stations.  SNTHRM (Jordan, 1991) was

developed to find temperatures within the snowpack and particularly at the surface.  The

model incorporated snow layering and boundary conditions determined by

meteorological instruments, but did not address snow microstructure in any detail.

CROCUS (Brun et al., 1989) began as a mass and energy balance model able to predict
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settlement, phase change, density, and temperature profiles.  Early versions of CROCUS

did not include detailed reference to microstructure.  In later versions (Brun et al., 1992),

empirical metamorphism laws were incorporated in CROCUS to calculate “dendricity”

and “sphericity” of the snow.  While the heat and mass balances were physically based,

predictions of viscosity, thermal conductivity, settling, grain size, and grain shape

remained largely empirical, potentially limiting the model’s application.  The Swiss

Federal Institute for Snow and Avalanche Research developed one of the more

sophisticated operational models, SNOWPACK.  SNOWPACK used a lagrangian finite

element approach to solve for heat and mass transfer, stresses and strains in snow

(Lehning et al., 1999).  Automated weather stations located at 45 points in the Swiss Alps

provided SNOWPACK with upper surface boundary conditions (Brown et al., 2000) for

finding temperatures and settling rates.  Early versions of SNOWPACK used the same

empirical metamorphism models as CROCUS, but recently, new physically based models

have been added.  The addition of Adams and Sato’s (1993) microstructural effective

conductivity model improved the heat conduction capability.  Results from Brown et al.

(1999) mixture theory were used to predict the metamorphism of equilibrium forms in an

equi-temperature environment (Brown et al, 2000).  This enhancement allowed

SNOWPACK to calculate grain and bond growth rates during small temperature gradient

conditions.  The mixture theory calculations proved too burdensome to use in an

operational program, so equations defining grain and bond growth as a function of grain

size, bond size, density and temperature were generated from mixture theory and

incorporated into SNOWPACK.  When a significant temperature gradient (>10°C/m) was

present, a microstructurally based heat and mass flux model was used (Satyawali, 1999;
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Brown et al., 2000; Baunach et al., 2001) to calculate grain and bond growth rates.  Each

metamorphism model in SNOWPACK was applicable to different environments, and was

completely different from the other.  There was not a smooth or continuous transition

between the two metamorphism models.  Brown et al. (2000) commented “Future

research should be directed at developing an all-encompassing theory that will work

continuously from temperature gradients ranging from 0°C/m to higher than 100°C/m.”    

Lundy et al. (2000) gathered weather station information from the Bridger Range

near Bozeman, Montana during a validation study of the Swiss SNOWPACK model.

The weather station was established to provide boundary conditions for the model, as

well as to provide temperature measurements through the snow depth.  Weekly on-site

observations of snowpack stratigraphy were performed.  They found SNOWAPCK

performed well for predicting internal temperatures, reasonably well for predicting

density, and poorly at predicting grain size and shape.  While some of the grain size error

was attributed to the model, Lundy et al. (2000) pointed out the inherent accuracy issues

associated with field observations, namely, that no standardized field observation

technique currently exists.  

Summary

Snow metamorphism modeling originated to explain the complicated time-

varying snow structures found in natural snowpacks.  Experimental investigations have

provided some explanation as to when certain morphologies are present, but do not
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always answer the fundamental physical questions of why they happen.  Early

investigations of heat and mass transfer utilized simple models to explain these complex

processes with varying degrees of success.  As the research matured, the importance of

microstructure in nearly all aspects of snow performance became evident.  As new

studies are published, many point to the need for incorporating microstructure into any

physical model.

Snow microstructure has been traditionally categorized by the temperature

environment.  Two major microstructural categories, with grains defined as smooth and

rounded or sharp-edged and faceted, have been the focus of numerous experimental and

theoretical studies.  Past efforts have, in general, focused on grain structure with little

discussion of the intergranular bonding. Theories have been developed that adequately

explain the physics of snow sintering in an equi-temperature environment and faceted

grain development in the presence of a temperature gradient.   To date, no one has

presented a unified theory of metamorphism that includes detailed microstructure yet is

not restricted by the temperature environment.  In fact, Arons and Colbeck (1995)

comment “we still lack a model that integrates fundamental elements of geometry and the

transfer of sensible and latent heat in a physically sound inductive model.”  Several of the

studies allow insight into physical processes but do not lend themselves to inclusion in an

operational model used for snowpack evolution calculations.  A unifying conservation

theory that accounts for the time varying microstructure yet is portable to snow prediction

models is desired.

Research Objective



22

The objective of this research is to develop a unifying dry snow microstructure

metamorphism theory that accounts for important physical parameters and processes yet

is applicable in general thermal environments.  The approach should be consistent with

previous research and be supported by experimental data.  The next chapter identifies the

key parameters and processes and then proposes a numerical approach to examine snow

metamorphism.
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CHAPTER 2

 THEORETICAL DEVELOPMENT

Basic Geometric Model

The metamorphism of dry snow involves complex interactions between the ice

matrix and water vapor.  Water vapor diffuses through air in the pore space, heat flows in

the ice and in the pore space, and mass exchange between the pore vapor and ice matrix

occurs.  The nature of the phase change depends upon the ice and pore microstructural

geometry, vapor environment, and temperatures.  Because of these factors, the complex

coupled characteristics of the physical processes and interactions have eluded previous

models of these processes.  In this chapter, an approach detailing important physical

processes is developed.  While several simplifying assumptions are presented, the theory

retains key features previously not considered.  The chapter starts with a geometric model

definition, then key physical relationships are developed, and finally a numerical solution

technique to the resulting non-linear coupled differential equations is presented.

The inclusion of detailed microstructural features is an important aspect to any

effort hoping to accurately predict snow responses.  Figure 1 is a scanning electron

microscope image of typical snow that has not been subjected to significant temperature

gradients.
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The smooth and rounded features of the grains and interconnections are readily

apparent.  This morphology is commonly referred to as the equi-temperature

(Sommerfeld and LaChapelle, 1970) or equilibrium form (Colbeck, 1983b).  The grains

are generally smooth convex structures with inter-connecting concave necks bonding

neighboring grains.  The pore space is clearly visible surrounding the grains and necks.

Grain boundaries, also referred to as bonds, are visible at the center of the necks.  To

model the ice geometry, some simplifications are made.  First, the grains for this

morphology are assumed to be spherical.  There may be several different sized grains, but

the equilibrium forms are assumed perfectly round.  A universally accepted intergranular

neck definition does not exist.  Therefore, smooth concave necks spanning either side of

Ice Grain

Grain Boundary or Bond

Pore Space

Intergrannular
     Necks

Figure 1.  Scanning electron microscope image identifying typical microstructural
features of snow that has been kept under macroscopically isothermal conditions.
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crystal bonds are assumed to make the interparticle connections.  Edens (1997) developed

a stereological approach defining the grain-neck transition where the surface curvature

changes sign.  Geometric definitions used here are similar to Brown et al. (1999).

Figure 2.  Basic equilibrium form grain and neck geometry

Figure 2 illustrates the basic equilibrium form of grain and neck definitions. The

spherical grain radius is denoted by rg, the bond radius is rb, the concave neck surface

radius of curvature is rn, and the neck half length is given by nl.  The convex to concave

surface transition separates necks and grains. Important relationships can be obtained

from simple geometric relationships from figure 2.  The grain radius and bond radius, a

measure of bond maturity, will be assumed to be known initial conditions.  It is then

desirable to represent other geometric quantities in terms of grain and bond radii.    From

figure 2
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The neck surface radius is then given by
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The neck length is related to bond and grain radii by

gbgb

bg

rrrr

rr
nl

22 22

2

−+
= . (3)

The neck surface mean radius of curvature, ρs, is given by (Colbeck, 1980)
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ρ
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In equations (1)-(4), all the values of radii of curvature are assumed numerically positive.

Later, when calculating vapor densities over curved surfaces, concave radii of curvature

will be numerically negative.  It is interesting to note that when rb= rn, the curvature terms

cancel out and the neck surface is equivalent to a flat surface.  Using equation (2), it can

be shown that this happens when rb/rg=2/3.  For two equally sized grains of this

geometry, as the bond to grain radius ratio approaches 2/3, the neck surface curvature

approaches zero.

With individual grains and their interconnecting necks defined, a macroscopic

geometric model is required.  The complex structure of snow makes the development of a

realistic geometric model with general application difficult.  For snow in an isothermal

environment, it is assumed that the material is macroscopically isotropic, ie, the

microstructure does not depend upon the observation direction.  When a temperature

gradient is applied, metamorphism can result in directionally oriented microstructure.

During long exposure to significant temperature gradients, channels or mesopores
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develop parallel to the temperature gradient.  Ice chains may also develop with large,

striated, faceted grains appearing.  For depth hoar crystals and pore channels to develop,

the temperature gradient must be large (>10°C/m), the density below 350 kg/m3, and

sufficient pore space available for vapor transport and grain growth (Akitaya, 1974a;

Marbouty, 1980), although channel development has been observed in higher density

snow (Adams et al, 1994).  Due to this preferred orientation, it is assumed that the snow

geometric properties are symmetric with respect to an axis of rotation about the

temperature gradient direction, making the problem transversely isotropic.  Symmetry is

assumed in any plane perpendicular to the temperature gradient.  To model equi-

temperature and temperature gradient environments, a microscopic geometry is used by

linking a large number of ice spheres and necks together with the geometry specified in

figure 2.  The geometry shown in figure 1 is modeled by arranging the grains, bonds, and

pore spaces into a vertical configuration with symmetry assumed in the transverse

directions.  The differential equations defining the metamorphic processes of interest will

be developed later in this chapter, but as a preview, a finite difference solution will be

presented.  As a result, a microstructural definition of elements and nodes is desired.  The

element discretized ice and pore geometry is shown in figure 3, nodal definitions will be

presented when required by the numerical solution.
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In figure 3, element boundaries are defined at the transition between spherical

grains and concave necks.  Pore elements are defined by rotating the rectangular

crossection in figure 3 about the ice centroidal axis leaving cylindrical pore.  Each grain

and neck represents an individual ice element.  The pore is divided into similar elements

having the same vertical dimension as each ice element.  Element vertical dimensions are

given by grain radii and neck lengths defined in figure 2.  The ice and pore elements are

numbered sequentially in the y direction. The number of grains and necks must be odd

since a neck unconnected to a grain is not allowed.  The microstructure discretization in

figure 3 may be stacked vertically to any desired dimension.  For equi-temperature

conditions, this model represents a “straightened-out” configuration of grains, necks and

Ice
Elements

Pore
Elements

i+2

i+1

i

i+2

i+1

i x

y

Figure 3.  Grain, neck, and pore discretized elements.
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pore spaces identified in figure 1.  If temperature gradient conditions prevail, this

geometry provides the base ice network for the growth of faceted grains and bonds.  The

temperature gradient will be applied parallel to the y direction in the geometric model.

Satyawali (1999) presented a similar geometry for simulating bond growth in a

temperature gradient environment.  He defined cells consisting of two grains connected

by one neck with a vertical pore separating each cell.  No cell connections extended in

the direction of the temperature gradient.  The ice geometry is well defined at this point,

but only one dimension of each pore element has been defined.  While the height of each

pore is defined by grain radius and neck length, the other dimensions still remain

undefined.

Figure 4. Pore dimensions.
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Since the problem has been assumed isotropic or transversely isotropic

(depending upon thermal environment), the model in figure 3 has symmetry about the

vertical y axis.  Figure 4 represents one model used to calculate pore dimensions.

The distance from the ice center to the symmetry plane is x.  The symmtery plane

is defined to empahsize that these model elements may be repeated indefinately.  Each

pore element is then assigned a width, w(i), based on the distance from the ice surface to

the symmetry plane.  If the ice geometry is known, the total pore volume is given by the

snow density.  The snow density and pore, ice volumes can be related by







−==
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where ρsnow is the snow density, ρice is ice density, Vice is the total ice volume in the

model, Vpore is the total pore volume in the model, and Vtotal is the sum of ice and pore

volumes.  For dry snow considered here, any liquid volume is neglected.  Since the snow

density and ice geometry are known, the total volume of pore and ice is given by

ice
snow

ice
total VV

ρ
ρ

= . (6)

The total pore volume is now given by

icetotalpore VVV −= . (7)

Equation (7) gives the total pore volume for a sample with known density and ice

microstructure.  It is now required to apportion the pore volume to individual pore

elements of the geometric model.  The assumed pore shape is a rectangular cross section

revolved about the y axis centered in the ice.  3-D “washer” shaped pore elements result.

The total pore volume is given by the sum of all the pore element volumes
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The odd numbered elements represent grains and the even numbered elements represent

necks.  Equation (8) was developed so individual pore elements may be defined for each

grain and neck.  While other pore models exist, they do not lend themselves to the

microscopic approach proposed here.  In equation (8), it is assumed that rg(i)>>nl(i), the

reduction of rg(i) by nl(i) is neglected.  For a large bond to grain ratio of 0.5, equation (3)

gives a neck length that is 1/5 the size of the grain radius.  Of course, the relative size of

the neck to the grain will decrease with smaller bonds.  The location of the symmetry

plane, x, is now
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With the symmetric distance known, each pore width is found by

)(igi rxw −= for grains or )(ibi rxw −=  for necks. (10)

Each individual pore volume can now be calculated based on the ice geometry and wi,

using relationships found in equation (8).

An alternative method for finding pore volume can be achieved by weighting the

individual pore volume based on the relative size of the grains and necks.  After finding

the total pore volume using equations (5)-(7), the individual pore volume can be

calculated by
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pore
i

i
ipore V

r

r
V

∑
=)( , (11)

where ri is the grain radius for odd i and is the neck length for even i.  Both methods are

implemented in the research, and yield similar results.  The first approach is more

rigorous and is therefore preferred.  The equilibrium form ice and pore geometries are

now fully defined for a discretized model.  Pore elements associated with ice grain and

neck elements are also fully defined.

Governing Equations

The physical processes of snow metamorphism are very complex.  Heat and mass

move through the pore space while heat moves through the ice network.  These processes

are coupled by latent heat transfer and mass transport associated with phase change.  To

begin the development of a physical model, several simplifying assumptions are required.

These assumptions are not all inclusive for the problem (others will be presented later),

but are introduced here to begin the development.

Initial Assumptions

1. Heat conduction in the pore space can be neglected, so that only heat flow

through the ice network is considered.  This is a common assumption given the fact that

the thermal conductivity of saturated vapor at cold temperatures is two orders of

magnitude smaller than the thermal conductivity of pure ice (Incropera and

DeWitt,1985).
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2.  Saturated vapor, for a given temperature, exists everywhere in the pore

spaces.  Even though no measurements of relative humidity in pore spaces have been

published, this is a classic assumption given the large surface area of the ice available to

interact with the pore.

3.  The vapor saturated pore may be treated as an ideal gas.  This is a common

thermodynamic assumption for low pressure water vapor applications.  The snowpack

absolute pressure should be very close to atmospheric.

4.  The primary mass transport mechanism is vapor diffusion through the pore.

As discussed in chapter 1, substantial research has shown convection to be a significant

mass transport mechanism under very select conditions.  In general, convection is

neglected for metamorphism modeling.  Other diffusion mechanisms associated with the

ice, such as lattice, surface, and grain boundary, are considered small and neglected in the

primary development.

5.  Liquid water in the snow is not considered.  Solid ice and water vapor are the

only phases of water considered for dry snow.

Heat and Mass Fluxes Considered

Figure 5 shows graphically the heat and mass fluxes available given the geometry

and assumptions discussed.  Mass can diffuse vertically through the pore spaces as well

as to and from the ice surface during phase changes.  Heat can flow vertically through the

ice network as well as to or from the ice surface due to the latent heat exchange

associated with phase change.  The details of the phase change are addressed in a later

section of this chapter, but for now, we assume these processes are present.
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Movement of Vapor in the Pore Spaces

The diffusion of water vapor in the pore space is governed by density

(concentration) gradients as described by Fick’s Law,

ρ∇−=
�

DJ , (12)

where J is the molecular flux vector (kg/(sm2)), D is the water vapor diffusion coefficient

in air (m2/s), and ρ is the vapor density (kg/m3).  Using the ideal gas relationship for the

vapor, equation (12) becomes:






 ∇−∇−= T

RT

P
P

RT
DJ

��

2

1
, (13)

Ice Pore

Q

Qec Jec
J

Figure5.  Heat and mass flows during metamorphism.  Q represents the heat
flow through the ice network, Qec is the heat flow from evaporation or
condensation, J is the mass flow in the pore, Jec is the mass flow from
evaporation or condensation.
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where R is the water vapor gas constant (J/(kgK)), T is the pore temperature (K),  and P is

the pore pressure (Pa).  For pressure, P(T(x,y,z)), the chain rule yields

T
T

P
zyxTP ∇

∂
∂=∇

��
)),,(( . (14)

The equilibrium vapor pressure temperature dependence is given by the Clausius-

Clapeyron relationship, with the differential form (eg, Weast, 1985)

2RT

PL

T

P =
∂
∂

, (15)

where L is the water latent heat of sublimation (J/kg).  Substituting equations (14) and

(15) into (13) gives

T
RT
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P
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2
. (16)

Since L/(RT) >> 1, equation (16) can be approximated as

P
RT

D
T

TR

PL
DJ ∇−=∇−=

��

32
. (17)

Equation (17) is a commonly used form of Fick’s Law for low pressure water vapor

treated as an ideal gas.

Water vapor will flow in the pore due to concentration gradients, but phase

changes resulting in the addition or removal of water vapor in the pore are also important.

Mass conservation for a flow with mass sources and sinks is given by

MSV
t

=⋅∇+
∂
∂

)(ρρ �
, (18)

where V is the vapor flow velocity (m/s), t is time (s), and MS is the mass supply or sink

from phase change (kg/m3s).  MS is identical to phase interaction from mixture theory,

except here, only one gaseous and one solid phase is considered.  The mass interactions



36

are restricted to the solid and gas phases.  The mass supply term is coupled to the ice

phase through flux resulting from phase change (Jec).  The sign convention used here is

that mass added to the pore results in a numerically positive MS term.

Next, the spatial dimension of the problem is reduced.  Recalling the discussion of

equi-temperature and temperature gradient environments, isotropy is assumed to exist in

the horizontal plane.  In addition, only mass flux in the horizontal plane from mass

exchanges during phase change (figure 5) is considered.  The ability for mass to enter the

pore, diffuse to another area vertically in the microstructure, and then redeposit on the ice

is critical.  To account for the two dimensional nature of the problem, diffusion due to

phase change will be included in the mass source term.  As vapor enters the pore due to

sublimation from the ice, vapor flux is included in equation (18) as a mass source.  If

vapor is leaving the pore due to condensation on the ice, a mass sink is present in

equation (18).  This approach reduces the right hand side of equation (18) to one

dimension, but the process is still considered quasi-two dimensional due to the phase

change interactions.  Considering one dimensional diffusion (vertical y direction) and

mass sources and sinks due to phase change, equation (17) becomes

y

T

TR

DPL
J

∂
∂−=

32
. (19)

For one dimensional flow

JV =ρ , (20)

equation (18) becomes
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The unsteady term in equation (21) may be expressed as

t

T

Tt ∂
∂
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∂
∂ ρρ

. (22)

Using the ideal gas relationship and neglecting a small term (as was done for a similar

term in equation (16)), equation (22) becomes
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, (23)

but,
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Using equations (24) and (15) in (23) leaves
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After expanding equation (21) and substituting equation (25) into (21), the complete form

of the mass conservation relationship becomes
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At this point, another simplifying assumption is made.  The process of mass

diffusion is assumed to be quasi-steady, neglecting the local derivative in equation (26).

Christon et al. (1990, 1994) calculated temperature gradient mass storage time constants

on the order of milliseconds, while the process of temperature gradient metamorphism is

on the order of several minutes (at least).  Neglecting storage terms is consistent with

Kuroiwa’s (1974) observation that temperature gradient metamorphism is a quasi-steady

process.  The temperature distribution, ice and pore geometry, and solid/vapor interfaces
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will still change in time making the problem quasi-steady.  It is assumed that the time

constant associated with equi-temperature metamorphism is much longer than for

temperature gradient metamorphism since it is generally a much slower process.  The

numerical solution in the current study will allow for environment and response changes

in time, but neglect storage terms during each time increment.  During each time

increment, the vapor flows are assumed steady.  Pore temperature may then be

considered strictly a function of vertical position. Equation (26) was developed in full

form for completeness, but with a quasi-steady assumption it may be simplified to

MS
dy

dT

Tdy
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2

22

2

32
. (27)

  The pore mass continuity equation (27) is a non-linear, second order, ordinary

differential equation that is coupled to the ice phase through an interaction term.  While

no mathematical definition of the mass source term has yet been presented, the left hand

side of equation (27) is a function of pore temperature only.  As such, when the

description of MS is presented, the goal will be to include the pore temperature

distribution as a dependent variable.  Of course, properties of the ice will be included in

the interaction term, creating the desired coupling during metamorphism.

Heat Transfer in the Ice Network

Heat conduction through the solid ice phase is now considered.  Heat is allowed

to flow vertically (y direction) through the ice network, and horizontally (x direction) to

accommodate phase change.  As with the vapor derivation, a quasi-two dimensional

approach is used.  Vertical heat flow proceeds while heat enters or leaves the ice through
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phase changes at the lateral ice surface taken in the horizontal plane.  A differential ice

element is shown in figure 6, displaying the main heat flow in the ice network (Qy) and

heat flow due to phase change (dQec).

Heat due to phase change enters or leaves the ice depending upon whether it is

condensing or sublimating.  If water vapor is sublimating from the ice to the pore, latent

heat is leaving the ice.  The sign convention used here is consistent with the vapor source

previously defined, i.e., sublimation is considered positive as heat leaves the ice.  A

truncated Taylor series approximation for heat flux is given by

dy
y

Q
QQ y

ydyy ∂
∂

+=+ , (28)

where Q is the total conduction heat flow (W) for an area, A.  Fourier’s heat conduction

law is

dy

d
kAQy

θ−= , (29)

dy IcePore

Qy

Qy+dy

dQec

x

y

Figure 6.  Differential Ice Element.  Qy and Qy+dy are heat
fluxes in the y direction, dQec is the differential heat flow from
evaporation or condensation.
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where k is the ice thermal conductivity (W/mK), A is the cross sectional area for heat

diffusion (m2), and θ is the ice temperature (K).  Conservation of energy for the

differential element in figure 6 yields

iceiceecdyyy dVol
t

CdQQQ
∂
∂++= +
θρ , (30)

where dQec is the differential heat flow from sublimation or condensation (W), ρice is the

density of ice (kg/m3), C is the ice specific heat (J/kgK), and dVolice is differential

element volume (m3).  Using equation (29), equation (30) becomes

iceiceec dVol
t

CdQdy
y

kA
y ∂
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



∂
∂

∂
∂ θρθ

. (31)

A quasi-steady assumption is now made, similar to the vapor development.  Lock (1990)

finds this limitation acceptable.  He applies the quasi-steady Stefan (1891) problem to a

wide class of ice problems involving phase change.  Lock (1990) terms this problem

“quasi-steady” because a moving phase change boundary must be accounted for, even

though the storage term in the energy equation is neglected.  Neglecting the ice heat

capacity, and expanding equation (31) leaves
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Equation (32) is very similar to a variable fin geometry heat transfer problem

(Incropera and DeWitt, 1985), except it contains a phase change heat sink in place of

radiation or convection terms from a fin.  The differential phase change term may be

expressed in terms of the vapor flux leaving the surface, Jec, the latent heat of

sublimation, L, and a differential surface area available for phase change, dAec,
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( )ececec dAJLdQ = . (33)

It is important to notice that two area terms have been presented in this section, and these

areas are quite different.  A(y) is the ice cross sectional area, perpendicular to the y axis,

available for heat flow, while dAec is the differential surface area of the ice available for

phase change.  Assuming ice temperature, θ, is a function of y only, the energy balance

now becomes

dy

dA
LJ

dy

d

dy

dA
k
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d
kA ec

ec=+ θθ
2

2

. (34)

In the vapor conservation equation, we defined a vapor/ice interaction term in the form of

a mass source to and from the vapor during phase change.  In keeping with the same

approach, a heat source is now defined,

dy

dA
LJHS ec

ec= , (35)

where HS is a heat source term that is coupled to the pore through the phase change at the

boundary.  While not explicitly required, HS is defined here to show the heat

conservation analogy to the MS term in the vapor conservation relationship.  As will be

seen later, HS and MS are related by the mass flux, Jec, to and from the phase change

boundary. Jec will be a nonlinear function of ice and pore parameters, providing the

desired coupling between the solid and vapor phases.  The final form of the ice

conservation relationship becomes

kA

HS

dy

d

dy

dA
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d =+ θθ 1
2

2

. (36)
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At this point, the heat and mass interaction terms need to be defined in detail.

They each will depend upon the size and direction of the phase change flux which is

dependent upon the microstructural geometry and current environmental conditions.  The

equi-temperature and temperature gradient environments result in different

microstructural geometries, therefore, the heat and mass interaction terms will be derived

separately for each condition.

Mass and Heat Source Interactions from Phase Change for Equilibrium Forms

Equations (27) and (36) contain mass and heat interaction terms (respectively).

The mass interaction, MS, is a mass supply to the pore from phase changes at the ice-pore

interface.  The heat interaction, HS, is a heat sink from the ice due to phase changes at the

ice-pore interface.  The phase change vapor flux in the horizontal direction, Jec (undefined

up to this point) is the coupling lynch pin between HS and MS.  The vapor flux leaving

the surface is dependent upon the physical processes and environmental factors in both

the pore and the ice.  In this section, the physics of phase change with a smooth rounded

(equilibrium form (Colbeck, 1983b)) microstructural geometry is presented.  The

equilibrium form of the microstructure is the primary limiting factor; no assumptions are

required relative to temperature gradient environment. In a following section, heat and

mass interaction terms will be derived for kinetic growth forms.

The metamorphism of smooth, rounded microstructure has been termed “equi-

temperature” (Sommerfeld and LaChapelle, 1970) because of its appearance in a

macroscopically isothermal environment.  Colbeck (1980) developed expressions for

metamorphism due to surface curvature alone.  He derived surface curvature relationships
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for this metamorphism, but found temperature gradients quickly overcome geometric

constraints.  At a given temperature, the vapor pressure over a convex surface is greater

than over a flat surface.  Conversely, concave surfaces have a lower vapor pressure than

for a flat surface at the same temperature.  Metamorphism can take place as water vapor

sublimates from rounded ice grains, travels by vapor diffusion through the pore, and

condenses on the concave intergranular necks.  Of course, for phase change and diffusion

to take place, temperature gradients must exist (even if very small), creating the

controversy surrounding the term “equi-temperature” metamorphism.  The term “radius-

of-curvature” metamorphism has been used to describe geometrically driven processes

(Colbeck, 1980) which may more precisely describe this process than the term “equi-

temperature” metamorphism.

Colbeck (1980) presented a rigorous thermodynamic derivation of Kelvin’s

equation given by







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′=
sice

ice TR
PP

ρρ
σ2

exp , (37)

where Pice is the saturation vapor pressure (Pa) over the curved ice surface at a

temperature T′ (K), P′ is the saturation vapor pressure (Pa) over a flat ice surface at a

temperature T′, R is the water vapor gas constant (J/kgK), σ is the ice surface tension

(N/m), ρice is the density of ice (kg/m3), and ρs is the mean ice surface radius of curvature

(m) as defined in equation (4).  Kelvin’s equation describes the saturation vapor pressure

over curved surfaces. For convex surfaces, ρs is positive, and is negative for concave

surfaces.  The integrated form of the Clausius-Clapeyron equation (15) defines saturation

vapor pressure, P, as a function of temperature, T,
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where P0 is a reference vapor pressure (Pa) at reference temperature T0 (K).  We now

have an expression for saturation vapor pressure as a function of surface geometry and

another as a function of temperature.  The combined metamorphic effects of temperature

and geometry are vital to any realistic model.  Equations (37) and (38) may be combined

to get saturation vapor pressure over a curved ice surface at some arbitrary temperature T,

giving (Adams and Brown, 1983; Gubler, 1985)
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where Ts is the phase change temperature (K).  The phase change is assumed to take

place at a constant temperature, requiring solid and vapor very close to the phase change

boundary to be at the same temperature, Ts.  The derivation of surface and phase change

temperatures is presented in a later section of this chapter.  The temperature of phase

change must account for the heat and mass flux possible given the surrounding

conditions.  Since metamorphism takes place at all sub-freezing temperatures, no single

phase change temperature exists (unlike melt/freeze processes).

With temperature and geometric relationships for the vapor pressure of saturated

vapor, the flux due to phase change can be developed.  The vapor flux from phase change

due to vapor pressure differences between the ice surface and surrounding pore is given

by Fick’s law in the one dimensional form of equation (17)

dx

dP

RT

D
Jec v−= . (40)
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The vapor pressure differential in equation (40) is between the ice surface and

surrounding pore.  The ice surface vapor pressure is represented by equation (39), and the

pore vapor pressure is given by equation (38).  Flux is assumed positive as it enters the

pore (pore mass source).  Equation (40) may then be approximated by
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where  ∆x is the diffusion distance (m) between the ice surface and pore.  The flux due to

phase change can now be related to the mass and heat terms previously developed.

The mass source term, MS, in equation (27) represents the mass flow per unit

volume entering the pore.  Since this interaction term is from phase change, it is related to

Jec by

pore

ec
ec V

A
JMS = , (42)

where Vpore is the volume of the pore (m3).  Recall, the flux due to phase change is mass

flow per unit area of phase change, so the ice surface area undergoing phase change is

required for the pore mass balance.  Using equations (41) and (42) in (27), the highly

coupled nature of the problem becomes evident.  The ice physical constants, surface

geometry, temperature, and phase change temperature all appear in the pore mass

conservation relationship. After substituting equations (41) and (42) in (27) and

simplifying, the pore mass conservation (with equilibrium form interactions) equation

results
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The heat source term, HS, in equation (36) also results from phase change and is

related to Jec.  The amount of heat lost from the ice during phase sublimation is related to

the phase change flux through equation (35).  The latent heat of sublimation, L, couples

the ice thermal conservation equation to the pore.  The heat conduction (with equilibrium

form interactions) equation becomes
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As with the pore equation, heat conservation results in non-linear coupling to pore

physical parameters and temperatures.  Equations (43) and (44) contain microstructural

ice and pore parameters, physical constants, ice and pore temperatures, and phase change

temperature.  Given a particular microstructure, the ice and pore temperatures are the

primary unknowns.  The phase change temperature, Ts, can be expressed in terms of the

ice and pore temperatures.
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Phase Change and Phase Change Temperature

To determine the temperature during the phase change process, the

thermodynamics of phase change must be examined.  Figure 7 shows the relationships of

heat, mass and temperature during sublimation near a flat ice surface.  qice is the heat flux

for phase change in the ice (W/m2), qpore is the heat flux for phase change in the pore

(W/m2), Jec is the vapor flux (kg/sm2) leaving the surface, θ(y) is the ice temperature (K)

away from the surface, T(y) is the pore temperature (K) away from the surface, and Ts is

the surface temperature.   Sublimation commences as the required latent heat is brought

to the surface by conduction.   In order for heat conduction to the surface to commence,

thermal gradients must exist from the ice and pore to the surface.  For sublimation shown

in figure 7, warmer ice temperatures and cooler pore temperatures result in heat

Ice Pore

Jec

Heatqporeqice

Mass

Temperatureθ(y) Ts T(y)

Phase Change Boundary

Figure 7.  Heat, mass and temperature relationships  between the ice and
pore during sublimation.

x

y
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conduction to the surface.  An energy balance at the surface yields (Lunardini, 1988;

Lock, 1990)

Lporeice qqq =− , (45)

where qL is the latent heat flux (W/m2) for sublimation. qL is positive during sublimation

and negative during condensation.  One dimensional heat conduction for phase change

gives

LmA
dx

dT
k

dx

d
k poreice �=





 +− θ

, (46)

where kice and kpore are thermal conductivities (W/mK), A is a conduction area (m2), m� is

the mass flow from phase change (kg/s), L is the latent heat of sublimation (J/kg), θ is the

ice temperature (K), and T is the pore temperature.  In the previous sections, it was

assumed ice and pore temperatures were a function of y only, but here, the thermal

gradient from the ice or pore interior to the surface is included.  The ice and pore

temperatures will be assumed fixed allowing the calculation of a surface or phase change

temperature as the primary variable.  Since the solid and vapor phases at the ice/pore

interface are at the same temperature, thermal gradients for both the ice and pore will

include phase change temperature, Ts.  If the phase change and conduction areas are

equal at the surface (Colbeck, 1980; Lock, 1990), equation (46) becomes

L
A

m

dx

dT
k

dx

d
k poreice

�
=+− θ

, (47)

but

A

m
J ec

�
= . (48)
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Substituting equation (40) for the phase change flux into (48) and (47) leaves,

( )iceporeporeice PP
xRT

DL

dx

dT
k

dx

d
k −

∆
−=+− θ

. (49)

If the expressions for pore and ice surface vapor pressure from equations (38) and (39)

are used in (49), the fully coupled form of the surface/phase change temperature

differential equation is

−+−
dx

dT
k

dx

d
k poreice

θ

0
11
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11
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exp
0
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RTxRT
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sosoice ρρ
σ

. (50)

The phase change conduction problem is coupled to the ice and pore through the ice and

pore temperatures, ice and pore geometries, and physical constants.

Heat and Mass Interactions from Phase Change for Kinetic Growth Forms

The differential equations developed so far make no distinction between equi-

temperature and temperature gradient thermal environments.  Certain restrictions on the

ice and pore geometry were presented in the first section of this chapter.  The ice

geometry described so far has been the smooth rounded equilibrium form common in an

equi-temperature environment.  At this point, it is appropriate to extend the theory to

include other geometric forms.  When significant temperature gradients exists, it has been

observed that large faceted crystals may develop quickly in the snowpack.  The presence

of these crystals has been attributed to lower material strength (Bradley et al., 1977a;
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Armstrong, 1980; Adams and Brown, 1982) and increased chance of avalanche release

(Bradley et al., 1977b; Satyawali, 1998; McElwaine, 2000).  These crystal forms are

often referred to as facets, temperature gradient metamorphism forms, kinetic forms,

recrystallized snow, and depth hoar.  As such, it is important for a reasonably accurate

metamorphism model to include such morphologies.

Faceted Geometry.  The hexagonal crystal structure of ice gives it unique

characteristics when grown from vapor at high rates.  While a detailed review of ice

crystal mechanics is not presented here, there are several sources available for the reader

to review if desired (Hobbs, 1974; Lock, 1990; Petrenko and Whitworth, 1999). Ice has a

hexagonal crystallographic structure, which is defined by three a-axes orientated at 120°

to one another on the "basal plane" with a c-axis defined as normal to that plane.

Perpendicular to the basal plane (parallel to the c-axis) are the six "prism faces".  The

basal and prism planes have been shown to be the dominant growth features, therefore,

their relative growth rates determine the primary geometric habit of the faceted crystal

(Lock, 1990). If c-axis growth dominates, prism-like structures appear.  Conversely,

plate-like structures form when a-axis growth is dominant.  For growth rates nearly equal,

striated “cups” may develop.  Early experiments by Nakaya et al.(1938) showed that

crystal habit varied with temperature and humidity.  While specific environmental and

crystal habit relationships were not developed, his experiments indicated that basic

crystal habit was primarily determined by temperature.  Several authors have determined

the effects of supersaturation and temperature on the growth of ice from the vapor, but

Kobayashi’s (1957; 1961) experiments rigorously confirmed primary crystal habit
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dependence on temperature with secondary features determined by vapor supersaturation.

Lamb and Hobbs (1971) experimentally investigated linear facial growth velocity as a

function of temperature at constant supersaturation.  Their results are given in figure 8.

Figure 8.  Best fit curves to experimental measurements of the linear (normal) growth
rates on the basal and prism faces, at a constant excess vapor pressure of 1.3x10-5 bar, as
a function of temperature (from Lamb and Hobbs (1971) with changes Hobbs (1974)).

A simple representation of facet crystal geometry is now presented.  While the

very complex features of many crystal habits with complex secondary features would be

difficult to model, primary crystal habit can be incorporated. The faceted crystals are

considered to nucleate and grow on the rounded equilibrium form “parent” grains.  The

rounded form provides the base to grow the kinetic growth morphologies.

Figure 9 shows the proposed facet geometry to include crystal habit.  In figure 9a,

the basal plane showing the characteristic prism length, l, is illustrated.  The c-axis is
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perpendicular to the basal plane.  While a complete hexagon is represented, the current

theory allows for one to six faces.

In figure 9b, a faceted crystal is shown growing from a rounded parent grain.  The

angle from the dominant growth direction to the crystal is defined by β, which is

determined by the relative growth velocity of the two crystallographic directions.  Since β

is measured from the dominant growth axis, it is never greater than 45°.  If the relative

growth velocities are known, β can be found by

( )
c

a

V

V
=βtan (51)

for c-axis dominant growth, and

l

Basal Face

a2

a1

a3

β

dominant growth
 (c or a axis)

a or c

l

l/sin(β)

(a) (b)

Figure 9.  Facet crystal geometry showing basal plane and growth from
exisitng equilibrium form crystal.
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( )
a

c

V

V
=βtan (52)

for a-axis dominant growth, where Vc and Va are, respectively, linear growth velocities

(µm/s) of the c and a-axes. The actual growth velocities in figure 8 are not used directly,

but the relative facial velocities are used to determine crystal habit as a function of ice

temperature. Lamb and Hobbs (1971) growth curves in figure 8 are approximated by a

series of five straight lines for each curve (basal or prism).  The facial growth velocities

are found by:

basal face:

-3.6<θ<0, 05.25.0 += θcV ;

-5<θ<-3.6, 26.0=cV ;

-5.7<θ<-5, 6165.25833.0 −−= θcV ; (53)

-7.5<θ<-5.7, 06.22388.0 += θcV ;

θ<-7.5 4216.002108.0 += θcV :

prism face:

-7.6<θ<0, 444.117555.0 += θaV ;

-9.2<θ<-7.6, 11.0=aV ;

-11<θ<-9.2, 72.12.0 −−= θaV ; (54)

-14.3<θ<-11, 48.0=aV ;

θ<-14.3, 529.21433.0 += θaV .
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Using the linear growth rate data from Lamb and Hobbs (1971) as approximated

by equations (53) and (54), the crystal habit or angle β can be calculated using equations

(51) or (52) depending upon dominant growth axis and temperature.  The actual growth

velocities in figure 8 are for specific test situations, but it is assumed that the relative size

of prism and basal growth velocities are applicable in a wide range of environments.

Once a crystal habit has been established, the actual growth velocity of the

dominant axis can be calculated.  Spiral defect propagation theory offers one explanation

of the kinetic growth of ice crystals.  Burton et al. (1951) developed an extensive model

for step propagation enabling the calculation of crystallographic face growth velocity.

Hobbs (1974) and Lock (1990) interpret Burton et al (1951) with the following

relationship for facial velocity,







∆
∆

∆
∆






=

P

P

P

P

K

m
V

ice
I

1

1

22

1

tanh
2 θπρ

α
, (55)

where VI is the facial velocity (m/s), I is either c or a-axis (depending on which is

dominant), α is the absorption coefficient, m is the molecular mass (kg), K is

Boltzmann’s constant (J/Kmole), ρice is ice density (kg/m3), and ∆P is the excess vapor

pressure (Pa).  ∆P1 is a critical excess vapor pressure given by

θ
ηπ

sKX

Pa
P 0

2
0

1 22=∆ , (56)

where η is the ledge energy per unit step length (J/m), a0 is the lattice parameter (m)

(different for a vs c-axis growth), Xs is the mean absorption migration distance (m), and

P0 is the equilibrium vapor pressure (Pa).  For ∆P1 >> ∆P, VI ∝ ∆P2, and for ∆P1 << ∆P,

VI ∝ ∆P.  Such behavior has been noted in laboratory studies.  If ∆P<0, then the growth
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velocity is set to zero.  Sublimation is not allowed under the kinetic growth regime.  With

the dominant growth velocity, the overall crystal growth rate is easily obtained from

simple geometric relationships.

Heat and Mass Source Terms for Kinetic Growth.  With the crystal habit and the

dominant crystal growth velocity established, the heat and mass source terms used in the

conservation equations need to be developed for kinetic growth.  To establish source

terms, the mass flow from the vapor to the ice during kinetic growth is required.  Even

though detailed geometry of faceted crystals has been studied little, some geometric

parameters have been measured.  Sturm and Benson (1997) conducted extensive

experimental research in Alaska on depth hoar.  They collected numerous depth hoar

samples for mass and size characterization. Using mass fraction techniques in various

sized sieves, Sturm and Benson (1997) established a polynomial fit of sieve size and

grain mass as

3

1,

2 









= +jj

j

D
m ψ , (57)

where jm is the grain mass average for the sieve, ψ is a fit constant (126.6 kg/m3), and

1, +jjD  is the average size of the j and j+1th sieves (m).  This mass to grain size

approximation is useful in determining how much mass is added as the crystal grows.

For the current problem, it is assumed the average sieve size, 1, +jjD , is the largest

dimension of the crystal (ref figure 9b).  While a narrow, yet long crystal may fit through
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a sieve smaller than the largest dimension, the relatively planar characteristics of these

crystals makes the largest dimension approximation reasonable.  Equation (57) becomes

( )
3

sin2 





=

β
ψ l

m j . (58)

The faceted grain surface is composed of a number of triangular elements (ref

figure 9a on basal face).  The total surface area, Afacet (m
2), of a particular grain is given

by

( )βsin2

2l
NSAfacet = , (59)

where NS is the number of facet surfaces present (1-6).  If the crystal is uniform

thickness, δ (m), then the crystal volume is given by

( )β
δ

sin2

2l
NSVol facet = . (60)

Comparing the volume given by equation (60) and the volume given by equation (58)

(after dividing by the density of ice), the crystal thickness becomes

( )βρ
ψδ

2sin4 NS

l

ice

= . (61)

The crystal is assumed to grow from the exposed tips during kinetic growth, consistent

with the theory of growth by spiral steps.  As such, the surface area available for phase

change is the rectangular end of each crystal with dimension l by δ.

lNSA changephase δ= , (62)

where Aphase change is the area (m2) at the crystal tips available for step growth.

Substituting equation (61) into (62) and simplifying leaves
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( )βρ
ψ

2

2

sin4 ice

changephase

l
A = . (63)

With the facial growth velocity in equation (55), the growth area in equation (63),

the mass flow can be calculated

icechangephasecrystal AVm ρ=� , (64)

where Vcrystal is the velocity (m/s) of the crystal growth, which is geometrically related to

the facial growth velocity in equation (55).  Recall the mass source terms in the vapor

mass conservation equation were mass flow from phase change per unit pore volume.

The mass source for facet growth is then

( ) ( )ββ
ψ

cossin4 2

2

pore

I
facet V

lV
MS −= . (65)

The negative sign for the facet mass source terms is needed because mass can only

condense from the vapor phase; sublimation is not allowed here.  The expression for facet

growth mass sources can now be properly substituted into equation (43), mass

conservation.

The heat source term for facet growth proceeds in a similar manner.  The HS term

was the latent energy exchange per unit length from sublimation during phase change.

Using the mass flow in equation (64), the facet heat source becomes

( ) ( )ββ
ψ
cossin4

lLV
HS I

facet −= . (66)

Summary of Equations
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The development now includes heat and mass interactions between the pore and

ice for an equilibrium geometry form and a kinetic form.  The final form of the pore mass

conservation equation becomes

+
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(67)

( ) ( ) 0
cossin4 2

0
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ψ
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I

VDP

RTlV
.

Recall, the phase change temperature, Ts, in equation (67) is found in

−+−
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k
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d
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The final form of the ice heat conduction equation becomes

from equilibrium form mass interactions

from kinetic form mass interactions

heat interaction at phase change interface
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( ) ( )ββ
ψ

cossin4kA

lLVI .

These equations represent a quasi-two dimensional heat and mass flow in a phase

changing dry snowpack.  They are very nonlinear and very coupled.

Numerical Solution Techniques

The governing equations (50), (67), and (68) do not lend themselves to closed

form analytic solutions.  The phase change coupling creates a very complicated

interaction of temperature and geometry with heat and mass.  Having already divided the

geometry into elements, a finite difference solution will be developed requiring the

definition of nodes within the elements.  The resulting discretization utilizes finite

differences for unequal sized mesh, since grain, neck, and bond sizes vary.  The proper

equations are developed for each node, resulting in three nonlinear systems of equations.

Iterative Newton’s techniques for nonlinear equations are used on two of the systems, and

a direct technique is used on the third.  The systems of equations are solved sequentially.

from equilibrium form heat interactions

from kinetic form heat interactions
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The solution is repeated until convergence of the phase interaction terms is achieved.

After finding the steady state condition, the problem is incremented in time, new

metamorphosed geometry defined, and the iterative solution begins again.  The solution

process is presented in figure 10, the details in each solution step are then presented in

separate sections.  Time integration does not increment until stable solutions for all three

equations and their interactions are established.  The time incremental geometry and

temperatures provide the desired time variable metamorphism simulation.

Initial conditions

solve surface temperature
(iterative)

solve pore mass conservation
(iterative)

solve ice conduction
(direct)

update geometry

integrate in time

convergence of
phase interaction?

no

yes

Figure 10.  Problem solution methodology
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Nodal Definitions

The nodal definitions to accompany ice and pore elements are presented in figure

11.  Two categories of nodes are prescribed for the ice and pore elements.  Nodes placed

at the geometric center of ice and pore elements are called “central” nodes, while nodes

placed at the interface between elements are called “boundary” nodes.  Recall the ice

element boundaries were defined at the transition from grains to necks, with pore

elements corresponding to the ice geometry.  Each element (pore or ice) has a unique

center node and two boundary nodes that are shared with neighboring elements.

For n elements (n must be odd), there will be 2n+1 pore nodes and 2n+1 ice

nodes. As with the element numbering, nodal numbering is sequential.  The central node

for the ith element is numbered 2i (even).  Boundary nodes are defined either side of

Ice Pore

Element

i+2

i+1

i

Node

2i

2i+1

2(i+1)

2(i+1)+1

2(i+2)

Figure 11.  Finite difference node definitions with previously defined elements

ri

ri+1

ri+1

ri+2
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central nodes and are odd numbered.  In anticipation of a finite difference solution, each

ice and pore element is assigned a nodal dimension, ri, such that

)(igi rr =  for odd i (grains) and,

)(ii nlr =  for even i (necks). (69)

ri is the spacing from the center to boundary nodes in both the ice and pore ith element.

This is an approximation that assumes rg(i)>>nl(i), the reduction of rg(i) by nl(i) is neglected.

As discussed earlier in this chapter, this is an acceptable approximation for realistic

geometries.

Finite Difference Definitions

The node and element discretization in figure 10 resulted in unequal spacing

between the two central nodes surrounding each boundary node.  Several finite difference

schemes were examined for solving the equations, but as one might expect, a central

difference proved most reliable in terms of convergence and accuracy.  The details of

other difference techniques are not presented.  Rather, central difference methods are

used throughout.  For any particular quantity, ϕ, located at a central node, j (even), the

first and second derivatives are the familiar forms for equally spaced nodes

2/

11

2 j

jj

rdy

d −+ −
=

ϕϕϕ
, and (70)

2
2/

11

2

2 2

j

jij

rdy

d +− +−
=

ϕϕϕϕ
. (71)

These central difference equations are order r2 accurate (Burden and Faires, 1993)

approximations.  At a boundary node, j (odd), the spacing to neighboring nodes differs
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requiring modified difference equations.  The development of unequally spaced nodes is

straight forward, but is not presented here.  For boundary nodes, the difference equations

become (Tannehill et al, 1997)

2/)1(2/)1(

11

+−

−+

+
−

=
jj

jj

rrdy

d ϕϕϕ
,  and (72)
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−++−
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=
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jjjjjj

rrrr

rr

dy

d ϕϕϕϕϕ
. (73)

Equation (72) is order r2 accurate while equation (73) is order r accurate (Lindfield and

Penny, 1995).  Of course, if the mesh becomes uniform, equations (72) and (73) reduce to

equations (70) and (71) respectively.

Boundary and Initial Conditions

For the second order differential equations (67) and (68), flux, temperature, or

mixed boundary conditions may be used.  For the current problem, temperature boundary

conditions are specified.  As discussed in chapter 1, operational models used in snowpack

prediction have proven reliable at predicting averaged macroscopic temperatures.  As

such, boundary temperatures T1, θ1, θ2n+1, and T2n+1 are specified, where n is the number

of elements.  There may be conditions, such as impermeable crusts or dry ground, where

vapor or heat boundary conditions could be specified, but that solution is not developed

here.

To begin the first iteration, initial temperatures are required.  If no temperature

gradient is applied, all the nodal temperatures (pore and ice) are set to the boundary

temperature.  If a temperature gradient is applied, a spatially linear temperature
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distribution is assumed.  This provides no restriction on the final solution, but does

provide a first estimate for iterative techniques.

Pore Mass Conservation Solution

Pore mass conservation equation (67) is now expressed in finite difference form at

each node.  At this point, a simplifying assumption is made.  Based on the nodal

distribution in figure 11, mass interaction terms will be considered at central nodes only.

The phase change mass source terms associated with grains and necks will be lumped at

each central node.  The interaction terms at boundary nodes are set to zero.  The

interaction terms could be distributed between the boundary and central nodes but are not

in order to achieve additional simplicity.  Using equations (70) and (71) for the ith (even)

central node, equation (67) becomes
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In equation (74), the surface area for phase change, Aec, diffusion distance, ∆x, phase

change temperature, Ts, and surface curvature, ρs, are assigned to the respective ice

element and used for the center node equation in that element.  In addition, Vpore for each

pore element is used in the appropriate center node equation.
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For boundary nodes, no source terms are considered.  Using equations (72) and

(73) for the ith (odd) boundary node, equation (67) becomes
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Vapor System of Non-Linear Equations.  After applying the appropriate finite

difference equation ((74) or (75)) to each interior node and assigning temperature

boundary conditions, a set of non-linear equations with nodal pore temperature degrees of

freedom emerge

( )( ) niTTTfF iiii 2,,20,, 11 �==+− . (76)

Direct solution techniques of the system did not yield consistently convgergent results.

Several attempts were made to manipulate the form of (76) to find solutions directly, but

the highly non-linear nature of the equations generally resulted in divergent solutions.

The details of failed numerical attempts are not presented.  Rather, the one technique that

provided stable convergent solutions is now discussed.  Newton’s method for non-linear

systems yielded convergent solutions to the system of equations in (76).  Newton’s

method is an iterative technique where increments in nodal degrees of freedom, ∆Ti, are

found by

( )( ) ( )( )1111 ,,,, +−+− =∆ iiiiiiii TTTfFTTTTfJ , (77)

where J is the Jacobian defined by
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Nodal temperatures are then updated after solving (77) by
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The process of forming F, forming J, solving for ∆T, and updating T is continued until

the increments in nodal temperatures become small.  Once converged, new pore

temperatures are known and are then used in the surface temperature and ice temperature

calculations.

For the current problem, F is a vector with elements given by equations (74) or

(75) depending upon if the node is central or boundary.  It is noted that each fi is a

function of the ith node and its two immediate neighbors, i-1 and i+1, only.  The Jacobian

entries for central (even numbered) nodes are then given by
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Similar expressions for the boundary nodes (odd numbered) are achieved using equation

(75), the Jacobian terms become

( ) ( )




−

+
+

+













−

==
∂
∂

−+

−

−−+−
4

2/)1(2/)1(

1
2

2/)1(2/)1(2/)1(

0

1

22

11
exp

iii

i

iiii

i

i
i

i

TrrR

LT

TrrrR

TTR

L
L

JB
T

f

( ) 




+

+ −+

+
34

2/)1(2/)1(

1 32

iiii

i

TTrrR

LT
, (83)

( ) +





−

+













−

==
∂
∂

++

+

−+ iiii

i

iii

i

i
i

i

TrTr

T

rrTR

TTR

L
L

JA
T

f

2/)1(
2

2/)1(

1

2/)1(2/)1(
22

0

2

22

11
exp

( )
( ) −

+
+−

+−
−+

−−++

−−

−
4

2/)1(2/)1(

2
111

2
1

2/)1(
2

2/)1(

1 222

iii

iiii

iiii

i

TrrR

TTTTL

TrTr

T
(84)



68

( )
( ) 2

2/)1(2/)1(

1

2/)1(2/)1(

0

3
11 24

11
exp

3

iii

i

ii

i

i

ii

Trr

T

rr

TTR

L
L

T

TT

++

+

−+

−+ +




−
+













−

+


−

( )
( )

( )



−
+

+
+−

−+− −+

−+

−−++

−−

−
4

11

5
2/)1(2/)1(

2
111

2
1

2
2/)1(

3
2/)1(

1 92424

i

ii

iii

iiii

iiii

i

T

TT

TrrR

TTTTL

TrTr

T
,

( ) ( )




−

+
+

+













−

==
∂
∂

−+

+

−−++
4

2/)1(2/)1(

1
2

2/)1(2/)1(2/)1(

0

1

22

11
exp

iii

i

iiii

i

i
i

i

TrrR

LT

TrrrR

TTR

L
L

JF
T

f

( ) 




−

+ −+

−
34

2/)1(2/)1(

1 32

iiii

i

TTrrR

LT
. (85)

The Jacobian for the pore problem then becomes a square 2n-1 matrix,
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By forming J and F with the current values of T, then inverting J in equation (77),

the temperature increment is found, and new temperatures calculated.  This process

continues until ∆T becomes small.  Since the number of nodes is variable, the

convergence tolerance must account for the model size.  The L2 norm of the temperature

change is
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∑∆=∆ 2
iTT . (87)

If the average temperature change at convergence is assigned a tolerance, tol, then when

12 +≤∆ ntolT , (88)

Newton’s method has converged.  The tolerance used was very small (<1e-9) since the

temperature changes are expected to be very small.  The technique is quadratically

convergent (Burden and Faires, 1993), but a rather large Jacobian matrix is formed and

inverted at each iteration.  Most studies in upcoming chapters converged in six iterations

or less. On average, it is estimated that three iterations were required for convergence.

Ice Heat Conservation Solution

The solution to the ice heat conservation equation (68) proceeds in a similar

manner as the pore equation, except a direct solution technique produces acceptable

results.  Similar to the pore equation, heat source terms are only considered at central

nodes of grain and necks.  Phase change interaction terms are not included at the

boundary nodes between grains and necks.  The temperature boundary conditions are,

with n elements defined, θ1 and θ2n+1 prescribed.  Heat flux boundary conditions are not

prescribed.  Using the finite difference formulation for central nodes (equations (70) and

(71)), equation (68) becomes
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where HSi/2 is the sum of heat source terms defined in equations (35) and (66).  For

boundary nodes, using equations (72) and (73) in (68) yields
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After making some convenient coefficient definitions, equations (89) and (90) may be

represented as

iiiiiii KKJJIIHH =++ +− 11 θθθ , (91)

for central nodes and,

011 =++ +− iiiiii NNMMLL θθθ , (92)

for boundary nodes.  The coefficients in equations (91) and (92) can be determined from

equations (89) and (90).  After writing the appropriate difference equations for all interior

nodes, the system of equations becomes



71

=

































































−

−

−−−

−−−

n

n

n

nn

nnn

nnn

IIHH

NNMMLL

JJIIHH

NNMMLL

JJIIHH

NNMMLL

JJII

2

12

22

5

4

3

2

22

121212

222222

555

444

333

22

000000

00000

00000

0

0000

0000

0000

00000

θ
θ
θ

θ
θ
θ
θ

��������

�

�

�

�

































−

−

+

−

1222

22

4

122

0

0

0

nnn

n

JJKK

KK

KK

HHKK

θ

θ

�
. (93)

The coefficient matrix in equation (93) does not contain any temperature degrees of

freedom.  The KKi terms on the right hand side are the non-linear coupling to the pore

through phase change.  Referring to figure 10, the ice, pore, and surface temperature

solutions will be solved iteratively until the interaction terms converge.  As such, the

interaction terms are considered constant here, and equation (93) may be solved by

simply inverting the coefficient matrix and multiplying by the right hand side.  Within the

ice conduction problem, a direct solution technique avoided computationally costly

iterative techniques.  The only non-linearity came from the heat source interaction terms,

making heat conservation much simpler to solve than the pore mass conservation

problem.
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Phase Change Temperature Solution

The mass and heat conduction problems each contained the phase change

temperature described in equation (50).  Recalling the geometry at the phase change

boundary from figure 7, the phase change temperature equation may be differenced for

each element, i, as
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Since the pore temperatures, T, and ice temperatures, θ, are known, a simple version of

Newton’s method can be used to solve the non-linear equation at each element.  If the ice

and pore vapor pressures  are substituted into equation (94), then
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Then,
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New approximations at the phase change temperature at each node, Tsi, may be found by

using Newton’s method,
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New approximations are calculated until the change in Tsnew from Tsold is less than an

assigned tolerance.  A convergence tolerance of 1e-8 worked well for phase change

temperatures, smaller values could be used if required.

Update Geometry

After the steady state solution to the pore, heat, and phase change problems has

converged, time integration may commence.  The equilibrium and kinetic forms

considered change uniquely with time and are considered separately.

Equilibrium Form Geometry Changes.  With the pore, ice, and surface

temperatures known, the phase change flux, Jec, is easily calculated using equation (41)

for each element.  Since each ice element has a unique phase change area, Aec, the

volumetric rate of change of each ice element is given by

ice

ecec AJ
V

ρ
−=� . (98)

For spherical grains, the radius rate of change is given by
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V
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� = . (99)

Hobbs (1974) shows the volume for the necks described in figure 2 is

g

b
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r
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42π
= . (100)

The growth of the bond is then given by
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� = . (101)
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Once the rate of change of each grain or bond radius is known, new values are

simply found with small increments in time.  The remainder of the physical parameters

are easily updated.  For the grains,

gs r=ρ ,

2
grA π= , (102)

and 24 gec rA π= .

The neck volume is given in equation (100), neck length in equation (3), surface

curvature in equations (2) and (4), and

2
brA π= ,

and gbec rrA π4= . (103)

With the newly defined ice geometry, the pore dimensions can be calculated.

Assuming the symmetry distance, x, in figure 4 remains constant, new pore widths next

to grains are found by

trww goldnew ∆−= � , (104)

and for pores next to bonds,

trww boldnew ∆−= � , (105)

where ∆t is the time increment (s).  New snow density is easily calculated.

Kinetic Form Geometry Changes.  The faceted crystal characteristic length, l, rate

of growth is found by

( )βtanIVl =� . (106)
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Once the new characteristic length is calculated, crystal mass, surface area, volume,

thickness, and phase change area can be updated using equations (58)-(63).

Time Step.  After geometrical rates of change are found, new values are

calculated by taking small time steps.  The size of the time step has a significant impact

on the accuracy of the geometric metamorphism.  When intergranular necks are small,

growth rates are very large, so small time steps, on the order of minutes, are required.  As

bonds get larger, the time step can be increased to several hours.  As faceted crystals

grow, they reach deeper into warmer vapor spaces, increasing the growth rate.  As the

growth rate increases, the time step must decrease to keep the kinetic growth process

stable.  Again, a time step on the order of minutes may be required for large crystals.
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CHAPTER 3

NUMERICAL STUDIES

Introduction

In this chapter, numerous numerical studies are presented.  Several well-known

snow metamorphism trends are examined.  Some studies are designed to evaluate the

current approach’s ability to predict these trends, while other studies demonstrate the

model’s inherent flexibility in evaluating the influence of several parameters on snow

metamorphism.  The relative significance of factors such as ice grain geometry, bonding,

density, temperature, crystal orientation, etc may be examined in any thermal

environment. 

The theory developed in chapter 2 was implemented using MATLAB V6 (2000).

The details of the programming are not discussed here, but the code listing is found in

appendix B.  MATLAB was chosen for its superior numerical computational features.

This allowed increased focus on solving new physical problems and alleviated tedious

programming for mathematical manipulations.

Macroscopically isothermal snow is examined first.  It was observed that under

these conditions, small microstructural temperature gradients must develop in order for

metamorphism to commence.  A definition for the onset of temperature gradient
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metamorphism is then presented, and the resulting studies discussed.  After the onset of a

kinetic growth regime, the development of faceted crystals is presented with some

interesting results relative to crystal orientation and bonding.  Finally, the ability of the

model to predict published experimental results is evaluated.  Metamorphism data from

both equi-temperature and temperature gradient environments are simulated with good

correlation to known trends and published results.

Equi-temperature Environment

Equal Sized Grains

In its most idealized and simplest form, dry seasonal snow may be thought

of as a group of equally sized spheres with intergranular necks and bonds (Kingery, 1960;

Kuroiwa, 1961; Hobbs and Mason, 1964; Colbeck, 1980; Maeno and Eblnuma, 1983;

Adams and Brown, 1989; Brown et al., 1999).  In reality, snow is composed of various

sized structures which may influence metamorphism.  Colbeck (2001) shows that at

neighboring grain radii ratios exceeding 1.57, the resulting curved grain boundary does

not leave sufficient exposed area for the smaller grain to bond in a “chain”.  His theory

potentially explains the difficulty of inter-layer bonding in some snow but the lack of

bonding between unequally sized grains gives credence to examining metamorphism of

nearly equal sized grains.

During snow metamorphism, several microstructural parameters are important.

Traditionally, grain size has been the primary time varying parameter.  Grains are the

most readily visible structure when examining snow.  In addition to grain size, the
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interconnecting neck size has recently been recognized as an equally important feature.

As with grains, bonds and necks influence nearly all physical attributes such as strength,

stability, thermal properties, optical properties, elastic response, inelastic response etc.

The broad influence of grains and their interconnections requires that their interactions be

included in any reasonable metamorphism theory.  In the current research, bonds, necks,

and grains have been described and are an integral part of the theory.  While the absolute

sizes of grains and bonds are important, their relative size is commonly used to describe

the level of bonding or maturity of metamorphism.  The bond to grain ratio is given by

g

b
r

rratio = . (107)

As metamorphism progresses in an equi-temperature environment, the ratio may grow

due to vapor sublimating off of convex grains and then depositing onto concave necks.

During the metamorphism of equal sized grains in an equi-temperature

environment, several parameters such as grain geometry, intergranular neck geometry,

pore geometry, density, and temperature influence the rate and nature of metamorphism.

Demonstration values used to examine the development are offered in table 1. 

Grain Sizes rg=0.125, 0.5, 1.0 mm

Ratio 0.4
Snow Density 150 kg/m3

Temperature -5°C
Table 1.  Equal sized grain equi-temperature metamorphism study parameters

Bond to grain radii ratio, density and temperature are each individually varied for all

three grain sizes.  Figure 12 pictorially represents the vapor flux path that results from
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this analysis.  Small vapor pressure gradients between nodes result in vapor flux from the

convex surfaces, to the pore, through the pore, and onto the concave necks.  The local

temperature gradient in the pore was only on the order of 0.05 °C/m to commence and

maintain the metamorphism.  While this temperature gradient appears very small,

metamorphism in a macroscopically isothermal environment could not take place without

it.

The vapor and heat flow depicted in figure 12 result from the following process.

The convex grain surface curvature creates a vapor pressure gradient between the surface

and central pore node.  Vapor sublimates from the surface and becomes a vapor source,

causing vapor to diffuse to the central pore node.  As vapor is added at the node, the

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

�������������������������������������������������������������������������������
�������������������������������������������������������������������������������
�������������������������������������������������������������������������������
�������������������������������������������������������������������������������
�������������������������������������������������������������������������������
�������������������������������������������������������������������������������
�������������������������������������������������������������������������������
�������������������������������������������������������������������������������
�������������������������������������������������������������������������������
�������������������������������������������������������������������������������
�������������������������������������������������������������������������������
�������������������������������������������������������������������������������
�������������������������������������������������������������������������������
�������������������������������������������������������������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�������������������������������������������������������������������������������
�������������������������������������������������������������������������������
�������������������������������������������������������������������������������
�������������������������������������������������������������������������������
�������������������������������������������������������������������������������
�������������������������������������������������������������������������������
�������������������������������������������������������������������������������
�������������������������������������������������������������������������������
�������������������������������������������������������������������������������
�������������������������������������������������������������������������������
�������������������������������������������������������������������������������
�������������������������������������������������������������������������������
�������������������������������������������������������������������������������
�������������������������������������������������������������������������������

Ice
Heat Flow

Pore
Mass Flow

��������������������������������������������������������������
��������������������������������������������������������������
��������������������������������������������������������������
��������������������������������������������������������������
��������������������������������������������������������������
��������������������������������������������������������������
��������������������������������������������������������������

Figure 12. Generic heat and mass flows between nodes during equi-
temperature metamorphism.
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temperature increases slightly, creating a gradient to the neighboring boundary and

central nodes.  Vapor diffuses in the pore toward the necks thereby increasing the vapor

pressure at this node.  A vapor pressure gradient therefore develops between the pore

node and the concave neck surface, causing vapor to diffuse toward the neck. Vapor is

allowed to condense and release the associated latent heat to the ice neck’s central node.

This slightly raises the neck nodal temperature resulting in heat conduction to the

neighboring boundary and central nodes.  At the grain central node, heat is removed

thereby providing the latent heat of sublimation required, and the cycle is complete.  The

geometry is updated as time integration proceeds by adding or removing mass from ice

elements.  Even though heat and mass are conserved globally, there are no physical

constraints to ensure a heat and mass balance between individual grains and necks, since

heat and vapor are allowed to cross element boundaries.  Recall temperature boundary

conditions were applied, not heat or mass flux limitations.  It would seem prudent to

believe that the vast majority of the vapor used in the equi-temperature sintering process

would originate at the grain and terminate at the neck.  This is discussed in an upcoming

section of this chapter.

Metamorphism as a Function of Bond to Grain Ratio.  Figure 13 shows the

variation of grain decay and bond growth with bond to grain radii ratio.  As the bond to

grain ratio increases from 0.2 to 0.6, the bond growth rate decreases by two orders of

magnitude for each grain size.  The reduction in surface curvature, increase in neck

length, neck surface area, and neck volume during metamorphism combine to reduce the

growth rate with increasing bond size.  An analogous process is taking place during grain
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radius reduction.  The sintering rate decreases dramatically with increased bonding, a

simple well understood yet important result (Hobbs and Mason, 1964; Maeno and

Eblnuma, 1983).  Observations have shown that snow sinters very rapidly initially, then

decreases dramatically in time.  As the bonds grow, the vapor pressure gradient decreases

as the neck radius of curvature decreases.  It is evident from figure 13 why very large

bond ratios are rarely, if ever, observed in seasonal snow.

The conditions described in table 1 can be integrated in time to show this grain

size and ratio dependence during metamorphism.  Figure 14 shows the bond to grain radii

ratio time integrated for 24 hours.  The smaller grained snow sinters rapidly when

compared to the larger grained snow.  Again, this is due to a combination of factors that

include the higher energy state of the smaller grains as well as the smaller grain and neck

volume associated with smaller grains.  As predicted in figure 13, figure 14 demonstrates

the decrease in bond growth rate with time (and ratio) for the 1/8 mm grains.  To see the

same effect for the larger grains, the problem is extended in figure 15 from 24 hours to 30

days.   Again, the decrease in bonding rate in time is evident for the larger grained snow.

The selection of a time step for integration requires some preplanning.  For very small

bonds, the growth rate is very large requiring small time steps to prevent over predicting

bond growth rates.  In figures 14 and 15, a final time step was obtained by varying the

time step from large to small until the growth rates converged to the same values at the

same total time.  If an excessively large time step is chosen, the growth rates will

decrease as the time step decreases.  For figure 14, a time step of 600 seconds (10

minutes) provided convergent results.  For figure 15, a time step of 14400 seconds (4

hours) was used.  In each case, if the initial bond to grain ratio was smaller than 0.2, a
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shorter time step would have been required early in the analysis.  Since the time to reach

a bond to grain radii ratio of 0.2 is very short (minutes), it was used as a reasonable

starting point.

Metamorphism as a Function of Temperature.  Using the parameters in

table 1 but now varying temperature, figure 16 shows the grain decay rate and bond

growth rate for snow comprised of equally sized grains in an equi-temperature

environment.  As expected, metamorphism is sensitive to temperature.  The bond growth

rate decreases by a factor of approximately 8 for all three grain sizes as the temperature is

lowered from 0 to –20 °C, confirming another well established experimental

metamorphic trend (Hobbs and Mason, 1964).  As previously discussed, microstructural

temperature gradients do develop in the pore and ice, but here the boundary temperature

is varied.  Initially, the entire sample is set to the boundary temperature, then

microstructural temperature gradients develop during the iterative solution.  Recall the

iterative solution stops when steady state conditions are achieved.

As with the previous solution, time integration for particular temperatures could

be accomplished.  Similar trends would emerge with metamorphism commencing at

higher rates for warmer temperatures.  As with bond and grain size, temperature is a very

significant factor in equi-temperature snow metamorphism.  For the sake of brevity, the

time integration results are not presented. 
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Figure 13.  Bond growth rate and grain decay rate vs bond to
grain ratio.  T=-5°C, ρ=150 kg/m3
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Figure 15.  30 day time integration of bond to grain radii ratio.
T=-5°C, ρ=150kg/m3

rg=1.0mm

rg=0.5mm

Figure 14.  24 hour time integration of grain to bond radii ratio.
T=-5°C, ρ=150kg/m3

rg=0.125 mm

rg=0.5 mm

rg=1.0 mm
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Figure 16.  Bond growth rate and grain decay rate vs
temperature. ρ=150 kg/m3, rb/rg=0.4
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Metamorphism as a Function of Density.  The snow density in table 1 is varied

while holding the temperature and bond ratio fixed for all three grain sizes.  The ice

geometry is fixed for a particular problem and the pore sizes are varied with density as

described in chapter 2. As the density increases, the size of the pore space for vapor

movement decreases.  Figure 17 shows the variation of bond growth rate and grain decay

rate with density. Metamorphism in an equi-temperature environment appears to be

relatively insensitive to variations in density.  The bond growth rate changes are generally

less than 20% over a large range of densities.  Grain decay rate changes with density are

slightly larger, but still small compared to bond size and temperature affects.

This result was surprising at first, but upon further thought and investigation, is

logical.  During vapor metamorphism in an equi-temperature environment, it is believed

that vapor moves the very short distance from grains to neighboring necks (Kingery,

1960; Hobbs and Mason, 1964; Maeno and Eblnuma, 1983).  As the vapor leaves the

grain surface, diffuses through the pore, and condenses on the neck, the size of the pore is

not a limiting parameter due to the local vapor movement.  Given a specific ice geometry,

the diffusion distance between grains and necks does not vary substantially with density,

only the pore size changes.  Since the pore size decreases with increased density, the

pore’s vapor storage capability decreases, slightly decreasing the metamorphic rate. The

size of the pore is not the critical factor in this metamorphic regime.  In the extremely

dense snow where the pore becomes very small, pore size could become a limiting factor.

For common snow densities less than 450 kg/m3, density is not limiting local vapor

transfer between grains and necks.
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Figure 17.  Bond growth rate and grain decay rate vs density.  T=-5°C, rb/rg=0.4
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In order for this result to be valid, most of the vapor leaving a grain should

deposit on neighboring necks.  If this were not the case, the pore would either supply

vapor or remove vapor locally through diffusion.  If significant diffusion to or away from

neck and grain localities existed, the pore size would influence metamorphic rates.  When

a temperature gradient is applied, the density (pore size) will become a significant factor.

The mass leaving the grains and the mass arriving at the necks were compared to see if a

mass balance exists.  Figure 18 gives the ratio of mass leaving the grain to mass arriving

on the neck.  The conservation of mass is very good between the necks and grains.  As

the density decreases, the pores get larger and vapor is allowed to move more readily

away from grains and necks.  Figure 18 shows slightly more vapor leaving the grains than

attaching to the necks.  For lower density snow, the larger pore is able to diffuse the

excess vapor away.  For higher density snow, the vapor is unable to diffuse through the

smaller pore and the sintering rate is attenuated slightly.  This explains why some

previous studies (Hobbs and Mason, 1964; Maeno and Eblnuma, 1983) have been

successful at modeling sintering by considering only the ice surface energies and not

accounting for snow density or pore sizes in an equi-temperature environment.

Unequally Sized Grains

Most snow is not comprised of equally sized grains.  Grain size distributions

certainly occur throughout the snowpack.  During the early phases of metamorphism,

large grain size distributions may exist.  As time progresses, bigger grains grow at the

expense of smaller grains resulting in a decrease in the dispersion of grain
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sizes.  The growth of large grains at the expense of small grains has been explained by

surface curvature differences in an equi-temperature environment (Colbeck, 1980).  The

decomposition of new dendritic crystals into smooth equilibrium forms is thought to

progress in a similar manner.  The very sharp convex surfaces of dendrite tips cause rapid

sublimation and mass transfer to concave regions of the crystal.  This process continues

until smooth rounded forms appear and the previously described sintering process

commences.  While the current theory does not specifically address dendritic decay, the

physical principles involved in such a process are included.  

Figure 18.  Ratio of mass leaving grain to mass attaching to neck vs density.
 T=-5°C, all grain sizes



90

The inclusion of multiple grain sizes in long-term metamorphism modeling is of

questionable value since most seasonal snow layers rapidly become reasonably uniform,

typically in a matter of minutes or hours (Tremper, 2001).  Figure 1 is a classic example

of snow transforming in an equi-temperature environment.  While varying grain sizes are

evident, the differences are not large.  

On the other hand, during the early phases of metamorphism, modeling multiple

grain sizes may be of value.  As the crystal dendritic decay progresses, several sizes of

grains inevitably result.  The very small grains have been observed to disappear with the

larger grains surviving.  The current theory can provide a platform to evaluate this

process and what parameters may influence it.  

Grain Growth

Grain Decay

Figure 19.  Normalized grain growth for large grain surrounded by
small grains.  rg small=1/32mm, ρ=150kg/m3, T=-3°C.
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In the first study, a single large grain is surrounded by numerous smaller grains.

Smaller diameter grains (1/16 mm) surround two different large grain sizes.  Figure 19

shows the normalized grain growth rate as a function of bond to grain radii ratio for two

different large grains.  The bond to grain radii ratio is based on the smaller grain sizes.

At lower bonding levels, the necks demand so much vapor that both the large and small

grains give off vapor and therefore decay.  As the bonds grow, their demand for vapor

decreases, and the larger grains are now able to grow at the expense of the smaller grains.

Throughout the simulation, the smaller grains continually decayed while the larger grains

transition from decay to growth due to their lower surface energy.  Figure 20 shows a

similar result, but does so in terms of mass flow from the grain.  Recall that the sign

convention used has positive mass flow during sublimation, negative during

condensation.  The bigger grains transition sooner than the smaller ones, in fact, the large

grain with a radius of 2rg does not grow at the expense of the smaller grains for a wide

range of bond to grain radii ratios.   

In the next analysis, a simple distribution of grain sizes is defined to examine the

model’s ability to handle grain size variations.  Fifty percent of the grains are assigned a

diameter of 1/16 mm, while the other fifty percent are ten times larger (5/8 mm).  In

figure 21, the mass flow leaving the ice grains as a function bond to grain ratio is

presented for the large and small grains.  For comparison, a model of average sized grains

is presented.  For half the grains with radii of rg, and the other half with grain radii of

10rg, the grain radius based on averaging the number of grains is 5.5rg. If an average

based on grain volume is used, the grain radius would be 7.9rg.  For the average radius

results, the grains always decay since all the grains are of equal size.  In the distributed
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grain size case, the large grains grow at the expense of small grains when the bond to

grain ratio becomes sufficient.

With size variations, it is unlikely that the mass leaving individual grains will

arrive at a single neck as they did in the equally sized grains.  To evaluate the mass

contributions that may or may not be required by the pore, a mass fraction is defined such

that

∑
∑==
m
m

flowmasstotal
residualflowmassFractionMass

&

&
. (108)

Grain Decay

Grain Growth

Figure 20.  Mass flow for large grain vs small grain bond ratio.
rg small=1/32mm, ρ=150 kg/m3, T=-3°C.
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Equation (108) gives a relative indication of how much mass is being supplied by or

being diffused away from the pore to support metamorphism.  Figure 22 shows the mass

fraction as a function of bond to grain radii ratio (based on the small grains).  When the

bonds are small, up to 20% of the total vapor for metamorphism is provided through

diffusion by the pore.  In this case, significant diffusion is made possible by the pore

spaces associated with the large grains.  This was not the case for equally sized grains.

As bonding develops, the pore diffuses away excess vapor coming off the small grains

that cannot be accepted by the bonds or large grains.  Again, the large pore spaces

associated with large grains make this process possible.

rg small

rg average

10rg small

Decay

Growth

Figure 21.  Grain mass flow vs small grain bond ratio for mixed and
averaged grain sizes.  ρ=150 kg/m3, T=-3°C.
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The preceding two studies demonstrate the model’s ability to handle multiple

grain sizes. Trends in growth and decay appear correct, but the importance of large size

dispersions is questionable (Colbeck, 2001).  The analysis does point to a potential future

expansion for the theory, describing dendritic decay during early metamorphism.  While

the current model does not handle such a situation, the trends suggest the approach may

be modified for such an application.

vapor
provided by

pore

vapor
removed by

pore

Figure 22.  Mass fraction vs bond ratio for 50% small and 50%
large grain sizes.  ρ=150kg/m3, T=-3°C.
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Summary of Equi-temperature Metamorphism Analysis

The current approach and resulting model demonstrated the ability to examine

numerous microstructural parameters and evaluate their influence on equi-temperature

snow metamorphism.  The small microstructural temperature gradients that have been

previously speculated (Colbeck, 1980) to exist were evident.  These gradients developed

naturally in the model resulting in the well known metamorphic process whereby vapor

sublimates from the grains, travels through the pore, and deposits on the necks. Several

equi-temperature metamorphic trends were predicted.  The model clearly demonstrated

strong metamorphic dependence on grain size, bond size, and temperature with weak

dependence on snow density.  Bond growth rates decreased (significantly) with

increasing bond size, increasing grain size, and increasing time.  The effect of grain size

was evident.  Smaller grains sintered rapidly due to high surface energy, small neck

volume, and short diffusion distances. As the grain size increases, sintering rates

decreased dramatically.  The sintering rate was also a strong function of temperature.  As

temperature decreased, so did the metamorphic rate.  While metamorphism is a function

of density, density was shown to be secondary to other parameters.  It is believed that the

very local nature of vapor flow between grains and necks is not heavily influenced by

pore size.  A mass balance showing the vast majority of vapor leaving an individual grain

arrived at neighboring necks supported this theory.  While no restrictions on local vapor

travel were made, the commonly held thoughts on mass conservation during equi-

temperature metamorphism were supported.  Two studies of unequal sized grains

demonstrated the model’s ability to predict the growth of large grains at the expense of

smaller ones.  The evaluation size requirements for this growth/decay scenario were
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complicated by other factors such as bond size and grain distribution.  Overall, the model

followed many well established trends in snow metamorphism.  

Onset of Kinetic Growth Metamorphism

Introduction

The transition between the smooth rounded growth forms common in an equi-

temperature environment and the sharp faceted forms found in a temperature gradient

environment has not been studied extensively.  Most research surrounding this transition

is experimental.  It is commonly believed that the critical temperature gradient for faceted

growth is around 10-20°C/m (Akitaya, 1974a; Armstrong, 1980; Colbeck, 1983a, 1983b)

or greater than 25°C/m (Marbouty, 1980).  It is recognized that this transition is a

function of density, pore size, grain size, and temperature (Colbeck, 1983b), but little

analytical work has been done to show the relative importance of each.  It is recognized

that low density snow transitions at a lower temperature gradient than higher density

snow, but microstructurally based analytical approaches explaining this phenomenon are

lacking.  The current approach may be used to study this transition and various

parameters influencing the transition.  First, a definition of kinetic growth transition

temperature gradient is required.

Definition of the Onset of Kinetic Growth Metamorphism

There is clearly no agreed upon point where equilibrium forms dominate and then

suddenly faceted forms appear.  A smooth transition based on physical constraints is
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desired instead of relying on incomplete empirical data.  The transition temperature

gradient required to “turn on” the kinetic growth model was described in chapter 2,

requiring no phenomenological modifications.  Grains cannot grow in a kinetic form

when they are decaying, as is the case in an equi-temperature environment.  When a

temperature gradient is applied, vapor diffuses in the pore, and heat conducts through the

ice.  As the temperature gradient increases, the grain decay rate decreases, and the neck

growth rate increases due to the excess vapor pressure of the pore.  Kinetic growth

processes are allowed to begin when the temperature gradient is sufficient to transition

the grains from decay to growth.  

The temperature gradient where a “majority” of the grains start to grow is defined

as the onset or transition temperature gradient for kinetic growth.  It is in fact somewhat

arbitrary, but has a logical justification.  One can think of the equi-temperature and

temperature gradient processes commencing simultaneously in both environments, but

which is predominant when?  In an equi-temperature environment, the excess vapor

pressure in equation (55) is negative resulting in a negative kinetic growth velocity.

Since a negative growth velocity in a screw dislocation model has no meaning, that

process is inactive when the grain is decaying, resulting in no kinetic growth.  The

smooth rounded forms are allowed to develop as previously described.  As the

temperature gradient increases to the point where grains begin to grow, this is the first

opportunity for kinetic growth.  Near the transition temperature gradient, the smooth and

faceted forms may be equally viable, resulting in combined morphologies.  Mixed

rounded and kinetic forms are rare, but have been observed (Colbeck, 1982; 1983a).  As

the temperature gradient continues to increase, the grain growth due to kinetic
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metamorphism becomes predominant.  The model includes both, and allows each to

commence as required.  Figure 23 gives a pictorial representation of this process and the

definition of the transition temperature gradient.  As the temperature gradient increases,

the flux leaving the grains decreases.  At the transition temperature gradient, the grains

begin to grow. 

Numerical Studies for Kinetic Growth Onset

With the onset of kinetic growth defined, the model may be used to examine

various parametric dependencies.  The first study examines the grain growth rate in snow

as the temperature gradient increases.  A smooth transition from grain decay to growth is

presented.  The onset of kinetic growth is then studied as a function of density.  Finally,

the kinetic growth transition is examined as a function of temperature and grain to bond

radii ratio.

Figure 23.  Vapor flux definition of  temperature gradient at onset of kinetic
growth.  (a) TG=0, Equi-temperature vapor fluxes.  (b)  TG>0, TG less than onset
of kinetic growth.  (c) TG>0, TG at onset of kinetic growth

TG

a b c
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Grain Growth Transition.  The transition from grain decay to grain growth is

shown for three grain sizes as a function of the applied temperature gradient in figure 24.

As the temperature gradient increases, the grain growth rate increases.  The onset of

kinetic growth is clearly visible as the grain radial growth rate transitions from negative

to positive.  Throughout the temperature gradient range, the changes are smooth and

continuous.  Previous models required a discrete transition as new physical models were

required.  Also, kinetic growth transitions have generally been based on the 10°C/m

criteria, with little or no regard to any physical parameters that may effect that value.

Since the temperature gradient shown did not exceed 25°C/m, the 0.5mm grains did not

yet reach their kinetic growth transition.  The bond grow growth rate is also represented

in figure 24.  As expected, the bond growth rate is always positive and increasing with

temperature gradient.  Unlike the equi-temperature simulations, in a temperature gradient

environment, the vapor diffusing from the pore is critical.  This is apparent as the grains

begin to grow while necks continue to grow, requiring a vapor supply from elsewhere.

The pore is supplying this vapor where the pore only transported vapor from the grains to

the necks in the equi-temperature model.  Therefore, the transition temperature gradient

to kinetic growth should be dependent upon the snow density.  An upcoming result

confirms this.
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Transition TG

rg=2.0mm

rg=1.0mm

rg=0.5mm

Figure 24.  Grain and bond growth rate vs temperature gradient, equally
sized grains.  T=-3°C, ρ=150 kg/m3, rb/rg=0.4.

Growth

Decay

rg=2.0mm

rg=1.0mm

rg=0.5mm
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Onset of Kinetic Growth as a Function of Density and Grain Size.  With the

smooth transition from grain decay to growth with increasing temperature gradient

established, the onset of kinetic growth can be examined.  In a temperature gradient

environment, the size of the pore spaces, and therefore the density, should be a major

factor in the onset of kinetic growth.  It is commonly accepted that lower density snow

(larger pore spaces) is much more likely to show kinetic growth with a smaller

temperature gradient.  In addition to the pore size for vapor transport, large faceted

crystals need sufficient space to grow.  Marbouty (1980) showed an increase in the grain

size with decreasing density when subjected to a temperature gradient sufficient for

kinetic growth.  He also showed a kinetic growth upper limit density of 350 kg/m3, above

which kinetic growth was not observed even under large temperature gradients.  In higher

density snow, Marbouty found the lack of pore space obstructs crystal growth.  The

crystals became sharp, but failed to grow appreciably in size.  These crystals formed

under large temperature gradients and dense conditions were referred to as “hard” depth

hoar (Akitaya, 1974a).  

Figures 25 and 26 show the kinetic growth transition temperature gradient as a

function of density for three grain sizes.  In figure 25, the bond to grain radii ratio is 0.5,

whereas it is only 0.2 in figure 26.  As expected, the onset of kinetic growth is a strong

function of density.  As the density decreases, the larger pore spaces allow for easier

vapor movement, resulting in a lower onset temperature gradient.  Notice the bond to

grain radii ratio influences the onset temperature gradient.  Smaller necks demand more

vapor, leaving less available for the grains resulting in a higher temperature gradient for

kinetic growth.  The small bonds in figure 26 remain for only a short time and are found
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in newly deposited snow, while figure 25 is representative of snow that has sintered for

many hours or days.  As expected by the definition, grain size has a strong influence on

the onset of kinetic growth.  Larger grains require a lower vapor pressure to overcome

their convex shape, resulting in a lower temperature gradient required for kinetic growth.

It is interesting to note that for very commonly observed grain sizes and densities, the

accepted range of 10-25°C/m is supported by the analysis.  In addition to establishing this

onset in a mathematical context, the model enables the study of important parameters that

may influence the onset of kinetic growth.  Other important parameters (in addition to

grain size and density) such as temperature and bond size are now examined in further

detail.

rg=0.5mm

rg=1.0mm

rg=2.0mm

Experimental kinetic growth onset

Figure 25.  Onset temperature gradient for kinetic growth vs density,
T=-3°C, rb/rg=0.5.  Boxed region represents experimental temperature

gradient required for kinetic growth.
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Onset of Kinetic Growth as a Function of Pore Temperature.  The influence of

temperature on the temperature gradient required for kinetic growth is examined next.

The grain geometry of figure 26 is used, except a density of 100 kg/m3 is fixed as the

pore temperature is varied.  In figure 27, it is evident that the temperature gradient at the

onset of kinetic growth is relatively insensitive to temperature.  While the onset of kinetic

growth may not be sensitive to temperature, clearly the metamorphic rates should be, as

rg=1.0mm

rg=2.0mm

Experimental kinetic growth onset

Figure 26.  Onset temperature gradient for kinetic growth vs density,
T=-3°C, rb/rg=0.2.  Boxed region represents experimental temperature

gradient required for kinetic growth.
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was the case for the equi-temperature environment.  Figure 28 shows the variation of

bond growth rate at the onset of kinetic grain growth as a function of pore temperature.

The decrease in bond growth rate with decreasing temperature is evident.  So while the

onset of kinetic growth is not a strong function of temperature, the metamorphic process

rates are.

rg=2.0mm

rg=1.0mm

Figure 27.  Onset temperature gradient for kinetic growth vs pore
temperature. ρ=100kg/m3, rb/rg=0.2.
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Onset of Kinetic Growth as a Function of Bond to Grain Radii Ratio.  As

observed in figures 25 and 26, the relative size of grains and bonds, in part, determines

the vapor demand for bond growth.  As a result, the temperature gradient at the onset of

kinetic growth in influenced by the bonding maturity.  Figure 29 shows the sensitivity of

onset temperature gradient to bond to grain radii ratio.  The onset can vary by a factor of

two or three between small and large bonds.  The implications of this result may be

significant to the prediction of depth hoar development.  As freshly fallen snow begins to

rg=2.0mm

rg=1.0mm

Figure 28.  Bond growth at the onset of kinetic growth vs temperature.
ρ=100 kg/m3, rb/rg=0.2.
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decompose to other forms, the intergranular bonds are small, but develop quickly.  If

subjected to a temperature gradient at this time, kinetic growth may not commence until

sufficient vapor is available to satisfy new vapor hungry necks and grain growth.  If the

newly fallen snow is allowed to sinter under equi-temperature for several hours or days

before a temperature gradient is applied, the neck vapor demands are lower and kinetic

growth may commence sooner.  Of course this analysis does not account for density

changes due to snow settlement, which could be large for young snow.  The increase in

onset caused by increased density may offset the decrease in onset for highly bonded

snow.

rg=2.0mm

rg=1.0mm

Figure 29.  Onset temperature gradient for kinetic growth vs bond to
grain radii ratio.  T=-3°C, ρ=100kg/m3.
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Onset of Kinetic Growth for Unequally Sized Grains.  The studies presented so

far for the onset of kinetic growth have been for snow comprised of equally sized grains.

The onset of kinetic growth was examined using the three grain sizes of 0.5, 1.0, and 2.0

mm.  In this section, the onset of kinetic growth for snow comprised of mixed grain sizes

is examined.  For the first case, half of the grains had 0.5mm radius and the other half of

the grains had a 1.0mm radius.  The second case used 0.5mm and 2.0mm grains in equal

numbers.  The definition of kinetic growth onset for this study was when the smaller

grains transitioned from decay to growth.  The resulting temperature gradients required

for grain growth are presented in Table 2.

Onset TG(°C/m)
0.5mm   1.0mm   2.0mm

Equally Sized Grains 57 20 7

Half 0.5mm, Half 1.0mm 61 54 n/a

Half 0.5mm, Half 2.0mm 36 n/a 33

The mixed grain sizes are clearly influenced by the smaller grains.  In both mixed

grain examples, the large grain transition temperature gradient increases toward the

smaller grain transition.  In fact, the 1mm grains transition at nearly the same temperature

gradient as the equally sized 0.5mm grains alone.  In one case, the small grain transition

temperature gradient increased slightly when mixed with 1mm grains.  In the other case,

Table 2.  Onset of kinetic growth comparison for snow comprised of equally sized
grains and mixed sized grains.
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the small grain transition temperature gradient decreased significantly.  In both cases, it is

clear that the transition temperature is heavily influenced by the smaller grains.  As

expected, the size of the pore is significant where the majority of the grains influence the

transition.  For the 1.0/0.5mm mixture, the pore appears to be limited by the smaller

grains since the transition is close to the 0.5mm grains alone.  When an even larger grain

size difference is applied in the 2.0/0.5mm mixture, the pore space associated with the

2.0mm grains helps alleviate the vapor flow limitations of the 0.5mm grains.  Overall, the

size of the pore spaces, whether controlled by density or grain size, will be a major factor

determining when kinetic growth may commence.

Summary of Onset of Kinetic Growth Metamorphism

In this section, a new physical definition for the onset of kinetic is proposed.  The

transition of grain decay to growth with increasing temperature gradient is smooth and

continuous.  The onset temperature gradient is examined in light of several

microstructural parameters, with the size of the pore space and grains emerging as the

premier factors determining when kinetic growth may occur.  The pore space can be

changed through density or grain size variations, making the onset a strong function of

both grain size and density.  For high density snow, the smaller pore space limits vapor

travel.  For larger grains, the transition happens sooner due to larger pore spaces and

smaller surface curvature.  While the onset of kinetic growth is not a strong function of

temperature, the overall metamorphic rates are.  Bond size influences the kinetic growth

transition.  For new snow with small bonds, the vapor demand of the necks holds off the

transition to larger temperature gradients.  This seems to imply that older, highly bonded
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low density snow will transition sooner, but snow densification associated with settling

may offset this affect.  This process was not modeled here.  Finally, with mixed grain

sizes, a large number of small grains may fill the pore spaces, limiting vapor travel and

resulting in a greater transition temperature gradient.

Kinetic Growth Metamorphism

Introduction

With the transition to the kinetic growth regime defined, the kinetic model

presented in chapter 2 may be implemented.  Recall the primary faceted crystal habit was

determined from temperature, (figure 8 from Lamb and Hobbs, 1971).  The angle from

the dominant growth direction to the crystal, β, fixed the crystal habit by defining relative

c and a axis growth (figure 9).  While the crystal habit and growth from parent grains

were discussed, the relationship between the crystal and the temperature gradient was not

addressed.  In this section, the variation in parent grain crystal orientation is simulated

and included in the model.  Faceted crystal development is then modeled for various

scenarios.  The resulting model predicts a grain size distribution, depending upon crystal

orientation.  This leads to a discussion of a dominant grain theory for kinetic growth and

potential bonding mechanisms.

Crystal Orientation and Dominant Grain Theory

In chapter 2, a mathematical model of kinetic growth was developed using

research from several authors combined with some original development.  It was
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proposed that faceted crystals nucleate on existing or parent grains, but what

crystallographic orientation do these faceted growth forms acquire?  It seemed logical to

assume that vapor nucleating on existing grains would develop with the same orientation

as the parent grain, but no direct evidence exists in the literature to support this. It is well

established that ice crystals grown from the liquid phase will tend to take on the

crystallographic orientation of the primary structure onto which they develop, but is the

same true for vapor growth?  A laboratory experiment was conducted where ice crystals

were formed from vapor on existing ice with known crystallographic orientation (Adams

and Miller, 2002).  The details of this experiment are provided in chapter 4, but the

results clearly show ice crystals grown from the vapor on existing ice substrates acquire

the same crystallographic orientation as the substrate.

Even though the primary crystal habit is established by temperature, all grains

have the potential to grow as facets.  Certain crystal orientations (relative to the

temperature gradient) may be preferentially oriented for enhanced growth. In light of this,

a hypothesis about some morphologic processes in a snowpack is now presented. 

 Atmospherically formed snow crystals will in general be deposited onto the

ground in a random crystallographic orientation.  When subjected to a temperature

gradient, the “new” crystals will pick up the orientation of the parent (primary/nucleate)

snow grains onto which they accrete. Because the primary crystal habit is determined by

temperature, a particular kinetic growth crystal is at an advantage due to parent crystal

orientation, since it is better positioned to quickly grow deeper into warmer vapor (if it is

not restricted by the proximity of other grains). This will produce a larger temperature

gradient and faster growth at the tip of the crystal. New crystals that are favorably
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oriented could crowd out other less optimally oriented crystals.  Since crystals grow with

the same orientation as the parent grain, and observed depth hoar crystal morphologies

are similar amongst grains in the same snowpack location (Akitaya, 1974a), this

dominant grain theory seems plausible.  An analogous situation exists in the growth of

ice from the liquid phase.  Ice covers grown under quiescent conditions on lakes will tend

toward a c-axis vertical orientation.  The nomenclature on lake ice growth describes this

as S1 ice, where the S represents a secondary growth pattern, which follows the primary,

P, formation (Michel and Ramseier, 1971).  However, ice developing from the liquid

phase has a higher growth rate parallel to the basal plane, due to differences in thermal

conductivity (Lock, 1990).  Therefore, given opportunistic conditions, a vertically

oriented basal plane will grow more deeply into the liquid phase than an adjacent c-axis

vertical crystal.  As this process progresses, vertically oriented basal planes advance

deeper into the warmer liquid, enhancing the temperature gradient at the tip and further

benefiting its natural growth advantage.  Basal plane growth dominance results in

crowding out c-axis vertical crystals and the ice sheet may develop into a c-axis

horizontal preference, referred to as S2 ice.

To study the dominant grain growth scenario, the variation of crystal orientation

relative to the temperature gradient must be established.  In figure 9, the crystal habit was

defined by the angle β from the dominant growth axis to the crystal.  The habit was

determined using the relative crystal growth data as a function of temperature (figure 8

from Lamb and Hobbs, 1971).  Now, the angle from the temperature gradient to the

dominant growth direction is defined by γ.  Figure 30 shows the relationships between the
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crystal, crystallographic axes, and temperature gradient. Given a distribution of crystal

orientations, γ, certain crystals may have a more advantageous orientation for growth.  

Numerical Considerations

Before numerical calculations may commence, some approximations are required.

The crystal growth velocity described in equation (55) requires excess vapor pressure

over the ice surface.  For this analysis, the excess vapor pressure is found from the

difference of vapor pressure in the pore near the tip of the crystal (growth end) and the

dominant grow axis (C or A)

faceted crystal

secondary growth axis (A or C)
TG
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Figure 30.  Relationship between crystal habit (β), crystal orientation
relative to temperature gradient (γ).
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vapor pressure over the ice surface itself.  Since a facet is essentially flat, the Clausius-

Clapeyron equation (38) is used to find vapor pressure over the ice and the vapor pressure

in the pore.  Since a finite difference solution is used, what is the proper temperature of

the ice and pore to use in vapor pressure calculations?  As the crystal grows, its tip may

travel through several pore elements.  To establish the vapor pressure of the pore near the

tip, the current crystal tip location and corresponding pore element is found.  If the tip is

in an element associated with a grain, a spatial linear interpolation between neighboring

nodes is then accomplished to establish the pore vapor pressure.  If the tip is in an

element associated with a neck, the average value of all three element nodal pressures is

used.  Since the neck lengths are generally very small when compared to the grain radii,

the approximation of constant vapor pressure in an element near a neck is reasonable.  As

will be shown later, the faceted crystal growth rates are such that the transition through

neck associated elements is relatively rapid, most of the growth takes place in pore spaces

associated with the grains.  If the crystal tip points up into a cooler part of the vapor, the

excess vapor pressure is negative and clearly the kinetic growth velocity is zero.  The ice

surface temperature is simply taken as the nodal temperature of the crystal attachment

(central ice grain nodal temperature).  Since the thermal conductivity of ice is nearly two

orders of magnitude larger than the vapor, this approximation seems reasonable.  In

reality, the ice tip would be slightly warmer than the crystal root to allow for latent heat

dissipation.  Coupled with the theory and assumptions presented here, the kinetic growth

theory described in chapter 2 may be solved numerically.

Kinetic Growth Simulations
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As the temperature gradient increases, the transition to kinetic growth has now

been established.  Rounded grains are then allowed to grow kinetically with a specific

crystal habit (based on temperature) and orientation relative to the temperature gradient.

The influence of temperature on the growth of faceted crystals is examined, followed by

the influence of crystal orientation.

Facet Growth as a Function of Temperature.  The change in facet growth rate as

function of temperature is not a simple result.  In addition to the temperature dependence

of metamorphic processes due to molecular mobility, the dominant crystal habit changes

as the temperature changes (figure 8).  The growth rates of the a and c-axes are not the

same under identical conditions.  The critical excess vapor pressure in equation (56) is

greater for c-axis growth due to a larger lattice parameter, a0 (Petrenko and Whitworth,

1999).    As a result, under a-axis dominant growth, the crystal grows faster than if the c-

axis dominated under the same conditions. The growth velocity of the dominant axis is

calculated using equation (55).  The combination of these affects on growth velocity is

presented in figure 31.  For ease of comparison, the angle from the crystal to the

temperature gradient was fixed at 20° (the combination of crystal habit and crystal

orientation).  The overall growth rate does decrease with decreasing temperature.  In

addition, the transitions between a and c-axis dominant growth are evident, and take

place at temperatures indicated in figure 8.  The increased a-axis growth rate is apparent.
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Facet Growth as a Function of Crystal Orientation.  Figure 32 shows the variation

in the facet growth velocity with dominant growth axis orientation to the temperature

gradient, γ.  A grain 25% larger than the parent grain was used to show the growth in the

pore element associated with the neighboring neck.  Recall that a constant average vapor

pressure was assumed in the pores associated with necks resulting in a nearly constant

growth rate.  As the crystal is rotated counterclockwise away from the temperature

gradient, the tip enters the pore associated with the grain.  Here, the vapor pressure is

a axis dominant

c axis dominant

Figure 31.  Facet growth vs temperature.  γ+β=20°, ρ=150 kg/m3,
TG=45°C/m, base grain rg=0.5mm, rb/rg=0.6, facet length=0.75mm
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spatially linearly interpolated resulting in a decreasing growth rate as the dominant

crystal growth axis diverges from the temperature gradient direction.  As the crystal is

oriented perpendicular to the temperature gradient, the excess vapor pressure becomes

negative and growth ceases.  If the crystal is smaller than the parent grain, the pore next

to a neck is not encountered by the tip, making the decrease in growth rate smooth and

continuous.  If the crystal is large, several grain and neck associated pores may be

encountered resulting in a “stepped” decrease in growth rate with increasing γ.

growth in pore at neck

facet perpendicular
to TG

Figure 32.  Facet growth rate vs crystal orientation, γ. A axis dominant
with β=9.5°, TG=25°C/m, base grain rg=0.5mm, rb/rg=0.6, facet
length=0.625mm, ρ=150kg/m3
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Facet Time Integration for Various Crystal Orientations.  The faceted crystal

growth problem may be integrated in time using the geometric parameters and mass

terms described in chapter 2.  For this study, four values of the crystal orientation angle,

γ, are used to evaluate the significance of crystal orientation on growth.  Figure 33 shows

the crystal size during 350 hour time integration.  As expected, crystals more aligned with

the temperature gradient grow quickly.  As the crystals grow, the preferentially oriented

crystals are able to reach deeper into warmer vapor sooner than other crystals.

Preferentially oriented crystals grow rapidly due to the larger excess vapor pressure

created as the tip reaches warmer vapor.

γ=0°

γ=30°

γ=60°
γ=90°

Figure 33.  Facet size vs time for different crystal orientations. β=9.5°,
TG=25°C/m, base grain rg=0.5mm, rb/rg=0.6, initial facet
length=0.625mm, ρ=150kg/m3
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In addition to the facet size, the facet growth rate was examined during the same

350 hour time period with the results in figure 34.  The increasing growth rate for a

preferentially oriented crystal is evident.  The crystal growth rate in pore spaces

associated with grains increases in time while the growth rate in pore spaces near necks is

constant.  This is from the interpolation scheme discussed previously.  By examining the

crystals with γ=0°, the increase in growth velocity is evident not only in the slope, but by

the contraction of transition time between neck and grain pores.  It is evident that crystal

orientation is an important factor, critical to determining which crystal may survive at the

γ=0°

γ=30°

γ=60°

pore by grains

pore by necks

Figure 34.  Facet growth rate vs time for different crystal orientations.
β=9.5°, TG=25°C/m, base grain rg=0.5mm, rb/rg=0.6, initial facet
length=0.625mm, ρ=150kg/m3
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expense of other grains.  To further align the crystal with the temperature gradient,

negative values of the crystal orientation angle, γ, are examined next.

Up to this point, the crystal habit angle, β, has been fixed and only positive values

of γ have been evaluated.  Since β is always positive and less than 45°, negative values of

γ may better align the crystal with the temperature gradient (figure 30).  The total angle

from the crystal to the temperature gradient, α, is given by

γβα += . (109)

α combines the effects of crystal orientation and crystal habit by locating the crystal

relative to the temperature gradient.  Figure 35 demonstrates that the location of the

crystal relative to the temperature gradient is a primary factor in determining which

crystals will dominate and survive.  For the problem in figure 35, the crystal habit was

determined using equations (51)-(54) for each faceted grain.  The values of β varied from

42.3°-44.7° depending on the crystal temperature which is a function of crystal location

in the model.  Various crystal orientations were then analyzed.  As previously speculated,

the smaller the absolute angle from the crystal to the temperature gradient, the faster the

growth rate.  While only a few select orientations were evaluated, any grain orientation

distribution could be implemented.  If further research found grain orientations that were

not random, the model could be easily modified to analyze any distribution.
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Numerical Issues.  While the case studies presented in figures 31 – 35 provide

excellent trend data, numerical problems were encountered.  As certain crystals get large,

the heat and mass source terms for those crystals also get large.  When the big crystals

reach deeper into the warmer pore and their growth rate is enhanced, a numerical

imbalance develops between heat and mass source terms of other crystals.  This

imbalance can create convergence problems in the numerical solution.  When evaluating

metamorphism in an equi-temperature environment, this problem does not exist since

there are not large disparities in the values of heat and mass flux between various

elements.  

γ=-30°, α=13.9°

γ=60°, α=104.7°

γ=-60°, α=-17.6°

γ=0°, α=42.3°

γ=30°, α=73.4°

Figure 35.  Facet size vs time. TG=25°C/m, base grain rg=0.5mm, rb/rg=0.6,
initial facet length=0.625mm, ρ=150kg/m3
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The grains were generally able to grow eight to ten times their original size before

convergence problems were encountered.  Crystals were numerically grown up to 0.5 –

0.9 cm in length depending upon temperature gradient and crystal orientation.  For

smaller temperature gradients, larger crystals were obtainable since the growth rate was

lower.  As the growth rates on certain grains become large, establishing a smaller time

step did temporarily postpone numerical problems, but even they would eventually fail.  

This is not a significant limitation in the model’s ability to predict kinetic growth

metamorphism.   Akitaya (1974a) and Marbouty (1980) both experimentally found the

size of the pore space to be a major limiting factor in determining the final size of faceted

crystals.  In dense snow with small pore spaces under large temperature gradients, they

found crystal growth was space limited (even though faceted grains did appear).  The

current model is able to predict growth through many pore elements, increasing the

likelihood of interference with other grains.  In addition, research has seldom (if ever),

reported excessively large grains grown in actual snow.  Strum and Benson (1997)

observed subarctic snow for an entire season where the snow rarely experienced

temperature gradients less than 10°C/m, with an average growth rate that was much

larger.  After more than 120 days, they found average grain sizes less than 5mm in

diameter (using surface section techniques).  Fukuzawa and Akitaya (1993) examined

snow subject to very large temperature gradients (100 – 300°C/m) for tens of hours and

found average grain sizes less than 4mm.  Marbouty’s (1980) experiments on depth hoar

showed similar trends with a maximum grain size of 8mm for snow subjected to 66°C/m

for nearly a month.  Given these conditions, it appears the size limitations in the current

model are reasonable and not considered severe.  There may be actual extreme conditions
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where the model will not be able to grow sufficiently large crystals.  In this case, some

crude approximations will allow growth to continue.

If the crystal size limitations are deemed unacceptable, the troublesome heat and

mass source terms may be reduced or eliminated, allowing the model to execute with no

numerical instability.  When mass source terms are eliminated, the mass leaving the pore

and condensing on the ice is neglected in the mass balance.  In a similar way, when heat

source terms are neglected, the dissipation of latent heat associated with phase change is

eliminated from the heat balance.  This technique is viable but not advised since it

neglects much of the fundamental physics deemed important.  It is envisioned that the

current theory is sufficient for most natural snow conditions.

While not really a numerical problem, another issue arises when some crystals

become large.  Grains exist on each end of the geometric boundary.  If grains near the

boundary are allowed to grow kinetically, they can rapidly outgrow the physical

boundaries of the model, creating a catastrophic error.  This problem is avoided simply

by making a sufficiently large model (hundreds of grains), and not allowing grains near

the boundary to grow kinetically.  Provisions for this are simple and included in the code.

Summary of Kinetic Growth Metamorphism

The kinetic growth theory developed in chapter 2 was expanded to include

crystallographic orientation relative to the temperature gradient.  Further numerical

approximations were discussed to accommodate crystals as they grew through several

pore elements.  Crystal orientation coupled with the crystal habit resulted in grains that
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may grow in a preferential orientation, analogous to lake ice.  This led to a dominant

grain growth theory that may explain the perceived reduction in the number of crystals

while exposed to a kinetic growth environment.  The dependence of growth on

temperature/crystal habit (unavoidably linked) and crystallographic orientation were

demonstrated.  Time integration studies were also presented, further supporting a

decrease in growth rate as crystals misalign with the temperature gradient.  Finally, some

numerical problems and limitations were discussed.

Comparisons and Validation

The numerical studies presented so far have focused on trends and parametric

sensitivities, but with the exception of the onset of kinetic growth, no comparison has

been made with measured data to validate metamorphic values.  Important trends have

been examined with excellent correlation.  While, in theory, comparisons with

experimental data should be straightforward, there are several issues complicating direct

comparisons of model and experimental parameters.  In chapter 2, grain, neck, and bond

geometries were defined for use in this model to describe snow metamorphism.    The

geometry used here is common, but not universally accepted.  As a result, it is sometimes

unclear what measured “size” represents in a particular study.  This, coupled with the fact

that most metamorphic experiments have been phenomenological in nature and not

focused on detailed microstructural properties, make finding suitable comparisons in the

literature challenging.  Grain size is the main parameter measured experimentally, but as

previously discussed, maturity of bonding is emerging as an important snow
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metamorphism parameter.  After reviewing many studies, two were selected for their

rigor of observation and experimental discipline.  One of the studies examined sintering

of rounded grains in an equi-temperature environment while the other reports on kinetic

growth subjected to large temperature gradients.

Equi-temperature Environment Comparison

Hobbs and Mason (1964) studied ice sintering by measuring neck growth rates on

ice spheres 50 – 700 µm in diameter in temperatures -3 - -20°C.  They generated

uniformly sized spheres and brought them into contact in a temperature controlled, vapor

saturated environment.  The dimensions of intergranular necks were observed and

measured optically during growth. They assumed neck geometry very similar to that

presented in chapter 2 and used in the current model.  The focus of Hobbs and Mason’s

(1964) study was not to simply collect sintering growth rate data under controlled

conditions, but to show that vapor diffusion was the predominant sintering mechanism in

an equi-temperature environment.  Earlier experiments and theoretical work had been

incomplete and misinterpreted, leading to the incorrect conclusion that either volume or

surface diffusion control ice sintering (Kuroiwa, 1961; Kingery, 1960).  Hobbs and

Mason (1964) very meticulously shattered this belief and proposed vapor diffusion as the

dominant mechanism.  This hypothesis is still widely accepted today.  The current model

was used to simulate their experiment and compare the results with their measured

sintering data.  The measured data points were carefully extracted from logarithmic

graphs within their paper, and although no systematic bias is anticipated, extracting data
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from the log graphs was difficult and some errors are inevitable.  The experiment was

simulated at two different temperatures for a total of six grain sizes.  

The data and analysis comparison of bond growth vs time is presented in figure

36.  Due to the nonlinear nature of ice sintering, Hobbs and Mason presented their data

on logarithmic plots.  While conducting their experiment, Hobbs and Mason did not

make their first measurements until several minutes after the ice spheres were brought

together, giving different initial times for each experiment.  In fact, they state “spheres

were usually in contact for some unknown time before the first measurement was made.”

Therefore, the first measurements from their experiment were used as the initial

conditions for the model analysis.

The analysis compares very well for the T=-3°C experiment and reasonably well

for the T=-10°C experiment.  In both cases, experimental trend data is captured by the

model.  Hobbs and Mason developed a vapor diffusion theory to simulate the

experimental results.  Their solution is of the form
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where t is time, n is an integer, and B(T) is a temperature dependent function.  Hobbs and

Mason determined n analytically and experimentally.  Equation (110) implies a linear

relationship (with a slope of 1/n) on a logarithmic scale, but clearly the data shown in

figure 36 is not truely linear.  Hobbs and Mason determined experimental slopes and

values of n ranging from 4.2 – 6.2, where the analytic value is 5.  They also recognized 
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T=-3°C

T=-10°C

rg=0.035 mm

rg=0.10 mm

rg=0.22 mm

rg=0.04 mm

rg=0.065 mm

rg=0.15 mm

* Hobbs and Mason
- Current theory

* Hobbs and Mason
- Current theory

Figure 36.  Comparison of Hobbs and Mason (1964) tests with current theory.
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the linearity discrepancy between their theory and data, but attributed it to uncertainty in

their initial conditions.  The current model predicts some of this observed nonlinearly.

The analytical curves in figure 36 are not strictly linear, but may have been so if proper

initial conditions were known.  Hobbs and Mason evaluated a transfer coefficient for

vapor sintering and found observed and computed values agreed to a factor of five.  They

found this difference acceptable given their approximations and experimental error.

While a transfer coefficient was not examined here directly, the model results in figure 36

suggest better correlation than the previous theory.  Hobbs and Mason do recognize the

presence of experimental error, but they do not comment on the size of the error.  

The -10°C analysis does not compare as favorably with experimental data as the -

3°C analysis.  One potential explanation is proposed.  The current theory assumes a

constant diffusion coefficient, D, of water vapor through air, but in reality, diffusivity

decreases with decreasing temperature.  In fact, the water vapor diffusion coefficient at -

10°C is 6.5% smaller than the value for 0°C.  Since a temperature dependent coefficient

is not used in the model, slight over prediction of sintering at lower temperatures is

possible.  Implementation of a temperature dependent diffusion coefficient in the model

would be simple, and is envisioned for future versions.  Even in colder experiments, the

model does an excellent job predicting the highly nonlinear growth of the bonds between

the grains.  Overall, the current theory does an excellent job predicting the sintering in

Hobbs and Mason’s (1964) experiments.
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Kinetic Growth Comparison

Fukuzawa and Akitaya (1993) developed kinetic crystals in the laboratory by

exposing snow to very high temperature gradients.  Their experiment simulated the

growth of faceted crystals near the surface of low density snow on clear cold nights.  To

further understand the relationship between temperature gradient and crystal growth, they

exposed snow to gradients ranging from 100- 300 °C/m for up to 50 hours.  Previous

studies (Marbouty, 1980) had examined kinetic growth features, but at much smaller

temperature gradients. This study was singled out for comparison because the authors

were very meticulous in their experimental setup, conduct, and data collection.  In

addition, the large temperature gradients create rapid growth rates which are deemed

challenging for the current model. 

As previously mentioned, there are no standardized methods to quantitatively

describe the geometry of kinetic growth crystals.  With rounded crystals, grain radii are

generally used as the primary measure of size, but complex kinetic growth crystals do not

lend themselves to such obvious parameters.  In chapter 2, the crystal’s length, measured

from the grain root to its tip, was proposed as a size measure.  Some experimenters use

sieves to determine size, while others analyze images using various geometric

parameters.  As a result, attempting to compare grain sizes between several studies is

difficult.  Fukuzawa and Akitaya (1993) took photographs of their samples and used an

image analyzer to determine grain size.  They designated grain size as the diameter of a

circle with the same projected surface area as the grain itself.  This measure is similar to,

but not identical to the length definition in chapter 2.  For simple structures such as a

hexagonal plate, the two size measures should be alike, but as grains get highly ornate or
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cupped, the measurement methods diverge.  In addition to grain size, Fukuzawa and

Akitaya calculated one standard deviation for grain size distributions.  This measurement

is rarely reported, yet is highly informative.  As the grains grew in their experiments, the

size variation increased.  The increased size variations may be predicted when variable

crystal orientations are considered.  As already shown, variations in crystal orientation

create larger size distributions as preferentially oriented grains outpace their neighbors.

Even though each project utilized a different crystal size definition, the current

model was used to simulate Fukuzawa and Akitaya’s experiments.  For all experiments,

they reported an initial grain size of 0.12mm which was used to generate a model “base”

of round grains.  Facets with various crystal orientations were then allowed to grow from

the base grains.  For the test temperature of -16°C, the crystal habit was a-axis dominant

with β=19.5-20.5° (depending upon location in the temperature gradient).  In order to

“jump start” the growth of kinetic crystals, the facets were given an initial length of

1.25rg - 1.5rg.  The current model places the facet root at the center node of the parent

grain (figure 30), but nucleation may take place elsewhere on the grain or necks.  As a

result, some nucleation sites may be preferentially located for superior growth, analogous

to preferential crystal orientation.  Since several nucleation sites on the same grain are not

currently considered, the initial facet size was selected to allow some crystal edges to

initially extend just beyond the base grain, as would be the case for nucleation on a

warmer part of the grain or neck.  Size increases on the order of 25% – 50% worked well,

but the selection was primarily subjective, based on comparisons with the test data.

Figures 37 and 38 present the model and experimental data comparisons.

Fukuzawa and Akitaya’s observed average size and one standard deviation (represented
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by the vertical bars) are presented in each of the graphs.  Temperature gradients of 200

and 250 °C/m for an initial crystal size of 1.25rg are in figure 37, and temperature

gradients of 150 and 159 °C/m for an initial crystal size of 1.5rg are in figure 38.  In all

cases, the model initial grain size falls within the standard deviation of the measured

grains.

In figure 37 for the 200°C/m experiment, the model accurately predicts the

observed grain size and distribution.  The increase in grain size differences result from

varying crystal orientations, providing some physical explanation for size variation

increases.  As the temperature gradient increases to 250°C/m, the model does not track

the experiment as accurately.  In the initial stages (first 24 hours), the model predicts the

experimental results reasonably well, but starts to diverge from the experiment as the

grain size increases.  In all four experiments analyzed, the one standard deviation

maximum size never exceeded 0.55mm, even under very large temperature gradients.  It

seems logical to expect some interference between grains growing and contacting

neighboring grains, especially when they become large.  The current model does not

account for growth limitations created by finite pores, potentially accounting for the

overestimation of growth.  Figure 38 presents the results of two more experiments.  The

model’s correlation with experimental data is good, but appears to be under predicting

growth as grains get larger.  
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Figure 37.  Kinetic growth validation, TG= 200, 250°C/m, initial size1.25rg.
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Figure 38.  Kinetic growth validation, TG= 150, 159°C/m, initial size1.5rg.
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Summary of Numerical Studies

Numerous numerical studies were presented in this chapter to demonstrate the

versatility and accuracy of the theory and model proposed in chapter 2.  The numerical

model has proven useful in studying various parameters and their influence on dry snow

metamorphism subjected to a variety of thermal environments.  Several microstructural

and environmental applications were used to show the model’s ability to predict many

well known trends.  

In an equi-temperature environment, metamorphism of equally sized grains was

examined as a function grain size, temperature, density, and bond size.  Microstructural

temperature gradients developed, resulting in heat and mass flow driving mass from the

grains to the necks through the vapor.  Rapid sintering resulted from small grains, smaller

bonds, and higher temperatures.  Density did not have a large influence on

metamorphism in an equi-temperature environment.  Mass was generally conserved

between individual grains and necks, reinforcing the insignificance of density due to local

vapor movement.  Comparisons with experimental sintering data showed excellent

correlation in trends as well as measured growth rates.  Analysis of unequally sized

grains showed large grains growing at the expense of very small grains, but the rate and

required size differences varied with bond size.

A definition for the onset of kinetic growth was proposed.  The influences of

grain size, density, bond size, and temperature were examined.  Unlike equi-temperature

studies, density emerged as a major parameter determining when kinetic growth may
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begin.  As expected from the onset definition, smaller grains delayed the onset of kinetic

growth.  The onset of kinetic growth did support widely accepted limits, but also

provided further insight into how and why the transition happens.

Prior to kinetic growth studies, a crystal orientation scenario was introduced and

added to the numerical model.  Kinetic growth was analyzed as a function of temperature

and crystal orientation.  The resulting grain size distributions increased as the growth

process was allowed to progress.  Some grains were preferentially oriented for superior

growth while others grew at lower rates.  The model did a reasonable job at predicting

several laboratory experiments from the literature where snow was subjected to very

large temperature gradients.

Overall, the model predicts many previously experimentally observed snow

metamorphism trends.  It is also capable of studying many parameters and their influence

in metamorphism simultaneously.  The possible combinations of microstructural and

environmental scenarios that may be investigated are endless.



135

CHAPTER 4

EXPERIMENTS AND METHODS

Introduction

In this chapter, several experiments and corresponding techniques are presented.

Since the current research has focused on microstructure in a snow metamorphism model,

the experiments will also emphasize microstructure.  Before any experiments are

presented, snow microstructural preservation and observation techniques are discussed.

Optical, scanning electron microscope (SEM), and computed tomography (CT) imaging

of snow microstructure are presented so that the reader can understand their applications

when utilized in the actual experiments. 

Several experiments are then proposed and their results presented.  These

experiments provide insight into certain aspects of snow metamorphism that have not

been previously published.  The experiments are designed to support assumptions used in

the model development, observe and confirm the existence of microstructural features

elucidated by the model, and to provide some realistic applications of snow

metamorphism.

Preserving Snow Microstructure
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When snow is collected from a field or laboratory environment, it is desirable to

halt all metamorphic processes in order that the existing microstructure may be examined

in detail at a later date.  The most common technique for stopping metamorphism

involves placing a substance in the pore spaces thereby removing the water vapor that

contributes to metamorphism.  This method does not stop all metamorphic processes

since lattice, grain boundary, and surface diffusion may still be active.  As discussed in

chapters 1 and 2, vapor diffusion is considered dominant, while all others transport

mechanisms are assumed insignificant.  As such, pore filling is the common method for

long term preservation of microstructure. 

Two materials are commonly used to fill pore spaces.  Perla (1982) used dimethal

phthalate to stop sintering and preserve snow. Dimethal phthalate is a relatively benign

material with a freezing point of -10°C.  The material may be kept below 0°C yet above

its freezing temperature and poured into snow samples to fill the spaces.  If the sample is

cooled below -10°C, the dimethal phthalate freezes making the entire sample solid.  The

microstructure may then be examined at a later date by surface sectioning or

nondestructive techniques.  While dimethal phthalate has been used extensively, there are

several issues that make its use challenging and frustrating.  Maintaining dimethal

phthalate in liquid state at sub-zero temperatures is difficult.  Also, dimethal phthalate is

relatively viscous at low temperatures, resulting in incomplete pore filling on many types

of snow samples (high density samples in particular).  Some nondestructive inspection

techniques, such as CT imaging, measure density differences to get accurate images of

each material.  The solid phases of dimethal phthalate and water have very similar
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densities, creating difficulty in obtaining high contrast CT images.  After considering this

information, an alternative to dimethal phthalate was investigated.

Brun and Pahaut (1991) used isooctane (2,2,4 – trimethyl pentane) to preserve

detailed snow microstructure for several months.  Isooctane is a common gasoline

additive that is readily available and reasonably priced (~ $35/gal).  It has a very low

viscosity at the low temperatures (0 - -20°C) for suitable pore filling.  Since isooctane has

a freezing point of -108°C, the ice microstructure is surrounded by liquid isooctane for

the vast majority of snow storage conditions. The difference in ice and isooctane densities

is enough to allow CT imaging of snow samples with isooctane filled pores. Brun and

Pahaut (1991) placed disaggregated snow grains from the field in subfreezing isooctane,

transported them to the laboratory, and stored them for several months.  Their study

showed excellent retention of detailed microstructure, even of very high energy surface

features.  They suggest the use of isooctane in any situation where microstructure

investigation must take place at a different location or time.

A simple laboratory demonstration was conducted to verify the microstructure

preservation capabilities of isooctane.  A sample of well developed faceted snow was

carefully disaggregated with some grains placed in isooctane while other grains were left

in an enclosed air environment.  The grains were examined optically under a microscope

at the end of three months of storage.  The grains stored in the air showed significant

rounding and degradation of sharp high energy features while the grains held in isooctane

appeared sharp and ornate.  In fact, no change in the grains placed in isooctane was

discernable.  Since this simple demonstration essentially verifies Brun and Pahaut’s

experiments, the resulting images are not presented here.  While Brun and Pahaut did not



138
use isooctane to preserve in situ samples, the simple extension to use isooctane as a pore

filler is assumed reasonable.  Several snow samples were placed in a 30 ml plastic

Nalgene container and saturated with isooctane.  A syringe was used to inject the

chemical from the bottom to allow the air and water vapor to escape.  For low density

samples having large pore spaces, the isooctane completely filled the pores.  In higher

density snow (>400 kg/m3), some small voids were periodically visible, but tended to fill

when left overnight.  Isooctane was used to stop metamorphism and preserve all snow

samples in this study.  With snow samples indefinitely preserved, the methods used to

examine the detailed microstructure of snow are presented next. 

Visible Optical Techniques Used for Observing Snow Microstructure

Visible observation is the most commonly used technique for examining snow

microstructure.  Due to the small size of most snow grains, optical magnification is

usually required.  In the field, hand held loupes with magnifications of 10 – 25x are

common.  In the laboratory, microscopes with camera penetrations allow researchers to

vary magnification and record results.  While visual observation is the most common,

easy, and simple technique, significant difficulties can hinder its scientific use for some

applications.  In situ examination of snow under a microscope is very difficult.

Disaggregation is usually required, although small areas may be examined with little

disturbance.  The visible transparency of ice makes simultaneous imaging of several

neighboring features difficult.  As magnification increases, the optical depth of field

decreases.  The three-dimensional nature of snow prohibits all features from existing in
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the same focal plane.  As a result, it can be difficult to get all the interesting features in

focus for a single image.  The shallow depth of field places practical limits of

magnification to less than 100x (author’s opinion).  On the positive side, optical

microscopic imaging of snow exposes the very dominant features of the microstructure in

a way humans are used to seeing them.  Grain structure and crystal habit are readily

apparent under the microscope.

A Wild M5A trinocular microscope was used for all the visible optical

microstructural images presented in this dissertation.  This microscope has variable

magnification of 15 – 75x with binocular viewing and camera port.  The system has

transmitted incandescent and reflected fiber optic lighting systems.  The fiber optic light

ensured minimum heat transmission to the samples during illumination.  Figure 39 shows

four examples of different snow morphologies and lighting conditions captured using this

system.  The grain characteristics are obvious, emphasizing the utility of this technique.

The shallow depth of field is especially apparent in (d) of figure 39.  All images were

taken with 35mm transparency film (Fuji Velvia, ISO 64) and then digitized.
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Low Temperature Scanning Electron Microscope Imaging of Snow Microstructure

In order to achieve high magnification, increased depth of field, and to view

detailed surface features (masked in optical images due to ice transparency), snow was

examined in a low temperature scanning electron microscope (SEM).  A JOEL 6100

a b

c
d

Figure 39. Examples of optical microscope imaging.  (a) Depth hoar, top reflected
light.  (b) Depth hoar, transmitted light.  (c) Equilibrium form, transmitted light.  (d)
Columns, side reflected light.
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SEM with cryogenic chamber (-170°C capability) was used to examine surface details.

Wergin et al (1996) developed techniques for collection and storage of remotely collected

samples that were imaged on a low temperature SEM.  Wergin et al (1996) mounted

samples to SEM palettes with Tissue-Tek® then plunged collected samples into lN2 for

transport and storage.  Their procedures were initially adopted, but later modified.  While

detailed procedures are not described here, some important issues are discussed.  The

boiling of the lN2 greatly agitated samples, creating damage and frequent sample loss

prior to imaging.  An alternative technique was developed where the samples were kept

cold, yet not immersed in lN2.   Short sublimation was normally required to remove any

surface condensation that occurred during handling and preparation.  Sublimation

occurred between -80 and -110ºC until the accumulated surface condensation

disappeared.   Samples were imaged with either a thin (<9 Å) coating of Au or with no

coating at all.  Due to the porous nature of snow, poor electrical connections made

imaging difficult, even when gold coated.  Frequent sample charging was generally

avoided by using lower accelerating voltages and magnifications.

Figure 40 shows four examples of typical snow SEM images.  The high

magnification capabilities are evident in the grain boundary ridge image (b).

Magnifications in excess of 30000x were demonstrated.  While not discussed in detail

here, the discovery of grain boundary ridges was a direct result of the SEM imaging

capabilities.  Grain boundary ridges provided physical evidence of grain boundary

diffusion between crystals (Adams et al., 2001).  Figure 40 (c) and (d) demonstrate the

capability of the SEM to capture detailed and complex surface features.  In optical
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microscopy, many of these details are masked by ice transparency and shallow depth of

field.  

While providing some excellent results, the low temperature SEM imaging of

snow was not a simple task and involved significant trial and error.  Operating the SEM

with cryogenic stage was very expensive ($60/hr), making frequent trials costly and

frustrating.  Even though sample in situ imaging is not possible, exposure of detailed

surface features and/or high magnification capability make low temperature SEM a

powerful surface imaging choice.

a b

c d

Figure 40.  Examples of scanning electron microscope imaging.  (a) Equilibrium
form snow, low magnification.  (b) Increased magnification of area indicated in
(a) showing grain boundary ridge.  (c) Transition between faceted grain and bond.
(d) Bond between faceted grains.
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X-ray Computed Tomography Imaging of Snow Microstructure

In computed tomography (CT) imaging, the internal structure of snow may be

nondestructively examined.  Samples may be prepared such that little or no disturbance

of internal structure occurs, approximating the in situ configuration.  Important geometric

properties of snow microstructure may be examined.  Due to the nondestructive nature of

CT imaging, snow metamorphism may be progressively studied by periodic scanning of

the same snow sample (Lundy, 2000).  This provides a very powerful tool in

understanding time varying metamorphic parameters.

In CT imaging, a collimated x-ray beam is transmitted through a sample to a

phosphor fluorescent screen.  Due to differences in x-ray absorption of dissimilar

materials, the screen fluoresces with variable intensity, which is recorded by a digital

camera.  After each image is recorded, the sample is rotated about a fixed vertical axis

through a preset angular increment and imaged again.  This is repeated until the sample

has rotated through 360°.  The total number of images is dictated by the angle between

subsequent images.  With smaller angles, higher quality images are produced, but longer

scan times result.  The series of images are then “reassembled” to produce a grayscale

planar image of the x-ray’s path through the sample.  If multiple serial planar images are

obtained, three-dimensional reconstructions are possible.

The Montana State University, Department of Civil Engineering CT scanner

system was custom designed and built by Synergistic Detector Designs.  The x-ray source

was manufactured by Seifert X-Ray Corporation.  
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CT Scanner Set Up

Sample Container and Cold Chamber.  To simplify scanning activities, all

experiments requiring CT scanning used the same sample container.  Thirty ml Nalgene

polycarbonate wide-mouth sample jars housed all CT samples.  Polypropylene containers

were examined, but were rejected due to their inability to retain isooctane for long

periods of time.  To keep the samples cold during imaging, a special chamber was built to

hold both the sample and dry ice.  The chamber consisted of a 2 foot section of 3 in

diameter PVC with sample and coolant areas built inside. Dry ice was packed above and

below the sample leaving a large surrounding air space in the plane of the x-ray for clear

imaging.   Chamber temperature was monitored with a T-type thermocouple to ensure

that subfreezing temperatures were maintained during imaging.

X-ray Source Position 505mm

Sample Position 86mm

Optical Lens Position 190mm

CCD Position 325mm

Resolution 40.588 µm/pixel

X-ray Voltage 160 kv

Exposure time 4.5s

Scan Angle Increments 0.5°

Table 3.  X-ray CT scanner settings.
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CT Scanner Configuration.  The CT image resolution is determined by the

relative positions of the sample, x-ray source, and camera.  For the sample container

described above, the parameters given in Table 3 yielded a resolution of 40.588 µm/pixel. 

Image Processing

The x-ray CT process results in 16 bit (65,536 shades of gray) 1024 x 1024 pixel

images where higher density materials appear lighter and lower density materials are

darker.  The grayscale images expose the internal detail and gradual transitions between

materials.  To study internal geometry, established stereological software was applied to

the scans.  Edens and Brown (1994) presented a very comprehensive approach to

measuring and evaluating microstructural features from digitized surface section images.

They developed a detailed stereological approach to quantify three-dimensional features

from two-dimensional binary images.  In order to extract the binary images required for

the stereology software, the raw gray scale CT images were processed to precisely

differentiate between ice and pore structures.

The raw CT images required smoothing to eliminate scan noise.  This smoothing

process was somewhat subjective, and great care was taken to ensure that noise, not data,

was eliminated during the smoothing process.  After evaluating several smoothing

techniques, a gaussian blur method was selected.  In a gaussian blur, a gaussian weighted

value is applied in a user defined pixel region.  A simple experiment was designed to

determine the size of the smoothing region.  A snow sample was scanned with no pore

filler.  On the resulting image, the transition from ice to pore was very obvious, but as
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usual, the image was somewhat noisy as evidenced by single pixel discontinuities

surrounded by relatively continuous values.  The gaussian blur pixel radius was increased

until the majority of the image noise (discontinuities) was eliminated.    While this was a

subjective determination, the large density difference of ice and air made the transition

obvious.  This image was used as a control to determine the proper pixel radius

smoothing for samples filled with isooctane.  Since isooctane and ice densities differ by

only 25%, the smoothing cut off was not as crisp as it was for ice and air.  The same

snow sample was then filled with isooctane, and scanned again.  The gaussian blur area

was increased (to 2.5 pixels) until the image with isooctane and ice looked like the image

with air and ice.  A 2.5 pixel gaussian blur was then used on all CT images of snow filled

with isooctane.  

After the images were smoothed, grayscale images were converted to binary for

use in the stereology software.  A square image was extracted from the circular sample.

This was done to eliminate the container from any binary cut off calculations and for

input to image processing software.  The density of each sample was measured prior to

isooctane insertion.  Since the actual density of each sample was known, the area fraction

of snow and ice is also known.  Using this information, the pixel value for binary cutoff

was increased until the proper area fractions between ice and pore were established.  This

iterative calculation was programmed in a macro language provided with Scion Image, an

image processing software package.  The resulting binary image was then used in the

stereology software to evaluate snow microstructure.



147
Figure 41 shows examples of a raw CT image (a), the square area selected for

evaluation (b), a smoothed grayscale image (c), and binary image resulting from

threshold iteration (d).   In the raw and smoothed images ((a),(b), and (c)), the ice 
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Figure 41.  X-ray CT image processing.  (a) Raw CT image.  (b) Raw CT image
with square area selected. (c) CT image smoothed with 2.5 pixel gaussian blur.
(d) Binary image based on sample density.

a b

c d
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network appears lighter in color while the ice is black in the binary image.  In the raw

image, the hole made by the syringe that injected the isooctane is evident in the upper left

region.  The smoothed image in figure 41(c) was then used to iterate the binary cut off

threshold until the proper area ratio was obtained, resulting in the binary image in figure

41(d).  A qualitative examination of the images shows that the primary features of the

raw image are visible in the final binary image.  While some data is clearly lost in the

smoothing and binary thresholding operations, the error appears small as major features

are retained throughout the process.  The images in figure 41 are much clearer and crisper

in digital form than in the printed form of this report.  Printer resolution and shading

limitations reduce the hard copy accuracy.  The printed representation is really not

important since image processing was conducted on the digital representations.

Orientation of Crystals Grown from the Vapor Phase on Existing Ice Substrates

Experiment Background and Objective

In chapter 3, a detailed model was developed for kinetic growth based on crystal

orientation.  It was postulated that certain crystal arrangements are preferentially oriented

for superior growth.  The hypothesis was based on the assumption that crystals grown

from the vapor on existing ice would acquire the same crystallographic orientation as the

parent grain.  While this has been demonstrated for ice grown from the liquid phase, no

direct evidence supports an analogous situation when crystals are grown on existing ice

from the vapor.  A laboratory study was designed to verify the supposition that

heterogeneous nucleation and growth from the vapor phase will result in crystals with the
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same crystallographic orientation as a large crystal ice substrate (Adams and Miller,

2002).

Methodology

Large ice crystals, with known crystallographic orientation, were used as “parent”

grains on which new crystals would nucleate and grow from the vapor phase.  By optical

examination of the new crystals, it can be determined if crystals grown from the vapor

phase retain the parent grain orientation.

An ice core sample taken from Lake Bonney, located in the McMurdo Dry

Valleys, Antarctica, was used as substrate for the crystal growth experiment.  Lake

Bonney has about 4 m of ice cover composed, (at least in the lower regions) of S1 ice

(Adams et al., 1996).  As described in chapter 3, S1 is the secondary growth pattern with

the c-axis vertically oriented ice, as is the case with lake ice grown under quiescent

conditions. A universal stage for ice (Langway, 1958) was employed to determine the

crystallographic orientation and to verify the S1 structure of a sample from 2.4 m below

the lake ice surface.  Utilizing the fact that the c-axis is the optic axis in ice, the

instrument uses a four-axis universal stage onto which is placed a thin sample of ice.

This is positioned and manipulated between cross-polarized plates, which provide a

means to determine the spatial orientation of the optic axis.  From the S1 ice, two thin

(approximately 2 mm thick) plates were cut from the 8 cm diameter core.  One of the ice

coupons was cut so that the c-axis was contained in the thin plane of the sample while the

other coupon had the c-axis perpendicular to the thin dimension.  The ice samples were

then mounted to a plexiglas plate.  Once attached to the plexiglas, the samples were



151
slightly melted by simultaneously placing the exposed faces of both ice samples in

contact with a “warm” aluminum plate.  This provided a smooth surface as well as a

uniform thickness for both ice coupons.  The very thin liquid layer resulting from this

melt adopted the crystal orientation of the substrate upon freezing, as was verified using

cross polarization.  The experiment was also executed when the ice surface was prepared

using a razor blade.  

A small, insulated box, shown in figure 42, was constructed in which the plexiglas

plate was used as a top seal.  Snow was placed in the box with a ~3 cm gap between the

snow and the ice samples.  The package was placed on a -1 C° plate in a -17 C° cold

laboratory to establish a temperature gradient and thus a supersaturated environment at

the ice coupon.  One ice sample’s c-axis was parallel to the temperature gradient

(vertical) and the other ice sample’s c-axis perpendicular to the temperature gradient

(horizontal).  The ice temperature, measured by placing a T-type thermocouple in contact

with the ice, remained near  -12 C° throughout the experiment.  The resulting temperature

gradient created a vapor flow from the snow to the ice coupon surfaces where new

crystals nucleated and grew.

Crystal development under the conditions described was examined by daily

removing the plexiglas plate with the attached ice coupons from the insulated box.

Crystals were photographed using the Wild M5A trinocular optical microscope with

photographic mount.  The experiment was repeated several times with each test lasting

between seven and ten days.
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Results and Discussion

Examination of the substrate coupons after a few days revealed multiple

individual crystals on each of the flat surfaces of the large c-axis vertical and horizontal

crystal surfaces.  These crystals developed in the same orientation as the large substrate

crystals in both crystal configurations (c-axis horizontal and vertical).  The in situ crystals

are shown in figure 43.  In the c-axis horizontal sample (figure 43 (c),(d)), the crystal c-

axes are also parallel, which is analogous to S3 ice grown from the liquid.  S3 ice is
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Figure 42.  Experimental configuration for crystal growth on existing ice from
the vapor phase.
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defined as the c-axis being parallel as well as horizontal.  The hexagonal orientations of

the c-axis vertical crystals (figure 43 (a),(b)) are also uniformly oriented with regard to

the six prism faces.   Hollow hopper type crystals were well developed on both the basal

and prism faces (figure 43 (b),(d)). It should be noted that scratches, corners and

imperfections all showed enhanced growth rates.  In fact, the well developed prism face

crystal seen in figure 43 (c) developed on an edge of the c-axis horizontal ice coupon.

Even across the flat relatively uniform substrate surfaces, there was a variation in growth

rates.  Off the ice plates, on the plexiglas substrate, crystals also developed but no

preferential orientation could be discerned.  Well-developed cup shapes were not

apparent on the plexiglas growth, although partial cups and columns were evident.

This experiment clearly demonstrated that crystals grown from the vapor phase on

large existing crystals obtain the same orientation as the parent grain.  Even though this

experiment was limited to large parent grains, it is assumed that the same process would

result as vapor condenses on small ice grains in a snowpack during kinetic growth.  This

experiment validates the assumption used in chapter 3 for the development of kinetic

crystals.
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Kinetic Growth Experiment

Experiment Background and Objectives

To gain further insight into the development, growth, and progression of kinetic

growth forms, an experiment was designed to examine the microstructure of snow

2 mm

1 mm
1 mm

1 mm

a
b

c
d

Figure 43.  Ice crystals grown from vapor phase onto existing ice substrates.  (a) and (b)
formed on crystals with c axis parallel to the temperature gradient.  (c) and (d) formed on
crystals with the c axis perpendicular to the temperature gradient.
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subjected to a temperature gradient.  Initially, the objective was to further validate the

kinetic growth section of the model by providing time domain microstructural data in a

kinetic growth environment.  As will be discussed later, the stereology software had

difficulty measuring the transversely isotropic microstructure, leaving a weak validation.

Another objective was to gain further qualitative understanding of the kinetic growth

process in snow.  The third objective was to produce mature depth hoar so that

intergranular connections could be examined.

Methodology

To examine the detailed microstructural features and development of faceted

snow types, depth hoar was grown in a laboratory setting.  Natural snow was collected

from the Bridger Range, MT and transported to the laboratory.  The collected snow had

fallen approximately 36 hours prior to collection.  The snow was placed in a 0.5m cubic

box with insulated sides and open top and bottom.  The box was lined with plastic to

minimize any vapor loss to the environment.  The box was placed in a -17°C cold room

on a heated plate.  The hot plate maintained the bottom temperature at between 0 and -

1°C.  T-type thermocouples were placed in the snow at 10 cm intervals and temperatures

were recorded every fifteen minutes.  The box had a removable side panel that allowed

access to the snow profile for examination and sample collection.  The experiment was

allowed to run for 41 days.

Periodically, the removable panel was separated from the box, exposing the snow

vertical section.  Samples were collected in the 30 ml Nalgene containers at 5 and 20 cm

above the hot plate located at the bottom of the snow sample.  The sample containers
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were pressed into the snow wall until they were filled and then were carefully excavated.

The samples were then filled with isooctane to halt metamorphism and preserve the

microstructure.  The box panel was replaced, and any resulting voids were filled with

snow.  Subsequent samples were collected in areas untouched by previous collections. 

With the samples preserved, they could be imaged in the CT scanner.  Using the

techniques described earlier in this chapter, each sample was scanned, the resulting image

smoothed, and finally a binary image was produced based on the snow’s density.  The

experimental configuration, sample collection technique, and imaging process yielded an

image in the plane of the temperature gradient.  Previous efforts used the CT scanner to

examine microstructure in a plane perpendicular to the temperature gradient (Lundy,

2000). The binary images were then evaluated using stereology software (Edens and

Brown, 1994).

Results

Table 4 summarizes the elapsed time, location, grain size, density, and general

characteristics of the snow samples collected from the temperature gradient experiment.

Densities were measured with the known volume container.   Grain type and size were

somewhat subjective and based on personal observation using a 25x hand lens.  Grain

size is based on largest dimension of the crystal, such as diameter for rounded forms.
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Elapsed
time (day)

Height (cm) Size (mm) Density
(kg/m3)

Comments

0 5,20 0.5 – 0.75 245 Initial sample.
Decomposing, partially
rounded particles

8 5 0.75 – 1.25 222 Small facets forming
8 20 0.5 – 0.75 241 Rounded grains
19 5 1.5 – 2.0 253 Mature facets, striations

visible
19 20 0.75 – 1.0 258 Rounded with facets

visible and forming
29 5 1.5 – 2.5 289 Long chains visible
29 20 1.0 – 1.5 305 Mature facets, striations

visible
41 5 not measured 311 Starting to hollow out

due to mass loss, last
sample

41 20 not measured 311 Mature facets, striations
visible.  Chains
developing

Table 4.  Sample observations from kinetic growth experiment.

Binary Images.  After CT scanning and image smoothing, binary images were

obtained for all the samples.  The binary images for samples collected at 5 cm are given

in figure 44.  Figure 44 shows the development of large faceted crystals as time

progresses, and in the later stages of the experiment, large mesopores or pore channels

are evident parallel to the temperature gradient.  The crystals became oriented in long

ornate chains.  Similar images were obtained for the samples collected at 20 cm, but

growth and development was slower due to the lower temperature gradient (~35°C/m).
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Figure 44.  Binary images of snow 5 cm from bottom in kinetic growth experiment.
(a) 0 hours, (b) 8 days, (c) 19 days, (d) 29 days, (e) 41 days.  Average temperature
gradient 61 °C/m.

a b

c d

e
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Model Simulation of Kinetic Growth Experiment.  The first objective of this

experiment was to provide further validation of the kinetic growth model by comparison

to experimental data.  Originally, the experimental microstructural parameters were to be

measured using Eden’s (1994) stereology software from binary CT images.  The highly

transversely isotropic nature of the resulting snow proved very challenging for the

software.  Since the stereology package was designed to find three-dimensional

parameters from two-dimensional images, an isotropic microstructure with spherical

grains was assumed in its development.  After bonds, necks and grains are defined, the

largest diameter circle that fits within each grain is calculated.  This diameter is used to

find the grain radius.  Because the CT scans were taken in the plane of the temperature

gradient, long, narrow grains were evident in the images.  As a result, the grain radius

calculated by the software was excessively small and deemed unreliable.  This is not a

reflection on the quality of the stereology package since these transversely isotropic

samples were well outside the program’s designed capability.  In order to capture some

useful data from the scans, a different parameter was used as a crude measure of grain

size.  After bonds were defined, the average grain “size” was taken as the ice mean

intercept length from the binary image.  Since the crystal size defined in chapter 2

involved the length of facets, the mean intercept length is considered to be a better size

definition than the grain radius given by the software, although this too is considered to

be a crude approximation and a significant underestimation of size.  With the image

representing a planar slice only, it is unlikely that entire grains are contained in the

image.  Any small out of plane tilt results in only a portion of the grain being imaged.  As
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such, the ice mean intercept length is considered a lower limit on grain size.  On the other

hand, the size observations in table 4 are considered an upper limit on size.  These sizes

were based on optical observation of grains placed on a meshed grid.  It is commonly

believed that this technique over predicts size since the human eye may be drawn

naturally to larger features.  In any case, it too is a crude, inaccurate technique, but is

included as an upper bound on grain size.  For the initial sample, composed primarily of

rounded grains, the optical grain sizes and software stereology grain sizes agreed, as

expected for rounded forms.  This initial grain size was used to begin the numerical

simulation of the experiment.  Grain orientations and an average temperature gradient

were then applied.  The experiment and simulation grain growth results are given in

figure 45.

The dominant crystal orientations from the model fall in between the lower bound

CT observations and upper bound optical observations.  This result is useful in

considering model validity, but really points to the need for standardized definitions and

measurement techniques for kinetic growth forms.  It is hard to evaluate the adequacy of

a modeling approach when measures of actual snow structure are uncertain.  Clearly,

some trends are predicted by the model while others are not.  In the model, crystals

continue to grow in the large temperature gradient while the experimental grains seem to

reach a maximum size after an extended period.  There are two reasons why the actual

grain growth appeared to cease.  First, as grains get larger, the chances of interference

from other grains increases.  If a grain contacts other ice structures in a warmer (lower)

part of the snow, a thermal short circuit develops and growth rates decrease.  Currently,

the model does not account for limited growth space and thermal shorts.  Secondly, in the
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laboratory experiment, the boundary at the hot plate does not supply vapor to the flow.

As a result, as vapor diffuses from warmer to cooler sections of the snow, undersaturated

conditions must develop in the pore near the hot plate.  This requires the sublimation of

snow in lower sections to supply the upper reaches of the experiment.  The actual impact

of this on growth rates is unknown, but it is believed that the growth rate transitions from

negative to positive over some region above the hot plate, as dictated by saturation

conditions.  Since the model utilized temperature boundary conditions and assumed

saturated conditions in the vapor everywhere (Clausius-Clapeyron equation), this variable

growth rate is not predicted.  A hollow area that developed near the hot plate after

approximately four weeks provided evidence to mass redistribution.  Lundy’s (2000)

experiment experienced the same phenomena.

The experimental analysis, as presented in figure 45, provided some additional

validation, but given the uncertainties in measuring the actual microstructure, did not

provide the detailed evaluation originally envisioned.  The kinetic growth validation

presented in chapter 3 was more rigorous.  While the quantitative results were

disappointing, the qualitative aspects of the experiment were very valuable.

The experiment did provide well developed depth hoar samples suitable for

further qualitative analysis. The transition from smooth, rounded forms to sharp faceted

kinetic forms was evident as the experiment progressed.  The regions with larger

temperature gradients developed facets sooner and they grew at a higher rate.  This

progression was successfully documented with the CT scanner.   As the growth matured,

large ornate oriented crystals developed.  While the crystal development was interesting,

the crystals themselves have been the focus of substantial past research.  The bonds that
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were observed between the grains gave insight and encouragement to the dominant grain

theory.

Examination of Kinetic Growth Bonds.  The SEM images in figure 46 clearly

reveal several cleanly fractured bonds of equilibrium form snow.  In all SEM imaging,

failures and fractures of the snow microstructure were observed in the bond region.

Snow strength should be a strong function of the relative bond to grain radii ratio and

grain coordination number.  Similarly, the interconnections between depth hoar grains

x – 5cm optical
∇ - 20cm optical
∗ - 5cm CT
◊ - 20cm CT

γ=-30°

γ=-60°

γ=0°

Figure 45.  Comparison of model and measured grain facet sizes in kinetic
growth environment for various crystal orientations.

γ=30°
γ=60°
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may provide insight into the strength and stability of snow composed of these faceted

crystals.  

The dominant grain theory developed and analyzed in chapter 3 focused on

faceted grains only.  While certain crystallographic orientations were identified as having

very low growth rates, there was no mention of what happened to those crystals as the

optimally oriented grains out-pace them.  As previously mentioned, faceted crystals

within a localized region exhibit similar morphologies (Akitaya, 1974).  This, coupled

with the results of the crystal orientation experiment and model, supported the postulated

Figure 46.  Scanning electron microscope of typical equilibrium form snow. Enlarged
image showing fractured bonds.
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dominant grain theory.  During kinetic growth, it has been reported that the number of

grains decreased (Sturm and Benson, 1997), but is this really the case?  Could this

numeric crystal reduction be attributed to observation of only large dominant grains?

Examination of the intergranular connections or bonds between large faceted crystals

provided insight into the disposition of less optimally oriented grains.  The temperature

gradient experiment provided excellent samples to examine these grain connection

regions. The SEM images in figure 47 display the bond region for kinetic growth crystals.

These images serve to further support the dominant grain growth theory hypothesized.

In the presence of a sufficiently large temperature gradient and, therefore, mass

flux, numerous heterogeneous nucleations may activate on each grain, inheriting that

orientation, as was demonstrated in the study on the large crystallographicly oriented

substrates (figure 43).  When a locally preferred crystal growth environment dominates,

less ideally oriented crystals will have their advance curtailed.   In a supersaturated vapor

environment, many of the original grains likely remain, ensconced under the

conglomeration of truncated kinetic growth crystals.  Multiple abridged crystals may

manifest themselves at the “attachment” locations or bonds of depth hoar crystals, as seen

in figure 47.

It is important to note that these kinetic growth bonds are not small relative to the

bonds of the equilibrium form.  The transition from the faceted grain to these attachments

or bonds is clearly visible in figure 47 where the striated grain is contrasted to the

geometrically complex bonds.  Even though these connections appear relatively large,

they may be weak since they are not continuous, and the irregular structure will induce

stress concentrations.  In addition, the bond to grain size ratio may be much less than for
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the equilibrium form and the grain coordination number will also likely be smaller as the

structure will tend to metamorphose into a transversely isotropic arrangement composed

of ice crystal chains and channeled pores (Trabant and Benson, 1972; Akitaya, 1974;

Adams et al, 1996).

In light of these observations and indications given by the numerical model, the

hypothesized kinetic growth process may be summarized.  In regard to the morphology of

a snowcover subjected to a temperature gradient, there is a potential for a preferred

Figure 47.  Scanning electron microscope images of intergranular connections in
depth hoar.   b - d show successive magnifications of the kinetic growth bonds.  In b
the striations of the depth hoar crystal are apparent and finally d shows what may be
truncated kinetic growth nucleations.

a b

c d
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structure to develop that is analogous to what is often seen in lake and sea ice, whereby

the ice cover has a distinct crystallographic orientation.  A fresh deposit of snow, or snow

metamorphosed to the equilibrium form, will be composed of randomly oriented crystal

grains.  However, when such a configuration is subjected to a large temperature gradient,

the ensuing supersaturation will induce the nucleation of numerous crystals onto the

existing ice grain network.  Depending on temperature and level of supersaturation, a

particular crystal habit grown from the vapor will be preferential.  Some of these

developing crystals within a region of the snowpack will be more optimally situated

(relative to the temperature gradient) due to the orientation of the substrate or parent

crystal.  This, when coupled with an ice grain/pore configuration that will afford space in

the preferred grow direction, results in some of the crystals being at a developmental

advantage.  As the optimally sited growing crystals progress, others will have their

development arrested in the competition with the preferred configuration crystals.  This

leads to a perceived reduction in the number of grains as well as a (locally)

crystallographicly oriented snow cover.

Microscopic observations of the regions near the attachment points of depth hoar

crystals may provide evidence of the truncated faceted crystals described.  These highly

irregular bonds are prone to stress concentrations and may provide a relatively small

bond to grain ratio when compared to microscopic observations of the smooth bonds

apparent in the equilibrium metamorphic form.  This provides some insight into the

relative strengths of these snow types. 
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Avalanche Debris Experiment 

One of the real dangers associated with avalanches is the burial of victims in

avalanche debris.  Avalanche deposits become very strong and hard in a short period of

time, necessitating the use of metallic probes and strong shovels to retrieve a burial

victim.  It has been reported that this rapid set or strengthening of avalanche debris is the

result of frictional heating during the event.  McClung and Schaerer (1993) describe a

thin liquid layer on the grain surface that develops from frictional heating during the

avalanche, although direct evidence is not presented.  Once the debris halts, this small

liquid layer rapidly freezes creating nearly instantaneous bonds.  Of course, the amount

of frictional heating is dependent upon the size and duration of the avalanche.  In large

avalanches, debris fields have been observed to be nearly isothermal at 0°C, making the

melt-freeze scenario likely (Tremper, 2001).  But in smaller avalanches (much more

common), is there enough energy to consistently raise the temperature to melting?  Also,

after grains and clusters violently interact, what affect does the sintering process have on

debris hardening?  An avalanche debris experiment was designed to examine these

questions and to provide another application for the metamorphism model.

Methodology

During the 2000-2001 season, debris was collected from avalanche experiments

conducted at the Montana State University Avalanche Research Site located in the

Bridger Range, MT.  The objective was to collect and preserve avalanche debris at
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various time intervals starting immediately after an avalanche.  In order to evaluate the

significance of frictional heating, two sets of temperature measurements were desired.

Snow temperatures in the flowing avalanche, as well as avalanche debris temperatures,

helped determine what was happening during and after an avalanche. Temperature and

temperature changes in the flow gave an indication to the amount of frictional heating

during the avalanche while debris temperatures measured the snow’s thermal state when

it came to rest.  Snow samples were collected before and after the avalanche for

laboratory microstructural evaluation. 

At the Revolving Door avalanche path in the Bridger Range, MSU has an

avalanche research site consisting of a small shed and infrastructure to make various

measurements during an avalanche.  The site received extensive modification during the

course of this study, but due to space limitations, only instrumentation used in this

particular study is discussed.  Five T-type thermocouples, spaced at approximately 7m

intervals, were placed along the avalanche running surface to measure macroscopic

temperatures of the flowing snow.  To capture avalanche debris, a pit measuring

approximately 1.5 x 1.0m was placed in the avalanche path.  As the avalanche passed by,

the pit filled completely with avalanche debris.  Snow temperature was also monitored

with four T-type thermocouples through the debris pit depth during the study period.  The

debris was then sampled and preserved as soon as possible after the test.  Sampling was

repeated several times, up to 68 hours after the test.  Samples were collected in the 30 ml

Nalgene containers, preserved with isooctane, and transported to the lab on dry ice.  Once

in the cold laboratory, binary images were created from CT scanner images.  The images

were then analyzed using Edens and Brown’s (1994) stereology software.  The samples
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were evaluated using the current model to quantify the affects of sintering in avalanche

debris. 

Results

Field.  Three avalanche tests were conducted during the 00-01 winter season.

Drought conditions in southwest Montana precluded a larger number of experiments.

Due to several unfortunate circumstances and a painful learning curve, reliable

temperatures at the base of the flow were recorded on only one occasion.  Temperatures

were successfully measured in the avalanche debris pit for all three tests.  Table 5 gives

the pre-test and avalanche debris snow densities as well as the average temperature of the

debris immediately following the avalanche.  Pre-test samples were collected in the

avalanche release zone prior to the test; unfortunately, snow temperature profiles were

not measured there prior to the avalanche test.  Notice in table 5 that none of the debris

temperatures approached the melting temperature.  While this does not preclude surface

melting, as this temperature measurement is macroscopic, it does show that the entire

debris pile did not become isothermal at 0°C.  In large avalanches with long run outs,

excessive frictional heating could raise the snow temperature to the melting point.  Since

the snow in these tests did not approach the melting point, it seems unlikely that all of the

observed debris strengthening can be attributed to the freezing of liquid water on the

grain surfaces.  This does not imply that fictional heating is of no consequence.  In the 19

Feb 01 avalanche test, temperatures were recorded along the base of the avalanche flow

at the specified 7m interval.  Figure 48 shows the snow’s increase in temperature (from

an initial temperature) along the avalanche test track.  Since the initial temperature
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measured on the track prior to the test was probably different than the initial temperature

of the avalanching snow, the absolute increase in temperature of the flowing snow is

unknown.  To minimize this error, each thermocouple was covered with snow prior to the

test, but the temperatures of snow on different parts of the slope are not likely identical.

In figure 48, the time-phased nature of the flow is evident as the temperature changes

occur later for thermocouples further down the slope.  It also appears that the temperature

change tends to increase the farther the avalanche has run.  Figure 49 shows the actual

temperatures along the track.  In general, as the avalanche progressed down the slope, the

absolute temperature appeared to increase.  It is unresolved why the thermocouple at the

top of the test section consistently recorded higher temperatures.  From figure 48, it is

clear that the temperature increase experienced by this thermocouple is generally smaller

than for the others.  Since temperature profiles of the pre-test snow were not collected, it

is impossible to tell if the higher temperature at the top of the track is from actual snow

originating in a warmer section of the release zone or if it is an instrumentation problem.

These temperature results of a running avalanche are very preliminary, but hold promise

for further research now that the infrastructure and procedures are in place.  At this time,

there is not enough repeatable data to make significant conclusions, but the trends in this

one test are logical and promising.
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Date Pre-test Density
(kg/m3)

Debris Density
(kg/m3) 

Debris
Temperature (°C)

19 Feb 01 260 450 -5.5
15 Mar 01 117 407 -4.6
31 Mar 01 230 420 -1.2

Table 5.  Density of pre and post avalanche snow with debris temperatures.

Laboratory and Numerical.  After the preserved samples were transported to the

laboratory, they were CT scanned and processed, as described earlier in this chapter, to

obtain binary images. It was originally envisioned that the grain and bond data from the

stereological evaluation of the binary images would be compared to the numerical

evaluation of the sintering process.  Accurate bond data was not obtained from the

images primarily due to limitations of the CT scanner.  Obtaining high contrast and

resolution images of the high density debris samples filled with isooctane proved very
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challenging for the CT scanner.  The CT scanner was operated at its maximum power and

exposure time in an attempt to record details of the microstructure, but the resulting

images were noisy and lacking in contrast.  In some high density cases, the overall image

intensity varied from the center of the image to its edges.  As a result, bond

measurements were deemed unreliable as the details of these small features were the first

features lost.  On the other hand, the grain measurements appeared consistent and similar

to field observations.  Since grains are much larger than the bonds, they were less

affected by noise and contrast issues.

The stereological analysis produced two-dimensional coordination numbers from

the binary images.  The coordination number is a measure of the average number of

bonds per grain.  The stereology package measured the number of grains (as a

percentage) for each coordination number.  This parameter is particularly useful since the

strength of the snow should increase as the number of bonds per grain increases.  Even

though the details of the bonds were not accurately captured, the number of connections

between grains seemed reasonable.  The density increases shown in table 5 should

accompany an increase in the coordination numbers as the snow is consolidated during an

avalanche.  Figure 50 shows an overall increase in the number of bonds per grain from

before and after the avalanche.  As expected, the number of bonds increased significantly

in the avalanche debris.  Bond growth is examined next using the numerical

metamorphism model.



174

  

Figure 50.  2D grain coordination number frequency from avalanche tests.
∗ - pre-test, � - avalanche debris.
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With the increase in the number of bonds evident in avalanche debris, what is the

growth rate of these bonds after an avalanche event?  Since the CT scanner failed to give

reliable bond data, bonds were evaluated using the numerical sintering model.  It was

assumed that the bonds were broken during the avalanche and began to grow again in the

debris pile.  The modeled microstructure was defined by the CT grain size in the debris

pile, initial bond to grain radii ratios of 1%, and density and temperature from the field

recorded values.  Sintering was allowed to progress with these parameters.  As already

discussed, the amount of intergranular bonding is a measure of snow strength.  In figure

51, the increase in bond area is calculated for the first 30 minutes following the 19 Feb 01

avalanche.  During the first 30 minutes, the bond area within the avalanche debris

Figure 51.  Bond area growth starting immediately after an avalanche.

19 Feb 01
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increased over 200 times, significantly strengthening the debris.  The rapid increase in

bond area coupled with the increase in bonds per grain present an alternative to the melt

freeze explanation for the hardening of avalanche debris.  Considerable research potential

still exists on avalanche debris, but the avalanche debris sintering problem provided an

excellent application of the current model.

Summary

In this chapter, several experiments and procedures were presented.  The use of

isooctane to preserve and store snow samples was discussed.  Procedures for optical,

SEM and CT microstructural imaging were established, and the advantages and

disadvantages of each technique were discussed.  These imaging techniques were

subsequently used in lab and field experiments wherever they were deemed appropriate

and capable of providing viable data.

The first experiment demonstrated that crystals grown from the vapor phase on

existing ice acquire the same crystallographic orientation as the substrate.  This result

supported the postulated dominant kinetic grain growth theory described in chapter 3.

Next, a laboratory depth hoar experiment was presented.  While the experiment

did provide some additional validation of the kinetic growth model, its real value was in

providing samples for examining bonds between faceted grains. 

The final experiment examined the metamorphism of avalanche debris.  Limited

temperature data indicated that temperatures in small avalanches do not always approach

the melting temperature.  A sintering analysis using measured debris parameters found
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that rapid growth of bonds, in the absence of liquid water, may be a major contributor to

the hardening of avalanche debris. 
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CHAPTER 5

APPLICATION OF THE MICROSTRUCTURAL MODEL IN LARGE SNOWPACKS

The current research has intentionally focused on small detailed microstructural

snow parameters.  Several other recent efforts recognized the importance of

microstructure in determining snow physical characteristics such as thermal conductivity,

radiation interaction, and mechanical behavior. Existing large scale models, such as

SNOWPACK (Lehning et al, 1999), fail to accurately predict microstructural

metamorphism over a wide range of environmental conditions (Lundy, 2000). Enhanced

metamorphic capabilities would benefit these models, as many of the required

macroscopic responses are tightly coupled to microstructure.  While the current research

does not address large scale snowpack modeling directly, it is important to establish a

conceptual connection between the snow microstructure and the snowpack’s macroscopic

response.  This chapter presents examples utilizing the current model in a full sized

snowpack to predict metamorphism.  A simple steady state snow conduction model was

developed with time varying temperatures applied at the snow surface. The conduction

model, represented in figure 52, is not intended to be an accurate snowpack simulation.

Instead, it is presented to show how the microstructural model may interface with a more

sophisticated approach.  Metamorphism of internal snow layers was analyzed for various
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snowpack and environmental scenarios.  While the approach is very simple, its value lies

in the conceptual application of the current research to a broader snow prediction effort.

Snowpack Thermal Simulation

The current model requires defined temperature boundary conditions and

microstructural parameters.  So far, the source of those boundary conditions has not been

discussed in detail.  Ideally, actual snowpack temperatures would be used for specific

layers in a metamorphism simulation.  In reality, real time temperature measurements in

all regions of interest is not possible.  As a result, numerical models are routinely utilized

to simulate the field conditions.  To demonstrate how a microstructural model may

interface with a larger scale snowpack simulation, a very simple heat conduction model

was developed.  The microstructural model was used to evaluate the metamorphism of

specific layers within a larger snowpack.  As the microstructure evolves, feedback to

larger scale models dependent upon microstructure enhances the accuracy of predictions.

A three-layer steady state conduction model is shown in figure 52.  The basal

temperature was maintained at 0°C while the surface temperature was variable.  To

simulate diurnal temperature fluctuations, a 24 hour period sinusoidal surface

temperature with selectable average and peak temperatures was used.  Since a steady

state assumption was used, temperature gradient reversals due to transient effects were

not included.  Within each layer, the effective thermal conductivity was assumed constant

and given by Yen’s(1981) empirical relationship,

885.122326.2 seffk ρ= , (111)
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where keff is the layer’s effective thermal conductivity (W/(mK)), and ρs is the snow

density (Mg/m3).  While equation (111) is applicable for a wide range of densities, this

simple relationship accounts for density only.  Adams and Sato (1993) presented an

advanced microstructurally based formulation for effective conductivity.  Even though

their approach was not used here, it is considered superior, further emphasizing the

importance of microstructure.  SNOWPACK utilizes the Adams and Sato approach, yet

cannot capitalize on all its features due to metamorphic modeling limitations.

In figure 52, each layer was given an independent density (therefore thermal

conductivity), microstructural parameters, and thickness.  Temperatures at the interfaces

between layers were then calculated using a very simple steady state Fourier heat

conduction model with finite difference techniques.  The details of that development are

omitted primarily due to space limitations and the very simple nature of the conduction

model.  The resulting temperature gradient within each layer is linear.  A conceptual

representation of temperature distributions through the three layers is also shown in

figure 52.  The thermodynamic conditions in each layer were passed to the

metamorphism model at each time step. It is envisioned that the current microstructural

model will be integrated into sophisticated snowpack models in the future.  To further

demonstrate the utility of the current research, several common snowpack scenarios were

evaluated using the conduction and microstructural models.
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Case Studies Using Conduction and Microstructural Models

In table 6, four common snowpack scenarios are described and presented as

examples of the snowpack technique.  Each scenario was designed to demonstrate a

particular capability of the microstructural model in common snowpack environments.

Using the model described above, the temperature distributions, based on the average

surface temperature, are given in figure 53.

Figure 52.  Three layer snow conduction model.  The temperature boundary
conditions and representative temperature distributions are shown on the right.
Tsurface represents diurnal temperature cycles.  t is in hours.

Tsurface=Taverage +Tfluctuationsin(π t/12)

Tground=0°CGround

Surface

Temp

Layer 1

Layer 2

Layer 3 D3

D1

D2
ρ2

ρ3

ρ1
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Scenario Density
(kg/m3)

Layer
Thickness

(m)

Surface
Temp (C)

Comments

Case 1 – Layer 1 200 0.33 -6±5°C Uniform snow with warm
surface

Layer 2 200 0.33
Layer 3 200 0.33

Case 2 – Layer 1 450 0.25 -6±5°C Layered snow with warm
surface

Layer 2 250 0.25
Layer 3 150 0.5

Case 3 – Layer 1 150 0.2 -20±5°C Thin, layered snow with
cold surface

Layer 2 150 0.2
Layer 3 200 0.2

Case 4 – Layer 1 350 0.5 -20±5°C Low density snow on top
with cold surface

Layer 2 350 0.5
Layer 3 150 0.2

Table 6.  Snowpack conditions for the heat conduction model.

The temperature distributions in figure 53 show relatively small temperature

gradients for the first two cases and larger gradients for cases 3 and 4.  Since the layer

densities and thicknesses were identical for case 1, the temperature gradients were

uniform through the entire depth.  The variable layer densities and thicknesses in case 2

resulted in different temperature gradients in each layer.  Case 4 had a large temperature

gradient in the surface layer while case 3 had large temperature gradients below the

surface layer.
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Case 1: Equilibrium Form Metamorphism with a Uniform Snowpack

The first case simulates a very simple uniform snowpack with small surface

temperature fluctuations.  The variable surface temperature was applied, and the

microstructure metamorphism for each layer was evaluated for a 24 hour period.  The

resulting temperature gradient was not sufficient for kinetic growth but did enhance the

equilibrium form sintering with increased vapor pressure gradients.  The temperature

distribution, temperature gradients, and bond growth rates are given in figure 54.

Figure 53.  Snowpack temperature distributions for four example cases.  The
distribution is based on the average surface temperature used in the
simulations.
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Figure 54.  Case 1, equilibrium metamorphism snowpack simulation results.
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Since the temperature gradients in each layer are identical, the variation in bond

growth rates was a function of temperature differences only.  As expected, the growth

rate in the colder (upper) layers was lower than in the warmer regions.  This example

demonstrated the temperature dependence, but did not provide information on

temperature gradient dependencies.

Case 2: Equilibrium Form Metamorphism with a Layered Snowpack

Next, variable density and thickness layers are introduced to a temperature

gradient environment.  In this case, the combined effects of temperature and temperature

gradients were evident. The temperature distribution, temperature gradients, and bond

growth rates are given in figure 55.  

The temperature gradient was not sufficient for kinetic growth in any of the

layers.  The bond growth rates in figure 55 show both temperature dependence and the

growth enhancements from a temperature gradient.  The bond growth rate in the middle

layer was greater than in the bottom layer, yet it was always colder.  The enhanced

growth rate resulted from the larger magnitude temperature gradient, offsetting the effect

of lower temperature.  Averaged over a 24 hour period, the top layer had the same growth

rate as the bottom layer.  In this case, the average temperature gradient offset the

differences in average temperature.  Of course, the temperature and temperature gradient

fluctuations in the top layer manifested themselves in the variable bond growth rate of

that layer.  In each layer, the maximum bond growth rates coincided with the warmest

temperatures although this was at the minimum magnitude temperature gradients, again

reinforcing the strong temperature dependence of the metamorphic process.
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Figure 55.  Case 2, equilibrium metamorphism with variable layers, snowpack
simulation results.
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Case 3: Depth Hoar 

For the next case, a thin snowpack subjected to a large temperature gradient was

examined.  This scenario is very common in early winter when a thin snowpack bounded

by a warm basal layer and cold surface develops depth hoar due to the large temperature

gradients.  This situation is normally of great concern since deep persistent snowpack

instabilities may result. The temperatures, temperature gradients, and kinetic crystal

growth rates are given in figure 56.  Since kinetic growth takes place, only the dominant

crystal orientation is presented.  The growth rate, in this case, was larger near the bottom

layer of the snowpack leading to the well-established depth hoar scenario.

The bottom two layers grew kinetically from the start.  Although these layers had

identical thickness and density, the kinetic growth rate of the bottom exceeded that of the

other layers due to warmer temperatures.  As the facets in the bottom layer grew, the

growth rate was enhanced when the tip of the crystal reached into the warmer portions of

the pore.  The enhanced growth rate is evident in figure 56 as the average growth rate

increased over the 24 hour evaluation period.  This enhanced growth was discussed in

chapter 3.

In the top layer, the temperature gradient was not sufficient for kinetic growth

until hour 13 when the onset condition for kinetic growth was reached.  Up to that point,

the equilibrium forms sintered with enhancement from the temperature gradient.  Since

figure 56 depicts the kinetic growth rate, the top layer is not represented until the

temperature gradient becomes sufficient for kinetic growth.
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Figure 56.  Case 3, depth hoar snowpack simulation results.
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Case 4:  Near Surface Faceting

The final example was composed of a relatively dense snowpack covered with a

thin low density top layer.  Cold diurnal conditions and low thermal conductivity of the

top layer coupled with high thermal conductivity of dense layers ensured a large

temperature gradient near the snow surface.  Large temperature gradients can result in

rapid kinetic growth of crystals just below the snow surface.  Fukuzawa and Akitaya

(1993) found this rapid growth when large temperature gradients within thin new snow

was lying upon older, high density layers.  They conducted laboratory growth

experiments with gradients ranging between 100-300 °C/m to simulate this growth

process.  The rapid development of these faceted crystals (as quickly as overnight) has

been the culprit in many avalanche accidents when buried by subsequent snow.

Frequently, these crystals develop and may go unnoticed.  As subsequent snowfalls bury

these crystals, they can become the predominant weak layer.  The identification of

conditions under which this metamorphic process develops is critical to avalanche safety

stability assessments.

The temperatures, temperature gradients, kinetic crystal growth rates, and

equilibrium bond growth rates are given in figure 57.  The temperature distributions show

the large variation in temperature through the snow depth.  The temperature gradients in

the bottom layers were identical due to density and thickness parameters.  The large

temperature gradients within the top layer resulted in kinetic growth while the high

density layers sintered in the equilibrium form.



189
.

Crystal Kinetic Growth

Equilibrium Bond Growth

Figure 57.  Case 4, near surface facet simulation results.
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 The growth rates are presented in figure 57 on a semi-log scale to demonstrate

their relationship.  The bond growth rates of the equilibrium forms are presented with the

crystal growth rates of the kinetic form.  Each of these growth rates is the primary

metamorphism measure for the equilibrium or kinetic microstructure.  The bond growth

rate of the dense layers is several orders of magnitude smaller than the crystal growth rate

in the top layer.  The bond growth rate temperature dependence is evident in the high

density layers.  This example demonstrates the microstructural model’s ability to predict

multiple processes within the same snowpack.

 

Example Using Field Measured Data

The current approach is not restricted to use with other models.  Remote

instrumentation sites could also provide the required conditions to evaluate

metamorphism of a snowpack.  Montana State University maintains a meteorological

station in the Wolverine Basin of the Bridger Range, MT.  At that station, many

measurements are made including snow surface and layer temperatures.  Human

snowpack observations are obtained weekly to document the snowpack, including

general microstructural trends.  Data from this station (or similar stations) could be used

to monitor and predict snow metamorphism.  To show how the current model could

interface with such a station, one interesting scenario was analyzed from the 00-01 winter

Wolverine Basin data.  During the period from 2/16/01 to 2/28/01, Wolverine Basin

experienced several cold clear nights.  Snow pit observations on 2/26/01 noted the

presence of near surface facets approximately 10cm below the snow surface.  This
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faceted layer was not noted during the 2/16/01 observations.  This period was analyzed

with the snowpack conduction and microstructural models in an attempt to predict the

kinetic growth that was observed.  

The snowpack was divided into three layers.  These layers were determined from

the 2/16/01 snow pit observations.  Initial microstructure, density, and layer thicknesses

were obtained from field notes and are summarized in table 7.  The measured surface

temperature (every 30 minutes) was used as the surface boundary condition for the

snowpack conduction model.  The temperatures, temperature gradients, and growth rates

are given in figure 58.

Scenario Density
(kg/m3)

Layer
Thickness

(m)

Grain
Radius
(mm)

Wolverine Basin
Layer 1 365 0.8 0.5
Layer 2 300 0.3 0.4
Layer 3 215 0.2 0.5

Table 7.  Wolverine Basin conditions on 2/16/01.

The top layer experienced large temperature gradients during the first day

analyzed.  In fact, the gradients were large enough to establish kinetic growth within that

layer, predicting the appearance of near surface facets.  The clear and cold conditions

persisted throughout most of the 12 day evaluation period with very little new

precipitation.  While the top layer experienced kinetic growth, the bottom layers

remained in the equilibrium form regime and sintered accordingly.
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Equilibrium Bond Growth

Kinetic Crystal Growth

Figure 58.  Wolverine Basin near surface facet development.
Feb 16 Feb 28
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Although this analysis is very simple, it does provide another example of how the

current research may be used in predicting metamorphism.  In this case, there was not

sufficient data to do a detailed microstructural comparison, but clearly the current effort

was able to predict an observed trend using field data.

Summary

In this chapter, the application of the microstructural metamorphism model to a

larger snowpack was examined.  A very simple three layer heat conduction model was

presented.  Four common scenarios were evaluated using the layered conduction and

metamorphism models.  While the layered conduction model was not intended to suffice

for a realistic snowpack model, it did demonstrate the process for using the

microstructural model in a more sophisticated snow simulation.  Temperature boundary

conditions for the microstructural model were established using the layered conduction

model. Data from a remote field weather station was also evaluated for a period where

near surface facets developed.  For more advanced techniques, the microstructural model

could interface with other simulations that account for microstructure in thermal

conductivity, radiation exchange, constitutive relationships, strength calculations, etc.  As

time progressed, a microstructural metamorphism module could provide feedback to

these other physical models.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The literature review in chapter 1 identified the need for a realistic dry snow

metamorphism model that could incorporate the important physical processes and

microstructural geometry yet was applicable to a broad range of thermal environments.

While many recent efforts have considered snow microstructure in metamorphism, the

equi-temperature and temperature gradient thermal environments have traditionally been

studied with different physical models.  The current research developed a unified

approach to snow metamorphism, independent of the thermal environment yet adequately

considering the important physical processes and microstructure.

The theoretical development began with the definition of very simple spherical

grains and intergranular connections.  These grains and bonds were arranged relative to

pore spaces, and pertinent physical interactions were discussed.  Conservation of mass in

the pore, conservation of energy in the ice network, and restrictions from heat and mass

interactions during phase change were developed in detail.  While the primary heat and

mass flows were one dimensional, the phase interaction terms that coupled the equations
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made the problem quasi-two dimensional.  The three resulting nonlinear differential

equations were coupled to each other through heat and mass exchanges during phase

change.

The ice and pore networks were then discretized into elements and nodes.  The

appropriate finite difference equations were defined at each node.  Due to the coupled

nature of the equations, several iterative numerical techniques were used to solve the

equations.  The entire system was then iteratively solved until the mass and heat coupling

terms converged.  The ice and pore geometry was updated, time was incremented, and

the process was begun again. 

The first set of numerical studies involved macroscopically isothermal snow.  The

equilibrium geometry was analyzed for several scenarios.  Very small microstructural

temperature gradients developed to move heat and mass driven by differences in surface

curvature.  The existence of these gradients has been discussed in the literature, but this

model was the first to show the development from physical principles.  The equi-

temperature studies found a strong metamorphic dependence on grain size, bond size, and

temperature.  Density was less of an influence on the sintering in an equi-temperature

environment.  This was attributed to the very short diffusion distance from the grain

surface to a neighboring neck.  A mass balance between the grains and necks found that

the majority of the vapor leaving the grains arrived at neighboring necks, supporting the

lack of density dependence.

The temperature gradient where crystals cease to grow in a smooth rounded form

and begin to grow rapidly in large striated shapes has typically been defined between 10-

25°C/m.  This range of temperature gradients has been observed in the laboratory and
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under field conditions.  There has been little or no physical modeling or experiments to

determine where this threshold may be and what parameters influence it.  An onset of

kinetic growth definition was proposed and evaluated using the current microstructural

model.  Unlike previous modeling efforts, the transition to kinetic growth was smooth

and not based on a fixed numerical value.  The numerical definitions appeared reasonable

when compared with observed values, but also provided an important tool to analyze

critical parameters influencing the transition.  At the onset of kinetic growth, density,

grain size, and bond size were the important parameters with temperature being less

significant.  While the kinetic growth onset was not significantly influenced by

temperature, the growth rates at the onset were very temperature dependent.

After the onset of kinetic growth had been established, a crystal kinetic growth

model was implemented.  Results from several authors were integrated into one model.

The approach considered crystal habit as well as crystallographic orientation in a screw

dislocation growth model.  Reasonable correlation with test data was demonstrated, but

the need for standardized crystal geometric measurements was identified.  The model led

to a dominant grain theory whereby certain preferentially oriented crystals grow more

rapidly than other crystals.  The dominant grain theory demonstrated an increase in

crystal size dispersion as metamorphism progressed.  It was surmised that less

preferentially oriented grains become buried in a complicated mass of ice.  These masses

may become faceted “bonds”.  SEM images of these regions were presented to support

this supposition, but no direct evidence currently exists.

The dominant grain theory provided the basis for the first experiment.  In order

for the dominant grain theory to be valid, crystals grown from the vapor phase on existing
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ice substrates must adopt the crystallographic orientation of the substrate.  A simple

experiment was described where new crystals were grown in the lab on existing ice with

know crystallographic orientation.  The experiment clearly showed that the new crystals

grown from the vapor on existing ice adopted the orientation of the parent ice.

Faceted crystals were also grown in the lab.  This experiment provided further

validation of the model through periodic sampling and observation of the microstructure

both optically and with a CT scanner.  Samples showing the evolution of the snow

microstructure were preserved and observed for a month.  In addition, this experiment

provided excellent examples of hoar crystals and bonds, which were used in formulating

the dominant grain theory.

Avalanche debris was collected in the field and examined in the lab.  The analysis

of avalanche debris provided the microstructural model with an unusual field application.

Analysis of the experiment pointed to sintering, rather than surface melt-freeze, as a

primary mechanism for debris hardening.  

Finally, the use of the microstructural model in a larger scale snowpack model

was discussed.  A simple layered heat conduction model was presented.  Several

scenarios were evaluated with the conduction model providing the thermal conditions for

the microstructure model.  While not intended to be an actual simulation, the layered

model provided an example of how the microstructural model could be used in a more

sophisticated approach.

The primary objective of developing a snow metamorphism theory that

incorporates the important physical processes but is not limited by the thermal

environment was achieved in this project.  While many simplifications and assumptions
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were necessary, the basic foundational approach has been established and is ready for

further refinement and implementation.

Recommendations for Future Research

There are several areas where further research is required/desired.  The

microstructural model is ready to be used in an advanced snowpack model that accounts

for microstructure using macroscopic conditions.  A project where the microstructure is

integrated into a sophisticated snowpack model, followed by a field or laboratory

validation, is highly desirable.  The Swiss model SNOWPACK is a candidate for this

integration and this implementation may begin during the summer of 2002.  An effort to

use WINTHERM is also under consideration at Montana State University.  Both of these

programs can provide superior heat transfer analysis of a snowpack.

Within the microstructural  model, there are several areas that could be improved.

In the current configuration, facets are allowed to grow without bound.  In reality,

neighboring grains could interfere with growth.  It would be desirable to provide size

limits based on a physical parameter(s) such as pore size.  In addition, grains that grow

into neighboring grains would create a thermal short in the ice network.  This too could

be added to the existing model yielding attenuated growth rates as crystals became large.

Many of the envisioned enhancements to the current model would involve more

complex, refined, or new microstructural parameters.  Simple structures were defined for

the current effort, but the theory is not limited to them.  Complex grains and bonds could

be easily added to the model.  Not all observed bonds or grains are alike, but different
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geometric classes could be added as further research identified them.  It is envisioned that

non-spherical grains, different classes of bonds, definable coordination numbers, etc

could be added as new geometries are discovered or evaluated.
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LIST OF VARIABLES, CONSTANTS, AND PARAMETERS
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List of variables, constants, and parameters

α - Absorption coefficient (0.01 from Yokoyama, 1993)
A - Cross sectional area for heat diffusion (m2)
Aec – Phase change area on ice surface (m2)
Afacet – Surface area of a facet (m2)
Aphase change - Area at facet crystal tip available for step growth (m2)
a0 - Ice lattice parameter (4.519E-10m for a axis growth, 7.357E-10m for c axis growth) 
          (Petrenko and Whitworth, 1999)
β - angle from dominant growth crystal axis and faceted crystal (deg)
C - Ice specific heat (J/kgK)
δ - Facet thickness (m)
∆P - Excess vapor pressure during kinetic growth (Pa)
∆P1 - Critical excess vapor pressure during kinetic growth (Pa)
∆x – Phase change diffusion distance between the ice surface and pore (m)
D - Water vapor diffusion coefficient in air (2.02E-5 m2/s)
γ - Crystal orientation, angle from dominant growth axis to temperature gradient (deg)
HS - Heat supply or sink from phase change (W/m)
J – Vapor mass flow from diffusion (kg/(sm2))
Jec – Vapor mass flow from phase change by evaporation or condensation (kg/(sm2))
k – Ice thermal conductivity (2.2 W/(mK))
K - Boltzmann’s constant (1.38E-23 J/Kmole)
L - Water latent heat of sublimation (2.838E6 J/kg)
l – Edge dimension on a faceted crystal (m)
MS - Mass supply or sink from phase change (kg/m3s)
m – Ice molecular mass (2.989E-26 kg)

jm - Grain mass average for a sieve (kg)
m& is the mass flow from phase change (kg/s)
η - Ledge energy per unit step length for ice (2.0E-11 J/m from Yokoyama, 1993)
n – number of ice and pore elements (must be odd)
nl – Neck length (m)
NS - Number of facet surfaces present for a particular crystal (1-6)
P – Pore saturation vapor pressure (Pa)
P0 - Reference vapor pressure (611 Pa) at reference temperature T0 
Pice - Saturation vapor pressure over ice surface (Pa)
Q – Heat flow in the ice (W)
Qec – Heat flow associated with phase change by evaporation or condensation (W)
qice - Heat flux for phase change in the ice (W/m2)
qL - Latent heat flux for sublimation (W/m2)
qpore - Heat flux for phase change in the pore (W/m2)
ρ - Density, vapor or snow depending upon context (kg/m3)
ρice - Ice density (917 kg/m3)
ρs – Neck mean radius of curvature (m)
R - Water vapor gas constant (462 J/(kgK))
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rb – Bond radius (m)
rg – Grain radius (m)
rn – Neck surface radius of curvature (m)
σ - Ice surface tension (N/m)
ψ - Fit constant for faceted grain mass (126.6 kg/m3) (Sturm and Benson, 1997)
θ - Ice temperature (K)
T - Pore temperature (K)
T0 – Reference temperature (273 K)
Ts - Phase change temperature (K)
TG – Temperature gradient (K/m)
t - Time (s)
V - Vapor flow velocity (m/s)
•

V  - Volumetric rate of change of ice element (m3/s)
Vc and Va - Respective linear growth velocities during kinetic growth (µm/s)
VI - Facial velocity during kinetic growth (m/s)
Vcrystal – Facet crystal growth velocity (m/s) 
Vice - Total ice volume in the model (m3)
Vpore - Pore volume (m3)
Vtotal  - Sum of ice and pore volumes (m3)
w – Pore width, distance from ice surface to symmetry plane (m)
Xs - Mean absorption migration distance (m),
x – Symmetric pore distance (400a0 m) (Yokoyama, 1993)
y – Vertical coordinate (m)
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APPENDIX B

MATLAB CODE LISTING FOR MICROSTRUCTURAL MODEL
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% main snow metamorphism program
%
% by Daniel A Miller
%
%*********************Functions called in METAMORPHISM*****************
%
%GROWTHRATES - Finds the growth and decay of equilibrium ice grains and necks based on geometric
volume and mass
%transfer rates.
%
%INITGEOM - Sets the initial equilibrium form pore and ice geometry parameters.
%
%INITTEMP - Initialize the nodal temperatures of the pore and ice.
%
%LAYERS - Finds the temperatures at the boundaries of a three layer snowpack based on 
%steady state conduction.
%
%NEWTEMP - Sets up and solves three systems of equations and iterates on their solutions until
%convergence.
%
%UPDATEFACETGEOM - Updates the L parameter of facet grains.
%
%UPDATEGEOM - Finds the new pore and ice geometries based on growth rates and time increment.
%Equilibrium form only.
%
%*********************************************************************
clear           %clear memory
%************user defined input section************************************
%
n=101; %set the number of elements (n).  Should be odd to have grain at each end.  

%There will be 2n+1 nodes
%
TG=0;         %The macroscopic temperature gradient (C/m).  Should be negative.
%
bctemp=263;     %Warm boundary temperature (K).  This will be temperature of node 1, others will be the
same (for TG=0)
                %or less than this value (TG<0).
                %
%If it is desired to use the LAYERS conduction program to define TG and boundary temperature
% then use the two lines below
%
%timetotal=0;i=1;
%[bctemp,TG]=layers(timetotal,i);
%            
rhosample=150;  %Snow density (kg/m^3).
%
rinit=0.0004;   %initial grain radius for equilibrium form (m)
%
ratio=0.4;      %initial bond to grain radii ratio
%
deltat=3600/2;  %time step (s).  This is the increment in time for each iteration.
%
totaltime=3600*50; %total time of simulation (s).  Number of iterations will be totaltime/deltat
%
%*************End of user defined input*************************************
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% ********************Initialize certain variables*************************
% 
TGtrig=0;       % parameter that tells if TG has started yet.  =0 implies ET, anything else is TG
%
newdensity=rhosample;   %set updated density to initial sample density.  Will update after first iteration
% 
timetotal=0;            %initialize the total elapsed time.  Will increase by deltat every iteration
%
%initalize array for facet location.  Will be updated and used in later calcs
wherefacets=zeros(n,1);     %array that tells where a facet is.  =0, no facet; =1, facet
facetL=zeros(n,1);          %length of facet side (in basal plane)(m)
beta=zeros(n,1);            %angle from dominant growth axis (c or a) to crystal.  

%Based on relative growth of c vs a
gamma=zeros(n,1);           %angle from vertical to dominant growth axis (c or a) for facets
delta=zeros(n,1);           %grain thickness (m)
axisgrowth=zeros(n,1);      %this identifies the axis of growth.  If ==0 c axis down, if ==1, a axis down

%****************************************************************************
%********************Constants***********************************************
% 
% D: diffusion coefficient of water vapor through air D=2.02E-5(kg/(sm^2)).  Could make temp dependent 
%
% k: ice thermal conductivity k=2.2(W/(mK))
%
% L: latent heat of sublimation L=2.838e6(J/kg)
%
% R: water vapor gas constant R=462.(462 J/(kgK))
%
% rhoice: ice density rhoice=917(kg/m^3)
%
% sigma: ice surface tension, free energy sigma=.109(N/m)
%
%************** Problem initialization of geometry and temperatures*********************
%
% Function that initializes the geometry of the ice and pore.
[r,rho,rb,A,Aec,w,vice,vpore,x]=initgeom(n,rhosample,rinit,ratio);
%
%
% Initialize the temperature distribution.  If TG=0, all the same temp
% otherwise, do linear distribution
%
[T,theta,Tinitial]=inittemp(n,TG,bctemp,r,w,Aec,vpore,rho,A,rb);
%
%**********************end of program initialization*********************************
%
% Geometry and initial temps are done, now iterate in time and do the time varying calculations
%
% loop over all time
%
 for i=1:round(totaltime/deltat)%
    timetotal=timetotal+deltat
    time(i)=timetotal;
    %disp('time is now (hours)'),disp(i*deltat/3600)%use to display elapsed time to screen
    %
   % set up and solve system of differential equations equations
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   % iterate inside each to find convergence at each time step
   %This function will solve the differential equations iteratively until there is convergence
   %

[T,theta,Jec,Ppore,facetL,wherefacets,beta,delta,vel,axisgrowth,massflow,TGtrig,gamma]=newtemp(deltat,
n,T,theta,r,rb,rho,Aec,A,w,vpore,Tinitial,TGtrig,wherefacets,facetL,beta,delta,axisgrowth,gamma,bctemp);
   %
   %After temperatures are converged for this step, find the grain and bond growth/decay rates
   [rbdot]=growthrates(n,r,rb,Jec,Aec);
   %total mass flow coming off grains.  If +, more mass is sublimating than condensing.  
    %Use as a check only, not used directly
   %totalmassflow=sum(massflow);
   %
   %**********************************************************************************
   %save critical parameters at each step, can be used if every detail of microstructure needs to be saved.
   %takes a lot of memory, not used frequently or for large models
   %[rhist,rbhist,rbdothist,Thist,thetahist,densityhist]=savehistory(i,n,deltat,r,rb,rbdot,T,theta,newdensity);
   %***********************************************************************************

   %***************update the ice and pore geometry************************************
   %
   %Update equilibrium form geometry
   %
   [r,rho,rb,A,Aec,w,vice,vpore,newdensity]=updategeom(n,rbdot,deltat,x,r,rb,w,vpore,rhosample);
   %
   %Update kinetic growth geometry
   if TGtrig~=0
    [facetL]=updatefacetgeom(deltat,n,TG,facetL,vel,wherefacets,axisgrowth,beta);
   end
   
   %reinitalize temps back to average values.  This can be done if desired, requires more iterations since
   %starts with initial temp guess.  
   %Normally leave this out so the new temperatures can be used as the initial guess
   %at the next iteration.  
    %  [T,theta,Tinitial]=inittemp(n,TG,bctemp,r,w,Aec,vpore,rho,A,rb);
    %
    %If using a temperature input from another source that varies in time (such as LAYERS program),
    % do it here
    %
    %[bctemp,TG]=layers(timetotal,i);

    
end  %end of loop for time integration
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function  [r,rho,rb,A,Aec,w,vice,vpore,x]=initgeom(n,rhosample,rinit,ratio)
%INITGEOM This function sets the initial equilibrium form pore and ice geometry parameters.
%
%*********************Inputs**************************
%n - number of elements in the model
%rhosample - snow density being evaluated
%rinit - equilibrium form inital grain radius
%ratio - inital bond to grain radii ratio
%******************************************************
%
%********************Outputs***************************
%r - vector of grain radii (odd elements) and neck length (even elements)(2n+1)
%rho - vector of ice element surface curvatures (n)
%rb - vector of distances from each node to ice surface (r for grain, rb for necks)(2n+1)
%A - vector or conduction areas for each ice node (2n+1)
%Aec - vector of surface areas of each ice element (n)
%w - vector of distances from symmetry plane to ice elements (n)
%vice - vector of ice element volumes (n)
%vpore - vector of pore element volumes (n)
%x - distance from ice centerline to symmetry plane
%********************************************************

r=zeros(n,1);
rb=zeros(n,1);

% %*****this section uses average grain radius for each neck ******************
% 
% set initial radii and geometry for grains
testcount=0; %counter for setting different grain sizes every other grain
%set grain radius and surface curvature for round grains
for i=1:2:n         %round grains
        testcount=testcount+1;
        r(i)=rinit;  %set grain radius to initial valued previously defined
        %r(((n+1)/2+1))=10*rinit;  %checkout only, large grain in the middle
        
        %******make every other grain large*********
%        if rem(testcount,2)==0
%            r(i)=4*rinit;
%        end
%       **********************************************
        
         %r(((n+1)/2)+3)=r(((n+1)/2)+1);
         %r(((n+1)/2)-1)=r(((n+1)/2)+1);
        
        rho(i)=r(i);    %surface radius of curvature for circular grain = grain radius
        rb(i)=r(i);     %distance from grain center too surface
end
    
    %now set neck length, bond radius, and surface curvature for bonds/necks
for i=2:2:n-1
        %make neck size for smaller neighboring grain
        if r(i-1)>r(i+1)
            aver=r(i+1);
        else
            aver=r(i-1);
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        end
%      
% %make neck size for larger neighboring grain
%         if r(i-1)<r(i+1)
%             aver=r(i+1);
%         else
%             aver=r(i-1);
%         end
            %aver=(r(i-1)+r(i+1))/2;  %average r of 2 surrounding grains
        
        rb(i)=ratio*aver;  %bond radius, use average of surrounding grains if several sizes present
        
        %use average R for bond length
        r(i)=(aver*rb(i)^2)/(2*aver^2-2*rb(i)*aver+rb(i)^2);    %neck length
        
        %use average R for curvature
%         rho(i)=-(rb(i)^2)/(2*(aver-rb(i)));
         % average curvature.  Colbecks paper on curvature metamorphism.  Shuts off at rb/R > 2/3
         rho(i)=2/(1/rb(i)-2*(r(i-1)-rb(i))/rb(i)^2);   %average surface curvature, negative for concave
        
end
% % *********************************************************************************    

r(n+1)=r(n-1);
rb(n+1)=rb(n-1);

%insert different sized grains

% r(((n+1)/2)+1)=8*rinit; %checkout only, large grain in the middle
% rb(((n+1)/2)+1)=r(((n+1)/2)+1); %grain radius
% rho(((n+1)/2)+1)=r(((n+1)/2)+1);
%
%*********************3D geometry calcs****************************

%   Calculate the ice conduction and phase change areas
%

for i=1:n
    if rem (i,2)~=0  %if i is odd, at a grain element
        A(2*i,1)=pi*r(i)^2; %3D conduction area in grain (at grain center).  For each ice node
        Aec(i,1)=4*pi*r(i)^2;  %3D surface area of grain (surface area of sphere).  For each ice element
        
        %*************************************************************************
%         % 3D this is grain surface area minus neck contact area on each side of grain, could be used
%         if i==1
%             Aec(i,1)=4*pi*r(i)^2-2*pi*(rb(i+1)^2);
%         else
%             Aec(i,1)=4*pi*r(i)^2-pi*(rb(i+1)^2+rb(i-1)^2); % 3D this is grain surface area minus neck
contact area on each side of grain
%         end
%         %****************************************************************************
        
        %Aec(i,1)=r(i); %cylinder check out
    else    %if at even element it is a bond
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        %A(i,1)=pi*(rb(i)^2)/2; %cylindrical bond conduction area 3D
        A(2*i+1)=pi*rb(i)^2; %3D conduction through the necks, same value at all three neck nodes
        A(2*i-1)=pi*rb(i)^2;
        A(2*i)=pi*rb(i)^2;

        %Aec(i,1)=pi*rb(i)*2*r(i);  % area of one side of a cylinder 3D
        Aec(i,1)=pi^2*rb(i)^3/(2*r(i-1));  %3D neck surface area from Hobbs Ice Physics.  For ice elements
        %Aec(i,1)=4*pi*r(i)*rb(i); %3D surface area of neck cylindrical
    end
    
end

A(2*n+1)=A(2*n-1); % this gives a conduction area out of the top of the last grain
A(1)=A(3);
Aec(n+1)=Aec(n-1);

%***********************************find the pore volumes************************
%
%first we need the volume of the ice elements
%
icevol=0;   %total volume of ice in the model

%find the volume of circular grains
%
for i=1:2:n
    vice(i)=4*pi*r(i)^3/3;  %3D ice piece volume
    %vice(i)=2*r(i)^2 %cylinder check out
    icevol=icevol+vice(i);
end

%find the volume of necks, treat as 3D cylinders

for i =2:2:n-1
    vice(i)=pi*rb(i)^2*2*r(i); %3D cylinder volume
    %vice(i)=2*r(i)^2;  % cylinder checkout
    icevol=icevol+vice(i); %cylindrical neck volume
end

%we have the volume for each grain and bond plus the total ice volume
%can now find the total volume of the combined pore and ice for the model
%

%
% ice density
%
rhoice=917; 

vtotal=rhoice*icevol/rhosample; %total volume of ice and pore in the model

%now find total pore volume for the model

%icevol
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porevol=vtotal-icevol; %total pore volume
%

%***** this section is for original pore volume **********************
temp=0;
for i=1:n
    temp=temp+r(i)*rb(i)^2;
end
%**************This is from 5/8/01 3D pore size development. ****************** 
%find distance x from grain/bond centers to pore centers

x=((porevol+2*pi*temp)/(2*pi*sum(r)))^0.5;

% %find the individual pore widths and pore volumes
% 
% for i=1:n
%     w(i)=x-rb(i);
%     vpore(i)=2*pi*r(i)*w(i)*(rb(i)+x);%3D pore volume for each element
%     %need to put in a check for negative pore volumes.  If pore volume is negative, make it the same as
another one
%     if vpore(i) < 0
%         vpore(i)=vpore(i-2);
%     end
%     
% end
% %************************************************
%******An alternative approach, simpler for pore volume*********
%this conserves mass better for ET analysis

for i=1:n
    w(i)=x-rb(i);
    vpore(i)=r(i)/sum(r)*porevol;
end

%sum(vice)*917/(sum(vice)+sum(vpore)); %should give back density here
%*********************end of 3D calcs*************************
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function [T,theta,Tinitial]=inittemp(n,TG,bctemp,r,w,Aec,vpore,rho,A,rb)
%INITTEMP Initialize the nodal temperatures of the pore and ice.
%
%****************Inputs*********************
%n - the number of elements
%TG - macroscopic temperature gradient
%bctemp - the warm boundary temperature
%r - vector of grain radii and bond lengths for equilibrium form
%w - vector of pore widths
%Aec - vector of surface areas available for evaporation/condensation
%vpore - vector of pore element volumes
%rho - vector of ice element surface curvatures
%A - vector of heat diffusion areas in ice 
%rb - vector of distances from ice center nodes to ice surface (=r for grains, =rb for bonds)
%********************Outputs*******************
%T - vector of pore nodal temperatures
%theta - vector of ice nodal temperatures
%Tinitial- vector of initial pore nodal temperatures
%**********************************************
% zero out initial arrays
%
T=zeros(2*n+1,1);
theta=zeros(2*n+1,1);
x=0;
% check to see if temp gradient is present
%
if TG==0
    for i=1:2*n+1 % if no TG, set all temps the same
        T(i)=bctemp;
        theta(i)=bctemp;
    end
else   %if TG present, linear distribution of temps
    T(1)=bctemp;
    theta(1)=bctemp;
    for i=1:n
        x=x+2*r(i); % this is the current location of the boundary node
        T(2*i)=(x-r(i))*TG+bctemp; % pore temp of center node
        T(2*i+1)=x*TG+bctemp; %pore temp of boundary node
        theta(2*i)=(x-r(i))*TG+bctemp; %ice temp of center node
        theta(2*i+1)=x*TG+bctemp; %ice temp of boundary node
        
    end
end
Tinitial=T;

%now do the conduction part to get real initial temps

% %*******************************************************************************
%  this is solving conduction problem first

%do first conduction problem using direct method

for jj=1:n
     Ts(jj)=theta(2*jj);
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     HS(jj)=0;
     
 end
 
   [coefice,rhsice]=coef(n,A,r,HS,theta);%for first try at solving ice eqns
   icenew=coefice\rhsice;
   
   %update ice temps
   for s=2:2*n;
    
       theta(s)=icenew(s-1);
   end;
%
%***********************************************************************************
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function
[T,theta,Jec,Ppore,facetL,wherefacets,beta,delta,vel,axisgrowth,massflow,TGtrig,gamma]=newtemp(deltat,
n,T,theta,r,rb,rho,Aec,A,w,vpore,Tinitial,TGtrig,wherefacets,facetL,beta,delta,axisgrowth,gamma,bctemp)
%NEWTEMP This function sets up the system of equations and solves them.
%It will iterate until reaching convergence with heat and mass source interaction terms
%
%*****************Outputs****************************************
%T - pore nodal temperatures (2n+1)
%theta - ice nodal temperatures (2n+1)
%Jec - phase change flux for each element (n)
%Ppore - vapor pressure at each pore node (2n+1)
%facetL - L dimension of each facet
%wherefacets - location of grains where facets are allowed to grow, if =0, no facet.  if =1, facet  there
%beta - angle from dominant growth axis to crystal, defines habit for each crystal
%delta - facet thickness
%vel - velocity of dominant growth axis
%axisgrowth - defines which axis is dominant for kinetic growth. =0 is c axis, =1 is a axis
%massflow - the mass flow rate for each element. + is sublimation, - is condensation.
%TGtrig - defines if entered kinetic growth =0 is no kinetic growth, >0 is kinetic growth
%gamma - angle from temperature gradient to dominant growth axis for each facet
%******************************************************************
%
%****************Functions called**********************************
%
%SURFACETEMP - Newton's method to find the ice surface temps used in vapor pressure calculations
%
%FACET - Does the growth calculations for the temperature gradient facet grains
%
%NEWTONSOLVE - Forms the system and solves the nonlinear vapor equations using newton's method
%
%SOURCE - Finds the mass and heat source interaction terms applied to the ice and pore
%
%COEF - Forms the coefficient matrices and right hand side of equations for ice conduction
%
%********************************************************************
MSerror=.9;  %set inital error for mass source terms to get through first iteration
MScount=0;  %initalize counter for the number of attempts at convergence
while MSerror>.02 & MScount<155 &MSerror<1e3    %iterate until the interaction error is small, error is
very large, or large number of attempts
    %display message if iteration count getting large
    if MScount>150
        disp('iteration count exceeded, non convergence')
    end
    MScount=MScount+1;  %counter for the number of iterations

    %set convergence tolerance
    tol=1e-7*sqrt(2*n+1);   %can put other number in here, 1e-7 seemed to work well. Smaller numbers
possible for stable problems
    %set initial value for error
    %
    newcount=0;
    error=1;
    %
    %********************Newton's method to find the ice surface temperatures******************
    %
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    [Ts]=surfacetemp(n,T,theta,w,rb,rho,r);
    % %make initial surface temps the same as ice temp, not generally needed
    %  for jj=1:n
    %   Ts(jj)=theta(2*jj);
    %  end

%***********************************************************************************
    %check to see if growing any facets or if Tg transition
    
    if TGtrig~=0
        
        %then we grow some facets for a temp gradient
        disp('did go to facet')

[facetMS,facetHS,facetjacobian,facetL,wherefacets,beta,delta,vel,axisgrowth,gamma]=facet(TGtrig,n,r,T,th
eta,deltat,vpore,wherefacets,facetL,beta,delta,axisgrowth,gamma,bctemp);
        
        %facetMS=zeros(n,1); %use this for checkout only
    else
        facetMS=zeros(n,1); %mass sources for facet grains
        facetHS=zeros(n,1); %heat sources for facet grains
        facetjacobian=zeros(n,1);%jacobian terms from facets for vapor eqns
        disp('did not go into facet')
    end

%
%**************************Solve vapor equations*************************************
    error=1;
    newcount=0;
    %loop on vapor equations until converged.  Use Newton's method to solve vapor eqns
    while error > tol & newcount < 151
        %now use newton method to solve system of equations
        %the function returns y, a change in the temp for a particular iteration
        %
        [y]=newtonsolve(n,r,T,Aec,vpore,w,Ts,rho,rb,facetMS,facetjacobian);
   
        %check the norm of y to see if converged
        error=norm(y); %set error to L2 norm of increment
        %Update temps
        for k=2:2*n
            T(k)=T(k)+y(k-1);
        end
        newcount=newcount+1;
    end
%******end of vapor solution ******************************************

%*****ice conduction problem*********************************************
    %Now solve the ice conduction problem.  Direct solution method assuming source terms are constant

    %Heat source terms for ice conduction problem
    [HS,MS,Jec,Ppore,Pice,massflow]=source(n,T,theta,r,rb,rho,Aec,w,vpore,Ts,facetMS,facetHS);
    % Direct solution of ice eqns 
    [coefice,rhsice]=coef(n,A,r,HS,theta);%for first try at solving ice eqns
   
    icenew=coefice\rhsice;
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    %update ice temps
    for s=2:2*n;
    
       theta(s)=icenew(s-1);
    end;
   
   %******end of ice conduction problem**********************************
%   
%****************update surface temps************************************
    [Ts]=surfacetemp(n,T,theta,w,rb,rho,r);
%************************************************************************
   %****Find new MS terms to compare with old to see if converged******    

[nothing2,MSnew,nothing1,nothing3,nothing4,nothing5]=source(n,T,theta,r,rb,rho,Aec,w,vpore,Ts,facetM
S,facetHS);
   %compare new and old MS terms
    MSerror=abs((sum(MS)-sum(MSnew))/sum(MS))
end
%end of iteration on temps for this time step

%***now check to see if transitioned to TG metamorphism using MS terms********
%if all MS terms (usually in middle of model) are negative, everything is growing
    percentcheck=.30;  % determines how much of the model will be checked for on set of TG 
                        %it will be centered about the center element
    lowerlimit=round((n+1)/2-percentcheck/2*n);%lower ice number for TG check
    upperlimit=round((n+1)/2+percentcheck/2*n);%upper ice piece number for TG check
    if MS(lowerlimit:upperlimit)<0
        TGtrig=TGtrig+1;%if all MS terms checked are negative, TG is turned on
%         TGtrig=0;%turn off facet growth for checkout, comment out to get facet working
    end
%***********************************************************************************
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function [Ts]=surfacetemp(n,T,theta,w,rb,rho,r)
%SURFACETEMP This function uses Newton's method to find the ice surface temps used
%in vapor pressure calculations
%
%*************************Outputs**************************
%
%Ts - ice element surface temperatures (n)
%
%**********************************************************
%******  Define constants *********************************
%
% Diffusivity
%
D=2.02e-5;
%
% Latent heat of sublimation
%
L=2.838e6;
%
% ice density
%
rhoice=917;
%
% water vapor ideal gas constant
%
R=462;
%
% surface tension (free energy)
%
sigma=.109;
%
% reference pressure and temperature
%
T0=273;
P0=611.3;

%thermal conductivities
kice=2;
kpore=.0182;
%kpore=0; %turn off the pore conduction
%*************************************************************
%
tol=1e-8;   %convergence tolerance for newton's method
for i = 1:n  %find the surface temp at each ice element
    count=0;
    error=1;
    Told=T(2*i); % initial guess at surface temp, central node temp
    %define the diffusion distance
%can use different diffusion distances
%         DD=w(i);%use pore width as diffusion distance
          DD=r(i); %ice radius as diffusion distance
%         DD=4e-6; %Colbeck diffusion distance
%         
    while error > tol & count < 101 %loop until converged or exceed user defined number of iterations
        %
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        %f for flux dependent upon temp and curvature.  uses pore temp for pressure calcs
        
        f=(kice/rb(i))*(Told-theta(2*i))+(kpore/DD)*(Told-T(2*i))-...
           (D*P0*L/(R*T(2*i)*DD))*(exp((L/R)*(1/T0-1/T(2*i)))-exp((2*sigma/(rhoice*R*T0*rho(i)))+...
           (L/R)*(1/T0-1/Told)));
        
         %fprime with flux for temp and curvature dependence.  uses pore temp in pressure gradient calcs
         
        fprime=kice/rb(i)+kpore/DD+(L/R)*(D*P0*L/(R*Told^2*T(2*i)*DD))*...
            exp((2*sigma/(rhoice*R*T0*rho(i)))+(L/R)*(1/T0-1/Told));
        Tnew=Told-f/fprime;
        error=abs(Tnew-Told);
        Told=Tnew;
        count=count+1;
    end
    %update surface temperature after convergence
    Ts(i)=Tnew;
end
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function [y]=newtonsolve(n,r,T,Aec,vpore,w,Ts,rho,rb,facetMS,facetjacobian)
%NEWTONSOLVE Forms the system and solves the nonlinear vapor equations using newton's method
%This version is for 4/16/01 development that includes all source terms in Jacobian.  Other 
%version found in Matlab2 directory
%
%****************************Outputs*******************************
%
%y - vector of pore temperature changes (2n+1)
%
%*******************************************************************
%
%******  Define constants ******************************************
%
% Diffusivity
%
D=2.02e-5;
%
% Latent heat of sublimation
%
L=2.838e6;
%
% ice density
%
rhoice=917;
%
% water vapor ideal gas constant
%
R=462;
%
%thermal conductivity of ice
%
k=2.2;
%
%
% surface tension (free energy)
%
sigma=.109;
%
% reference pressure and temperature
%
T0=273;
P0=611;
%**************************************************************************
%
%
%find the jacobian values at each node
%
%do the F(x) part first (RHS), then Jacobian terms
%
for i=2:2*n
    %Ppore(i)=P0*exp((L/R)*(1/T0-1/T(i))); %pore vapor pressure at each node
    if rem (i,2)~=0  %if i odd, 
        %find even f entries (boundary nodes)
        aver=r((i+1)/2)+r((i-1)/2);
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        f(i-1,1)=(L/R)*exp((L/R)*(1/T0-1/T(i)))*((2*T(i+1)/(aver*r((i+1)/2)*T(i)^2))-
2/(aver*r((i+1)/2)*T(i))+...
            2*T(i-1)/(aver*r((i-1)/2)*T(i)^2)-2/(aver*r((i-1)/2)*T(i))+(L/(R*aver^2*T(i)^4))*(T(i+1)^2-...
           2*T(i+1)*T(i-1)+T(i-1)^2)-(3/(aver*T(i)^3))*(T(i+1)-T(i-1)));
        
        %this is from MAPLE as a check
        
        %f(i-1,1)=L/R*exp(L/R*(1/T0-1/T(i)))*(2.0*T(i+1)/aver/r((i+1)/2)/(T(i)*T(i))-
2.0/aver/r((i+1)/2)/T(i)+2.0*T(i-1)/aver/r((i-1)/2)/(T(i)*T(i))-2.0/aver/r((i-1)/2)/T(i)+L/R/(aver*aver)/...
    %(T(i)*T(i)*T(i)*T(i))*(T(i+1)*T(i+1)-2.0*T(i-1)*T(i+1)+T(i-1)*T(i-1))-
3.0/aver/(T(i)*T(i)*T(i))*(T(i+1)-T(i-1)));

        
        %find the odd numbered jacobian terms (boundary nodes)
        JB(i)=(L/R)*exp((L/R)*(1/T0-1/T(i)))*(2/(aver*r((i-1)/2)*T(i)^2)+2*L*T(i-1)/(R*aver^2*T(i)^4)-...
            2*L*T(i+1)/(R*aver^2*T(i)^4)+3/(aver*T(i)^3));%partial deriv wrt T(i-1) boundary node
        JA(i)=(L^2/(R^2*T(i)^2))*exp((L/R)*(1/T0-1/T(i)))*((2*T(i+1)/(aver*r((i+1)/2)*T(i)^2))-
2/(aver*r((i+1)/2)*T(i))+...
            2*T(i-1)/(aver*r((i-1)/2)*T(i)^2)-2/(aver*r((i-1)/2)*T(i))+(L/(R*aver^2*T(i)^4))*(T(i+1)^2-...
           2*T(i+1)*T(i-1)+T(i-1)^2)-(3/(aver*T(i)^3))*(T(i+1)-T(i-1)))+...
            (L/R)*exp((L/R)*(1/T0-1/T(i)))*(-4*T(i+1)/(aver*r((i+1)/2)*T(i)^3)+2/(aver*r((i+1)/2)*T(i)^2)-...
            4*T(i-1)/(aver*r((i-1)/2)*T(i)^3)+2/(aver*r((i-1)/2)*T(i)^2)-...
            4*L/(R*aver^2*T(i)^5)*(T(i+1)^2-2*T(i+1)*T(i-1)+T(i-1)^2)+...
            9*(T(i+1)-T(i-1))/(aver*T(i)^4));%partial deriv wrt T(i) boundary node
        JF(i)=(L/R)*exp((L/R)*(1/T0-1/T(i)))*(2/(aver*r((i+1)/2)*T(i)^2)+2*L*T(i+1)/(R*aver^2*T(i)^4)-...
            2*L*T(i-1)/(R*aver^2*T(i)^4)-3/(aver*T(i)^3));%partial deriv wrt T(i+1) boundary node
        
        
        %these are generated by MAPLE as a check
        
        %JB(i)=L/R*exp(L/R*(1/T0-1/T(i)))*(2.0/aver/r((i-
1)/2)/(T(i)*T(i))+L/R/(aver*aver)/(T(i)*T(i)*T(i)*T(i))*(-2.0*T(i+1)+2.0*T(i-
1))+3.0/aver/(T(i)*T(i)*T(i)));
        
        %JA(i)=L*L/(R*R)/(T(i)*T(i))*exp(L/R*(1/T0-1/T(i)))*(2.0*T(i+1)/aver/r((i+1)/2)/(T(i)*T(i))-
2.0/aver/r((i+1)/2)/T(i)+2.0*T(i-1)/aver/r((i-1)/2)/(T(i)*T(i))-2.0/aver/r((i-1)/2)/T(i)+L/R/...
        %(aver*aver)/(T(i)*T(i)*T(i)*T(i))*(T(i+1)*T(i+1)-2.0*T(i-1)*T(i+1)+T(i-1)*T(i-1))-
3.0/aver/(T(i)*T(i)*T(i))*(T(i+1)-T(i-1)))+L/R*exp(L/R*(1/T0-1/T(i)))*(...
        %-4.0*T(i+1)/aver/r((i+1)/2)/(T(i)*T(i)*T(i))+2.0/aver/r((i+1)/2)/(T(i)*T(i))-4.0*T(i-1)/aver/r((i-
1)/2)/(T(i)*T(i)*T(i))+2.0/aver/r((i-1)/2)/(T(i)*T(i))-4.0*L/R/...
        %(aver*aver)/(T(i)*T(i)*T(i)*T(i)*T(i))*(T(i+1)*T(i+1)-2.0*T(i-1)*T(i+1)+T(i-1)*T(i-
1))+9.0/aver/(T(i)*T(i)*T(i)*T(i))*(T(i+1)-T(i-1)));

        
        %JF(i)=L/R*exp(L/R*(1/T0-
1/T(i)))*(2.0/aver/r((i+1)/2)/(T(i)*T(i))+L/R/(aver*aver)/(T(i)*T(i)*T(i)*T(i))*(2.0*T(i+1)-2.0*T(i-1))-
3.0/aver/(T(i)*T(i)*T(i)));
        
        
    else    %even i, 
        %odd f, even nodes (center)
        
        %can use different diffusion distances for phase change
%          DD=w(i/2);%use pore width as diffusion distance
         DD=r(i/2); %ice radius as diffusion distance



230
%         DD=4e-6; %Colbeck diffusion distance
%         %use Hobbs book (Ice Physics) p403 for diffusion distance
%         if rem(i,4)~=0  %if at grain center
%             DD=rb((i/2)+1)^2/(2*r(i/2));
%         else   %neck center
%             DD=rb(i/2)^3/(2*r((i/2)-1));
%         end
        %use DD as diffision distance.  Change to desired value above
        %
        f(i-1,1)=(L/(R*r(i/2)^2))*exp((L/R)*(1/T0-1/T(i)))*(T(i-1)/T(i)^2-2/T(i)+T(i+1)/T(i)^2+...
            (L/(4*R*T(i)^4))*(T(i+1)^2-2*T(i-1)*T(i+1)+T(i-1)^2)-3*r(i/2)*(T(i+1)-T(i-1))/(2*T(i)^3))+...
           Aec(i/2)/(DD*vpore(i/2))*(exp((L/R)*(1/T0-1/Ts(i/2))+2*sigma/(rhoice*R*Ts(i/2)*rho(i/2)))-...
            exp((L/R)*(1/T0-1/T(i))))-facetMS(i/2)*T(i)*R/(D*P0);
        
%         
        %this is the one generated by MAPLE as a check
        
        %f(i-1,1)=L/R/(r(i/2)*r(i/2))*exp(L/R*(1/T0-1/T(i)))*(T(i-1)/(T(i)*T(i))-
2.0/T(i)+T(i+1)/(T(i)*T(i))+L/R/(T(i)*T(i)*T(i)*T(i))*(T(i+1)*T(i+1)-2.0*T(i-1)*T(i+1)+T(i-1)*T(i-
1))/4.0-3.0/2.0*r(i/2)/(T(i)*T(i)*T(i))*(T(i+1)-...
    %T(i-1)))+Aec(i/2)/w(i/2)/vpore(i/2)*(exp(L/R*(1/T0-1/Ts(i/2))+2.0*sigma/rhoice/R/Ts(i/2)/rho(i/2))-
exp(L/R*(1/T0-1/T(i))));
        %
        %find the even numbered Jacobian terms (center nodes)
        %
        JB(i)=(L/(R*r(i/2)^2))*exp((L/R)*(1/T0-1/T(i)))*(1/T(i)^2+L*T(i-1)/(2*R*T(i)^4)-
L*T(i+1)/(2*R*T(i)^4)+...
            3*r(i/2)/(2*T(i)^3)); %partial deriv for previous node temp wrt T(i-1)
           %
           JA(i)=(L^2/(R^2*r(i/2)^2*T(i)^2))*exp((L/R)*(1/T0-1/T(i)))*(T(i-1)/T(i)^2-
2/T(i)+T(i+1)/T(i)^2+...
            (L/(4*R*T(i)^4))*(T(i+1)^2-2*T(i-1)*T(i+1)+T(i-1)^2)-3*r(i/2)*(T(i+1)-T(i-1))/(2*T(i)^3))+...
            L/(R*r(i/2)^2)*exp((L/R)*(1/T0-1/T(i)))*(-2*T(i-1)/T(i)^3+2/T(i)^2-2*T(i+1)/T(i)^3-...
            (L/(R*T(i)^5))*(T(i+1)^2-2*T(i+1)*T(i-1)+T(i-1)^2)+9*r(i/2)*(T(i+1)-T(i-1))/(2*T(i)^4))-...
            (Aec(i/2)/(DD*vpore(i/2)))*((L/(R*T(i)^2))*exp((L/R)*(1/T0-1/T(i))))+...
            facetjacobian(i/2);%partial deriv wrt T(i)
        
        JF(i)=(L/(R*r(i/2)^2))*exp((L/R)*(1/T0-1/T(i)))*(1/T(i)^2+L*T(i+1)/(2*R*T(i)^4)-L*T(i-
1)/(2*R*T(i)^4)-...
            3*r(i/2)/(2*T(i)^3));%partial deriv wrt T(i+1)
        
        %these are the terms generated by MAPLE as a check
        
        %JB(i)=L/R/(r(i/2)*r(i/2))*exp(L/R*(1/T0-1/T(i)))*(1/(T(i)*T(i))+L/R/(T(i)*T(i)*T(i)*T(i))*(-
2.0*T(i+1)+2.0*T(i-1))/4.0+3.0/2.0*r(i/2)/(T(i)*T(i)*T(i)));
        
        %JA(i)=L*L/(R*R)/(r(i/2)*r(i/2))/(T(i)*T(i))*exp(L/R*(1/T0-1/T(i)))*(T(i-1)/(T(i)*T(i))-
2.0/T(i)+T(i+1)/(T(i)*T(i))+L/R/(T(i)*T(i)*T(i)*T(i))*(T(i+1)*T(i+1)-2.0*T(i-1)*T(i+1)+T(i-1)*T(i-
1))/4.0-3.0/2.0*r(i/2)/...
    %(T(i)*T(i)*T(i))*(T(i+1)-T(i-1)))+L/R/(r(i/2)*r(i/2))*exp(L/R*(1/T0-1/T(i)))*(-2.0*T(i-
1)/(T(i)*T(i)*T(i))+2.0/(T(i)*T(i))-2.0*T(i+1)/(T(i)*T(i)*T(i))-L/R/(T(i)*T(i)*T(i)*T(i)*T(i))*...
    %(T(i+1)*T(i+1)-2.0*T(i-1)*T(i+1)+T(i-1)*T(i-1))+9.0/2.0*r(i/2)/(T(i)*T(i)*T(i)*T(i))*(T(i+1)-T(i-
1)))-Aec(i/2)/w(i/2)/vpore(i/2)*L/R/(T(i)*T(i))*exp(L/R*(1/T0-1/T(i)));
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        %JF(i)=L/R/(r(i/2)*r(i/2))*exp(L/R*(1/T0-
1/T(i)))*(1/(T(i)*T(i))+L/R/(T(i)*T(i)*T(i)*T(i))*(2.0*T(i+1)-2.0*T(i-1))/4.0-
3.0/2.0*r(i/2)/(T(i)*T(i)*T(i)));

        
        
    end
end
JB(2*n+1)=0;
JF(1)=0;
%only store the nonzero elements of jacobian
for i= 1:2*n-1  % B matrix columns become diagonals of Jacobian matrix
    
        B(i,1)=JB(i+2);
        B(i,2)=JA(i+1);
        B(i,3)=JF(i);
end
    
%this locates what diagonal the vectors defined above  
d=[-1;0;1];
%form the jacobian using diagonal vectors stored in B
J=spdiags(B,d,(2*n-1),(2*n-1)); %find the sparse jacobian matrix
%full(J) %will display full matrix

condest(J);%condition numder of J since it needs to be inverted.  Good thing to check if having
convergence problems

%
%NOW FIND THE PORE TEMP INCREMENT
%
%invert the jacobian and multiply by RHS to get temperature increment
y=-J\f;
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function
[facetMS,facetHS,facetjacobian,facetL,wherefacets,beta,delta,vel,axisgrowth,gamma]=facet(TGtrig,n,r,T,th
eta,deltat,vpore,wherefacets,facetL,beta,delta,axisgrowth,gamma,bctemp)
%FACET Does the growth calculations for the temperature gradient facet grains
%
%****************************Outputs***********************
%facetMS - mass source terms for kinetic growth
%facetHS - heat source terms for kinetic growth
%facetjacobian - jacobian terms for vapor eqns
%facetL - L dimension of facets
%wherefacets - location of grains where facets are allowed to grow, if =0, no facet.  if =1, facet can grow
there
%beta - angle from dominant growth axis to crystal, defines habit for each crystal
%delta - facet thickness
%vel - velocity of dominant growth axis
%axisgrowth - defines which axis is dominant for kinetic growth. =0 is c axis, =1 is a axis
%gamma - angle from temperature gradient to dominant growth axis for each facet
%**********************************************************
%*************Define constants*****************************
rhoice=917; %ice density
alpha=.01;  %absorption coef a axis
alpha2=126.6; %constant for grain mass calcs from Sturm and Benson 1997
k=1.38e-23;  %Boltzman const(J/Kmole)
m=2.989e-26; %molecular mass (kg)
aa=4.519e-10; %lattice parameter for a axis growth
ac=7.357e-10; %lattice parameter for c axis growth
xsa=400*aa; %mean migration distamce of absorption for a axis
xsc=400*ac; %mean migration distance of absorption for c axis
eta=2e-11; %ledge energy/length (J/m)
D=2.02e-5;  %water vapor diffusivity
L=2.838e6;  % Latent heat of sublimation
R=462;  % water vapor ideal gas constant
% reference pressure and temperature
T0=273;
P0=611.3;
%**************************************************************
%need to define the number of faces that the grains will have grow.  Ranges 1-6, usually 2 or 3
NS=3;

%these need to be zeroed at each iteration
facetMS=zeros(n,1); %mass sources for facet grains
facetHS=zeros(n,1);%heat sources for facet grains
facetjacobian=zeros(n,1);%jacobian terms for the vapor eqns
vel=zeros(n,1);%a axis velocities
%
%first time through (first time step) initialize facets

if TGtrig==1
%*************************define facet location(s)***************
    %initialize one facet in the center.  
    

%     wherefacets((n+1)/2)=1; %middle grain
    
%     %******make all odd ice pieces (grains) facets*******
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%     for g=7:2:n-6  % avoid end elements so grains don't grow out of model
%         wherefacets(g)=1;
%     end
    %********
    
%     gamma(51)=60*pi/180;
%     gamma((n+1)/2)=pi/2*0;
%*********this next section makes all grains facets from n=21 to n=89*******
%     for pp=21:10:81
%         pp=41;%start at 41
%         wherefacets(pp)=1;
%         gamma(pp)=0;
%         wherefacets(pp+2)=1;
%         gamma(pp+2)=30*pi/180;
%         wherefacets(pp+4)=1;
%         gamma(pp+4)=60*pi/180;
%         wherefacets(pp+6)=1;
%         gamma(pp+6)=-30*pi/180;
%         wherefacets(pp+8)=1;
%         gamma(pp+8)=-60*pi/180;
%     end
    %*************************************
    wherefacets(61)=1;
    gamma(61)=-30*pi/180;
     wherefacets(71)=1;
     gamma(71)=-60*pi/180;
     wherefacets(51)=1;
     gamma(51)=60*pi/180;
    wherefacets(41)=1;
    gamma(41)=30*pi/180;
    wherefacets(31)=1;
    gamma(31)=0;
    wherefacets(71)=1;
    gamma(71)=-60*pi/180;
%*******************************************************************    
   
%************find growth angle beta*************************************
    %now find the a vs c axis growth rates based on linear curves of experimental data (Lamb and Hobbs)
    for j=1:n
         if wherefacets(j)~=0  %if there is a facet at the current location
             
             %aveT=theta(2*j)-273;  %set temp to grain temp at that location
             aveT=bctemp-273; %based on boundary temp
            %aveT=mean(theta)-273; %average temp 
    

            %start by finding c axis growth rate

            if aveT>-3.6% & aveT<=-2
                vc=0.5*aveT+2.05;
            elseif aveT<=-3.6 &aveT>-5
                vc=0.26;
            elseif aveT<=-5 & aveT>-5.7
                vc=-.5833*aveT-2.6165;
            elseif aveT<=-5.7 & aveT>-7.5
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                vc=.2388*aveT+2.06;
            else
                vc=.0210784*aveT+.4215686;
            end

        %now find growth rate for a axis

            if aveT>-7.6% & aveT<=-2
                va=0.17555*aveT+1.444;
            elseif aveT<=-7.6 &aveT>-9.2
                va=0.11;
            elseif aveT<=-9.2 & aveT>-11
                va=-.2*aveT-1.72;
            elseif aveT<=-11 & aveT>-14.3
                va=.48;
            else
                va=.1432836*aveT+2.528955;
            end
            %now find the growth angle based on relative growth rates.  which axis is dominant?
            if vc>va  %then c axis dominant growth
                beta(j)=atan2(va,vc);  %angle from c axis to growth direction (radians)
                betadeg=beta*180/pi; %angle from c axis to growth direction in deg
            else  %a axis dominat growth
                axisgrowth(j)=1; %identifies this as a axis growth
                beta(j)=atan2(vc,va); %angle from c axis to growth direction (radians)
                betadeg=beta*180/pi; %angle from c axis to growth direction in deg
            end
%             beta(j)=20*pi/180;%this is to fix beta at 20 deg for studies
        end
    end    

%************************************************************************************
***
    
    %set the inital crystal side length equal to grain radius.  Calculate grain thickness
    for j=1:n
        if wherefacets(j)~=0
            length=1.5*r(j);  %starting length of the crystal, usually 1.25 - 1.5
            facetL(j)=length*sin(beta(j));%the L dimension of crystal.  This is main parameter tracked
            %delta(j)=alpha2*facetL(j)/(rhoice*NS*4*sin(beta(j))^2); %crystal thickness
            delta(j)=alpha2*r(j)/(rhoice*4*NS*sin(beta(j)));%thickness based on r(i)
        end
    end
    
end
%********end of initialization section*****************************************

%*******next section done at every iteration***************************
%find which pore the end of the grain is currently resides in
for j=1:n
    if wherefacets(j)~=0  %if there is a facet at the current location
        locate=1;
        counter=0;
        while locate>0
            dist=0;
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            for kk = 0:counter
                if kk==0
                    dist=r(j);  %finds a distance kk radii from current grain
                else
                    dist=dist+2*r(j-kk);
                end
            end
            counter=counter+1;
            locate=abs(facetL(j)*cos(gamma(j)+beta(j))/sin(beta(j)))-dist; %when this goes <0, it is the distance
it is short 
        end
        %*****check to see if above horizontal******************
        if facetL(j)*cos(gamma(j)+beta(j))/sin(beta(j))>0
            porenum=j-kk;  %gives the pore number where the end of the grain is located
%         elseif abs(facetL(j)*cos(gamma(j)+beta(j))/sin(beta(j)))<r(j)
%             porenum=j
%             locate=abs(facetL(j)*cos(gamma(j)+beta(j))/sin(beta(j)))+r(porenum);
        else
            porenum=j;
            locate=r(porenum);
        end
        %******************************************************
        
        %we want vapor coming from pores with odd (grains)
        if rem(porenum,2)==0
            porenum=porenum-1;
            locate=2*r(porenum);
        end
        
        
        
        %now find the growth rates for each faceted grain
        
        pice=P0*exp((L/R)*(1/T0-1/theta(2*j)));  %no curvature considerations, use the ice temp where the
grain is attached
        if j==porenum  %if in first pore associated with the grain
        %*******interpolate for pore pressures*****
            pcold=P0*exp((L/R)*(1/T0-1/T(porenum*2)));
            phot=P0*exp((L/R)*(1/T0-1/T(porenum*2-4)));
            ppore=pcold+(phot-pcold)*(r(porenum)-abs(locate))/(r(porenum));
       
    else
            pcold=P0*exp((L/R)*(1/T0-1/T(porenum*2)));
            phot=P0*exp((L/R)*(1/T0-1/T(porenum*2-4)));
            ppore=pcold+(phot-pcold)*(2*r(porenum)-abs(locate))/(2*r(porenum));
    end
 %*********end pore pressure interpolation*********
 %**********find facial growth velocity*************
        if axisgrowth(j)==0  %then c axis growth
            
            deltaP1=2*2^0.5*(pi*eta*ac^2*pice)/(k*xsc*theta(j*2)); %critical excess vapor pressure c axis
        else
            deltaP1=2*2^0.5*(pi*eta*aa^2*pice)/(k*xsa*theta(j*2)); %critical excess vapor pressure a axis
        end
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        deltaP=ppore-pice;  %excess vapor pressure
        
        %*****************don't allow negative velocities**********************
        if deltaP<0
            vel(j)=0;
        else
            vel(j)=(alpha/rhoice)*(m/(2*pi*k*theta(2*j)))^.5*deltaP^2/deltaP1*tanh(deltaP1/deltaP);% axis
growth velocity
        end
        %*************************************
        deltaold=delta(j);
            newL=facetL(j)+vel(j)*deltat*tan(beta(j));%new L for a axis growth
        %heat and mass source terms based on crystal volume change
%         facetMS2(porenum)=alpha2/8*((facetL(j)/sin(beta(j)))^3-
(newL/sin(beta(j)))^3)/(deltat*vpore(porenum));%original mass source 
%         
%         facetHS2(j)=L*alpha2/8*((facetL(j)/sin(beta(j)))^3-
(newL/sin(beta(j)))^3)/(deltat*newL/sin(beta(j)));%original heat sources
        
        %heat and mass source terms based on crystal growth rate
        
%         facetMS3(porenum)=-
alpha2*vel(j)*(facetL(j)/sin(beta(j)))^2*cos(beta(j))/(4*vpore(porenum));%variable thickness
        facetMS(porenum)=facetMS(porenum)+-
delta(j)*facetL(j)*NS*vel(j)/cos(beta(j))*rhoice/vpore(porenum);%const thickness facet
        
%         facetjacobian(porenum)=alpha2*(facetL(j)/sin(beta(j)))^2*cos(beta(j))/4/vpore(porenum)*...
%             (2*alpha/rhoice)*(m/(2*pi*k*theta(2*j)))^.5*deltaP/deltaP1*tanh(deltaP1/deltaP)*...
%             P0*exp((L/R)*(1/T0-1/T(2*porenum)))*L/R/T(2*porenum)^2;  %facet jacobian terms
        
        
%         facetHS3(j)=-L*vel(j)*alpha2*facetL(j)/sin(beta(j))*cos(beta(j))/4; %variable thickness facet
        facetHS(j)=-L*delta(j)*NS*vel(j)/cos(beta(j))*rhoice*facetL(j)/(facetL(j)/sin(beta(j)));%const
thickness
        
        
    end
end
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function [HS,MS,Jec,Ppore,Pice,massflow]=source(n,T,theta,r,rb,rho,Aec,w,vpore,Ts,facetMS,facetHS)
%SOURCE Finds the mass and heat source terms applied to the ice and pore
%
%*************************Outputs*************************
%HS - heat source term for each ice element (n)
%MS - mass source term for each pore element (n)
%Jec - the phase change flux for each element (n)
%Ppore - vapor pressure at each pore node (2n+1)
%Pice - vapor pressure over each ice element (n)
%massflow - the mass flow rate at each element (n)
%********************************************************
%******  Define constants *******************************
%
% Diffusivity
%
D=2.02e-5;
%
% Latent heat of sublimation
%
L=2.838e6;
%
% ice density
%
rhoice=917;
%
% water vapor ideal gas constant
%
R=462;
%
% surface tension (free energy)
%
sigma=.109;
%
% reference pressure and temperature
%
T0=273;
P0=611.3;
%
%*******************************************************************
 %
% Find the vapor flux terms for this time step
%
%find the nodal pore vapor pressures
for i=1:2*n+1
    
    if rem (i,2)~=0  %if i is odd at grain
        
        Ppore(i)=P0*exp((L/R)*(1/T0-1/T(i))); %pore vapor pressure at each node
        
    else    %if at even element it is a bond
      
        Ppore(i)=P0*exp((L/R)*(1/T0-1/T(i))); %pore vapor pressure at each node (even)
        
    end
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end
%
%find the vapore pressure over the surface of each ice element, then find phase change flux
for i=1:n  % each element (ice or pore) has flux associated with it
    
    %can use different diffusion distances
%         DD=w(i);%use pore width as diffusion distance
         DD=r(i); %ice radius as diffusion distance
%          DD=4e-6; %Colbeck diffusion distance
        %use Hobbs book p403
%         if rem(i,2)~=0  %if at grain center
%             DD=rb(i+1)^2/(2*r(i));
%         else   %neck center
%             DD=rb(i)^3/(2*r(i-1));
%         end

    % vapor pressure over the element ice surfaces, based on surface temperature
    Pice(i)=P0*exp((2*sigma/(rhoice*R*Ts(i)*rho(i)))+(L/R)*(1/T0-1/Ts(i)));
    %
    %find the phase change flux, use variable diffusion distance defined above
    Jec(i)=-D*(Ppore(2*i)-Pice(i))/(R*Ts(i)*DD);    %Notice pore pressure at each node, ice pressure at
each element
    %
    % mass source term for vapor equation, must include source from facet growth on that grain
    MS(i)=Jec(i)*Aec(i)/vpore(i)+facetMS(i); 
    massflow(i)=Jec(i)*Aec(i);  %total massflow for that element
    %
    %heat source term for conduction equation
    HS(i)=Jec(i)*L*Aec(i)/(2*r(i))+facetHS(i);
    %
end
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function [coefice,rhsice]=coef(n,A,r,HS,theta)
%COEF Forms the coefficient matrices and right hand side of equations for ice conduction
%
%***************************Outputs**************************
%coefice - coeficient matrix for heat conduction problem
%rhsice - right hand side of ice conduction equation
%************************************************************
%******  Define constants ***********************************
%
% Diffusivity
%
D=2.02e-5;
%
% Latent heat of sublimation
%
L=2.838e6;
%
% ice density
%
rhoice=917;
%
% water vapor ideal gas constant
%
R=462;
%
%thermal conductivity of ice
%
k=2.2;
%*************************************************************
%Find all the coefficient entries
%
%the first loop is for even numbered nodes (located at the pore and ice centers)
for i=2:2:(2*n) % first and last nodes have predefined temps
    %
%central difference for all derivatives

    HH(i)=(1+(A(i-1)-A(i+1))/(4*A(i)))/r(i/2)^2;
    II(i)=-2/r(i/2)^2;
    JJ(i)=(1+(A(i+1)-A(i-1))/(4*A(i)))/r(i/2)^2;
    KK(i)=HS(i/2)/(k*A(i));
end
%
% get quantities for boundary (odd) nodes
%
for i=3:2:(2*n-1)
    %
%     %center differenced
    aver=r((i+1)/2)+r((i-1)/2);
    LL(i)=2/(aver*r((i-1)/2))+(A(i-1)-A(i+1))/(A(i)*aver^2);
    MM(i)=-2/(r((i+1)/2)*r((i-1)/2));
    NN(i)=2/(aver*r((i+1)/2))+(A(i+1)-A(i-1))/(A(i)*aver^2);
end
LL(2*n+1)=0;
NN(1)=0;
%set up coefficient matrices
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%use sparse matrix notation
%B matrix has columns that become diagonals in coef matrix
for i=1:2:(2*n-1)%start with odd (every other) along diagonals 
    B(i,1)=LL(i+2);
    B(i,2)=II(i+1);
    B(i,3)=NN(i);
end
for i=2:2:(2*n-2);
    B(i,1)=HH(i+2);
    B(i,2)=MM(i+1);
    B(i,3)=JJ(i);
end
%determines where diagonals are located
d=[-1;0;1];
%form the coef matrix with only nonzero entries
coefice=spdiags(B,d,(2*n-1),(2*n-1));
%condest(coefice)   %condition number, good to check for stability 

% Now find the right hand side of each set of equations
 %apply boundary conditions
rhsice(1,1)=KK(2)-HH(2)*theta(1);
rhsice((2*n-1),1)=KK(2*n)-JJ(2*n)*theta(2*n+1);
%
%do the even numbered entries

for i=2:2:(2*n-2)
    rhsice(i,1)=0;
end

%do the odd numbered entries

for i=3:2:(2*n-3)
    rhsice(i,1)=KK(i+1);
end
%rhsice %to examine the rhs of ice conduction equations
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function [rbdot]=growthrates(n,r,rb,Jec,Aec)
%GROWTHRATES Finds the growth and decay of equilibrium ice grains and necks based on geometric
volume and mass
%transfer rates.
%
%**********************Outputs*********************
%rbdot - rate of change of grain radius or bond radius
%***************************************************
%
% ice density
%
rhoice=917;
%
%

%loop over even n, these are the bonds (necks)

for i=1:n
    if rem (i,2)~=0  %if i is odd, at a grain element
        vdot=-Jec(i)*Aec(i)/rhoice; %volumetric flow rate (m^3/s)
        rbdot(i)=vdot/(4*pi*rb(i)^2); %grain radius growth rate (m/s)
    else  %i is even, at a bond
        vdot=-Jec(i)*Aec(i)/rhoice; %volumetric flow rate (m^3/s)
        rbdot(i)=vdot*r(i-1)/(pi^2*rb(i)^3);  %neck growth rate (m/s) using n-1 grain radius for R
    end
end

function [facetL]=updatefacetgeom(deltat,n,TG,facetL,vel,wherefacets,axisgrowth,beta)
%UPDATEFACETGEOM This function updates the L parameter of facet grains

if TG==0
    return  %if ET, don't do any calcs
else
    for j=1:n
        if wherefacets(j)~=0  %if there is a facet at the current location
%             if axisgrowth(j)==0
%                 facetL(j)=facetL(j)+vela(j)*deltat;  %this is new L grain parameter after delta t c axis growth
%             else
                facetL(j)=facetL(j)+vel(j)*deltat*tan(beta(j));% axis growth based on either c or a 
%             end
            
        end
    end
end
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function [r,rho,rb,A,Aec,w,vice,vpore,newdensity]=updategeom(n,rbdot,deltat,x,r,rb,w,vpore,rhosample)
%UPDATEGEOM Finds the new pore and ice geometries based on growth rates and time increment.
Equilibrium form only.
%
%***********************Outputs****************************
%r - grain radii and neck lengths for each element (updated)(n)
%rho - ice surface curvatures (updated) for each ice element(n)
%rb - distance from ice nodes and ice surface (n)
%A - ice heat conduction area at each node(2n+1)
%Aec - ice surface area for each ice element (n)
%w - vector of distances from symmetry plane to ice elements (n)
%vice - vector of ice element volumes (n)
%vpore - vector of pore element volumes (n)
%newdensity - updated density
%************************************************************
%Ice density
rhoice=917;
%update geometry based on rbdot
%
for i=1:n
    if rem (i,2)~=0  %if i is odd get grain radius
        r(i)=r(i)+rbdot(i)*deltat;
        rho(i)=r(i);%surface radius of curvature for circular grain = grain radius
        rb(i)=r(i); %this is the dimension perpendicular to model centerline (for pore calcs)
                    %for circular grain = grain radius
    else    %if at even element it is a bond
        rb(i)=rb(i)+rbdot(i)*deltat;  % bond radius (use this)
        %r(i) is bond length (use this)
        r(i)=(r(i-1)*rb(i)^2)/(2*r(i-1)^2-2*rb(i)*r(i-1)+rb(i)^2); 
        %bond surface curvature.  Negative for concave. 
%         rho(i)=-(rb(i)^2)/(2*(r(i-1)-rb(i)));
        %could use average curvature.  Colbecks paper on curvature metamorphism.  Shuts off at rb/R > 2/3
        rho(i)=2/(1/rb(i)-2*(r(i-1)-rb(i))/rb(i)^2);
    end
end
%set the end radii the same as last bond 
r(n+1)=r(n-1);
rb(n+1)=rb(n-1);

%*********************3D geometry calcs****************************
%   Calculate the ice conduction and phase change areas
%
for i=1:n
    if rem (i,2)~=0  %if i is odd, at a grain element
        A(2*i,1)=pi*r(i)^2; %3D conduction area in grain (at grain center)
        Aec(i,1)=4*pi*r(i)^2;  %3D surface area of grain (surface area of sphere)
%         Aec(i,1)=0;%turn off et stuff
        
        %*************************************************************************
%         % 3D this is grain surface area minus neck contact area on each side of grain
%         if i==1
%             Aec(i,1)=4*pi*r(i)^2-2*pi*(rb(i+1)^2);
%         else
%             Aec(i,1)=4*pi*r(i)^2-pi*(rb(i+1)^2+rb(i-1)^2); % 3D this is grain surface area minus neck
contact area on each side of grain
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%         end
        %****************************************************************************
       
    else    %if at even element it is a bond
        
        A(2*i+1)=pi*rb(i)^2; %3D conduction through the necks
        A(2*i-1)=pi*rb(i)^2;
        A(2*i)=pi*rb(i)^2;
        Aec(i,1)=pi^2*rb(i)^3/(2*r(i-1));  %3D neck surface area from Hobbs book Page
        %Aec(i,1)=4*pi*r(i)*rb(i); %3D surface area of neck cylinder
    end
end
%define end points
A(2*n+1)=A(2*n-1); % this gives a conduction area out of the top of the last grain
A(1)=A(3);
Aec(n+1)=Aec(n-1);
%now find the pore volumes.
%assume the pore width changed by the same amount as grain radius but different direction (keeps x
constant
for i=1:n
    w(i)=w(i)-rbdot(i)*deltat;
end;
% we can now find a new density based on new geometry
%find the volume of circular grains
%
icevol=0;
for i=1:2:n
    vice(i)=4*pi*r(i)^3/3;  %3D ice piece volume
    %vice(i)=2*r(i)^2 %cylinder check out
    icevol=icevol+vice(i);
end

%find the volume of necks, treat as 3D cylinders
for i =2:2:n-1
    vice(i)=pi*rb(i)^2*2*r(i); %3D cylinder volume
    %vice(i)=2*r(i)^2;  % cylinder checkout
    icevol=icevol+vice(i); %cylindrical neck volume
end

%find pore volumes
%find the individual pore volumes
porevol=0;
vtotal=rhoice*icevol/rhosample;

%now find total pore volume for the model
porevol=vtotal-icevol; %total pore volume
%
%******An alternative approach, simpler for pore volume*********
%this conserves mass better for ET analysis

for i=1:n
    vpore(i)=r(i)/sum(r)*porevol;
end
porevol=sum(vpore);
newdensity=icevol*rhoice/(icevol+porevol)
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function [bctemp,TG]=layers(timetotal,i)
%LAYERS This function finds the temperatures at the boundaries of a three layer snowpack based on 
%steady state conduction.  Surface temperature is a sinusoid in time.
%
%Define layer properties.
%
%layer densities
rho1=365;
rho2=300;
rho3=215;
%layer thermal conductivity.  Based on density for this effort
k1=2.22326*(rho1/1000)^1.885;
k2=2.22326*(rho2/1000)^1.885;
k3=2.22326*(rho3/1000)^1.885;

%layer thicknesses (m)
d1=.8;
d2=.3;
d3=.2;
%
%Define surface temperature mean and temp fluctuations
avesurfacetemp=253;
tempfluctuations=5;
%Define ground temperature
T1=273;
%surface temperature as a function of total time.  timetotal is in seconds.  24 hour cycle on temps
T4=avesurfacetemp+tempfluctuations*sin(timetotal*pi/(12*3600))
%can read temps from metstation from file
%fid=fopen('tempdata.txt','r');
%surfacetemp=dlmread('tempdata.txt','\t');
%fclose(fid);
%T4=surfacetemp(i)+273;
%

%find other temps based on conduction
T2=(k2*d3*k1*T1+k3*d2*k1*T1+k3*T4*k2*d1)/(k2*d3*k1+k3*d2*k1+k3*k2*d1)
T3=(k1*d2*k3*T4+k2*d3*k1*T1+k3*T4*k2*d1)/(k2*d3*k1+k3*d2*k1+k3*k2*d1)
%find average temperature gradients and temperatures for each layer
avetemp1=(T1+T2)/2 %layer 1 ave temp
avetemp2=(T2+T3)/2 %layer 2 ave temp
avetemp3=(T3+T4)/2 %layer 3 ave temp
TG1=(T2-T1)/d1 %TG layer 1
TG2=(T3-T2)/d2 %Tg layer 2
TG3=(T4-T3)/d3 %TG layer 3
%now it is time to designate which temperature and temperature gradient will be placed back into the
analysis
%this depends upon which layer is currently analyzed

TG=TG2;
bctemp=avetemp2;
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