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ABSTRACT 

 

Deep persistent slab avalanches are a natural hazard that are particularly difficult 
to predict. These avalanches are capable of destroying infrastructure in mountain settings, 
and are generally unsurvivable by humans.  Deep persistent slab avalanches are 
characterized by a thick (> 1 m) slab of cohesive snow overlaying a weak layer in the 
snowpack, which can fail due to overburden stress of the slab itself or to external triggers 
such as falling cornices, explosives, or a human. While formation of such snowpack 
structure is controlled by persistent weather patterns early in the winter, a snowpack 
exhibiting characteristics capable of producing a deep persistent slab avalanche may exist 
for weeks or months before a specific weather event such as a heavy precipitation or 
rapid warming pushes the weak layer to its breaking point. Mountain weather patterns are 
highly variable down to the local scale (1-10 m), but they are largely driven by 
atmospheric processes on the continental scale (1000 km). This work relates atmospheric 
circulation to deep persistent slab events at Mammoth, CA; Bridger Bowl, MT; and 
Jackson, WY. We classify 5,899 daily 500 millibar geopotential height maps into 20 
synoptic types using Self-Organizing Maps. At each location, we examine the frequency 
of occurrence of each of the 20 types during November through January during major 
deep persistent slab seasons and compare those frequencies to seasons without deep 
persistent slab avalanches. We also consider the 72-hour time period preceding deep 
persistent slab avalanches at each location and identify synoptic types occurring 
frequently, as well as those rarely occurring prior to onset of activity. At each location, 
we find specific synoptic types that tend to occur at a higher rate during major deep 
persistent slab years, while minor years are characterized by different circulation patterns. 
We also find a small number of synoptic types dominating the 72-hour period prior to 
onset of deep slab activity. With this improved understanding of the atmospheric 
processes preceding deep persistent slab avalanches, we provide avalanche practitioners 
with an additional tool to better anticipate a difficult to predict natural hazard. 
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INTRODUCTION 
 
 

Background 
 
 

Deep persistent slab avalanches are a destructive and difficult to predict natural 

hazard. These events are capable of causing severe damage to infrastructure and are often 

unsurvivable for people caught in them. Persistent Slab avalanches occur when a 

persistent weak layer in the snowpack that is overlain by a cohesive slab collapses due to 

overburden stress from the slab itself, or applied stresses from external loads such as new 

and wind-deposited snow, falling cornices, explosives, or humans. (Schweizer et al., 

2016; McClung and Schaerer, 2006).  Formation of a snowpack conducive to slab 

avalanches results from weather patterns operating on time scales from hours to months 

(Birkeland, 1998; Lang et al., 1984; Marienthal et al. 2015), which can exhibit a large 

amount of geographic and interannual variability (Mock and Birkeland, 2000). Similarly, 

the onset of slab avalanche activity is commonly accompanied with certain 

meteorological conditions including severe loading from snow and wind, rain-on-snow 

events, or rapid warming (Atwater, 1954; LaChapelle, 1966; LaChapelle, 1980). 

Although mountain weather is a complex and spatially variable phenomenon, these 

meteorological processes are largely driven by circulation patterns occurring in the upper 

atmosphere on the synoptic scale (Aguado and Burt, 2015). The field of synoptic 

climatology relates atmospheric processes to environmental responses such as 

precipitation, air quality, and natural disasters (Yarnal, 1993), and will provide the 

framework for this study. 
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Avalanche Impacts 
 

 Snow avalanches killed 1083 people in the United States between 1950/51 and 

2017/18 (CAIC, 2019).  Between 1951 and 1970 there were 4.9 fatalities on average 

annually (Figure 1). With the advent of more advanced backcountry skiing technology 

and subsequent increased backcountry usage beginning in the early1970’s, 12.5 people 

were dying in avalanches per year on average between 1970 and 1990. Beginning in the 

early 1990’s the average rate increased again, with development of snowmobiles that 

enabled an even larger population of backcountry users to access dangerous terrain. 

During the period from 1990 to 2005, the average annual fatality rates jumped to 22.4 

deaths per year. Since 2005, that increasing trend has leveled off despite a continued 

exponential increase in backcountry usage (Figure 1). This may be attributed to 

improvements in avalanche education, increased usage of backcountry avalanche 

advisories, and advances in backcountry rescue equipment and techniques (Birkeland et 

al., 2017). During the winter seasons from 2004/05-2017/18, the average annual fatality 

rate in the U.S. was 26 deaths per year. Between 1925 and 1975, the annual mortality rate 

from avalanches was larger than the annual rates for all other mass wasting events 

combined (National Research Council, 1990). Snow avalanches also have important 

economic impacts including rescue costs, property damage, destruction of infrastructure, 

litigation costs, and operational expenses related to avalanche mitigation and road 

maintenance (National Research Council, 1990).  
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Figure 1: Time series plot of annual U.S. avalanche fatalities since 1951. Bars represent 
the number of fatalities for a given season. The red line represents a 5-year moving 
average. For example, the moving average value for 2018 is the average of the annual 
fatalities from 2014-2018. 
 
 

Slab Avalanche Mechanics 
 

Slab avalanches result from a complex interaction between a cohesive slab of 

snow (referred to hereafter as a slab) and a poorly bonded, relatively weaker layer deeper 

in the snowpack (referred to hereafter as a weak layer). Slab avalanches may be separated 

into two distinct groups: dry slab avalanches and wet slab avalanches. Schweizer et al. 

(2016) describe four steps that are prerequisite for a dry slab avalanche: fracture 

initiation, onset of crack propagation, rapid dynamic propagation, and slab tensile failure 

and release. In the first step, a fracture is initiated in the weak layer. This initial failure 

may occur slowly and on the scale of millimeters as a weak layer is loaded incrementally 

via new or wind-transported snow.  Alternatively, larger initial fractures (centimeters to 

decimeters) may be initiated rapidly by applying an external load such as a falling 

cornice, an explosive, or a human. As this initial crack grows the overlying slab begins to 
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bend, which generates compressive and shear stress at the slab-weak layer interface. 

Once the initial crack reaches a critical length, stress concentrations at the crack tip 

generated by slab bending exceed the amount of stress the weak layer is able to support. 

At this point, the energy generated by the slab bending is sufficient to break the bonds in 

the weak layer and the crack is able to propagate without any additional load (Gaume et 

al., 2017). If the slab has enough tensile strength to remain intact during bending, the 

crack is able to propagate for long distances (10’s to 100’s of meters) and dynamic 

propagation ensues. However, if the slab is not strong enough to remain intact while 

bending, the slab will fracture before the crack can propagate through the weak layer and 

the weak layer fracture will arrest (Reuter and Schweizer, 2018). If the slab and the weak 

layer are capable of sustaining dynamic propagation, the physical bonds keeping the slab 

coupled with the slope will be destroyed. If the slope angle is great enough to overcome 

the forces of residual friction, the slab will undergo tensile failure at the top of the slope 

and slide downhill. If the slope is not steep enough to overcome friction, the weak layer 

will still collapse, but the slab will settle in place.  

Whereas dry slab avalanches are a result of failure due to applied loads increasing 

stress on a weak layer, wet slab avalanches typically occur when weak layer strength 

decreases, and may be independent of additional loading. Weak layer strength can 

decrease when liquid water is introduced to a winter snowpack through melting or rain-

on-snow events, altering the structure of the snowpack such that the weak layer may no 

longer able to support the weight of the overlying slab (McClung and Schaerer, 2006; 

Pietzsch, 2009).  Baggi and Schweizer (2009) and Marienthal et al. (2012) observed that 
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liquid water tends to accumulate at capillary boundaries within the snowpack between 

relatively fine grains in slabs and large- grained weak layers during wet slab activity. 

These field observations have subsequently been supported by cold lab experiments 

which documented high liquid water content at capillary boundaries in snow samples 

(Avanzi et al., 2016). When there is enough liquid water available at the slab-weak layer 

boundary, liquid water is able to flow downslope, deteriorating the fragile bonds between 

the slab and the weak layer and resulting in a wet slab avalanche.  

Onset of a slab avalanche depends on the properties of both the slab and the weak 

layer. Birkeland et al. (2014) demonstrated through a series of field experiments that a 

slab is capable of sustaining fracture propagation even when large portions of the weak 

layer are interrupted or removed. They also observed fracture arrest when portions of the 

weak layer were supported to prevent collapse, or if enough of the slab was removed that 

the slab fractured under tensile failure. Gaume et al. (2017) supported these results 

numerically by modeling crack propagation using the mechanical properties of both the 

slab and the weak layer. They found that the length of the crack required for onset of 

fracture propagation depends on the slab elastic modulus, which is a measure of slab 

stiffness, as well as the weak layer specific fracture energy, a measure of the resistance of 

the weak layer to collapse. Birkeland et al. (2019) conducted a series of field experiments 

that confirmed this, finding critical crack lengths to be proportional to slab modulus and 

weak layer specific fracture energy. Gaume and Reuter (2017) highlighted the importance 

of considering layering within the slab when modeling critical crack length as well as the 

length of the initial crack resulting from the stress applied by a skier on the snow surface. 
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Reuter and Schweizer (2018) further demonstrated that they were better able to predict 

slab collapse in the field by incorporating slab tensile strength as well as fracture 

initiation in the weak layer and propagation propensity.   

The relationship between slab depth and snow stability is complex. Generally, as 

slab depth increases it becomes more difficult to initiate a critical crack in a weak layer, 

but more likely to propagate a fracture once a crack in the weak layer is initiated. 

Although critical crack length tends to decrease with slab thickness and density, crack 

length tends to increase with increasing slab stiffness (Gaume et al. 2017). Further 

complicating the process is the influence of external loads on a deeply buried weak layer. 

Schweizer and Camponovo (2001) used load cells to measure normal stress at depths up 

to one meter within the snowpack while applying a load at the surface approximately 

equal to that of a skier. They found that as depth increases, the area affected by the 

applied load increases, which results in a decrease in the magnitude of stress with depth. 

In their experiments, stresses measured at one meter depth were equal to roughly 10% of 

the applied load at the surface (Figure 2). As slab stiffness increases, stress is more 

effectively dispersed with depth, which results in decreased applied stress at the buried 

weak layer (Thumlert and Jamieson, 2014). The result of these processes is that as the 

depth to the weak layer increases, fracture initiation becomes more difficult yet 

propagation becomes more likely. This makes deep slab avalanches particularly difficult 

to predict, and uncertainty increases as the slab thickness, and subsequently the potential 

size of the avalanche, increases. 
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Figure 2: Vertical cross section of the stress distribution for an applied surface stress 
approximate to that of a skier. Labeled contour lines represent the percent of the surface 
load measured at different depths in the snowpack. Taken from Schweizer and 
Camponovo (2001). 

 
 

Meteorological Drivers of Deep Slab Avalanches 
 
 

The process by which snow crystals on the ground change form over time is 

referred to as snow metamorphism. Metamorphism is driven by vapor pressure gradients 

within the snowpack, and the rate of metamorphism has important implications regarding 

snow stability. Vapor pressure gradients are primarily driven by differences in 

temperature in the snowpack and by the radius of curvature of individual grains. 

Saturation vapor pressure over a curved surface increases as radius of curvature 

decreases. Additionally, saturation vapor pressure is higher over convex surfaces 

compared to concavities. In the absence of large temperature gradients, this means that 

water vapor will sublimate off the corners of snow grains and deposit in the bonds that 

join them in a process called sintering (Colbeck, 1983a; Armstrong and Brun, 2008). This 

sintering process results in a cohesive layer of rounded, well-bonded grains. The rate of 
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diffusion for sintering and rounding is very slow relative to the rate of vapor transfer due 

to an imposed temperature gradient. In the presence of a temperature gradient exceeding 

0.1 - 0.2 oC/cm, snow grains move towards equilibrium by transporting vapor from areas 

of high saturation pressure (high temperature) to areas of low vapor pressure (low 

temperature). This results in sublimation off of the warmer grains and deposition on the 

colder grains. Deposition occurs rapidly, forming individual faceted crystals. Since the 

sintering process is slow relative to crystal growth, these new grains tend to be large and 

poorly bonded relative to rounded grains formed in the absence of a large temperature 

gradient (Colbeck, 1983b). Thus, the faceting process results in a relatively weak layer in 

the snowpack, which can lead to slab avalanches. 

In the Northern Hemisphere, the formation of a snowpack conducive to deep slab 

avalanches often results from observed weather in November through January. Onset of 

slab avalanche activity is commonly preceded by new or wind-transported snow loading, 

rapid warming, or rain-on-snow events. Marienthal et al. (2015) investigated 

meteorological factors associated with deep slab avalanches failing on persistent weak 

layers in an intermountain snowpack in southwest Montana. They found November-

January total snow water equivalence (SWE), as well as December-only SWE to be the 

best indicator of deep slab activity later in the season, with lower December SWE totals 

more commonly associated with deep slab cycles. They also found deep slab avalanches 

to be preceded by warm temperatures and large precipitation totals in the days leading to 

the event. Conlan et al. (2014) found wind speed and direction, warming temperatures, 

and 1, 3, 6, and 12-day cumulative precipitation totals to be related to deep slab activity 
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in the Coastal and Columbia mountains of British Columbia. However, they noted that 

the relationship was not strong enough to be used as a forecasting tool due to high false-

alarm ratios and suggested they might find stronger relationships by grouping the events 

based on early/late season events, location, weak layer type, and type of trigger. Savage 

(2006) investigated deep slab avalanches on the south face of Lone Mountain at Big Sky 

Resort in Montana. He described a common early season weather scenario for seasons 

with major deep slab problems in which early season (October – November) snowfall is 

transported by S-SW winds, creating a smooth bed surface that remains intact for the 

remainder of the season. He noted that the problem may be exacerbated if the wind event 

is followed by a warm, sunny period which can form an ice crust in start zones that is 

subsequently buried and persists for the season. Additionally, he found 3- and 5- day 

wind direction and cumulative storm totals to be closely related to deep slab activity.  

 
Atmospheric Processes 

 
 

Much of the weather we observe at the surface is driven by circulation patterns in 

the mid troposphere, at altitudes around 5000-6000 m. At these altitudes, air pressure is 

approximately 500 mb, or roughly half the pressure at sea level. Meteorologists 

commonly incorporate maps of 500 mb geopotential heights in their forecasts. One utility 

of the 500 mb geopotential height map is its ability to illustrate north-south migration of 

polar and tropical air masses (i.e. meridional flow), which control surface temperatures. 

Since cooler temperatures increase density in a fluid, a colder air mass will not expand as 

much vertically and is therefore associated with lower 500 mb heights. When a polar air 
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mass migrates southward, these lower geopotential heights create a depression, or trough. 

Alternatively, warm air will expand and push the 500 mb level higher. It follows that as 

warm air masses move northward, they generate an upper-level ridge.  

Upper-level wind speed and direction are a product of pressure gradients as well 

as the Coriolis effect. Windspeeds increase with greater pressure gradients, and at the 500 

mb height direction is always perpendicular to the gradient. This results from an 

enhanced Coriolis effect with high wind speeds due to the lack surface friction at high 

altitudes. On a map of 500 mb geopotential heights, this means that winds will flow 

parallel to the isobars. These winds are referred to as geostrophic winds. Wind direction 

influences vapor transport in the atmosphere, and therefore influences the storm track, or 

the general direction in which storms migrate (Barry and Chorley, 2003). The direction of 

the storm track has been shown to have a strong relationship with precipitation in the 

mountainous western U.S. (e.g. McGinnis, 2000; Mock and Birkeland, 2000; Wise, 

2012). However, these regional-scale atmospheric circulation patterns are unable to fully 

explain precipitation distribution without also incorporating the effects of local-scale 

topography (Mock, 1996; Price et al., 2013).  

Five hundred millibar geopotential heights also provide information related to 

vertical motion of air masses. This vertical motion plays a major role in precipitation. As 

rising air cools adiabatically, it decreases in its ability to retain moisture. When an air 

mass reaches its lifting condensation level, it is unable to store all of the water molecules 

as vapor. The excess water vapor then condenses or freezes in the atmosphere, and 

becomes available for precipitation. Alternatively, air warms as it descends, increasing its 



11 
 
capacity to hold water vapor. As the air warms, liquid or solid water in the atmosphere 

evaporates or sublimates, and is stored as vapor in the atmosphere. This water is no 

longer available for precipitation (Aguado and Burt, 2015). At the 500 mb height, vertical 

motion is controlled by divergence and vorticity. Divergence may be driven by 

diffluence, the physical action of two air streams moving apart from one another. This 

would manifest itself on a 500 mb geopotential height map as isobars moving from 

tightly to widely spaced moving in the direction of air flow. The alternative of this setup, 

referred to as confluence, is associated with upper-level convergence. Geostrophic winds 

also experience divergence as wind speeds accelerate, or confluence as wind speeds 

decelerate. When air diverges aloft it leaves an area of relatively low pressure, resulting 

in uplift of air from the surface. Alternatively, when air converges aloft it tends to 

undergo subsidence (descending vertical motion).  

Vorticity is a measure of the rotation of any fluid mass. Although air masses 

rotate in three dimensions, the horizontal component about an axis perpendicular to 

Earth’s surface is of particular importance in terms of uplift and subsidence. Vorticity 

may be broken into two components: relative and absolute. Relative vorticity refers to the 

direction in which the air parcel is rotating. An air parcel is said to have positive vorticity 

if it is rotating counter clockwise in the Northern Hemisphere (i.e. cyclonic motion), and 

negative vorticity if it is rotating clockwise (i.e. anticyclonic motion). Therefore, positive 

vorticity is observed around troughs, while negative vorticity is observed around ridges.  

Absolute vorticity is driven by the Coriolis effect, and increases with distance from the 

equator. As vorticity becomes increasingly positive, uplift is more likely.  Maximum 
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uplift is therefore observed immediately downstream of the bottom of an upper-level 

trough, with large positive vorticity due to cyclonic motion and increasing absolute 

vorticity as the parcel moves northward. These areas are commonly associated with 

precipitation. The opposite occurs immediately downstream of a ridge, as air is 

undergoing anticyclonic motion (i.e. negative relative vorticity) and moving southward 

(i.e. decreasing absolute vorticity). It follows that these regions are typically dry (Barry 

and Chorely, 2003). 

Wise (2012) investigated synoptic-scale drivers of precipitation across the 

intermountain west. She found precipitation distribution was strongly linked with 

magnitudes and positions of a semi-permanent high pressure cell over the sub-tropical 

Pacific and a low pressure cell above the Aleutian Islands. There was also a strong 

connection with the latitude of the North American storm track, characterized by 

enhanced east-west, or ‘zonal’, flow and generally located either between 45-50o N, over 

the Snake River Basin, or along the U.S.- Mexican border. The location of the storm 

track can shift on time scales from days to seasons. The strength of the Pacific-North 

American teleconnection (PNA) was found to be another key factor in precipitation 

across the intermountain west. A strong positive PNA phase is characterized by a strong 

Aleutian low with a blocking ridge over the western U.S. and western Canada (Wallace 

and Gutzler, 1981), and is generally associated with lower precipitation across the 

intermountain west. In contrast, the Aleutian low and western North American ridges 

diminish during PNA negative phases, resulting in increased zonal flow and subsequent 

increased precipitation in the intermountain west. Wise (2012) also described strong 
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relationships between the El Niño Southern Oscillation (ENSO) and the location of the 

storm track as well as the strength of the PNA pattern. During periods of positive ENSO 

anomalies, the storm track tends to shift south and PNA index trends positive. 

Alternatively, during negative ENSO periods, PNA weakens and the storm track shifts 

north. 

Synoptic Climatology 
 
 

The field of synoptic climatology relates synoptic-scale upper atmospheric 

circulations to the surface environment (Yarnal, 1993), and has been used as a framework 

to study precipitation patterns (Esteban et al., 2005; Grundstein, 2003; Hartley and 

Keables, 1998; McGinnis, 2000; Schuenemann et al., 2009;), snow structure (Yokley, 

2014), describe regional weather (Jiang, 2004; Kidson, 2000), and to characterize 

avalanche activity (Birkeland et al., 2001; Fitzharris, 1987; Fitzharris and Bakkehøi, 

1986; Keylock, 2003; Martin and Germain, 2017). The latter five studies identify 

significant avalanche events based on magnitude, frequency, destruction, or fatalities, 

which are primarily characterized by direct-action events resulting mainly from heavy 

snowfall or wind loading.  

 Yarnal (1993) describes two fundamental approaches to a synoptic climatology 

study: environment-to-circulation and circulation-to-environment. In the former, an 

environmental variable such as snowfall or air quality is measured repeatedly, and time 

periods with similar environmental measurements are grouped together. These groups are 

then used to classify circulation patterns. In the latter, groups are formed by aggregating 

days with similar atmospheric setups first, and environmental responses are then 
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measured for each group. Additionally, there are two primary ways atmospheric 

conditions may be described. One is by using measurements of air mass characteristics 

such as temperature, relative humidity, and wind velocity. The other is by using map 

patterns of geopotential heights. This study will use the framework of a circulation-to-

environment approach using 500 mb geopotential heights to describe circulation patterns, 

and examining deep persistent slab avalanches as the environmental response.  

The crux of circulation-to-environment studies using map pattern classification 

lies in the task of generating the synoptic types. Initially, patterns were classified 

manually by climatologists using expert judgement. Examples of these classifications 

include Lamb’s classification of daily synoptic patterns over the British Isles (Lamb, 

1972) and the Grosswetterlagen, which classifies surface pressure and upper-air charts 

across Europe and the North Atlantic. The Grosswetterlagen was originally developed in 

1944 (Baur et al., 1944) and has been updated several times since, most recently in 

Werner and Gerstengarbe (2010) (Hoy et al., 2013). Two major drawbacks of manual 

classification are the amount of time required to generate a classification and the 

dependence of the resulting synoptic types on the individual performing the 

classification. In order to reduce subjectivity and improve reproducibility, synoptic 

climatologists began using principal components analysis (PCA) and clustering 

algorithms to generate synoptic types. There is extensive research investigating the utility 

of PCA in generating synoptic types, (e.g. Huth, 1996; Kalkstein et al., 1987; Key and 

Crane, 1986; Richman, 1981), and it remained a popular classification tool from the 

1980’s through the early 2000’s. More recently, scientists have explored the utility of 
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self-organizing maps (SOM) (Kohonen, 1998) to classify synoptic map patterns 

(Hewitson and Crane, 2002; Reusch et al., 2005; Schuenemann et al., 2009; Sheridan and 

Lee, 2011; Wise and Dannenberg, 2014). The SOM approach improves on the PCA in 

that the map types generated are considered to be generalizations of real patterns that 

exist on a continuum, rather than as discrete, independent phenomena.  This mitigates the 

consequences of choosing too few or too many synoptic types, as increasing the number 

of synoptic patterns effectively increases the spatial resolution of the patterns generated, 

but does not introduce any new patterns. A SOM generates a user-specified number of 

‘nodes’ which are generalizations of all of the different modes of variability across the 

dataset. Each node may be thought of as a model that represents a unique synoptic type 

representing a group of days with a similar circulation pattern. These synoptic types are 

then arranged in a two-dimensional array such that similar map patterns are plotted 

adjacent to each other and dissimilar patterns are plotted on opposite ends of the array. 

The array is an organized display of synoptic types that summarize the spectrum 

atmospheric circulation patterns, including a transition from zonal to meridional flow, 

migration of semi-permanent pressure centers, latitudinal shifts in the storm track, and 

more subtle changes that will vary with geographic extent. The SOM array provides an 

effective means of visualizing high dimensional data in a way that is easy to interpret. 

 
Research Questions 

 

 The previously mentioned studies have established direct connections from 

weather to snow metamorphism to snowpack structure and mechanics, which collectively 
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control snow stability. There is also extensive research investigating the connections 

between regional-scale circulation patterns in the upper atmosphere and meteorological 

responses at the surface. There have been several studies that draw connections between 

circulation patterns and avalanche activity, but none have specifically addressed deep 

slab avalanches failing on persistent weak layers, which remain difficult to predict. This 

research aims to fill this knowledge gap by addressing the following questions:  

1. What circulation patterns in the early winter are commonly associated with deep 

persistent slab avalanche activity later in the season?  

2. What patterns are frequently observed in the days leading to deep persistent slab 

avalanches? 

3. How do these relationships change at different geographical locations across the 

western U.S?  

I hypothesize that early winters commonly associated with deep persistent slabs will have 

limited snowfall, that days leading to deep persistent avalanching will be associated with 

either rapid loading (for dry slabs) or rapid warming and/or rain (for wet slabs), and that 

these relationships will vary geographically depending on how the broad atmospheric 

patterns interact with local terrain at the different locations. This work uses weather and 

avalanche records maintained by Ski Patrols at Bridger Bowl Ski Area, Montana, Jackson 

Hole Mountain Resort, Wyoming, and Mammoth Mountain, California.    
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ATMOSPHERIC PROCESSES RELATED TO  
 

DEEP PERSISTENT SLAB AVALANCHES IN THE WESTERN UNITED STATES 
 

Abstract 
 

 
 Deep persistent slab avalanches are destructive natural hazards that pose a threat 

to infrastructure, transportation, and recreationists in cold mountain regions around the 

world. Formation of a snowpack conducive to deep persistent slab avalanches is typically 

driven by weather occurring in the beginning weeks to months of the winter season. 

While the exact timing of deep persistent slab avalanches is difficult to predict, onset of 

avalanche activity is commonly preceded by rapid warming, heavy precipitation, or 

abnormal wind events. Previous work has identified local meteorological factors 

contributing to deep persistent slab avalanches, but there is little work exploring the 

atmospheric processes controlling them. This work addresses this knowledge gap by 

investigating the synoptic drivers of deep persistent slab avalanches at Bridger Bowl, 

Montana; Jackson, Wyoming; and Mammoth Mountain, California. We use self-

organizing maps to generate 20 synoptic types that summarize 5,899 daily 500 mb 

geopotential height maps for the winters (November – March) of 1979/80 – 2017/18. For 

each of the three locations, we identify major and minor deep persistent slab avalanche 

seasons, and analyze the number of days represented by each synoptic type during the 

beginning (November – January) of the major and minor seasons. We also examine 

number of days assigned to each synoptic type during the 72 hours preceding deep 

persistent slab avalanche activity. Each of the three sites exhibits a unique distribution of 
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the number of days assigned to each synoptic type during November – January of major 

and minor seasons, and for the 72-hour period preceding deep persistent slab avalanche 

activity. This work identifies the atmospheric circulation patterns contributing to deep 

persistent slab instabilities, and the patterns that commonly precede deep persistent slab 

avalanche activity. By identifying these patterns, we provide practitioners with an 

additional tool to anticipate the timing of these difficult to predict events. 

 
Introduction 

 

Deep persistent slab avalanches are capable of destroying infrastructure and are 

usually unsurvivable to those who are caught in a slide. The exact timing of deep 

persistent slab avalanches is difficult to predict, which results in a great deal of 

uncertainty when assessing avalanche danger due to deep persistent problems. A deep 

persistent slab avalanche can occur when a weak layer in the snowpack fails due to 

applied stress from an external load such as a falling cornice, explosives, or the weight of 

a human. Failure can also initiate from the stress of an overlying slab of cohesive snow 

without any artificial trigger. In some cases, the weak layer fails without the addition of 

any new or wind transported snow by means of the introduction of liquid water to the 

snowpack, deteriorating the fragile bonds between grains in the weak layer such that the 

weak layer is no longer able to support the weight of the overlying slab. As slab thickness 

and stiffness increase throughout the winter season, applied stress at the surface is 

dissipated within the slab, which makes it more difficult to initiate failure in a deeply 

buried weak layer (Schweizer and Camponovo, 2001; Thumlert and Jamieson, 2015). 
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The series of processes resulting in deep persistent slab avalanches is complex, which 

makes these events particularly difficult to predict. 

Formation of a snowpack conducive to deep persistent slab avalanches is typically 

controlled by weather patterns occurring during the early months of the winter season 

(Marienthal et al. 2015), and onset of slab avalanche activity is commonly preceded by 

new or wind-transported snow loading, rapid warming, or rain-on-snow events (Conlan, 

2014; Davis et al., 1999; Marienthal et al., 2012). Associations between these 

meteorological events and slab avalanche activity have long been used as a tool to aid in 

avalanche forecasting (Atwater, 1954; LaChapelle, 1966; LaChapelle, 1980). Although 

mountain weather is a product of processes operating on a wide range of scales (Price et 

al., 2013), a large amount of variability in surface meteorology, and subsequently snow 

stratigraphy, is driven by synoptic-scale upper atmospheric circulation patterns (Barry 

and Chorley, 2003). Wallace and Gutzler (1981) describe a teleconnection they refer to as 

the Pacific/North American pattern, which is characterized by a blocking ridge over the 

western U.S. and enhanced troughing over the Aleutian Islands and the eastern U.S.  

Wise (2012) and Mock (1996) identified an increase in annual winter precipitation during 

seasons exhibiting a negative PNA pattern, and relatively dry seasons during the positive 

PNA phase. Furthermore, winter precipitation over the western U.S. is typically unevenly 

distributed between northern and southern regions, with positive precipitation anomalies 

in one region coinciding with negative anomalies in the other (Dettinger et al., 1998). 

This has been attributed to seasonal shifts in the position of the storm track over the 

western U.S., which may be pushed southward by a strong Aleutian low, or may favor 
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the northern region with a weak Aleutian low and resulting troughing over the western 

U.S. The center at which this north-south precipitation dipole pivots is fairly narrow, 

occurring between 40oN and 42oN (Wise, 2010). 

 The field of synoptic climatology relates synoptic-scale upper atmospheric 

circulations to the surface environment (Yarnal, 1993), and has been used as a framework 

to study precipitation patterns (Esteban et al., 2005; Grundstein, 2003; Hartley and 

Keables, 1998; McGinnis, 2000; Schuenemann et al., 2009; Wise, 2012), snow structure 

(Yokley, 2014), describe regional weather (Jiang, 2004; Kidson, 2000), and to 

characterize avalanche activity at four sites in the western U.S. located in Montana, 

Wyoming, Utah, and New Mexico (Birkeland et al., 2001), the Selkirk Mountains of 

British Columbia, Canada (Fitzharris, 1987), Norway (Fitzharris and Bakkehøi, 1986), 

Iceland (Keylock, 2003), and the Presidential Range in the northeast U.S. (Martin and 

Germain, 2017). The latter five studies identify significant avalanche events based on 

magnitude, frequency, destruction, or fatalities. They do not explicitly distinguish 

between events failing on deep persistent weak layers and events occurring within new 

snow layers or interfaces between old and new snow after heavy snowfall or wind 

loading. There is very little research relating upper atmosphere circulation patterns to 

deep slab avalanches failing on persistent weak layers. This work addresses that 

knowledge gap, with the goal of improving the ability of practitioners to anticipate these 

difficult to predict events through a better understanding of the processes that drive them. 

Specifically, we aim to answer the following three questions: 
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1. What circulation patterns in the early winter are commonly associated with deep 

persistent slab activity later in the season? 

2. Which patterns are frequently observed in the days leading to deep persistent slab 

avalanches? 

3. How do these relationships change at different locations across the western U.S? 

We predict that early season patterns will typically be associated with low precipitation 
and colder temperatures during seasons with deep persistent slab avalanches, while the 
patterns in the days leading to the events will facilitate heavy precipitation for dry slabs, 
and warmer temperatures for wet slab events. The circulation patterns driving deep 
persistent slab activity should be different at each site, and will be influenced by the 
interaction between atmospheric circulation and local to regional topography. 
 
 

Methods 
 

Study Location 
 
 This research focuses on three ski areas in the western U.S.: Bridger Bowl, 

Montana, Jackson Hole, Wyoming, and Mammoth Mountain, California. Bridger Bowl 

ski area is located on the east side of the Bridger mountain range in southwest Montana 

approximately 27 km north of Bozeman (45.8174o N, -110.8966o W) with a summit 

elevation of 2652m and base elevation of 1859m (Figure 3). Jackson Hole is located in 

western Wyoming in the Teton Range (43.833o N, -111.871o W). The base elevation at 

Jackson Hole is 1924 m and the summit rises to 3185 m. Grand Targhee ski area is 

located in the same mountain range approximately 20 km (12 mi) northwest of Jackson 

Hole. Due to their close proximity, the records for both of these ski areas are used to 

describe avalanche activity in the Jackson area for this analysis. Mammoth Mountain ski 

area is located in the Sierra Nevada range in central California (37.630o N, -119.050o W) 
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with a summit elevation of 3698 m and a base elevation of 2424 m. Bridger Bowl and 

Jackson Hole typically fall within the intermountain snow climate regime, characterized 

by cool winter temperatures and moderate to heavy seasonal snowfall. Mammoth 

Mountain lies within the coastal snow climate zone, with high seasonal snowfall totals, 

relatively warm temperatures, and somewhat regular rainfall events during the winter 

season (Mock and Birkeland, 2000). The study sites were selected such that they cover a 

broad geographical extent within the western U.S., and on the basis that they have the 

longest and most consistent weather and avalanche data available. 
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Figure 3: Location map of the sites used in this study. Geographic data from US Census 
Bureau (2016) and USGS National Center for EROS (2005). 
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Weather and Avalanche Records 
 
 Daily weather and avalanche logs are maintained by professional ski patrol at 

each study site. This research uses the daily data from November 1 to March 31 for each 

operational season. The operational season is limited based on snow coverage, and data 

are somewhat sparse in November for most seasons, depending on the opening date for 

the season. The duration of weather and avalanche records for each site ranges from 32 to 

39 seasons (Table 1). Earlier data are available at each site but were not used in this 

project to align with the atmospheric data discussed in the next section, and to reduce 

apparent state changes in the record due to migration of instrument location and changes 

in recording practices.  

 Crown depth, bed surface, avalanche type, and relative (R) size are used to 

describe individual avalanches after American Avalanche Association (2016). In most 

cases, observers record some, but not all of these values for an avalanche. Ski patrol 

maintains data records as a means to communicate between practitioners on a day-to-day 

basis. They are used as part of a holistic approach to assess snowpack stability from an 

operational perspective. The observations are recorder-dependent and do not necessarily 

involve direct measurements or a thorough examination of the avalanche. Although this 

does result in some measurement uncertainty, it remains the best available data source for 

historical avalanche activity, as it is virtually the only dataset in the US which has a 

recording rate that is not dependent on fatalities, injuries, or damage to infrastructure. In 

light of this uncertainty, we do not interpret precise measurements of crown depth in the 

analysis. Rather, we use the observation to separate large and small events (described in 
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the Avalanche Classification section). Additionally, the size classification (also described 

in the Avalanche Classification section) uses the R-size record and operates on a scale 

which varies on a range of up to two orders of magnitude larger than the crown depth 

measurement. This reduces the magnitude of error propagated as a result of measurement 

uncertainty. We performed a sensitivity analysis that assessed the impact of these 

measurement uncertainties on our study, and found that our results were minimally 

impacted by errors of +/- one step in R-size and +/- one foot in crown depth. A thorough 

summary of the sensitivity analysis is given in Appendix E. There is also a high level of 

uncertainty in the bed surface records. Specifically, the designation of avalanches failing 

within the old snow versus at the interface between old and new snow is suspect. For this 

reason, we only use the “old snow” bed surface designation in conjunction with other 

indicators of deep persistent slabs (i.e. type = “hard slab”, crown depth ≥ 0.9m, and R-

size ≥ 4). The designation of bed surface as “ground” is somewhat more straightforward, 

and would indicate that an avalanche failed deep within the snowpack, even if there is 

some uncertainty as to exactly which layer failed. The record for avalanche type is used 

only to separate slab and loose avalanches, as well as wet and dry. Both distinctions are 

straightforward and have little ambiguity. R size is a size designation given based on a 

visual assessment of size relative to the entire slide path. This method is used regularly by 

avalanche professionals, and scores are taken as recorded (except for apparent errors as 

noted in Appendix B).   
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Table 1: Length of avalanche and weather records used at each study site.  
Location Avalanche Record Weather Record 
Bridger Bowl 1979/80 – 2017/18 1979/80 - 2017/18 
Jackson Hole 1979/80 - 2017/18 1979/80 - 2017/18 
Mammoth Mountain 1979/80 - 2017/18 1982/83 - 2013/14 

 

 The avalanche dataset for the Jackson area was obtained through the Bridger-

Teton National Forest Avalanche Center (BTAC), and contains records of events from 

Jackson Hole, Grand Teton National Park (GTNP), Grand Targhee ski resort, Teton Pass, 

and the surrounding backcountry. However, the backcountry zones including GTNP and 

Teton Pass generally exhibit a snowpack that is very different from that of an operating 

ski area due to less skier traffic and more importantly, much less active avalanche 

mitigation. Furthermore, backcountry avalanches frequently go unreported unless there is 

damage to infrastructure, an injury or fatality, or it is an unusually large event. These two 

considerations would make it inappropriate to compare avalanche events between 

backcountry settings and within the boundaries of an operating ski area, so the 

backcountry records are omitted from this analysis.  

 
Atmospheric Data 
 

 Atmospheric data are obtained from the National Center for 

Environmental Prediction/ National Center for Atmospheric Research (NCEP/NCAR) 

Reanalysis data set (Kalnay et al., 1996). Daily 500mb geopotential height values are 

recorded on a 2.5o x 2.5o grid extending from 20o N to 70o N latitude and 160o E to 60o W 

longitude. Thus, each day is represented by a 1197-cell grid which describes the spatial 

distribution of the atmospheric condition for that day. The size of this study area is 
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similar to previous synoptic studies (e.g. Birkeland et al., 2001; Mock and Birkeland, 

2000; Wise and Dannenberg, 2014). We used daily data for the winter season only 

(November 1 – March 31) in order to correspond with the weather and avalanche data 

and to avoid a seasonal signal in the circulation patterns after Yarnal (1993). The 

reanalysis data extend back to 1948, but the atmospheric measurements forcing the 

reanalysis models evolved as better techniques were developed in the 1950s through the 

1970s. The last major change in data availability occurs in 1979, with the addition of 

satellite measurements. This research uses the reanalysis data for the winter seasons from 

1979/80 through 2016/17 to maintain consistency in the atmospheric measurements.  

 
Avalanche Classification 
 
  Avalanches are classified as deep slab events failing on persistent weak 

layers based on the bed surface, crown depth, avalanche type, R-size, and 72-hour storm 

totals. All events with a recorded bed surface as “ground” and crown depth greater than 

0.9 m are flagged as deep slab events. An event recorded as failing in the old snow is 

retained if crown depth exceeds 0.9 m and is greater than 150% of the mean crown depth 

for the day. We also consider events using a scaling factor representing the ratio of crown 

height to 72-hour new snow totals: 

C= 
𝐷𝐷

𝐻𝐻𝐻𝐻72
 

where D is the crown depth and HN72 is the 72-hour new snow total. At each location, 

we plot a histogram of this crown depth scaling factor C for all of the events where crown 

depth exceeds 0.9 m and storm snow exceeds 0.15 m. We then assign a threshold that 
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retains the events in the tail of the distribution and eliminates a majority of the events 

(Figure 4). This distinction operates under the assumption that most of the events 

recorded as failing in the old snow are either storm slab or wind slab avalanches, and 

events failing on persistent weak layers deeper in the snowpack should be less common 

in a snowpack that is actively mitigated.   

 

Figure 4: Histograms of C-multipliers for Bridger Bowl (left), Jackson Hole (center), and 
Mammoth Mountain (right). Dashed line indicates C-multiplier threshold used to 
distinguish deep slab events. 

 

By considering the tail of the distribution with the larger values for C, we retain 

the events where the crown depth is large relative to the new snow, which should 

represent deep slab avalanches failing on persistent weak layers. Thus, any avalanches 

that failed in the old snow and had a crown depth greater than C times the 72-hour 

accumulated snow were treated as deep slab avalanches. For each site, we select the value 

of C corresponding with the 99th percentile of the distribution shown in Figure 4 to 
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indicate a deep persistent slab event. This gives C-values of 4.0 for Bridger Bowl, 4.4 for 

Jackson Hole, and 3.1 for Mammoth Mountain.  

There are multiple extended periods of missing weather data, particularly in 

November and December (e.g. 1979-80 at Bridger Bowl, 1982-83 at Jackson Hole, or 

1982-83 at Mammoth Mountain). For avalanches where there are three consecutive days 

of missing precipitation data, we add another set of events for which crown depth 

exceeds 0.9 m, the avalanche is classified as a hard slab, the bed surface is designated as 

“old snow”, and the R-size is greater than or equal to 4.   

As a final step, we inspect events identified using our classification criteria 

manually to ensure that the events retained are in fact deep persistent events. By only 

retaining the events identified with our criteria, we are confident that the events we are 

studying are in fact deep persistent slab avalanches, rather than large direct-action events 

such as storm slabs or wind slabs failing at the old snow interface immediately following 

a storm. It is possible that this criteria may omit a small number of ambiguous or smaller 

magnitude events. However, we maintain that including such events in our record of deep 

persistent slab events would increase uncertainty in our analysis and make it difficult to 

assess atmospheric patterns related specifically to deep persistent slab events.  

 
Deep Slab Activity Index 
 
 Each avalanche classified as deep slab event is assigned a score based on the size 

of the avalanche using the avalanche activity index (AAI) from Schweizer et al. (1998). 

Since any event not classified as a deep slab avalanche receives a score of 0, we refer to 

this score as the deep slab activity index (DSAI): 
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 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = ∑ 10𝑅𝑅−3 𝑛𝑛

𝑖𝑖=1  

where R is the R-size of event i, and n is the number of deep slab events occurring in a 

given year. The size weighting scheme developed in Schweizer et al. (1998) was 

developed using the Canadian D-size classification that estimates the mass of each event, 

which increases logarithmically with size. In this case, the available records describe each 

event using the American R-size (American Avalanche Association, 2016), which 

estimates the size of the avalanche relative to the path. Birkeland and Landry (2002) 

conclude that the relative mass of an avalanche also increases logarithmically with R-

size, despite the fact that there is no way to convert R-size to an approximate mass for a 

given avalanche. Furthermore, they demonstrate that the frequency of avalanche 

occurrence decreases logarithmically as R-size increases. Therefore, despite the 

difference in the nature of the two size classifications, we assume it is reasonable to apply 

the Schweizer et al. (1998) AAI index to the R-sizes recorded in our dataset. DSAI score 

for each R-size is summarized in Table 2. The scores are summed up for each season and 

thresholds are identified to separate major and minor deep slab seasons by looking at 

scatterplots of seasonal DSAI score. 

Table 2: DSAI score for each R-size designation. 
Avalanche R-size DSAI Score 

1 .01 
2 .1 
3 1 
4 10 
5 100 
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Self-Organizing Maps  
 
 A self-organizing map (SOM) is a type of neural network that generates a set of 

descriptive models, or nodes, from a multidimensional dataset. The distribution of these 

nodes describes the range of variability across the dataset, and each node summarizes a 

collection of observations that are objectively determined by the neural network model to 

be categorically similar (Kohonen, 1998). The SOM provides a clear way of summarizing 

multidimensional data, as the algorithm takes into account the similarity between nodes 

as they are generated and then displays them on a two-dimensional array such that 

adjacent nodes are similar, while distant nodes are not. Recently, SOMs are being used in 

the field of synoptic climatology (Hewitson and Crane, 2002; Reusch et al., 2007; 

Schuenemann et al., 2009; Sheridan and Lee, 2011; Wise and Dannenberg, 2014) to 

classify atmospheric variability. The optimal SOM configuration is identified by 

minimizing the variability among map patterns represented by the same node and 

maximizing variability among groups of maps represented by different nodes.  

Each node generated by the SOM is characterized by 1197 grid point values on 

the same 2.5o x 2.5o grid used by the NCEP/NCAR daily 500-mb geopotential height 

maps. Within-group variability is measured by calculating the root mean square error 

(RMSE) between grid points of the node and the corresponding grid points for a given 

day, so each day has one associated RMSE value. These RMSE values are then averaged 

over all days in the record. Between-group variability is measured by calculating a RMSE 

value for each combination of two nodes in the SOM, and averaging all the RMSE values 

over all node-to-node combinations. The SOM is implemented in R using the Kohonen 
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package (Wehrens and Buydens, 2007) to generate 20 synoptic types summarizing the 

atmospheric circulation patterns observed over the study area. This is similar to the 

number of synoptic types used in previous studies (e.g. Esteban et al., 2005; Kidson, 

2000; Schuenemann et al., 2009). The synoptic types generated by the SOM are 

discussed further in the results section. A thorough discussion of the SOM optimization 

procedure is presented in Appendix A. 

 Using the synoptic classification scheme and the daily weather and avalanche 

record, we quantify distributions of daily maximum and minimum temperature and new 

snow water equivalence (SWE) for each synoptic type at each of the three study sites. 

Additionally, we consider the number of days assigned to each synoptic type in the 

beginning of the winter season (November-January) when deep persistent weak layers 

tend to form (Marienthal et al., 2015), and compare differences in the frequency 

distribution of daily synoptic types for major and minor deep slab years at all three study 

sites. We then count the number of days assigned to each synoptic type in the three days 

preceding deep slab avalanche activity to identify any relationships between circulation 

patterns and onset of deep slab avalanches. For each location, we compare frequency 

distributions that summarize the number of days assigned to each synoptic type from 

November to January over all major seasons to all minor seasons on the record. Finally, 

we identify similarities and differences between atmospheric setups prior to wet and dry 

slab activity. We analyze synoptic type frequency at each study site to explore the 

influence of geographic location on the response to atmospheric circulation. 
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Results 
 

Map Pattern Classification 
 
 The SOM-generated 500 mb map pattern classification scheme shows a gradual 

transition from meridional flow in the top rows to zonal flow in the bottom rows (Figures 

5 and 6). There is also a transition from a negative PNA phase in the lower left corner to 

a positive phase in the upper right, characterized by a trough over the Aleutian Islands, 

and a blocking ridge over western North America. There is also a low-pressure center 

over Hudson Bay in the upper left of the array, which becomes weaker moving 

diagonally to the lower right. A ridge over the eastern Pacific Ocean in the leftmost 

columns migrates eastward moving to the right across the array, until it lies over North 

America (e.g. patterns D, G, H, and L). The eastward migration of this ridge is coupled 

with a transition from a more northwesterly flow over the continental U.S. in the leftmost 

columns to a more west-southwest flow in the patterns in the rightmost columns. Finally, 

there is a distinct transition from a high-pressure ridge over the Aleutian Islands and 

eastern Siberia in the leftmost columns to a low-pressure trough in the columns on the 

right side of the array. 

 At first glance, synoptic type L seems to be oddly out of place in the array, with 

an omega block situated over the Bearing Straight and southcentral Alaska that closely 

resembles the setup in pattern A on the opposite side of the array, while all adjacent types 

feature a low-pressure trough in this region. However, the map also features a ridge over 

the Rocky Mountains and a low pressure center just north of Hudson Bay, which closely 

resembles adjacent patterns G, H, and K.  
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Figure 5: Array of 500 mb geopotential height map patterns generated using self-organizing maps. Each map pattern, or synoptic 
type, is a generalization of a group of days exhibiting a similar circulation pattern.
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Figure 6: The same array as in Figure 5, zoomed over a smaller geographic extent in to 
emphasize local circulation patterns over the study sites. Points represent the locations 
used in this study. 
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Meteorological Characteristics for Synoptic Types 
 
 Bridger Bowl.  Histograms of daily maximum and minimum temperature at 

Bridger Bowl, MT highlight types A, B, E, F, J, K and M as having the coldest 

temperatures (Figure 7, Table 3). All of these synoptic types are characterized by a strong 

north-to-south airmass trajectory over the northwest U.S. (Figures 5 and 6). Types G, H, 

L, N, and S show the warmest daily temperature distributions. These patterns feature 

ridging over the Rocky Mountains, and a southerly flow direction.  

Map patterns for types B, F, J, K, and M observe the most frequent precipitation 

events at Bridger Bowl (Table 3). All of these types feature a ridge over the eastern 

Pacific or west coast of the U.S and some amount of troughing over Hudson Bay, which 

results in localized northwest flow over Bridger Bowl. Type F has the second highest 

median storm total and the highest percentage of days with precipitation of all synoptic 

types. The Pacific ridge for type F is less pronounced than the other five types, which 

results in a more zonal flow pattern and thus more efficient vapor transport.  Types G, H, 

P, and S have the lowest percentage of days with precipitation. These four types are 

characterized by a moderate to strong ridge over the western U.S. and a southwest flow 

trajectory. SWE distributions for patterns H and S show a low percentage of precipitation 

days but a high median precipitation total, suggesting that storms occurring during these 

patterns are infrequent but can be large. The SWE distribution for type M is noteworthy 

because although the percentage of days during which precipitation is recorded is the 

second highest of all types, the median daily precipitation total is among the lowest 

overall. Additionally, there are multiple events in which 24-hour SWE total exceeded 50 
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mm. This map pattern shows the strongest ridge over the east Pacific, and the most 

intense northerly flow trajectory.  

Jackson Hole. Types B, E, I, J, K, and M have the coldest distributions of daily 

maximum and minimum temperature (Figure 8, Table 4). Similar to the trends observed 

at Bridger Bowl, these map patterns all exhibit an eastern Pacific ridge, a trough over 

Hudson Bay, and a resulting northerly flow trajectory. Types G, H, L, N, and S have the 

warmest daily temperature distributions, and are characterized by a southerly flow 

direction and moderate to strong ridging over the Rockies.  

Types B, E, J, M, and O have the highest percentage of days with precipitation at 

Jackson Hole. With the exception of type O, the map patterns are characterized by a 

moderate to strong ridge over the east Pacific and a trough over the Hudson Bay region, 

and storm totals are modest. Type O shows a very different configuration, with a trough 

over the Gulf of Alaska and zonal flow over eastern Canada, which results in zonal flow 

slightly out of the southwest over the continental U.S. Type O has one of the highest 

percentage of days with precipitation and one of the highest median daily precipitation 

totals of all synoptic types. Types C, G, H, I, N, and S have the smallest percentage of 

days with precipitation. Types C, G, and H feature enhanced troughs over the Aleutians 

and Hudson Bay, and a ridge over the western U.S. In patterns I, N, and S, the ridge over 

the continental U.S. is not as pronounced. For Type N, the southwest zonal flow with a 

weak to moderate ridge is associated with relatively infrequent, but larger storm events. 

Type M features strong ridge over Gulf of Alaska and trough extending from Hudson 
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Bay over the continental U.S, and has a high percentage of precipitation days, but 

relatively low daily precipitation totals. 

Mammoth Mountain. Types E, J, K, M, and T have the coldest daily temperature 

distributions at Mammoth Mountain (Figure 9, Table 5). Types E, J, K, and M both show 

up as the colder synoptic types at Bridger Bowl and Jackson Hole as well, characterized 

by a ridge over the east Pacific, a trough extending to the southwest from Hudson Bay, 

and resulting in a strong northwest flow. Type T is one of the coldest synoptic types at 

Mammoth, but it is also associated with average temperatures at Jackson Hole and above 

average temperatures at Bridger Bowl. This map pattern shows a split flow at 

approximately 45o N, with a weak ridge extending to the north and a trough extending to 

the south. The result is that Mammoth Mountain experiences a northwest flow pattern 

while Jackson Hole and Bozeman see more directly west or southwest patterns. Types C, 

F, H, L and S feature a southwest flow with moderate to strong ridging over the coast, 

resulting in warm daily temperature distributions. For type F, Jackson and Bridger are 

situated farther downstream of the ridge, which leads to average or below average at each 

site, respectively. Types N and R are also relatively warm, but they are characterized by a 

more direct westerly zonal flow.  

Types A, J, L, M, O, P and Q have the wettest daily SWE distributions. Types O, 

P, and Q see among the highest percentage of days with recorded precipitation, and the 

highest median daily precipitation amounts. These types are all characterized by a trough 

over the Gulf of Alaska, with southwest zonal flow patterns over the western U.S. Types 

A and L see a smaller percentage of days with precipitation, but record high daily 
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precipitation totals during storms. These patterns feature a split flow, with an omega 

block over the Bearing Sea and zonal flow over the continental U.S. At Mammoth 

Mountain, both types result in southwest flow trajectory. Types J and M show a more 

northwesterly flow trajectory, with a ridge over the east Pacific. Precipitation during days 

associated with these types is common, but precipitation totals are usually moderate. 

Types C, F, H, and I have the smallest percentage of days with precipitation. Mammoth 

Mountain is situated on the downstream end of an upper-level ridge during days 

associated with these synoptic types, which results in blocking and a northwest flow 

trajectory. Types R and S see a slightly higher percentage  of days with precipitation, but 

precipitation totals for days associated with the two patterns is among the lowest of all 

synoptic types. These patterns are again associated with enhanced northwest flow (Type 

R) and a blocking ridge (Type S). 

 



45 
 

 
Figure 7: Histograms of daily maximum temperature (a), minimum temperature (b), and 
snow water equivalence totals for Bridger Bowl, MT. For each array (a-c), the position of 
the plot corresponds with the map pattern shown in Figures 5 and 6. For example, the 
histograms located in the upper left corner of each array (a-c) correspond with synoptic 
type A.  
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Table 3: Descriptive statistics for weather metrics at Bridger Bowl. Summaries of Daily 
SWE totals are given using 50th, 75th, and 90th percentiles, along with percent of total 
days during which any amount of precipitation was recorded (> 0). Daily maximum and 
minimum temperatures are summarized using 25th, 50th, and 75th percentiles. For each 
column, values equal to or greater than the upper quartile (i.e. wettest or warmest types) 
are bold and highlighted in dark grey, while those less than the lower quartile (i.e. driest 
or coldest types) are italicized and highlighted in light grey. 
 

    SWE (mm)    Max T (C)  Min T (C) 

  50 75 90 % >0  25 50 75 25 50 75 
A 4.0 10.0 15.8 53 -7.0 -3.0 0.8 -18.0 -12.0 -7.3 
B 5.0 10.8 19.0 59 -10.0 -6.0 -1.0 -18.7 -13.0 -9.0 
C 3.8 9.5 17.6 32 -3.3 0.0 4.0 -12.0 -7.0 -4.0 
D 4.0 9.3 19.9 46 -5.0 -1.0 2.0 -12.0 -9.0 -6.0 
E 5.0 12.0 16.4 43 -6.0 -3.0 2.0 -13.8 -10.0 -6.5 
F 6.0 13.0 24.1 61 -7.0 -3.0 1.0 -13.8 -10.0 -7.0 
G 5.0 10.0 22.3 29 -1.0 2.0 6.0 -8.3 -6.0 -3.0 
H 6.0 11.4 19.0 30 -0.6 2.0 6.0 -8.5 -6.0 -3.0 
I 5.0 11.0 18.0 41 -4.0 -1.0 2.0 -11.0 -8.0 -6.0 
J 5.0 10.0 18.0 58 -6.7 -2.0 1.0 -14.0 -11.0 -7.0 
K 5.0 11.0 18.0 55 -7.0 -3.0 1.0 -14.0 -10.0 -7.2 
L 6.0 9.3 20.2 42 0.0 3.0 6.0 -7.0 -4.0 -2.0 
M 3.4 6.0 17.1 59 -14.5 -9.0 -4.4 -25.2 -19.0 -13.5 
N 5.1 11.0 19.0 43 -2.0 2.0 6.0 -11.0 -6.6 -2.9 
O 6.0 11.0 18.8 50 -3.0 0.0 4.0 -11.0 -8.0 -4.4 
P 5.0 10.0 21.4 37 -1.1 2.0 4.8 -9.0 -7.0 -3.5 
Q 5.0 11.0 15.0 50 -4.0 1.0 4.0 -12.0 -8.0 -6.0 
R 8.0 15.1 22.2 52 -4.0 1.0 6.0 -11.3 -8.0 -4.0 
S 8.0 12.5 27.4 39 -1.0 4.0 8.0 -9.0 -6.0 -2.5 
T 5.0 10.0 17.0 54 -4.0 0.0 4.0 -11.0 -8.0 -5.0 
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Figure 8: Histograms of daily maximum temperature (a), minimum temperature (b), and 
snow water equivalence totals for Jackson, WY. For each array (a-c), the position of the 
plot corresponds with the map pattern shown in Figures 5 and 6. For example, the 
histograms located in the upper left corner of each array (a-c) correspond with synoptic 
type A. 
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Table 4: Descriptive statistics for weather metrics at Jackson, WY. Summaries of daily 
SWE totals are given using 50th, 75th, and 90th percentiles, along with percent of total 
days during which any amount of precipitation was recorded (%> 0). Daily maximum 
and minimum temperatures are summarized using 25th, 50th, and 75th percentiles. For 
each row, values equal to or greater than the upper quartile (i.e. wettest or warmest types) 
are bold and highlighted in dark grey, while those less than the lower quartile (i.e. driest 
or coldest types) are italicized and highlighted in light grey. 
 

  SWE (mm)  Max T (C)  Min T (C)  

  50 75 90 %> 0 25 50 75 25 50 75 
A 7.6 18.7 28.9 75 -8.9 -4.4 -1.1 -16.7 -11.1 -6.7 
B 3.2 8.5 14.0 77 -11.7 -7.8 -3.3 -19.4 -14.4 -10.0 
C 2.5 6.4 12.6 40 -6.1 -2.8 0.6 -13.3 -10.0 -7.2 
D 2.5 6.4 13.7 64 -7.2 -4.4 -2.2 -15.0 -11.1 -7.2 
E 4.6 10.3 17.4 78 -9.4 -6.1 -2.2 -16.1 -12.8 -8.3 
F 3.0 8.8 17.5 68 -7.8 -3.9 0.6 -15.0 -11.7 -7.8 
G 3.3 6.7 12.7 53 -5.6 -2.2 0.0 -12.8 -9.2 -6.5 
H 2.5 7.6 15.4 44 -5.0 -1.7 1.1 -12.8 -8.9 -5.6 
I 5.6 11.4 17.8 69 -8.3 -5.6 -2.8 -15.6 -12.8 -9.9 
J 4.1 8.9 17.8 82 -8.9 -5.6 -2.2 -15.6 -12.2 -8.9 
K 3.0 7.6 14.2 76 -8.9 -6.1 -2.2 -16.7 -13.3 -9.4 
L 8.1 15.2 22.6 68 -4.4 -1.7 1.1 -10.6 -6.7 -3.9 
M 3.8 8.9 17.8 85 -13.3 -8.9 -4.4 -20.8 -15.6 -12.2 
N 5.8 12.4 21.2 62 -5.6 -1.7 2.2 -12.8 -8.9 -5.0 
O 6.1 11.4 21.6 79 -7.8 -4.4 -1.1 -14.4 -10.6 -6.7 
P 4.8 10.2 18.9 71 -6.1 -3.9 -0.6 -12.8 -10.0 -6.7 
Q 3.8 8.9 14.0 75 -6.7 -2.8 0.1 -14.4 -11.1 -7.2 
R 5.1 10.9 23.6 65 -6.1 -3.1 1.1 -14.0 -10.0 -6.1 
S 3.8 8.0 16.5 53 -5.6 -0.6 4.4 -11.4 -7.8 -3.9 
T 2.5 6.4 12.1 72 -6.7 -3.9 -1.1 -13.9 -11.1 -8.3 
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Figure 9: Histograms of daily maximum temperature (a), minimum temperature (b), and 
snow water equivalence totals for Mammoth Mtn., CA. For each array (a-c), the position 
of the plot corresponds with the map pattern shown in Figures 5 and 6. For example, the 
histograms located in the upper left corner of each array (a-c) correspond with synoptic 
type A. 
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Table 5: Descriptive statistics for weather metrics at Mammoth, CA. Summaries of daily 
SWE totals are given using 50th, 75th, and 90th percentiles, along with percent of total 
days during which any amount of precipitation was recorded (%> 0). Daily maximum 
and minimum temperatures are summarized using 25th, 50th, and 75th percentiles. For 
each column, values exceeding the upper quartile (i.e. wettest or warmest types) are 
highlighted in dark grey and bold, while those less than the lower quartile (i.e. driest or 
coldest types) are highlighted in light grey and italicized. 
 

   SWE (mm)  Max T (C)  Min T (C) 

  50 75 90 %> 0 25 50 75 25 50 75 
A 25.4 50.8 95.1 39 -0.6 2.8 7.2 -10.0 -6.7 -3.9 
B 15.2 33.0 59.9 29 -2.2 2.2 6.1 -13.3 -8.3 -4.4 
C 9.4 19.9 45.2 21 2.8 6.7 10.0 -8.9 -5.6 -3.9 
D 12.7 23.6 36.1 36 -0.7 2.8 6.7 -11.7 -6.7 -4.4 
E 17.3 34.3 58.4 35 -3.8 1.4 5.6 -13.3 -8.9 -5.0 
F 11.8 23.2 40.0 20 0.0 6.1 10.4 -10.6 -5.8 -2.8 
G 13.0 30.5 66.0 37 0.0 5.0 8.3 -10.0 -6.7 -4.4 
H 7.6 18.4 31.8 15 3.3 8.3 11.1 -7.2 -5.0 -2.2 
I 8.9 21.6 40.1 19 0.6 4.7 7.9 -10.0 -6.7 -4.4 
J 12.1 26.2 46.9 58 -5.0 -1.1 3.3 -13.3 -10.6 -7.2 
K 9.1 20.4 38.6 36 -2.2 2.2 6.0 -13.2 -8.9 -5.6 
L 27.9 41.9 70.4 35 1.8 6.7 9.9 -6.7 -4.4 -2.2 
M 11.4 23.9 54.6 44 -6.1 -1.7 3.9 -13.9 -10.0 -6.7 
N 11.0 37.1 65.4 22 2.8 5.6 9.4 -5.7 -2.8 -0.6 
O 19.1 49.5 63.8 48 -2.2 2.2 6.7 -10.0 -6.7 -3.3 
P 18.3 38.5 56.5 49 -1.1 1.7 5.6 -11.1 -7.2 -4.4 
Q 14.5 38.3 51.4 47 -2.2 3.3 6.7 -11.1 -6.7 -2.8 
R 10.7 19.2 34.0 29 0.0 4.4 8.3 -11.1 -5.6 -1.7 
S 9.5 20.1 43.8 24 2.4 6.1 8.9 -9.4 -5.6 -2.2 
T 11.7 34.0 42.5 37 -3.3 1.1 6.1 -12.8 -8.9 -5.6 
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Early Season Patterns for Major and Minor Seasons 
 
 In this section, we refer to one operational winter season (i.e. November through 

March) by the year in which it started. For example, the winter of 1984-85 is referred to 

hereafter as the 1984 season. At each location, we use scatterplots of seasonal cumulative 

DSAI score to identify clear breaks that separate seasons with high scores from the rest of 

the seasons (Figure 10a). These seasons are hereafter referred to as “major seasons”. 

Additionally, we designate any season with a cumulative DSAI score of zero as a “minor 

season”. The threshold separating major seasons from the rest varies by site, as does the 

number of years designated as major seasons. However, there is a distinct group of 

seasons with exceptionally high DSAI scores at each site, indicating these seasons had a 

particularly large number of events or large magnitude events. Time series plots do not 

indicate any apparent temporal trend in deep persistent slab activity at the three sites 

(Figure 10b). At Bridger Bowl, there are four seasons with DSAI scores equal to or 

exceeding 284.3, representing the 90th percentile for annual DSAI scores at that site 

(Table 6). There are four seasons with a DSAI score of zero at Bridger Bowl. We also 

include the 2014 and 1997 seasons as minor seasons, which had seasonal scores of 0.01 

and 0.1, respectively. At Jackson Hole, we find ten seasons with DSAI scores exceeding 

209.3, representing the 75th percentile at that site. Similarly to Bridger Bowl, there were 

only two seasons (1993 and 2003) with seasonal DSAI scores of zero so we include an 

additional three seasons with DSAI less than or equal to 0.1 as minor seasons (1999, 

2005, and 2016). We find seven seasons at Mammoth Mountain with DSAI scores equal 
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to or greater than 100.1, which corresponds with the 82nd percentile at that site. We found 

18 seasons with seasonal a DSAI score of zero at Mammoth Mountain. 

 

 
Figure 10: (a) Scatterplots of seasonal deep slab activity index scores for Bridger Bowl, 
MT (left), Jackson Hole (center), and Mammoth Mountain, CA (right). Highlighted 
points represent the years considered as major and minor deep persistent avalanche 
seasons, and dashed lines represent the cutoff thresholds used to identify those points. (b) 
The same time series is plotted with a line to assess a temporal trend in deep persistent 
slab activity. 
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Table 6: Major and minor deep slab avalanche seasons for the three study sites, 
determined by cumulative seasonal DSAI score. 
 
Location Major Seasons Minor Seasons 
Bridger Bowl 1979, 1980, 1984, 2011 1987, 1988, 1995, 1997, 2014, 

2017  
Jackson Hole 1979, 1982, 1985, 1994, 

1996, 1997, 2001, 2004, 
2008, 2009 

1993, 1999, 2003, 2005, 2016 

Mammoth Mountain 1985, 1987, 1996, 1997, 
2001, 2006, 2008 

1979-1982, 1984, 1986, 1988, 
1989, 1991-1993, 1999, 2000, 

2012, 2014-2017 
 

 Bridger Bowl. Heat maps for the major deep slab seasons 1979, 1980, 1984, and 

2011 show the number of days assigned to each synoptic type during November through 

January of each season (Figure 11). During the major deep slab seasons 1979, 1980, and 

1984, there is a noteworthy concentration of higher counts in the upper rows of the array, 

which are represented by patterns exhibiting strong blocking patterns. The 1979 season 

saw high counts for days associated with types A, E, and F- all of which show a ridge 

over the east Pacific, resulting in enhanced north to south airflow and subsequent colder 

temperatures. The 1980 season also saw a large number of days associated with Type A, 

while 1984 had a large number of days associated with type E.  This is not the case for 

the 2011 season, which was dominated by types I and R, both of which are zonal patterns 

with direct westerly flows. 

The minor deep slab seasons of 1987, 1988, and 1997 exhibit a distinct lack of the 

blocking patterns in the upper rows of the SOM array during November-January (Figure 

12). The 1987, 1997, and 2014 seasons also show a high number of days assigned to the 
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synoptic types on the right side of the SOM array, which are associated with a moderate 

ridge over the western U.S. and above normal temperatures. The 2014 season had a large 

number of days represented by types B and F, two of the synoptic types more commonly 

associated with precipitation. The 1995 and 2017 seasons were unlike the other four 

minor deep slab seasons in that they had a relatively large number of days assigned to 

synoptic types in the upper right corner of the array, which are characterized by a 

blocking ridge over the western U.S. and more commonly associated with the major 

seasons. Both seasons had a large number of days assigned to type N, while the 1995 

season also had a large number assigned to type L. Both synoptic types are associated 

with southwesterly flow and relatively warm temperatures at Bridger Bowl.  

 

 

Figure 11: Heat maps displaying counts for number of days assigned to each synoptic 
type during November through January of major deep slab avalanche seasons at Bridger 
Bowl. The scale bar on the left represents the number of days each synoptic type was 
observed. Each square on a heatmap for a given season corresponds with the synoptic 
type in the same location of the array in Figures 5 and 6. 
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Figure 12: Heat maps for the number of days assigned to each synoptic type during 
November-January of the six minor deep slab seasons at Bridger Bowl, MT. Each square 
on a heatmap for a given season corresponds with the synoptic type in the same location 
of the array in Figures 5 and 6. 
 
 

By considering relative frequency of each synoptic type for the early winter (i.e. 

the number of days assigned to each synoptic type divided by the total number of days 

from November to January over all major seasons and over all minor seasons), a shift 

towards increased meridional flow during the beginning of major seasons becomes 

apparent (Figure 13). This meridional shift during major deep slab seasons is especially 

noteworthy in the large increase in frequencies for types A, C, D, and E and the dramatic 

decrease in counts for types N and P. Major seasons also see a decrease in frequency for 

type B, which is characterized by enhanced northwest flow over Bridger Bowl and is 

commonly associated with increased precipitation. During minor seasons, there are a 

large number of days represented by types H, N, and S. All three types are characterized 
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by a southwesterly airflow pattern, and they are among the warmest synoptic types at 

Bridger Bowl.  

 
Figure 13: Relative frequencies for each synoptic type from November-January over all 
major deep persistent slab seasons (left), all minor seasons (center) and all seasons (right) 
at Bridger Bowl. Frequencies are calculated by summing counts of days assigned to each 
synoptic type over all major (minor) seasons and dividing by total number of days for all 
major (minor) seasons. 
 
 

Barplots of the difference in relative frequencies for each synoptic type during 

major and minor deep persistent slab seasons further highlight the general shift towards 

meridional flow during major years and zonal flow during minor seasons (Figure 14). In 

these plots, we calculate the change in relative frequency by subtracting the relative 

frequency of days associated with each type for November – January of all seasons from 

the relative frequency during November – January of major (minor) seasons. We also 

subtract the relative frequency of each synoptic type during minor seasons from the 

relative frequency during major seasons.  

These barplots illustrate the transition toward blocking patterns during major 

seasons and zonal patterns during minor seasons. There is an increase in the number of 

days assigned to types A, C, D, E, and F during major seasons relative to minor seasons, 

all of which are located in the upper rows of the SOM array and are associated with 

meridional circulation. Alternatively, the plots demonstrate an increase in relative 
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frequencies of days associated with types H, N, S, and T during minor seasons. Type H is 

associated with an upper-level ridge over the western U.S., while types N, S, and T are all 

predominately zonal patterns. Type T is characterized by a northwesterly flow, while the 

storm tracks in types N and S come out of the southwest. Median daily maximum and 

minimum temperatures for types H, N, and S are in the upper quartile of all synoptic 

types at Bridger Bowl.  

 

Figure 14: Barplots for the difference in relative frequency for each synoptic type during 
November-January between major seasons and all seasons (top), minor seasons and all 
seasons (center), and major seasons and minor seasons (bottom) at Bridger Bowl. 
Positive values indicate an increase in relative frequency during the first category in the 
title of each chart. For example, a positive value for type A in the top chart indicates a 
higher relative frequency for that synoptic type during major deep slab seasons relative to 
all seasons. 
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Jackson Hole. Heat maps for November-January synoptic type counts during 

major deep slab years indicate high counts for the number of days assigned to patterns 

associated with an enhanced ridge over the western U.S. for the seasons 1985, 1996, 

1997, 2001, and 2009 (Figure 15). The 1997 and 2001 seasons also had relatively high 

counts for types O, P, and S, which are more zonal patterns, although they still feature a 

weak ridge over the western U.S. The 2009 season was dominated by a high pressure 

ridge extending from central California northward along the west coast of Canada. For 

most major deep slab seasons, the synoptic types with the largest number of days have a 

weak to moderate low pressure trough over Hudson Bay. 

 

Figure 15: Heat maps displaying counts for the number of days each synoptic type was 
observed Nov.- Jan. during major deep slab years at Jackson Hole. For each season in the 
figure, a colored square on the array corresponds to the map pattern at the same location 
in the array in Figures 5 and 6. 
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The map patterns for the synoptic types assigned the most days during November- 

January of minor deep slab years in Jackson Hole feature enhanced zonal flow, with very 

few days assigned to the synoptic types representing blocking patterns in the upper row 

of the SOM array (Figure 16). The 1993 season appears to be the exception to the rule, 

with moderate counts for types B, C, and K. These patterns are characterized by a ridge 

near the Gulf of Alaska and the Pacific coast. However, the season also exhibited high 

counts for days assigned to type O, a direct westerly zonal pattern frequently associated 

with precipitation at Jackson, and type H, in which the upper-level ridge is situated above 

the intermountain west, commonly resulting in above-average temperatures and dry 

weather. During the 1999, 2003, and 2016 seasons, there were high counts for days 

assigned to types R and S. These patterns also showed up frequently during several major 

seasons. However, during 1999 and 2016 there were also high counts for types A, E, 

and/or I. All of which are characterized by zonal westerly flow over the U.S. and 

regularly lead to precipitation at Jackson Hole. November-January of 2003 saw a large 

number of days assigned to types M and O, which are characterized by zonal 

west/southwest flow, and commonly result in precipitation at Jackson Hole. 
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Figure 16: Heat maps displaying counts for the number of times each synoptic type was 
observed Nov.- Jan. during minor deep slab years at Jackson Hole. For each season in the 
figure, a colored square on the array corresponds to the map pattern at the same location 
in the array in Figures 5 and 6. 
 
 
 There is a notable increase in the number of days assigned to synoptic types D, G, 

and L during the beginning of major deep slab seasons in the Jackson area, and a 

decrease in the number of days assigned to the same types during minor seasons (Figure 

17). All three of these types are characterized by a strong ridge over the western U.S. 

Major seasons also have very low frequencies for types I and N, which exhibit a zonal 

flow pattern with a westerly or slightly southwesterly trajectory over Jackson. Minor 

seasons exhibit high frequencies for synoptic types R, S, and T which may be attributed 



61 
 
to above average temperatures or frequent precipitation observed during those circulation 

patterns.  

 

Figure 17: Relative frequencies for each synoptic type during November- January of all 
major deep persistent slab seasons (left), all minor seasons (center), and all seasons 
during the study period (right) at Jackson Hole. Frequencies are calculated by summing 
number of days assigned to each synoptic type over all major (minor) seasons and 
dividing by total number of days for all major (minor) seasons.  
 
 
 Barplots of the difference in relative frequencies for each synoptic type during 

major and minor seasons also indicate an increase in frequency tor types D, G, and L 

during the beginning of major seasons, which all decrease during minor seasons (Figure 

18). There is a marked increase in the number of days assigned to patterns R, S, and T 

during minor seasons. This implies a shift towards increased meridional flow during the 

beginning of major seasons, and a transition towards increased zonal flow during minor 

seasons. 
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Figure 18: Barplots for the difference in relative frequency for each synoptic type during 
November-January between major seasons and all seasons (top), minor seasons and all 
seasons (center), and major seasons and minor seasons (bottom) at Jackson Hole. Positive 
values indicate an increase in relative frequency during the first category in the title of 
each chart. For example, a positive value for type D in the top chart indicates a higher 
relative frequency for that synoptic type during major deep slab seasons relative to all 
seasons. 
 
 

Mammoth Mountain. For four of the seven major deep slab seasons (1985, 1997, 

2001, and 2006) at Mammoth Mountain, November-January circulations were largely 

dominated by patterns with west to southwest flow directions and zonal to weak blocking 

patterns (Figure 19). The 2008 season had a different pattern, with relatively large 
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number of days assigned to types E, F, M, and T, which have varying degrees of a 

northwest flow direction. During the early winter of 1996, type F had the largest number 

of days, which again is associated with a northwest pattern. However, the season also 

recorded large numbers of days assigned to types A, D, L, and O, which all have a weak 

to moderate ridge over the west coast, and a resulting southwest flow direction. The 

beginning of 2006 had a large number of days assigned to types N and P, which both 

show a trough over the east Pacific. Type N is typically warmer and drier than type P, 

which is one of the wettest patterns for Mammoth Mountain and has a median daily 

maximum temperature that is in the lowest quartile for the site. 

 

 
Figure 19: Heat maps displaying counts for the number of days assigned to each synoptic 
type for Nov.- Jan. during major deep slab seasons at Mammoth Mountain. For each 
season in the figure, a colored square on the array corresponds to the map pattern at the 
same location in the arrays in Figures 5 and 6. 
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 There was not a single deep slab event in 18 of the 35 seasons at Mammoth 

Mountain with complete weather and avalanche records. For many of these seasons, the 

dominant synoptic types were primarily zonal (Figure 20). This is true during the 1979, 

1981, 1982, 1999, 2004, 2012, 2015, 2016, and 2017 seasons. Seasons 1980, 1988, 1989, 

1991, 2000, and 2002 all had high counts of synoptic types characterized by a ridge over 

the west coast, while during the seasons 1982 and 1983 Mammoth was more frequently 

situated under an upper level trough, and the 1993 season had periods of both.  

  Seasons 1982, 1988, 1989, 1991, 1999, and 2004 had a large number of days 

assigned to type I, which was mostly absent in the major deep slab seasons. The seasons 

1991, 1999,  2015, 2016,  and 2017 all had a large number of days represented by 

patterns  R, O, or S, which are zonal patterns with  a general northwesterly flow over the 

Pacific, but localized westerly flow over Mammoth Mountain. None of the minor seasons 

had large counts for days associated with type M or Q. Type M is characterized by a 

strong ridge over the eastern Pacific, with enhanced northwesterly flow over Mammoth 

Mountain, while type Q has a slight ridge further to the west over the Aleutians. Both 

patterns tend to be associated with cold temperatures at Mammoth Mountain. 
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Figure 20: Heat maps displaying counts for the number of days assigned to each synoptic type from Nov.- Jan. during minor 
deep slab seasons at Mammoth Mountain. For each season in the figure, a colored square on the array corresponds to the map 
pattern at the same location in the arrays in Figures 5 and 6.
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There is an increase in frequencies for types G, O, and P during major deep 

persistent slab seasons at Mammoth (Figure 21). Type G is characterized by enhanced 

ridging over the West Coast, while types O and P are zonal patterns with localized 

southwest flow. Minor deep slab seasons have a large number of days assigned to types 

H, I, and S, which are associated with direct zonal flow and a slight ridge over the 

California Coast. 

 

Figure 21: Relative frequencies for each synoptic type during all major deep persistent 
slab seasons (left) and all minor seasons (center) at Mammoth Mountain, and all seasons 
during the study period (right). Frequencies are calculated by summing counts for each 
synoptic type over all major (minor) seasons and dividing by total number of days for all 
major (minor) seasons. 
 
 
 Barplots of the difference in relative frequencies for each synoptic type during 

major and minor years show a slight decrease in early season frequencies for patterns H-

K during major seasons, while the same patterns appear more frequently during minor 

years (Figure 22). The same holds true for type R. Types C, M, N, P and Q have the 

opposite tendencies, with more days assigned to these types in the beginning of major 

seasons and fewer days assigned early in the minor seasons. 
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Figure 22: Barplots for the difference in relative frequency for each synoptic type during 
November-January between major seasons and all seasons (top), minor seasons and all 
seasons (center), and major seasons and minor seasons (bottom) at Mammoth Mountain. 
Positive values indicate an increase in relative frequency during the first category in the 
title of each chart. For example, a positive value for type G in the top chart indicates a 
higher relative frequency for that synoptic type during major deep slab seasons relative to 
all seasons. 
 
 
Atmospheric Condition Prior to Deep Slab Activity 
 

Total number of avalanches during the study period ranges from approximately 

20,000 to just over 40,000 at each site, while the number of deep slab events is roughly 2-

3 orders of magnitude smaller (Table 7). While the deep slab events are primarily dry 
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slab avalanches, there are a small number of deep persistent events classified as wet slabs 

at Bridger Bowl and Jackson. Each of the three study sites displays a unique distribution 

of the number of days assigned to each synoptic type in the 72 hours prior to deep slab 

activity for dry and wet slabs (Figures 23 and 24). At each site there is a small group of 

synoptic types that occur much more frequently than the rest in the three days leading to 

deep slab activity. The relative frequencies for each type during the 72 hours preceding 

deep persistent slab activity differ from the overall relative frequency distribution during 

the study period, which indicates a unique circulation preference for deep persistent slab 

avalanches at each study site. 

 
Table 7: Summary of number of total avalanches, all deep slab events, dry deep slab 
events, and wet deep slab events. The number of days each type of avalanche was 
recorded is given in parentheses. 
Site All 

Avalanches 

All Deep 

Slab 

Dry Deep Slab Wet Deep 

Slab 

Bridger Bowl 31455 (2161) 314 (176) 287 (169) 27 (7) 

Jackson Hole 20180 (2343) 293 (173) 284 (168) 9 (5) 

Mammoth 

Mountain 

41751 (1177) 92 (60) 92 (60) 0 (0) 

 

Dry Slab Events Types I, P, and T are associated with the greatest number of days at 

Bridger Bowl in the 72 hours prior to dry deep slab events (Figure 23). All three types are 

zonal patterns with varying degrees of troughing over the Aleutian Islands and slightly 

different north-south orientations. Type T is almost directly out of the west, with a slight 
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northwest orientation above the northwest U.S. Type P has more of a southwest flow 

direction, with a slight ridge over Montana. In pattern I, this gentle ridge shifts towards 

the North American west coast and a trough develops over northeast Canada, which 

results in a distinct northwest flow pattern over Montana. Type F was recorded less than 

ten times in the days leading to dry deep slab events, while type R was never observed. 

Type F is characterized by a strong ridge over the east Pacific and trough over Hudson 

Bay, which results in strong north-south flow over the western U.S., while type R shows 

strong zonal flow from eastern Siberia all the way across to the Atlantic, with a direct 

westerly trajectory.  

 

Figure 23: Heat maps displaying the number of days assigned to each synoptic type 
within 72 hours prior to a day with dry deep slab avalanches recorded at Bridger Bowl 
(upper left), Jackson Hole (upper right), Mammoth Mountain (lower left), and total 
counts for the duration of the study period. 
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 Types A, E, I, L and P dominate the period immediately prior to dry deep slab 

activity at Jackson Hole. Patterns A, E, and I are characterized by zonal flow over the 

western U.S. coming slightly out of the north, and moderate to strong troughing over 

Hudson Bay. In patterns A and L there is a split flow, with an omega block over the 

Aleutians and western Alaska and more zonal flow over the continental U.S. However, 

the two patterns differ in that pattern L also shows a weak upper-level ridge over the 

Rockies, whereas type A does not. This leads to a more southwesterly flow in type L, 

whereas the trajectory for type A is more directly out of the west, and even slightly 

northwest over Jackson. Pattern P shows more enhanced troughing over the Aleutians 

and the east Pacific, which results in a zonal pattern over the western U.S. with enhanced 

southwesterly flow. There are very few days associated with types R, S, and T during the 

period leading to dry deep slab avalanches at Jackson Hole. These patterns are all 

primarily zonal. Patterns R and T have a north to south trajectory over the western U.S., 

while pattern S has a slight trough over the east Pacific, which leads to increased 

southwesterly flow. 

 The 72-hour period prior to dry deep slab events at Mammoth is dominated by 

types M and O, which are two very different patterns. Type M has the strongest ridge 

over the Pacific up towards the Gulf of Alaska, while type O shows a trough over the 

Gulf of Alaska that transitions into a direct zonal pattern moving southward into the 

Pacific. Type Q was the third most frequent pattern observed in the three days prior to 

dry deep slab events. This pattern closely resembles type O in the southwest quarter of 

the study area, especially over the central and west Pacific and the California coast. The 
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lack of synoptic types with more intermediate counts at Mammoth Mtn. may be attributed 

to the smaller number of dry deep slab events compared to the other sites over the 

duration of the study period.  

Wet Slab Events. Of the 314 deep persistent slab events recorded at Bridger Bowl, 27 

were classified as wet slab avalanches. These occurred on five different days in the 

record. Nine of the 293 deep slab avalanches were wet slabs at Jackson on six different 

days, while there were no deep slab events classified as wet slab avalanches at Mammoth 

Mountain (Table 7). The heatmaps for the synoptic types leading to the days with wet 

slabs at Bridger Bowl shows a large number of days associated with type P, which was 

also a frequently observed type during dry deep slab events (Figures 23 and 24). The 

second most common pattern was type O, which was not as pronounced in the dry deep 

slab record. Types L, O, and P were assigned the highest number of days prior to deep 

wet slab avalanches at Jackson. For both Bridger Bowl and Jackson, the synoptic types 

assigned the most days prior to deep wet slab activity are characterized by a distinct 

trough over the Gulf of Alaska, which is coupled with enhanced southwesterly zonal flow 

over the continental U.S.  
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Figure 24: Heat maps for the number of times each synoptic type was recorded within the 
72 hours prior to deep wet slab avalanches at Bridger Bowl (left) and the Jackson area 
(right). 
 
 

Discussion 
 
 
 Each site exhibits different synoptic types that favor precipitation based on the 

trajectory of storm tracks. Bridger Bowl tends to have frequent and large storms during 

the synoptic configurations with a slight ridge over the East Pacific and a storm track 

moving out of the northwest over Montana. This supports the findings of Birkeland and 

Mock (1996), which studied atmospheric circulation at the 500-mb level for 44 large 

precipitation events at Bridger Bowl between 1968 and 1993. They concluded that 

increased precipitation during these northwest zonal flow patterns is a result of regional 

and local topography, as there are fewer orographic barriers to the northwest of the 

Bridger Range. The canyons on the west side of the range are also oriented such that they 

channel moisture moving in from the Northwest, which maximizes efficiency in 

orographic uplift, resulting in more frequent and larger storms. Contrary to the other two 

sites, precipitation at Bridger Bowl is less frequent during storms that come in directly 

from the west or from the south, even with enhanced zonal flow. Birkeland and Mock 
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(1996) also attributed this to regional topography, as there are multiple large orographic 

barriers immediately west and southwest of Bridger Bowl that inhibit moisture transport. 

This is not the case at Jackson Hole, which is situated at the head of the Snake River 

plain and benefits from the storms out of the west-southwest that are able to efficiently 

transport moisture inland with relatively few topographic barriers. Birkeland et al. (2001) 

found heavy precipitation and increased avalanche activity commonly occur at Jackson 

Hole during atmospheric circulation events characterized by direct westerly zonal flow, 

due largely to this lack of major orographic barriers to the west and southwest.  

Mammoth also receives increased precipitation with airflow out of the southwest, which 

is likely due in part to the perpendicular orientation of the Sierra Nevada range to such 

storms. 

 Each location experiences the coldest temperatures with a strong ridge over the 

Pacific and a trough over the west, resulting in migration of cold polar airmasses 

southward. This is indeed the case with types E and M, which are among the coldest 

patterns at all three sites. However, due to the geographic separation of the three study 

locations there are some cases where sites experience very different temperatures under 

the same circulation patterns. This is manifested with type F, in which Mammoth 

Mountain lies below an upper level ridge and subsequently experiences warm 

temperatures, whereas Jackson Hole and Bridger are farther to the west and downstream 

of the ridge. This leads to a more northerly flow over the latter two sites, and subsequent 

cooler temperatures. This pattern also tends to result in increased precipitation over 

Bridger Bowl due to local topography, while Mammoth will more commonly remain dry. 
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The major deep slab seasons at Bridger Bowl and Jackson Hole observed a large 

number of days assigned to synoptic types that are associated with low frequency of 

precipitation events in the beginning of the season. Some of these dry patterns are 

controlled by a blocking ridge over the continental U.S. (e.g. types C, D, and G), which 

are assigned to a large number of days during major deep slab seasons at both locations 

and are much less common during minor seasons. Major deep slab seasons at both sites 

tend to shift towards a positive PNA pattern, with a high concentration of synoptic types 

in the upper right corner of the SOM array. This has previously been identified to be 

associated with reduced snowfall totals in the western U.S (Wise, 2012), which is 

supported by weather records at Bridger and Jackson (Figures 7 and 8). Low snowfall 

totals in the beginning of the season have been previously shown to lead to development 

of persistent weak layers by means of increasing the bulk temperature gradient in 

intermountain and continental snowpacks (Mock and Birkeland, 2000). There is also a 

notable increase in synoptic types more commonly associated with mild temperatures 

during the beginning of minor seasons. Warmer early season temperatures would 

effectively reduce temperature gradients within the snowpack, thereby preventing the 

development of depth hoar or near-surface faceted layers. 

The major deep slab seasons at Mammoth are slightly different. Due to its 

proximity to the Pacific and the lower latitude at which it is located, Mammoth Mountain 

experiences higher precipitation totals and warmer temperatures on average than the 

other two sites. A deeper snowpack, coupled with the mild and consistent coastal 

temperatures, impedes formation of faceted persistent weak layers and thus changes the 
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character of deep slab avalanches in coastal snow climates during most years. Under the 

right conditions, depth hoar and smaller faceted grains may still form in coastal snow 

climates, but these layers are much less common in a coastal snowpack than they are in 

continental or intermountain climates. Most large avalanches in coastal areas fail within 

the storm snow or at the interface between old and new snow. In these cases, the early 

season snowpack has very little to do with the likelihood of triggering a large avalanche 

(Mock and Birkeland, 2000). However, this research has effectively omitted this large 

portion of events by focusing only on the avalanches where the crown depth exceeded 

three times the three-day storm totals.  

 There are a large number of days assigned to synoptic types characterized by cold 

temperatures (e.g. types E and M) or infrequent precipitation (type G) during November-

January of major deep persistent slab seasons at Mammoth Mountain. This characteristic 

is consistent with Bridger Bowl and Jackson Hole. However, unlike the other two study 

sites, there are also a substantial number of days in November-January of major seasons 

assigned to synoptic types that are associated with frequent or heavy precipitation (e.g. 

patterns M, P, and Q). Additionally, there are a large number of days assigned to the drier 

synoptic types (H, K, and R) during the beginning of minor seasons. Given the processes 

driving dry snow metamorphism, one would expect the exact opposite- less frequent 

precipitation leading to enhanced faceting and depth hoar during major seasons, and 

increased precipitation with less faceting during minor seasons. However, the majority of 

the deep persistent slabs at mammoth mountain are recorded in December and January. 

Thus, it would be necessary to have enough precipitation events early in the season to 
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build a slab thick enough to be classified as a deep slab according to our criteria. 

Additionally, some of the precipitation events provide the necessary load to push a deep 

persistent weak layer to its breaking point. Indeed, type M is associated with regular 

precipitation at Mammoth Mountain and it shows up frequently during the beginning of 

major seasons as well as in the 72 hours preceding deep persistent slab events. 

Alternatively, it is often the case during minor seasons that there is simply never enough 

snow to develop a snowpack conducive to deep persistent slab avalanches. This was the 

case during the 1988 and 1989 seasons, which were dominated by northwest zonal flow 

(type I) and the 1991 and 1993 seasons, which had a persistent blocking ridge over the 

west coast (types G, C, and H). There also exists a subset of minor seasons with little to 

no precipitation during the beginning of the season, but subsequent heavy precipitation 

for the rest of the season (1992 and 1999). In the coastal climate of Mammoth Mountain, 

even if there was a persistent weak layer, it may have simply been buried so deep that no 

load applied at the surface would be able to initiate a fracture in the weak layer. For the 

major seasons of 1987, 1996, 1997, and 2001, there was an initial dry period followed by 

intermediate snowfall. This provided a period during which a persistent weak layer could 

develop, and enough snow to subsequently bury the persistent weak layer deep enough to 

form a deep persistent slab, but shallow enough that it remained prone to large applied 

loads. For these four seasons, all of the deep slab events occurred from November-

January. 

Conlan et al. (2014) performed a field study of 41 deep persistent slabs in western 

Canada and found the layers immediately above the failure layer were either 0.5-1mm 
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rounded grains, 0.5-1mm facets, or a melt-freeze crust. Grain types for layer immediately 

below the failure layer were similar: 0.5-1 mm rounded grains, 0.5- 2 mm facets, melt-

freeze crusts, ice or ground. While this work did not focus specifically on coastal 

climates, it did include three coastal sites. Hammonds et al. (2015) measured localized 

temperature gradients immediately above and below an ice lens that were up to an order 

of magnitude larger than the bulk temperature gradient imposed on a snow sample in a 

laboratory setting. This supports field observations that weak layers commonly form 

adjacent to ice crusts within the snowpack. Furthermore, a buried ice crust has very low 

friction, which would provide an efficient bed surface in an avalanche. There are a large 

number of days assigned to types O and P in November-January of major seasons at 

Mammoth. These types both have frequent precipitation events at Mammoth. Type S is 

one of the patterns with the highest counts in November – January during major deep 

persistent seasons at Mammoth include and is not commonly associated with 

precipitation. Days associated with type S and type G, which also represented a large 

number of days during the beginning of major deep slab seasons, tend to have above-

freezing daily maximum temperatures with subfreezing minimum temps. An early season 

with alternating low precipitation and alternating warm and cold temperatures would 

facilitate near-surface faceting and ice lens formation, which would act as a low-friction 

bed surface conducive to avalanches later in the season. This may explain another process 

in which November-January circulation can favor precipitation even during major deep 

persistent slab avalanche seasons. 
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At all three sites, there is increased frequency of counts in the 72 hours prior to 

dry deep slab events for synoptic types that are commonly associated with higher levels 

of precipitation. Again, these patterns differ by site depending on latitude, proximity to 

the coast, and local and regional topography. At Bridger Bowl, the types occurring most 

commonly during this time period have either enhanced zonal flow (types P and T) or 

localized northwesterly storm track (type I). The relatively high counts for types I and P 

mimic the frequency pattern for the entire study period. This suggests that these two 

types show up frequently in this 72-hour window due to their high frequency of 

occurrence overall, rather than an association with deep persistent avalanches. This is not 

the case with type T, which has a very high frequency of occurrence preceding deep 

persistent slab avalanches despite exhibiting relatively low counts for the duration of the 

study period. The types with a northwesterly storm track dominate the period prior to 

deep slabs at Jackson as well; however, there are also very high counts for type L, which 

is characterized by a strong southwesterly storm track that would channel warm, moist air 

directly over the Snake River Plain. There is a distinct spike in patterns A, E, and L 

during the 72 hours preceding deep slab activity at Jackson, which stands out when 

compared to the relatively low counts for all three patterns during the overall duration of 

the study period. This suggests that these three patterns may indeed be good indicators 

for increasing likelihood of deep persistent slab avalanches at Jackson Hole. The patterns 

with the highest count for this 72-hour period at Mammoth (types M and O) exhibit 

localized west-southwesterly flow. However, the two patterns differ greatly over the full 

extent of the study area, with a strong ridge over the Pacific in type M, and a mild trough 
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in the same area for type O. Both patterns have frequently recorded high levels for 24-

hour precipitation, albeit somewhat less frequently with type M than type O. This may be 

one reason why type M shows up more frequently than type O in the days leading to deep 

slab avalanches. Similarly to Bridger and Jackson, the heat map for the 72-hour period 

preceding deep persistent slab avalanches at Mammoth looks very different than the 

overall frequency distribution. There is a notable lack of days associated with patterns G 

and H at both sites during the 72 hours prior to dry deep persistent slab avalanches, which 

are both characterized by a strong blocking ridge that extends over all three study sites. 

This usually results in little or no precipitation for all three sites. The apparent difference 

in the distribution of days assigned to all synoptic types at each of the three sites indicates 

a unique atmospheric configuration during the period immediately prior to onset of deep 

persistent slab avalanches at Mammoth Mountain. 

Bridger Bowl records a large number of days associated with the warmer synoptic 

types with a strong southwest flow and a mild ridge over the western U.S. in the days 

leading to deep slab events. Combined with the large number assigned to wetter synoptic 

types, this suggests two mechanisms leading to deep slab events. One is that a deeply 

buried weak layer is pushed to its breaking point by adding a large enough load in the 

form of new snow. The other is that the weak layer fails due to liquid water that is 

introduced in the snowpack through rapid warming. The latter case would provide an 

explanation for the large number of days assigned to relatively warm synoptic types not 

commonly associated with precipitation. By isolating the wet slab events from the record, 

we identify a large number of days assigned to types O and P at Bridger Bowl and 
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Jackson Hole in the 72 hours leading to the event. These patterns are characterized by 

zonal flow with a slight southwesterly component, which results in warm temperatures 

and frequent precipitation at both sites, although the precipitation totals at Bridger Bowl 

are usually somewhat modest during these circulation patterns. Jackson Hole also shows 

a high frequency of type L, which has a stronger southwest component, usually resulting 

in even warmer temperatures than types O and P.  

There is a notable lack of circulation patterns with a ridge over the Gulf of Alaska 

during the time leading up to the wet slab events at both sites. This is particularly 

interesting because types A and E showed up among the types with the highest counts for 

dry deep slab events at Jackson. The ridge over the Gulf of Alaska is coupled with a 

northwesterly flow over the continental U.S., and often results in cold temperatures at 

both Jackson and Bridger Bowl, which would be unlikely to result in liquid water in the 

snowpack.  

Marienthal et al. (2012) investigated a historic wet deep slab avalanche cycle at 

Bridger Bowl that occurred in late March of 2012 and found that the key factors leading 

to onset of avalanche activity included poor snow structure with depth hoar near the 

ground, a rapid warming event beginning on March 24th, and a large loading event on the 

evening of March 26th, during which 20 cm of snow (38mm SWE) fell on a recently 

warmed snowpack, which insulated the snowpack and prevented liquid in the snowpack 

from refreezing. This created an unstable condition in which there was a supply of liquid 

water in the snowpack and a large load applied at the surface. Looking back on the 

beginning of the season, we find that the upper-level circulation was dominated by 
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synoptic types I and R (Figure 25). Both synoptic types are characterized by west-

northwesterly airflow trajectory and are associated with modest snowfall and near-

average temperatures. The combination of low snowfall and average temperatures in 

November and December facilitated facet growth at the bottom of the snowpack, which 

eventually developed into depth hoar. This remained an active weak layer in the 

snowpack until February, when it was buried deep enough that applied surface loads (e.g. 

explosives and humans) were unable to initiate collapse.  

 

Figure 25: Seasonal plot of daily synoptic type classification (blue rectangles), 
accumulated snow depth (black line), and daily DSAI score (vertical bars) for the 2011-
2012 winter season at Bridger Bowl. The vertical bars representing DSAI score are color-
coded such that darker bars indicate a higher daily score. A similar plot for each season at 
each location may be found in Appendix D. 
 
 

The warming event on March 24th coincided with consecutive days of synoptic 

type S, which indeed is often associated with warmer temperatures. The precipitation 

event during the evening prior to the wet slab cycle was facilitated in part by synoptic 

type O, which has the perfect combination of slightly warmer temperatures and frequent 

precipitation that resulted in liquid water movement in the snowpack. On the morning of 
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the 27th, this combination of warming and precipitation was enough to push the snowpack 

to its breaking point, and Bridger Bowl Ski Patrol was able to trigger multiple massive 

wet slab avalanches with explosives during their morning control routes. This case study 

provides an example of how our work may be used in conjunction with previous research 

to summarize the atmospheric processes related to deep persistent slab avalanches, and 

identify potentially dangerous conditions that lead to them. 

February 1986 was marked by an avalanche cycle that extended throughout much 

of the western United States, with major events in Washington, Oregon, California, Utah, 

Montana, Wyoming, and Colorado. Birkeland and Mock (2001) previously investigated 

this event and found that it was primarily a result of a large precipitation event in mid-

February, rather than from an anomalously weak snowpack. Out of the 20 sites that were 

investigated in the study, Bridger Bowl was one of four sites that did not experience a 

major avalanche cycle during this time period. Their research identified an upper-level 

trough over the Pacific Northwest in the days leading to the event, which resulted in 

primarily zonal/southwesterly flow across most of the western United States, and a 

southward shift in the storm track. While this pattern is likely to result in heavy 

precipitation at many sites in the western U.S., it does not favor precipitation at Bridger 

Bowl. Birkeland and Mock (1996) previously identified this trend, and our findings 

further support it (Figures 7-9, Tables 3-5). This was indeed the outcome in February of 

1986, with precipitation totals reaching 380% and 307% of average at Mammoth 

Mountain and Jackson Hole, respectively, but a more modest 178% of average at Bridger 

Bowl (Birkeland and Mock, 2001).  
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At both Jackson Hole and Mammoth Mountain, onset of avalanche activity began 

on February 13, and large direct-action avalanches failing at or near the old snow surface 

continued to occur through February 18. Both days recorded large deep persistent slab 

avalanches immediately following the storm, on February 24 and 25 at Jackson Hole, and 

February 21 at Mammoth Mountain (Figure 26).  

 

Figure 26: Seasonal plot of daily synoptic type classification (blue rectangles), 
accumulated snow depth (black line), and daily DSAI score (vertical bars) for the 1985-
1986 season at Jackson Hole (top) and Mammoth Mountain (bottom). The vertical bars 
representing DSAI score are color-coded such that darker bars indicate a higher daily 
score. A similar plot for each season at each location may be found in Appendix D. 
 
 

During the February 13-18 storm event, Jackson Hole received 211 mm SWE and 

Mammoth Mountain received 538 mm. Bridger Bowl only received 33 mm during that 

same 6-day period. Every day from February 13-18 was assigned to type A, which is 

characterized by a southern shift in the storm track with primarily zonal flow and an 
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omega block over western Alaska. Mock and Birkeland (2001) included a 500 mb 

composite map for February 13-21, 1986 that closely resembles type A as well as type L, 

which was assigned to the last three days of that time period (Figure 27). Both Jackson 

Hole and Mammoth Mountain record frequent and heavy precipitation during days which 

are designated type A (Figs. 8 and 9), while precipitation events are less frequent and 

relatively smaller in magnitude at Bridger Bowl (Figure 7). This geographic distribution 

of precipitation was manifested during February of 1986, and it eventually led to major 

avalanche cycles at Jackson Hole and Mammoth Mountain, while Bridger Bowl remained 

relatively stable. 

 

Figure 27: Six out of nine of the days from February 13-21, 1986 were assigned to 
synoptic type A (upper left). The remaining three days were assigned to type L (lower 
left). Both types closely resemble the composite map for that period (right), taken from 
Birkeland and Mock (2001) . 
 
 

This work builds off of the findings of previous synoptic climatology studies that 

have investigated the link between the atmosphere and avalanche cycles. Hatchett et al. 

(2017) found that avalanche fatality rates increase during atmospheric river events 
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throughout the western U.S. They used 500 mb geopotential height maps to identify 

circulation patterns that facilitate inland vapor transport, which results in precipitation 

rates that exceed the threshold at which a snowpack becomes unstable. Birkeland et al. 

(2001) investigated the atmospheric conditions during the days with the most avalanche 

activity at four locations across the western U.S. They found increased avalanche activity 

to be closely tied to upper-level troughing, which facilitates moisture transport and heavy 

precipitation. Fitzharris (1987) performed a similar analysis in western Canada, focusing 

on major avalanche seasons, rather than major days. He found that major seasons had at 

least one month in the beginning of the winter with sustained anticyclonic blocking 

patterns and resulting cold, dry periods conducive to weak layer formation. In addition, 

he found each major season to exhibit a rapid change from blocking to zonal patterns, 

which resulted in heavy precipitation with immediate avalanching thereafter. He also 

noted different frequencies of certain synoptic types during major and minor seasons. We 

extended these and other studies (e.g. Martin and Germain, 2017; Schuenemann et al., 

2009; Wise 2012) to find the synoptic drivers of deep persistent slab avalanches in the 

western U.S, and our results are consistent with prior work. At each location, there are 

certain synoptic types that are often warmer while others are colder, and certain types that 

more commonly record substantial precipitation while others do not. The frequency of 

occurrence of each of these types on a seasonal scale will in turn control snow stability. 

We have utilized these relatively simple concepts to identify the sequences that often lead 

to deep persistent slab avalanches. 



86 
 

This work also highlights the utility of SOM in the field of snow and avalanches. 

SOM have emerged as a key tool in the field of synoptic climatology (Sheridan and Lee, 

2011; Hewitson and Crane, 2002; Reusch et al., 2005; Wise and Dannenberg, 2015), but 

their utility in understanding avalanches is just beginning to be explored. Shandro and 

Haegeli (2018) used SOM to characterize avalanche types in western Canada for over 

14,000 avalanche advisories in order to better understand typical avalanche problems, 

which has provided forecasters with another tool to anticipate avalanche hazard for a 

given day. With this work we provide another example of the use of SOM in describing 

avalanche activity, and another tool to try to anticipate a difficult to predict event. 

 
Limitations 

 

The utility of this work is limited by the available data and by the nature of 

synoptic climatology. There is a large amount of subjectivity in the observations recorded 

in ski patrol avalanche records, which are maintained as an effective means to 

communicate between practitioners and incorporated in a multi-faceted approach towards 

stability assessment. This is particularly relevant in the size classification of the 

avalanche as well as the bed surface. Furthermore, the crown depth observations are 

simply ad-hoc estimations of crown depth, rather than precise measurements. We 

acknowledge the uncertainty in these measurements, and subsequently use the 

observations only in general terms to identify deep slab events. Furthermore, the index 

which we have implemented to describe individual events assigns a numeric index based 

on R-size, which is a reliable measurement in the data record. This index ranges on a 
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scale that is two orders of magnitude larger than the crown depth measurement, which 

reduces the error in the analysis associated with measurement uncertainty. 

By its nature, synoptic climatological studies identify broad patterns over a 

continental scale.  While this framework is quite useful in identifying large-scale patterns, 

it is somewhat limited in its ability to capture variability in smaller scale processes. This 

is highly relevant when considering mountain weather, which is equally dependent on 

processes operating on scales as small as 10s of meters. It is equally important to consider 

the limitations related to a mountain snowpack, which exhibits variability on a multitude 

of scales ranging from thousands of kilometers down to sub-millimeter. 

 
Conclusions 

 

 This research builds on previous work to highlight connections between the upper 

atmosphere, meteorology, and snow metamorphism to improve our understanding of the 

processes controlling deep slab instabilities. We used state of the art methodology to 

classify 5,899 daily 500 mb geopotential height maps and generate a continuum of 20 

general map patterns that captures major modes of variability over the Pacific, North 

America, and the West Atlantic. The classification scheme captures different phases of 

the Pacific-North American teleconnection, which is a major driver of regional scale 

precipitation patterns in the western U.S. In doing so, it also summarizes variability of 

semi-permanent pressure centers over the Aleutian Islands, USA, and Hudson Bay, 

Canada. The array illustrates a spectrum of synoptic types that transition from zonal to 
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blocking patterns, and it also captures the east-west variability of a blocking ridge that 

may occur over the Pacific or over continental North America.  

The implications of these different synoptic types are summarized by plotting 

frequency distributions for daily maximum and minimum temperature as well as daily 

SWE totals. Different circulation patterns lead to very different meteorological outcomes, 

which have been described in terms of teleconnections, storm track direction, and 

meridional or zonal flow. This research supports previous work describing 

hydroclimatology and temperature variability in the western U.S., and builds on it by 

applying these concepts to deep slab avalanches. 

We examined  avalanche records at three different locations in the western U.S., 

and identified atmospheric patterns that tend to occur at higher rates during years with the 

most deep slab avalanche activity. Early season patterns tended to be associated with 

colder temperatures and low snowfall at the two intermountain sites, while the coastal site 

had some types that are associated with frequent precipitation and others that do not. All 

three locations had large counts of synoptic types with high SWE frequencies in the 72 

hours leading to deep slab avalanches. This supports findings by previous work that 

identifies recent loading as a leading indicator of potential for deep persistent slab 

avalanches. Furthermore, the frequency distribution for the 72-hour period preceding 

deep persistent slab avalanches at each of the three study sites is unique and distinctly 

different from the overall distribution during the duration of the study period. This 

suggests that a vulnerable snowpack at each study site reacts to a unique set of 

atmospheric circulation patterns. This is very promising in terms of avalanche 
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forecasting, as these higher-risk circulation patterns may indicate increasing likelihood of 

deep persistent slab avalanches. 

This work should improve the ability of practitioners to anticipate deep slab 

avalanche cycles by highlighting the atmospheric processes driving them. There is a large 

amount of uncertainty associated with weather and avalanche forecasts, and forecasters 

improve their accuracy by incorporating more pieces of information. This research can be 

used to understand the processes that form a snowpack conducive to deep slab 

avalanches, and it may be used as another tool to anticipate when a lurking persistent 

weak layer will become ripe for triggering large avalanches.  
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CONCLUSIONS 
 
 

Summary 
 
 

The utility of self-organizing maps in synoptic climatology studies has only 

recently been established (e.g. Sheridan and Lee, 2011; Hewitson and Crane, 2002), and 

new applications are still being explored. To the best of my knowledge, the only other 

research to date that has used self-organizing maps to investigate avalanches is presented 

in Shandro and Haegeli (2018). However, their work did not apply SOM to classifying 

atmospheric circulation; rather, the SOM was used to summarize variability in avalanche 

types over western Canada. Our work compiled nearly 40 years of avalanche records 

from three locations across the western United States and used state of the art 

methodology to address an avalanche problem that is difficult for avalanche practitioners 

to predict. We described relationships between atmospheric circulation patterns and 

weather metrics at three locations, and used these relationships to connect atmospheric 

circulation to deep persistent slab avalanches. This research can aid in avalanche 

forecasting through an improved understanding of the processes leading to deep 

persistent avalanches on seasonal and daily time scales. 

 
Upper-level Circulation and Surface Weather 

 
 

We used 20 synoptic types to characterize the atmospheric circulation over the 

Pacific and North America for the winter months (November-March) in the Northern 

Hemisphere from 1979/80 through 2017/18. The map types summarize atmospheric 
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variability with patterns that range from direct zonal to enhanced meridional upper-level 

airflow. The classification captures a transition from positive to negative phases in the 

Pacific-North American (PNA) teleconnection (Wallace and Gutzler, 1981), and it 

generalizes changes in the strength and location of semi-permanent pressure centers over 

the Aleutian Islands, AK, USA and Hudson Bay, Canada. We found that certain 

meteorological responses to these different patterns are shared between all three study 

sites, while others are site-specific. 

At all three sites, we find the coldest temperatures occur with an upper-level ridge 

over the Pacific and Gulf of Alaska and a trough over the western United States. This 

results in the southward migration of polar air masses, which causes temperatures to 

drop. Alternatively, higher temperatures will be recorded when a given site is situated 

under an upper-level ridge. Our synoptic typing scheme identified changes in magnitude 

and longitudinal location of such a ridge. We find the highest temperatures at Mammoth 

are typically recorded when this ridge is situated over the West Coast, which can coincide 

with cooler temperatures at Jackson and Bridger Bowl. Higher temperatures are recorded 

at the latter two sites when the ridge migrates eastward over the Rockies. 

Due to the geographical distance between sites, the same pattern can have 

different responses at different sites. We found responses to vary by both latitude and 

longitude, which was previously described by Wise (2012). In addition to N-S and E-W 

orientation, we found a strong relationship between storm track, local topography, and 

precipitation totals at all three sites. At Bridger Bowl, the most productive storms 

approached from the Northwest. This is consistent with anecdotal observations from 
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practitioners in the area and with previous research (e.g. Birkeland and Mock, 1996; 

Birkeland et al., 2001). Jackson also benefits from the northwest storm track, but it also 

experiences high precipitation totals for storms that approach along the Snake River Plain 

directly out of the west. The most consistent precipitation at Mammoth occurred when 

storms approached directly out of the west or southwest.  

 
Snowpack Response to Atmospheric Circulation 

 

 We identified key relationships between circulation patterns and deep persistent 

slab avalanches at each of the three study sites. At each site, there is a distinct difference 

in the distribution of the number of days assigned to each synoptic type during November 

through January of major and minor deep persistent slab avalanche seasons. Furthermore, 

all of these distributions differ from the overall frequency distribution for November 

through January during the duration of the study. This implies that there are distinct 

patterns that lead to deep persistent problems, and different patterns that result in a stable 

snowpack. At Bridger Bowl, there is a shift toward increased meridional circulation 

during major deep persistent slab seasons, which coincides with a sharp decrease in the 

patterns most commonly associated with substantial precipitation. The circulation 

patterns favor zonal flow with a northwest-southeast trajectory during most minor deep 

persistent slab seasons. There is an additional group of days which display an enhanced 

southwesterly flow pattern that are associated with mild temperatures. The Jackson area 

sees a spike in the number of days assigned to synoptic types that are characterized by a 

blocking ridge over the region during the beginning of the winter in major deep slab 
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seasons. The minor seasons have a larger number of days assigned to synoptic types that 

feature enhanced zonal flow, or where the ridge shifts westward over the Pacific, 

resulting in northwest flow over the area. Circulation patterns in the beginning of major 

deep persistent slab seasons at Mammoth are dominated by patterns which exhibit a 

blocking ridge over the West Coast, or zonal patterns with a northwest-southeast 

trajectory. The minor seasons see a slight increase in the number of days assigned to 

types characterized by enhanced zonal flow. However, since the majority of seasons at 

Mammoth do not see a deep persistent slab problem the frequency distribution for minor 

seasons more closely resembles the overall distribution for all seasons in the study period. 

 Each study site exhibits a unique set of synoptic types occurring frequently in the 

72 hours prior to deep persistent slab activity. Furthermore, the frequency at which each 

of these high-risk types occurs during the 72-hour period is very different from the 

overall frequency during the duration of the study. This implies that there are specific 

circulation patterns that are associated with deep persistent slab avalanches, which can be 

a potentially valuable indicator when timing of these events is otherwise very difficult to 

predict. 

 
Future Work 

 
 

This research has identified key relationships between regional-scale circulation 

patterns and deep persistent avalanche cycles at three locations across the United States. 

This constitutes an additional tool that may be used by practitioners to improve avalanche 

forecasts, thereby reducing fatality rates and damage to infrastructure. However, the work 
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presented in this thesis covers a narrow scope in the field of snow and avalanches. The 

following list outlines several avenues for future work that can expand the scope of this 

study, further our understanding of the connections between atmosphere and snowpack, 

and lower avalanche fatality rates for backcountry users: 

1. Future work can build on this research by applying the same framework to more 

sites. This research has demonstrated that synoptic controls on deep slab instabilities are 

site-specific, and they operate differently in different snow climates. In order to extend 

the benefits of this study to a large group of practitioners, it would be necessary to 

perform a similar investigation at any site where practitioners are forecasting avalanches. 

While the data compilation process will be time consuming at any new location, this 

study has provided a framework for analysis that can be easily adapted to any site. All of 

the analysis for this project was implemented in the free statistical software R (R core 

team, 2017). The script for each step of the analysis is included in Appendix C of this 

manuscript, including sections describing the requisite data structure and explanations of 

every function written for the analysis. Thus, it should be feasible for future researchers 

to adapt this study to any location for which similar data are available. 

2. While this work has effectively identified general relationships between large-

scale circulation patterns and deep persistent instabilities, it does not provide direct 

explanations of the processes driving the response in the snowpack. Future research could 

improve on this study by downscaling these synoptic patterns and exploring directly how 

a local snowpack responds to changes in atmospheric circulation. Recent studies have 

demonstrated the ability to couple numerical weather models with SNOWPACK (Bartlelt 
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and Lehning, 2002) to simulate snow stratigraphy over broad geographical extent (Van 

Peuresem, 2016; Bellaire and Jamieson, 2013). Future work could identify statistical 

associations between these synoptic types and numerical weather model output, which 

could be used to drive snow cover models. The snow cover model output could then be 

compared to manual observations (as in Van Peursem, 2016) to assess the accuracy of 

such a model chain and further explore the synoptic drivers of snow stratigraphy. 

Additionally, the NCEP/NCAR reanalysis data are available at intervals down to 6 hours. 

Using a higher resolution historical time series of synoptic types from a previous season, 

it should be possible to recreate a seasonal snowpack structure and compare it to manual 

snowpit profiles. This would further solidify the connection between the atmosphere and 

the mountain snowpack, and could be beneficial to operational avalanche forecasting. 

3. The utility of self-organizing maps is just beginning to be explored in the field of 

snow and avalanches. Future work can build on this by characterizing snowpack 

stratigraphy and local weather measurements related to snow stability. Such work will 

improve our conceptual model of the relationships between weather and avalanches and 

may be a powerful tool in terms of improving our ability to describe the snowpack and 

forecast avalanches.  

 Self-organizing maps can be used to describe any multi-dimensional dataset. This 

can apply to the field of snow and avalanches beyond weather and snowpack 

observations. There is a growing body of work exploring decision making in backcountry 

terrain, and there is potential to incorporate SOM in such studies. One such application 

could be in characterizing demographics of backcountry users, and examining a response 
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(such as fatality rates) for each user type. Such a study could have the potential to 

identify strengths and weaknesses in the current avalanche education framework, thereby 

reducing fatality rates of backcountry users. 
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OPTIMIZATION PROCEDURE FOR SELF-ORGANIZING MAPS 
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The SOM algorithm requires the user to specify the number of nodes to be used, 

the rate at which the nodes are adjusted at each iteration (referred to as the “learning 

rate”), and the number of iterations to perform. Learning rate and number of iterations are 

adjusted to minimize the variability between map patterns represented by the same node, 

and to maximize variability between groups of maps represented by different nodes. The 

optimization procedure follows a two-step procedure. In the first step, the learning rate 

and the number of iterations is optimized for SOM configurations using 9, 12, 15, 20, 25, 

35, and 56 nodes. For each number of nodes, changes in the output is assessed by 

comparing similarity of daily observations assigned to the same group and the difference 

between the nodes. Each node generated by the SOM is characterized by 1197 grid point 

values on the same 2.5o x 2.5o grid used by the NCEP/NCAR daily 500-mb geopotential 

height maps. Within-group variability is measured by calculating the root mean square 

error (RMSE) between each grid point of the node and its corresponding grid point for a 

given day, so each day has an associated RMSE value. These RMSE values are then 

averaged over all days in the record. Each learning rate- iteration- number of nodes 

configuration is run 10 times, and the average RMSE of the 10 runs summarizes the 

within- group variability for a specific configuration of the SOM. Between-group 

variability is measured by calculating a RMSE value for each combination of two nodes 

in the SOM, and averaging all of the RMSE values for each of the 10 runs for a given 

learning rate-iteration- number of nodes configuration. Finally, mean between-group 

RMSE values are averaged over the 10 runs for each configuration. The configurations 

tested are summarized in Table 1.  
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Table 1: Summary of SOM configurations tested during optimization. 
Number of Nodes Iterations Learning Rate (initial, 

finish) 
9 500, 1000, 5000, 10000 (.05, .01); (.03, .001) 
12 500, 1000, 5000, 10000 (.05, .01); (.03, .001) 
15 500, 1000, 5000, 10000 (.05, .01); (.03, .001) 
20 500, 1000, 5000, 10000 (.05, .01); (.03, .001) 
25 500, 1000, 5000, 10000 (.05, .01); (.03, .001) 
35 500, 1000, 5000, 10000 (.05, .01); (.03, .001) 
56 500, 1000, 5000, 10000 (.05, .01); (.03, .001) 

 

Since the SOM does not assume independence among nodes, the between-group 

variability is less important than it would be in other classification methods such as 

principal components analysis and clustering. However, this research relies heavily on 

the assumption that observations within the same group are similar. Thus, the optimal 

configuration should minimize within-group variability and maximize between-group 

variability, but the within- group variability is much more important. For this reason, 

configurations may be compared to each other quantitatively with the following: 

𝜶𝜶 =
𝒘𝒘𝟐𝟐

𝒃𝒃
 
 

Where α is the optimization index, w is the within-group mean RMSE, and b is 

the between-group mean RMSE. For each number of nodes, the optimal combination of 

learning rate and number of iterations minimizes α. 

In the second step, I assess the effect of changing the number of nodes while 

using the optimized learning rate/number of iterations configuration determined in step 1. 

Note that if the goal of SOM optimization is only to minimize α, one could simply set the 

number of nodes equal to the number of observations. This defeats the purpose of 
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implementing a classification scheme. Since the analysis is both more practical and easier 

to understand with fewer types retained, an optimal classification scheme needs to find a 

balance between interpretability and over-generalization. Milligan and Cooper (1989) 

discuss 30 procedures for identifying the number of clusters in a dataset. Most of these 

procedures are dependent on the method used to generate the clusters and cannot be 

applied to the SOM methodology. One procedure that may be used in this research is the 

scree test. This test involves plotting the cumulative variability explained in the dataset 

versus the number of clusters retained. The scree plot should display exponential decay, 

with an initial steep drop in variability as the number of clusters increases, followed by a 

slow taper as the number of clusters approaches the number of observations. The ideal 

number of clusters to retain is the point at which the slope transitions from steep to flat. 

In this analysis, the scree plot is implemented by plotting α on the y axis and the number 

of nodes on the x axis.  

 Plots of α versus number of iterations (Figure 1) and α versus learning rate 

(Figure 2) suggest that changes in the iteration-learning rate configuration have little 

effect on optimizing the alpha parameter.  
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Figure 1: Scatter plot of α index versus number of iterations. 

 
Figure 2: Scatterplot of α versus learning rate for two learning rates. 

  
 
The scree plot of α versus number of nodes shows a large drop in the α index as number 

of nodes decreases, with a large decrease in the rate of change between 20 and 30 nodes 
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(Figure 3). Since the SOM arrays become more difficult as the number of nodes 

increases, this research will use a 20 node array. 

 
Figure 3: Scree plot of α value versus number of nodes.  
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NOTES ON APPARENT ERRORS AND CHANGES MADE TO WEATHER AND  
 

AVALANCHE RECORDS 
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This appendix summarizes apparent errors in the raw weather and avalanche 

records, and the changes made to address these errors. 

 

Bridger Bowl 
 

Table 1: Summary of errors and changes made to the weather record for Bridger Bowl 
Date Error Action 
19930317 Apparent typo. HS jumps from 73 

to 94 to 71 in three consecutive 
days. 

Change 19930317 ΔHS 
value from 94 to 74 

19940116 Apparent typo. HS jumps from 54 
to 76 to 63 in three days. NS value 
is 11 in.  

Change 19940116 ΔHS 
value from 76 to 66. 

19810317 Large discrepancy b/t NS and HS. 
HS record seems consistent. 

None. Use ∆HS as planned. 

Jan 2012, 
Nov/Dec 2015 & 
2017 

Max. temp = Min temp = -18 C. HS 
= 0, when adjacent days are well 
above zero. 

All observations set to NA 

Nov 2016 Max. temp = Min temp = -17.6 C. 
HS = 0 

All observations set to NA 

Any dates with 
missing value for 
previous day HS 

 Use NS value for ∆HS. 

 
 
Table 2: Summary of errors and changes made to the avalanche record at Bridger Bowl 
Date Record Error Action 
19991216  Depth recorded as “2/3/2007” Depth changed to 

NA 
22050214  Year recorded as 2205 Changed to 2005 

20040101  Excel wasn’t recognizing as a 
date when transferred to r 

Entered date 
manually 

19990208,   One record was missing a 
date, but the record was in 
the middle of the day. 

Entered date 
manually 

20070224 12363 Size entered as “^2/2”  Changed to 2 

2008/09 – 
2012/13 

 Column with ‘Layer’ heading 
seems to be records of bed 

The bed surface 
observation is taken 
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Date Record Error Action 

surface. No values recorded 
in the bed surface column. 

from the layer 
column. 

    

2012: 
12-04, 12-05, 
12-07, 12-08, 
12-09, 12-10, 
12-11, 12-24, 
12-28, 12-37 
2013: 
01-01, 01-04, 
01-31, 02-13, 
02-15, 03-07, 
03-26 

 Size entered as “NR” Changed to “NA” 

19990226  Multiple sizes 30, 20, and 10. 
size 30 avalanches ran 70-
100% of full track, size 20 
were 60-90%, and size 10 
was 30%. Interpreted as an 
input error. 

Sizes changed to 3, 
2, and 1, 
respectively. 

19961127  Crown depth entered as “G” Depth changed to 
NA. Bed surface 
changed to “G” 

20051201 10643, 10644 Sizes for records 10643 and 
10644 entered as “?” 

Changed to NA.  

14376 14376 Depth entered as 39116  Changed to NA 

20060407, 
20060409, 
20070217 

21945, 21962, 
21963, 22612 

Depths recorded as “1’”, 
“2’”, or “3’”.  

Changed to 12, 24, 
36 respectively. 

20070224 22743 Depth recorded as “^7/10”.  Changed to NA 

20080115 23354 Depth recorded as “17868”. Changed to NA 

20100320 26340 Depth recorded as “1O”  Changed to 10 

20110101 26840-26843 Depth recorded as “18-24”  Changed to 21 

20110113 26979 Depth recorded as “4—6”  Changed to 5 

20130304  Depth recorded as “S” Changed to NA 
19990202 13563 and later Depth records change from 

feet to inches. The change is 
inconsistent, and some 

For depth = 1-3: If 
size >= 2, depths are 
inferred as feet, 
depth = 4-8:  If size 
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Date Record Error Action 

records are in feet while 
others are in inches. 

>= 3, depths are 
inferred as feet.  
For depth = 9-11, if 
size is >= 4, depths 
are inferred as feet. 
All other depths are 
inferred as inches. 

2013-2018 2799, 2800, 
5266, 5404, 
5439, 5440, 
5446, 5447, 
5448, 5449, 
5450, 5451, 
5452, 5466, 
5448, 5556, 
5558, 5591, 
5592, 5594, 
5596, 5598, 
5599, 5600, 
5623, 5633, 
5634, 5635, 
5753, 5756, 
5757, 5758, 
5759, 5760, 
5761, 5762, 
5809 

Records are missing dates. 
Max crown depth for this 
period is 20” 

Records are thrown 
out. 

20140312 1496 - 1500 Depths recorded as “18-48”, 
“20-40”, and “18-24”. 

Switched to average 
for each range. 

20140319 1612 Depth recorded as “20-30” Switched to 25. 

20141201 1773 Depth recorded as “18-6” Switched to 12. 

20141202 1803-1805 Depth recorded as “24-6” Switched to 15. 

20150319 2709 Depth recorded as “O” Switched to NA. 

20131205 34 Surface recorded as “5” Switched to NA. 

20131215 256 Surface recorded as “TR” Switched to NA. 

20140112 853 Surface recorded as “1” Switched to NA. 

20120315 24544-24577 Year entered as 2017. 
Adjacent days are 20120314 
and 20120316 

Year switched to 
2012 
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Jackson Hole 
 

The data from the Teton AM weather record are more reliable than manual 

historical records (Chris McCollister, Pers. comm.). This dataset only contains temp and 

wind records. The only station that is used in both the AM and manual records is the mid-

mountain station. For the Jackson Hole study site, I use the following weather records: 

 

-Teton AM mid-mountain station for daily max/min temp from 19971219 on 

-Historic manual mid-mountain Max/Min temp from 19791101 to 19971219 

-Historic manual mid-mountain for HS, HN, and SWE24 for the entire record  

 
Table 3: Summary of errors and changes made for the Teton AM weather record 
Date Record Description Adjustment 
20100218 4648, 4649 Date was duplicated, 

max and min temp are 
identical 

Erase record# 4648 

 
Table 4: Summary of errors and changes made for the manual historical record. 
Date Record Description Adjustment 
20061209, 
20070313, 
20071129, 
20080112, 
20091129, 
20100209, 
20101215, 
20120123, 
20141128 

4123, 4124, 4218, 
4219, 4266, 4267, 
4311, 4312, 4572, 
4573, 4645, 4646, 
4741, 4742, 4932, 
4933, 5332, 5333 

Dates duplicated, all 
values identical. 

Erase one 
record for each 
date 

20130126 5088, 5099 Dates duplicated. All 
values identical except 
SWE, which differs by 
.01 inches for each 
observation 

The difference 
in SWE is 
negligible. 
Observation 
5088 is 
removed. 
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Date Record Description Adjustment 
20080117 4318 Date is duplicated, but 

one record does not have 
any measurements. 

Remove record 
4318 

20131204 5177 Temperatures recorded as 
-458 

Changed to 
“NA” 

 
 
Table 5: Summary of errors and changes made to the avalanche record at Jackson. 
Date Record Description Adjustment 
Unknown 29569 - 29582 No date 

included 
Removed events 
from record. 

19811230 3563 Location 
recorded as 
“AreaArea” 

Changed location to 
“Area” 

20030323 16074 Location 
recorded as “`” 

Changed location to 
“BC”, based on a 
previous entry of 
the same slide path 
in the dataset. 

19801203 2971-2983, 2986-2993, 3011, 
3012, 3016-3019, 3033, 3036, 
3038, 3106, 3107, 3114, 3115, 
3207, 3208, 3328, 3329-3334, 
3394-3404, 3439-3459, 3477, 
3553-3558, 3694, 3695, 3974-
3984, 4963, 4964, 5372-5374, 
5850, 5856-5861, 6267, 6268, 
6273, 8238, 3206, 3380-3390, 
3414, 3425-3438, 3544, 3548-
3552, 3559, 3663, 3693, 3815-
3822, 4642, 5169, 5170, 5370, 
5371, 58418, 5849, 5853, 5854, 
5876, 5958, 6264-6266, 
3001, 3034, 3035, 3204, 3205, 
3378, 3379, 3424, 3547, 4024-
4026, 5368, 5369, 5875, 5878, 
3419, 3420, 3421, 3422, 3810-
3814, 3338-3343, 3466-3469, 
3025, 3209-3211, 3225, 3823-
3825, 6269, 6311, 
3323-3327, 3372-3376, 
3108, 3109, 3213, 3406, 3478, 
3985, 3986, 4643, 4965, 5788, 

Crown depth 
rercorded as 0. 

Crown depth 
changed to “NA” 
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Date Record Description Adjustment 

6073, 6270, 6306, 6307, 7299, 
3105, 3203, 3692, 3807, 3808, 
3809, 4023, 3688, 3700, 3701, 
3990, 3024, 3026, 3040, 3321, 
3322, 3470, 3471, 3927, 3939, 
6272, 5846, 5847, 5877, 3545, 
3741, 3037, 3409, 3472, 3991, 
3212, 3335, 3336, 3337, 3377, 
5874, 6310, 7772 

 
 

Mammoth Mountain 
  
 New snow is measured in the mornings between 0600 and 1000 PST at Mammoth 

Mountain. This presents a disagreement between weather data and the NCEP/NCAR 

data, since the daily reanalysis data are averaged from 0000-2400 UTC (1600-1600 PST) 

at 6-hour intervals. This means that while three of the five measurements used to 

replicate the atmospheric condition for a given 24-hour period of new snow align with the 

measurement period, two are associated with the next day’s date. The reanalysis data may 

be downloaded for to fit the measurements better at this location, but that would create 

the same discrepancy at the other two study sites. One alternative would be to generate a 

separate classification scheme to use for Mammoth, but this would add to uncertainty in 

comparisons between study sites. Instead, we acknowledge this offset in measurements as 

a source of uncertainty, and proceed with the analysis using the same classification 

scheme for all three study sites. 
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Table 6: Summary of apparent errors and changes made to the weather record at 
Mammoth Mountain. 
Date Record Notes Changes 
19871213, 
19910117, 
19910328, 
19961228, 
20060429, 
20090129, 
20091123, 
20110609, 
20131210, 
20140114 

911, 1523, 1593, 
2713, 4676, 
5237, 5391, 
5814, 6269, 6306 

Max temp lower than 
min temp 

Both 
temperatures set 
to NA 

77 entries 
throughout record 

 Max temp = min temp 
(both = 0oF 

none 

20131224 5198, 5199 Dates duplicated. All 
zero values for record 
5198 

Delete record 
5198 

20770208 4184, 4185 Dates duplicated. 
Record 4184 has HS and 
HN values that do not 
add up based on 
previous day’s HS. 
Temperatures for 4184 
are also significantly 
colder than adjacent 
days, while 4185 seems 
to agree fairly well with 
adjacent days. 

Delete record 
4184 

19841108-
19841117, 
19841204, 
19851111, 
19870104, 
19870214, 
19871105, 
19871210, 
19881109, 
19881114, 
19881122, 
19901120, 
20001226, 
20010217, 

765-774, 791, 
919, 1124, 1165, 
1215, 1250, 
1371, 1376, 
1384, 1684, 
3233, 3286, 
3675, 4257, 
4258, 4274, 
4340, 4518, 
4529, 4964, 
5015, 5071, 
5126, 5181, 
5182, 5184, 5279 

Max and min temp both 
recorded as zero. 

All values set to 
NA. 
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Date Record Notes Changes 
20031215, 
20071122, 
20071123, 
20071209, 
20020080213, 
20090311, 
20090322, 
20120303, 
20121123, 
20130118, 
20130314, 
20131208, 
20131209, 
20131211, 
20140316. 
19841204, 
19850219, 
20001226, 
20010217, 
20031215, 
20071224, 
20080215, 
20090129, 
20090322, 
20120331 

791, 868, 3233, 
3286, 3675, 
4289, 4342, 
4477, 4529, 4992 

HS drops to zero, returns 
to previous day’s value 
on the following day. 

HS set to NA 

19890311, 
19940201, 
20010224, 
20021229 

1493, 2211, 
1108, 3293, 3538 

HS drops to single 
digits, returns to 
previous day’s value on 
the following day 

HS set to NA 

20081127 4414 HN is 2”, SWE says 15 
in. Manual record says 
3” HN, .26” SWE 

SWE changed to 
.26 

 

There are 4716 events where depth is less than or equal to 6 (roughly 9.3% of the 

entire record). However, unlike the Bridger Bowl data, there is no clear transition from 

recording depths in feet to inches or vice versa. Additionally, there is no clear signal 

based on R-size whether these events should be reclassified as in the Bridger data. As a 

result, all depth values are assumed to be in inches.  
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Table 7: Summary of apparent errors and changes made to the avalanche record at 
Mammoth Mountain. 
Date Record Notes Changes 

1982-2006 18418 events Size recorded as 

“0” 

Size changed to NA 
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APPENDIX C 
 
 

R SCRIPT FOR FUNCTIONS USED IN THE ANALYSIS 
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 This appendix contains the functions written to run this analysis. The functions 

require specific format of weather and avalanche records. Weather tables must be saved 

as an .Rdata object with the name “<sitename>_wx”. A list of the names for each column 

is given in Table 1. These names must be matched exactly in order to run any of the 

functions included in this appendix. 

Table 1: List of column names and corresponding data types required as inputs for the 
functions used in the analysis. 
Column Heading Data Type 
date Numeric, format: “YYYYMMDD” 
maxT_C Numeric 
maxT_C Numeric 
minT_F Numeric 
minT_C Numeric 
HS_cm Numeric 
HS_in Numeric 
NS_cm Numeric 
NS_in Numeric 
SWE_cm Numeric 
SWE_in Numeric 
rain_cm Numeric 
rain_in Numeric 
rho Numeric 

 

Avalanche tables must be saved as “<sitename>.avy”, with the column  names and data 

types summarized in Table 2 below. 

Table 2: List of column headings and data types required as avalanche inputs for 
functions used in the analysis. 
Column Heading Data Type 
date Numeric, format: “YYYYMMDD” 
pathname character string 
type character string 
trigger character string 
size numeric, min 0 max 5 
depth numeric 
surface character string 
comments character string 
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The script also requires a table of all of the dates in the record period, which must 

be stored as a data.frame object with numeric columns titled “date”, “month”, “year”, and 

“day”. The date is formatted “YYYYMMDD”, month is “MM”, year is “YYYY”, and 

day is “DD”. All values must be numeric. 

The SOM object is the output from the supersom() function in the kohonen 

package (Wehrens and Buydens, 2007). Data input for the SOM comes from the 

NCEP/NCAR reanalysis in the form of an .ncdf4 file, with a slice for each day. These 

data need to be reformatted into a matrix with each row representing one day and each 

column representing one gridpoint value from the reanalysis.   

 The code for the functions used in this analysis is included below. Commented 

script describes the functions, including the arguments and outputs for each function. 

This is not meant to serve as a standalone script, rather it is included to provide further 

insight on how the analysis was run and to make it possible to reproduce. 

Functions for Classifying Deep Slabs and Generating Heat Maps 
 

#Function to calculate 3-day storm snow 
#inputs: 
#   site.name: name of study site (character, needs to match naming scheme of _wx 
files) 
#outputs: 
#   NS72: vector, 3-day storm snow total (cm) for each day 
#   SWE72: vector, 3-day SWE total (cm) for each day 
 
stormCm72 <- function(site.name){ 
  station <- get(paste(site.name, "_wx", sep = "")) 
  ns24 <- station[,"NS_cm"] 
  swe24 <- station[,"SWE_cm"] 
  SWE72 <- NS72 <- rep(0, nrow(station)) 
  md <- as.numeric(substr(station$date,5,8)) 
  date <- station$date   
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  for(d in 1:nrow(station)){ 
    NS72[d] <- 
      ifelse(md[d] == 1101, ns24[d], 
             ifelse(md[d] == 1102,  
                    sum(c(na.omit(ns24[d]), na.omit(ns24[d-1]))), 
                    sum(c(na.omit(ns24[d]), na.omit(ns24[d-1]), na.omit(ns24[d-2])) 
                    ) 
             )    
      ) 
    SWE72[d] <- 
      ifelse(md[d] == 1101, swe24[d], 
             ifelse(md[d] == 1102,  
                    sum(na.omit(c(swe24[d], swe24[d-1]))), 
                    sum(na.omit(c(swe24[d], swe24[d-1], swe24[d-2]))) 
             )    
      ) 
  } 
  NS72[is.na(ns24)] <- NA 
  SWE72[is.na(swe24)] <- NA 
  attributes(stormCm72) <- list("NS72" = data.frame(date,NS72), "SWE72" = 
data.frame(date,SWE72)) 
} 
 
#Algorithm to identify DS events, adjusting windslab cutoff 
#Algorithm to identify DS events 
#inputs: 
# site.name = character, name used in table convention (e.g. "bridger" for 
bridger_wx) 
# cIndex = C-multiplier determined by Cmult function. 
#outputs: 
# summary: data.frame of deep slab avalanches identified with the algorithm. Values  
#   include date, depth, and daily count. 
# rejects: vector of integers. These are index numbers for the .stormtot table for  
#   observations which had crown depth > 3ft but were rejected either by NS totals 
or daily average 
#           crown depth 
DSsort <- function(site.name, cIndex){ 
  avy <- get(paste(site.name, ".avy", sep = "")) 
  station <- get(paste(site.name, "_wx", sep = "")) 
  ns72 <- stormCm72(site.name = site.name)$NS72 
  date <- station$date 
  stormtot <- merge(ns72, avy, all = TRUE, by = "date") 
  avy.month <- as.numeric(substr(stormtot$date,5,6)) 
   
  # crown > 3 ft, ns <= 3 ft 
  c3 <- which(stormtot[,"depth"]>=3 & stormtot[,"NS72"]<= 91.44) 
   
  # bed = G, crown >= 3 ft 
  ground <- which(stormtot[,"surface"] == "G" & stormtot[,"depth"]>=3) 
   
  #All avalanches FMA, with Crown > 3ft & NS72 < 3ft, or bed = G 
  c3ground <- stormtot[union(c3, ground),] 
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  #All avalanches where type = HS, bed = O, crown >= 3ft, size >= 4 
  HSold <- which(is.na(stormtot$NS72) == TRUE & stormtot$surface == "O" & 
stormtot$size >= 4 & stormtot$type == "HS" & stormtot$depth >= 3) 
   
  #daily max/mean avy depth 
  max.ds <- aggregate(stormtot[c3,"depth"] ~ stormtot[c3,"date"], FUN=max) 
  names(max.ds) <- c("date", "max_depth") 
  mean.ds <- aggregate(stormtot[c3,"depth"] ~ stormtot[c3,"date"], FUN=mean) 
  names(mean.ds) <- c("date", "mean_depth") 
  c3mean <- na.omit(merge(stormtot[c3, c("date", "depth")], mean.ds, by = "date", 
all = TRUE)) 
   
  #crown depth >= 150% of daily mean 
  c3150 <- c3mean[which(c3mean[,"depth"] >= 1.5*c3mean[,"mean_depth"]),] 
  c3retain <- c3[which(c3mean[,"depth"] >= 1.5*c3mean[,"mean_depth"])] 
  c3150reject <- c3[which(c3mean[,"depth"] < 1.5*c3mean[,"mean_depth"])] 
   
  #crown depth <= 3* NS72 
  ns300 <- which(stormtot$depth >= cIndex*(stormtot$NS72)/(12*2.54) & 
stormtot$depth >= 3) 
   
  #combine bed = ground, crown >150% of daily mean, crown > 300% NS72   
  ds <- sort(unique(c(ground, c3retain, ns300, HSold))) 
  loose <- which(stormtot[, "type"] %in% c("L", "WL")) 
  ds <- ds[!(ds %in% loose)] 
  ds.count <- data.frame(table(stormtot[ds, "date"])) 
  names(ds.count) <- c("date", "count") 
  max.ds<-aggregate(stormtot[ds,"depth"] ~ stormtot[ds, "date"],FUN=max) 
  names(max.ds)<-c("date","max_depth") 
  ds.sum <- merge(max.ds, ds.count, by="date") 
   
  #identify big avalanches that were rejected 
  rejects <- c3[!(c3 %in% c(ground, c3retain, ns300))] 
  attributes(DSsort) <- list("summary" = ds.sum, 
                             "DS" = ds , 
                             "rejects" = rejects, 
                             "stormtot" = stormtot, 
                             "DS.tab" = stormtot[ds,]) 
} 
#histogram of ws multipliers 
#Arguments 
# site.name: character, name used in table convention (e.g. "bridger" for 
bridger_wx) 
# main: name for plot titles 
# plot.yax: “y” or “n”. Should the y-axis ticks and labels be plotted? 
# plot.xlab: “y” or “n”. Should x-axis title be plotted? 
# cIndex: argument passed to DSsum function 
#Returns a histogram of C-index for each avalanche for the specified site 
Cmult <- function(site.name, main, plot.yax = "y", plot.xlab = "y", cIndex){ 
   
  stormtot <- DSsum(site.name = site.name, cIndex = cIndex)$full 
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  storm <- stormtot[which(stormtot$NS72 >= 15),] 
  loose <- which(storm$type %in% c("WL", "L", "L ", "WL ")) 
  slab <- storm[- loose,] 
  wMult <- slab$depth/(slab$NS72/(2.54*12))  
  sumTable <- data.frame(slab[,c("date", "depth", "type")], wMult) 
  quantVec <- quantile(wMult,  
                       probs = c(.25, .5, .75, .85, .9, .95, .97, .99), 
                       na.rm = TRUE) 
  quantTab <- cbind(c(.25, .5, .75, .85, .9, .95, .97, .99), quantVec) 
   
  hist(sumTable$wMult, 
       xlab = ifelse(plot.xlab == "y", "C-Multiplier", ""), 
       ylab = "", 
       main = main, 
       breaks = seq(from = 0, to = 20, by = .25), 
       ylim = c(0, 4000), 
       yaxt = ifelse(plot.yax == "y", "s", "n"), 
       col = "gray87", 
       border = "gray37", 
       font.lab = 2, 
       fg = "gray57" 
       ) 
  mtext(ifelse(plot.yax == "y", "Frequency", ""),  
        side = 2,  
        line = 2, 
        font = 2, 
        cex = .75 
        ) 
  abline(h = seq(from = 0, to = 4000, by = 500), 
         col = "gray89") 
  par(new = TRUE) 
  hist(sumTable$wMult, 
       xlab = ifelse(plot.xlab == "y", "C-Multiplier", ""), 
       ylab = "", 
       main = main, 
       breaks = seq(from = 0, to = 20, by = .25), 
       ylim = c(0, 4000), 
       yaxt = ifelse(plot.yax == "y", "s", "n"), 
       col = "gray87", 
       border = "gray37", 
       font.lab = 2, 
       fg = "gray57" 
  )   
  axis(1,  
       at = 1:20,  
       labels = rep("", 20), 
       col = "gray37" 
       ) 
  abline(v = cIndex, 
         lty = "dashed", 
         col = "gray69") 
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  box(which = "plot", col = "gray37") 
  attributes(Cmult) <- list("summary" = sumTable) 
 
  attributes(Cmult) <- list("cValues" = wMult, 
                            "quantiles" = quantTab, 
                            "maxC" = max(wMult, na.rm = TRUE)) 
} 
#Algorithm to identify DS events 
#inputs: 
# site.name = character, name used in table convention (e.g. "bridger" for 
bridger_wx) 
# cIndex = C-multiplier determined by Cmult function. 
#outputs: 
# summary: data.frame of deep slab avalanches identified with the algorithm. Values 
include 
#           date, depth, and daily count. 
# rejects: vector of integers. These are index numbers for the .stormtot table for  
# observations which had crown depth > 3ft but were rejected either by NS 

totals or  
# daily average crown depth 
DSsort <- function(site.name, cIndex){ 
  avy <- get(paste(site.name, ".avy", sep = "")) 
  station <- get(paste(site.name, "_wx", sep = "")) 
  ns72 <- stormCm72(site.name = site.name)$NS72 
  date <- station$date 
  stormtot <- merge(ns72, avy, all = TRUE, by = "date") 
  avy.month <- as.numeric(substr(stormtot$date,5,6)) 
   
  # crown > 3 ft, ns <= 3 ft, feb-mar constraint is removed 
  #c3 <- which(stormtot[,"depth"]>=3 & stormtot[,"NS72"]<= 91.44 & avy.month %in% 
c(2,3,4)) 
  c3 <- which(stormtot[,"depth"]>=3 & stormtot[,"NS72"]<= 91.44) 
   
  # bed = G, crown >= 3 ft, feb-mar constraint is removed 
  #ground <- which(stormtot[,"surface"] == "G" & avy.month %in% c(2,3,4) & 
stormtot[,"depth"]>=3) 
  ground <- which(stormtot[,"surface"] == "G" & stormtot[,"depth"]>=3) 
   
  #All avalanches FMA, with Crown > 3ft & NS72 < 3ft, or bed = G 
  c3ground <- stormtot[union(c3, ground),] 
   
  #All avalanches where type = HS, bed = O, crown >= 3ft, size >= 4 
  HSold <- which(is.na(stormtot$NS72) == TRUE & stormtot$surface == "O" & 
stormtot$size >= 4 & stormtot$type == "HS" & stormtot$depth >= 3) 
   
  #daily max/mean avy depth 
  max.ds <- aggregate(stormtot[c3,"depth"] ~ stormtot[c3,"date"], FUN=max) 
  names(max.ds) <- c("date", "max_depth") 
  mean.ds <- aggregate(stormtot[c3,"depth"] ~ stormtot[c3,"date"], FUN=mean) 
  names(mean.ds) <- c("date", "mean_depth") 
  c3mean <- na.omit(merge(stormtot[c3, c("date", "depth")], mean.ds, by = "date", 
all = TRUE)) 
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  #crown depth >= 150% of daily mean 
  c3150 <- c3mean[which(c3mean[,"depth"] >= 1.5*c3mean[,"mean_depth"]),] 
  c3retain <- c3[which(c3mean[,"depth"] >= 1.5*c3mean[,"mean_depth"])] 
  c3150reject <- c3[which(c3mean[,"depth"] < 1.5*c3mean[,"mean_depth"])] 
   
  #crown depth <= c* NS72 
  ns300 <- which(stormtot$depth >= cIndex*(stormtot$NS72)/(12*2.54) & 
stormtot$depth >= 3) 
   
  #combine bed = ground, crown >150% of daily mean, crown > c*NS72   
  ds <- sort(unique(c(ground, c3retain, ns300, HSold))) 
  loose <- which(stormtot[, "type"] %in% c("L", "WL")) 
  ds <- ds[!(ds %in% loose)] 
  ds.count <- data.frame(table(stormtot[ds, "date"])) 
  names(ds.count) <- c("date", "count") 
  max.ds<-aggregate(stormtot[ds,"depth"] ~ stormtot[ds, "date"],FUN=max) 
  names(max.ds)<-c("date","max_depth") 
  ds.sum <- merge(max.ds, ds.count, by="date") 
   
  #identify big avalanches that were rejected 
  rejects <- c3[!(c3 %in% c(ground, c3retain, ns300))] 
  attributes(DSsort) <- list("summary" = ds.sum, 
                             "DS" = ds , 
                             "rejects" = rejects, 
                             "stormtot" = stormtot, 
                             "DS.tab" = stormtot[ds,]) 
} 
#Function to examine rejected large avalanches 
#inputs:  
# site.name = character, name used in table convention (e.g. "bridger" for 
bridger_wx) 
#outpus: 
# rejected: data.frame of rejected avalanches, all attributes 
# full: complete avalanche record for the specified site 
DSsum <- function(site.name){ 
   
  avy <- get(paste(site.name, ".avy", sep = "")) 
  ns72 <- stormCm72(site.name = site.name)$NS72 
  stormtot <- merge(ns72, avy, all = TRUE, by = "date") 
   
  rejects <- DSsort(site.name = site.name)$rejects 
  record <- stormtot[rejects,] 
  ds <- stormtot[DSsort(site.name = site.name)$DS,] 
  attributes(DSsum) <- list("rejected" = record,"DS" =  ds,"full" = stormtot) 
} 
 
#Function to examine rejected large avalanches 
#inputs:  
# site.name = character, name used in table convention (e.g. "bridger" for 
bridger_wx) 
#outpus: 
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# rejected: data.frame of rejected avalanches, all attributes 
# full: complete avalanche record for the specified site 
DSsum <- function(site.name, cIndex){ 
   
  avy <- get(paste(site.name, ".avy", sep = "")) 
  ns72 <- stormCm72(site.name = site.name)$NS72 
  stormtot <- merge(ns72, avy, all = TRUE, by = "date") 
   
  rejects <- DSsort(site.name = site.name, cIndex = cIndex)$rejects 
  record <- stormtot[rejects,] 
  ds <- stormtot[DSsort(site.name = site.name, cIndex = cIndex)$DS,] 
  attributes(DSsum) <- list("rejected" = record,"DS" =  ds,"full" = stormtot) 
} 
 
#function to count number of times each node was recorded within 72 hours of DS avy 
#inputs:  
# site.name = character string, name used in table convention (e.g. "bridger" for 
bridger_wx) 
# SOM = object, the SOM used for synoptic classification 
#outpus: 
# node.<0-3>: table of counts each node was observed at 0,1,2, and 3 days prior to 
DS 
# node.72: cumulative 3-day count of each synoptic type for each avalanche 
DS72 <- function(site.name, SOM, cIndex){ 
   
  node.days <- SOM$unit.classif 
  station <- get(paste(site.name, "_wx", sep = "")) 
  date <- data.frame("date" = station$date) 
  ds.sum <- DSsort(site.name = site.name, cIndex = cIndex)$summary 
  ds.vec <- merge(ds.sum, date, by = "date", all.y = TRUE) 
 
#identify days of deep slabs, 24, 48, and 72 hours prior to deep slabs 
  ds.days <- which(ds.vec$count>0) 
  ds72 <- sort(unique(c(ds.days, ds.days-1, ds.days-2, ds.days-3))) 
  node.0 <- node.days[ds.days] 
  node.1 <- node.days[ds.days-1] 
  node.2 <- node.days[ds.days-2] 
  node.3 <- node.days[ds.days-3] 
  node72 <- node.days[ds72] 
   
#count number of times each node was recorded within 72 hours of DS 
  node0.count <- tabulate(node.0, nbins = length(unique(node.days))) 
  node1.count <- tabulate(node.1, nbins = length(unique(node.days))) 
  node2.count <- tabulate(node.2, nbins = length(unique(node.days))) 
  node3.count <- tabulate(node.3, nbins = length(unique(node.days))) 
  node72.count <- tabulate(node72, nbins = length(unique(node.days))) 
 
  attributes(DS72) <- list("node.0" = node0.count, 
                           "node.1" = node1.count, 
                           "node.2" = node2.count, 
                           "node.3" = node3.count, 
                           "node72" = node72.count) 
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} 
 
#Function to generate 72-hour cumulative count heat maps 
#inputs: 
# site.name = character, name used in table convention (e.g. "bridger" for 
bridger_wx) 
# main = character, title for plots 
# SOM = object of class som, from SOM output used in analysis 
# zlim = upper limit (maximum counts per node) to use for color scale gradient. 
#outputs: 
# plots a heat map of number of times each class was counted within 72 hours of DS 
DS72heat <- function(site.name, main, SOM, zlim = 45, cIndex){ 
   
  counts <- DS72(site.name = site.name, SOM = SOM, cIndex = cIndex)$node72 
  cbhr <- function(n, alpha = 1){rainbow(n, end = 4/6, alpha = alpha)[n:1]} 
   
  plot(SOM,type="property", 
       property=counts, 
       palette.name=cbhr,  
       shape="straight", 
       main= main, 
       zlim = c(0, zlim) 
       ) 
} 
 
#Function to generate 72-hour heat maps for wet slab events 
# Arguments: 
#   site.name: character string. name of site to be plotted (<site.name>.avy) 
#   main: character string. Name of location to be included in title of plots 
#   SOM: object. som object used for synoptic classification 
#   zlim: numeric. upper limit (maximum counts per node) to use for color scale 
gradient. 
#   cIndex: passed to DSsort function 
# Outputs: 
#   A heatmap of counts for number of times each synoptic type occurred within 72 
hours 
#   of wet slab events 
#   node.<0-3>: table of counts each node was observed at 0,1,2, and 3 days prior 
to DS 
#   node.72: cumulative 3-day count of each synoptic type for each avalanche 
 
WS72heat <- function(site.name, main, SOM, zlim = 5, cIndex){ 
   
  node.days <- SOM$unit.classif 
  station <- get(paste(site.name, "_wx", sep = "")) 
  avy <- get(paste(site.name, ".avy", sep = "")) 
  date <- data.frame("date" = station$date) 
  ns72 <- stormCm72(site.name = site.name)$NS72 
  stormtot <- merge(ns72, avy, all = TRUE, by = "date") 
  events <- stormtot[DSsort(site.name = site.name, cIndex = cIndex)$DS,] 
  ws <- events[which(events$type == "WS"),"date"] 
  ws.count <- data.frame(table(ws)) 
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  names(ws.count) <- c("date", "count") 
  ws.count$date <- as.numeric(as.character(ws.count$date)) 
  ws.vec <- merge(ws.count, date, by = "date", all.y = TRUE) 
   
  #identify days of deep slabs, 24, 48, and 72 hours prior to wet slabs 
  ws.days <- which(ws.vec$count > 0) 
  ws72 <- sort(unique(c(ws.days, ws.days-1, ws.days-2, ws.days-3))) 
  node.0 <- node.days[ws.days] 
  node.1 <- node.days[ws.days-1] 
  node.2 <- node.days[ws.days-2] 
  node.3 <- node.days[ws.days-3] 
  node72 <- node.days[ws72] 
   
  #count number of times each node was recorded within 72 hours of DS 
  node0.count <- tabulate(node.0, nbins = length(unique(node.days))) 
  node1.count <- tabulate(node.1, nbins = length(unique(node.days))) 
  node2.count <- tabulate(node.2, nbins = length(unique(node.days))) 
  node3.count <- tabulate(node.3, nbins = length(unique(node.days))) 
  node72.count <- tabulate(node72, nbins = length(unique(node.days))) 
 
  cbhr <- function(n, alpha = 1){rainbow(n, end = 4/6, alpha = alpha)[n:1]} 
   
  plot(SOM,type="property", 
       property=node72.count, 
       palette.name=cbhr,  
       shape="straight", 
       main= main, 
       zlim = c(0, zlim) 
  ) 
   
  DSevents <- DSsort(site.name, cIndex = cIndex)$DS 
  WS <- DSevents[which(stormtot[DSevents, "type"] == "WS")] 
  WStable <- stormtot[WS,] 
   
  attributes(WS72heat) <- list("node.0" = node0.count, 
                           "node.1" = node1.count, 
                           "node.2" = node2.count, 
                           "node.3" = node3.count, 
                           "node72" = node72.count, 
                           "WSdays" = date[ws.days,"date"], 
                           "WStable" = WStable)   
} 
 
#Heat maps for dry deep slab events 
# Arguments: 
#   site.name: character string. name of site to be plotted (<site.name>.avy) 
#   main: character string. Name of location to be included in title of plots 
#   SOM: object. som object used for synoptic classification 
#   zlim: numeric. upper limit (maximum counts per node) to use for color scale 
gradient. 
#   default is 50 
#   cIndex: passed to DSsort function 
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# Outputs: 
#   A heatmap of ncounts for number of times each synoptic type occurred within 72 
hours of dry 
#     slab events 
#   node.<0-3>: table of counts each node was observed at 0,1,2, and 3 days prior 
to DS 
#   node.72: cumulative 3-day count of each synoptic type for each avalanche 
dry72heat <- function (site.name, main, SOM, zlim = 50, cIndex){ 
   
  node.days <- SOM$unit.classif 
  station <- get(paste(site.name, "_wx", sep = "")) 
  avy <- get(paste(site.name, ".avy", sep = "")) 
  date <- data.frame("date" = station$date) 
  ns72 <- stormCm72(site.name = site.name)$NS72 
  stormtot <- merge(ns72, avy, all = TRUE, by = "date") 
  events <- stormtot[DSsort(site.name = site.name, cIndex = cIndex)$DS,] 
  ws <- events[which(events$type == "WS"),"date"] 
  dry <- events[-which(events$type == "WS"), "date"] 
   
  dry.count <- data.frame(table(dry)) 
  names(dry.count) <- c("date", "count") 
  dry.count$date <- as.numeric(as.character(dry.count$date)) 
  dry.vec <- merge(dry.count, date, by = "date", all.y = TRUE) 
   
  #identify days of deep slabs, 24, 48, and 72 hours prior to wet slabs 
  dry.days <- which(dry.vec$count > 0) 
  dry72 <- sort(unique(c(dry.days, dry.days-1, dry.days-2, dry.days-3))) 
  node.0 <- node.days[dry.days] 
  node.1 <- node.days[dry.days-1] 
  node.2 <- node.days[dry.days-2] 
  node.3 <- node.days[dry.days-3] 
  node72 <- node.days[dry72] 
   
  #count number of times each node was recorded within 72 hours of DS 
  node0.count <- tabulate(node.0, nbins = length(unique(node.days))) 
  node1.count <- tabulate(node.1, nbins = length(unique(node.days))) 
  node2.count <- tabulate(node.2, nbins = length(unique(node.days))) 
  node3.count <- tabulate(node.3, nbins = length(unique(node.days))) 
  node72.count <- tabulate(node72, nbins = length(unique(node.days))) 
   
  cbhr <- function(n, alpha = 1){rainbow(n, end = 4/6, alpha = alpha)[n:1]} 
   
  plot(SOM,type="property", 
       property=node72.count, 
       palette.name=cbhr,  
       shape="straight", 
       main= main, 
       zlim = c(0, zlim) 
  ) 
   
  DSevents <- DSsort(site.name, cIndex = cIndex)$DS 
  dry <- DSevents[-which(stormtot[DSevents, "type"] == "WS")] 
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  drytable <- stormtot[dry,] 
   
  attributes(WS72heat) <- list("node.0" = node0.count, 
                               "node.1" = node1.count, 
                               "node.2" = node2.count, 
                               "node.3" = node3.count, 
                               "node72" = node72.count, 
                               "days" = date[dry.days,"date"], 
                               "table" = drytable)   
} 
#function to plot storm snow for a given year 
WXseason <- function(site.name, main, plot.season){ 
   
  station <- get(paste(site.name, "_wx", sep = "")) 
   
  date <- station$date 
  year <- as.numeric(substr(station$date,1,4)) 
  month <- as.numeric(substr(station$date,5,6)) 
  season <- rep(0, nrow(dates)) 
  for (obs in 1:length(date)){ 
    season[obs] <-  
      ifelse(month[obs] %in% c(11,12),  
             year[obs], 
             year[obs] - 1) 
  } 
   
  plot(station[season == plot.season, "HS_cm"], 
       main = paste("HS - ", main, plot.season, sep = " "), 
       xaxt = "n", 
       xlab = "", 
       ylab = "HS (cm)", 
       type = "l") 
} 
 
Functions to Calculate Deep Slab Activity Index and Generate Plots 
 
#Function to calculate AAI after Schweizer et al. 2018 
#Arguments: 
# site.name: character, name used in table convention (e.g. "bridger" for 
bridger_wx) 
# sub: subtitle included in plots 
# hiquant: percentile used to identify major seasons 
# loquant: quantity used as threshold to identify minor seasons 
# missing: character, vector of missing seasons 
# cIndex: passed to DSsum 
# plot.yax, plot.xax: “y” or “n”. should y- and x- axes have ticks and labels 
plotted? 
# return.plot: “y” or “n” should the data be plotted? 
# add.lines: “y” or “n”. Should the time series be plotted as a line plot? 
# plot.xlab, plot.ylab: “y” or “n”. Should the x- and y- axis titles be plotted? 
calcDSAI <- function(site.name,  
                     sub,  
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                     hiquant = .9,  
                     loquant = 0.1,  
                     missing = c(),  
                     cIndex,  
                     plot.yax = "y",  
                     plot.xax = "y",  
                     return.plot = "y", 
                     add.lines = "n", 
                     plot.xlab = "y", 
                     plot.ylab = "y"){ 
   
  avyRecord <-   avy <- get(paste(site.name, ".avy", sep = "")) 
  dsRecord <- DSsum(site.name = site.name, cIndex = cIndex)$DS 
   
  size <- dsRecord$size 
  Di <- 10^(size-3) 
  #tMult <- rep(0, length(Di)) 
   
  # for(i in 1:length(tMult)){ 
  #    tMult[i] <- 
  #    ifelse(dsRecord[i, "trigger"] %in% c("N ", "N"),  
  #           1, 
  #           ifelse(dsRecord[i, "trigger"] == "AS",  
  #                  .5, 
  #                  .2)) 
  #  } 
   
  DSAI.table <- data.frame( 
    dsRecord[,"date"], 
   # "DSAI" = Di*tMult, 
   "DSAI" = Di, 
    dsRecord[,c("NS72", "depth", "size", "surface" ,"trigger","pathname", "type")]) 
  names(DSAI.table) <- c("date", "DSAI", "NS72", "depth", "size", "surface" 
,"trigger","pathname", "type") 
  DSAI.month <- as.numeric(substr(DSAI.table$date, 5, 6)) 
  DSAI.year <- as.numeric(substr(DSAI.table$date, 1, 4)) 
  DSAI.season <- rep(0, nrow(DSAI.table)) 
  for (obs in 1:length(DSAI.year)){ 
    DSAI.season[obs] <-  
      ifelse(DSAI.month[obs] %in% c(11,12),  
             DSAI.year[obs], 
             DSAI.year[obs] - 1) 
  } 
  DSAI.table <- data.frame("season" = DSAI.season, DSAI.table) 
  DSAI.table <- DSAI.table[DSAI.table$season >= 1979,] 
  DSAI.season <- DSAI.season[DSAI.season >= 1979] 
  DSAI.ag <- aggregate(DSAI.table$DSAI ~ DSAI.season, FUN = sum) 
  names(DSAI.ag) <- c("season", "DSAI") 
  avy.years <- as.numeric(substr(avyRecord$date, 1, 4)) 
  avy.season <- avy.years - 1 
  recordLength <- data.frame("season" = min(avy.season):max(avy.season)) 
  DSAI.full <- merge(recordLength, DSAI.ag, by = "season", all.x = TRUE) 
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  DSAI.full <- DSAI.full[DSAI.full$season >= 1979, ] 
  DSAI.full[is.na(DSAI.full$DSAI), "DSAI"] <- 0 
 
#make some plots 
 
  
  #plot(Di,  
  #    main = "DSAI, scaled and unscaled", 
  #    sub = sub, 
  #    ylab = "DSAI", 
  #    xlab = "Observation") 
  #points(Di*tMult, col = "green") 
  #points(Di, col = "green") 
  #legend("topright",  
  #      legend = c("unscaled", "scaled"),  
  #      col = c("black", "green"), 
  #      pch = 1) 
   
# plot(tMult,  
#       main = "t- multiplier for trigger type", 
#       sub = sub, 
#       xlab = "Observation") 
   
  missing.points <- which(DSAI.full$season %in% missing) 
  if (length(missing) == 0) {DSAI.points <- DSAI.full} else {DSAI.points <- 
DSAI.full[ -(missing.points), ]} 
   
  hicuts <-quantile(DSAI.points$DSAI, hiquant, type = 1) 
  locuts <- loquant 
  major <- which(DSAI.points$DSAI >= .9*hicuts) 
  minor <- which(DSAI.points$DSAI <= locuts) 
  cols <- rep("gray69", length(DSAI.points$DSAI)) 
  cols[major] <- "black" 
  cols[minor] <- "black" 
   
  if(return.plot == "y"){ 
  plot(DSAI.points,  
         type = "n",  
         main = sub, 
         xlab = "",  
         ylab = "", 
         xlim = c(1979,2017), 
         ylim = c(0,650), 
         yaxt = ifelse(plot.yax == "y", "s", "n"), 
         xaxt = ifelse(plot.xax == "y", "s", "n"))  
    
  grid() 
     
    if(add.lines == "y") {lines(DSAI.points)} 
   
  points(DSAI.points,  
     pch = 16, 
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     col = cols) 
  mtext(ifelse(plot.ylab == "y", "Seasonal DSAI", ""),  
        side = 2,  
        line = 2.5, 
        font = 2, 
        cex = .75 
        ) 
  mtext(ifelse(plot.xlab == "y", "Year", ""),  
        side = 1,  
        line = 2.5, 
        font = 2, 
        cex = .75 
  ) 
  abline(h = c(hicuts,locuts), 
         lty = "dashed", 
         col = "gray47") 
  } 
  #hist(DSAI.full$DSAI,  
  #     breaks = trunc(max(DSAI.full$DSAI)),  
  #     main = "DSAI Occurrences",  
  #     xlab = "DSAI",  
  #     ylab = "Counts") 
   
  wet.days <- unique(DSAI.table[which(DSAI.table$type == "WS"),"date"]) 
  dry.days <- unique(DSAI.table[which(DSAI.table$type %in% c("HS", "SS", "C", NA)), 
"date"]) 
   
  attributes(calcDSAI) <- list("Di" = Di,  
                               #"tMult" = tMult,  
                               "DSAI" = DSAI.full,  
                               "DSAI.table" = DSAI.table, 
                               "cut" = c(hicuts, locuts), 
                               "wet.days" = wet.days, 
                               "dry.days" = dry.days) 
     
} 
 
#Generate heat maps for the specified season 
#inputs: 
# site.name: character, <site.name>_wx 
# SOM: character, name of SOM 
# DSseason: numeric, year of interest 
# main: character, name of ski area to be shown on plots 
#outputs:  
# heat map of # of days per node 
# season: numeric, season specified 
# table: numeric, vector of counts per node (as indexed in the vector) 
yearHeat <- function(site.name, SOM, DSseason, main, zscale){ 
   
  node.days <- SOM$unit.classif 
  station <- get(paste(site.name, "_wx", sep = "")) 
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  date <- station$date 
  year <- as.numeric(substr(station$date,1,4)) 
  month <- as.numeric(substr(station$date,5,6)) 
  season <- rep(0, nrow(dates)) 
  for (obs in 1:length(date)){ 
    season[obs] <-  
      ifelse(month[obs] %in% c(11,12),  
             year[obs], 
             year[obs] - 1) 
  } 
  dates <- data.frame(date, year, month, "node" = node.days, "season" = season) 
  ndj.dates <- dates[dates$month %in% c(11,12,1),] 
  ndj.sum <- aggregate(ndj.dates$node,  
                       by = list(ndj.dates$node, ndj.dates$season),  
                       FUN = length,  
                       drop = FALSE) 
  names(ndj.sum) <- c("syn_type", "season", "NDJ_count") 
  ndj.sum$NDJ_count[ndj.sum$NDJ_count %in% NA] <- 0 
   
  counts <- ndj.sum[ndj.sum$season == DSseason, "NDJ_count"] 
  frequency <- counts/(sum(counts)) 
  cbhr <- function(n, alpha = 1){rainbow(n, end = 4/6, alpha = alpha)[n:1]} 
   
  plot(SOM,type="property", 
       property=counts, 
       palette.name=cbhr,  
       shape ="straight", 
       main = paste("NDJ Frequency", DSseason), 
       sub = "Frequency", 
       zlim = c(0,zscale), 
       ncolors = 6, 
       heatkey = TRUE 
        
  ) 
   
  attributes(yearHeat) <- list("season" = DSseason, "table" = counts, "freq" = 
frequency) 
} 
 
#Generate plots for quantiles 
# all arguments passed to calcDSAI function 
dsHeatquant <- function(site.name, main, cIndex){ 
   
  DSAI <- calcDSAI(site.name = site.name, sub = main, cIndex = cIndex)$DSAI 
   
  node.days <- SOM$unit.classif 
  station <- get(paste(site.name, "_wx", sep = "")) 
   
  date <- station$date 
  year <- as.numeric(substr(station$date,1,4)) 
  month <- as.numeric(substr(station$date,5,6)) 
  season <- rep(0, nrow(dates)) 
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  for (obs in 1:length(date)){ 
    season[obs] <-  
      ifelse(month[obs] %in% c(11,12),  
             year[obs], 
             year[obs] - 1) 
  } 
  dates <- data.frame(date, year, month, "node" = node.days, "season" = season) 
  ndj.dates <- dates[dates$month %in% c(11,12,1),] 
   
  ndj.sum <- aggregate(ndj.dates$node,  
                       by = list(ndj.dates$node, ndj.dates$season),  
                       FUN = length,  
                       drop = FALSE) 
  names(ndj.sum) <- c("syn_type", "season", "NDJ_count") 
  ndj.sum$NDJ_count[ndj.sum$NDJ_count %in% NA] <- 0 
   
  Q90 <- which(DSAI$DSAI >= quantile(DSAI$DSAI, .90)) 
  years90 <- DSAI[Q90,"season"] 
  counts90 <- ndj.sum[(ndj.sum$season %in% years90), ] 
  heat90 <- aggregate(counts90$NDJ_count~counts90$syn_type , FUN = sum)[,2] 
  Q75 <- which(DSAI$DSAI >= quantile(DSAI$DSAI, .75)) 
  years75 <- DSAI[Q75,"season"] 
  counts75 <- ndj.sum[(ndj.sum$season %in% years75), ] 
  heat75 <- aggregate(counts75$NDJ_count~counts75$syn_type , FUN = sum)[,2] 
  Q50l <- which(DSAI$DSAI <= quantile(DSAI$DSAI, .5)) 
  years50 <- DSAI[Q50l,"season"] 
  counts50 <- ndj.sum[(ndj.sum$season %in% years50), ] 
  heat50 <- aggregate(counts50$NDJ_count~counts50$syn_type , FUN = sum)[,2] 
  Q25l <- which(DSAI$DSAI <= quantile(DSAI$DSAI, .25)) 
  years25 <- DSAI[Q25l,"season"] 
  counts25 <- ndj.sum[(ndj.sum$season %in% years25), ] 
  heat25 <- aggregate(counts25$NDJ_count~counts25$syn_type , FUN = sum)[,2] 
   
  plot(SOM,type="property", 
       property= heat90, 
       palette.name=cbhr,  
       shape ="straight", 
       main = paste(main,"-NDJ", ">90%")) 
  plot(SOM,type="property", 
       property= heat75, 
       palette.name=cbhr,  
       shape ="straight", 
       main = paste(main,"-NDJ", ">75%")) 
  plot(SOM,type="property", 
       property= heat50, 
       palette.name=cbhr,  
       shape ="straight", 
       main = paste(main,"-NDJ", "<50%")) 
  plot(SOM,type="property", 
       property= heat25, 
       palette.name=cbhr,  
       shape ="straight", 
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       main = paste(main,"-NDJ", "<25%")) 
 
  attributes(dsHeatquant) <- list("counts90" = counts90, "counts75" = counts75, 
"counts50" = counts50, "counts25" = counts25, 
                                  "years90" = years90, "years75" = years75, 
"years50" = years50, "years25" = years25) 
} 
 
#Function to plot heat maps for a bunch of similar years 
anQuant <- function(site.name, main, quantile){ 
a <- dsHeatquant(site.name = site.name, main = main) 
years <- a[[paste("years", quantile, sep = "")]] 
for(y in years[years >= 1979]){ 
  yearHeat(site.name = site.name,  
           SOM = test.som,  
           DSseason = y,  
           main = main)} 
} 
 
#Function to generate table of counts of type for NDJ of each year 
ndjYear <- function (site.name, SOM){ 
  node.days <- SOM$unit.classif 
  station <- get(paste(site.name, "_wx", sep = "")) 
   
  date <- station$date 
  year <- as.numeric(substr(station$date,1,4)) 
  month <- as.numeric(substr(station$date,5,6)) 
  season <- rep(0, nrow(dates)) 
  for (obs in 1:length(date)){ 
    season[obs] <-  
      ifelse(month[obs] %in% c(11,12),  
             year[obs], 
             year[obs] - 1) 
  } 
  dates <- data.frame(date, year, month, "node" = node.days, "season" = season) 
  ndj.dates <- dates[dates$month %in% c(11,12,1),] 
   
  ndj.sum <- aggregate(ndj.dates$node,  
                       by = list(ndj.dates$node, ndj.dates$season),  
                       FUN = length,  
                       drop = FALSE) 
  names(ndj.sum) <- c("syn_type", "season", "NDJ_count") 
  ndj.sum$NDJ_count[ndj.sum$NDJ_count %in% NA] <- 0 
   
  ndj.mat <- matrix(ndj.sum$NDJ_count,  
                   ncol = length(unique(node.days)), 
                   byrow = TRUE) 
   
  list("ndj.sum" = ndj.sum, 
       "ndj.mat" = ndj.mat) 
} 
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#function to generate line plots for a specified set of years 
linesQuant <- function(site.name, SOM, main, quantile, cIndex = cIndex){ 
  a <- dsHeatquant(site.name = site.name, main = main, cIndex = cIndex) 
  years <- a[[paste("years", quantile, sep = "")]] 
  years <- years[years >= 1979] 
  ndj.sum <- ndjYear(site.name = site.name, SOM = SOM)$ndj.sum 
   
  b <- ndj.sum[ndj.sum$season == years[1],] 
  plot(x = b$syn_type,  
       y = b$NDJ_count,  
       main = paste(main, quantile, "% Quantile"),  
       type = "n",  
       xlab = "Class",  
       ylab = "Count", 
       ylim = c(0,30)) 
   
  abline(v = 1:20, 
         h = seq(from = 0, to = 30, by = 5), 
         lty = "dashed",  
         col = "gray87") 
   
  legend("topright", 
         legend = years, 
         col = 1:length(years), 
         lty = 1, 
         cex = .75) 
   
  for(y in years){ 
    l <- ndj.sum[ndj.sum$season == y, "NDJ_count"] 
    lines(l, col = which(years == y)) 
     
  } 
} 
#function to create spaghetti plots and heat maps specifying category by DSAI 
# arguments: 
# site.name: character, <site.name>_wx 
# SOM: character, name of SOM 
# main: name to be used in plot titles 
# greater: Logical. Default is true, which plots the years greater than the 
specified 
#          threshold. 
# cIndex, hiquant, loquant: passed to calcDSAI function 
# outputs:  
# years: vector of years identified based on DSAI threshold 
# spaghetti plot of counts for each synoptic type during each specified year 
# heatmaps for each individual year identified based on DSAI threshold. 
catLines <- function(site.name, SOM, main, greater = TRUE, cIndex, hiquant, loquant 
= .1){ 
   
  site.DSAI <- calcDSAI(site.name = site.name, sub = main, cIndex = cIndex, hiquant 
= hiquant, loquant = loquant) 
  a <- site.DSAI$DSAI 
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  cutoff <- ifelse(greater == TRUE, site.DSAI$cut[1], site.DSAI$cut[2]) 
  abline(v = cutoff,  
         col = "red",  
         lty = "dashed") 
   
   
    if (greater == TRUE) {years <- a[a$DSAI >= .9*cutoff, "season"]} 
    if (greater == FALSE) {years <- a[a$DSAI <= cutoff, "season"]} 
   
   
  ndj.sum <- ndjYear(site.name = site.name, SOM = SOM)$ndj.sum 
   
  title.ind <- ifelse(greater == TRUE, 
                      ">", 
                      "<") 
   
  b <- ndj.sum[ndj.sum$season == years[1],] 
   
  plot(x = b$syn_type,  
       y = b$NDJ_count,  
       main = paste(main, "DSAI", title.ind, cutoff),  
       type = "n",  
       xlab = "Class",  
       ylab = "Count", 
       ylim = c(0,30)) 
   
  abline(v = 1:20, 
         h = seq(from = 0, to = 30, by = 5), 
         lty = "dashed",  
         col = "gray87") 
   
  legend("topright", 
         legend = years, 
         col = 1:length(years), 
         lty = 1, 
         cex = .75) 
   
  for(y in years){ 
    l <- ndj.sum[ndj.sum$season == y, "NDJ_count"] 
    lines(l, col = which(years == y)) 
  } 
   
  for (y in years){ 
    heat <- ndj.sum[ndj.sum$season == y, "NDJ_count"] 
    cbhr <- function(n, alpha = 1){ 
      rainbow(n, end = 4/6, alpha = alpha)[n:1]} 
     
    plot(SOM,type="property", 
         property= heat, 
         palette.name=cbhr,  
         shape ="straight", 
         main = paste("NDJ", y)) 



149 
 
  } 
  attributes(catLines) <- list("years" = years)     
   
} 
#function to plot difference between frequency distributions 
# for major, minor, and all seasons. This also performs the Chi-sq  
# goodness of fit test. 
# 
freqBar <- function(site.name, main, SOM, major, minor){ 
   
  data<- ndjYear(site.name = site.name, SOM = SOM)$ndj.mat 
  seasFull <- 1979:2017 
  seasMaj <- which(seasFull %in% major) 
  seasMin <- which(seasFull %in% minor) 
   
  majTot <- colSums(data[seasMaj, ]) 
  minTot <- colSums(data[seasMin, ]) 
  fullTot <- colSums(data) 
   
  majFreq <- majTot/sum(majTot) 
  minFreq <- minTot/sum(minTot) 
  fullFreq <- fullTot/sum(fullTot) 
   
  nRows <- SOM$grid$ydim 
  nCols <- SOM$grid$xdim 
  nNodes <- nRows*nCols 
   
  graphics.off() 
  par(mfrow = c(3,1)) 
  layout.mat <- matrix(1:nNodes, 
                       ncol = nCols,  
                       byrow = TRUE)[nRows:1,] 
 
  majFreqDiff <- (majFreq - fullFreq)[as.vector(t(layout.mat))] 
  minFreqDiff <- (minFreq - fullFreq)[as.vector(t(layout.mat))] 
  majminDiff <- (majFreq - minFreq)[as.vector(t(layout.mat))] 
   
  barplot(majFreqDiff,  
          names.arg = LETTERS[1:nNodes], 
          main = paste("Major vs. All"), 
          ylab = "", 
          xlab = "", 
          ylim = c(-.05, .05),  
          yaxp = c(-.05,.05, 2), 
          cex.names = .85, 
          col = ifelse(majFreqDiff > 0, "gray37", "gray57"),  
          border = FALSE) 
   
  barplot(minFreqDiff,  
          names.arg = LETTERS[1:nNodes], 
          main = paste("Minor vs. All"), 
          ylab = "", 
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          xlab = "", 
          ylim = c(-.05, .05),  
          yaxp = c(-.05,.05, 2), 
          cex.names = .85, 
          col = ifelse(minFreqDiff > 0, "gray37", "gray57"),  
          border = FALSE) 
  mtext("Difference in Frequency",  
        side = 2,  
        line = 2.5, 
        font = 2, 
        cex = 1 
        ) 
  barplot(majminDiff,  
          names.arg = LETTERS[1:nNodes], 
          main = paste("Major vs. Minor"), 
          ylab = "", 
          xlab = "", 
          ylim = c(-.05, .05),  
          yaxp = c(-.05,.05, 2), 
          cex.names = .85, 
          col = ifelse(majminDiff > 0, "gray37", "gray57"),  
          border = FALSE) 
  mtext("Synoptic Type",  
        side = 1,  
        line = 2.5, 
        font = 2, 
        cex = 1 
      ) 
   
  testMaj <- majTot[as.vector(t(layout.mat))] 
  testMin <- minTot[as.vector(t(layout.mat))] 
  testFull <- fullFreq[as.vector(t(layout.mat))] 
  chiMaj <- chisq.test(x = testMaj, 
                       p = testFull) 
  chiMin <- chisq.test(x = testMin, 
                       p = testFull) 
   
  attributes(freqBar) <- list("major" = majFreq, 
                              "minor" = minFreq, 
                              "full" = fullFreq, 
                              "counts" = data, 
                              "tests" = list("Major" = chiMaj, 
                                             "Minor" = chiMin)) 
} 
 
#Function to create a plot of daily DSAI score w/synoptic type for each season 
#Arguments:  
# site.name: character. name of site (e.g. “bridger” for bridger.avy) 
# main: character. title for plots 
# plot.season: numeric. which season to be plotted (e.g. 1979 for the 1979/80 
season). 
# missing: numeric. vector of seasons missing from dataset. 



151 
 
# cIndex: passed to calcDSAI function. 
# SOM: character. name of som object used for classification. 
# HSlim: maximum value for HS on plots. 
DSAIplot <- function(site.name, main, plot.season, missing = c(), cIndex, SOM, 
HSlim){ 
   
  DSAI <- calcDSAI(site.name = site.name, sub = main, missing = missing, cIndex = 
cIndex, return.plot = "n") 
  daily <- DSAI$DSAI.table 
  daySum <- aggregate(daily$DSAI~daily$date, FUN = sum) 
  names(daySum) <- c("date", "DSAI") 
  DStab <- merge(daySum, dates, by = "date", all.y = TRUE) 
  date <- dates$date 
   
  year <- as.numeric(substr(dates$date,1,4)) 
  month <- as.numeric(substr(dates$date,5,6)) 
  season <- rep(0, nrow(dates)) 
  for (obs in 1:length(date)){ 
    season[obs] <-  
      ifelse(month[obs] %in% c(11,12),  
             year[obs], 
             year[obs] - 1) 
  } 
   
  nRows <- SOM$grid$ydim 
  nCols <- SOM$grid$xdim 
  nNodes <- nRows*nCols 
   
  layout.mat <- matrix(1:nNodes, 
                       ncol = nCols,  
                       byrow = TRUE)[nRows:1,] 
  node.y <- as.vector(t(layout.mat)) 
  letLab <- LETTERS[1:nNodes] 
   
  plot.dates <- dates[season %in% plot.season, ] 
  nodes <- plot.dates$node 
  plot.date <- plot.dates$date 
  monthday <- as.numeric(substr(plot.date, 5, 8)) 
   
  station <- get(paste(site.name, "_wx", sep = "")) 
  wx <- station[which(season %in% plot.season),] 
  plot.DSAI <- DStab[which(season %in% plot.season), "DSAI"] 
  plot.DSAI[is.na(plot.DSAI)] <- 0 
   
  bar.cols <- rep(NA, length(plot.DSAI)) 
  for (day in 1:length(bar.cols)){ 
 
    if(plot.DSAI[day] < 1 ) {bar.cols[day] <- "gray87"} 
    if(plot.DSAI[day] >= 1 ) {bar.cols[day] <- "gray67"} 
    if(plot.DSAI[day] >= 10 ) {bar.cols[day] <- "gray47"} 
    if(plot.DSAI[day] >= 100 ) {bar.cols[day] <- "gray27"} 
  } 
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  DSAI.omit <- plot.DSAI[plot.DSAI > 0] 
  if(sum(DSAI.omit) > 0){ 
    line.cols <- rep(0, length(DSAI.omit)) 
    for(day in 1:length(line.cols)){ 
      if(DSAI.omit[day] < 1 ) {line.cols[day] <- "gray87"} 
      if(DSAI.omit[day] >= 1 ) {line.cols[day] <- "gray67"} 
      if(DSAI.omit[day] >= 10 ) {line.cols[day] <- "gray47"} 
      if(DSAI.omit[day] >= 100 ) {line.cols[day] <- "gray27"} 
    } 
  }   
 
  par(mar = c(3, 3, 3, 6), xpd = FALSE) 
  plot(x = 1: length(plot.date), 
       y = factor(nodes, levels = rev(node.y)), 
       yaxt = "n", 
       xaxt = "n", 
       xlab = "", 
       ylab = "", 
       type = "n", 
       main = paste(main, plot.season, sep = "") 
       ) 
  abline(h = seq(from = 1, to = 17, by = 4), 
         lty = "dashed", 
         col = "gray87") 
  abline(v = which(plot.DSAI >0), 
         lwd = 3.5, 
         col = line.cols 
         ) 
  points(x = 1: length(plot.date), 
         y = factor(nodes, levels = rev(node.y)), 
         ylim = c(1, 20), 
         pch = 15, 
         cex = .75, 
         col = "deepskyblue4") 
  axis(side = 2, 
       labels = rev(letLab), 
       at = 1:20, 
       cex.axis = .65, 
       las = 1, 
       col.axis = "deepskyblue4", 
       col.ticks = "deepskyblue4") 
  axis(side = 1, 
       at = c(which(monthday %in% c(1101, 1201, 0101, 0201, 0301)), which(monthday 
== 0331) + 1), 
       labels = c("Nov", "Dec", "Jan", "Feb", "Mar", "Apr"), 
       cex.axis = .75, 
       padj = -.5 
  ) 
  mtext(side = 2, 
        line = 2, 
        text = "Type", 
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        cex = .8, 
        font = 2, 
        col = "deepskyblue4") 
  mtext(side = 1, 
        line = 2, 
        text = "", 
        cex = .8, 
        font = 2) 
  par(new = TRUE) 
  plot(wx$HS_cm, 
       type = "l", 
       axes = FALSE, 
       ylim = c(0, 1.5*HSlim), 
       xlim = c(0, nrow(wx)), 
       lwd = 2, 
       xlab = "", 
       ylab = "") 
  axis(side = 4, 
       at = seq(0, HSlim, 50), 
       ylab = "HS (cm)", 
       cex.axis = .75, 
       padj = -.5 
  ) 
  mtext(text ="HS (cm)",  
        side = 4,  
        line = 2, 
        font = 2, 
        adj = .333, 
        cex = .8 
  ) 
par(xpd = TRUE) 
legend( x = 160,  
        y = 1.6*HSlim, 
        col = c("gray87", "gray67", "gray47", "gray27"), 
        lwd = 3, 
        legend = c("<1", "1-10", "10-100", ">100"), 
        cex = .7, 
        title = "DSAI", 
        bty = "n" 
        ) 
} 
 
 
Functions for Plotting Weather Metrics for each Synoptic Type 
 
#plot a histogram of max/min temp for each node 
# arguments: 
# site.name: character, <site.name>_wx 
# SOM: supersom object used in the classification 
# node: Number of node for which to plot the histograms 
# outputs: 
# histograms of daily max/min temp for the specified synoptic type  
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classTempHist <- function(site.name, SOM, node){ 
  station <- get(paste(site.name, "_wx", sep = "")) 
  node.days <- SOM$unit.classif 
   
  record <- which(node.days == node) 
  maxT <- station[record,"maxT_C"] 
  minT <- station[record, "minT_C"] 
  precip <- station[record, "SWE_cm"] 
   
  minHist <- hist(minT,  
      xlim = c(-40,40),  
      breaks = 80, 
      plot = FALSE) 
  col.min <- cut(minHist$breaks, c(-Inf, 0, Inf)) 
  maxHist <- hist(maxT,  
      xlim = c(-40,40),  
      breaks = 80, 
      plot = FALSE) 
  col.max <- cut(maxHist$breaks, c(-Inf, 0, Inf)) 
  par(mfrow = c(2,1)) 
  hist(minT,  
       xlim = c(-40,40),  
       breaks = 80, 
       col = c("deepskyblue3", "firebrick")[col.min], 
       border = c("deepskyblue3", "firebrick")[col.min], 
       main = "Min T (C)") 
  abline(v = 0,  
         lty = "dashed", 
         col = "gray16") 
  hist(maxT,  
       xlim = c(-40,40),  
       breaks = 80, 
       col = c("deepskyblue3", "firebrick")[col.max], 
       border = c("deepskyblue3", "firebrick")[col.max], 
       main = "Max T (C)") 
  abline(v = 0,  
         lty = "dashed", 
         col = "gray16") 
   
} 
 
#plot histograms of max temp for SOM array 
# need to run for loop immediately below this function 
# Agruments: 
# site.name: character, <site.name>_wx 
# SOM: supersom object used in the classification 
# node: Number of node for which to plot the histograms 
# plot.x, plot.y: “y” or “n” should x- and y- axis ticks be plotted? 
maxTempHist <- function(site.name, SOM, node, plot.y = "yes", plot.x = "yes"){ 
  station <- get(paste(site.name, "_wx", sep = "")) 
  node.days <- SOM$unit.classif 
   



155 
 
  record <- which(node.days == node) 
  maxT <- station[record,"maxT_C"] 
   
  maxHist <- hist(maxT, 
                  xlim = c(-40, 40), 
                  breaks = 80, 
                  plot = FALSE) 
  col.max <- cut(maxHist$breaks, c(-Inf, 0, Inf)) 
   
  hist(maxT,  
       xlim = c(-40,40), 
       ylim = c(0,35), 
       breaks = 80, 
       col = c("deepskyblue3", "firebrick")[col.max], 
       border = c("deepskyblue3", "firebrick")[col.max], 
       main = "", 
       xlab = "", 
       ylab = "", 
       xaxt = "n", 
       yaxt = "n", 
       fg = "gray37") 
  if(plot.x == "yes"){ 
  axis(side = 1, 
       at = c(-40,0,40), 
       mgp = c(3, .5, 0), 
       fg = "gray37", 
       col.axis = "gray37", 
       col.lab = "gray37" 
  )} 
  if(plot.y == "yes"){ 
  axis(side = 2, 
       at = 30, 
       mgp = c(3, .5, 0), 
       fg = "gray37", 
       col.axis = "gray37", 
       col.lab = "gray37" 
       )} 
  abline(v = 0,  
         lty = "dashed", 
         col = "gray37") 
   
  box(fg = "gray37") 
} 
 
node.layout <- matrix(1:20, nrow = 5, byrow = TRUE)[5:1,] 
layout(node.layout) 
par(mar = c(1.5, 1.5, 0, 0.1)) 
for( i in 1:length(unique(node.days))){ 
maxTempHist(site.name = "jackson",  
            SOM = som.90,  
            node = i, 
            plot.x = ifelse(i %in% 1:4, "yes", "no"), 



156 
 
            plot.y = ifelse(i %in% c(1,5,9,13,17), "yes", "no")) 
} 
#plot histograms of min temp for SOM array 
# need to run for loop immediately below this function 
# Arguments: 
# site.name: character, <site.name>_wx 
# SOM: supersom object used in the classification 
# node: Number of node for which to plot the histograms 
# plot.x, plot.y: “y” or “n” should x- and y- axis ticks be plotted? 
 
minTempHist <- function(site.name, SOM, node, plot.y = "yes", plot.x = "yes"){ 
  station <- get(paste(site.name, "_wx", sep = "")) 
  node.days <- SOM$unit.classif 
   
  record <- which(node.days == node) 
  minT <- station[record,"minT_C"] 
   
  minHist <- hist(minT, 
                  xlim = c(-40,40),  
                  breaks = 80, 
                  plot = FALSE) 
  col.min <- cut(minHist$breaks, c(-Inf, 0, Inf)) 
   
  hist(minT,  
       xlim = c(-40,40), 
       ylim = c(0,35), 
       breaks = 80, 
       col = c("deepskyblue3", "firebrick")[col.min], 
       border = c("deepskyblue3", "firebrick")[col.min], 
       main = "", 
       xlab = "", 
       ylab = "", 
       xaxt = "n", 
       yaxt = "n", 
       fg = "gray37" 
       ) 
  abline(v = 0,  
         lty = "dashed", 
         col = "gray27") 
  if(plot.x == "yes") { 
  axis(side = 1, 
       at = c(-40,0,40), 
       mgp = c(3, .5, 0), 
       fg = "gray37", 
       col.axis = "gray37", 
       col.lab = "gray37" 
  )} 
   
  if(plot.y == "yes"){ 
  axis(side = 2, 
       at = 30, 
       mgp = c(3, .5, 0), 
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       fg = "gray37", 
       col.axis = "gray37", 
       col.lab = "gray37" 
  )} 
   
  box(fg = "gray37") 
} 
 
node.layout <- matrix(1:20, nrow = 5, byrow = TRUE)[5:1,] 
layout(node.layout) 
par(mar = c(1.5, 1.5, 0, 0.1)) 
for( i in 1:length(unique(node.days))){ 
minTempHist(site.name = "jackson",  
            SOM = som.90,  
            node = i, 
            plot.x = ifelse(i %in% 1:4, "yes", "no"), 
            plot.y = ifelse(i %in% c(1,5,9,13,17), "yes", "no")) 
} 
#plot histograms of SWE for SOM array 
# need to run for loop immediately below this function 
# arguments: 
# site.name: character, <site.name>_wx 
# SOM: supersom object used in the classification 
# node: Number of node for which to plot the histograms 
# xlim, ylim, xlab: passed to hist() function 
# swebreaks: breaks to be used in the histogram, which will depend on the 
range of  
# precipitation events. 
# plot.x, plot.y: “yes” or “no”. should x- and y- axis ticks be plotted? 
sweHist <- function(site.name, SOM, node, xlim, ylim, xlab, swebreaks, plot.y = 
"yes", plot.x = "yes"){ 
  station <- get(paste(site.name, "_wx", sep = "")) 
  node.days <- SOM$unit.classif 
   
  record <- which(node.days == node) 
  swe <- station[record,"SWE_cm"] 
  swe<- swe[which(swe>0)] 
   
  sweHist <- hist(swe,  
                breaks = swebreaks, 
                plot = FALSE 
                ) 
  col.swe <- cut(sweHist$breaks, c(0, 1, 2.5, 4.999, Inf)) 
   
  hist(swe,  
       xlim = xlim, 
       ylim = ylim, 
       breaks = swebreaks, 
       col = c("green", "green4", "blue","deeppink3")[col.swe], 
       border = c("green", "green4", "blue", "deeppink3")[col.swe], 
       main = "", 
       xlab = "", 
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       ylab = "", 
       axes = FALSE 
       ) 
  if(plot.x == "yes"){ 
  axis(1,  
       at = xlab, 
       labels = xlab*10, 
       mgp = c(3, .5, 0) 
       )} 
  if(plot.y == "yes"){ 
  axis(2,  
       at = ylim-5, 
       mgp = c(3, .5, 0) 
       )} 
  box() 
} 
 
node.layout <- matrix(1:20, nrow = 5, byrow = TRUE)[5:1,] 
layout(node.layout) 
par(mai = c(0,0,0,0)) 
for(i in 1:length(unique(som.90$unit.classif))){ 
   
  sweHist(site.name = "bridger", SOM = som.90, node = i, ylim = c(0,20)) 
} 
 
#generate plot of maxT and swe for each class 
par(mai = c(0,0,0,0) + .2) 
for(i in 1:length(unique(node.days))){ 
  tiff(filename = paste("bs_maxT_", i, ".tif", sep = "")) 
  maxTempHist(site.name = "bigsky", SOM = test.som, node = i) 
  dev.off()  
  tiff(filename = paste("bs_swe_", i, ".tif", sep = "")) 
  sweHist(site.name = "bigsky", SOM = test.som, node = i, ylim = c(0,15)) 
  dev.off() 
} 
 
#funtion to return table of quantiles for SWE for specified site 
sweQuantile <- function(site.name, SOM){ 
  station <- get(paste(site.name, "_wx", sep = "")) 
  node.days <- SOM$unit.classif 
  nNodes <- length(unique(node.days)) 
  nRows <- SOM$grid$ydim 
  nCols <- SOM$grid$xdim 
  swe <- station[,"SWE_cm"]*10 
  maxT <- station[ , "maxT_C"] 
  minT <- station[ , "minT_C"] 
   
  quantMat <- matrix(nrow = nNodes, ncol = 4) 
  minMat <- maxMat <- matrix(nrow = nNodes, ncol = 3) 
   
  for (node in 1:nNodes){ 
  type <- which(node.days == node) 
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  precip <- swe[type] 
  precipEvents <- precip[which(precip >0)] 
  maxTemp <- maxT[type] 
  minTemp <- minT[type] 
   
  SWEquants <- quantile(na.omit(precipEvents), c(.5, .75, .9)) 
  zeros <- length(which(precip == 0)) 
  zero.prop <- zeros/length(na.omit(precip)) 
   
  MaxTempQuants <- quantile(na.omit(maxTemp), c(.25, .5, .75)) 
  MinTempQuants <- quantile(na.omit(minTemp), c(.25, .5, .75)) 
   
  maxMat[node, ] <- MaxTempQuants 
  minMat[node, ] <- MinTempQuants 
   
  quantMat[node, 1:3] <- SWEquants 
  quantMat[node, 4] <- (1-zero.prop)*100 
  } 
   
   
  layout.mat <- matrix(1:nNodes, 
                       ncol = nCols,  
                       byrow = TRUE)[nRows:1,] 
   
  quantMat <- quantMat[as.vector(t(layout.mat)), ] 
  minMat <- minMat[as.vector(t(layout.mat)), ] 
  maxMat <- maxMat[as.vector(t(layout.mat)), ] 
   
  colnames(quantMat) <- c("50", "75", "90", "% > 0") 
  colnames(minMat) <- colnames(maxMat) <- c("25", "50", "75") 
  rownames(quantMat) <- rownames(minMat) <- rownames(maxMat) <- LETTERS[1:nNodes] 
   
  attributes(sweQuantile) <- list("sweMat" = t(quantMat), 
                                  "maxMat" = t(maxMat), 
                                  "minMat" = t(minMat), 
                                  "full" = rbind(t(quantMat), t(maxMat), 
t(minMat)))   
    } 
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APPENDIX D 
 
 

SEASONAL TIME SERIES OF DSAI SCORES  
 

AND DAILY SYNOPTIC TYPE 
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 The plots on the following pages show annual time series of daily synoptic type, 

total snow depth in cm (HS), and daily DSAI score. The daily synoptic type is marked by 

a blue box corresponding with a scale on the y-axis on the left side of the plot. HS is 

shown as a line corresponding with the scale on the y-axis on the right-hand side of the 

plot. Daily DSAI score is shown with vertical bars for days when DSAI > 0. The bars are 

color-coded based on daily DSAI score at intervals of 1, 10, and 100.
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Mammoth Mountain 
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APPENDIX E 
 
 

SENSITIVITY TO UNCERTAINTY IN AVALANCHE OBSERVATIONS 
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 Daily avalanche observations compiled by professional ski patrol operations 

remain the most comprehensive avalanche record available. One key advantage to using 

this type of record is that most events are consistently recorded as they occur, whereas 

similar records compiled by backcountry avalanche centers depend largely on whether 

the avalanche damaged infrastructure or caused harm to a person. Despite this major 

advantage, there are still some important limitations of using ski patrol records. One such 

limitation is that the records are maintained primarily as a means to communicate general 

snowpack conditions between staff members, rather than to compile a list of exact 

measurements for every event. As a result, there is some uncertainty associated with what 

may otherwise seem straightforward observations, such as crown depth or relative 

avalanche size (R-size). Operationally, this uncertainty is negligible when the records are 

used on a day-to-day basis along with continuous, firsthand observations to assess 

stability. However, the amount by which a long-term study of avalanche events is 

impacted by measurement uncertainty is unclear. This section assesses the sensitivity of 

our research to measurement uncertainty in crown depth and R-size. 

 In order to assess the effect of measurement error on this research, we run a 

sensitivity analysis on the Bridger Bowl avalanche record. In this sensitivity analysis, we 

consider three different error rates, applied to depth and R-size for all events: 

I. For every correct observation in the record, there is one incorrect observation. 

II. For every two correct observations, there is one incorrect observation. 

III. For every three correct observations, there is one incorrect observation.  
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We use the sample function in the statistical software R to randomly assign 

“errors” of -1, -0.5, 0, .5, or 1 foot for crown depth, and -1, 0, or 1 for R-size to each 

observation in the record. The sample function randomly selects the error value based on 

a specified probability distribution. Probabilities used for each of the three error rates (I-

III listed above) are given for crown depth measurements in Table 1 and R-size in Table 

2. 

Table 1: Probability of assigning a given error in crown depth measurements for each 
error rate used in the sensitivity analysis. 
Error Rate -1’ -0.5’ 0’ .5’ 1’ 
I 0.125 0.125 0.5 0.125 0.125 
II 0.0825 0.0825 0.67 0.0825 0.0825 
III 0.0625 0.0625 .75 0.0625 0.0625 

 

Table 2: Probability of assigning a given error in R-size for each error rate used in the 
sensitivity analysis. 
Error Rate -1 0 1 
I 0.25 0.5 0.25 
II 0.165 0.667 0.165 
III 0.125 0.75 0.125 

  

We assess the effect of measurement uncertainty by plotting histograms of crown 

depth and R-size for each error rate. There is very little change in the overall distribution 

of crown depths for any of the three error rates (Figure 1). 
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Figure 1: Histograms of crown depth in feet for the actual record (left), and error rates I-
II (moving left to right). 
 Similarly, adjusting the R-size by +/- one size step, there is very slight change in 

the overall distribution of R-size for all events (Figure 2). 

 

Figure 2: Histograms of R-size for the actual record (left), and error rates I-II (moving 
left to right). 
 
 Using the deep slab avalanche index (DSAI) described in the methods section, we 

identify the 1979, 1980, 1984, and 2011 seasons as major deep slab seasons in all three 
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error simulations (Table 3). In one of the three error simulations, the 1982 season is 

added in addition to the other four.  

 

Table 8: List of seasons designated as major deep slab seasons for each of the three 
applied error rates. 
Record Major Seasons 
Actual 1979, 1980, 1984, 2011 
Error I 1979, 1980, 1984, 2011 
Error II 1979, 1980, 1984, 2011 
Error III 1979, 1980, 1982, 1984, 2011 

 

This sensitivity analysis demonstrates that our analysis is robust to measurement 

uncertainty with respect to crown depth and R-size. Furthermore, while may be 

reasonable to assume a practitioner may misclassify size 1, 2, and 3 avalanches, it is far 

less likely that they would under-classify a size 4 or 5 event. Since the larger-magnitude 

events are weighted by several orders of magnitude larger than the small events, and 

since we are using the avalanche record only as a means to identify large-magnitude 

events, the impact of uncertainty with regards to R-size is likely much smaller even than 

what we have demonstrated in this sensitivity analysis. Thus, we acknowledge the 

uncertainty in the avalanche record, and implement an analysis that is not grossly affected 

by such measurement uncertainty.  
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