F1® di AWS
Jelajahi cara-cara baru, unik, dan inovatif bagi penggemar untuk menikmati F1 melalui kekuatan machine learning, kecerdasan buatan, dan teknologi cloud.
F1® Insights didukung oleh AWS
Waktu Hilang adalah grafik pada layar terbaru dari F1 Insights, yang didukung oleh AWS. F1 Insights adalah serangkaian grafik siaran yang bertujuan untuk mentransformasikan pengalaman penggemar di setiap sesi Grand Prix. Waktu Hilang akan memberi penggemar dan penyiar gambaran yang jelas tentang dampak dan penyebab kesalahan pengemudi. Wawasan kunci ini disajikan kepada penggemar melalui grafik TV di siaran langsung F1, yang tidak hanya menginformasikan sifat kesalahan pengemudi, tetapi juga berapa banyak waktu pengemudi yang hilang sebagai konsekuensinya.
Formula 1®: Didukung oleh AWS
Data balapan
Setiap mobil F1 berisi 300 sensor yang menghasilkan 1,1 juta titik data telemetri per detik yang ditransmisikan dari mobil ke pit. Data secara langsung ini digabungkan dengan lebih dari 70 tahun data balapan historis yang disimpan di Amazon S3 untuk mengekstrak wawasan kaya yang menginformasikan, mendidik, dan memperkaya pengalaman penggemar serta menghadirkan lebih banyak wawasan tentang pilihan strategi balapan yang menciptakan performa unggul di lintasan.
Analisis kompetitor
Analisis data memungkinkan F1 membandingkan performa mobil, tim, dan pembalap tertentu di semua parameter yang relevan dan memberi peringkat secara visual untuk mendidik penggemar.
Performa mobil
F1 melihat secara dekat aerodinamika, performa ban, unit daya, dinamika kendaraan, dan pengoptimalan kendaraan untuk menawarkan wawasan yang membantu penggemar menafsirkan performa mobil secara keseluruhan. Performa mobil adalah KPI utama untuk tim F1. Performa mobil memberikan wawasan unik kepada penggemar tentang cara kerja internal F1 dan bagaimana tim saling bersaing dalam pengembangan mobil sebelum dan selama musim berjalan.
Driver tercepat
Dengan menggunakan teknologi machine learning AWS, wawasan ini memberikan peringkat objektif dan didorong data dari semua driver F1 dari tahun 1983 hingga saat ini, dengan menghapus diferensial mobil F1 dari persamaan untuk menjawab pertanyaan yang telah lama diajukan: Siapakah pembalap tercepat? Ilmuwan data dari F1 dan Lab Solusi Amazon Machine Learning (ML) untuk pertama kalinya dalam sejarah menciptakan peringkat kecepatan driver lintas era, objektif, kompleks, dan didorong data.
Strategi balapan
Dengan menggunakan data waktu, F1 mampu menciptakan wawasan visual yang memungkinkan penggemar menganalisis secara objektif performa tim dan driver, strategi dan taktik yang akan berdampak pada hasil balapan secara keseluruhan. Misalnya, Alternative Strategy adalah grafik yang menunjukkan kepada tim dan penggemar mereka tentang kemungkinan jalannya balapan jika mereka membuat keputusan strategis yang berbeda.
AI generatif mentransformasikan olahraga
Dari perusahaan rintisan hingga waralaba olahraga, organisasi menaruh kepercayaan kepada AWS untuk berinovasi dengan kecerdasan buatan generatif.
Bagaimana AWS memacu Formula 1®?
✔ Mentransformasikan olahraga: Fungsionalitas AWS yang terluas dan terdalam serta kecepatan inovasi yang tidak tertandingi mengubah cara F1 mengumpulkan, menganalisis, dan memanfaatkan data serta konten untuk membuat keputusan. Dengan 300 sensor pada setiap mobil balap F1 yang menghasilkan lebih dari 1,1 juta titik data per detik yang ditransmisikan dari mobil ke pit, F1 benar-benar olahraga yang berbasis data.
✔ Meningkatkan Tindakan pada Lintasan: Dengan menggunakan komputasi performa tinggi AWS, F1 mampu menjalankan simulasi aerodinamis untuk mengembangkan mobil generasi berikutnya jadi 70% lebih cepat dari sebelumnya, dengan menciptakan mobil yang mengurangi gaya turun yang hilang dari 50% menjadi 15%. Pengurangan yang dramatis ini menawarkan pengemudi yang mengejar peluang menyalip yang lebih tinggi dan dengan demikian menawarkan lebih banyak aksi wheel-to-wheel untuk para penggemar.
✔Melibatkan dan Menyenangkan Penggemar: Dengan AWS, F1 telah mampu mengubah jutaan titik data yang ditransmisikan dari mobil dan pinggir lintasan menjadi pengalaman penggemar yang menarik melalui F1 Insights-nya.
Melibatkan para penggemar
F1 Insights yang didukung oleh AWS mengubah mentransformasi penggemar sebelum, selama, dan setelah setiap balapan. Dengan menggunakan poin data yang berbeda untuk menginformasikan setiap wawasan, F1 memungkinkan penggemar untuk memahami bagaimana driver membuat keputusan cepat dan bagaimana tim merancang dan menerapkan strategi balapan secara langsung yang berdampak pada hasil balapan. Berikut adalah beberapa contoh tentang bagaimana semuanya dilakukan bersama-sama.
Klik di bawah ini untuk memperluas
Dengan menggunakan data waktu, F1 mampu menciptakan wawasan visual yang memungkinkan penggemar menganalisis secara objektif performa tim dan driver, strategi dan taktik yang akan berdampak pada hasil balapan secara keseluruhan.
-
Prakiraan Pertandingan
Menggunakan riwayat lintasan dan kecepatan driver yang diproyeksikan, Prakiraan Pertandingan akan memprediksi berapa lap sebelum mobil yang mengejar berada dalam 'jarak serangan' dari mobil di depan.
-
Pertandingan Strategi Pit
Grafik Pertandingan Strategi Pit memberikan wawasan tambahan kepada penggemar tentang cara menilai seberapa sukses setiap strategi driver secara langsung. Fans akan dapat melacak perubahan strategi yang halus dan melihat dampaknya pada hasil akhir.
-
Jendela Pit
Perkiraan jendela pit stop berdasarkan kompon ban, waktu putaran, dan penyebaran mobil. Pemirsa akan melihat bagaimana balapan dapat diubah berdasarkan dinamika balapan, termasuk strategi balap tim lain, mobil keselamatan, dan bendera kuning.
-
Strategi Pit Stop yang Diprediksi
Data historis digunakan untuk menghitung strategi balapan selama putaran formasi, membandingkan prediksi ban dan strategi balapan. Wawasan ini mengizinkan pemirsa untuk melihat kapan seorang driver harus secara strategis melakukan pit stop berikutnya.
-
Undercut Threat
‘Undercut’ yang sukses dapat membuat Anda memenangkan balapan atau memperoleh posisi vital. Tidak diragukan lagi ini adalah salah satu momen paling menegangkan yang harus dihadapi tim teknis selama balapan. Grafik ini akan membawa penggemar lebih dekat ke dunia ahli strategi F1 di mana keputusan sepersekian detik ini dapat memenangkan atau kehilangan poin kejuaraan yang vital.
-
Strategi Alternatif
Strategi Alternatif, Wawasan F1 yang didukung oleh AWS, adalah grafik baru yang akan memberi penggemar dan penyiar pandangan alternatif tentang bagaimana keputusan pembalap dan tim mereka memengaruhi balapan: dengan menganalisis bagaimana balapan mereka akan berjalan dengan baik jika mereka membuat keputusan strategi yang berbeda. Setiap keputusan penting dan informasi apa pun dapat berkontribusi pada tim untuk mengambil keputusan yang tepat pada momen penting tersebut.
Analisis data memungkinkan F1 membandingkan performa mobil, tim, dan pembalap tertentu di semua parameter yang relevan dan memberi peringkat secara visual untuk mendidik penggemar.
-
Analisis Mobil/Perkembangan Mobil
Wawasan ini menunjukkan bagaimana tim mengembangkan mobil mereka, seberapa cepat mereka mengembangkan mobil mereka, dan apa hasil di lintasan sepanjang musim. Perlombaan pengembangan baik selama musim dan dari tahun ke tahun adalah KPI utama untuk tim F1, dan ini memberikan wawasan unik tentang cara kerja F1 dan bagaimana performa tim satu sama lain di area ini.
-
Close to the Wall
Close to the Wall memberi penggemar dan penyiar pandangan unik tentang seberapa dekat mobil F1 dengan dinding di beberapa tikungan yang paling menarik Kejuaraan ini. F1 menghitung jarak bagian mobil F1 (biasanya ban) yang terdekat dengan dinding menggunakan kamera khusus serta perpaduan jaringan neural dengan algoritma penglihatan komputer. Hal ini dilakukan dengan menggunakan empat langkah proses akuisisi bingkai, deteksi gerakan mobil, estimasi lintasan, dan hasil algoritma.
-
Skor Performa Mobil
Wawasan ini mengisolasi performa mobil individu dan memungkinkan penggemar untuk membandingkan performanya dengan kendaraan yang berbeda, dengan secara langsung membandingkan blok bangunan yang membentuk performa mobil–yaitu performa di tikungan, performa trek lurus, dan keseimbangan atau pengendalian mobil.
-
Performa Driver
Performa Driver menyoroti driver mana yang mendorong mobil mereka ke batas performa absolut dibandingkan dengan rekan satu tim dan pesaing mereka. Dengan menghitung gaya yang dihasilkan oleh ban mobil selama satu putaran, dan membandingkannya dengan kemampuan maksimum mobil, ini akan menunjukkan seberapa besar potensi performa mobil yang diekstrak oleh driver. Tiga parameter akan ditampilkan untuk menyoroti tiga bidang utama performa driver yang memiliki pengaruh besar pada tujuan akhir - waktu putaran: Akselerasi, Pengereman, Tikungan.
-
Performa Musiman Driver
Ini memberikan perincian performa driver berdasarkan bagian terpenting dari keterampilan mengemudi dengan menganalisis banyak data di seluruh efek mobil, ban, lalu lintas, bahan bakar, dan lainnya ke output skor dari performa setiap driver sepanjang musim terhadap tujuh kunci metrik – Kecepatan Kualifikasi, Permulaan Balapan, Lap Balap 1, Kecepatan Balap, Manajemen Ban, Keterampilan Pit Stop Driver, dan Menyalip. Metrik ini dinormalisasi menggunakan rentang 0-10 untuk memberikan metrik gaya 'skor', dan memberikan wawasan bagi pemirsa, penggemar, dan tim tentang di mana letak kekuatan dan kelemahan driver tertentu dan bagaimana mereka dibandingkan dengan yang lain di lintasan.
-
Performa Pit Lane
Pit Lane Performance akan memberikan peluang kepada para penggemar dan penyiar untuk memahami seluruh acara di pit stop, memahami waktu yang dialami oleh pengemudi saat masuk ke dan keluar dari jalur pit.
-
Kecepatan Kualifikasi
Secara historis merupakan sesi subjektif, F1 Insight yang didukung oleh AWS ini akan menggunakan machine learning dan metodologi analitik, mengambil data latihan dan menggunakan data historis tentang bagaimana kemajuan tim antara balapan hari Sabtu dan Minggu.
-
Start Analysis
Memberi penggemar pandangan mendetail tentang bagaimana setiap pengemudi dapat mengeksploitasi performa (atau tidak!) di fase start atau peluncuran.
-
Waktu yang Hilang
F1 melihat secara dekat aerodinamika, performa ban, unit daya, dinamika kendaraan, dan pengoptimalan kendaraan untuk menawarkan wawasan yang membantu penggemar menafsirkan performa mobil secara keseluruhan.
-
Performa Pengereman
Performa Pengereman menunjukkan bagaimana gaya pengereman driver saat melakukan manuver menikung dapat memberikan keuntungan saat menikung. Performa Pengereman membandingkan gaya pengereman dan performa driver dengan mengukur seberapa dekat mereka mendekati puncak tikungan sebelum pengereman dan akan menunjukkan bagaimana mobil dan driver bekerja bersama saat menikung, seperti kecepatan tertinggi saat mendekat, penurunan kecepatan melalui pengereman, daya pengereman yang digunakan, dan yang driver G-forces sangat besar alami saat menikung.
-
Analisis Tikungan
Satu-satunya area terpenting untuk performa mobil F1 dan ini menawarkan wawasan yang bagus tentang bagaimana mobil bagus dibandingkan dengan mobil hebat. Ini memecah tikungan menjadi 4 bagian utama – pengereman, belok, tikungan tengah, dan keluar – menganalisis dan membandingkan performa melalui bagian utama tikungan melalui data telemetri mobil.
-
Kecepatan Keluar
Analisis menikung yang ditentukan oleh pengereman optimal dan titik akselerasi di sekitar tikungan tertentu (dan penting), yang merupakan area di mana setiap driver memiliki keuntungan paling banyak. Wawasan ini memberi pemirsa pemahaman terperinci tentang kerugian dan keuntungan pada waktu putaran dan memungkinkan perbandingan antar mobil.
-
Performa Ban
Dengan menggunakan data mobil, yaitu kecepatan mobil, percepatan longitudinal dan lateral, dan Gyro, kita dapat membuat estimasi sudut slip lalu menurunkan model keseimbangan kendaraan untuk setiap mobil. Ini memberikan output energi keausan ban. (Catatan: energi keausan ban bukanlah keausan fisik ban, melainkan transfer energi dari bidang kontak ban yang meluncur melintasi permukaan jalan.) Output-nya memberi kami performa ban untuk setiap sudut, yang menunjukkan seberapa banyak ban telah digunakan sehubungan dengan masa pakai performa tertingginya.
-
Perbandingan Lap AWS
Grafik Perbandingan Lap melakukan kontekstualisasi tingkat performa dari mobil F1 bagi penggemar dan penyiar dengan membandingkan waktu lap dengan Mobil Keselamatan dan mobil balap ‘biasa’. Tujuan dan hasil dari grafik ini, akan digunakan untuk mendemonstrasikan melalui model data, betapa superiornya teknologi F1 dibandingkan dengan teknologi dan performa yang lebih akrab dengan penonton.
-
Waktu Prediksi Penyisihan
Waktu Prediksi Penyisihan memberi penggemar dan komentator wawasan ‘tingkat tim’ pada waktu yang ditargetkan setiap pembalap untuk masuk ke sesi kualifikasi selanjutnya. Digunakan pada tingkat setiap sesi selanjutnya, waktu target di grafik ini akan memberikan target yang menarik bagi penggemar untuk memetakan waktu setiap pembalap saat mereka melewati garis pada putaran mereka - pada akhirnya mendekatkan penggemar pada drama dari hasil akhir.
-
Dominasi Lintasan
Grafik Dominasi Lintasan memberi penggemar dan komentator wawasan tentang di mana pembalap mendominasi rivalnya di sirkuit sembari kita menonton latihan dan sesi kualifikasi dimainkan secara real time. Selain itu, perbandingan telemetri pascasesi memberikan analisis yang lebih mendalam kepada para penggemar tentang pembalap mana yang melaju paling cepat di tikungan dan mana yang paling cepat di lintasan lurus. Selain itu, perbandingan juga akan memberi para penggemar lebih banyak wawasan tentang pembalap dan performa mobil serta taktik pada hari dilaksanakannya balapan.
-
Sistem Energi Hibrida
Sistem Energi Hibrida, sebuah F1 Insight yang didukung oleh AWS, dapat mengidentifikasi cara pengemudi menggunakan energi listrik secara optimal. Grafik akan mengidentifikasi tiga perilaku pengemudi (netral, pengisian ulang, dan deployment) berdasarkan energi yang digunakan pada putaran sebelumnya. Ini semua dapat dicapai dengan menyelesaikan persamaan keseimbangan energi menggunakan daya komputasi AWS Cloud. Insight membantu para penonton memahami keputusan strategis penting yang terjadi di dalam kokpit.
Mempercepat pengalaman penggemar
Ingin membuka di balik kap mesin dan melihat bagaimana hal itu dilakukan? Pelajari bagaimana AWS dan F1 menggunakan algoritma machine learning yang dibuat dengan Amazon SageMaker yang memberikan wawasan baru dan meningkatkan aksi di lintasan, dan bagaimana F1 menggunakan AWS untuk merancang mobil balap berikutnya.