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Abstract 

Biomedical datasets are the mainstays of computational biology and health informatics 
projects, and can be found on multiple data platforms online or obtained from wet-lab 
biologists and physicians. The quality and the trustworthiness of these datasets, how-
ever, can sometimes be poor, producing bad results in turn, which can harm patients 
and data subjects. To address this problem, policy-makers, researchers, and consor-
tia have proposed diverse regulations, guidelines, and scores to assess the quality 
and increase the reliability of datasets. Although generally useful, however, they are 
often incomplete and impractical. The guidelines of Datasheets for Datasets, in par-
ticular, are too numerous; the requirements of the Kaggle Dataset Usability Score focus 
on non-scientific requisites (for example, including a cover image); and the European 
Union Artificial Intelligence Act (EU AI Act) sets forth sparse and general data governance 
requirements, which we tailored to datasets for biomedical AI. Against this backdrop, 
we introduce our new Venus score to assess the data quality and trustworthiness 
of biomedical datasets. Our score ranges from 0 to 10 and consists of ten questions 
that anyone developing a bioinformatics, medical informatics, or cheminformatics 
dataset should answer before the release. In this study, we first describe the EU AI Act, 
Datasheets for Datasets, and the Kaggle Dataset Usability Score, presenting their require-
ments and their drawbacks. To do so, we reverse-engineer the weights of the influ-
ential Kaggle Score for the first time and report them in this study. We distill the most 
important data governance requirements into ten questions tailored to the biomedical 
domain, comprising the Venus score. We apply the Venus score to twelve datasets 
from multiple subdomains, including electronic health records, medical imaging, 
microarray and bulk RNA-seq gene expression, cheminformatics, physiologic electro-
gram signals, and medical text. Analyzing the results, we surface fine-grained strengths 
and weaknesses of popular datasets, as well as aggregate trends. Most notably, we find 
a widespread tendency to gloss over sources of data inaccuracy and noise, which may 
hinder the reliable exploitation of data and, consequently, research results. Overall, our 
results confirm the applicability and utility of the Venus score to assess the trustworthi-
ness of biomedical data.
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Introduction
While the “garbage in, garbage out”  (GIGO) statement is almost 70 years old  [1], the 
awareness of the critical importance of data quality in computing dates back much 
earlier, to the point that even Charles  Babbage himself is blatantly explicit on the 
issue ([2], page 67). The outcome of the use of unreliable input data ranges through dif-
ferent levels of output inconsistencies which, depending on the background domain, 
may reflect in quite harmful consequences [3–8]. Despite the wealth of scientific work 
tackling the problem (also through large initiatives such as FAIR [9] or MAIDA [10]), a 
shared and effective solution is still far from being acknowledged, and the current artifi-
cial intelligence (AI) revolution has contributed to worsening the situation [11], mainly 
due to the widespread diffusion of the generative paradigm.

A lot is at stake when the involved domain is healthcare and a rich scientific literature 
is available discussing the diverse aspects of such complex theme, together with several 
interesting reviews aiming at providing a broader perspective [12]. Leveraging from sev-
eral real-world examples  [13] and projects  [14], the level of awareness of the need for 
data quality and trustworthiness assessment has been growing in the biomedical com-
munity. Such novel line of work has led to both theoretical and practical advancements, 
that is, the fact that the quality of clinical data ought to be constantly assessed and reas-
sessed  [13] and the implementation of new interesting practical tools  [15] supporting 
such assessment. Notably, even the overall methodology has improved, adopting (meta)
data driven approaches for the inspection of quality [16, 17].

Biomedical data can come in different format: medical images, genomics and proteom-
ics, drug and chemicals data, medical text, electronic health records (EHRs), and others. 
Within this scenario, so far EHRs play a prominent role also when dealing with quality, 
as evidenced by the abundance of publications in the literature [18]. Indeed, many dif-
ferent aspects are covered: as major issues we list the minimal consistency and poten-
tial generalizability in the methods used to assess EHR data quality [19], calling for the 
installment of automatic, scalable and flexible guidelines to improve the efficiency, trans-
parency, comparability, and interoperability of data quality assessment [20], also tailored 
and automatized [21] for specific secondary used in research [22]. Stemming from such 
needs, suites of practical guidelines [23] and ad-hoc quality scores for EHRs have been 
proposed – further contributing to the discussion we will unfold hereafter [24].

Note that not even the definition of data quality is univocal, although steps in this 
direction have been taken  [25], and the heterogeneity of the data types in health and 
life sciences in general (electronic medical records, biomedical images, omics sequenc-
ing, etc.) represents an additional level of complexity. Last but not least, adding insult 
to injury, even the procedures aimed at preprocessing the raw data or the tools used 
to perform such transformation may inject unwanted noise or artifacts, further degrad-
ing the original quality, as in the anecdotal case of gene names mistreated by Microsoft 
Excel [26–28].
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It is not surprising that the core of the data quality and trustworthiness assessment 
lies in the identification of the essential characteristics shaping a well-formed dataset. 
In the last few years, such a goal has led several research groups worldwide in building 
different quality scores collecting some of the aforementioned characteristics, attribut-
ing to each of them a quantitative value for a given dataset, and finally obtaining a single 
figure as a weighted cumulative sum of all the associated marks. The different published 
scores target for instance the different nature of the data, or focus on specific aspects 
of the data quality. As a result, a wide landscape of scores are currently available to the 
community of data scientists, from minimal with few items to enormous including tens 
of questions and from specific and oriented to single data type to quite broad and gen-
eral instead. Unfortunately, using most of them for the quality assessment of datasets in 
life sciences is not feasible: large scores include too many negligible items not providing 
actual hints about quality and they are unpractical to be quickly filled, while small scores 
cannot properly encompass the rich diversity of the different nature of datasets in the 
healthcare domain.

Contributing to this literature stream with the aim of amending the above cited draw-
backs, we propose the novel Venus score as an effective compromise between the need 
to intercept all the critical data quality and trustworthiness elements, the flexibility to 
adapt to the different healthcare data types and the usability of the introduced tool for 
the data scientists, thus obtaining a ten-item questionnaire. After a detailed overview of 
the current state-of-the-art of data repositories, existing quality scores and documenta-
tion frameworks, along with their pros and cons, we proceed with a thorough discussion 
of all the ten Venus items. Next we test the Venus score on twelve life science datasets 
belonging to six different categories, later concluding with a discussion of the results, 
that seem promising enough to promote the adoption of the new proposed tool by the 
data science for health community.

Data repositories, search engines, and aggregators Several online data repositories 
exist nowadays with different best practices for data curation, management, and docu-
mentation. Figshare [29], Zenodo [30], and the University of California Irvine Machine 
Learning Repository  [31] are websites where anyone can upload and release a dataset 
and from where anyone can download datasets, of any type and on any subject. These 
three general-purpose data repositories give the possibility to associate a digital object 
identifier (DOI) code with a dataset, before release. Figshare, moreover, contains sup-
plementary information on articles published in several biomedical informatics journals.

Kaggle, on the other hand, is a company and an online platform mainly hosting data 
science competitions, where users can use machine learning and statistics to solve scien-
tific or technological problems [32–34]. Kaggle also gives the opportunity to download 
and publish datasets, and today, it contains around 330 thousand of them. We will talk 
more about Kaggle in the next paragraph  (“Kaggle Dataset Usability Score”). Another 
source of datasets is Hugging Face [35], which is a company and a centralized web ser-
vice hosting software code repositories and approximately 150 thousand datasets, espe-
cially for natural language processing (NLP) tasks.



Page 4 of 31Chicco et al. BioData Mining            (2025) 18:1 

Some websites, on the other hand, serve as aggregators of other online data reposi-
tories. This is the case of re3data  [36], of Google Dataset Search  [37], and of the 
GAAIN network data  [38, 39]. The former two are search engines that allow users 
to find datasets on several platforms and repositories (including the ones mentioned 
above), and the latter one is a website containing links to other 66 websites having 
data on mental health that can be requested by anyone.

Web containers of data repositories can also be specific to particular biomedical 
data types or fields. A huge number of bioinformatics and genomics datasets, for 
example, can be found on Gene Expression Omnibus (GEO) [40], ArrayExpress [41], 
Sequence Read Archive  (SRA)  [42], and the Cancer Genome Atlas (TCGA)  [43]. 
Researchers interested in medical images can find multiple datasets on the Cancer 
Imaging Archive (TCIA) [44, 45], while researchers interested in electrical biosignal 
data such as electroencephalography (EEG) or electrocardiography (ECG), can resort 
to PhysioNet [46]. The PhysioNet resources include physiologic data of intensive care 
unit  (ICU), such as the MIMIC datasets  [47, 48], too. Surveys and reviews compar-
ing medical datasets can also serve as a good resource for finding public data of good 
quality [49, 50].

Even if a huge number of biomedical datasets are openly available online, they are 
rarely accompanied by a score that can summarise their trustworthiness and quality. 
Some studies introduced indexes and scores representing the technical quality of the 
dataset analyzed: we describe them in the next paragraph.

Data quality scores Multiple biomedical research teams have proposed data indexes 
and scores in the past. Michele Salati and colleagues  [51], for example, released the 
European Thoracic Aggregate Data Quality score, that can be used to estimate the tech-
nical quality of data on lung resections. This coefficient measures the cumulative data 
quality of a dataset, and consists of sixteen factors that capture the completeness and the 
reliability of the dataset analyzed. Completeness looks at the proportion of null or blank 
data for specific features, while verifying if the dataset overcomes nine quality checks 
defined by the authors. One of these query checks, for example, verifies if the outcome of 
a patient at discharge is died and their outcome at thirty days is alive.

Regarding female health, Georgina Jones and coauthors  [52] developed a study 
where they assessed the quality of data collected through questionnaires filled by 
women suffering from endometriosis. Their assessment involved questionnaire vali-
dation through secondary factor analysis, internal reliability consistency, descriptive 
statistics of the data including skewness, data floor and ceiling effects, and corrected 
item to total correlations.

Moving from hospitals to tech companies, it is worth mentioning the Data Quality 
Toolkit proposed by IBM [53]. This tool, seemingly available within the IBM technology 
platforms, characterizes the technical quality of the dataset employed in a training phase 
of a machine learning project. The Data Quality Toolkit of IBM consists of ten technical 
factors (class overlap, label purity, class parity, feature relevance, data homogeneity, data 
fairness, correlation detection, data completeness, outlier detection, and data duplicates) 
that can give an overview of the technical aspects of the dataset analyzed.
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Data quality scores were also designed for administrative and demographic pur-
poses. This is the case of the Irish Data Quality Index  [54] and of the Open Data 
Toronto Data Quality Score  [55–57]. The former is an index developed and imple-
mented within Ireland’s Health System, where clinical records of patients get higher 
marks the more complete they are, while clinical records with missing information get 
lower marks. The latter was designed and implemented at the City Hall of Toronto, 
and evaluates each available administrative dataset based on its freshness, metadata, 
accessibility, completeness, and usability.

We also mention the RECORD Statement  [58], which is a set of questions on the 
completeness of medical studies that evaluates scientific articles. Authors suggest to 
use the thirteen questions of the RECORD statement to verify if pivotal information 
regarding a specific study is present in title, abstract, introduction, methods, results, 
and discussion section of its associated publication. A variant of RECORD for phar-
macoepidemiology studies was released at a later time [59].

The FAIR community, moreover, proposed its own scores for assessing the fair-
ness of datasets and software: the FAIR Aware questionnaire  [60] and the Fairness 
score  [61]. As the name suggests, the former states the levels of awareness on the 
findability, accessibility, interoperability, and reusability (FAIR) requisites that a data-
set should have. The latter, instead, uses automated software mainly to evaluate the 
presence of the fields of the metadata of a dataset.

These data quality scores, indexes, and coefficients attempt to quantify the level 
of technical reliability of medical datasets, but do not say much about their quality 
and trustworthiness. We therefore felt the need to design a new score for assessing 
biomedical data quality scientifically, by considering the founding principles of the 
recent Artificial Intelligence act of the European Union [62, 63], the guidelines of the 
Kaggle Dataset Usability Score, and the recommendations of Datasheets for Data-
sets [64]. We describe these three frameworks in the next paragraphs.

European union artificial intelligence act The AI Act is a European regulation laying 
down harmonized standards for AI systems [62, 63, 65]. High-risk AI systems, includ-
ing the ones deployed in healthcare settings, must comply with dedicated provisions, 
with special attention to data and its governance. In particular, providers and deploy-
ers of medical AI must demonstrate that training, validation, and testing datasets meet 
the quality standards described in different sections of the act, especially Article 10. The 
technical documentation accompanying a high-risk AI system should describe the data, 
including its collection process and purpose, its preparation, and possible biases that 
may lead to discrimination, along with a discussion of data accuracy and representative-
ness with respect to the specific geographical, contextual, and functional setting within 
which the high-risk AI system is intended to be used. The European Parliament pub-
lished the AI Act in its final version on 12th July 2024, and it came into force on 1st 
August 2024. Given its novelty, none of the currently existing frameworks for data qual-
ity assessment incorporate its principles and provisions; we fill this gap by proposing our 
Venus score, which we will describe later.
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Kaggle Dataset Usability Score The Kaggle Usability Score is a coefficient invented by 
the Kaggle team to quantify the completeness, credibility, and compatibility of a data-
set  [66]. It ranges from 0 to 10, where 0 means no usability and 10 means maximum 
usability.

Kaggle revealed the eleven fields of this score but never disclosed their weights  [67, 
68]. We attempted to deduce these weights by considering datasets which had one single 
field missing, and deducing its value by subtracting the dataset’s score from the total.

For example, we noticed that the Fitbitdata dataset [69] has the Column Description 
field missing, and that the total score for that dataset is 9.41. We therefore estimated 
the weight of Column Description to be 10− 9.41 = 0.59 , and we observed that other 
datasets lacking that field had the same score. Similarly, we checked the dataset called A 
Hotel’s Customers Dataset [70]: its usability score is 8.82 and the only score field absent 
is File Format. We therefore can deduce that its weight is 10− 8.82 = 1.18 , and we 
observed the same value for that field in other datasets in the same situation.

We detail the weight and percentage we deduced for each field of the Kaggle Usabil-
ity Score in Table 1. We report all the steps of the calculation for all the weights in the 
Supplementary File S1. To the best of our knowledge, ours is the first interpretation 

Table 1 Our interpretation of the Kaggle Dataset Usability Score. Completeness: the Kaggle 
Usability Score adds the indicated points if who uploaded the dataset to Kaggle included a subtitle, 
some tags (for example, tabular, health, medical records, a descriptive text on the dataset and a 
cover image representing the dataset. Credibilty: the Kaggle Usability Score adds the indicated 
points if who uploaded the dataset to Kaggle included information about the provenance of the 
dataset, a public notebook (an interactive computing script, made with Jupyter for example), 
and the information about how frequently the dataset will be updated (most of the times, never). 
Compatibility: the Kaggle Usability Score adds the indicated points if who uploaded the dataset to 
Kaggle included information about the license under which the dataset can be used (for example, 
the Creative Commons CC BY-NC 4.0 DEED license), the file format (for example, CSV, ODS, XLSX, 
DICOM), a text describing the file, and the explanation of the meanings of the columns, for tabular 
data files)

a The Column Description field is absent for non-tabular datasets, such as datasets of medical images

Kaggle dataset usability score

Position Field Weight Percentage

1 Subtitle ∼1.17 11.7%

2 Tag ∼1.17 11.7%

3 Description ∼1.17 11.7%

4 Cover Image ∼0.59 5.9%

Total for Completeness 4.10 41.0%

5 Source/Provenance ∼0.59 5.9%

6 Public Notebook ∼0.59 5.9%

7 Update Frequency ∼0.59 5.9%

Total for Credibility 1.77 17.7%

8 License ∼1.18 11.8%

9 File Format ∼1.18 11.8%

10 File Description ∼1.18 11.8%

11 Column  Descriptiona
∼0.59 5.9%

Total for Compatibility 4.13 41.3%

Total 10.00 100.0%



Page 7 of 31Chicco et al. BioData Mining            (2025) 18:1  

of the Kaggle Dataset Usability Score released publicly. To test the effectiveness of our 
interpretation of the Kaggle score, we randomly selected five datasets and utilized our 
weights (Table 1) to predict their published Kaggle scores: our predictions matched 
the published Kaggle scores in all five cases.

The Kaggle Dataset Usability Score was not designed for scientific purposes and 
has some drawbacks. It weighs both trust-related aspects of a dataset (license, feature 
description, source and provenance) and non-scientific items, like the presence of a 
subtitle, tags, or cover image on the Kaggle webpage. Indeed, the non-scientific values 
of this score account for 41.1% of the whole score, making it unreliable for trustwor-
thiness assessments. Our work draws inspiration from the Kaggle score refocusing 
the evaluation around data quality and trust.

For completeness, we noticed that the Kaggle Dataset Usability Score most of the 
time has eleven fields, but sometimes only ten. The Column Description is missing, 
in fact, for datasets that do not have features represented as columns. This is the case 
of image datasets, such as the 1980s Album Covers dataset [71]. Some datasets have 
all the eleven requirements satisfied, but their final score is lower than 10.00. This is 
the case of the LFW – Facial Recognition dataset [72], for example, which has all the 
eleven conditions met but has 9.41 as a score, and not 10.00. A member of the Kaggle 
team, replying to a Kaggle user who highlighted the same problem for another data-
set, called that situation an issue and declared it was addressed [68].

Datasheets for datasets Documentation is fundamental to improve data quality stand-
ards and support appropriate use of datasets [8, 64, 73–75]. Datasheets for Datasets [64] 
is a prominent documentation framework facilitating the communication between data-
set curators and users. Datasheets for Datasets inform dataset users about the character-
istics of a dataset, including its motivation, composition, collection, preprocessing, and 
intended use. They cover disparate aspects of datasets, including their size, the definition 
of train/test splits, relation to external resources, the presence of confidential informa-
tion and offensive data. An entire set of questions focuses on dataset distribution, cover-
ing the distribution period, recipients, and regulatory restrictions such as export con-
trols. The final set of questions targets dataset maintenance, including information on 
planned updates, support for older versions, and contribution mechanisms.

With their 57 questions, Datasheets for Datasets provide a lengthy and general-pur-
pose blueprint to reason about data. We draw from this documentation framework, 
condensing it and tailoring it to biomedical data. For example, we focus on medical 
devices for data collection and on specific protected attributes, such as genetic ances-
try, important in the medical domain. Moreover, we emphasize data governance top-
ics that are especially salient in the EU AI Act.

Datasheets for Datasets was not actually designed to be automated and does not 
provide a coefficient or a score to assess its level in the documentation of a specific 
dataset: according to its authors [64], it is intended to be a series of questions, guide-
lines, or recommendations to elicit important information from dataset curators.
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Our proposal In this study, we propose our Venus score to assess biomedical data 
quality, based on data quality provisions of the EU AI Act  [62, 63, 65], drawing inspi-
ration from core concepts of Datasheets for Datasets  [64] and Kaggle Dataset Usabil-
ity Score  [68] The main contributions of this work are twofold: first, a set of ten ques-
tions, summarizing key requirements for data trustworthiness in the medical domain 
(“Method: our proposed Venus score”  section), and second, the insights we gain from 
applying the questionnaire to twelve important biomedical datasets (“Datasets” and 
“Results” sections). Additionally, we provide a quantitative weighting scheme to translate 
questionnaire answers into numerical scores (Supplementary File S2).

Method: our proposed Venus score
As mentioned earlier, we identified Datasheets for Datasets [64] and the Kaggle Dataset 
Usability Score [68] as useful frameworks for assessing data quality. The former is a wide-
ranging qualitative framework to extensively document datasets. The latter is a simple 
quantitative approach to encourage dataset providers to follow usability guidelines.

Datasheets for Datasets and the Kaggle Dataset Usability Score suffer from some 
drawbacks. Even if complete and comprehensive, the list of constraints of Datasheets for 
Datasets consists of over 50 questions. We believe it is very demanding for data cura-
tors to carefully answer all 57 questions before releasing a biomedical dataset. At the 
same time, it is difficult for dataset users to locate key information, including data qual-
ity requirements for medical AI specified in the European Union Artificial Intelligence 
Act [62, 63, 65].

The Kaggle Dataset Usability Score, although useful, has some limitations too, as 
explained earlier. This coefficient gives importance both to trust-related aspects of a 
dataset (license, feature description, or source or provenance) and to non-scientific ele-
ments, such as the presence of subtitle, tags, or cover image for a specific dataset.

We overcome these limitations by proposing our Venus score for assessing the quality 
and the trustworthiness of biomedical data. Our framework draws its main topics from 
the EU AI Act, expanding them into concrete questions inspired by Datasheets for Data-
sets, and summarizes their fulfillment with a quantitative score inspired by the Kaggle 
Dataset Usability Score.

We define data trustworthiness in the medical domain as the ability of data and 
accompanying documentation to lawfully support reliable models and analyses, which 
are cognizant of their own validity boundaries, potential for generalization, limitations, 
and plausible blind spots [76].

The Venus score, detailed in this section, collates the data quality requirements from 
the EU AI Act  [62] (Fig. 1), the key aspects from Datasheets for Datasets  [64], and the 
condensed core of the Kaggle Dataset Usability Score [67].

Here we present the ten questions of the novel Venus score to measure data quality 
and trustworthiness. A biomedical dataset undergoing this evaluation gets a real value 
between 0.00 and 1.00 for each of the ten questions, consequently having 0.00 as a mini-
mum and 10.00 as a maximum possible score. We describe the main subtopics for each 
question highlighting them in italics. Overall, the Venus score captures data quality and 
trustworthiness favoring informed adoption of datasets and compliance with the EU AI 
Act. Similarly to Datasheets for Datasets [64], the calculation of the Venus score is not 
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intended to be automated: it should be manually assessed. For simplicity, we also pro-
vide the Venus score checklist and weighting scheme as a stand-alone, fillable spread-
sheet (Supplementary File S2). Dataset evaluators can answer the sub-questions of our 
ten guidelines and assign their corresponding partial sub-scores based on the informa-
tion regarding that specific sub-question they find in the dataset’s documentation or sci-
entific article.

Our Venus score can be seen simultaneously as a numerical coefficient, as a series of 
recommendations for data quality, as a set of guidelines, as a method or a framework for 
data quality assessment: each reader can decide to use it according to their needs.

Q1: Are the origin, context, and purpose of the dataset defined?

This question supports contextual reasoning about the data. A positive answer means 
that documentation informs prospective dataset users as to who curated the data (cura-
tors) and why it was collected (purpose). Additionally, it should provide information on 
the setting, data subjects, and collection methods (context). For example, documentation 
should clarify whether the data was collected during patient care, clinical, or non-clini-
cal trials. This information influences expectations for answers to subsequent questions, 
including best practices for data protection.

The Arrhythmia dataset is a negative example for this question as it provides no 
information on its provenance and context  [77]. CheXpert  [78], on the other hand, is 
well documented in accompanying literature describing its purpose and curation strat-
egy [79]. This question supports reasoning about the true potential of AI models trained 
on this dataset, including their generalization to clinical settings [80].

Q2: Are data protection measures described? Is there a license for the data?

Data curators and collectors should take measures to protect the patients’ data [81, 82]. 
Data documentation should describe whether and how patients consented to data col-
lection and secondary use (consent) and which steps were taken to avoid the released 
data being linked back to individual patients (deidentification). For instance, curators 
can describe protected health information (PHI) and its removal. Terms of use and data 
licenses may further protect data by specifying acceptable use, including best practices 

Fig. 1 A schematic representation of the frameworks inspiring our proposed Venus score. We incorporated 
concepts from Datasheets for Datasets [64], from the Kaggle Dataset Usability Score [68], and from the 
European Union Artificial Intelligence Act [62] to design our proposed Venus score for assessing the quality of 
biomedical datasets
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for data management and agreements to not attempt identifying individuals in the 
dataset.

For example, most of the datasets publicly available in the University of California 
Irvine Machine Learning Repository  [31] are released under the open Creative Com-
mons Attribution 4.0 International (CC BY 4.0) license [83], and anyone can download 
them without restrictions. Conversely, the intensive care unit MIMIC-IV dataset  [48, 
84] was licensed under the PhysioNet Credentialed Health Data License 1.5.0. To down-
load it, users first need to attend the MIT Collaborative Institutional Training Initia-
tive (CITI) required training on Data or Specimens Only Research and then sign the data 
use agreement on PhysioNet [84, 85].

Q3: Are the devices, medical centers, and collection periods clearly identified?

This question regards how, when, and where the data entries of the dataset were col-
lected. Dataset curators should provide information on these three aspects. Information 
on the devices should include the type of biomedical machinery that collected the data 
and, if possible, its model and brand (devices). This information is particularly impor-
tant in the bioinformatics context, where a plethora of platforms to collect gene expres-
sion data from microarray, bulk RNA-seq, and single-cell RNA-seq exist, which are often 
incompatible with each other and need batch correction. Additionally, documentation 
should provide as much context as possible as to where the data was collected (medical 
centers) and over which time frame (collection period). This helps users estimate how 
recent and representative the data is for their application.

For example, the webpage on Gene Expression Omnibus (GEO) containing informa-
tion about the GSE89413 single-cell RNA-seq dataset released by Jo Lynne Harenza and 
colleagues  [86] includes details about the RNA-seq platform employed to collect the 
data: GPL18573 Illumina NextSeq 500 (Homo sapiens)  [87]. Insights about when and 
where the data were collected are pivotal, too. For example, Guillaume Le Gall and col-
leagues  [88] released a dataset of electronic health records of patients diagnosed with 
ischemic heart disease, cerebrovascular arterial disease, and with inflammatory bowel 
disease on Figshare in 2017  [89], specifying, in the associated article, that data were 
gathered at Hôpital Saint-Antoine (Paris, France, EU) between 1996 and 2015 [88].

Q4: Are all variables and their values properly explained?

To get a full point on this requirement, the documentation of the dataset should pro-
vide an explanation of the meaning of each variable (features – encoded as columns in 
tabular datasets) and the meanings they may have (values). The Kaggle Dataset Usabil-
ity Score follows the same guideline regarding the features, where it requires a column 
description: as obvious as it sounds, all variables should be documented. Unfortunately, 
this is not the case in several datasets which lack this information [90, 91].

The description of the values of the features should be included, too. If the “sex” 
variable, for example, can have values 0 or 1, the data curators should specify if 0 or 
1 means “man” or “woman”. Similarly, if the variable named “XYZ” ranges in the 
[−2.532;+10.701] real interval, the dataset authors should explain what “XYZ” stands 
for and what is the meaning of the values in that specific interval.
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These recommendations might sound trivial, but there are plenty of datasets online 
whose features are undocumented and whose values are unexplained.

Q5: Does the dataset documentation include information on subpopulations identified 

by protected attributes such as the age, sex, ethnicity, and genetic ancestry of patients?

This question encourages reasoning about inclusion, bias, and anti-discrimination. 
Dataset users should know the marginal distribution of sensitive attributes, to detect 
the under-representation of specific subpopulations (marginal distribution). Thorough 
documentation summarizes the joint distribution between demographic attributes 
and important variables (joint distribution), including target variables for supervised 
machine learning problems. Complete documentation should also describe expected 
patterns in the marginal and joint distribution, motivating them with supporting evi-
dence, such as studies describing the correlation between age and diabetes (expected 
distribution)  [92]. Documentation should report how demographic information was 
obtained, describing, for example, whether labels were self-reported by patients or anno-
tated externally (label provenance) [15].

Q6: Are sources of potential inaccuracy listed and characterized?

Data accuracy is a fundamental requirement, also enshrined by data protection regula-
tion [93]. Curators should inform dataset users by listing the most plausible sources of 
data inaccuracy (listed sources). For instance, errors at different stages can affect bio-
medical data as it goes from human subjects to medical records, to databases, to dataset 
curators, and to dataset users [94]. Patients can report inaccurate data about themselves, 
including medication dosage. Medical personnel can introduce clerical errors in EHRs 
by mistyping, inverting digits, or selecting the wrong option in a dropdown menu. Frag-
mentation may lead to incomplete medical records [95]. Ideally, curators should also 
quantify the severity of these inaccuracies (characterized). This is especially important 
for labels automatically annotated by machine learning models, including medical con-
ditions extracted from reports written in human language [79]. Errors sizable enough to 
affect researchers’ conclusions have a large potential to harm the reliability of findings, 
the trustworthiness of models, and the quality of new healthcare standards [96]. Quan-
titative and qualitative descriptions of different data inaccuracies and their severity are 
invaluable for dataset users [79, 97, 98].

Q7: Is the information about noise included?

Noise is an undesired part of the biomedical signal that is unintentionally recorded by 
the machinery and might make it more difficult to recognize the desirable part of the 
signal. Since most biomedical data come with noise, curators should always list the most 
plausible sources of noise (listed sources). Medical images come with Gaussian noise 
due to electronic interference, sensor limitations, or image processing techniques [99]. 
Microarray and RNA-seq gene expression come with noise signals called batch 
effects [100, 101], due to the different conditions of the experiments carried out to gen-
erate the data themselves. Electrocardiogram (ECG) heart data come with noise called 
baseline wander that can be caused by the respiration or the motion of the patients [102]. 
Electroencephalography (EEG) brain signals, in particular, come with several different 
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noise sources and artifacts that can be due to the movements of the patients, such as 
jaw clenching, eye movements, electrical interference, and environmental factors [103]. 
Cheminformatics data often need noise cleaning, as well  [104]. Of course, before any 
computational analysis, noise should be removed or mitigated to the extent possible.

Noise is a tricky aspect of biomedical informatics research: since it is invisible to 
beginners and researchers who do not know the data well, it might be overlooked, pro-
ducing wrong or misleading results. Therefore, we recommend including information 
about the noise of the dataset in the dataset documentation, so that dataset users can 
take care of it effectively. Awareness is the first step. Documentation should also inform 
dataset users about the noise magnitude (characterized). Indeed, it is especially impor-
tant for practitioners and researchers to understand what signal-to-noise ratio [105] is 
required to independently reproduce equivalent setups for their data in different geo-
graphical, contextual, or functional settings.

Q8: Does the documentation describe data preparation, including cleaning 

and annotation?

Data is typically preprocessed to reduce inaccuracies and augment the available infor-
mation. Inaccuracy reduction includes signal filtering, data imputation, and outlier 
removal [106] (cleaning). These interventions can have a sizable impact on dataset rep-
resentativeness and inclusivity. Moreover, curators often augment biomedical data with 
additional labels, for example indicating the skin type of a patient [107] (annotation). 
We reiterate that labels can be ambiguous and subjective; labeling procedures should be 
described as precisely as possible, including who is involved and how the annotation is 
performed. Finally, before publishing a dataset, entries are often protected by altering 
variables that support identification, such as hospitalization dates [47].

Transparent documentation of data preprocessing supports informed dataset usage. 
For example, researchers can gauge the reliability of automatically generated labels and 
the extent to which they can be regarded as ground truth [79]. Practitioners at medical 
centers can better align their data processing pipelines to replicate the curators’ setting. 
Overall, dataset users have more agency over data if they understand the processes and 
choices that shape it [15].

Q9: Is there a peer‑reviewed scientific publication describing the data?

If a released dataset is accompanied by a scientific publication in a reputable journal, 
we consider it worthy of an extra point in our Venus score. The article should focus on 
the dataset and describe it in as much detail as possible (data-centric publication). A 
scientific paper that underwent independent peer-review and was then published in a 
biomedical journal indexed for example in PubMed [108] can provide additional guar-
antees for a dataset. This represents a form of permanent documentation guaranteeing 
data transparency regardless of future updates to data repositories. Not all publications 
are equal: as a rule of thumb, we recommend prioritizing open-access journals indexed 
in the Q1 category for health informatics or molecular biology of ScimagoJR [109, 110] 
(reputable).

Several reliable datasets were released together with trustworthy scientific pub-
lications, such as the MIMIC-III  [48] dataset of electronic health records and the 



Page 13 of 31Chicco et al. BioData Mining            (2025) 18:1  

GSE89413 [86] dataset of single-cell RNA-seq. A scientific article about a dataset con-
tains relevant information about it and favours the permanence of this information 
online: each paper published in an indexed scientific journal, in fact, has a unique code 
(called digital object identifier – DOI) and a public URL, that will be available online for 
a long time. In the case of open-access journals, the articles will be publicly available for 
free to anyone.

On the contrary, datasets without a publication and that only have a descriptive web-
page on Kaggle or on the UC Irvine ML Repository, typically have a more volatile docu-
mentation: those webpages can be deleted or edited at any time.

Q10: Is the dataset available online without restrictions and does it have a global ID 

associated?

The last question of our score regards the public availability of the dataset and whether 
a stable global persistent web identifier has been associated with it. Of course, publicly 
available datasets are the pillar of open science, in biomedical informatics, too. Datasets 
that are openly available without restrictions on the internet can be analyzed by anyone, 
at any time, and by any means, thereby encouraging more scrutiny and accelerating sci-
entific progress [111] (unrestricted).

Biomedical datasets can be publicly released on several websites, such as Figshare [29], 
Zenodo  [30], and University of California Irvine Machine Learning Repository  [31]. 
These websites, in addition to keeping datasets openly available to anyone, also associ-
ate a digital object identifier (DOI) with each of them, making them unique, findable, 
and durable (persistent). Datasets on these websites can be browsed and found through 
data search engines such as re3data [36], or Google Dataset Search [37]. Since retracted 
datasets can remain available through third-party sites such as academic torrents [112, 
113], we stress the importance of obtaining datasets from an official release made by its 
curators (official).

Overlap with EU AI Act, Datasheets for Dataset and Kaggle Dataset Usability Score

To be more precise regarding the relationship with the EU AI Act, the Kaggle Data-
set Usability Score, and Datasheets for Datasets, we report in Table  2 the mapping of 
each Venus score question with the fields and requirements of these three guidelines. 
The Venus score questions cover the AI Act data governance requirements and include 
two additional requisites on transparency related to open data and documentation. The 
Venus score has minor overlaps with the Kaggle Dataset Usability Score, which covers 
data provenance, licensing, and variable description. The remaining fields from the Kag-
gle Dataset Usability Score are clearly unrelated to it.

The third column of Table 2 lists the Datasheets for Datasets questions related to 
the EU AI act requirements and the additional desiderata covered by the Venus score. 
The frameworks differ in several ways. First, our questions are focused on the EU AI 
Act and the biomedical domain. For example, the 17th question of Datasheets for 
Datasets mentions subpopulations and their distribution and is therefore generally 
related to possible biases. Q5 in the Venus score recognizes the importance of joint 
distributions between target and sensitive attributes for algorithmic discrimination 
[114] and identifies attributes that are especially salient and conducive to inequitable 
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outcomes in the medical domain [115]. Second, over 50% of the Datasheets fo Data-
sets questions are not relevant to the EU data requirements and, therefore, unrelated 
to our proposed framework. For example, there is no overlap with the 12th question 
(“Are there recommended data splits (for example, training, development/validation, 
testing)?”) since it is specific to datasets used as public benchmarks, or with the 14th 
question (“Is the dataset self-contained?”), which is always true in our case.

Additionally, there is no overlap with the 37th–41st questions on data use or the 
50th–57th questions on data maintenance, because the EU AI act does not make spe-
cific provisions on these aspects.

Moreover, the 4th, 20th, 32nd, 36th, 49th, and 57th questions of Datasheets for 
Datasets, all asking the same question (“Any other comments?”) did not find room in 
our Venus score recommendations because of their ambiguity. All in all, only 20 ques-
tions out of 57 of Datasheets for Datasets are covered by our Venus score guidelines, 
that is 35%, clearly highlighting the different nature of our proposed set of questions.

Datasets
To test the effectiveness of our Venus score, we selected and collected twelve different 
biomedical datasets from different fields (health informatics, bioinformatics, physi-
ological signal processing, digital pathology, cheminformatics, and medical text), 
with different diseases (cancer, cardiac diseases, neurological illnesses, colon disease), 
available on multiple platforms (UC Irvine ML Repo, Figshare, PhysioNet, CRAN, 
GEO, ArrayExpress, TCIA, DREAM Challenges, and GitHub), and with different lev-
els of data access restrictions (Table 3).

Table 2 Main frameworks informing the Venus score. Questions from the Venus score support 
specific requirements from the AI Act as well as additional requirements for the availability of data 
and documentation. Each question is mapped to corresponding Datasheet items and Kaggle fields

Perm. doc Permanent documentation, Ext. val External validation, Kaggle score fields fields of the Kaggle Dataset Usability 
Score

Venus score EU AI act requirements questions Datasheets 
for datasets 
questions

Kaggle score fields Venus score 
additional 
desiderata

Q1 origin of data; purpose of data 
collection

1, 2, 21 provenance

Q2 privacy & data protection 15, 18, 28, 29, 46 license

Q3 geographic, contextual, & functional 
setting

22, 25

Q4 information represented by the data 9 column

description

Q5 possible biases 17

Q6 errors & shortcomings 10, 13

Q7 errors & shortcomings 13

Q8 data preparation 33, 40

Q9 perm. doc. &

ext. val.

Q10 44, 45, 46 open data
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Electronic health records Four datasets contain data from electronic health records, 
covering different diseases and available on different platforms: Mesothelioma Tur-
key [90], IBD Paris [88, 89], MIMIC-III [47, 84, 116], Paquid [117, 118].

Among them, MIMIC-III is perhaps the most famous dataset of intensive care 
unit (ICU) available online and, as the name suggests, it is the third release from a data-
base of patients admitted to the critical care units of the Beth Israel Deaconess Medical 
Center (USA): its predecessors were MIMIC [119] and MIMIC-II [120], and its only suc-
cessor for the moment is MIMIC-IV [48]. MIMIC-III is available on the curated Physio-
Net [46, 121] platform, with some restrictions, and it was released with a publication in 
the Scientific Data journal [47].

The Mesothelioma Turkey dataset  [90, 91] contains data from 324 Turkish patients 
with lung cancer and was released on the UC Irvine (UCI) ML Repository in 2016. Like 

Table 3 Schematic description of the datasets. acritical care: sepsis, acute respiratory distress 
syndrome, heart failure, pneumonia, and others. bmultiple cancers: primarily colon cancer, lung 
cancer, and breast cancer. References: reference to the article provided by the dataset landing 
webpage

BIT Beth Israel Hospital, CRAN Comprehensive R Archive Network, CVAD Cerebrovascular arterial disease, DBT Digital 
Breast Tomosynthesis, DREAM Dialogue for Reverse Engineering Assessment and Methods, ECG Electrocardiogram, 
electrocardiography, EEG Electroencephalography, EHRs Electronic health records, GEO Gene Expression Omnibus, IBD 
Inflammatory bowel disease, IHD Ischemic heart disease, MIMIC Medical Information Mart for Intensive Care, NLP Natural 
language processing, RNA-seq RNA-sequencing, TCIA The Cancer Imaging Archive, UC Irvine ML Repo University of California 
Irvine Machine Learning Repository

ID name field data type
D1 Mesothelioma Turkey medical informatics EHRs

D2 IBD Paris medical informatics EHRs

D3 MIMIC-III medical informatics EHRs

D4 Paquid medical informatics EHRs

D5 GSE16476 bioinformatics microarray gene expression

D6 E-MTAB-8248 bioinformatics microarray gene expression

D7 GSE79209 bioinformatics bulk RNA-seq gene expression

D8 EEG Motor Movement/Imagery physiologic signals brain EEG

D9 MIT-BIH ECG Arrhythmia physiologic signals heart ECG

D10 Breast Cancer Screening DBT digital pathology medical images

D11 DREAM Drug Synergy Challenge cheminformatics pharmacology and molecular data

D12 MedQuad NLP text

ID name disease repository references
D1 Mesothelioma Turkey mesothelioma UC Irvine ML Repo [90]

D2 IBD Paris IBD, IHD, and CVAD Figshare [88, 89]

D3 MIMIC-III critical  carea PhysioNet [47, 116]

D4 Paquid dementia CRAN [117, 118]

D5 GSE16476 neuroblastoma GEO [123, 124]

D6 E-MTAB-8248 neuroblastoma ArrayExpress [125, 126]

D7 GSE79209 lung cancer GEO [127, 128]

D8 EEG Motor Movement/Imagery neurologic conditions PhysioNet [129, 130]

D9 MIT-BIH ECG Arrhythmia arrhythmia PhysioNet [131, 132]

D10 Breast Cancer Screening DBT breast cancer TCIA [134, 135]

D11 DREAM Drug Synergy Challenge multiple  cancersb DREAM Challenges / Synapse [136, 137]

D12 MedQuad multiple diseases GitHub [138, 139]
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all datasets on the UCI ML Repo, it can be downloaded easily without any restriction or 
registration as a ZIP file with a single click.

Paquid is the only dataset of this list available within a software package – the lcmm 
software library in R [117, 122] – and contains longitudinal data of patients with men-
tal health conditions. It can be downloaded by installing the lcmm package within an R 
environment, without restrictions, although a basic familiarity with R is required. The 
IBD Paris dataset [88, 89], instead, was released by its curators on Figshare together with 
its peer-reviewed publication, and contains medical records of 90 French patients.

Bioinformatics In this domain, we selected three datasets covering two diseases and 
two different platforms: GSE16476 [123, 124] from GEO [40], E-MTAB-8248 [125, 126] 
from ArrayExpress [41], and GSE79209 [127, 128] also from GEO. The former two con-
tain microarray gene expression data, while the latter contains the more modern and 
advanced bulk RNA-seq data. These datasets are available on the just-mentioned plat-
forms for download without restrictions.

Physiologic signal processing We selected two datasets within this important field of 
biomedical informatics from PhysioNet. Both contain electrogram data: the EEG Motor 
Movement/Imagery [129, 130] of electroencephalography brain data and the MIT-BIH 
ECG Arrhythmia dataset [131–133] of electrocardiogram heart data. The Motor Move-
ment/Imagery dataset contains 1,500 EEG recordings of 109 subjects with several neu-
rological conditions, who performed experiments involving body movements. The MIT-
BIH dataset consists of ECG data from 49 patients with cardiac arrhythmias, which are 
irregular beats of the heart.

Medical imaging From medical imaging, we included the Breast Cancer Screening 
Digital Breast Tomosynthesis (DBT) dataset [134, 135], openly available on the Cancer 
Imaging Archive [44]. This dataset consists of DICOM files and, compared to the other 
datasets, stands out for its huge memory occupation: images in the training set occupy 
1.42 terabytes  (TB). In comparison, the IBD Paris  [88] dataset mentioned earlier con-
sists of a single XLSX file of 12.98 kilobytes (kB). The training set of the Breast Cancer 
Screening DBT occupies 110 million times as much space. The Breast Cancer Screen-
ing DBT dataset can be freely downloaded from TCIA without restrictions and without 
registration.

Chemical informatics We also evaluate the DREAM Drug Synergy Challenge  [136, 
137] dataset, a cheminformatics data resource publicly available on Synapse.org. A 
DREAM challenge is an online free competition where organizers provide data, data 
description, scientific questions to answer through data science tools, and a platform to 
upload results. Anyone can register for the challenge, download the data, analyze them, 
and submit their predictions on the test set. Teams that provide results closer to the test 
set ground truth win the challenge, and their members get the chance to be listed as first 
authors in the scientific paper written about the challenge. This dataset contains phar-
macology and molecular data provided by the AstraZeneca and Sanger pharma compa-
nies with the goal of predicting chemical compounds of effective drug combinations for 
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cancer via machine learning. The dataset is available for users registered to the challenge 
on Synapse.org.

Medical text The last dataset we utilized belongs to the medical text domain: Med-
Quad [138, 139]. MedQuad contains the text of 47,457 medical question-answer pairs 
derived from several websites, together with annotated XML files to facilitate informa-
tion retrieval and NLP tasks. The dataset was originally released on GitHub, where it is 
still available without restrictions, but is also present on Kaggle and Hugging Face.

Annotation process We collected information on each dataset from two sources, 
namely the main repositories where datasets have been published and the accompany-
ing peer-reviewed publications, if any. If a dataset was available in multiple repositories, 
we selected the original release when unambiguous; otherwise, we chose the repository 
linked by DataMed [140]. Within a dataset repository, we collected information concern-
ing that dataset from all its subpages (for example, “About”, “Getting started”, “Release 
notes”, ...) and consulted the terms of use and default licensing from the repository. From 
publications, we carefully read all sections, including supplementary materials. We con-
sulted the publication referenced in the landing page of a dataset; if more than one pub-
lication was referenced, we focused on the main (first) one. Based on this information, 
two authors annotated the Venus scores independently. We then worked on resolving 
disagreements, going from an initially strong (Pearson’s correlation coefficient ρ = 0.66 ) 
to a very strong final inter-annotator agreement(ρ = 0.96 ), as measured by Pearson’s 
correlation coefficient [141–143]; we finally averaged the annotations. We report addi-
tional details in Table 3, including the references we consulted for each dataset.

Results
We manually applied the ten questions of our Venus score described in  “Method: our 
proposed Venus score” section to the twelve datasets outlined in “Datasets” section, and 
we reported all the detailed results in Table 4. This section presents our results. First, we 
report a detailed analysis of data quality for each dataset (detailed analysis). Then, we 
describe the main trends emerging from this analysis (main trends). We summarized the 
numerical results in Table 4.

Detailed analysis For each question and each dataset, we gave a score of 0 if the speci-
fied information is completely absent from the dataset documentation (article and web-
page) or, vice versa, 1 if all aspects of a question are suitably treated. When partial infor-
mation was present, we inserted a real number in the [0.1; 0.9] interval.

The D1 dataset on Turkish mesothelioma has no information on potential inac-
curacy (Q6), noise (Q7), and data preparation (Q8). On the other hand, it meets 
all the criteria for public availability (Q10). Moreover, D1 partially satisfies the first 
five requirements of the Venus score: we noticed some information on demographic 
attributes (Q5) and saw that the variables are documented, but not their values (Q4). 
Basic information on the context where the data were collected and on the purpose 
of this dataset are also lacking (Q1), making D1 the lowest-scoring dataset for this 
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Table 4 Results of the application of our Venus score to the twelve datasets. The description of the 
Q1–Q10 questions of our Venus score can be found in “Method: our proposed Venus score” section, 
and the description of the D1–D12 datasets can be found in “Datasets” section

D1 D2 D3 D4
Mesoth. Turkey IBD Paris MIMIC‑III Paquid

Q1 Origin, context, and purpose 0.3 1 1 0.65

Q2 Data protection measures and license 0.35 0.6 1 0

Q3 Devices, medical centers, & collection 
periods

0.15 0.75 1 0.7

Q4 All variables and their values explained 0.4 0.85 1 0.9

Q5 Protected attributes 0.5 0.63 0.5 0.95

Q6 Potential inaccuracy 0 0 0.3 0.3

Q7 Noise 0 0 0.05 0

Q8 Data preparation 0 0.65 0.6 0.32

Q9 Peer-reviewed scientific publication 0 1 1 0.9

Q10 Online open availability and global ID 1 1 1 0.3

total 2.7 6.48 7.45 5.02

D5 D6 D7 D8
GSE16476 E‑MTAB‑8248 GSE79209 EEG Motor

Q1 Origin, context, and purpose 0.8 1 1 0.6

Q2 Data protection measures and license 0.15 0.45 0.7 0.25

Q3 Devices, medical centers, & collection 
periods

0.6 0.5 1 0.35

Q4 All variables and their values explained 1 1 1 0.6

Q5 Protected attributes 0.7 0.5 0.85 0

Q6 Potential inaccuracy 0 0 0.2 0

Q7 Noise 0.05 0.15 0.35 0

Q8 Data preparation 0.42 0.32 1 0.4

Q9 Peer-reviewed scientific publication 1 0.5 1 0.5

Q10 Online open availability and global ID 1 1 1 1

total 5.72 5.42 8.1 3.7

D9 D10 D11 D12
MIT‑BIH ECG Breast DBT DREAM drugs MedQuad

Q1 Origin, context, and purpose 1 1 0.9 1

Q2 Data protection measures and license 0.25 0.5 0.45 0.45

Q3 Devices, medical centers, & collection 
periods

1 0.6 0.75 0.6

Q4 All variables and their values explained 0.42 1 1 1

Q5 Protected attributes 0.4 0.5 0.05 0

Q6 Potential inaccuracy 0.9 0.1 0.3 0.1

Q7 Noise 1 0 0.2 0.1

Q8 Data preparation 1 0.9 0.58 0.58

Q9 Peer-reviewed scientific publication 1 1 0.75 1

Q10 Online open availability and global ID 1 1 0.75 0.6

total 7.97 6.6 5.73 5.43

average for stdev for min for max for
each each each each
question question question question

Q1 Origin, context, and purpose 0.85 0.23 0.3 1

Q2 Data protection measures and license 0.43 0.23 0.3 1

Q3 Devices, medical centers, & collection 
periods

0.67 0.23 0.15 1

Q4 All variables and their values explained 0.85 0.26 0.15 1
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question. We assigned a final mark of 2.70 out of 10 for this dataset, which is the low-
est among the twelve datasets analyzed (Table 4).

The D2 French inflammatory bowel disease dataset is fully available on Figshare [89] 
(Q10), with an accompanying peer-reviewed publication  [88] (Q9), which provides 
complete contextual information (Q1). We assigned partial, high marks to the ques-
tions on data protection (Q2), devices, medical centers and collection periods (Q3), 
finding most of the information in the dataset article. The majority of the variables 
and their values are correctly documented (Q4), and the marginal distribution of sex 
and age is characterized (Q5). We found no information on the potential inaccuracy 
and the noise within the dataset (Q6 and Q7). All in all, we assigned 6.48 out of 10 to 
this dataset.

The third dataset we assessed is D3 MIMIC-III, which obtained a high mark of 7.45. 
Six questions had complete information and therefore maximum points (Q1–Q4, 
Q9, Q10). We found just a mention regarding the device name, and little information 
on sources of inaccuracy (Q6) and data cleaning (Q8) in the dataset release notes. A 
wide array of protected attributes are available with the data (Q5), including patients’ 
insurance status, language, and religion, allowing for the computation of rich mar-
ginal and joint statistics.

For Paquid  (D4), we found no information regarding data protection measures 
(Q2), and noise (Q7). The dataset is only available within a software library of R and 
without a unique identifier (Q10). Collection periods are available (Q3), however, 
we found no information on how the subset of the original cohort was selected or 
how these data were collected. Partial and insufficient information about potential 
inaccuracy (Q6) and data preparation (Q8) was identified in the dataset documen-
tation. Paquid identifies subpopulations based on educational level, gender, and age; 
the accompanying documentation describes their joint distribution with Alzheimer’s 
disease and dementia, providing reference values from the literature (Q5). The overall 
score is 5.02.

Moving on to gene expression data, the D5 GSE16476 dataset, describing patients 
diagnosed with neuroblastoma, represents a mixed bag. On the positive side, we 
found all the information regarding the variables (gene probesets  [144] within the 
specified Affymetrix platform) and their values (Q4), a peer-reviewed publication 
(Q9), and the open availability of the dataset with a stable ID on GEO (Q10). Criti-
cally, we found little information on data protection (Q2), data curation purpose (Q3), 

DBT Digital Breast Tomosynthesis, DREAM Dialogue for Reverse Engineering Assessment and Methods, ECG 
Electrocardiogram, electrocardiography, EEG Electroencephalography, IBD Inflammatory bowel disease, MIT-BIH 
Massachusetts Institute of Technology-Beth Israel Hospital, Mesoth Mesothelioma, stdev standard deviation

Table 4 (continued)

Q5 Protected attributes 0.46 0.26 0 0.95

Q6 Potential inaccuracy 0.18 0.31 0 0.9

Q7 Noise 0.16 0.31 0 1

Q8 Data preparation 0.56 0.29 0 1

Q9 Peer-reviewed scientific publication 0.8 0.29 0 1

Q10 Online open availability and global ID 0.89 0.32 0 1

total 5.86 0.32 2.7 8.1
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sources of inaccuracy (Q6), and noise (Q7). This resulted in a score of 5.72; overall, 
the dataset seems to be released more for experts who already have a deep knowledge 
of microarray gene expression and Affymetrix than for beginners.

For D6 (E-MTAB-8248), also covering neuroblastoma and microarray gene expres-
sion, we found complete information regarding origin, context, and purpose (Q1), the 
documentation for all the variables and their values (Q5), and we noticed open avail-
ability for the dataset without restrictions and including a DOI on ArrayExpress (Q10). 
We found no information on collection periods (Q3) and limited information on data 
protection (Q2); the accompanying peer-reviewed publication focuses on analyzing the 
data rather than presenting it (Q9), limiting its utility. We found no information about 
sources of inaccuracy (Q6) and noise (Q7). We therefore assigned to this dataset a mark 
of 5.42 out of 10.

The D7 GSE79209 dataset stands out as highly trustworthy with an overall score of 8.1. 
Six questions of the Venus score (Q1, Q3, Q4, Q8, Q9, and Q10) are completely satisfied, 
and two deserved partial, high scores: curators paid attention to data protection (Q2), 
mentioning the informed consent elicitation, and to protected attributes such as sex and 
age, including their joint distribution with pre-malignant lesion status (Q5). This dataset 
attained low scores only for potential inaccuracy (Q6) and noise (Q7), which are not suf-
ficiently described. Overall, this dataset release represents a great example of trustwor-
thy data thanks to its thorough documentation.

The D8 EEG Motor Movement/Imagery dataset, conversely, has several drawbacks. 
We noticed no information on demographic attributes (Q5), potential inaccuracy (Q6), 
and noise (Q7); we found information about the dataset license but not on data pro-
tection (Q2). Medical centers and collection periods are not mentioned (Q3) and the 
description of variables and their values is incomplete (Q4). Moreover, we noticed that 
the scientific article linked to this dataset [130] is about the technology used to collect 
this dataset rather than the data themselves. We eventually assigned a score of 3.7 to 
this dataset which, even if available on the popular platform PhysioNet, lacks pivotal 
information.

The D9 MIT-BIH ECG dataset, also consisting of electrogram data stored on Physio-
Net, obtained the second-best mark of our study: 7.97 out of 10. This dataset attained 
maximum scores for 6 questions (Q1, Q3, Q7, Q8, Q9, and Q10), and a high score for 
the information on potential inaccuracy (Q6), which was clearly explained and charac-
terized in the article, including, for instance, the frequency of the main disturbances. 
The documentation is lacking in regards to data protection (Q2), variable explanation 
(Q4), and protected subpopulations (Q5).

The D10 Breast Cancer DBT provides thorough information on its variables (Q4), ori-
gin and context (Q1) through a data-centric peer-reviewed publication (Q9) and an open 
data release (Q10); data preparation is also described in detail (Q8). On the other hand, 
we found almost no information about noise (Q7), potential inaccuracy (Q6), and medi-
cal devices (Q3), and partial information on data protection (Q2) and protected attrib-
utes (Q5). In the end, we assigned a mark of 6.6 out of 10 to this dataset.
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The D11 DREAM Drug Synergy Challenge dataset, focusing on cheminformatics, 
obtained an overall score of 5.73. This dataset obtained no score equal to 0 and only 
one equal to 1, for the variables’ explanations and their documentation (Q4). The dataset 
fares well in questions on origin, context, and purpose (Q1), devices, medical centers, 
and collection periods (Q3), but lacks detail in other scientific and technical questions. 
The accompanying peer-reviewed publication  [137] focuses on the results of the 
DREAM challenge rather than the dataset itself (Q9). The dataset is available after regis-
tration on Synapse.org (Q10).

D12 MedQuad also provides mixed results with high scores for context (Q1) and peer-
reviewed publication (Q9), intermediate scores for data protection (Q2) and collection 
period (Q3), and low scores for protected attributes (Q5) and sources of inaccuracy 
(Q6). It is worth noting that MedQuad is publicly available, but does not have a DOI 
(Q10), making it difficult to unambiguously and persistently reference it. In the end, we 
assigned the 5.43 mark to this dataset (Table 4).

Main trends The summary statistics in the bottom part of Table 4 show that most data-
sets have high scores for origin, context and purpose (Q1 average = 0.85), explanation of 
variables and their values (Q4 average = 0.85), presence of a peer-reviewed publication 
(Q9 average = 0.8), and public availability (Q10 average = 0.89). High scores for Q9 and 
Q10 come with no surprise, since we selected mostly public datasets and it is common 
practice for curators of biomedical datasets to release a peer-reviewed publication about 
them. Also in line with curators’ ambition to increase the adoption of their datasets is 
providing enough information about the context surrounding a dataset (Q1) and its vari-
ables (Q4). On the other hand, the twelve datasets attained low scores for sources of 
potential inaccuracy (Q6 average = 0.18) and noise (Q7 average = 0.16): unfortunately, 
these two important aspects are often neglected in dataset documentation  [145]. We 
analyze and interpret this finding in more detail in “Discussion and conclusions” section.

Among questions with more nuanced results, we find that data protection meas-
ures can be neglected (Q2 average = 0.43). Most datasets specify a license and, less 
frequently, stringent terms of use that explicitly forbid the identification of individuals 
(MIMIC-III). Very little information is provided on consent and de-identification. For 
de-identification, we found only one description of the adopted measures (MIMIC-III). 
For consent, two datasets mention consent waivers (Breast DBT, and MIMIC-III), and 
two datasets say that individual consent was obtained (Paquid, and GSE79209), with-
out describing the elicitation procedure. Finally, three datasets mention IRB approval 
from faculty or data protection authorities (IBD Paris, E-MTAB-8248, and GSE79209). 
Biomedical data exist in a complex privacy landscape with evolving best practices [146, 
147]. The surveyed resources give users little information to decide whether they can 
ethically and lawfully process this data.

Some protected attributes are available with most datasets (Q5 average = 0.46). Typi-
cally they encode information on sex and age. Less common attributes include insurance 
(MIMIC-III), marital status (MIMIC-III), religion (MIMIC-III), language (MIMIC-III), 
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ethnicity (MIMIC-III), race (Breast DBT), and education (Paquid). Documentation does 
not report how this data was obtained, despite the importance of this information [148]. 
Additionally, it is exceedingly rare for documentation to describe the joint distribution 
of demographic attributes and important variables in the dataset. Paquid is an exception; 
accompanying documentation provides a thorough discussion on the incidence of Alz-
heimer’s disease and dementia across age and sex [118].

The highest-scoring datasets are GSE79209 (average = 8.1), MIT-BIH ECG Arrhyth-
mia (average = 7.97), and MIMIC-III (average = 7.45). They are hosted in specialized 
repositories such Gene Expression Omnibus and PhysioNet with well-specified domain-
specific documentation requirements [149, 150]. The lowest-scoring datasets are Meso-
thelioma Turkey (average = 2.7) and EEG Motor Movement/Imagery (average = 3.7). 
The former is released on the UC Irvine ML Repo, a general-purpose machine learning 
repository. The latter was published on PhysioNet in 2009, ten years before the platform 
released its detailed guidelines for data sharing.

Discussion and conclusions

Discussion A growing number of biomedical datasets have become available online in 
the last decades, supporting the development of numerous data science projects and AI 
applications worldwide. Secondary usage of biomedical data, in particular, can facilitate 
new scientific discoveries with a strong impact on patients. A statement on the website 
of the American Medical Informatics Association (AMIA) on the importance of second-
ary data analysis in biomedical sciences, in 2008, asserts:

“Secondary use of health data can enhance health care experiences for individuals, 
expand knowledge about disease and appropriate treatments, strengthen under-
standing about the effectiveness and efficiency of our health care systems, support 
public health and security goals, and aid businesses in meeting the needs of their 
customers.” [22, 151]

Unfortunately, not all datasets are of sufficient quality and trustworthiness to be utilized 
in a biomedical study: some of them have errors, inconsistencies, or drawbacks that make 
them unreliable. Sometimes, these problems are not immediately evident and, there-
fore, can be overlooked or neglected by data science practitioners, obtaining misleading 
results. These misleading results, in turn, if taken into account by medical doctors, can 
produce negative consequences on patients [11]. The main principle of medicine is pri-
mum, non nocere (first, do no harm): we firmly believe this rule is also valid for data sci-
ence and computational intelligence applied to biomedical research [152].

We developed our Venus score and its questions with this goal in mind: to provide a 
tool that can assess the reliability and trustworthiness of biomedical data. A high Venus 
score denotes a low barrier for appropriate data usage and indicates the availability of 
suitable information to compile technical documentation, in line with data governance 
requirements set forth in recent regulation [62]. Overall it supports informed choices 
for dataset users and encourages dataset curators to share appropriate information. It 
is worth noting that the Venus score does not apply only to online datasets, but also 
to datasets received in person from medical professionals at a hospital, for example. If 
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the quality and the trustworthiness of a biomedical dataset are insufficient, we advise 
researchers to demand the missing information or to seek alternative data of higher 
quality.

Applying the Venus score to popular datasets we surfaced a worrying trend, namely 
a generalized lack of information on noise and potential sources of inaccuracy in bio-
medical datasets. This information is crucial to let practitioners and researchers rea-
son about the results they obtain from the data and how they may generalize to new 
settings. Unfortunately, so far, dataset curators have had few incentives to reflect on 
the limitations and undesirable aspects of their data. With our new documentation 
framework inspired by the AI Act, which recently entered into force, we encourage 
curators to reflect more critically on sources of noise and inaccuracy in their data. 
This is a necessary part of curation, a legal requirement for AI systems deployed 
in the medical domain, and, ultimately, a sign of a mature data ecosystem. We also 
encourage paper reviewers and data repository organizers to be more demanding 
about this aspect. It is worth noting that this trend would not have been highlighted 
by Datasheets for Datasets, where this information weights less than 2% of the ques-
tionnaire (as opposed to 20% of the Venus framework), or by the Kaggle Dataset Usa-
bility Score, where it is completely neglected.

Our results showed that only a few datasets among the ones considered reached a 
sufficient evaluation: only five datasets out of twelve attained a Venus score higher 
than 6 on 10. Two datasets stood out, reaching scores around 80%, both origi-
nating from greater Boston (Massachusetts, USA), a leading area for biomedical 
research [153]: the D7 GSE79209 dataset of bulk RNA-seq of patients diagnosed with 
lung cancer from Boston University and the D9 MIT-BIH dataset of electrocardi-
ography signals of patients with arrhythmia from MIT. The former was released in 
2017, and the latter in 1989, showing that good practices of data documentation can 
be independent of dataset age, despite growing awareness about this topic in recent 
years [11, 64]. Unlike other datasets, the curators of both D7 and D9 datasets paid 
great attention to patient privacy, data preparation, sources of inaccuracy, and noise. 
The high score of these datasets is likely favored by the release and maintenance 
standards of the specialized repositories where they are hosted. Of course, this factor 
is insufficient on its own, but it contributes to incentivizing thorough documentation 
by dataset curators.

Added value and envisioned use Our proposed Venus score can be of great advantage 
for several subjects. Data curators developing a new biomedical dataset can assess their 
documentation against the Venus score items, before releasing it publicly. Low-scoring 
items should prompt curators to enhance their documentation accordingly. Moreover, 
data users and researchers who find a dataset online can apply the Venus score to meas-
ure its reliability and trustworthiness, before performing their scientific analyses. Finally, 
watchdogs can use the Venus framework as a checklist for data quality requirements, 
including the main ones described in the AI Act.

Furthermore, we envision data repositories (Figshare, PhysioNet, Zenodo, UC 
Irvine ML Repository, and others) using our Venus score questions as a standard 
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checklist for submitted datasets, making summaries of data trustworthiness imme-
diately available to anyone downloading any dataset. Performing this in a centralized 
fashion across hundreds of datasets may be cumbersome; a dedicated comment sec-
tion may encourage selected users to perform this evaluation and share it with the 
wider community, potentially prompting curators to review their documentation in 
an iterative fashion.

In sum, the Venus score contributes a compact set of questions that practitioners and 
researchers can use to reason about data trustworthiness and improve it. The numerical 
weighting scheme adopted in this article was chosen for two reasons: (1) it simplifies broad 
comparisons across diverse datasets and topics and (2) it provides an example of how this 
questionnaire can become a score; indeed, metrics and scores can introduce an element 
of gamification to data repositories and help improve the quality of shared data [154, 155].

Limitations Our work has some limitations. First, the proposed Venus score is not a 
stand-alone score for dataset selection. Complementary considerations are necessary to 
guide dataset adoption, including an evaluation of its representativeness for the context 
at hand. Second, answering the questionnaire and converting these answers into a score 
is subjective. This concern is partly mitigated if a precise weighting scheme is available. 
Additionally, the adoption of a single score to summarize a whole dataset may exces-
sively aggregate a wealth of underlying information. Devoting attention to each question 
score (and verbose answer) remains fundamental to understanding the critical aspects 
of a dataset. Third, “Results”  section focuses on publicly available datasets and their 
main documentation artifacts, influencing some of the trends we find. For example, a 
low Venus score in Table 4 signals that the key information about a dataset is not readily 
available on its release page and main accompanying article; in theory, this information 
may be available in less visible materials. Finally, we designed our Venus score for real 
data, not for simulated data. Simulated, synthetic, synthesized, and artificial data might 
need different criteria for quality and trustworthiness assessments.

Future directions Future work may consider expediting the calculation of our Venus 
score with semi-automated methods  [156], since assessment in this work was fully 
manual and, therefore, time-consuming. Documentation sparsity should also be tack-
led: documentation analyses are complicated by the fact that information is often dis-
tributed among data repositories, readme files, websites, and publications. We envision 
an extension of the Venus score that rewards the compactness of available documenta-
tion and penalizes sparsity. Our Venus score will also be easily applicable to next-gener-
ation biomedical data types, such as whole-side bioimages [157–159] or single nucleus 
RNA sequencing (snRNA-seq) data  [160]. Additionally, we will study how to integrate 
the Venus score into health standards, such as the HL7 fast healthcare interoperability 
resources (FHIR) protocol [161]. Finally, we envision exploiting selected components of 
the Venus score for assessing the readiness of biomedical datasets, based on the already-
known data readiness levels [162–165] and similar concepts [166, 167].



Page 25 of 31Chicco et al. BioData Mining            (2025) 18:1  

Abbreviations
AI  Artificial intelligence
BIT  Beth Israel Hospital
CITI  MIT Collaborative Institutional Training Initiative
CRAN  Comprehensive R Archive Network
CSV  Comma-separated values
DBT  Digital Breast Tomosynthesis
DICOM  Digital Imaging and Communications in Medicine
DOI  Digital object identifier
DREAM  Dialogue for Reverse Engineering Assessment and Methods
ECG  Electrocardiogram, electrocardiography
EEG  Electroencephalography
EHR  Electronic health record
EU  European Union
FAIR  Findability, accessibility, interoperability, and reusability
FHIR  Fast healthcare interoperability resources
GAAIN  Global Alzheimer’s Association Interactive Network
GEO  Gene Expression Omnibus
GSE  GEO Series
HL7  Health Level 7
kB  Kilobytes
IBD  Inflammatory bowel disease
ICU  Intensive care unit
IRB  Institutional review board
MAIDA  Medical AI Data for All
MIMIC  Medical Information Mart for Intensive Care
MIT  Massachusetts Institute of Technology
ML  Machine learning
NLP  Natural language processing
ODS  OpenDocument spreadsheet
PHI  Protected health information
RECORD  REporting of studies Conducted using Observational Routinely collected health Data
RNA-seq  RNA-sequencing
RNA  Ribonucleic acid
snRNA-seq  Single nucleus RNA sequencing
SRA  Sequence Read Archive
TCGA   The Cancer Genome Atlas
TCIA  The Cancer Imaging Archive
UC Irvine ML Repo  University of California Irvine Machine Learning Repository
URL  Uniform resource locator
XLSX  Microsoft Office Open XML

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13040- 024- 00412-x.

Supplementary Material 1

Supplementary Material 2

Acknowledgements
The authors thank all the anonymous patients who agreed to donate their data to scientific research worldwide.

Authors’ contributions
D. C. conceived the study, designed its structured, acquired, analyzed, and interpreted the data, drafted the article, and 
substantively revised it. A. F. designed the work, acquired, analyzed, and interpreted the data, drafted the article, and sub-
stantively revised it. G. J. coordinated and supervised the study, contributed to the writing of the article, and reviewed 
the article. All the authors approved the current version of the manuscript and its submission.

Funding
The work of D.C. is funded by the European Union - Next Generation EU programme, in the context of the National 
Recovery and Resilience Plan, Investment Partenariato Esteso PE8 “Conseguenze e sfide dell’invecchiamento”, Project 
Age-It (Ageing Well in an Ageing Society) and partially supported by Ministero dell’Università e della Ricerca of Italy 
under the “Dipartimenti di Eccellenza 2023-2027” ReGAInS grant assigned to Dipartimento di Informatica Sistemistica e 
Comunicazione at Università di Milano-Bicocca.
 The work by A.F. is supported by the FINDHR project (Horizon Europe grant agreement ID: 101070212) and by the 
Alexander von Humboldt Foundation.
 The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the 
manuscript.

https://doi.org/10.1186/s13040-024-00412-x


Page 26 of 31Chicco et al. BioData Mining            (2025) 18:1 

Data availability
No datasets were generated or analysed during the current study.

Declarations

Ethics approval and consent to participate
The consents for the usage of the patients’ data employed in our analysis were obtained by the original curators of those 
datasets and listed in their references (Table 3).

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 1 August 2024   Accepted: 2 December 2024

References
 1. The Hammond Times. Work with new electronic ‘brains’ opens field for army math experts. https:// web. archi ve. 

org/ web/ 20230 41018 3037/, https:// www. newsp apers. com/ clip/ 50687 334/ the- times/. Article published on 10th 
November 1957; saved on NewsPapers.com on 10th April 2023; Wayback Machine URL visited on 8th November 
2024.

 2. Babbage C. Passages from the Life of a Philosopher. London: Longman; 1864.
 3. Fenza G, Gallo M, Loia V, Orciuoli F, Herrera-Viedma E. Data set quality in Machine Learning: consistency measure 

based on Group Decision Making. Appl Soft Comput. 2021;106(107366):107366.
 4. Chen Q, Britto R, Erill I, Jeffery CJ, Liberzon A, Magrane M, et al. Quality matters: biocuration experts on the 

impact of duplication and other data quality issues in biological databases. Genomics Proteomics Bioinforma. 
2020;18(2):91–103.

 5. Budach L, Feuerpfeil M, Ihde N, Nathansen A, Noack N, Patzlaff H, et al. The effects of data quality on machine 
learning performance. 2022. arXiv: 2207. 14529.

 6. Simson J, Fabris A, Kern C. Lazy data practices harm fairness research. 2024. arXiv: 2404. 17293.
 7. Foidl H, Felderer M, Ramler R. Data smells. In: Proceedings of CAIN ’22 – the 1st International Conference on AI 

Engineering: Software Engineering for AI. New York City: ACM; 2022.
 8. Pasquetto IV, Cullen Z, Thomer A, Wofford M. What is research data “misuse”? And how can it be prevented or 

mitigated? J Assoc Inf Sci Technol. 2024.
 9. Hughes LD, Tsueng G, DiGiovanna J, Horvath TD, Rasmussen LV, Savidge TC, et al. Addressing barriers in FAIR data 

practices for biomedical data. Sci Data. 2023;10(1):98. https:// doi. org/ 10. 1038/ s41597- 023- 01969-8.
 10. Saenz A, Chen E, Marklund H, Rajpurkar P. The MAIDA initiative: establishing a framework for global medical-imag-

ing data sharing. Lancet Digit Health. 2024;6(1):e6–8. https:// doi. org/ 10. 1016/ s2589- 7500(23) 00222-4.
 11. Sambasivan N, Kapania S, Highfill H, Akrong D, Paritosh P, Aroyo LM. “Everyone wants to do the model work, not 

the data work”: data cascades in High-Stakes AI. In: Proceedings of CHI ’21 – the 2021 CHI Conference on Human 
Factors in Computing Systems. ACM; 2021. pp. 1–15. https:// doi. org/ 10. 1145/ 34117 64. 34455 18.

 12. Bernardi FA, Alves D, Crepaldi N, Yamada DB, Lima VC, Rijo R. Data quality in health research: integrative literature 
review. J Med Internet Res. 2023;25:e41446. https:// doi. org/ 10. 2196/ 41446.

 13. Ehsani-Moghaddam B, Martin K, Queenan JA. Data quality in healthcare: A report of practical experience with the 
Canadian primary care sentinel surveillance network data. Health Inf Manag J. 2019;50(1–2):88–92. https:// doi. org/ 
10. 1177/ 18333 58319 887743.

 14. Cychnerski J, Dziubich T. Process of medical dataset construction for machine learning-multifield study and guide-
lines. In: Proceedings of ADBIS 2021 – the 23rd European Conference on Advances in Databases and Information 
Systems. Springer; 2021. pp. 217–229.

 15. Rostamzadeh N, Mincu D, Roy S, Smart A, Wilcox L, Pushkarna M, et al. Healthsheet: development of a Transpar-
ency Artifact for Health Datasets. In: Proceedings of FAccT ’22 – the 5th Annual ACM Conference on Fairness, 
Accountability, and Transparency, Seoul, South Korea. ACM; 2022. pp. 1943–1961.

 16. Tute E, Ganapathy N, Wulff A. A data driven learning approach for the assessment of data quality. BMC Med Inf 
Decis Mak. 2021;21(1):302. https:// doi. org/ 10. 1186/ s12911- 021- 01656-x.

 17. Chicco D, Cumbo F, Angione C. Ten quick tips for avoiding pitfalls in multi-omics data integration analyses. PLoS 
Comput Biol. 2023;19(7):e1011224.

 18. Johnson SG, Speedie S, Simon G, Kumar V, Westra BL. A data quality ontology for the secondary use of EHR data. 
In: Proceedings of the AMIA 2015 Annual Symposium, vol. 2015. American Medical Informatics Association; 2015. 
p. 1937.

 19. Weiskopf NG, Weng C. Methods and dimensions of electronic health record data quality assessment: enabling 
reuse for clinical research. J Am Med Inform Assoc. 2013;20(1):144–51.

 20. Lewis AE, Weiskopf NG, Abrams ZB, Foraker R, Lai AM, Payne PRO, et al. Electronic health record data quality assess-
ment and tools: a systematic review. J Am Med Inform Assoc. 2023;30(10):1730–40.

 21. Knake LA, Ahuja M, McDonald EL, Ryckman KK, Weathers N, Burstain T, et al. Quality of EHR data extrac-
tions for studies of preterm birth in a tertiary care center: guidelines for obtaining reliable data. BMC Pediatr. 
2016;16(1):1–8.

https://web.archive.org/web/20230410183037/
https://web.archive.org/web/20230410183037/
https://www.newspapers.com/clip/50687334/the-times/
http://arxiv.org/abs/2207.14529
http://arxiv.org/abs/2404.17293
https://doi.org/10.1038/s41597-023-01969-8
https://doi.org/10.1016/s2589-7500(23)00222-4
https://doi.org/10.1145/3411764.3445518
https://doi.org/10.2196/41446
https://doi.org/10.1177/1833358319887743
https://doi.org/10.1177/1833358319887743
https://doi.org/10.1186/s12911-021-01656-x


Page 27 of 31Chicco et al. BioData Mining            (2025) 18:1  

 22. Botsis T, Hartvigsen G, Chen F, Weng C. Secondary use of EHR: data quality issues and informatics opportunities. 
Summit Transl Bioinforma. 2010;2010:1.

 23. Weiskopf NG, Bakken S, Hripcsak G, Weng C. A Data Quality Assessment guideline for electronic health record data 
reuse. eGEMs J. 2017;5(1):14.

 24. Stirling K. Development of a multi-factorial data quality score for primary care electronic medical records 
[Master of Science thesis]. London: the University of Western Ontario; 2022.

 25. Fadahunsi KP, Akinlua JT, O’Connor S, Wark PA, Gallagher J, Carroll C, et al. Protocol for a systematic review and 
qualitative synthesis of information quality frameworks in eHealth. BMJ Open. 2019;9(3):e024722. https:// doi. 
org/ 10. 1136/ bmjop en- 2018- 024722.

 26. Zeeberg BR, Riss J, Kane DW, Bussey KJ, Uchio E, Linehan WM, et al. Mistaken identifiers: gene name errors can 
be introduced inadvertently when using Excel in bioinformatics. BMC Bioinformatics. 2004;5:1–6.

 27. Lewis D. Autocorrect errors in Excel still creating genomics headache. Nature. 2021.
 28. Koh CWT, Ooi JSG, Joly GLC, Chan KR. Gene Updater: a web tool that autocorrects and updates for Excel misi-

dentified gene names. Sci Rep. 2022;12(1):1–7.
 29. Figshare. Store, share, discover research. https:// www. figsh are. com. URL visited on 8th November 2024.
 30. Zenodo. Research, shared. https:// www. zenodo. org. URL visited on 8th November 2024.
 31. University of California Irvine. Machine Learning Repository. https:// archi ve. ics. uci. edu/. URL visited on 8th 

November 2024.
 32. Iglovikov V, Mushinskiy S, Osin V. Satellite imagery feature detection using deep convolutional neural network: 

a Kaggle competition. 2017. arXiv preprint arXiv: 1706. 06169.
 33. Quaranta L, Calefato F, Lanubile F. KGTorrent: A dataset of python jupyter notebooks from kaggle. In: Proceed-

ings of MSR 2021 – the 18th IEEE/ACM International Conference on Mining Software Repositories. IEEE; 2021. 
pp. 550–554.

 34. Graham B. Kaggle diabetic retinopathy detection competition report. Univ Warwick. 2015;22(9):1–9.
 35. Hugging Face. The AI community building the future. https:// huggi ngface. co/ datas ets. URL visited on 8th 

November 2024.
 36. re3data. Registry of research data repositories. https:// www. re3da ta. org/. URL visited on 8th November 2024.
 37. Google. Dataset search. https:// datas etsea rch. resea rch. google. com/. URL visited on 8th November 2024.
 38. Toga AW, Neu SC, Bhatt P, Crawford KL, Ashish N. The global Alzheimer’s association interactive network. 

Alzheimers Dement. 2016;12(1):49–54.
 39. The Global Alzheimer’s Association Interactive Network. GAAIN data: 523,957 subjects online from 66 GAAIN 

data partners. https:// www. gaain data. org/ partn ers/ online. html. URL visited on 8th November 2024.
 40. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array 

data repository. Nucleic Acids Res. 2002;30(1):207–10.
 41. Brazma A, Parkinson H, Sarkans U, Shojatalab M, Vilo J, Abeygunawardena N, et al. ArrayExpress–a public 

repository for microarray gene expression data at the EBI. Nucleic Acids Res. 2003;31(1):68–71.
 42. Kodama Y, Shumway M, Leinonen R. The Sequence Read Archive: explosive growth of sequencing data. 

Nucleic Acids Res. 2012;40(D1):D54–6.
 43. Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K, et al. The Cancer Genome Atlas pan-

cancer analysis project. Nat Genetics. 2013;45(10):1113–20.
 44. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, et al. The Cancer Imaging Archive (TCIA): maintaining 

and operating a public information repository. J Digit Imaging. 2013;26:1045–57.
 45. Prior F, Smith K, Sharma A, Kirby J, Tarbox L, Clark K, et al. The public cancer radiology imaging collections of 

the Cancer Imaging Archive. Sci Data. 2017;4(1):1–7.
 46. Moody GB, Mark RG, Goldberger AL. PhysioNet: a web-based resource for the study of physiologic signals. IEEE 

Eng Med Biol Mag. 2001;20(3):70–5.
 47. Johnson AEW, Pollard TJ, Shen L, Lehman LWH, Feng M, Ghassemi M, et al. MIMIC-III, a freely accessible critical 

care database. Sci Data. 2016;3(1). https:// doi. org/ 10. 1038/ sdata. 2016. 35.
 48. Johnson AEW, Bulgarelli L, Shen L, Gayles A, Shammout A, Horng S, et al. MIMIC-IV, a freely accessible elec-

tronic health record dataset. Sci Data. 2023;10(1):1.
 49. Khan SM, Liu X, Nath S, Korot E, Faes L, Wagner SK, et al. A global review of publicly available datasets for oph-

thalmological imaging: barriers to access, usability, and generalisability. Lancet Digit Health. 2021;3(1):e51–66.
 50. Chicco D, Cerono G, Cangelosi D. A survey on publicly available open datasets derived from electronic health 

records (EHRs) of patients with neuroblastomaa. Data Sci J. 2022;21(1):17.
 51. Salati M, Falcoz PE, Decaluwe H, Rocco G, Van Raemdonck D, Varela G, et al. The European thoracic data quality 

project: an aggregate Data Quality score to measure the quality of international multi-institutional databases. 
Eur J Cardiothorac Surg. 2015;49(5):1470–5. https:// doi. org/ 10. 1093/ ejcts/ ezv385.

 52. Jones G, Jenkinson C, Taylor N, Mills A, Kennedy S. Measuring quality of life in women with endometriosis: 
tests of data quality, score reliability, response rate and scaling assumptions of the Endometriosis Health 
Profile Questionnaire. Hum Reprod. 2006;21(10):2686–93.

 53. Gupta N, Patel H, Afzal S, Panwar N, Mittal RS, Guttula S, et al. Data quality toolkit: automatic assessment of 
data quality and remediation for machine learning datasets. 2021. arXiv: 2108. 05935.

 54. Hickey D, Connor R, McCormack P, Kearney P, Rosti R, Brennan R. The data quality index: improving data qual-
ity in Irish healthcare records. In: Proceedings of ICEIS ’21 – the 24th International Conference on Enterprise 
Information Systems. Cham, Switzerland: Springer; 2021.

 55. Open Data Toronto. Towards an updated Data Quality Score in open data. https:// open. toron to. ca/ towar ds- 
an- updat ed- data- quali ty- score- in- open- data/. Published on 21st August 2023. URL visited on 8th November 
2024.

 56. Hernandez C. Towards a Data Quality Score in open data (part 1). https:// medium. com/ open- data- toron to/ 
towar ds-a- data- quali ty- score- in- open- data- part-1- 525e5 9f729 e9. Published on 15th January 2020. URL visited 
on 8th November 2024.

https://doi.org/10.1136/bmjopen-2018-024722
https://doi.org/10.1136/bmjopen-2018-024722
https://www.figshare.com
https://www.zenodo.org
https://archive.ics.uci.edu/
http://arxiv.org/abs/1706.06169
https://huggingface.co/datasets
https://www.re3data.org/
https://datasetsearch.research.google.com/
https://www.gaaindata.org/partners/online.html
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1093/ejcts/ezv385
http://arxiv.org/abs/2108.05935
https://open.toronto.ca/towards-an-updated-data-quality-score-in-open-data/
https://open.toronto.ca/towards-an-updated-data-quality-score-in-open-data/
https://medium.com/open-data-toronto/towards-a-data-quality-score-in-open-data-part-1-525e59f729e9
https://medium.com/open-data-toronto/towards-a-data-quality-score-in-open-data-part-1-525e59f729e9


Page 28 of 31Chicco et al. BioData Mining            (2025) 18:1 

 57. Hernandez C. Towards a Data Quality Score in open data (part 2). https:// medium. com/ open- data- toron to/ 
towar ds-a- data- quali ty- score- in- open- data- part-2- 3f193 eb9e2 1d. Published on 11th February 2020. URL 
visited on 8th November 2024.

 58. Benchimol EI, Smeeth L, Guttmann A, Harron K, Moher D, Petersen I, et al. The REporting of studies Conducted 
using Observational Routinely-collected health Data (RECORD) Statement. PLoS Med. 2015;12(10):e1001885. 
https:// doi. org/ 10. 1371/ journ al. pmed. 10018 85.

 59. Langan SM, Schmidt SAJ, Wing K, Ehrenstein V, Nicholls SG, Filion KB, et al. The reporting of studies conducted 
using observational routinely collected health data statement for pharmacoepidemiology (RECORD-PE). Br Med J. 
2018;363:1–19.

 60. Mokrane M, Cepinskas L, Åkerman V, de Vries J, von Stein I, Verburg M. FAIR Aware. 2024. https:// faira ware. dans. 
knaw. nl/. URL visited on 8th November.

 61. Institute of Accelerating Systems and Applications All. FAIRness score. 2024. https:// wiki. appdb. egi. eu/ docs/ faq/ 
gener al/ fairs core/. URL visited on 8th November.

 62. European Parliament. Artificial intelligence act. https:// www. europ arl. europa. eu/ doceo/ docum ent/ TA-9- 2024- 
0138_ EN. pdf. Resolution of 13th March 2024. URL visited on 8th November 2024.

 63. European Parliament News. Press release: Artificial Intelligence Act, MEPs adopt landmark law. https:// www. europ 
arl. europa. eu/ news/ en/ press- room/ 20240 308IP R19015/ artifi cial- intel ligen ce- act- meps- adopt- landm ark- law. URL 
visited on 8th November 2024.

 64. Gebru T, Morgenstern J, Vecchione B, Vaughan JW, Wallach H, III HD, et al. Datasheets for datasets. Commun ACM. 
2021;64(12):86–92.

 65. European Commission. Shaping Europe’s digital future. https:// digit al- strat egy. ec. europa. eu/ en/ polic ies/ regul 
atory- frame work- ai. URL visited on 8th November 2024.

 66. Kaggle. Kaggle datasets – Explore, analyze, and share quality data. https:// www. kaggle. com/ datas ets. URL visited 
on 8th November 2024.

 67. Hu C, the Kaggle Team. [Request for input] Improving the dataset usability rating design. https:// www. kaggle. 
com/ discu ssions/ produ ct- feedb ack/ 354788. Published on 22nd September 2022. URL visited on 8th November 
2024.

 68. Hu C, the Kaggle Team. [Product update] New usability rating user experience. https:// www. kaggle. com/ discu 
ssions/ produ ct- feedb ack/ 372061. Published on 15th December 2022. URL visited on 8th November 2024.

 69. Kaggle Datasets. Fitbitdata. https:// www. kaggle. com/ datas ets/ panfo rdofo ri/ fitbi tdata. URL visited on 8th Novem-
ber 2024.

 70. Kaggle Datasets. A hotel’s customers dataset. https:// www. kaggle. com/ datas ets/ nanto nio/a- hotels- custo mers- 
datas et. URL visited on 8th November 2024.

 71. Kaggle Datasets. 1980s Album covers. https:// www. kaggle. com/ datas ets/ ronan picke ll/ 1980s- album- covers. URL 
visited on 8th November 2024.

 72. Kaggle Datasets. LFW – Facial recognition. https:// www. kaggle. com/ datas ets/ quade er15sh/ lfw- facial- recog nition. 
URL visited on 8th November 2024.

 73. Holland S, Hosny A, Newman S, Joseph J, Chmielinski K. The dataset nutrition label. Data Protect Priv. 
2020;12(12):1.

 74. Bender EM, Friedman B. Data Statements for Natural Language Processing: toward mitigating System Bias and 
Enabling Better Science. Trans Assoc Comput Linguist. 2018;6:587–604. https:// doi. org/ 10. 1162/ tacl_a_ 00041.

 75. Fabris A, Messina S, Silvello G, Susto GA. Algorithmic fairness datasets: the story so far. Data Min Knowl Disc. 
2022;36(6):2074–152. https:// doi. org/ 10. 1007/ S10618- 022- 00854-Z.

 76. Bertino E. Data trustworthiness—approaches and research challenges. In: International Workshop on Data Privacy 
Management. Springer; 2014. pp. 17–25.

 77. University of California Irvine Machine Learning Repository. Arrhythmia. https:// doi. org/ 10. 24432/ C5BS32. URL 
visited on 8th November 2024.

 78. Stanford ML Group. CheXpert, a Large Chest X-ray Dataset And Competition. https:// stanf ordml group. github. io/ 
compe titio ns/ chexp ert/. URL visited on 8th November 2024.

 79. Irvin J, Rajpurkar P, Ko M, Yu Y, Ciurea-Ilcus S, Chute C, et al. CheXpert: A Large Chest Radiograph Dataset with 
Uncertainty Labels and Expert Comparison. In: Proceedings of AAAI 2019 – the 33rd Conference on Artificial Intel-
ligence. AAAI Press; 2019. pp. 590–597.

 80. Rajpurkar P, Joshi A, Pareek A, Chen P, Kiani A, Irvin J, et al. CheXpedition: investigating generalization challenges 
for translation of chest X-ray algorithms to the clinical setting. 2020. arXiv: 2002. 11379.

 81. Price WN, Cohen IG. Privacy in the age of medical big data. Nat Med. 2019;25(1):37–43.
 82. Chicco D, Jurman G. Ten simple rules for providing bioinformatics support within a hospital. BioData Min. 

2023;16(1):6.
 83. Creative Commons. CC BY 4.0 DEED Attribution 4.0 International. https:// creat iveco mmons. org/ licen ses/ by/4. 0/ 

deed. en. URL visited on 8th November 2024.
 84. MIT Laboratory for Computational Physiology. MIMIC, Medical Information Mart for Intensive Care. https:// mimic. 

mit. edu/. URL visited on 8th November 2024.
 85. PhysioNet. MIMIC-IV. https:// physi onet. org/ conte nt/ mimic iv/2. 0/. URL visited on 8th November 2024.
 86. Harenza JL, Diamond MA, Adams RN, Song MM, Davidson HL, Hart LS, et al. Transcriptomic profiling of 39 

commonly-used neuroblastoma cell lines. Sci Data. 2017;4(1):1–9.
 87. Omnibus GE. GSE89413 – Transcriptomic profiling of 39 neuroblastoma cell lines. https:// www. ncbi. nlm. nih. gov/ 

geo/ query/ acc. cgi? acc= GSE89 413. URL visited on 8th November 2024.
 88. Le Gall G, Kirchgesner J, Bejaoui M, Landman C, Nion-Larmurier I, Bourrier A, et al. Clinical activity is an independ-

ent risk factor of ischemic heart and cerebrovascular arterial disease in patients with inflammatory bowel disease. 
PLoS ONE. 2018;13(8):e0201991.

 89. Le Gall G, Kirchgesner J, Bejaoui M, Landman C, Nion-Larmurier I, Bourrier A, et al.. Dataset for “Clinical activity is 
an independent risk factor of ischemic heart and cerebrovascular arterial disease in patients with inflammatory 

https://medium.com/open-data-toronto/towards-a-data-quality-score-in-open-data-part-2-3f193eb9e21d
https://medium.com/open-data-toronto/towards-a-data-quality-score-in-open-data-part-2-3f193eb9e21d
https://doi.org/10.1371/journal.pmed.1001885
https://fairaware.dans.knaw.nl/
https://fairaware.dans.knaw.nl/
https://wiki.appdb.egi.eu/docs/faq/general/fairscore/
https://wiki.appdb.egi.eu/docs/faq/general/fairscore/
https://www.europarl.europa.eu/doceo/document/TA-9-2024-0138_EN.pdf
https://www.europarl.europa.eu/doceo/document/TA-9-2024-0138_EN.pdf
https://www.europarl.europa.eu/news/en/press-room/20240308IPR19015/artificial-intelligence-act-meps-adopt-landmark-law
https://www.europarl.europa.eu/news/en/press-room/20240308IPR19015/artificial-intelligence-act-meps-adopt-landmark-law
https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
https://www.kaggle.com/datasets
https://www.kaggle.com/discussions/product-feedback/354788
https://www.kaggle.com/discussions/product-feedback/354788
https://www.kaggle.com/discussions/product-feedback/372061
https://www.kaggle.com/discussions/product-feedback/372061
https://www.kaggle.com/datasets/panfordofori/fitbitdata
https://www.kaggle.com/datasets/nantonio/a-hotels-customers-dataset
https://www.kaggle.com/datasets/nantonio/a-hotels-customers-dataset
https://www.kaggle.com/datasets/ronanpickell/1980s-album-covers
https://www.kaggle.com/datasets/quadeer15sh/lfw-facial-recognition
https://doi.org/10.1162/tacl_a_00041
https://doi.org/10.1007/S10618-022-00854-Z
https://doi.org/10.24432/C5BS32
https://stanfordmlgroup.github.io/competitions/chexpert/
https://stanfordmlgroup.github.io/competitions/chexpert/
http://arxiv.org/2002.11379
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://mimic.mit.edu/
https://mimic.mit.edu/
https://physionet.org/content/mimiciv/2.0/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89413
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89413


Page 29 of 31Chicco et al. BioData Mining            (2025) 18:1  

bowel disease”. https:// figsh are. com/ artic les/ datas et/ Clini cal_ activ ity_ is_ an_ indep endent_ risk_ factor_ of_ ische 
mic_ heart_ and_ cereb rovas cular_ arter ial_ disea se_ in_ patie nts_ with_ infla mmato ry_ bowel_ disea se/ 70362 35. URL 
visited on 8th November 2024.

 90. Tanrikulu A, Er O. Mesothelioma’s disease data set. https:// archi ve. ics. uci. edu/ datas et/ 351/ mesot helio ma+s+ disea 
se+ data+ set. Dataset donated on 10th January 2016. URL visited on 8th November 2024.

 91. Er O, Tanrikulu AC, Abakay A, Temurtas F. An approach based on probabilistic neural network for diagnosis of 
Mesothelioma’s disease. Comput Electr Eng. 2012;38(1):75–81.

 92. Yan Z, Cai M, Han X, Chen Q, Lu H. The interaction between age and risk factors for diabetes and prediabetes: a 
community-based cross-sectional study. Diabetes Metab Syndr Obes. 2023;16:85–93.

 93. European Parliament. General Data Protection Regulation. https:// eur- lex. europa. eu/ eli/ reg/ 2016/ 679/ oj. Resolu-
tion of 13th March 2024. URL visited on 8th November 2024.

 94. Jansen ACM, van Aalst-Cohen ES, Hutten BA, Büller HR, Kastelein JJP, Prins MH. Guidelines were developed for data 
collection from medical records for use in retrospective analyses. J Clin Epidemiol. 2005;58(3):269–74.

 95. Newgard CD, Zive D, Jui J, Weathers C, Daya M. Electronic versus manual data processing: evaluating the use of 
electronic health records in out-of-hospital clinical research. Acad Emerg Med. 2012;19(2):217–27.

 96. Pagel C, Gallivan S. Exploring potential consequences on mortality estimates of errors in clinical databases. IMA J 
Manag Math. 2009;20(4):385–93.

 97. Hoffman S, Podgurski A. The use and misuse of biomedical data: is bigger really better? Am J Law Med. 
2013;39(4):497–538.

 98. Goldberg SI, Niemierko A, Turchin A. Analysis of data errors in clinical research databases. In: AMIA Annual Sympo-
sium Proceedings, vol. 2008. American Medical Informatics Association; 2008. pp. 242–246.

 99. Sanches JM, Nascimento JC, Marques JS. Medical image noise reduction using the Sylvester-Lyapunov equation. 
IEEE Trans Image Process. 2008;17(9):1522–39.

 100. Büttner M, Miao Z, Wolf FA, Teichmann SA, Theis FJ. A test metric for assessing single-cell RNA-seq batch correc-
tion. Nat Methods. 2019;16(1):43–9.

 101. Sprang M, Andrade-Navarro MA, Fontaine JF. Batch effect detection and correction in RNA-seq data using 
machine-learning-based automated assessment of quality. BMC Bioinformatics. 2022;23(Suppl 6):279.

 102. Blanco-Velasco M, Weng B, Barner KE. ECG signal denoising and baseline wander correction based on the empiri-
cal mode decomposition. Comput Biol Med. 2008;38(1):1–13.

 103. Pijn JP, Van Neerven J, Noest A, da Silva FHL. Chaos or noise in EEG signals; dependence on state and brain site. 
Electroencephalogr Clin Neurophysiol. 1991;79(5):371–81.

 104. Sundling M, Sukumar N, Zhang H, Embrechts MJ, Breneman CM. Wavelets in chemistry and cheminformatics. Rev 
Comput Chem. 2006;22:295–329.

 105. Welvaert M, Rosseel Y. On the definition of signal-to-noise ratio and contrast-to-noise ratio for fMRI data. PLoS 
ONE. 2013;8(11):e77089.

 106. Hayati Rezvan P, Lee KJ, Simpson JA. The rise of multiple imputation: a review of the reporting and implementa-
tion of the method in medical research. BMC Med Res Methodol. 2015;15:1–14.

 107. Groh M, Harris C, Soenksen L, Lau F, Han R, Kim A, et al. Evaluating Deep Neural Networks Trained on Clinical 
Images in Dermatology With the Fitzpatrick 17k Dataset. In: Proceedings of CVPR 2021 – the 2021 IEEE Conference 
on Computer Vision and Pattern Recognition Workshops, virtual, June 19-25, 2021. Computer Vision Foundation / 
IEEE; 2021. pp. 1820–1828. https:// doi. org/ 10. 1109/ CVPRW 53098. 2021. 00201.

 108. Canese K, Weis S. PubMed: the bibliographic database. NCBI Handbook. 2013;2(1):1–9.
 109. Ranking SJ. Health informatics open access journals. https:// www. scima gojr. com/ journ alrank. php? categ ory= 

2718& type= j & opena ccess= true. URL visited on 8th November 2024.
 110. Ranking SJ. Molecular biology open access journals. https:// www. scima gojr. com/ journ alrank. php? opena ccess= 

true& type= j & categ ory= 1301. URL visited on 8th November 2024.
 111. Piwowar HA, Vision TJ. Data reuse and the open data citation advantage. PeerJ. 2013;1:e175.
 112. Peng K, Mathur A, Narayanan A. Mitigating dataset harms requires stewardship: lessons from 1000 papers. In: 

Vanschoren J, Yeung S, editors. Proceedings of the Neural Information Processing Systems Track on Datasets and 
Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual. 2021. https:// datas ets- bench 
marks- proce edings. neuri ps. cc/ paper/ 2021/ hash/ 077e2 9b11b e80ab 57e1a 2ecab b7da3 30- Abstr act- round2. html. 
Accessed 15 Sept 2024.

 113. Cohen JP, Lo HZ. Academic Torrents: a community-maintained distributed repository. In: Proceedings of XSEDE ’14 
– the 2014 Annual Conference on Extreme Science and Engineering Discovery Environment. Atlanta: ACM; 2014. 
p. 1–2.

 114. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health 
of populations. Science. 2019;366(6464):447–53.

 115. Chen IY, Pierson E, Rose S, Joshi S, Ferryman K, Ghassemi M. Ethical machine learning in healthcare. Ann Rev 
Biomed Data Sci. 2021;4(1):123–44.

 116. Johnson A, Pollard T, Mark R. MIMIC-III Clinical Database. https:// physi onet. org/ conte nt/ mimic iii/1. 4/. URL visited 
on 8th November 2024.

 117. Letenneur L, Commenges D, Dartigues JF, Barberger-Gateau P. Longitudinal data on cognitive and physical aging 
in the elderly. https:// search. r- proje ct. org/ CRAN/ refma ns/ lcmm/ html/ paquid. html. URL visited on 8th November 
2024.

 118. Letenneur L, Commenges D, Dartigues JF, Barberger-Gateau P. Incidence of dementia and Alzheimer’s disease in 
elderly community residents of south-western France. Int J Epidemiol. 1994;23(6):1256–61.

 119. Moody GB, Mark RG. A database to support development and evaluation of intelligent intensive care monitoring. 
In: Computers in Cardiology 1996. IEEE; 1996. pp. 657–660.

 120. Saeed M, Lieu C, Raber G, Mark RG. MIMIC II: a massive temporal ICU patient database to support research in intel-
ligent patient monitoring. In: Computers in Cardiology. IEEE; 2002. pp. 641–644.

https://figshare.com/articles/dataset/Clinical_activity_is_an_independent_risk_factor_of_ischemic_heart_and_cerebrovascular_arterial_disease_in_patients_with_inflammatory_bowel_disease/7036235
https://figshare.com/articles/dataset/Clinical_activity_is_an_independent_risk_factor_of_ischemic_heart_and_cerebrovascular_arterial_disease_in_patients_with_inflammatory_bowel_disease/7036235
https://archive.ics.uci.edu/dataset/351/mesothelioma+s+disease+data+set
https://archive.ics.uci.edu/dataset/351/mesothelioma+s+disease+data+set
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://doi.org/10.1109/CVPRW53098.2021.00201
https://www.scimagojr.com/journalrank.php?category=2718%20&type=j%20&openaccess=true
https://www.scimagojr.com/journalrank.php?category=2718%20&type=j%20&openaccess=true
https://www.scimagojr.com/journalrank.php?openaccess=true%20&type=j%20&category=1301
https://www.scimagojr.com/journalrank.php?openaccess=true%20&type=j%20&category=1301
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/077e29b11be80ab57e1a2ecabb7da330-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/077e29b11be80ab57e1a2ecabb7da330-Abstract-round2.html
https://physionet.org/content/mimiciii/1.4/
https://search.r-project.org/CRAN/refmans/lcmm/html/paquid.html


Page 30 of 31Chicco et al. BioData Mining            (2025) 18:1 

 121. PhysioNet. The research resource for complex physiologic signals. https:// www. physi onet. org/ . URL visited on 8th 
November 2024.

 122. Proust-Lima C, Liquet B. lcmm: an R package for estimation of latent class mixed models and joint latent class 
models. In: Proceedings of useR! 2011 – the 2011 R User Conference, 16-18 August 2011, University of Warwick, 
Coventry; 2011. p. 66.

 123. Versteeg R, Volckmann R. Integrated bioinformatic and wet-lab approach to identify potential oncogenic net-
works in neuroblastoma. https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE16 476. URL visited on 8th 
November 2024.

 124. Molenaar JJ, Koster J, Zwijnenburg DA, van Sluis P, Valentijn LJ, van der Ploeg I, et al. Sequencing of neuroblastoma 
identifies chromothripsis and defects in neuritogenesis genes. Nature. 2012;483(7391):589–93.

 125. Bartenhagen C. Telomerase is a prognostic marker of poor outcome and a therapeutic target in neuroblastoma. 
https:// www. ebi. ac. uk/ biost udies/ array expre ss/ studi es/E- MTAB- 8248. URL visited on 8th November 2024.

 126. Roderwieser A, Sand F, Walter E, Fischer J, Gecht J, Bartenhagen C, et al. Telomerase is a prognostic marker of poor 
outcome and a therapeutic target in neuroblastoma. JCO Precis Oncol. 2019;3:1–20.

 127. Beane J, Tassinari AM. Airway epithelial cells from smokers with and without bronchial premalignant lesions. 
https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE79 209. URL visited on 8th November 2024.

 128. Beane J, Mazzilli SA, Tassinari AM, Liu G, Zhang X, Liu H, et al. Detecting the presence and progression of premalig-
nant lung lesions via airway gene expression. Clin Cancer Res. 2017;23(17):5091–100.

 129. Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR. EEG Motor Movement/Imagery Dataset. https:// 
doi. org/ 10. 13026/ C28G6P. URL visited on 8th November 2024.

 130. Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR. BCI2000: a general-purpose brain-computer 
interface (BCI) system. IEEE Trans Biomed Eng. 2004;51(6):1034–43.

 131. Moody GB, Mark RG. MIT-BIH Arrhythmia Database. https:// doi. org/ 10. 13026/ C2F305. URL visited on 8th Novem-
ber 2024.

 132. Moody GB, Mark RG. The MIT-BIH arrhythmia database on CD-ROM and software for use with it. In: Proceedings of 
CinC 1990 – Computers in Cardiology. IEEE; 1990. pp. 185–188.

 133. Moody GB, Mark RG. The impact of the MIT-BIH arrhythmia database. IEEE Eng Med Biol Mag. 2001;20(3):45–50.
 134. Konz N, Buda M, Gu H, Saha A, Yang J, Chledowski J, et al. Breast-Cancer-Screening-DBT – Breast Cancer Screening 

- Digital Breast Tomosynthesis. https:// www. cance rimag ingar chive. net/ colle ction/ breast- cancer- scree ning- dbt/. 
URL visited on 8th November 2024.

 135. Konz N, Buda M, Gu H, Saha A, Yang J, Chledowski J, et al. A competition, benchmark, code, and data for using 
artificial intelligence to detect lesions in digital breast tomosynthesis. JAMA Netw Open. 2023;6(2):e230524.

 136. Tang EK, Ghazoui Z, Barrett R, Edvardsson U, Vincent J, Garnett M, et al. AstraZeneca-Sanger drug combination 
prediction DREAM Challenge. https:// doi. org/ 10. 7303/ syn42 31880. URL visited on 8th November 2024.

 137. Menden MP, Wang D, Mason MJ, Szalai B, Bulusu KC, Guan Y, et al. Community assessment to advance computa-
tional prediction of cancer drug combinations in a pharmacogenomic screen. Nat Commun. 2019;10(1):2674.

 138. Ben Abacha A, Demner-Fushman D. MedQuAD: Medical Question Answering Dataset. https:// github. com/ abach 
aa/ MedQu AD. URL visited on 8th November 2024.

 139. Ben Abacha A, Demner-Fushman D. A question-entailment approach to question answering. BMC Bioinformatics. 
2019;20:1–23.

 140. Chen X, Gururaj AE, Ozyurt B, Liu R, Soysal E, Cohen T, et al. DataMed-an open source discovery index for finding 
biomedical datasets. J Am Med Inform Assoc. 2018;25(3):300–8.

 141. Lampert TA, Stumpf A, Gançarski P. An Empirical Study Into Annotator Agreement, Ground Truth Estimation, and 
Algorithm Evaluation. IEEE Trans Image Process. 2016;25(6):2557–72.

 142. Amidei J, Piwek P, Willis A. Agreement is overrated: A plea for correlation to assess human evaluation reliability. In: 
van Deemter K, Lin C, Takamura H, editors. Proceedings of INLG 2019 – the 12th International Conference on Natu-
ral Language Generation, Tokyo, Japan, 29 October – 1 November 2019. Association for Computational Linguistics; 
2019. pp. 344–354.

 143. Popović M, Belz A. On reporting scores and agreement for error annotation tasks. In: Proceedings of the 2nd 
Workshop on Natural Language Generation, Evaluation, and Metrics (GEM). ACL Antology: 2022. p. 306–15.

 144. Yu H, Wang F, Tu K, Xie L, Li YY, Li YX. Transcript-level annotation of Affymetrix probesets improves the interpreta-
tion of gene expression data. BMC Bioinformatics. 2007;8:1–15.

 145. Albers MJ. Signal to noise ratio of information in documentation. In: Proceedings of SIGDOC ’04 – the 22nd Annual 
International Conference on Design of Communication. New York City: ACM; 2004. p. 41–4.

 146. Bonomi L, Huang Y, Ohno-Machado L. Privacy challenges and research opportunities for genomic data sharing. 
Nat Genet. 2020;52(7):646–54.

 147. Oestreich M, Chen D, Schultze JL, Fritz M, Becker M. Privacy considerations for sharing genomics data. EXCLI J. 
2021;20:1243.

 148. Fabris A, Messina S, Silvello G, Susto GA. Tackling Documentation Debt: A Survey on Algorithmic Fairness Datasets. 
In: Proceedings of EAAMO 2022 – the 2nd ACM Conference on Equity and Access in Algorithms, Mechanisms, and 
Optimization, Arlington, Virginia, USA, 6-9 October 2022. ACM; 2022. pp. 2:1–2:13.

 149. Gene Expression Omnibus. MIAME and MINSEQE guidelines. https:// www. ncbi. nlm. nih. gov/ geo/ info/ MIAME. html. 
URL visited on 8th November 2024.

 150. PhysioNet. Author guidelines. https:// physi onet. org/ about/ publi sh/# author_ guide lines. URL visited on 8th 
November 2024.

 151. American Medical Informatics Association. Secondary use of health data. https:// web. archi ve. org/ web/ 20080 
72417 1701/. Webpage of 24th July 2008 saved on Wayback Machine. URL visited on 8th November 2024.

 152. Wiens J, Saria S, Sendak M, Ghassemi M, Liu VX, Doshi-Velez F, et al. Do no harm: a roadmap for responsible 
machine learning for health care. Nat Med. 2019;25(9):1337–40.

 153. Alex Philippidis. Top 10 U.S. Biopharma Clusters. https:// www. genen gnews. com/ topics/ drug- disco very/ top- 10-u- 
s- bioph arma- clust ers- 10/. URL visited on 8th November 2024.

https://www.physionet.org/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16476
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-8248
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE79209
https://doi.org/10.13026/C28G6P
https://doi.org/10.13026/C28G6P
https://doi.org/10.13026/C2F305
https://www.cancerimagingarchive.net/collection/breast-cancer-screening-dbt/
https://doi.org/10.7303/syn4231880
https://github.com/abachaa/MedQuAD
https://github.com/abachaa/MedQuAD
https://www.ncbi.nlm.nih.gov/geo/info/MIAME.html
https://physionet.org/about/publish/#author_guidelines
https://web.archive.org/web/20080724171701/
https://web.archive.org/web/20080724171701/
https://www.genengnews.com/topics/drug-discovery/top-10-u-s-biopharma-clusters-10/
https://www.genengnews.com/topics/drug-discovery/top-10-u-s-biopharma-clusters-10/


Page 31 of 31Chicco et al. BioData Mining            (2025) 18:1  

 154. Trisovic A, Mika K, Boyd C, Feger SS, Crosas M. Repository Approaches to Improving the Quality of Shared Data and 
Code. Data. 2021;6(2):15. https:// doi. org/ 10. 3390/ DATA6 020015.

 155. Feger SS, Dallmeier-Tiessen S, Wozniak PW, Schmidt A. Gamification in science: a study of requirements in the 
context of reproducible research. In: Brewster SA, Fitzpatrick G, Cox AL, Kostakos V, editors. Proceedings of CHI 
2019 – the 2019 Conference on Human Factors in Computing Systems, Glasgow, Scotland, United Kingdom, 4-9 
May 2019. ACM; 2019. pp. 460.

 156. Giner-Miguelez J, Gómez A, Cabot J. Using Large Language Models to Enrich the Documentation of Datasets for 
Machine Learning. 2024. arXiv: 2404. 15320.

 157. Chen J, Viana MP, Rafelski SM. When seeing is not believing: application-appropriate validation matters for quanti-
tative bioimage analysis. Nat Methods. 2023;20(7):968–70.

 158. Hartley M, Kleywegt GJ, Patwardhan A, Sarkans U, Swedlow JR, Brazma A. The Bioimage archive-building a home 
for life-sciences microscopy data. J Mol Biol. 2022;434(11):167505.

 159. Dander A, Baldauf M, Sperk M, Pabinger S, Hiltpolt B, Trajanoski Z. Personalized Oncology Suite: integrating next-
generation sequencing data and whole-slide bioimages. BMC Bioinformatics. 2014;15:1–8.

 160. Migliorini A, Ge S, Atkins MH, Oakie A, Sambathkumar R, Kent G, et al. Embryonic macrophages support endocrine 
commitment during human pancreatic differentiation. Cell Stem Cell. 2024;31(11):1–21.

 161. Duda SN, Kennedy N, Conway D, Cheng AC, Nguyen V, Zayas-Cabán T, et al. HL7 FHIR-based tools and initiatives to 
support clinical research: a scoping review. J Am Med Inform Assoc. 2022;29(9):1642–53.

 162. Douthit BJ, Del Fiol G, Staes CJ, Docherty SL, Richesson RL. A conceptual framework of data readiness: the contex-
tual intersection of quality, availability, interoperability, and provenance. Appl Clin Inform. 2021;12(03):675–85.

 163. Castelijns LA, Maas Y, Vanschoren J. The ABC of data: a classifying framework for data readiness. In: Machine Learn-
ing and Knowledge Discovery in Databases: International Workshops of ECML PKDD 2019, Würzburg, Germany, 
16–20 September 2019, Proceedings, Part I. Springer; 2020. pp. 3–16.

 164. Afzal S, Rajmohan C, Kesarwani M, Mehta S, Patel H. Data readiness report. In: Proceedings of IEEE SMDS 2021 – 
the 7th IEEE International Conference on Smart Data Services. IEEE; 2021. pp. 42–51.

 165. Lawrence ND. Data readiness levels. 2017. arXiv: 1705. 02245.
 166. Ahangaran M, Zhu H, Li R, Yin L, Jang J, Chaudhry AP, et al. DREAMER: a computational framework to evaluate 

readiness of datasets for machine learning. BMC Med Inform Decis Mak. 2024;24(1):152.
 167. Clark T, Caufield H, Parker JA, Al Manir S, Amorim E, Eddy J, et al. AI-readiness for Biomedical Data: Bridge2AI rec-

ommendations. bioRxiv. 2024;2024(1):1–21.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.3390/DATA6020015
http://arxiv.org/abs/2404.15320
http://arxiv.org/abs/1705.02245

	The Venus score for the assessment of the quality and trustworthiness of biomedical datasets
	Abstract 
	Introduction
	Method: our proposed Venus score
	Q1: Are the origin, context, and purpose of the dataset defined?
	Q2: Are data protection measures described? Is there a license for the data?
	Q3: Are the devices, medical centers, and collection periods clearly identified?
	Q4: Are all variables and their values properly explained?
	Q5: Does the dataset documentation include information on subpopulations identified by protected attributes such as the age, sex, ethnicity, and genetic ancestry of patients?
	Q6: Are sources of potential inaccuracy listed and characterized?
	Q7: Is the information about noise included?
	Q8: Does the documentation describe data preparation, including cleaning and annotation?
	Q9: Is there a peer-reviewed scientific publication describing the data?
	Q10: Is the dataset available online without restrictions and does it have a global ID associated?
	Overlap with EU AI Act, Datasheets for Dataset and Kaggle Dataset Usability Score

	Datasets
	Results
	Discussion and conclusions
	Acknowledgements
	References


