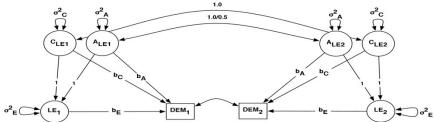
Common genetic and shared environmental confounds in the association between life events and dementia

University of Southern California

Alice J. Kim¹, Elizabeth Munoz², & Christopher R. Beam¹ University of Southern California¹ & University California-Riverside²

Research Questions


- Is there an effect of life events on dementia after adjusting for genetic and shared environmental correlations?
- To what extent do common genetic and shared environmental confounds account for the association between life events and dementia?

Background

- Negative life events correlate with dementia risk.
- Life event measures index stress but also encompass other factors:
 - Social engagement, socioeconomic conditions, and physical health.
 - Life events consist of factors considered to raise dementia risk.
- It is unclear whether genetic and shared environmental effects account for the correlation between negative life events and dementia risk.

Figure and Tables

Fig. 1. Life event and dementia biometric regression model

Table 2. Model-fitting results

	Model	Chi azuzua	46	△ Chi-	4 46	_	DMCEA	TIT	CDMD
Model Description	Comparison	Chi-square	<u>ar</u>	square	<u>⊿ df</u>	<u>p</u>	RMSEA	<u>TLI</u>	<u>SRMR</u>
LE 1 - General Loss									
Model 1 - Baseline (ACE)	-	119.694	94	-	-	-	0.025	0.981	0.081
Model 2 - A=C	2 vs. 1	116.442	96	0.737	2	0.692	0.022	0.985	0.082
Model 3 - AE model	3 vs. 1	120.004	95	0.821	1	0.365	0.024	0.981	0.082
Model 4 - CE model	4 vs. 1	118.279	95	0.01	1	0.920	0.024	0.983	0.081
LE 5 - Negative Spousal Events									
Model 1 - Baseline (ACE)	-	152.779	138	-	-	-	0.016	0.990	0.112
Model 2 - AE model	2 vs. 1	148.329	140	0.167	2	0.919	0.012	0.994	0.112

Methods

Participants

- 885 families of same-sex MZ/DZ twins ≥ 50 years (range: 50.1 – 92.9 years) from the Swedish Adoption/Twin Study of Aging (SATSA) measured between 1 – 3 occasions from 1984 to 1990¹.
- 15.06% of the sample received a dementia diagnosis ≥ 1990.

Measures

· Life events

- A 25-item negative and positive life event scale assessing whether life events ever occurred up to 1990^{2,3}.
- Factor analysis determined that items encompass 6 domains:
 - General loss; negative life events of children; illness of self; family strife; negative life events of spouse; and positive life events.

· Dementia diagnosis

- Clinical and registry sources of diagnosis^{4, 5}:
- Clinical Cognitive screening administered (cognitive battery, including MMSE and/or TELE screening).
- A diagnostic consensus board assigned a consensus clinical diagnosis (DSM-III-R and DSM-IV criteria for dementia and NINCDS-ADRDA criteria for AD).
- Registry All who did not receive a cognitive screening or lost to follow-up were linked to the Swedish National Patient Register (NPR) and Cause of Death Register (CDR) containing International Classification of Disease (ICD) dementia codes.
- Twins who were diagnosed with dementia < 1990 were excluded from this study.
- Controls Those who did not screen positive through any of these means were assumed to be non-demented and due for follow-up in three years.

Data Analysis

- · Preliminary analyses (not shown):
- Exploratory Factor Analysis of 25 life event items
- Total phenotypic effect of life events on dementia (*Table 1*)
- Biometric regression models of MZ/DZ twins for life events and dementia using Mplus 8.2 (Figure 1)
- Model-fitting results for significant effects of life events (general loss and negative spousal events) on dementia (Table 2)
 - Model sequence:
 - Baseline (unrestricted)
 - A=C
 - AE
 - · CE
- Estimated r_A, r_C, r_E from bestfitting models (*Table 3*)

Table 3. Correlations

<u>Model</u>	<u>r</u> a	<u>r</u> c	<u>r</u> e
LE 1 → Dem CE Model	-	0.20 (0.13)	0.004 (0.075)
LE 5 → Dem	0.20 (0.21)	-	-0.02 (0.11)

Conclusions

- Independent ACE effects underlying life events unable to account for significant phenotypic effect of life events on dementia.
- Social selection factors most likely explain the association between life events and dementia.
- Limited evidence of a quasi-causal effect of life events on dementia.
- rCE may explain the association between general loss and dementia.
- rGE may explain the association between negative spousal events and dementia.
- Low power likely limiting factor for inferring etiological mechanisms.

Results

- The phenotypic effect of life events on dementia could only be detected for two life events, general loss and negative spousal events.
- Social selection factors likely play a role in the association between these life events and dementia.
- No significant within-family (E) effect of life events on dementia:
 - LE 1: $\beta_E = 0.006$, $\rho = 0.955$
- LE 5: $\beta_E = -0.027$, p = 0.855

Table 1. Phenotypic effect of life events on dementia

Phenotype	Estimate	<u>SE</u>	P-value
LE1	0.143	0.049	0.003
LE2	0.029	0.112	0.793
LE3	-0.049	0.075	0.511
LE4	-0.016	0.062	0.797
LE5	0.098	0.049	0.045
LE6	0.094	0.089	0.286

Acknowledgements

Thank you SATSA participants!

Data were collected under the aegis of the National Institute on Aging (NIA) grants AG04563 and AG10175.

References

- 1. Finkel, D., & Pedersen, N. L. (2004). Processing speed and longitudinal trajectories of change for cognitive abilities: The Swedish Adoption/Twin Study of Aging. *Aging, Neuropsychology, and Cognition, 11*(2-3), 325-345.

 2. Holmes, T. H., & Rahe, R. H. (1967). The social readjustment rating scale. *Journal of Psychosomatic*
- Research, 11, 213–218.

 3. Persson, G. (1980). Life event ratings in relation to sex and marital status in a 70-year-old urban population. Acta Psychiatrica Scandinavica, 62, 112-118.
- **4.** Gatz, M., Pedersen, N., Berg, S., Johansson, B., Johansson, K., Mortimer, J., Posner, S., Viitanen, M., Winblad, B., & Ahlbom, A. (1997). Heritability for Alzheimer's Disease: the study of dementia in Swedish twins. *The Journals of Gerontology: Series A*, *52*(2), 117–125.
- **5.** Beam, C., Kaneshiro, C., Jang, J. Y., Reynolds, C., Pedersen, N., & Gatz, M. (2018). Differences between men and women in incidence rates of dementia and Alzheimer's disease. *J Alzheimer's Disease*, *64*(4), 1077-83.