Wetland Plant Identification Course

June 27, 2018 Montrose, CO

Denise Culver and Pam Smith Colorado Natural Heritage Program Warner College of Natural Resources Colorado State University www.cnhp.colostate.edu

Schedule and Logistics

Wednesday June 27

8 am-12 pm—Classroom

Wednesday Field Trip

1—4 Cerise Park

Thursday June 28; 9—3 pm

-Meet at Escalante Creek road/CR650 at Hwy 50, north of Delta

-Bring lunch, water, field guides, hand lens, insect repellent and pocket guides

Denise and Pam

Denise R. Culver

- Grew up in Rock Springs, WY!
- Park Service flunky for 10 yrs
- BS from U of WY, MS from **MSU**
- Worked in Wyoming, Montana, and Colorado
- Started at CNHP in 1995
- Bicycled the Baja Peninsula

Pam Smith

- BS Botany, Ohio, MS Botany Michigan, 10 years in Colorado
- Park Ranger 11 years
- Private Consulting 13 years CSU 2008
- Volunteer: Forensic Botany, CSU Extension, City of FC **Natural Areas**

Colorado Natural Heritage Program • Non-profit organization based at Colorado State University

- Research unit of the Warner College of Natural Resources, Department of Fish Wildlife and Conservation Biology
- Member of NatureServe, an international network of Heritage programs
- Provide scientific information and tools needed to help guide effective conservation action in Colorado

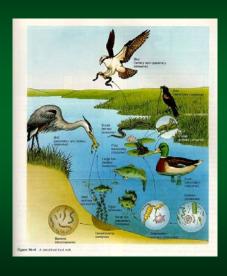
Objectives

- Know the diagnostic characters of major wetland plant families
 - Find your "wetland family" at breaks and in field!
 - Write down 5-6 characters
- Focus on difficult genera e.g., grasses, sedges, rushes, willows
- Test your skills in the field
- Have fun!

Identification is the First Step

Cattails, woody wetland plants, duckweeds indicate permanent saturation. Purple loosestrife indicates disturbance (unnatural water level fluctuations or nutrient flows).

- The condition of the vegetation reflects the condition of the wetland as a whole
- Vegetation structure and composition respond to factors that can indicate subsurface hydrological features, not obvious from the surface features.

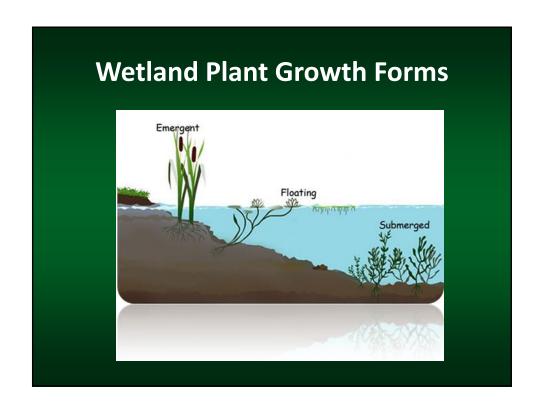

Wetland Plants

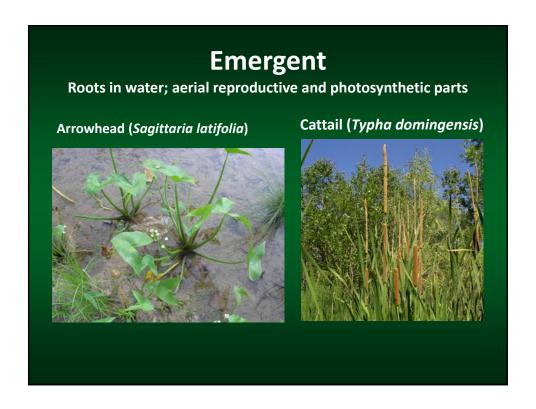
- Plants that grow in wetlands are called hydrophytes.
- Hydrophytes are used along with soil and hydrological features to delineate wetlands.
- Hydrophytes grow in water or a substrate that is periodically deficient in oxygen as a result of excessive water content.

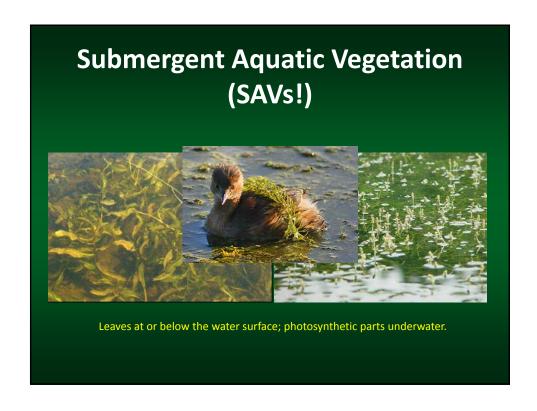
Colorado Wetlands

- Playas
- Riparian areas and associated floodplains
- Wet meadows
- Fens
- Emergent marshes
- Forested wetlands
- Shrub dominated wetlands
- ~ 2% of the land area in CO

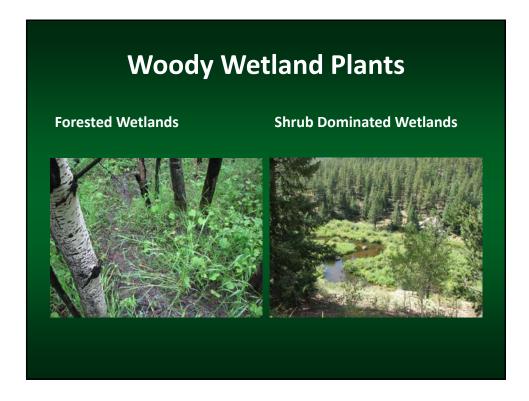
Wetland Plant Food Web


- Hydrophytes basis for food web.
- Waterfowl consume tubers, seeds.
- Detritus from decaying plants for invertebrates, algae.
- Wetland plants reduce peak flood events, clean water.


Urban Wetlands


Functions:

- > Flood control
- > Pollution abatement



Unique Wetland Plant Adaptations

- Changing water levels
- Low oxygen levels
- Erratic flow rates i.e. flashy on the plains, snowmelt in the mountains
- Intermittent dry periods

Aerenchyma tissue

- ➤ Unusually large cells in plant roots are arranged so that air spaces are present in the root.
- During anoxic conditions, oxygen can be transported to the air spaces in the roots from plant parts above the water surface.

Inflated Stems

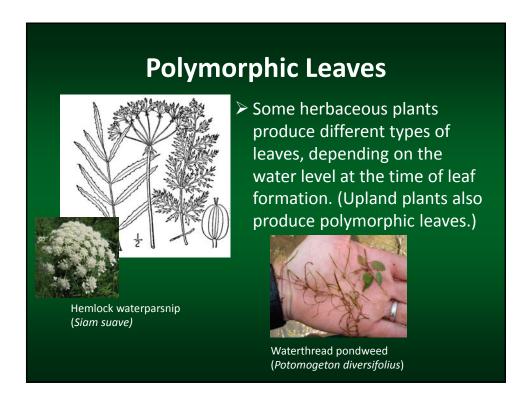
Water hyacinth (Eichhornia crassipes)

- > Allows plants to float
- Oxygen can be stored in enlarged passageways

Shallow Roots

- Allows growth when deeper soils are saturated.
- Wind-thrown trees are often indicative of shallow root systems.

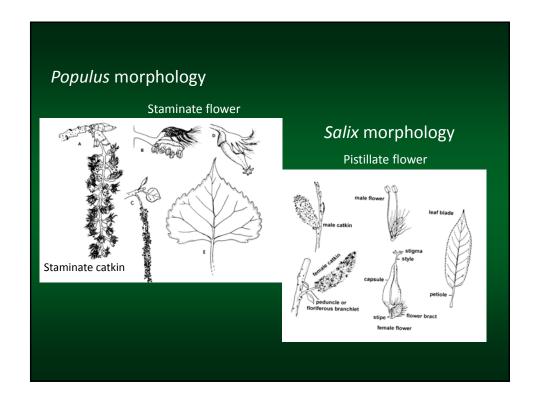
Water Roots (Adventitious Roots)



Water cress (Nasturtium officinale)

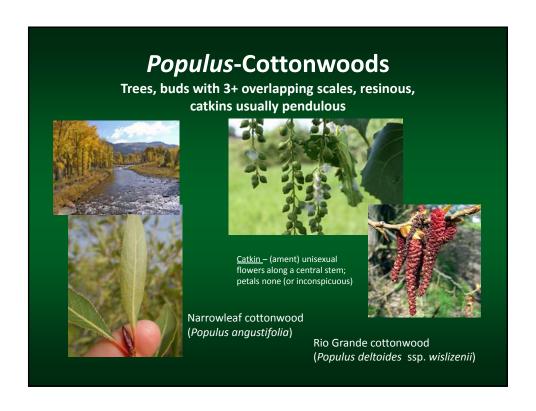
- Adventitious roots occur where roots are normally not found.
- Small roots protrude from trees or herbaceous plants just above the soil surface in response to soil saturation.

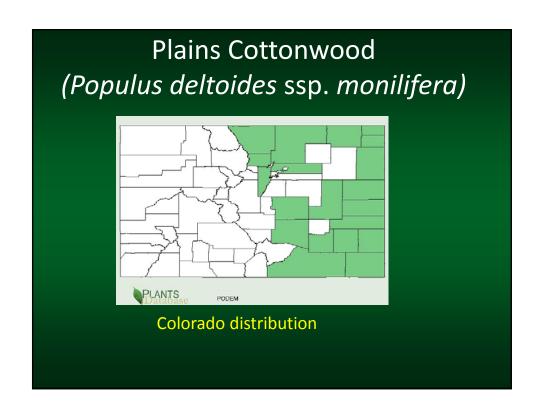
Water awlwort (Subularia aquatic var. Americana)

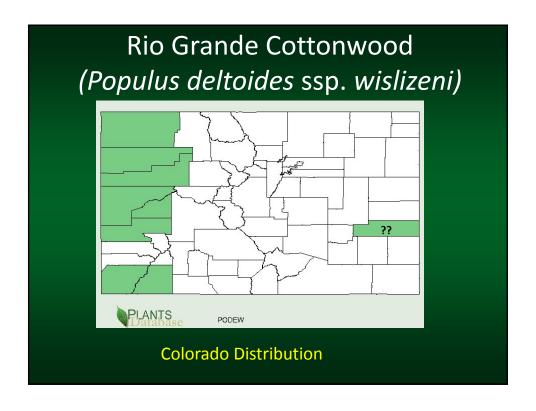

Major Wetland Plant Families

- Salicaceae Willows and Cottonwoods
- Juncaceae Rushes
- Cyperaceae Sedges, Bulrushes, Cottongrasses
- Brassicaceae Mustards
- Asteraceae Sunflowers
- Poaceae Grasses (we will focus on wetland species)

Salicaceae — The Willow Family

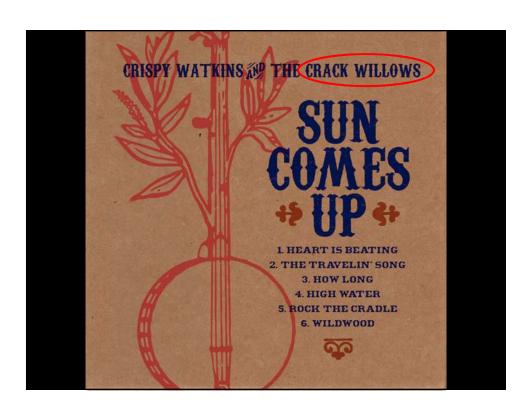

- Trees and shrubs
- Simple leaves, alternate
- Flowers in catkins
- Dioecious
- Fruit is a capsule
- Two genera:
- 1) Salix (willows)
- 2) Populus (cottonwoods)

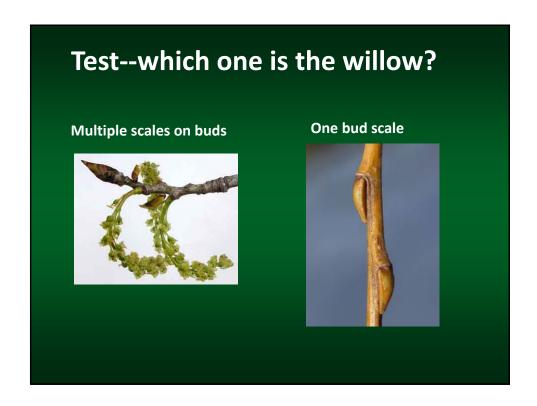




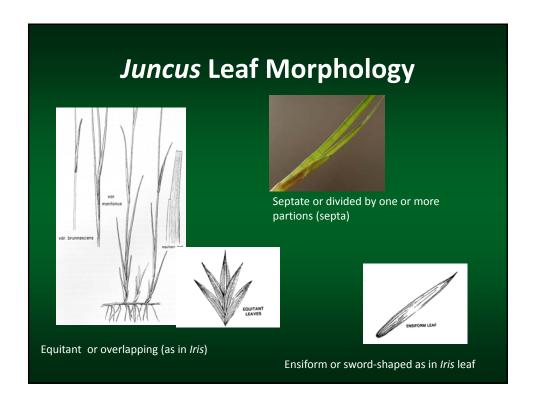
Open your hymnals

- Find Woody Plants (brown border)
- Find family: Salicaceae
- Find Genus: *Populus*
- How many species of *Populus* in Colorado?
- 1) Populus X acuminata
- 2) Populus angustifolia
- 3) Populus balsamifera
- 4) Populus deltoides (ssp. monilifera; ssp. wislizeni)





- Grass-like, leaves mostly basal, linear, septate vs flattened
- Complete flowers in head-like clusters or open, subtended by 1 + bracts, usu. leaf-like
- Perianth with 6 tepals, stamens 3 or 6
- Fruit capsule with many seeds


Swordleaf rush (Juncus ensifolius)

Longstyle rush (Juncus longistylis)

Drummond's rush (Juncus drummondiana)

Sedge Family—Why Bother?

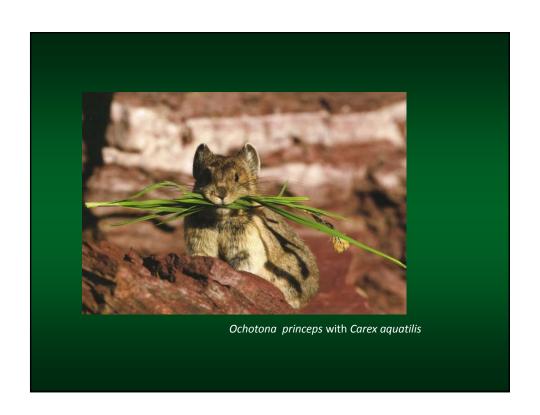
- Important forage for birds, waterfowl, animals
- Support of food webs-recycling nutrients
- Able to function in aerobic and anaerobic conditions
- Habitat creation for microorganisms, macroinvertebrates, fish, amphibians, mammals, waterfowl
- Removing sediments and toxic compounds
- Stabilizing river and streambanks, as well as prairie soils—erosion control
- Ethnobotanical uses
 - —food, baskets, paper, hay, forage

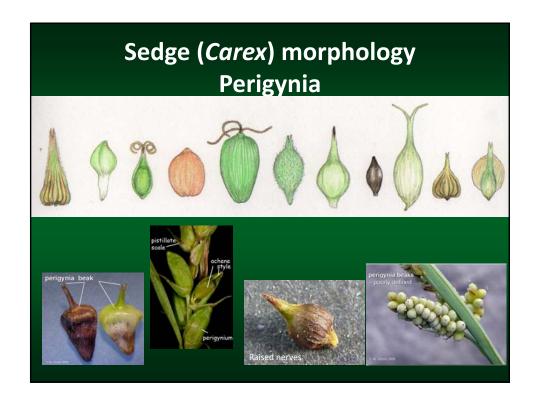
Cyperaceae-Sedge Family

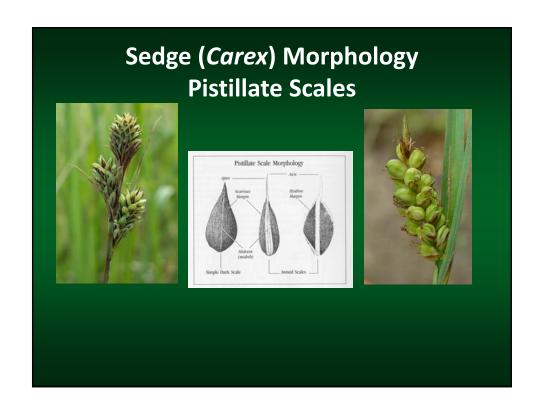
Carex (sedge)-perigynium closed, stems triangular, ligule present, perianth absent (no bristles)

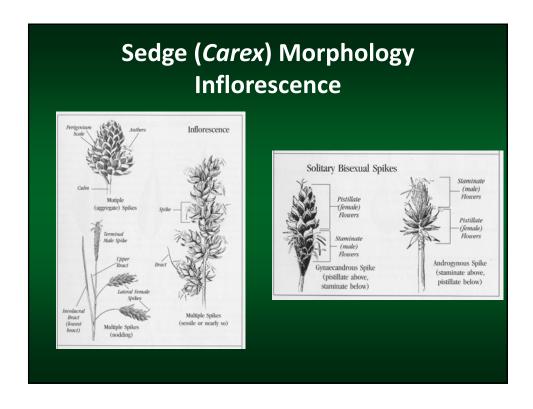
Kobresia (bog sedge)-perigynium open, wrapped around achene or split on one side to base, densely cespitose, stem triangular

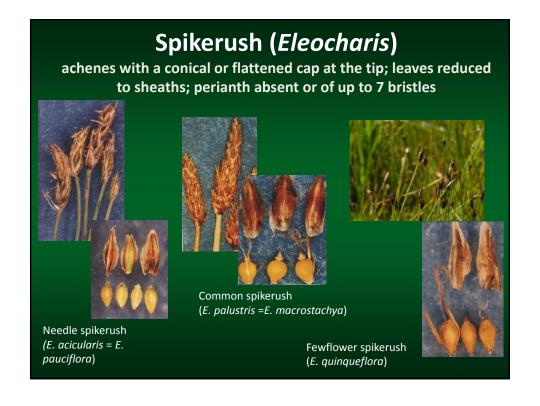
Cyperus (flatsedge)-spikelet flattened, scales of the spikelet distichous (2 ranked), spikelets several, spikes are loosely whorled (unlike Scirpus), no perigynium or scales or bristles

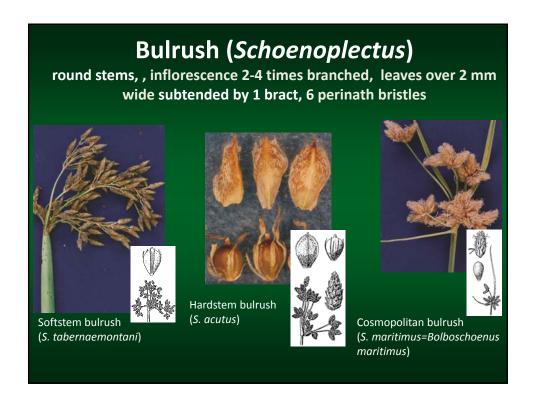

Eleocharis (spikerush)-spikelet solitary and terminal, base of style persistent on the achene as a tubercle (cap), leaves reduced to sheaths at base, <u>+</u> bristles

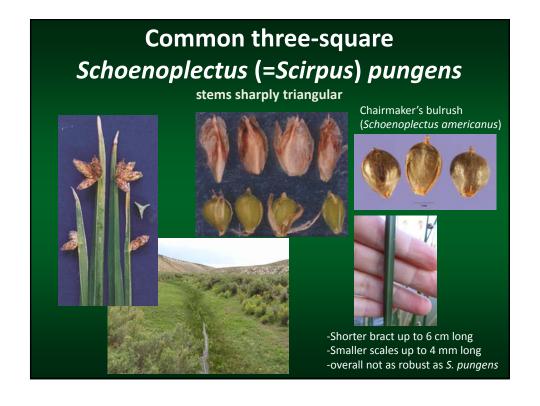

Eriophorum (cotton grass)-perianth bristles numerous, long and hair-like

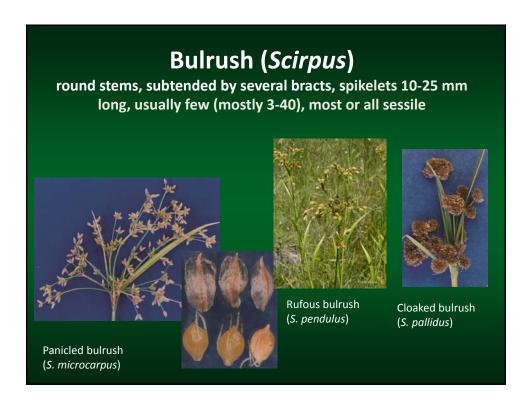

Scirpus or Schoenoplectus (bulrush)-stem round or triangular, solid, inflorescence subtended by 1-several bracts, 3-6 bristles present


Carex or Sedge Characteristics


- Leaves 3-ranked, closed sheaths
- Leafy bracts
- Absent or indefinite ligules
- Culms (stems) usually triangular in x-section
- Internodes usually solid, not jointed
- Staminate flowers subtended by a single bract
- Pistillate flowers subtended by 2 bracts (scale,perigynia)
- Fruits are achenes







Monocot Herb Characteristics

- Embryo with one (mono) seed leaf (cotyledon)
- Leaf veins parallel
- Flower parts in multiples of 3s
- Stem vascular bundles scattered
- No woody or secondary growth

Corn husk lily (Veratrum tentenuipetalum)

Stream orchid (Epipactis gigantea)

Iridaceae-Iris Family

- Rhizomes, corms, or bulbs
- Leaves usually 2-ranked (distichous), equitant (sword-shaped)
- Flowers enclosed in 2 spathes (bracts)
- Tepals 6, in 2 whorls of 3 each

Blue-eyed grass (Sisyrinchium montanum)

Rocky Mountain iris (Iris missouriensis

Juncaginaceae-Arrowgrass Family

- Found in saline or alkaline marshes, fens
- Monecious flowers are sessile produced on a spike
- Tepals minute, greenish
- Leaves linear and basal
- Contains cyanogenic glycosides that when consumed results in cyanide poisoning

Liliaceae-Lily Family

- Rhizomes, corms, or bulbs
- Leaves simple
- Flowers with tepals 6, in 2 series

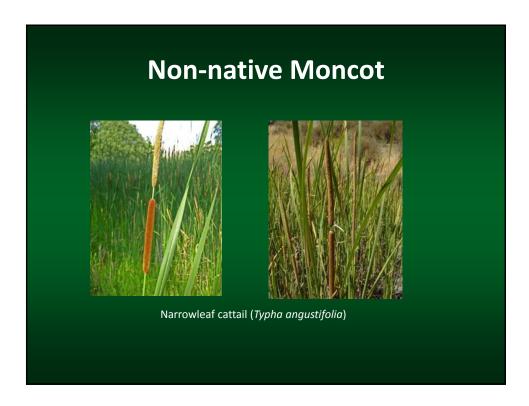
Common goldstar (Hypoxis hirsuta)

Orchidaceae-Orchid Family

- Leaves basal or on stem, simple, entire
- Flowers zygomorphic (bilaterally symmetrical), very showy
- Tepals 6, outer forms lip, sometimes inflated

Stream orchid (Epipactis gigantea)

Bog orchid (*Platanthera* spp.)

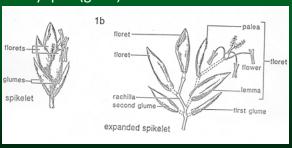

Ute lady's tresses (Spiranthes diluvialis)

Typhaceae-Cattail Family

- Semi-aquatic to emergent
- Thick rhizomes
- Leaves 2-ranked, sheaths open with overlapping margins
- Flowers in terminal cylindric spike,
 staminate above pistillate

Broadleaf cattail (Typha latifolia)

Grasses....Why?!


- One of the most important aspects in all of human civilization!
- Third largest family, on every continent, occupy 1/3 of earth's surface
- FOOD—cereals, rice, corn, sugar
- FEED—cattle, pigs, chickens, sheep, as well as wildlife and birds

	Sedges	Grasses	Rushes
Stems (culm)	Usually solid, 3- angled, not jointed	Hollow, round (terete), nodes jointed	Solid or hollow, round nodes not jointed
Leaves	3-ranked, closed sheath, no ligule		3-ranked, open or closed sheath, no ligule
Florets	Flower enclosed in perigynia, arranged in spikelets	Flower subtended by 2 bracts (lemma, palea)	Usually 6 tepals, usually cymose and often congested
Fruit	Achene -1 seed	Caryopsis - 1	Capsule-many seeds

Grasses Characteristics

- Roots systems are fibrous, often with rhizomes or stolons
- Stems are hollow, rounded with swollen nodes
- Leaves with ligules and sheaths
- Flowers greatly reduced each subtended by palea and lemma
- Seed a caryopsis (grain)

Arundineae Tribe

- Ligule hairy
- Tall and robust
- Inflorescence a terminal, dense plumose panicle
- Example—common reed

(Phragmites australis),

Giant reed (Arundo donax)

Cynodonteae Tribe

- Spikelets with usually more than 1 floret
- Lemmas 3-nerved
- Secund (one-sided) or digitate lateral spike inflorescences
- Ligule partially or entirely fringe of hairs
- Warm-season grass (C₄)
- Examples—muhly (*Muhlenbergia*), stink love grass (*Eragrostis*), buffalo grass (*Buchloe*), salt grass (*Distichilis spicata*), cordgrass (*Spartina*)

Prairie cordgrass (Spartina gracilis)

Bromeae

- Closed leaf sheaths
- Membranous ligules
- Inflorescence a panicle
- Persistent glumes, shorter than lowest lemma, awnless
- Several florets per spikelet

Smooth brome (Bromus inermis)

Meliceae Tribe

- Lower culm forming corm or bulbous base
- Lemmas with prominent parallel venation
- Glume and lemma appear squared off
- Spikelets with 3-9 florets
- Leaf sheath closed, ligules membranous
- Examples—mannagrass, brookgrass, oniongrass

Small mannagrass (Glyceria borealis)

American mannagrass (Glyceria grandis)

Fowl mannagrass (Glyceria striata)

Poaeae (Aveneae) Tribe

- Long awns, if present, from back of lemma
- Sheaths open, ligules membranous, no auricles

Foxtail

aequalis)

- Inflorescence usu. a panicle, spikelets 1 to several florets, glumes shorter than floret, lemmas awnless or awn tipped
- Examples—bluegrass (*Poa*), fescue (*Festuca*), orchardgrass (Dactylis), timothy (Phleum), bluejoint (Calamagrostis), red top (Agrostis), reed canarygrass (Phalaris), tufted hairgrass (Deschampsia), slough grass (Beckmania), foxtail (Alopecurus)

Sloughgrass syzigachne)

Bluejoint (Calamagrostis canadensis)

Triticeae Tribe

- 2 ranked, sessile spikelets
- Tendency toward very narrow or awn-like glumes
- Examples-intermediate wheat grass, crested wheat grass, foxtail barley, rye, western wheat grass

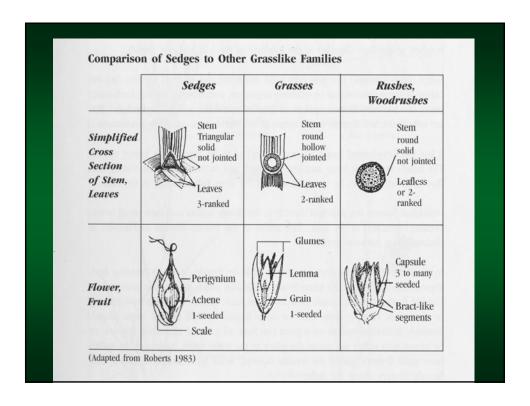
Western wheat grass (Pascopyrum smithii)

Little barley (Hordeum pusillum)

Foxtail barley (*Hordeum jubatum*)

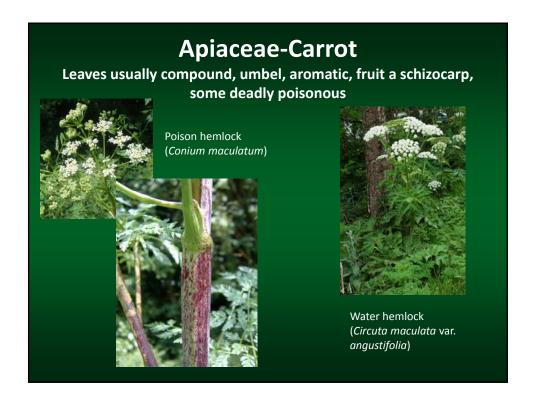
Non-native Grasses

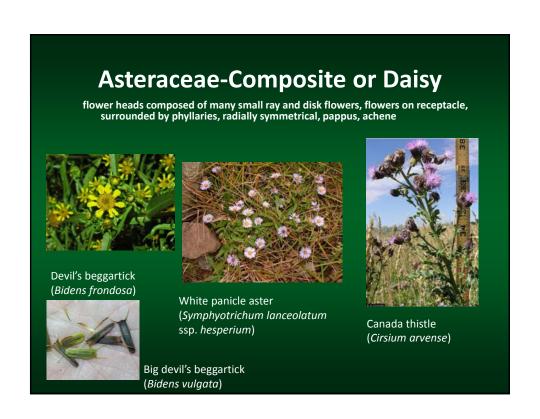
Reed canarygrass ?? (Phalaris arundinacea)

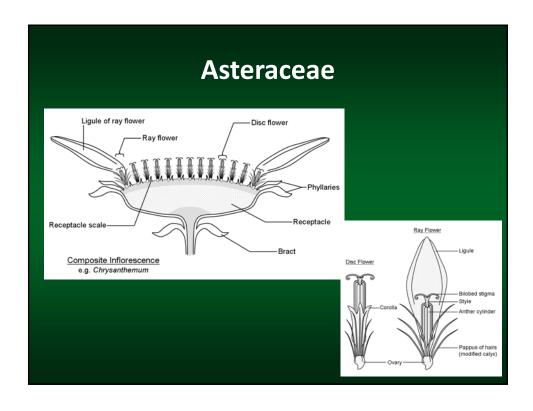

Timothy (Phleum pratense)

Cheatgrass (Bromus tectorum)

Creeping meadow foxtail (Alopecurus arundinaceus)

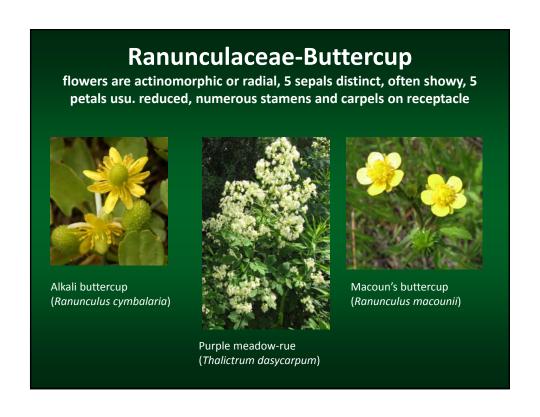

Dicot Characteristics

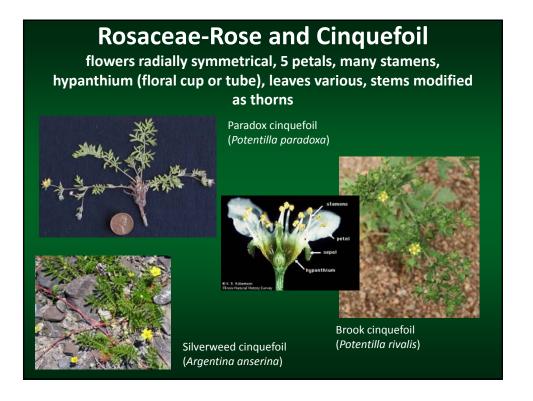

- Leaf veins net-like veination
- Flower parts in multiples of 4s or 5s
- Stem vascular bundles in a ring
- Woody or secondary growth often present
- Embryo with 2 (di) seed leaves (cotyledons)

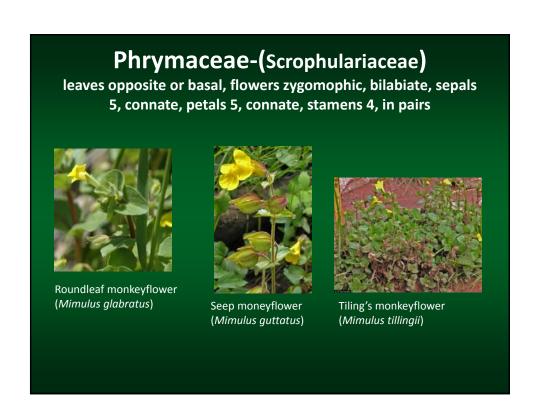


Streamside fleabane (*Erigeron glabellus*)









sepals 2-5, distinct, connate, petals absent or 4-5, stamens 2, 4, in pairs or 4 fertile, 1 staminode (Penstemon)

Redwool plantain (*Plantago eriopoda*)

Hairy purslane speedwell (*Veronica peregrina* ssp. *xalapensis*)

White River coraldrops (Besseya plantaginea)

Gentianaceae-Gentians

leaves usually opposite, flowers round, sepals and petals <u>+</u> united

Showy prairie gentian (Eustoma exaltatum)

Felwort (Swertia perennis)

Parry's gentian (Gentiana parryi)

Aquatic Plants

- ✓ Adapted to living in water
 - ✓ e.g., leaves finely dissected, lack cuticles, slimy, no lignin, large air spaces, weakly developed vascular tissue, wind and water dispersal or vegetative
- ✓ Grow partly or completely submerged in water, either rooted in mud or free-floating
- ✓ Examples: duckweed, water milfoil, water starwort

Aquatic Plant Distribution

Globally--many are cosmopolitan and cover a wide latitudinal gradient relative to terrestrial plants

- More widely distributed than terrestrial plants (60% span more than one continent)
- ✓ Water environment is more uniform than land
- ✓ Similar genera (usu. monocots) occupying latitudes between 40-50 degrees

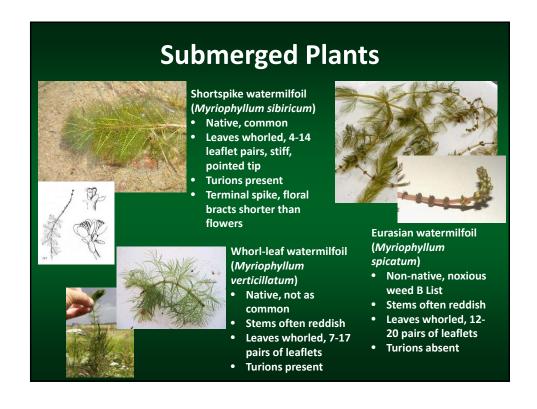
How to Identify Aquatics

- ♦ Leaf shapes (round, linear, feathery)
- Leaf arrangement (opposite, alternate, whorled)
- ♦ Leaf tips (rounded or pointed)
- ♦ Leaf margins (serrate, entire, wavy)
- Venation (mid-veins, lateral veins, number of veins)
- Ligules (at junction of leaf and sheath) present/absent
- Stipules (at petiole base) connate/adnate

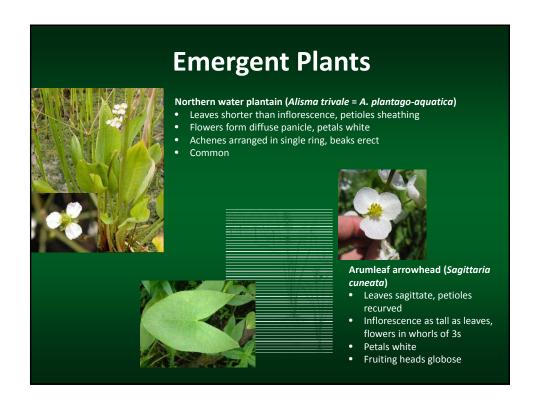
No flowers!!

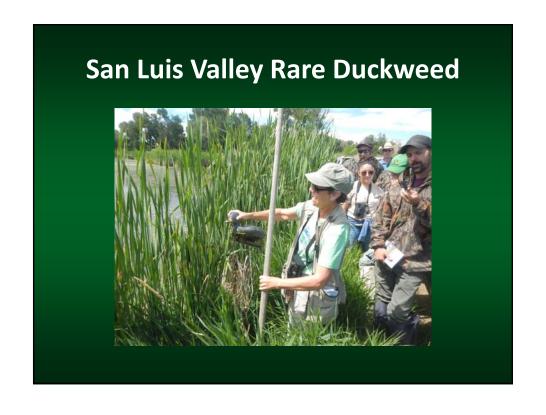
Aquatic Free-Floating Plants

- Float on the water surface or occasionally within the water column
- Roots, if present, hang free in the water and are not anchored
- Move along water surface with winds and currents
- Take nutrients directly from the water via suspended roots or osmotic processes
- Examples: duckweeds (Lemna spp.), duckmeat Spirodela polyrrhiza


Water fern (Azolla mexicana

Water meal (Wolffia spp.)


Aquatic Submerged Plants


- Live in shallow waters, often rooted at some point to obtain maximum sunlight.
- Conduct entire life beneath water surface, except for flowering
- Photosynthetic tissues (leaves, stems) are underwater
- Stems and leaves are soft, flexible (no lignin) with long, ribbon-like, highly divided
- Examples: water starwort (Callitriche spp.), hornwort (Ceratophyllum demersum), water milfoil (Myriophyllum spp.),

Aquatic Floating-leaved Plants

- Flourish in fluctuating or turbid water because they send up long stalks from often large, buried tubers in mud
- Leaves are circular or oval with entire margins that reduce tearing
- Leathery texture to prevent from herbivory and over saturation
- Stomata are located on the aerial side of leaf
- Can outcompete other aquatic plants by shading the water column
- Inflorescences or flowers float or are close to the water surface
- Examples: Rocky Mountain pond lily (Nuphar lutea ssp. polysepala), pondweeds (Potamogeton spp.)

