
Package ‘FDboost’
January 20, 2025

Type Package

Title Boosting Functional Regression Models

Version 1.1-2

Date 2023-08-12

Maintainer David Ruegamer <david.ruegamer@gmail.com>

Description Regression models for functional data, i.e., scalar-on-function,
function-on-scalar and function-on-function regression models, are fitted
by a component-wise gradient boosting algorithm.

For a manual on how to use 'FDboost', see Brock-
haus, Ruegamer, Greven (2017) <doi:10.18637/jss.v094.i10>.

Depends R (>= 3.5.0), mboost (>= 2.9-0)

Imports methods, graphics, grDevices, utils, stats, Matrix,
gamboostLSS (>= 2.0-0), stabs, mgcv, MASS, zoo

Suggests fda, fields, ggplot2, maps, mapdata, knitr, refund, testthat

License GPL-2

Collate 'aaa.R' 'FDboost-package.R' 'FDboost.R' 'baselearners.R'
'baselearnersX.R' 'bootstrapCIs.R' 'clr_functions.R'
'constrainedX.R' 'crossvalidation.R' 'factorize.R'
'FDboostLSS.R' 'hmatrix.R' 'methods.R' 'stabsel.R'
'utilityFunctions.R'

RoxygenNote 7.2.3

Encoding UTF-8

BugReports https://github.com/boost-R/FDboost/issues

URL https://github.com/boost-R/FDboost

VignetteBuilder knitr

NeedsCompilation no

Author Sarah Brockhaus [aut],
David Ruegamer [aut, cre],
Almond Stoecker [aut],
Torsten Hothorn [ctb],
with contributions by many others (see inst/CONTRIBUTIONS) [ctb]

1

https://doi.org/10.18637/jss.v094.i10
https://github.com/boost-R/FDboost/issues
https://github.com/boost-R/FDboost

2 Contents

Repository CRAN

Date/Publication 2023-08-12 15:20:09 UTC

Contents
FDboost-package . 3
anisotropic_Kronecker . 4
applyFolds . 7
bbsc . 11
bhistx . 14
birthDistribution . 17
bootstrapCI . 20
bsignal . 23
clr . 30
coef.FDboost . 32
cvrisk.FDboostLSS . 33
emotion . 35
extract.blg . 36
factorize . 37
FDboost . 43
FDboostLSS . 52
FDboost_fac-class . 55
fitted.FDboost . 55
fuelSubset . 56
funMRD . 57
funMSE . 58
funplot . 59
funRsquared . 60
getTime . 61
getTime.hmatrix . 62
hmatrix . 63
integrationWeights . 64
is.hmatrix . 66
mstop.validateFDboost . 67
o_control . 69
plot.bootstrapCI . 69
plot.FDboost . 70
predict.FDboost . 72
predict.FDboost_fac . 73
residuals.FDboost . 74
reweightData . 75
stabsel.FDboost . 77
subset_hmatrix . 79
summary.FDboost . 80
truncateTime . 81
update.FDboost . 82
validateFDboost . 83

FDboost-package 3

viscosity . 87
wide2long . 88
[.hmatrix . 88
%Xc% . 89

Index 92

FDboost-package FDboost: Boosting Functional Regression Models

Description

Regression models for functional data, i.e., scalar-on-function, function-on-scalar and function-on-
function regression models, are fitted by a component-wise gradient boosting algorithm.

Details

This package is intended to fit regression models with functional variables. It is possible to fit mod-
els with functional response and/or functional covariates, resulting in scalar-on-function, function-
on-scalar and function-on-function regression. Furthermore, the package can be used to fit density-
on-scalar regression models. Details on the functional regression models that can be fitted with
FDboost can be found in Brockhaus et al. (2015, 2017, 2018) and Ruegamer et al. (2018). A
hands-on tutorial for the package can be found in Brockhaus, Ruegamer and Greven (2020), see
<doi:10.18637/jss.v094.i10>. For density-on-scalar regression models see Maier et al. (2021).

Using component-wise gradient boosting as fitting procedure, FDboost relies on the R package
mboost (Hothorn et al., 2017). A comprehensive tutorial to mboost is given in Hofner et al. (2014).

The main fitting function is FDboost. The model complexity is controlled by the number of boosting
iterations (mstop). Like the fitting procedures in mboost, the function FDboost DOES NOT select
an appropriate stopping iteration. This must be chosen by the user. The user can determine an
adequate stopping iteration by resampling methods like cross-validation or bootstrap. This can be
done using the function applyFolds.

Aside from common effect surface plots, tensor product factorization via the function factorize
presents an alternative tool for visualization of estimated effects for non-linear function-on-scalar
models (Stoecker, Steyer and Greven (2022), https://arxiv.org/abs/2109.02624). After fac-
torization, effects are decomposed multiple scalar effects into functional main effect directions,
which can be separately plotted allowing to visualize more complex effect structures.

Author(s)

Sarah Brockhaus, David Ruegamer and Almond Stoecker

References

Brockhaus, S., Ruegamer, D. and Greven, S. (2020): Boosting Functional Regression Models with
FDboost. Journal of Statistical Software, 94(10), 1–50. <doi:10.18637/jss.v094.i10>

Brockhaus, S., Scheipl, F., Hothorn, T. and Greven, S. (2015): The functional linear array model.
Statistical Modelling, 15(3), 279-300.

https://arxiv.org/abs/2109.02624

4 anisotropic_Kronecker

Brockhaus, S., Melcher, M., Leisch, F. and Greven, S. (2017): Boosting flexible functional regres-
sion models with a high number of functional historical effects, Statistics and Computing, 27(4),
913-926.

Brockhaus, S., Fuest, A., Mayr, A. and Greven, S. (2018): Signal regression models for location,
scale and shape with an application to stock returns. Journal of the Royal Statistical Society: Series
C (Applied Statistics), 67, 665-686.

Hothorn T., Buehlmann P., Kneib T., Schmid M., and Hofner B. (2017). mboost: Model-Based
Boosting, R package version 2.8-1, https://cran.r-project.org/package=mboost

Hofner, B., Mayr, A., Robinzonov, N., Schmid, M. (2014). Model-based Boosting in R: A Hands-
on Tutorial Using the R Package mboost. Computational Statistics, 29, 3-35. https://cran.
r-project.org/package=mboost/vignettes/mboost_tutorial.pdf

Maier, E.-M., Stoecker, A., Fitzenberger, B., Greven, S. (2021): Additive Density-on-Scalar Regres-
sion in Bayes Hilbert Spaces with an Application to Gender Economics. arXiv preprint arXiv:2110.11771.

Ruegamer D., Brockhaus, S., Gentsch K., Scherer, K., Greven, S. (2018). Boosting factor-specific
functional historical models for the detection of synchronization in bioelectrical signals. Journal of
the Royal Statistical Society: Series C (Applied Statistics), 67, 621-642.

Stoecker A., Steyer L., Greven S. (2022): Functional Additive Models on Manifolds of Planar
Shapes and Forms. arXiv preprint arXiv:2109.02624.

See Also

FDboost for the main fitting function and applyFolds for model tuning via resampling methods.

anisotropic_Kronecker Kronecker product or row tensor product of two base-learners with
anisotropic penalty

Description

Kronecker product or row tensor product of two base-learners allowing for anisotropic penalties.
For the Kronecker product, %A% works in the general case, %A0% for the special case where the
penalty is zero in one direction. For the row tensor product, %Xa0% works for the special case where
the penalty is zero in one direction.

Usage

bl1 %A% bl2

bl1 %A0% bl2

bl1 %Xa0% bl2

Arguments

bl1 base-learner 1, e.g. bbs(x1)

bl2 base-learner 2, e.g. bbs(x2)

https://cran.r-project.org/package=mboost
https://cran.r-project.org/package=mboost/vignettes/mboost_tutorial.pdf
https://cran.r-project.org/package=mboost/vignettes/mboost_tutorial.pdf

anisotropic_Kronecker 5

Details

When %O% is called with a specification of df in both base-learners, e.g. bbs(x1, df = df1) %O%
bbs(t, df = df2), the global df for the Kroneckered base-learner is computed as df = df1 * df2.
And thus the penalty has only one smoothness parameter lambda resulting in an isotropic penalty,

P = lambda ∗ [(P1oI) + (IoP2)],

with overall penalty P , Kronecker product o, marginal penalty matrices P1, P2 and identity ma-
trices I . (Currie et al. (2006) introduced the generalized linear array model, which has a design
matrix that is composed of the Kronecker product of two marginal design matrices, which was im-
plemented in mboost as %O%. See Brockhaus et al. (2015) for the application of array models to
functional data.)

In contrast, a Kronecker product with anisotropic penalty is obtained by %A%, which allows for a
different amount of smoothness in the two directions. For example bbs(x1, df = df1) %A% bbs(t,
df = df2) results in computing two different values for lambda for the two marginal design matrices
and a global value of lambda to adjust for the global df, i.e.

P = lambda ∗ [(lambda1 ∗ P1oI) + (Iolambda2 ∗ P2)],

with Kronecker product o, where lambda1 is computed individually for df1 and P1, lambda2
is computed individually for df2 and P2, and lambda is computed such that the global df hold
df = df1 ∗ df2. For the computation of lambda1 and lambda2 weights specified in the model
call can only be used when the weights, are such that they are specified on the level of rows and
columns of the response matrix Y, e.g. resampling weights on the level of rows of Y and integration
weights on the columns of Y are possible. If this the weights cannot be separated to blg1 and blg2
all weights are set to 1 for the computation of lambda1 and lambda2 which implies that lambda1
and lambda2 are equal over folds of cvrisk. The computation of the global lambda considers the
specified weights, such the global df are correct.

The operator %A0% treats the important special case where lambda1 = 0 or lambda2 = 0. In this
case it suffices to compute the global lambda and computation gets faster and arbitrary weights can
be specified. Consider lambda1 = 0 then the penalty becomes

P = lambda ∗ [(1 ∗ P1oI) + (Iolambda2 ∗ P2)] = lambda ∗ lambda2 ∗ (IoP2),

and only one global lambda is computed which is then lambda ∗ lambda2.

If the formula in FDboost contains base-learners connected by %O%, %A% or %A0%, those effects
are not expanded with timeformula, allowing for model specifications with different effects in
time-direction.

%Xa0% computes like %X% the row tensor product of two base-learners, with the difference that it sets
the penalty for one direction to zero. Thus, %Xa0% behaves to %X% analogously like %A0% to %O%.

Value

An object of class blg (base-learner generator) with a dpp function as for other baselearners.

References

Brockhaus, S., Scheipl, F., Hothorn, T. and Greven, S. (2015): The functional linear array model.
Statistical Modelling, 15(3), 279-300.

6 anisotropic_Kronecker

Currie, I.D., Durban, M. and Eilers P.H.C. (2006): Generalized linear array models with applica-
tions to multidimensional smoothing. Journal of the Royal Statistical Society, Series B-Statistical
Methodology, 68(2), 259-280.

Examples

######## Example for anisotropic penalty
data("viscosity", package = "FDboost")
set time-interval that should be modeled
interval <- "101"

model time until "interval" and take log() of viscosity
end <- which(viscosity$timeAll == as.numeric(interval))
viscosity$vis <- log(viscosity$visAll[,1:end])
viscosity$time <- viscosity$timeAll[1:end]
with(viscosity, funplot(time, vis, pch = 16, cex = 0.2))

isotropic penalty, as timeformula is kroneckered to each effect using %O%
only for the smooth intercept %A0% is used, as 1-direction should not be penalized
mod1 <- FDboost(vis ~ 1 +

bolsc(T_C, df = 1) +
bolsc(T_A, df = 1) +
bols(T_C, df = 1) %Xc% bols(T_A, df = 1),
timeformula = ~ bbs(time, df = 3),
numInt = "equal", family = QuantReg(),
offset = NULL, offset_control = o_control(k_min = 9),
data = viscosity, control=boost_control(mstop = 100, nu = 0.4))

cf. the formula that is passed to mboost
mod1$formulaMboost

anisotropic effects using %A0%, as lambda1 = 0 for all base-learners
in this case using %A% gives the same model, but three lambdas are computed explicitly
mod1a <- FDboost(vis ~ 1 +

bolsc(T_C, df = 1) %A0% bbs(time, df = 3) +
bolsc(T_A, df = 1) %A0% bbs(time, df = 3) +
bols(T_C, df = 1) %Xc% bols(T_A, df = 1) %A0% bbs(time, df = 3),
timeformula = ~ bbs(time, df = 3),
numInt = "equal", family = QuantReg(),
offset = NULL, offset_control = o_control(k_min = 9),
data = viscosity, control=boost_control(mstop = 100, nu = 0.4))

cf. the formula that is passed to mboost
mod1a$formulaMboost

alternative model specification by using a 0-matrix as penalty
only works for bolsc() as in bols() one cannot specify K
-> model without interaction term
K0 <- matrix(0, ncol = 2, nrow = 2)
mod1k0 <- FDboost(vis ~ 1 +

bolsc(T_C, df = 1, K = K0) +
bolsc(T_A, df = 1, K = K0),
timeformula = ~ bbs(time, df = 3),
numInt = "equal", family = QuantReg(),
offset = NULL, offset_control = o_control(k_min = 9),

applyFolds 7

data = viscosity, control=boost_control(mstop = 100, nu = 0.4))
cf. the formula that is passed to mboost
mod1k0$formulaMboost

optimize mstop for mod1, mod1a and mod1k0
...

compare estimated coefficients

oldpar <- par(mfrow=c(4, 2))
plot(mod1, which = 1)
plot(mod1a, which = 1)
plot(mod1, which = 2)
plot(mod1a, which = 2)
plot(mod1, which = 3)
plot(mod1a, which = 3)
funplot(mod1$yind, predict(mod1, which=4))
funplot(mod1$yind, predict(mod1a, which=4))
par(oldpar)

applyFolds Cross-Validation and Bootstrapping over Curves

Description

Cross-validation and bootstrapping over curves to compute the empirical risk for hyper-parameter
selection.

Usage

applyFolds(
object,
folds = cv(rep(1, length(unique(object$id))), type = "bootstrap"),
grid = 1:mstop(object),
fun = NULL,
riskFun = NULL,
numInt = object$numInt,
papply = mclapply,
mc.preschedule = FALSE,
showProgress = TRUE,
compress = FALSE,
...

)

S3 method for class 'FDboost'
cvrisk(
object,

8 applyFolds

folds = cvLong(id = object$id, weights = model.weights(object)),
grid = 1:mstop(object),
papply = mclapply,
fun = NULL,
mc.preschedule = FALSE,
...

)

cvLong(
id,
weights = rep(1, l = length(id)),
type = c("bootstrap", "kfold", "subsampling", "curves"),
B = ifelse(type == "kfold", 10, 25),
prob = 0.5,
strata = NULL

)

cvMa(
ydim,
weights = rep(1, l = ydim[1] * ydim[2]),
type = c("bootstrap", "kfold", "subsampling", "curves"),
B = ifelse(type == "kfold", 10, 25),
prob = 0.5,
strata = NULL,
...

)

Arguments

object fitted FDboost-object

folds a weight matrix with number of rows equal to the number of observed trajecto-
ries.

grid the grid over which the optimal number of boosting iterations (mstop) is searched.

fun if fun is NULL, the out-of-bag risk is returned. fun, as a function of object,
may extract any other characteristic of the cross-validated models. These are
returned as is.

riskFun only exists in applyFolds; allows to compute other risk functions than the risk
of the family that was specified in object. Must be specified as function of
arguments (y, f, w = 1), where y is the observed response, f is the prediction
from the model and w is the weight. The risk function must return a scalar
numeric value for vector valued input.

numInt only exists in applyFolds; the scheme for numerical integration, see numInt in
FDboost.

papply (parallel) apply function, defaults to mclapply from R package parallel, see
cvrisk for details.

mc.preschedule Defaults to FALSE. Preschedule tasks if they are parallelized using mclapply.
For details see mclapply.

applyFolds 9

showProgress logical, defaults to TRUE.

compress logical, defaults to FALSE. Only used to force a meaningful behaviour of applyFolds
with hmatrix objects when using nested resampling.

... further arguments passed to the (parallel) apply function.

id the id-vector as integers 1, 2, ... specifying which observations belong to the
same curve, deprecated in cvMa().

weights a numeric vector of (integration) weights, defaults to 1.

type character argument for specifying the cross-validation method. Currently (strat-
ified) bootstrap, k-fold cross-validation, subsampling and leaving-one-curve-out
cross validation (i.e. jack knife on curves) are implemented.

B number of folds, per default 25 for bootstrap and subsampling and 10 for
kfold.

prob percentage of observations to be included in the learning samples for subsam-
pling.

strata a factor of the same length as weights for stratification.

ydim dimensions of response-matrix

Details

The number of boosting iterations is an important hyper-parameter of boosting. It be chosen using
the functions applyFolds or cvrisk.FDboost. Those functions compute honest, i.e., out-of-bag,
estimates of the empirical risk for different numbers of boosting iterations. The weights (zero
weights correspond to test cases) are defined via the folds matrix, see cvrisk in package mboost.

In case of functional response, we recommend to use applyFolds. It recomputes the model in
each fold using FDboost. Thus, all parameters are recomputed, including the smooth offset (if
present) and the identifiability constraints (if present, only relevant for bolsc, brandomc and bbsc).
Note, that the function applyFolds expects folds that give weights per curve without considering
integration weights.

The function cvrisk.FDboost is a wrapper for cvrisk in package mboost. It overrides the de-
fault for the folds, so that the folds are sampled on the level of curves (not on the level of single
observations, which does not make sense for functional response). Note that the smooth offset and
the computation of the identifiability constraints are not part of the refitting if cvrisk is used. Per
default the integration weights of the model fit are used to compute the prediction errors (as the
integration weights are part of the default folds). Note that in cvrisk the weights are rescaled to
sum up to one.

The functions cvMa and cvLong can be used to build an appropriate weight matrix for functional
response to be used with cvrisk as sampling is done on the level of curves. The probability for each
curve to enter a fold is equal over all curves. The function cvMa takes the dimensions of the response
matrix as input argument and thus can only be used for regularly observed response. The function
cvLong takes the id variable and the weights as arguments and thus can be used for responses in
long format that are potentially observed irregularly.

If strata is defined sampling is performed in each stratum separately thus preserving the distribu-
tion of the strata variable in each fold.

10 applyFolds

Value

cvMa and cvLong return a matrix of sampling weights to be used in cvrisk.

The functions applyFolds and cvrisk.FDboost return a cvrisk-object, which is a matrix of the
computed out-of-bag risk. The matrix has the folds in rows and the number of boosting iteratins in
columns. Furhtermore, the matrix has attributes including:

risk name of the applied risk function

call model call of the model object

mstop gird of stopping iterations that is used

type name for the type of folds

Note

Use argument mc.cores = 1L to set the numbers of cores that is used in parallel computation. On
Windows only 1 core is possible, mc.cores = 1, which is the default.

See Also

cvrisk to perform cross-validation with scalar response.

Examples

Ytest <- matrix(rnorm(15), ncol = 3) # 5 trajectories, each with 3 observations
Ylong <- as.vector(Ytest)
4-folds for bootstrap for the response in long format without integration weights
cvMa(ydim = c(5,3), type = "bootstrap", B = 4)
cvLong(id = rep(1:5, times = 3), type = "bootstrap", B = 4)

if(require(fda)){
load the data
data("CanadianWeather", package = "fda")

use data on a daily basis
canada <- with(CanadianWeather,

list(temp = t(dailyAv[, , "Temperature.C"]),
l10precip = t(dailyAv[, , "log10precip"]),

l10precip_mean = log(colMeans(dailyAv[, , "Precipitation.mm"]), base = 10),
lat = coordinates[, "N.latitude"],
lon = coordinates[, "W.longitude"],
region = factor(region),
place = factor(place),

day = 1:365, ## corresponds to t: evaluation points of the fun. response
day_s = 1:365)) ## corresponds to s: evaluation points of the fun. covariate

center temperature curves per day
canada$tempRaw <- canada$temp
canada$temp <- scale(canada$temp, scale = FALSE)
rownames(canada$temp) <- NULL ## delete row-names

fit the model

bbsc 11

mod <- FDboost(l10precip ~ 1 + bolsc(region, df = 4) +
bsignal(temp, s = day_s, cyclic = TRUE, boundary.knots = c(0.5, 365.5)),

timeformula = ~ bbs(day, cyclic = TRUE, boundary.knots = c(0.5, 365.5)),
data = canada)

mod <- mod[75]

create folds for 3-fold bootstrap: one weight for each curve
set.seed(123)
folds_bs <- cv(weights = rep(1, mod$ydim[1]), type = "bootstrap", B = 3)

compute out-of-bag risk on the 3 folds for 1 to 75 boosting iterations
cvr <- applyFolds(mod, folds = folds_bs, grid = 1:75)

weights per observation point
folds_bs_long <- folds_bs[rep(1:nrow(folds_bs), times = mod$ydim[2]),]
attr(folds_bs_long, "type") <- "3-fold bootstrap"
compute out-of-bag risk on the 3 folds for 1 to 75 boosting iterations
cvr3 <- cvrisk(mod, folds = folds_bs_long, grid = 1:75)

plot the out-of-bag risk
oldpar <- par(mfrow = c(1,3))
plot(cvr); legend("topright", lty=2, paste(mstop(cvr)))
plot(cvr3); legend("topright", lty=2, paste(mstop(cvr3)))
par(oldpar)

}

bbsc Constrained Base-learners for Scalar Covariates

Description

Constrained base-learners for fitting effects of scalar covariates in models with functional response

Usage

bbsc(
...,
by = NULL,
index = NULL,
knots = 10,
boundary.knots = NULL,
degree = 3,
differences = 2,

12 bbsc

df = 4,
lambda = NULL,
center = FALSE,
cyclic = FALSE

)

bolsc(
...,
by = NULL,
index = NULL,
intercept = TRUE,
df = NULL,
lambda = 0,
K = NULL,
weights = NULL,
contrasts.arg = "contr.treatment"

)

brandomc(..., contrasts.arg = "contr.dummy", df = 4)

Arguments

... one or more predictor variables or one matrix or data frame of predictor vari-
ables.

by an optional variable defining varying coefficients, either a factor or numeric vari-
able.

index a vector of integers for expanding the variables in

knots either the number of knots or a vector of the positions of the interior knots (for
more details see bbs).

boundary.knots boundary points at which to anchor the B-spline basis (default the range of the
data). A vector (of length 2) for the lower and the upper boundary knot can be
specified.

degree degree of the regression spline.

differences a non-negative integer, typically 1, 2 or 3. If differences = k, k-th-order dif-
ferences are used as a penalty (0-th order differences specify a ridge penalty).

df trace of the hat matrix for the base-learner defining the base-learner complex-
ity. Low values of df correspond to a large amount of smoothing and thus to
"weaker" base-learners.

lambda smoothing parameter of the penalty, computed from df when df is specified.

center See bbs.

cyclic if cyclic = TRUE the fitted values coincide at the boundaries (useful for cyclic
covariates such as day time etc.).

intercept if intercept = TRUE an intercept is added to the design matrix of a linear base-
learner.

K in bolsc it is possible to specify the penalty matrix K

bbsc 13

weights experiemtnal! weights that are used for the computation of the transformation
matrix Z.

contrasts.arg Note that a special contrasts.arg exists in package mboost, namely "contr.dummy".
This contrast is used per default in brandomc. It leads to a dummy coding as re-
turned by model.matrix(~ x - 1) were the intercept is implicitly included but
each factor level gets a separate effect estimate (for more details see brandom).

Details

The base-learners bbsc, bolsc and brandomc are the base-learners bbs, bols and brandom with
additional identifiability constraints. The constraints enforce that

∑
i ĥ(xi, t) = 0 for all t, so that

effects varying over t can be interpreted as deviations from the global functional intercept, see Web
Appendix A of Scheipl et al. (2015). The constraint is enforced by a basis transformation of the
design and penalty matrix. In particular, it is sufficient to apply the constraint on the covariate-part
of the design and penalty matrix and thus, it is not necessary to change the basis in t-direction.
See Appendix A of Brockhaus et al. (2015) for technical details on how to enforce this sum-to-zero
constraint.

Cannot deal with any missing values in the covariates.

Value

Equally to the base-learners of package mboost:

An object of class blg (base-learner generator) with a dpp function (data pre-processing) and other
functions.

The call to dpp returns an object of class bl (base-learner) with a fit function. The call to fit
finally returns an object of class bm (base-model).

Author(s)

Sarah Brockhaus, Almond Stoecker

References

Brockhaus, S., Scheipl, F., Hothorn, T. and Greven, S. (2015): The functional linear array model.
Statistical Modelling, 15(3), 279-300.

Scheipl, F., Staicu, A.-M. and Greven, S. (2015): Functional Additive Mixed Models, Journal of
Computational and Graphical Statistics, 24(2), 477-501.

See Also

FDboost for the model fit. bbs, bols and brandom for the corresponding base-learners in mboost.

Examples

simulate data with functional response and scalar covariate (functional ANOVA)
n <- 60 ## number of cases
Gy <- 27 ## number of observation poionts per response curve
dat <- list()
dat$t <- (1:Gy-1)^2/(Gy-1)^2

14 bhistx

set.seed(123)
dat$z1 <- rep(c(-1, 1), length = n)
dat$z1_fac <- factor(dat$z1, levels = c(-1, 1), labels = c("1", "2"))
dat$z1 <- runif(n)
dat$z1 <- dat$z1 - mean(dat$z1)

mean and standard deviation for the functional response
mut <- matrix(2*sin(pi*dat$t), ncol = Gy, nrow = n, byrow = TRUE) +

outer(dat$z1, dat$t, function(z1, t) z1*cos(pi*t)) # true linear predictor
sigma <- 0.1

draw respone y_i(t) ~ N(mu_i(t), sigma)
dat$y <- apply(mut, 2, function(x) rnorm(mean = x, sd = sigma, n = n))

fit function-on-scalar model with a linear effect of z1
m1 <- FDboost(y ~ 1 + bolsc(z1_fac, df = 1), timeformula = ~ bbs(t, df = 6), data = dat)

look for optimal mSTOP using cvrisk() or validateFDboost()

cvm <- cvrisk(m1, grid = 1:500)
m1[mstop(cvm)]

m1[200] # use 200 boosting iterations

plot true and estimated coefficients
plot(dat$t, 2*sin(pi*dat$t), col = 2, type = "l", main = "intercept")
plot(m1, which = 1, lty = 2, add = TRUE)

plot(dat$t, 1*cos(pi*dat$t), col = 2, type = "l", main = "effect of z1")
lines(dat$t, -1*cos(pi*dat$t), col = 2, type = "l")
plot(m1, which = 2, lty = 2, col = 1, add = TRUE)

bhistx Base-learners for Functional Covariates

Description

Base-learners that fit historical functional effects that can be used with the tensor product, as, e.g.,
hbistx(...) %X% bolsc(...), to form interaction effects (Ruegamer et al., 2018). For expert use
only! May show unexpected behavior compared to other base-learners for functional data!

Usage

bhistx(
x,
limits = "s<=t",
standard = c("no", "time", "length"),
intFun = integrationWeightsLeft,

bhistx 15

inS = c("smooth", "linear", "constant"),
inTime = c("smooth", "linear", "constant"),
knots = 10,
boundary.knots = NULL,
degree = 3,
differences = 1,
df = 4,
lambda = NULL,
penalty = c("ps", "pss"),
check.ident = FALSE

)

Arguments

x object of type hmatrix containing time, index and functional covariate; note that
timeLab in the hmatrix-object must be equal to the name of the time-variable
in timeformula in the FDboost-call

limits defaults to "s<=t" for an historical effect with s<=t; either one of "s<t" or
"s<=t" for [l(t), u(t)] = [T1, t]; otherwise specify limits as a function for inte-
gration limits [l(t), u(t)]: function that takes s as the first and t as the second
argument and returns TRUE for combinations of values (s,t) if s falls into the
integration range for the given t.

standard the historical effect can be standardized with a factor. "no" means no standard-
ization, "time" standardizes with the current value of time and "lenght" stan-
dardizes with the lenght of the integral

intFun specify the function that is used to compute integration weights in s over the
functional covariate x(s)

inS historical effect can be smooth, linear or constant in s, which is the index of the
functional covariates x(s).

inTime historical effect can be smooth, linear or constant in time, which is the index of
the functional response y(time).

knots either the number of knots or a vector of the positions of the interior knots (for
more details see bbs).

boundary.knots boundary points at which to anchor the B-spline basis (default the range of the
data). A vector (of length 2) for the lower and the upper boundary knot can be
specified.

degree degree of the regression spline.

differences a non-negative integer, typically 1, 2 or 3. Defaults to 1. If differences =
k, k-th-order differences are used as a penalty (0-th order differences specify a
ridge penalty).

df trace of the hat matrix for the base-learner defining the base-learner complex-
ity. Low values of df correspond to a large amount of smoothing and thus to
"weaker" base-learners.

lambda smoothing parameter of the penalty, computed from df when df is specified.

16 bhistx

penalty by default, penalty="ps", the difference penalty for P-splines is used, for penalty="pss"
the penalty matrix is transformed to have full rank, so called shrinkage approach
by Marra and Wood (2011)

check.ident use checks for identifiability of the effect, based on Scheipl and Greven (2016);
see Brockhaus et al. (2017) for identifiability checks that take into account the
integration limits

Details

bhistx implements a base-learner for functional covariates with flexible integration limits l(t),
r(t) and the possibility to standardize the effect by 1/t or the length of the integration interval.
The effect is stand * int_{l(t)}^{r_{t}} x(s)beta(t,s) ds. The base-learner defaults to a his-
torical effect of the form

∫ t

T1
xi(s)beta(t, s)ds, where T1 is the minimal index of t of the response

Y (t). bhistx can only be used if Y (t) and x(s) are observd over the same domain s, t ∈ [T1, T2].
The base-learner bhistx can be used to set up complex interaction effects like factor-specific his-
torical effects as discussed in Ruegamer et al. (2018).

Note that the data has to be supplied as a hmatrix object for model fit and predictions.

Value

Equally to the base-learners of package mboost:

An object of class blg (base-learner generator) with a dpp function (dpp, data pre-processing).

The call of dpp returns an object of class bl (base-learner) with a fit function. The call to fit
finally returns an object of class bm (base-model).

References

Brockhaus, S., Melcher, M., Leisch, F. and Greven, S. (2017): Boosting flexible functional regres-
sion models with a high number of functional historical effects, Statistics and Computing, 27(4),
913-926.

Marra, G. and Wood, S.N. (2011): Practical variable selection for generalized additive models.
Computational Statistics & Data Analysis, 55, 2372-2387.

Ruegamer D., Brockhaus, S., Gentsch K., Scherer, K., Greven, S. (2018). Boosting factor-specific
functional historical models for the detection of synchronization in bioelectrical signals. Journal of
the Royal Statistical Society: Series C (Applied Statistics), 67, 621-642.

Scheipl, F., Staicu, A.-M. and Greven, S. (2015): Functional Additive Mixed Models, Journal of
Computational and Graphical Statistics, 24(2), 477-501. https://arxiv.org/abs/1207.5947

Scheipl, F. and Greven, S. (2016): Identifiability in penalized function-on-function regression mod-
els. Electronic Journal of Statistics, 10(1), 495-526.

See Also

FDboost for the model fit and bhist for simple hisotorical effects.

https://arxiv.org/abs/1207.5947

birthDistribution 17

Examples

if(require(refund)){
simulate some data from a historical model
the interaction effect is in this case not necessary
n <- 100
nygrid <- 35
data1 <- pffrSim(scenario = c("int", "ff"), limits = function(s,t){ s <= t },

n = n, nygrid = nygrid)
data1$X1 <- scale(data1$X1, scale = FALSE) ## center functional covariate
dataList <- as.list(data1)
dataList$tvals <- attr(data1, "yindex")

create the hmatrix-object
X1h <- with(dataList, hmatrix(time = rep(tvals, each = n), id = rep(1:n, nygrid),

x = X1, argvals = attr(data1, "xindex"),
timeLab = "tvals", idLab = "wideIndex",
xLab = "myX", argvalsLab = "svals"))

dataList$X1h <- I(X1h)
dataList$svals <- attr(data1, "xindex")
add a factor variable
dataList$zlong <- factor(gl(n = 2, k = n/2, length = n*nygrid), levels = 1:2)
dataList$z <- factor(gl(n = 2, k = n/2, length = n), levels = 1:2)

do the model fit with main effect of bhistx() and interaction of bhistx() and bolsc()
mod <- FDboost(Y ~ 1 + bhistx(x = X1h, df = 5, knots = 5) +

bhistx(x = X1h, df = 5, knots = 5) %X% bolsc(zlong),
timeformula = ~ bbs(tvals, knots = 10), data = dataList)

alternative parameterization: interaction of bhistx() and bols()
mod <- FDboost(Y ~ 1 + bhistx(x = X1h, df = 5, knots = 5) %X% bols(zlong),

timeformula = ~ bbs(tvals, knots = 10), data = dataList)

find the optimal mstop over 5-fold bootstrap (small example to reduce run time)
cv <- cvrisk(mod, folds = cv(model.weights(mod), B = 5))
mstop(cv)
mod[mstop(cv)]

appl1 <- applyFolds(mod, folds = cv(rep(1, length(unique(mod$id))), type = "bootstrap", B = 5))

plot(mod)

}

birthDistribution Densities of live births in Germany

18 birthDistribution

Description

birthDistribution contains densities of live births in Germany over the months per year (1950
to 2019) and sex (male and female), resulting in 140 densities.

Usage

data(birthDistribution, package = "FDboost")

Format

A list in the correct format to be passed to FDboost for density-on-scalar regression:

birth_densities A 140 x 12 matrix containing the birth densities in its rows. The first 70 rows
correspond to male newborns, the second 70 rows to female ones. Within both of these, the
years are ordered increasingly (1950-2019), see also sex and year.

birth_densities_clr A 140 x 12 matrix containing the clr transformed densities in its rows.
Same structure as birth_densities.

sex A factor vector of length 140 with levels "m" (male) and "f" (female), corresponding to the
sex of the newborns for the rows of birth_densities and birth_densities_clr. The first
70 elements are "m", the second 70 "f".

year A vector of length 140 containing the integers from 1950 to 2019 two times (c(1950:2019,
1950:2019)), corresponding to the years for the rows of birth_densities and birth_densities_clr.

month A vector containing the integers from 1 to 12, corresponding to the months for the columns
of birth_densities and birth_densities_clr (domain T of the (clr-)densities).

Note that for estimating a density-on-scalar model with FDboost, the clr transformed densities
(birth_densities_clr) serve as response, see also the vignette "FDboost_density-on-scalar_births".
The original densities (birth_densities) are not needed for estimation, but still included for the
sake of completeness.

Details

To compensate for the different lengths of the months, the average number of births per day for
each month (by sex and year) was used to compute the birth shares from the absolute birth counts.
The 12 shares corresponding to one year and sex form one density in the Bayes Hilbert space
B2(δ) = B2 (T ,A, δ), where T = {1, . . . , 12} corresponds to the set of the 12 months, A :=

P(T) corresponds to the power set of T , and the reference measure δ :=
∑12

t=1 δt corresponds to
the sum of dirac measures at t ∈ T .

Source

Statistisches Bundesamt (Destatis), Genesis-Online, data set 12612-0002 (01/18/2021); dl-de/by-2-
0; processed by Eva-Maria Maier

References

Maier, E.-M., Stoecker, A., Fitzenberger, B., Greven, S. (2021): Additive Density-on-Scalar Regres-
sion in Bayes Hilbert Spaces with an Application to Gender Economics. arXiv preprint arXiv:2110.11771.

https://www-genesis.destatis.de/genesis//online?operation=table&code=12612-0002&bypass=true&levelindex=0&levelid=1610983595176#abreadcrumb
https://www.govdata.de/dl-de/by-2-0
https://www.govdata.de/dl-de/by-2-0

birthDistribution 19

See Also

clr for the (inverse) clr transformation.

Examples

data("birthDistribution", package = "FDboost")

Plot densities
year_col <- rainbow(70, start = 0.5, end = 1)
year_lty <- c(1, 2, 4, 5)
oldpar <- par(mfrow = c(1, 2))
funplot(1:12, birthDistribution$birth_densities[1:70,], ylab = "densities", xlab = "month",

xaxp = c(1, 12, 11), pch = 20, col = year_col, lty = year_lty, main = "Male")
funplot(1:12, birthDistribution$birth_densities[71:140,], ylab = "densities", xlab = "month",

xaxp = c(1, 12, 11), pch = 20, col = year_col, lty = year_lty, main = "Female")
par(mfrow = c(1, 1))

fit density-on-scalar model with effects for sex and year
model <- FDboost(birth_densities_clr ~ 1 + bolsc(sex, df = 1) +

bbsc(year, df = 1, differences = 1),
use bbsc() in timeformula to ensure integrate-to-zero constraint
timeformula = ~bbsc(month, df = 4,

December is followed by January of subsequent year
cyclic = TRUE,
knots = {1, ..., 12} with additional boundary knot
0 (coinciding with 12) due to cyclic = TRUE
knots = 1:11, boundary.knots = c(0, 12),
degree = 1 with these knots yields identity matrix
as design matrix
degree = 1),

data = birthDistribution, offset = 0,
control = boost_control(mstop = 1000))

Plotting 'model' yields the clr-transformed effects
par(mfrow = c(1, 3))
plot(model, n1 = 12, n2 = 12)

Use inverse clr transformation to get effects in Bayes Hilbert space, e.g. for intercept
intercept_clr <- predict(model, which = 1)[1,]
intercept <- clr(intercept_clr, w = 1, inverse = TRUE)
funplot(1:12, intercept, xlab = "month", xaxp = c(1, 12, 11), pch = 20,

main = "Intercept", ylab = expression(hat(beta)[0]), id = rep(1, 12))

Same with predictions
predictions_clr <- predict(model)
predictions <- t(apply(predictions_clr, 1, clr, inverse = TRUE))
pred_ylim <- range(birthDistribution$birth_densities)
par(mfrow = c(1, 2))
funplot(1:12, predictions[1:70,], ylab = "predictions", xlab = "month", ylim = pred_ylim,

xaxp = c(1, 12, 11), pch = 20, col = year_col, lty = year_lty, main = "Male")
funplot(1:12, predictions[71:140,], ylab = "predictions", xlab = "month", ylim = pred_ylim,

xaxp = c(1, 12, 11), pch = 20, col = year_col, lty = year_lty, main = "Female")

20 bootstrapCI

par(oldpar)

bootstrapCI Function to compute bootstrap confidence intervals

Description

The model is fitted on bootstrapped samples of the data to compute bootstrapped coefficient esti-
mates. To determine the optimal stopping iteration an inner bootstrap is run within each bootstrap
fold. As estimation by boosting shrinks the coefficient estimates towards zero, to bootstrap confi-
dence intervals are biased towards zero.

Usage

bootstrapCI(
object,
which = NULL,
resampling_fun_outer = NULL,
resampling_fun_inner = NULL,
B_outer = 100,
B_inner = 25,
type_inner = c("bootstrap", "kfold", "subsampling"),
levels = c(0.05, 0.95),
verbose = TRUE,
...

)

Arguments

object a fitted model object of class FDboost, for which the confidence intervals should
be computed.

which a subset of base-learners to take into account for computing confidence intervals.
resampling_fun_outer

function for the outer resampling procedure. resampling_fun_outer must be
a function with arguments object and fun, where object corresponds to the
fitted FDboost object and fun is passed to the fun argument of the resampling
function (see examples). If NULL, applyFolds is used with 100-fold boostrap.
Further arguments to applyFolds can be passed via Although the func-
tion can be defined very flexible, it is recommended to use applyFolds and,
in particular, not cvrisk, as in this case, weights of the inner and outer fold
will interact, probably causing the inner resampling to crash. For bootstrapped
confidence intervals the outer function should usually be a bootstrap type of
resampling.

resampling_fun_inner

function for the inner resampling procudure, which determines the optimal stop-
ping iteration in each fold of the outer resampling procedure. Should be a func-
tion with one argument object for the fitted FDboost object. If NULL, cvrisk
is used with 25-fold bootstrap.

bootstrapCI 21

B_outer Number of resampling folds in the outer loop. Argument is overwritten, when a
custom resampling_fun_outer is supplied.

B_inner Number of resampling folds in the inner loop. Argument is overwritten, when a
custom resampling_fun_inner is supplied.

type_inner character argument for specifying the cross-validation method for the inner re-
sampling level. Default is "bootstrap". Currently bootstrap, k-fold cross-
validation and subsampling are implemented.

levels the confidence levels required. If NULL, the raw results are returned.

verbose if TRUE, information will be printed in the console

... further arguments passed to applyFolds if the default for resampling_fun_outer
is used

Value

A list containing the elements raw_results, the quantiles and mstops. In raw_results and
quantiles, each baselearner selected with which in turn corresponds to a list element. The quan-
tiles are given as vector, matrix or list of matrices depending on the nature of the effect. In case of
functional effects the list element inquantiles is a length(levels) times length(effect) ma-
trix, i.e. the rows correspond to the quantiles. In case of coefficient surfaces, quantiles comprises
a list of matrices, where each list element corresponds to a quantile.

Note

Note that parallelization can be achieved by defining the resampling_fun_outer or _inner ac-
cordingly. See, e.g., cvrisk on how to parallelize resampling functions or the examples below.
Also note that by defining a custum inner or outer resampling function the respective argument
B_inner or B_outer is ignored. For models with complex baselearners, e.g., created by combining
several baselearners with the Kronecker or row-wise tensor product, it is also recommended to use
levels = NULL in order to let the function return the raw results and then manually compute confi-
dence intervals. If a baselearner is not selected in any fold, the function treats its effect as constantly
zero.

Author(s)

David Ruegamer, Sarah Brockhaus

Examples

if(require(refund)){
#########
model with linear functional effect, use bsignal()
Y(t) = f(t) + \int X1(s)\beta(s,t)ds + eps
set.seed(2121)
data1 <- pffrSim(scenario = "ff", n = 40)
data1$X1 <- scale(data1$X1, scale = FALSE)
dat_list <- as.list(data1)
dat_list$t <- attr(data1, "yindex")
dat_list$s <- attr(data1, "xindex")

22 bootstrapCI

model fit by FDboost
m1 <- FDboost(Y ~ 1 + bsignal(x = X1, s = s, knots = 8, df = 3),

timeformula = ~ bbs(t, knots = 8), data = dat_list)

}

a short toy example with to few folds
and up to 200 boosting iterations
bootCIs <- bootstrapCI(m1[200], B_inner = 2, B_outer = 5)

look at stopping iterations
bootCIs$mstops

plot bootstrapped coefficient estimates
plot(bootCIs, ask = FALSE)

my_inner_fun <- function(object){
cvrisk(object, folds = cvLong(id = object$id, weights =
model.weights(object), B = 2) # 10-fold for inner resampling
)
}

bootCIs <- bootstrapCI(m1, resampling_fun_inner = my_inner_fun,
B_outer = 5) # small B_outer to speed up

We can also use the ... argument to parallelize the applyFolds
function in the outer resampling

bootCIs <- bootstrapCI(m1, B_inner = 5, B_outer = 3)

Now let's parallelize the outer resampling and use
crossvalidation instead of bootstrap for the inner resampling

my_inner_fun <- function(object){
cvrisk(object, folds = cvLong(id = object$id, weights =
model.weights(object), type = "kfold", # use CV
B = 5, # 5-fold for inner resampling
)) # use five cores
}

use applyFolds for outer function to avoid messing up weights
my_outer_fun <- function(object, fun){
applyFolds(object = object,
folds = cv(rep(1, length(unique(object$id))),
type = "bootstrap", B = 10), fun = fun) # parallelize on 10 cores
}

bsignal 23

bootCIs <- bootstrapCI(m1, resampling_fun_inner = my_inner_fun,
resampling_fun_outer = my_outer_fun,
B_inner = 5, B_outer = 10)

######## Example for scalar-on-function-regression with bsignal()
data("fuelSubset", package = "FDboost")

center the functional covariates per observed wavelength
fuelSubset$UVVIS <- scale(fuelSubset$UVVIS, scale = FALSE)
fuelSubset$NIR <- scale(fuelSubset$NIR, scale = FALSE)

to make mboost:::df2lambda() happy (all design matrix entries < 10)
reduce range of argvals to [0,1] to get smaller integration weights
fuelSubset$uvvis.lambda <- with(fuelSubset, (uvvis.lambda - min(uvvis.lambda)) /
(max(uvvis.lambda) - min(uvvis.lambda)))
fuelSubset$nir.lambda <- with(fuelSubset, (nir.lambda - min(nir.lambda)) /
(max(nir.lambda) - min(nir.lambda)))

model fit with scalar response and two functional linear effects
include no intercept as all base-learners are centered around 0

mod2 <- FDboost(heatan ~ bsignal(UVVIS, uvvis.lambda, knots = 40, df = 4, check.ident = FALSE)
+ bsignal(NIR, nir.lambda, knots = 40, df=4, check.ident = FALSE),
timeformula = NULL, data = fuelSubset)

takes some time, because of defaults: B_outer = 100, B_inner = 25
bootCIs <- bootstrapCI(mod2, B_outer = 10, B_inner = 5)

in practice, rather set B_outer = 1000

bsignal Base-learners for Functional Covariates

Description

Base-learners that fit effects of functional covariates.

Usage

bsignal(
x,
s,
index = NULL,
inS = c("smooth", "linear", "constant"),

24 bsignal

knots = 10,
boundary.knots = NULL,
degree = 3,
differences = 1,
df = 4,
lambda = NULL,
center = FALSE,
cyclic = FALSE,
Z = NULL,
penalty = c("ps", "pss"),
check.ident = FALSE

)

bconcurrent(
x,
s,
time,
index = NULL,
knots = 10,
boundary.knots = NULL,
degree = 3,
differences = 1,
df = 4,
lambda = NULL,
cyclic = FALSE

)

bhist(
x,
s,
time,
index = NULL,
limits = "s<=t",
standard = c("no", "time", "length"),
intFun = integrationWeightsLeft,
inS = c("smooth", "linear", "constant"),
inTime = c("smooth", "linear", "constant"),
knots = 10,
boundary.knots = NULL,
degree = 3,
differences = 1,
df = 4,
lambda = NULL,
penalty = c("ps", "pss"),
check.ident = FALSE

)

bfpc(

bsignal 25

x,
s,
index = NULL,
df = 4,
lambda = NULL,
penalty = c("identity", "inverse", "no"),
pve = 0.99,
npc = NULL,
npc.max = 15,
getEigen = TRUE

)

Arguments

x matrix of functional variable x(s). The functional covariate has to be supplied as
n by <no. of evaluations> matrix, i.e., each row is one functional observation.

s vector for the index of the functional variable x(s) giving the measurement points
of the functional covariate.

index a vector of integers for expanding the covariate in x For example, bsignal(X,
s, index = index) is equal to bsignal(X[index,], s), where index is an in-
teger of length greater or equal to NROW(x).

inS the functional effect can be smooth, linear or constant in s, which is the index of
the functional covariates x(s).

knots either the number of knots or a vector of the positions of the interior knots (for
more details see bbs).

boundary.knots boundary points at which to anchor the B-spline basis (default the range of the
data). A vector (of length 2) for the lower and the upper boundary knot can be
specified.

degree degree of the regression spline.

differences a non-negative integer, typically 1, 2 or 3. Defaults to 1. If differences =
k, k-th-order differences are used as a penalty (0-th order differences specify a
ridge penalty).

df trace of the hat matrix for the base-learner defining the base-learner complex-
ity. Low values of df correspond to a large amount of smoothing and thus to
"weaker" base-learners.

lambda smoothing parameter of the penalty, computed from df when df is specified.

center See bbs. The effect is re-parameterized such that the unpenalized part of the
fit is subtracted and only the penalized effect is fitted, using a spectral decom-
position of the penalty matrix. The unpenalized, parametric part has then to be
included in separate base-learners using bsignal(..., inS = 'constant') or
bsignal(..., inS = 'linear') for first (difference = 1) and second (difference
= 2) order difference penalty respectively. See the help on the argument center
of bbs.

cyclic if cyclic = TRUE the fitted coefficient function coincides at the boundaries (use-
ful for cyclic covariates such as day time etc.).

26 bsignal

Z a transformation matrix for the design-matrix over the index of the covariate. Z
can be calculated as the transformation matrix for a sum-to-zero constraint in
the case that all trajectories have the same mean (then a shift in the coefficient
function is not identifiable).

penalty for bsignal, by default, penalty = "ps", the difference penalty for P-splines is
used, for penalty = "pss" the penalty matrix is transformed to have full rank,
so called shrinkage approach by Marra and Wood (2011). For bfpc the penalty
can be either "identity" for a ridge penalty (the default) or "inverse" to use
the matrix with the inverse eigenvalues on the diagonal as penalty matrix or "no"
for no penalty.

check.ident use checks for identifiability of the effect, based on Scheipl and Greven (2016)
for linear functional effect using bsignal and based on Brockhaus et al. (2017)
for historical effects using bhist

time vector for the index of the functional response y(time) giving the measurement
points of the functional response.

limits defaults to "s<=t" for an historical effect with s<=t; either one of "s<t" or
"s<=t" for [l(t), u(t)] = [T1, t]; otherwise specify limits as a function for inte-
gration limits [l(t), u(t)]: function that takes s as the first and t as the second
argument and returns TRUE for combinations of values (s,t) if s falls into the
integration range for the given t.

standard the historical effect can be standardized with a factor. "no" means no standard-
ization, "time" standardizes with the current value of time and "length" stan-
dardizes with the length of the integral

intFun specify the function that is used to compute integration weights in s over the
functional covariate x(s)

inTime the historical effect can be smooth, linear or constant in time, which is the index
of the functional response y(time).

pve proportion of variance explained by the first K functional principal components
(FPCs): used to choose the number of functional principal components (FPCs).

npc prespecified value for the number K of FPCs (if given, this overrides pve).

npc.max maximal number K of FPCs to use; defaults to 15.

getEigen save the eigenvalues and eigenvectors, defaults to TRUE.

Details

bsignal() implements a base-learner for functional covariates to estimate an effect of the form∫
xi(s)β(s)ds. Defaults to a cubic B-spline basis with first difference penalties for β(s) and nu-

merical integration over the entire range by using trapezoidal Riemann weights. If bsignal() is
used within FDboost(), the base-learner of timeformula is attached, resulting in an effect varying
over the index of the response

∫
xi(s)β(s, t)ds if timeformula = bbs(t). The functional variable

must be observed on one common grid s.

bconcurrent() implements a concurrent effect for a functional covariate on a functional response,
i.e., an effect of the form xi(t)β(t) for a functional response Yi(t) and concurrently observed co-
variate xi(t). bconcurrent() can only be used if Y (t) and x(s) are observed over the same domain
s, t ∈ [T1, T2].

bsignal 27

bhist() implements a base-learner for functional covariates with flexible integration limits l(t),
r(t) and the possibility to standardize the effect by 1/t or the length of the integration interval.
The effect is stand ∗

∫ rt
l(t)

x(s)β(t, s)ds, where stand is the chosen standardization which defaults

to 1. The base-learner defaults to a historical effect of the form
∫ t

T1
xi(s)β(t, s)ds, where T1 is

the minimal index of t of the response Y (t). The functional covariate must be observed on one
common grid s. See Brockhaus et al. (2017) for details on historical effects.

bfpc() is a base-learner for a linear effect of functional covariates based on functional principal
component analysis (FPCA). For the functional linear effect

∫
xi(s)β(s)ds the functional covariate

and the coefficient function are both represented by a FPC basis. The functional covariate x(s) is
decomposed into x(s) ≈

∑K
k=1 ξikΦk(s) using fpca.sc for the truncated Karhunen-Loeve decom-

position. Then β(s) is represented in the function space spanned by Φk(s), k=1,...,K, see Scheipl et
al. (2015) for details. As penalty matrix, the identity matrix is used. The implementation is similar
to ffpc.

It is recommended to use centered functional covariates with
∑

i xi(s) = 0 for all s in bsignal()-,
bhist()- and bconcurrent()-terms. For centered covariates, the effects are centered per time-
point of the response. If all effects are centered, the functional intercept can be interpreted as the
global mean function.

The base-learners for functional covariates cannot deal with any missing values in the covariates.

Value

Equally to the base-learners of package mboost:

An object of class blg (base-learner generator) with a dpp() function (dpp, data pre-processing).

The call of dpp() returns an object of class bl (base-learner) with a fit() function. The call to
fit() finally returns an object of class bm (base-model).

References

Brockhaus, S., Scheipl, F., Hothorn, T. and Greven, S. (2015): The functional linear array model.
Statistical Modelling, 15(3), 279-300.

Brockhaus, S., Melcher, M., Leisch, F. and Greven, S. (2017): Boosting flexible functional regres-
sion models with a high number of functional historical effects, Statistics and Computing, 27(4),
913-926.

Marra, G. and Wood, S.N. (2011): Practical variable selection for generalized additive models.
Computational Statistics & Data Analysis, 55, 2372-2387.

Scheipl, F., Staicu, A.-M. and Greven, S. (2015): Functional Additive Mixed Models, Journal of
Computational and Graphical Statistics, 24(2), 477-501.

Scheipl, F. and Greven, S. (2016): Identifiability in penalized function-on-function regression mod-
els. Electronic Journal of Statistics, 10(1), 495-526.

See Also

FDboost for the model fit.

28 bsignal

Examples

######## Example for scalar-on-function-regression with bsignal()
data("fuelSubset", package = "FDboost")

center the functional covariates per observed wavelength
fuelSubset$UVVIS <- scale(fuelSubset$UVVIS, scale = FALSE)
fuelSubset$NIR <- scale(fuelSubset$NIR, scale = FALSE)

to make mboost:::df2lambda() happy (all design matrix entries < 10)
reduce range of argvals to [0,1] to get smaller integration weights
fuelSubset$uvvis.lambda <- with(fuelSubset, (uvvis.lambda - min(uvvis.lambda)) /

(max(uvvis.lambda) - min(uvvis.lambda)))
fuelSubset$nir.lambda <- with(fuelSubset, (nir.lambda - min(nir.lambda)) /

(max(nir.lambda) - min(nir.lambda)))

model fit with scalar response and two functional linear effects
include no intercept
as all base-learners are centered around 0
mod2 <- FDboost(heatan ~ bsignal(UVVIS, uvvis.lambda, knots = 40, df = 4, check.ident = FALSE)

+ bsignal(NIR, nir.lambda, knots = 40, df=4, check.ident = FALSE),
timeformula = NULL, data = fuelSubset)

summary(mod2)

###
data simulation like in manual of pffr::ff

if(require(refund)){

#########
model with linear functional effect, use bsignal()
Y(t) = f(t) + \int X1(s)\beta(s,t)ds + eps
set.seed(2121)
data1 <- pffrSim(scenario = "ff", n = 40)
data1$X1 <- scale(data1$X1, scale = FALSE)
dat_list <- as.list(data1)
dat_list$t <- attr(data1, "yindex")
dat_list$s <- attr(data1, "xindex")

model fit by FDboost
m1 <- FDboost(Y ~ 1 + bsignal(x = X1, s = s, knots = 5),

timeformula = ~ bbs(t, knots = 5), data = dat_list,
control = boost_control(mstop = 21))

search optimal mSTOP

set.seed(123)
cv <- validateFDboost(m1, grid = 1:100) # 21 iterations

model fit by pffr
t <- attr(data1, "yindex")

bsignal 29

s <- attr(data1, "xindex")
m1_pffr <- pffr(Y ~ ff(X1, xind = s), yind = t, data = data1)

oldpar <- par(mfrow = c(2, 2))
plot(m1, which = 1); plot(m1, which = 2)
plot(m1_pffr, select = 1, shift = m1_pffr$coefficients["(Intercept)"])
plot(m1_pffr, select = 2)
par(oldpar)

##
model with functional historical effect, use bhist()
Y(t) = f(t) + \int_0^t X1(s)\beta(s,t)ds + eps
set.seed(2121)
mylimits <- function(s, t){

(s < t) | (s == t)
}
data2 <- pffrSim(scenario = "ff", n = 40, limits = mylimits)
data2$X1 <- scale(data2$X1, scale = FALSE)
dat2_list <- as.list(data2)
dat2_list$t <- attr(data2, "yindex")
dat2_list$s <- attr(data2, "xindex")

model fit by FDboost
m2 <- FDboost(Y ~ 1 + bhist(x = X1, s = s, time = t, knots = 5),

timeformula = ~ bbs(t, knots = 5), data = dat2_list,
control = boost_control(mstop = 40))

search optimal mSTOP

set.seed(123)
cv2 <- validateFDboost(m2, grid = 1:100) # 40 iterations

model fit by pffr
t <- attr(data2, "yindex")
s <- attr(data2, "xindex")
m2_pffr <- pffr(Y ~ ff(X1, xind = s, limits = "s<=t"), yind = t, data = data2)

oldpar <- par(mfrow = c(2, 2))
plot(m2, which = 1); plot(m2, which = 2)
plot of smooth intercept does not contain m1_pffr$coefficients["(Intercept)"]
plot(m2_pffr, select = 1, shift = m2_pffr$coefficients["(Intercept)"])
plot(m2_pffr, select = 2)
par(oldpar)

}

30 clr

clr Clr and inverse clr transformation

Description

clr computes the clr or inverse clr transformation of a vector f with respect to integration weights
w, corresponding to a Bayes Hilbert space B2(µ) = B2(T ,A, µ).

Usage

clr(f, w = 1, inverse = FALSE)

Arguments

f a vector containing the function values (evaluated on a grid) of the function f
to transform. If inverse = TRUE, f must be a density, i.e., all entries must be
positive and usually f integrates to one. If inverse = FALSE, f should integrate
to zero, see Details.

w a vector of length one or of the same length as f containing positive integration
weights. If w has length one, this weight is used for all function values. The
integral of f is approximated via

∫
T f dµ ≈

∑m
j=1 wj fj , where m equals the

length of f.

inverse if TRUE, the inverse clr transformation is computed.

Details

The clr transformation maps a density f from B2(µ) to L2
0(µ) := {f ∈ L2(µ) |

∫
T f dµ = 0} via

clr(f) := log f − 1

µ(T)

∫
T
log f dµ.

The inverse clr transformation maps a function f from L2
0(µ) to B2(µ) via

clr−1(f) :=
exp f∫

T exp f dµ
.

Note that in contrast to Maier et al. (2021), this definition of the inverse clr transformation includes
normalization, yielding the respective probability density function (representative of the equiva-
lence class of proportional functions in B2(µ)).

The (inverse) clr transformation depends not only on f , but also on the underlying measure space
(T ,A, µ), which determines the integral. In clr this is specified via the integration weights w. E.g.,
for a discrete set T with A = P(T) the power set of T and µ =

∑
t∈T δt the sum of dirac measures

at t ∈ T , the default w = 1 is the correct choice. In this case, integrals are indeed computed exactly,
not only approximately. For an interval T = [a, b] with A = B the Borel σ-algebra restricted to T
and µ = λ the Lebesgue measure, the choice of w depends on the grid on which the function was

clr 31

evaluated: wj must correspond to the length of the subinterval of [a, b], which fj represents. E.g.,
for a grid with equidistant distance d, where the boundary grid values are a+ d

2 and b− d
2 (i.e., the

grid points are centers of intervals of size d), equal weights d should be chosen for w.

The clr transformation is crucial for density-on-scalar regression since estimating the clr trans-
formed model in L2

0(µ) is equivalent to estimating the original model in B2(µ) (as the clr transfor-
mation is an isometric isomorphism), see also the vignette "FDboost_density-on-scalar_births" and
Maier et al. (2021).

Value

A vector of the same length as f containing the (inverse) clr transformation of f.

Author(s)

Eva-Maria Maier

References

Maier, E.-M., Stoecker, A., Fitzenberger, B., Greven, S. (2021): Additive Density-on-Scalar Regres-
sion in Bayes Hilbert Spaces with an Application to Gender Economics. arXiv preprint arXiv:2110.11771.

Examples

Continuous case (T = [0, 1] with Lebesgue measure):
evaluate density of a Beta distribution on an equidistant grid
g <- seq(from = 0.005, to = 0.995, by = 0.01)
f <- dbeta(g, 2, 5)
compute clr transformation with distance of two grid points as integration weight
f_clr <- clr(f, w = 0.01)
visualize result
plot(g, f_clr , type = "l")
abline(h = 0, col = "grey")
compute inverse clr transformation (w as above)
f_clr_inv <- clr(f_clr, w = 0.01, inverse = TRUE)
visualize result
plot(g, f, type = "l")
lines(g, f_clr_inv, lty = 2, col = "red")

Discrete case (T = {1, ..., 12} with sum of dirac measures at t in T):
data("birthDistribution", package = "FDboost")
fit density-on-scalar model with effects for sex and year
model <- FDboost(birth_densities_clr ~ 1 + bolsc(sex, df = 1) +

bbsc(year, df = 1, differences = 1),
use bbsc() in timeformula to ensure integrate-to-zero constraint
timeformula = ~bbsc(month, df = 4,

December is followed by January of subsequent year
cyclic = TRUE,
knots = {1, ..., 12} with additional boundary knot
0 (coinciding with 12) due to cyclic = TRUE
knots = 1:11, boundary.knots = c(0, 12),
degree = 1 with these knots yields identity matrix

32 coef.FDboost

as design matrix
degree = 1),

data = birthDistribution, offset = 0,
control = boost_control(mstop = 1000))

Extract predictions (clr-transformed!) and transform them to Bayes Hilbert space
predictions_clr <- predict(model)
predictions <- t(apply(predictions_clr, 1, clr, inverse = TRUE))

coef.FDboost Coefficients of boosted functional regression model

Description

Takes a fitted FDboost-object produced by FDboost() and returns estimated coefficient functions/surfaces
β(t), β(s, t) and estimated smooth effects f(z), f(x, z) or f(x, z, t). Not implemented for smooths
in more than 3 dimensions.

Usage

S3 method for class 'FDboost'
coef(
object,
raw = FALSE,
which = NULL,
computeCoef = TRUE,
returnData = FALSE,
n1 = 40,
n2 = 40,
n3 = 20,
n4 = 10,
...

)

Arguments

object a fitted FDboost-object

raw logical defaults to FALSE. If raw = FALSE for each effect the estimated func-
tion/surface is calculated. If raw = TRUE the coefficients of the model are re-
turned.

which a subset of base-learners for which the coefficients should be computed (numeric
vector), defaults to NULL which is the same as which=1:length(object$baselearner).
In the special case of which=0, only the coefficients of the offset are returned.

computeCoef defaults to TRUE, if FALSE only the names of the terms are returned

returnData return the dataset which is used to get the coefficient estimates as predictions,
see Details.

cvrisk.FDboostLSS 33

n1 see below

n2 see below

n3 n1, n2, n3 give the number of grid-points for 1-/2-/3-dimensional smooth terms
used in the marginal equidistant grids over the range of the covariates at which
the estimated effects are evaluated.

n4 gives the number of points for the third dimension in a 3-dimensional smooth
term

... other arguments, not used.

Details

If raw = FALSE the function coef.FDboost generates adequate dummy data and uses the function
predict.FDboost to compute the estimated coefficient functions.

Value

If raw = FALSE, a list containing

• offset a list with plot information for the offset.

• smterms a named list with one entry for each smooth term in the model. Each entry contains

– x, y, z the unique grid-points used to evaluate the smooth/coefficient function/coefficient
surface

– xlim, ylim, zlim the extent of the x/y/z-axes
– xlab, ylab, zlab the names of the covariates for the x/y/z-axes
– value a vector/matrix/list of matrices containing the coefficient values
– dim the dimensionality of the effect
– main the label of the smooth term (a short label)

If raw = TRUE, a list containing the estimated spline coefficients.

cvrisk.FDboostLSS Cross-validation for FDboostLSS

Description

Multidimensional cross-validated estimation of the empirical risk for hyper-parameter selection, for
an object of class FDboostLSS setting the folds per default to resampling curves.

Usage

S3 method for class 'FDboostLSS'
cvrisk(
object,
folds = cvLong(id = object[[1]]$id, weights = model.weights(object[[1]])),
grid = NULL,

34 cvrisk.FDboostLSS

papply = mclapply,
trace = TRUE,
fun = NULL,
...

)

Arguments

object an object of class FDboostLSS.

folds a weight matrix a weight matrix with number of rows equal to the number of
observations. The number of columns corresponds to the number of cross-
validation runs, defaults to 25 bootstrap samples, resampling whole curves

grid defaults to a grid up to the current number of boosting iterations. The default
generates the grid according to the defaults of cvrisk.mboostLSS which are
different for models with cyclic or noncyclic fitting.

papply (parallel) apply function, defaults to mclapply, see cvrisk.mboostLSS for de-
tails.

trace print status information during cross-validation? Defaults to TRUE.

fun if fun is NULL, the out-of-sample risk is returned. fun, as a function of object,
may extract any other characteristic of the cross-validated models. These are
returned as is.

... additional arguments passed to mclapply.

Details

The function cvrisk.FDboostLSS is a wrapper for cvrisk.mboostLSS in package gamboostLSS.
It overrides the default for the folds, so that the folds are sampled on the level of curves (not on the
level of single observations, which does not make sense for functional response).

Value

An object of class cvriskLSS (when fun was not specified), basically a matrix containing estimates
of the empirical risk for a varying number of bootstrap iterations. plot and print methods are
available as well as an mstop method, see cvrisk.mboostLSS.

See Also

cvrisk.mboostLSS in package gamboostLSS.

emotion 35

emotion EEG and EMG recordings in a computerised gambling study

Description

To analyse the functional relationship between electroencephalography (EEG) and facial electromyo-
graphy (EMG), Gentsch et al. (2014) simultaneously recorded EEG and EMG signals from 24
participants while they were playing a computerised gambling task. The given subset contains ag-
gregated observations of 23 participants. Curves were averaged over each subject and each of the 8
study settings, resulting in 23 times 8 curves.

Usage

data("emotion")

Format

A list with the following 10 variables.

power factor variable with levels high and low

game_outcome factor variable with levels gain and loss

control factor variable with levels high and low

subject factor variable with 23 levels

EEG matrix; EEG signal in wide format

EMG matrix; EMG signal in wide format

s time points for the functional covariate

t time points for the functional response

Details

The aim is to explain potentials in the EMG signal by study settings as well as the EEG signal (see
Ruegamer et al., 2018).

Source

Gentsch, K., Grandjean, D. and Scherer, K. R. (2014) Coherence explored between emotion compo-
nents: Evidence from event-related potentials and facial electromyography. Biological Psychology,
98, 70-81.

Ruegamer D., Brockhaus, S., Gentsch K., Scherer, K., Greven, S. (2018). Boosting factor-specific
functional historical models for the detection of synchronization in bioelectrical signals. Journal of
the Royal Statistical Society: Series C (Applied Statistics), 67, 621-642.

36 extract.blg

Examples

data("emotion", package = "FDboost")

fit function-on-scalar model with random effect and power effect
fos_random_power <- FDboost(EMG ~ 1 + brandomc(subject, df = 2)

+ bolsc(power, df = 2),
timeformula = ~ bbs(t, df = 3),
data = emotion)

Not run:
fit function-on-function model with intercept and historical EEG effect
where limits specifies the used lag between EMG and EEG signal
fof_historical <- FDboost(EMG ~ 1 + bhist(EEG, s = s, time = t,

limits = function(s,t) s < t - 3),
timeformula = ~ bbs(t, df = 3), data = emotion,
control = boost_control(mstop = 200))

End(Not run)

extract.blg Extract information of a base-learner

Description

Takes a base-learner and extracts information.

Usage

S3 method for class 'blg'
extract(
object,
what = c("design", "penalty", "index"),
asmatrix = FALSE,
expand = FALSE,
...

)

Arguments

object a base-learner

what a character specifying the quantities to extract. This can be a subset of "design"
(default; design matrix), "penalty" (penalty matrix) and "index" (index of ties
used to expand the design matrix)

asmatrix a logical indicating whether the the returned matrix should be coerced to a ma-
trix (default) or if the returned object stays as it is (i.e., potentially a sparse
matrix). This option is only applicable if extract returns matrices, i.e., what =
"design" or what = "penalty".

factorize 37

expand a logical indicating whether the design matrix should be expanded (default:
FALSE). This is useful if ties were taken into account either manually (via ar-
gument index in a base-learner) or automatically for data sets with many ob-
servations. expand = TRUE is equivalent to extract(B)[extract(B, what =
"index"),] for a base-learner B.

... currently not used

See Also

extract for the extract function of the package mboost.

factorize Factorize tensor product model

Description

Factorize an FDboost tensor product model into the response and covariate parts

hj(x, t) =
∑
k

v
(k)
j (t)h

(k)
j (x), j = 1, ..., J,

for effect visualization as proposed in Stoecker, Steyer and Greven (2022).

Usage

factorize(x, ...)

S3 method for class 'FDboost'
factorize(x, newdata = NULL, newweights = 1, blwise = TRUE, ...)

Arguments

x a model object of class FDboost.

... other arguments passed to methods.

newdata new data the factorization is based on. By default (NULL), the factorization is
carried out on the data used for fitting.

newweights vector of the length of the data or length one, containing new weights used for
factorization.

blwise logical, should the factorization be carried out base-learner-wise (TRUE, default)
or for the whole model simultaneously.

Details

The mboost infrastructure is used for handling the orthogonal response directions v
(k)
j (t) in one

mboost-object (with k running over iteration indices) and the effects into the respective directions
h
(k)
j (t) in another mboost-object, both of subclass FDboost_fac. The number of boosting iterations

of FDboost_fac-objects cannot be further increased as in regular mboost-objects.

38 factorize

Value

a list of two mboost models of class FDboost_fac containing basis functions for response and
covariates, respectively, as base-learners.

A factorized model

References

Stoecker, A., Steyer L. and Greven, S. (2022): Functional additive models on manifolds of planar
shapes and forms <arXiv:2109.02624>

See Also

[FDboost_fac-class]

Examples

library(FDboost)

generate irregular toy data ---

n <- 100
m <- 40
covariates
x <- seq(0,2,len = n)
time & id
set.seed(90384)
t <- runif(n = n*m, -pi,pi)
id <- sample(1:n, size = n*m, replace = TRUE)

generate components
fx <- ft <- list()
fx[[1]] <- exp(x)
d <- numeric(2)
d[1] <- sqrt(c(crossprod(fx[[1]])))
fx[[1]] <- fx[[1]] / d[1]
fx[[2]] <- -5*x^2
fx[[2]] <- fx[[2]] - fx[[1]] * c(crossprod(fx[[1]], fx[[2]])) # orthogonalize fx[[2]]
d[2] <- sqrt(c(crossprod(fx[[2]])))
fx[[2]] <- fx[[2]] / d[2]
ft[[1]] <- sin(t)
ft[[2]] <- cos(t)
ft[[1]] <- ft[[1]] / sqrt(sum(ft[[1]]^2))
ft[[2]] <- ft[[2]] / sqrt(sum(ft[[2]]^2))

mu1 <- d[1] * fx[[1]][id] * ft[[1]]
mu2 <- d[2] * fx[[2]][id] * ft[[2]]
add linear covariate
ft[[3]] <- t^2 * sin(4*t)
ft[[3]] <- ft[[3]] - ft[[1]] * c(crossprod(ft[[1]], ft[[3]]))
ft[[3]] <- ft[[3]] - ft[[2]] * c(crossprod(ft[[2]], ft[[3]]))
ft[[3]] <- ft[[3]] / sqrt(sum(ft[[3]]^2))

factorize 39

set.seed(9234)
fx[[3]] <- runif(0,3, n = length(x))
fx[[3]] <- fx[[3]] - fx[[1]] * c(crossprod(fx[[1]], fx[[3]]))
fx[[3]] <- fx[[3]] - fx[[2]] * c(crossprod(fx[[2]], fx[[3]]))
d[3] <- sqrt(sum(fx[[3]]^2))
fx[[3]] <- fx[[3]] / d[3]

mu3 <- d[3] * fx[[3]][id] * ft[[3]]

mu <- mu1 + mu2 + mu3
add some noise
y <- mu + rnorm(length(mu), 0, .01)
and noise covariate
z <- rnorm(n)

fit FDboost model ---

dat <- list(y = y, x = x, t = t, x_lin = fx[[3]], id = id)
m <- FDboost(y ~ bbs(x, knots = 5, df = 2, differences = 0) +

bbs(z, knots = 2, df = 2, differences = 0) +
bols(x_lin, intercept = FALSE, df = 2)
, ~ bbs(t),

id = ~ id,
offset = 0, #numInt = "Riemann",
control = boost_control(nu = 1),
data = dat)

MU <- split(mu, id)
PRED <- split(predict(m), id)
Ti <- split(t, id)
t0 <- seq(-pi, pi, length.out = 40)
MU <- do.call(cbind, Map(function(mu, t) approx(t, mu, t0)$y,

MU, Ti))
PRED <- do.call(cbind, Map(function(mu, t) approx(t, mu, t0)$y,

PRED, Ti))

opar <- par(mfrow = c(2,2))
image(t0, x, MU)
contour(t0, x, MU, add = TRUE)
image(t0, x, PRED)
contour(t0, x, PRED, add = TRUE)
persp(t0, x, MU, zlim = range(c(MU, PRED), na.rm = TRUE))
persp(t0, x, PRED, zlim = range(c(MU, PRED), na.rm = TRUE))
par(opar)

factorize model ---

fac <- factorize(m)

vi <- as.data.frame(varimp(fac$cov))
if(require(lattice))
barchart(variable ~ reduction, group = blearner, vi, stack = TRUE)

cbind(d^2, sort(vi$reduction, decreasing = TRUE)[1:3])

40 factorize

x_plot <- list(x, x, fx[[3]])

cols <- c("cornflowerblue", "darkseagreen", "darkred")
opar <- par(mfrow = c(3,2))
wch <- c(1,2,10)
for(w in 1:length(wch)) {

plot.mboost(fac$resp, which = wch[w], col = "darkgrey", ask = FALSE,
main = names(fac$resp$baselearner[wch[w]]))

lines(sort(t), ft[[w]][order(t)]*max(d), col = cols[w], lty = 2)
plot(fac$cov, which = wch[w],

main = names(faccovbaselearner[wch[w]]))
points(x_plot[[w]], d[w] * fx[[w]] / max(d), col = cols[w], pch = 3)

}
par(opar)

re-compose predictions
preds <- lapply(fac, predict)
predf <- rowSums(preds$resp * preds$cov[id,])
PREDf <- split(predf, id)
PREDf <- do.call(cbind, Map(function(mu, t) approx(t, mu, t0)$y,

PREDf, Ti))
opar <- par(mfrow = c(1,2))
image(t0,x, PRED, main = "original prediction")
contour(t0,x, PRED, add = TRUE)
image(t0,x,PREDf, main = "recomposed")
contour(t0,x, PREDf, add = TRUE)
par(opar)

stopifnot(all.equal(PRED, PREDf))

check out other methods
set.seed(8399)
newdata_resp <- list(t = sort(runif(60, min(t), max(t))))
a <- predict(fac$resp, newdata = newdata_resp, which = 1:5)
plot(newdata_resp$t, a[, 1])
coef method
cf <- coef(fac$resp, which = 1)

check factorization on a new dataset ------------------------------------

t_grid <- seq(-pi,pi,len = 30)
x_grid <- seq(0,2,len = 30)
x_lin_grid <- seq(min(dat$x_lin), max(dat$x_lin), len = 30)

use grid data for factorization
griddata <- expand.grid(

time
t = t_grid,
covariates
x = x_grid,

factorize 41

x_lin = 0
)

griddata_lin <- expand.grid(
t = seq(-pi, pi, len = 30),
x = 0,
x_lin = x_lin_grid

)

griddata <- rbind(griddata, griddata_lin)

griddata$id <- as.numeric(factor(paste(griddata$x, griddata$x_lin, sep = ":")))

fac2 <- factorize(m, newdata = griddata)

ratio <- -max(abs(predict(fac$resp, which = 1))) / max(abs(predict(fac2$resp, which = 1)))

opar <- par(mfrow = c(3,2))
wch <- c(1,2,10)
for(w in 1:length(wch)) {

plot.mboost(fac$resp, which = wch[w], col = "darkgrey", ask = FALSE,
main = names(fac$resp$baselearner[wch[w]]))

lines(sort(griddata$t),
ratio*predict(fac2$resp, which = wch[w])[order(griddata$t)],
col = cols[w], lty = 2)

plot(fac$cov, which = wch[w],
main = names(faccovbaselearner[wch[w]]))

this_x <- fac2covmodel.frame(which = wch[w])[[1]][[1]]
lines(sort(this_x), 1/ratio*predict(fac2$cov, which = wch[w])[order(this_x)],

col = cols[w], lty = 1)
}
par(opar)

check predictions
p <- predict(fac2$resp, which = 1)
library(FDboost)

generate regular toy data --

n <- 100
m <- 40
covariates
x <- seq(0,2,len = n)
time
t <- seq(-pi,pi,len = m)
generate components
fx <- ft <- list()
fx[[1]] <- exp(x)
d <- numeric(2)
d[1] <- sqrt(c(crossprod(fx[[1]])))
fx[[1]] <- fx[[1]] / d[1]
fx[[2]] <- -5*x^2

42 factorize

fx[[2]] <- fx[[2]] - fx[[1]] * c(crossprod(fx[[1]], fx[[2]])) # orthogonalize fx[[2]]
d[2] <- sqrt(c(crossprod(fx[[2]])))
fx[[2]] <- fx[[2]] / d[2]
ft[[1]] <- sin(t)
ft[[2]] <- cos(t)
ft[[1]] <- ft[[1]] / sqrt(sum(ft[[1]]^2))
ft[[2]] <- ft[[2]] / sqrt(sum(ft[[2]]^2))
mu1 <- d[1] * fx[[1]] %*% t(ft[[1]])
mu2 <- d[2] * fx[[2]] %*% t(ft[[2]])
add linear covariate
ft[[3]] <- t^2 * sin(4*t)
ft[[3]] <- ft[[3]] - ft[[1]] * c(crossprod(ft[[1]], ft[[3]]))
ft[[3]] <- ft[[3]] - ft[[2]] * c(crossprod(ft[[2]], ft[[3]]))
ft[[3]] <- ft[[3]] / sqrt(sum(ft[[3]]^2))
set.seed(9234)
fx[[3]] <- runif(0,3, n = length(x))
fx[[3]] <- fx[[3]] - fx[[1]] * c(crossprod(fx[[1]], fx[[3]]))
fx[[3]] <- fx[[3]] - fx[[2]] * c(crossprod(fx[[2]], fx[[3]]))
d[3] <- sqrt(sum(fx[[3]]^2))
fx[[3]] <- fx[[3]] / d[3]
mu3 <- d[3] * fx[[3]] %*% t(ft[[3]])

mu <- mu1 + mu2 + mu3
add some noise
y <- mu + rnorm(length(mu), 0, .01)
and noise covariate
z <- rnorm(n)

fit FDboost model ---

dat <- list(y = y, x = x, t = t, x_lin = fx[[3]])
m <- FDboost(y ~ bbs(x, knots = 5, df = 2, differences = 0) +

bbs(z, knots = 2, df = 2, differences = 0) +
bols(x_lin, intercept = FALSE, df = 2)
, ~ bbs(t), offset = 0,

control = boost_control(nu = 1),
data = dat)

opar <- par(mfrow = c(1,2))
image(t, x, t(mu))
contour(t, x, t(mu), add = TRUE)
image(t, x, t(predict(m)))
contour(t, x, t(predict(m)), add = TRUE)
par(opar)

factorize model ---

fac <- factorize(m)

vi <- as.data.frame(varimp(fac$cov))
if(require(lattice))
barchart(variable ~ reduction, group = blearner, vi, stack = TRUE)

FDboost 43

cbind(d^2, vi$reduction[c(1:2, 10)])

x_plot <- list(x, x, fx[[3]])

cols <- c("cornflowerblue", "darkseagreen", "darkred")
opar <- par(mfrow = c(3,2))
wch <- c(1,2,10)
for(w in 1:length(wch)) {

plot.mboost(fac$resp, which = wch[w], col = "darkgrey", ask = FALSE,
main = names(fac$resp$baselearner[wch[w]]))

lines(t, ft[[w]]*max(d), col = cols[w], lty = 2)
plot(fac$cov, which = wch[w],

main = names(faccovbaselearner[wch[w]]))
points(x_plot[[w]], d[w] * fx[[w]] / max(d), col = cols[w], pch = 3)

}
par(opar)

re-compose prediction
preds <- lapply(fac, predict)
PREDSf <- array(0, dim = c(nrow(preds$resp),nrow(preds$cov)))
for(i in 1:ncol(preds$resp))

PREDSf <- PREDSf + preds$resp[,i] %*% t(preds$cov[,i])

opar <- par(mfrow = c(1,2))
image(t,x, t(predict(m)), main = "original prediction")
contour(t,x, t(predict(m)), add = TRUE)
image(t,x,PREDSf, main = "recomposed")
contour(t,x, PREDSf, add = TRUE)
par(opar)
=> matches
stopifnot(all.equal(as.numeric(t(predict(m))), as.numeric(PREDSf)))

check out other methods
set.seed(8399)
newdata_resp <- list(t = sort(runif(60, min(t), max(t))))
a <- predict(fac$resp, newdata = newdata_resp, which = 1:5)
plot(newdata_resp$t, a[, 1])
coef method
cf <- coef(fac$resp, which = 1)

FDboost Model-based Gradient Boosting for Functional Response

Description

Gradient boosting for optimizing arbitrary loss functions, where component-wise models are uti-
lized as base-learners in the case of functional responses. Scalar responses are treated as the special

44 FDboost

case where each functional response has only one observation. This function is a wrapper for
mboost’s mboost and its siblings to fit models of the general form

ξ(Yi(t)|Xi = xi) =
∑
j

hj(xi, t), i = 1, ..., N,

with a functional (but not necessarily continuous) response Y (t), transformation function ξ, e.g., the
expectation, the median or some quantile, and partial effects hj(xi, t) depending on covariates xi

and the current index of the response t. The index of the response can be for example time. Possible
effects are, e.g., a smooth intercept β0(t), a linear functional effect

∫
xi(s)β(s, t)ds, potentially

with integration limits depending on t, smooth and linear effects of scalar covariates f(zi, t) or
ziβ(t). A hands-on tutorial for the package can be found at <doi:10.18637/jss.v094.i10>.

Usage

FDboost(
formula,
timeformula,
id = NULL,
numInt = "equal",
data,
weights = NULL,
offset = NULL,
offset_control = o_control(),
check0 = FALSE,
...

)

Arguments

formula a symbolic description of the model to be fit. Per default no intercept is added,
only a smooth offset, see argument offset. To add a smooth intercept, use 1,
e.g., y ~ 1 for a pure intercept model.

timeformula one-sided formula for the specification of the effect over the index of the re-
sponse. For functional response Yi(t) typically use ~ bbs(t) to obtain smooth
effects over t. In the limiting case of Yi being a scalar response, use ~ bols(1),
which sets up a base-learner for the scalar 1. Or use timeformula = NULL, then
the scalar response is treated as scalar.

id defaults to NULL which means that all response trajectories are observed on a
common grid allowing to represent the response as a matrix. If the response is
given in long format for observation-specific grids, id contains the information
which observations belong to the same trajectory and must be supplied as a
formula, ~ nameid, where the variable nameid should contain integers 1, 2, 3,
..., N.

numInt integration scheme for the integration of the loss function. One of c("equal",
"Riemann") meaning equal weights of 1 or trapezoidal Riemann weights. Al-
ternatively a vector of length ncol(response) containing positive weights can
be specified.

FDboost 45

data a data frame or list containing the variables in the model.
weights only for internal use to specify resampling weights; per default all weights are

equal to 1.
offset a numeric vector to be used as offset over the index of the response (optional).

If no offset is specified, per default offset = NULL which means that a smooth
time-specific offset is computed and used before the model fit to center the data.
If you do not want to use a time-specific offset, set offset = "scalar" to get
an overall scalar offset, like in mboost.

offset_control parameters for the estimation of the offset, defaults to o_control(), see o_control.
check0 logical, for response in matrix form, i.e. response that is observed on a common

grid, check the fitted effects for the sum-to-zero constraint hj(xi)(t) = 0 for all
t and give a warning if it is not fulfilled. Defaults to FALSE.

... additional arguments passed to mboost, including, family and control.

Details

In matrix representation of functional response and covariates each row represents one functional
observation, e.g., Y[i,t_g] corresponds to Yi(tg), giving a <number of curves> by <number of
evaluations> matrix. For the model fit, the matrix of the functional response evaluations Yi(tg) are
stacked internally into one long vector.
If it is possible to represent the model as a generalized linear array model (Currie et al., 2006),
the array structure is used for an efficient implementation, see mboost. This is only possible if the
design matrix can be written as the Kronecker product of two marginal design matrices yielding
a functional linear array model (FLAM), see Brockhaus et al. (2015) for details. The Kronecker
product of two marginal bases is implemented in R-package mboost in the function %O%, see %O%.
When %O% is called with a specification of df in both base-learners, e.g., bbs(x1, df = df1) %O%
bbs(t, df = df2), the global df for the Kroneckered base-learner is computed as df = df1 * df2.
And thus the penalty has only one smoothness parameter lambda resulting in an isotropic penalty.
A Kronecker product with anisotropic penalty is %A%, allowing for different amount of smoothness
in the two directions, see %A%. If the formula contains base-learners connected by %O%, %A% or %A0%,
those effects are not expanded with timeformula, allowing for model specifications with different
effects in time-direction.
If the response is observed on curve-specific grids it must be supplied as a vector in long format
and the argument id has to be specified (as formula!) to define which observations belong to which
curve. In this case the base-learners are built as row tensor-products of marginal base-learners, see
Scheipl et al. (2015) and Brockhaus et al. (2017), for details on how to set up the effects. The row
tensor product of two marginal bases is implemented in R-package mboost in the function %X%, see
%X%.
A scalar response can be seen as special case of a functional response with only one time-point, and
thus it can be represented as FLAM with basis 1 in time-direction, use timeformula = ~bols(1).
In this case, a penalty in the time-direction is used, see Brockhaus et al. (2015) for details. Al-
ternatively, the scalar response is fitted as scalar response, like in the function mboost in package
mboost. The advantage of using FDboost in that case is that methods for the functional base-learners
are available, e.g., plot.
The desired regression type is specified by the family-argument, see the help-page of mboost. For
example a mean regression model is obtained by family = Gaussian() which is the default or
median regression by family = QuantReg(); see Family for a list of implemented families.

46 FDboost

With FDboost the following covariate effects can be estimated by specifying the following effects
in the formula (similar to function pffr in R-package refund. The timeformula is used to expand
the effects in t-direction.

• Linear functional effect of scalar (numeric or factor) covariate z that varies smoothly over
t, i.e. ziβ(t), specified as bolsc(z), see bolsc, or for a group effect with mean zero use
brandomc(z).

• Nonlinear effects of a scalar covariate that vary smoothly over t, i.e. f(zi, t), specified as
bbsc(z), see bbsc.

• (Nonlinear) effects of scalar covariates that are constant over t, e.g., f(zi), specified as c(bbs(z)),
or βzi, specified as c(bols(z)).

• Interaction terms between two scalar covariates, e.g., zi1zi2β(t), are specified as bols(z1)
%Xc% bols(z2) and an interaction zi1f(zi2, t) as bols(z1) %Xc% bbs(z2), as %Xc% applies
the sum-to-zero constraint to the desgin matrix of the tensor product built by %Xc%, see %Xc%.

• Function-on-function regression terms of functional covariates x, e.g.,
∫
xi(s)β(s, t)ds, spec-

ified as bsignal(x, s = s), using P-splines, see bsignal. Terms given by bfpc provide FPC-
based effects of functional covariates, see bfpc.

• Function-on-function regression terms of functional covariates x with integration limits [l(t), u(t)]
depending on t, e.g.,

∫
[
l(t), u(t)]xi(s)β(s, t)ds, specified as bhist(x, s = s, time = t, limits).

The limits argument defaults to "s<=t" which yields a historical effect with limits [min(t), t],
see bhist.

• Concurrent effects of functional covariates x measured on the same grid as the response, i.e.,
xi(s)β(t), are specified as bconcurrent(x, s = s, time = t), see bconcurrent.

• Interaction effects can be estimated as tensor product smooth, e.g., z
∫
xi(s)β(s, t)ds as

bsignal(x, s = s) %X% bolsc(z)

• For interaction effects with historical functional effects, e.g., zi
∫
[
l(t), u(t)]xi(s)β(s, t)ds the

base-learner bhistx should be used instead of bhist, e.g., bhistx(x, limits) %X% bolsc(z),
see bhistx.

• Generally, the c()-notation can be used to get effects that are constant over the index of the
functional response.

• If the formula in FDboost contains base-learners connected by %O%, %A% or %A0%, those effects
are not expanded with timeformula, allowing for model specifications with different effects
in time-direction.

In order to obtain a fair selection of base-learners, the same degrees of freedom (df) should be
specified for all baselearners. If the number of df differs among the base-learners, the selection is
biased towards more flexible base-learners with higher df as they are more likely to yield larger
improvements of the fit. It is recommended to use a rather small number of df for all base-learners.
It is not possible to specify df larger than the rank of the design matrix. For base-learners with rank-
deficient penalty, it is not possible to specify df smaller than the rank of the null space of the penalty
(e.g., in bbs unpenalized part of P-splines). The df of the base-learners in an FDboost-object can be
checked using extract(object, "df"), see extract.

The most important tuning parameter of component-wise gradient boosting is the number of boost-
ing iterations. It is recommended to use the number of boosting iterations as only tuning parameter,
fixing the step-length at a small value (e.g., nu = 0.1). Note that the default number of boosting
iterations is 100 which is arbitrary and in most cases not adequate (the optimal number of boosting

FDboost 47

iterations can considerably exceed 100). The optimal stopping iteration can be determined by re-
sampling methods like cross-validation or bootstrapping, see the function cvrisk.FDboost which
searches the optimal stopping iteration on a grid, which in many cases has to be extended.

Value

An object of class FDboost that inherits from mboost. Special predict.FDboost, coef.FDboost
and plot.FDboost methods are available. The methods of mboost are available as well, e.g.,
extract. The FDboost-object is a named list containing:

... all elements of an mboost-object

yname the name of the response

ydim dimension of the response matrix, if the response is represented as such

yind the observation (time-)points of the response, i.e. the evaluation points, with its
name as attribute

data the data that was used for the model fit

id the id variable of the response

predictOffset the function to predict the smooth offset

offsetFDboost offset as specified in call to FDboost

offsetMboost offset as given to mboost

call the call to FDboost

callEval the evaluated function call to FDboost without data

numInt value of argument numInt determining the numerical integration scheme

timeformula the time-formula

formulaFDboost the formula with which FDboost was called

formulaMboost the formula with which mboost was called within FDboost

Author(s)

Sarah Brockhaus, Torsten Hothorn

References

Brockhaus, S., Ruegamer, D. and Greven, S. (2017): Boosting Functional Regression Models with
FDboost. <doi:10.18637/jss.v094.i10>

Brockhaus, S., Scheipl, F., Hothorn, T. and Greven, S. (2015): The functional linear array model.
Statistical Modelling, 15(3), 279-300.

Brockhaus, S., Melcher, M., Leisch, F. and Greven, S. (2017): Boosting flexible functional regres-
sion models with a high number of functional historical effects, Statistics and Computing, 27(4),
913-926.

Currie, I.D., Durban, M. and Eilers P.H.C. (2006): Generalized linear array models with applica-
tions to multidimensional smoothing. Journal of the Royal Statistical Society, Series B-Statistical
Methodology, 68(2), 259-280.

Scheipl, F., Staicu, A.-M. and Greven, S. (2015): Functional additive mixed models, Journal of
Computational and Graphical Statistics, 24(2), 477-501.

48 FDboost

See Also

Note that FDboost calls mboost directly. See, e.g., bsignal and bbsc for possible base-learners.

Examples

######## Example for function-on-scalar-regression
data("viscosity", package = "FDboost")
set time-interval that should be modeled
interval <- "101"

model time until "interval" and take log() of viscosity
end <- which(viscosity$timeAll == as.numeric(interval))
viscosity$vis <- log(viscosity$visAll[,1:end])
viscosity$time <- viscosity$timeAll[1:end]
with(viscosity, funplot(time, vis, pch = 16, cex = 0.2))

fit median regression model with 100 boosting iterations,
step-length 0.4 and smooth time-specific offset
the factors are coded such that the effects are zero for each timepoint t
no integration weights are used!
mod1 <- FDboost(vis ~ 1 + bolsc(T_C, df = 2) + bolsc(T_A, df = 2),

timeformula = ~ bbs(time, df = 4),
numInt = "equal", family = QuantReg(),
offset = NULL, offset_control = o_control(k_min = 9),
data = viscosity, control=boost_control(mstop = 100, nu = 0.4))

find optimal mstop over 5-fold bootstrap, small number of folds for example
do the resampling on the level of curves

possibility 1: smooth offset and transformation matrices are refitted
set.seed(123)
appl1 <- applyFolds(mod1, folds = cv(rep(1, length(unique(mod1$id))), B = 5),

grid = 1:500)
plot(appl1)
mstop(appl1)
mod1[mstop(appl1)]

possibility 2: smooth offset is refitted,
computes oob-risk and the estimated coefficients on the folds
set.seed(123)
val1 <- validateFDboost(mod1, folds = cv(rep(1, length(unique(mod1$id))), B = 5),

grid = 1:500)
plot(val1)
mstop(val1)
mod1[mstop(val1)]

possibility 3: very efficient
using the function cvrisk; be careful to do the resampling on the level of curves
folds1 <- cvLong(id = mod1$id, weights = model.weights(mod1), B = 5)
cvm1 <- cvrisk(mod1, folds = folds1, grid = 1:500)
plot(cvm1)

FDboost 49

mstop(cvm1)

look at the model
summary(mod1)
coef(mod1)
plot(mod1)
plotPredicted(mod1, lwdPred = 2)

######## Example for scalar-on-function-regression
data("fuelSubset", package = "FDboost")

center the functional covariates per observed wavelength
fuelSubset$UVVIS <- scale(fuelSubset$UVVIS, scale = FALSE)
fuelSubset$NIR <- scale(fuelSubset$NIR, scale = FALSE)

to make mboost:::df2lambda() happy (all design matrix entries < 10)
reduce range of argvals to [0,1] to get smaller integration weights
fuelSubset$uvvis.lambda <- with(fuelSubset, (uvvis.lambda - min(uvvis.lambda)) /

(max(uvvis.lambda) - min(uvvis.lambda)))
fuelSubset$nir.lambda <- with(fuelSubset, (nir.lambda - min(nir.lambda)) /

(max(nir.lambda) - min(nir.lambda)))

model fit with scalar response
include no intercept as all base-learners are centered around 0
mod2 <- FDboost(heatan ~ bsignal(UVVIS, uvvis.lambda, knots = 40, df = 4, check.ident = FALSE)

+ bsignal(NIR, nir.lambda, knots = 40, df = 4, check.ident = FALSE),
timeformula = NULL, data = fuelSubset, control = boost_control(mstop = 200))

additionally include a non-linear effect of the scalar variable h2o
mod2s <- FDboost(heatan ~ bsignal(UVVIS, uvvis.lambda, knots = 40, df = 4, check.ident = FALSE)

+ bsignal(NIR, nir.lambda, knots = 40, df = 4, check.ident = FALSE)
+ bbs(h2o, df = 4),

timeformula = NULL, data = fuelSubset, control = boost_control(mstop = 200))

alternative model fit as FLAM model with scalar response; as timeformula = ~ bols(1)
adds a penalty over the index of the response, i.e., here a ridge penalty
thus, mod2f and mod2 have different penalties
mod2f <- FDboost(heatan ~ bsignal(UVVIS, uvvis.lambda, knots = 40, df = 4, check.ident = FALSE)

+ bsignal(NIR, nir.lambda, knots = 40, df = 4, check.ident = FALSE),
timeformula = ~ bols(1), data = fuelSubset, control = boost_control(mstop = 200))

bootstrap to find optimal mstop takes some time
set.seed(123)
folds2 <- cv(weights = model.weights(mod2), B = 10)
cvm2 <- cvrisk(mod2, folds = folds2, grid = 1:1000)
mstop(cvm2) ## mod2[327]
summary(mod2)
plot(mod2)

Example for function-on-function-regression

50 FDboost

if(require(fda)){

data("CanadianWeather", package = "fda")
CanadianWeather$l10precip <- t(log(CanadianWeather$monthlyPrecip))
CanadianWeather$temp <- t(CanadianWeather$monthlyTemp)
CanadianWeather$region <- factor(CanadianWeather$region)
CanadianWeather$month.s <- CanadianWeather$month.t <- 1:12

center the temperature curves per time-point
CanadianWeather$temp <- scale(CanadianWeather$temp, scale = FALSE)
rownames(CanadianWeather$temp) <- NULL ## delete row-names

fit model with cyclic splines over the year
mod3 <- FDboost(l10precip ~ bols(region, df = 2.5, contrasts.arg = "contr.dummy")

+ bsignal(temp, month.s, knots = 11, cyclic = TRUE,
df = 2.5, boundary.knots = c(0.5,12.5), check.ident = FALSE),

timeformula = ~ bbs(month.t, knots = 11, cyclic = TRUE,
df = 3, boundary.knots = c(0.5, 12.5)),

offset = "scalar", offset_control = o_control(k_min = 5),
control = boost_control(mstop = 60),
data = CanadianWeather)

find the optimal mstop over 5-fold bootstrap
using the function applyFolds
set.seed(123)
folds3 <- cv(rep(1, length(unique(mod3$id))), B = 5)
appl3 <- applyFolds(mod3, folds = folds3, grid = 1:200)

use function cvrisk; be careful to do the resampling on the level of curves
set.seed(123)
folds3long <- cvLong(id = mod3$id, weights = model.weights(mod3), B = 5)
cvm3 <- cvrisk(mod3, folds = folds3long, grid = 1:200)
mstop(cvm3) ## mod3[64]

summary(mod3)
plot(mod3, pers = TRUE)

}

######## Example for functional response observed on irregular grid
######## Delete part of observations in viscosity data-set
data("viscosity", package = "FDboost")
set time-interval that should be modeled
interval <- "101"

model time until "interval" and take log() of viscosity
end <- which(viscosity$timeAll == as.numeric(interval))
viscosity$vis <- log(viscosity$visAll[,1:end])
viscosity$time <- viscosity$timeAll[1:end]
with(viscosity, funplot(time, vis, pch = 16, cex = 0.2))

only keep one eighth of the observation points

FDboost 51

set.seed(123)
selectObs <- sort(sample(x = 1:(64*46), size = 64*46/4, replace = FALSE))
dataIrregular <- with(viscosity, list(vis = c(vis)[selectObs],

T_A = T_A, T_C = T_C,
time = rep(time, each = 64)[selectObs],
id = rep(1:64, 46)[selectObs]))

fit median regression model with 50 boosting iterations,
step-length 0.4 and smooth time-specific offset
the factors are in effect coding -1, 1 for the levels
no integration weights are used!
mod4 <- FDboost(vis ~ 1 + bols(T_C, contrasts.arg = "contr.sum", intercept = FALSE)

+ bols(T_A, contrasts.arg = "contr.sum", intercept=FALSE),
timeformula = ~ bbs(time, lambda = 100), id = ~id,
numInt = "Riemann", family = QuantReg(),
offset = NULL, offset_control = o_control(k_min = 9),
data = dataIrregular, control = boost_control(mstop = 50, nu = 0.4))

summary(mod4)
plot(mod4)
plotPredicted(mod4, lwdPred = 2)

Find optimal mstop, small grid/low B for a fast example
set.seed(123)
folds4 <- cv(rep(1, length(unique(mod4$id))), B = 3)
appl4 <- applyFolds(mod4, folds = folds4, grid = 1:50)
val4 <- validateFDboost(mod4, folds = folds4, grid = 1:50)

set.seed(123)
folds4long <- cvLong(id = mod4$id, weights = model.weights(mod4), B = 3)
cvm4 <- cvrisk(mod4, folds = folds4long, grid = 1:50)
mstop(cvm4)

Be careful if you want to predict newdata with irregular response,
as the argument index is not considered in the prediction of newdata.
Thus, all covariates have to be repeated according to the number of observations
in each response trajectroy.
Predict four response curves with full time-observations
for the four combinations of T_A and T_C.
newd <- list(T_A = factor(c(1,1,2,2), levels = 1:2,

labels = c("low", "high"))[rep(1:4, length(viscosity$time))],
T_C = factor(c(1,2,1,2), levels = 1:2,

labels = c("low", "high"))[rep(1:4, length(viscosity$time))],
time = rep(viscosity$time, 4))

pred <- predict(mod4, newdata = newd)
funplot(x = rep(viscosity$time, 4), y = pred, id = rep(1:4, length(viscosity$time)))

52 FDboostLSS

FDboostLSS Model-based Gradient Boosting for Functional GAMLSS

Description

Function for fitting generalized additive models for location, scale and shape (GAMLSS) with func-
tional data using component-wise gradient boosting, for details see Brockhaus et al. (2018).

Usage

FDboostLSS(
formula,
timeformula,
data = list(),
families = GaussianLSS(),
control = boost_control(),
weights = NULL,
method = c("cyclic", "noncyclic"),
...

)

Arguments

formula a symbolic description of the model to be fit. If formula is a single formula,
the same formula is used for all distribution parameters. formula can also be a
(named) list, where each list element corresponds to one distribution parameter
of the GAMLSS distribution. The names must be the same as in the families.

timeformula one-sided formula for the expansion over the index of the response. For a func-
tional response Yi(t) typically ~bbs(t) to obtain a smooth expansion of the
effects along t. In the limiting case that Yi is a scalar response use ~bols(1),
which sets up a base-learner for the scalar 1. Or you can use timeformula=NULL,
then the scalar response is treated as scalar. Analogously to formula, timeformula
can either be a one-sided formula or a named list of one-sided formulas.

data a data frame or list containing the variables in the model.

families an object of class families. It can be either one of the pre-defined distributions
that come along with the package gamboostLSS or a new distribution speci-
fied by the user (see Families for details). Per default, the two-parametric
GaussianLSS family is used.

control a list of parameters controlling the algorithm. For more details see boost_control.

weights does not work!

method fitting method, currently two methods are supported: "cyclic" (see Mayr et al.,
2012) and "noncyclic" (algorithm with inner loss of Thomas et al., 2018).

... additional arguments passed to FDboost, including, family and control.

FDboostLSS 53

Details

For details on the theory of GAMLSS, see Rigby and Stasinopoulos (2005). FDboostLSS calls
FDboost to fit the distribution parameters of a GAMLSS - a functional boosting model is fitted
for each parameter of the response distribution. In mboostLSS, details on boosting of GAMLSS
based on Mayr et al. (2012) and Thomas et al. (2018) are given. In FDboost, details on boosting
regression models with functional variables are given (Brockhaus et al., 2015, Brockhaus et al.,
2017).

Value

An object of class FDboostLSS that inherits from mboostLSS. The FDboostLSS-object is a named
list containing one list entry per distribution parameter and some attributes. The list is named like
the parameters, e.g. mu and sigma, if the parameters mu and sigma are modeled. Each list-element
is an object of class FDboost.

Author(s)

Sarah Brockhaus

References

Brockhaus, S., Scheipl, F., Hothorn, T. and Greven, S. (2015). The functional linear array model.
Statistical Modelling, 15(3), 279-300.

Brockhaus, S., Melcher, M., Leisch, F. and Greven, S. (2017): Boosting flexible functional regres-
sion models with a high number of functional historical effects, Statistics and Computing, 27(4),
913-926.

Brockhaus, S., Fuest, A., Mayr, A. and Greven, S. (2018): Signal regression models for location,
scale and shape with an application to stock returns. Journal of the Royal Statistical Society: Series
C (Applied Statistics), 67, 665-686.

Mayr, A., Fenske, N., Hofner, B., Kneib, T. and Schmid, M. (2012): Generalized additive models
for location, scale and shape for high-dimensional data - a flexible approach based on boosting.
Journal of the Royal Statistical Society: Series C (Applied Statistics), 61(3), 403-427.

Rigby, R. A. and D. M. Stasinopoulos (2005): Generalized additive models for location, scale and
shape (with discussion). Journal of the Royal Statistical Society: Series C (Applied Statistics),
54(3), 507-554.

Thomas, J., Mayr, A., Bischl, B., Schmid, M., Smith, A., and Hofner, B. (2018), Gradient boosting
for distributional regression - faster tuning and improved variable selection via noncyclical updates.
Statistics and Computing, 28, 673-687.

Stoecker, A., Brockhaus, S., Schaffer, S., von Bronk, B., Opitz, M., and Greven, S. (2019): Boost-
ing Functional Response Models for Location, Scale and Shape with an Application to Bacterial
Competition. https://arxiv.org/abs/1809.09881

See Also

Note that FDboostLSS calls FDboost directly.

https://arxiv.org/abs/1809.09881

54 FDboostLSS

Examples

########### simulate Gaussian scalar-on-function data
n <- 500 ## number of observations
G <- 120 ## number of observations per functional covariate
set.seed(123) ## ensure reproducibility
z <- runif(n) ## scalar covariate
z <- z - mean(z)
s <- seq(0, 1, l=G) ## index of functional covariate
generate functional covariate
if(require(splines)){

x <- t(replicate(n, drop(bs(s, df = 5, int = TRUE) %*% runif(5, min = -1, max = 1))))
}else{

x <- matrix(rnorm(n*G), ncol = G, nrow = n)
}
x <- scale(x, center = TRUE, scale = FALSE) ## center x per observation point

mu <- 2 + 0.5*z + (1/G*x) %*% sin(s*pi)*5 ## true functions for expectation
sigma <- exp(0.5*z - (1/G*x) %*% cos(s*pi)*2) ## for standard deviation

y <- rnorm(mean = mu, sd = sigma, n = n) ## draw respone y_i ~ N(mu_i, sigma_i)

save data as list containing s as well
dat_list <- list(y = y, z = z, x = I(x), s = s)

model fit with noncyclic algorithm assuming Gaussian location scale model
m_boost <- FDboostLSS(list(mu = y ~ bols(z, df = 2) + bsignal(x, s, df = 2, knots = 16),

sigma = y ~ bols(z, df = 2) + bsignal(x, s, df = 2, knots = 16)),
timeformula = NULL, data = dat_list, method = "noncyclic")

summary(m_boost)

if(require(gamboostLSS)){
find optimal number of boosting iterations on a grid in 1:1000
using 5-fold bootstrap
takes some time, easy to parallelize on Linux
set.seed(123)
cvr <- cvrisk(m_boost, folds = cv(model.weights(m_boost[[1]]), B = 5),

grid = 1:1000, trace = FALSE)
use model at optimal stopping iterations
m_boost <- m_boost[mstop(cvr)] ## 832

plot smooth effects of functional covariates for mu and sigma
oldpar <- par(mfrow = c(1,2))
plot(m_boost$mu, which = 2, ylim = c(0,5))
lines(s, sin(s*pi)*5, col = 3, lwd = 2)
plot(m_boost$sigma, which = 2, ylim = c(-2.5,2.5))
lines(s, -cos(s*pi)*2, col = 3, lwd = 2)
par(oldpar)
}

FDboost_fac-class 55

FDboost_fac-class ‘FDboost_fac‘ S3 class for factorized FDboost model components

Description

Model factorization with ‘factorize()‘ decomposes an ‘FDboost‘ model into two objects of class
‘FDboost_fac‘ - one for the response and one for the covariate predictor. The first is essentially an
‘FDboost‘ object and the second an ‘mboost‘ object, however, in a ’read-only’ mode and slightly
adjusted methods (method defaults).

See Also

[factorize(), factorize.FDboost()]

fitted.FDboost Fitted values of a boosted functional regression model

Description

Takes a fitted FDboost-object and computes the fitted values.

Usage

S3 method for class 'FDboost'
fitted(object, toFDboost = TRUE, ...)

Arguments

object a fitted FDboost-object

toFDboost logical, defaults to TRUE. In case of regular response in wide format (i.e., re-
sponse is supplied as matrix): should the predictions be returned as matrix, or
list of matrices instead of vectors

... additional arguments passed on to predict.FDboost

Value

matrix or vector of fitted values

See Also

FDboost for the model fit.

56 fuelSubset

fuelSubset Spectral data of fossil fuels

Description

For 129 laboratory samples of fossil fuels the heat value and the humidity were determined together
with two spectra. One spectrum is ultraviolet-visible (UV-VIS), measured at 1335 wavelengths in
the range of 250.4 to 878.4 nanometer (nm), the other a near infrared spectrum (NIR) measured
at 2307 wavelengths in the range of 800.4 to 2779.0 nm. fuelSubset is a subset of the original
dataset containing only 10% of the original measures of the spectra, resulting in 231 measures of
the NIR spectrum and 134 measures of the UVVIS spectrum.

Usage

data("fuelSubset")

Format

A data list with 129 observations on the following 7 variables.

heatan heat value in mega joule (mJ)

h2o humidity in percent

NIR near infrared spectrum (NIR)

UVVIS ultraviolet-visible spectrum (UV-VIS)

nir.lambda wavelength of NIR spectrum in nm

uvvis.lambda wavelength of UV-VIS spectrum in nm

h2o.fit predicted values of humidity

Details

The aim is to predict the heat value using the spectral data. The variable h2o.fit was generated by
a functional linear regression model, using both spectra and their derivatives as predictors.

Source

Siemens AG

Fuchs, K., Scheipl, F. & Greven, S. (2015), Penalized scalar-on-functions regression with interac-
tion term. Computational Statistics and Data Analysis. 81, 38-51.

Examples

data("fuelSubset", package = "FDboost")

center the functional covariates per observed wavelength
fuelSubset$UVVIS <- scale(fuelSubset$UVVIS, scale = FALSE)
fuelSubset$NIR <- scale(fuelSubset$NIR, scale = FALSE)

funMRD 57

to make mboost::df2lambda() happy (all design matrix entries < 10)
reduce range of argvals to [0,1] to get smaller integration weights
fuelSubset$uvvis.lambda <- with(fuelSubset, (uvvis.lambda - min(uvvis.lambda)) /

(max(uvvis.lambda) - min(uvvis.lambda)))
fuelSubset$nir.lambda <- with(fuelSubset, (nir.lambda - min(nir.lambda)) /

(max(nir.lambda) - min(nir.lambda)))

fit mean regression model with 100 boosting iterations,
step-length 0.1 and

mod <- FDboost(heatan ~ bsignal(UVVIS, uvvis.lambda, knots=40, df=4, check.ident=FALSE)
+ bsignal(NIR, nir.lambda, knots=40, df=4, check.ident=FALSE),
timeformula = NULL, data = fuelSubset)

summary(mod)
plot(mod)

funMRD Functional MRD

Description

Calculates the functional MRD for a fitted FDboost-object

Usage

funMRD(object, overTime = TRUE, breaks = object$yind, global = FALSE, ...)

Arguments

object fitted FDboost-object with regular response

overTime per default the functional MRD is calculated over time if overTime=FALSE, the
MRD is calculated per curve

breaks an optional vector or number giving the time-points at which the model is eval-
uated. Can be specified as number of equidistant time-points or as vector of
time-points. Defaults to the index of the response in the model.

global logical. defaults to FALSE, if TRUE the global MRD like in a normal linear
model is calculated

... currently not used

Details

Formula to calculate MRD over time, overTime=TRUE:
MRD(t) = n−1

∑
i |Yi(t)− Ŷi(t)|/|Yi(t)|

Formula to calculate MRD over subjects, overTime=FALSE:
MRDi =

∫
|Yi(t)− Ŷi(t)|/|Yi(t)|dt ≈ G−1

∑
g |Yi(tg)− Ŷi(tg)|/|Yi(t)|

58 funMSE

Value

Returns a vector with the calculated MRD and some extra information in attributes.

Note

breaks cannot be changed in the case the bsignal() is used over the same domain as the response!
In that case you would have to rename the index of the response or that of the covariates.

funMSE Functional MSE

Description

Calculates the functional MSE for a fitted FDboost-object

Usage

funMSE(
object,
overTime = TRUE,
breaks = object$yind,
global = FALSE,
relative = FALSE,
root = FALSE,
...

)

Arguments

object fitted FDboost-object

overTime per default the functional R-squared is calculated over time if overTime=FALSE,
the R-squared is calculated per curve

breaks an optional vector or number giving the time-points at which the model is eval-
uated. Can be specified as number of equidistant time-points or as vector of
time-points. Defaults to the index of the response in the model.

global logical. defaults to FALSE, if TRUE the global R-squared like in a normal linear
model is calculated

relative logical. defaults to FALSE. If TRUE the MSE is standardized by the global vari-
ance of the response
n−1

∫ ∑
i(Yi(t)− Ȳ)2dt ≈ G−1n−1

∑
g

∑
i(Yi(tg)− Ȳ)2

root take the square root of the MSE

... currently not used

funplot 59

Details

Formula to calculate MSE over time, overTime=TRUE:
MSE(t) = n−1

∑
i(Yi(t)− Ŷi(t))

2

Formula to calculate MSE over subjects, overTime=FALSE:
MSEi =

∫
(Yi(t)− Ŷi(t))

2dt ≈ G−1
∑

g(Yi(tg)− Ŷi(tg))
2

Value

Returns a vector with the calculated MSE and some extra information in attributes.

Note

breaks cannot be changed in the case the bsignal() is used over the same domain as the response!
In that case you would have to rename the index of the response or that of the covariates.

funplot Plot functional data with linear interpolation of missing values

Description

Plot functional data with linear interpolation of missing values

Usage

funplot(x, y, id = NULL, rug = TRUE, ...)

Arguments

x optional, time-vector for plotting

y matrix of functional data with functions in rows and measured times in columns;
or vector or functional observations, in this case id has to be specified

id defaults to NULL for y matrix, is id-variables for y in long format

rug logical. Should rugs be plotted? Defaults to TRUE.

... further arguments passed to matplot.

Details

All observations are marked by a small cross (pch=3). Missing values are imputed by linear inter-
polation. Parts that are interpolated are plotted by dotted lines, parts with non-missing values as
solid lines.

Value

see matplot

60 funRsquared

Examples

examples for regular data in wide format
data(viscosity)
with(viscosity, funplot(timeAll, visAll, pch=20))
if(require(fda)){

with(fda::growth, funplot(age, t(hgtm)))
}

funRsquared Functional R-squared

Description

Calculates the functional R-squared for a fitted FDboost-object

Usage

funRsquared(object, overTime = TRUE, breaks = object$yind, global = FALSE, ...)

Arguments

object fitted FDboost-object

overTime per default the functional R-squared is calculated over time if overTime=FALSE,
the R-squared is calculated per curve

breaks an optional vector or number giving the time-points at which the model is eval-
uated. Can be specified as number of equidistant time-points or as vector of
time-points. Defaults to the index of the response in the model.

global logical. defaults to FALSE, if TRUE the global R-squared like in a normal linear
model is calculated

... currently not used

Details

breaks should be set to some grid, if there are many missing values or time-points with very few
observations in the dataset. Otherwise at these points of t the variance will be almost 0 (or even 0
if there is only one observation at a time-point), and then the prediction by the local means µ(t) is
locally very good. The observations are interpolated linearly if necessary.

Formula to calculate R-squared over time, overTime=TRUE:
R2(t) = 1−

∑
i(Yi(t)− Ŷi(t))

2/
∑

i(Yi(t)− Ȳ (t))2

Formula to calculate R-squared over subjects, overTime=FALSE:
R2

i = 1−
∫
(Yi(t)− Ŷi(t))

2dt/
∫
(Yi(t)− Ȳi)

2dt

Value

Returns a vector with the calculated R-squared and some extra information in attributes.

getTime 61

Note

breaks cannot be changed in the case the bsignal() is used over the same domain as the response!
In that case you would have to rename the index of the response or that of the covariates.

References

Ramsay, J., Silverman, B. (2006). Functional data analysis. Wiley Online Library. chapter 16.3

getTime Generic functions to asses attributes of functional data objects

Description

Extract attributes of an object.

Usage

getTime(object)

getId(object)

getX(object)

getArgvals(object)

getTimeLab(object)

getIdLab(object)

getXLab(object)

getArgvalsLab(object)

Arguments

object an R-object, currently implemented for hmatrix and fmatrix

Details

Extract the time variable getTime, the idgetId, the functional covariate getX, its argument values
getArgvals. Or the names of the different variables getTimeLab, getIdLab, getXLab, getArgvalsLab.

Value

properties of a hmatrix or fmatrix

See Also

hmatrix for the h.atrix class.

62 getTime.hmatrix

getTime.hmatrix Extract attributes of hmatrix

Description

Extract attributes of an object of class hmatrix.

Usage

S3 method for class 'hmatrix'
getTime(object)

S3 method for class 'hmatrix'
getId(object)

S3 method for class 'hmatrix'
getX(object)

S3 method for class 'hmatrix'
getArgvals(object)

S3 method for class 'hmatrix'
getTimeLab(object)

S3 method for class 'hmatrix'
getIdLab(object)

S3 method for class 'hmatrix'
getXLab(object)

S3 method for class 'hmatrix'
getArgvalsLab(object)

Arguments

object object of class hmatrix

Details

Extract the time variable getTime, the idgetId, the functional covariate getX, its argument values
getArgvals. Or the names of the different variables getTimeLab, getIdLab, getXLab, getArgvalsLab
for an object of class hmatrix.

Value

properties of a hmatrix

hmatrix 63

hmatrix A S3 class for univariate functional data on a common grid

Description

The hmatrix class represents data for a functional historical effect. The class is basically a ma-
trix containing the time and the id for the observations of the functional response. The functional
covariate is contained as attribute.

Usage

hmatrix(
time,
id,
x,
argvals = 1:ncol(x),
timeLab = "t",
idLab = "wideIndex",
xLab = "x",
argvalsLab = "s"

)

Arguments

time set of argument values of the response in long format, i.e. at which t the re-
sponse curve is observed

id specify to which curve the point belongs to, id from 1, 2, ..., n.

x matrix of functional covariate, each trajectory is in one row

argvals set of argument values, i.e., the common gird at which the functional covariate
is observed, by default 1:ncol(x)

timeLab name of the time axis, by default t

idLab name of the id variable, by default wideIndex

xLab name of the functional variable, by default NULL

argvalsLab name of the argument for the covariate by default s

Details

In the hmatrix class the id has to run from i=1, 2, ..., n including all integers from 1 to n. The rows
of the functional covariate x correspond to those observations.

Value

An matrix object of type "hmatrix"

64 integrationWeights

See Also

getTime.hmatrix to extract attributes, and ?"[.hmatrix" for the extract method.

Examples

Example for a hmatrix object
t1 <- rep((1:5)/2, each = 3)
id1 <- rep(1:3, 5)
x1 <- matrix(1:15, ncol = 5)
s1 <- (1:5)/2
myhmatrix <- hmatrix(time = t1, id = id1, x = x1, argvals = s1,

timeLab = "t1", argvalsLab = "s1", xLab = "test")

extract with [keeps attributes
select observations of subjects 2 and 3
myhmatrixSub <- myhmatrix[id1 %in% c(2, 3),]
str(myhmatrixSub)
getX(myhmatrixSub)
getX(myhmatrix)

get time
myhmatrix[, 1] # as column matrix as drop = FALSE
getTime(myhmatrix) # as vector

get id
myhmatrix[, 2] # as column matrix as drop = FALSE
getId(myhmatrix) # as vector

subset hmatrix on the basis of an index, which is defined on the curve level
reweightData(data = list(hmat = myhmatrix), vars = "hmat", index = c(1, 1, 2))
this keeps only the unique x values in attr(,'x') but multiplies the corresponding
ids and times in the time id matrix
for bhistx baselearner, there may be an additional id variable for the tensor product
newdat <- reweightData(data = list(hmat = myhmatrix,

repIDx = rep(1:nrow(attr(myhmatrix,'x')), length(attr(myhmatrix,"argvals")))),
vars = "hmat", index = c(1,1,2), idvars="repIDx")

length(newdat$repIDx)

use hmatrix within a data.frame
mydat <- data.frame(I(myhmatrix), z=rnorm(3)[id1])
str(mydat)
str(mydat[id1 %in% c(2, 3),])
str(myhmatrix[id1 %in% c(2, 3),])

integrationWeights Functions to compute integration weights

integrationWeights 65

Description

Computes trapezoidal integration weights (Riemann sums) for a functional variable X1 that has
evaluation points xind.

Usage

integrationWeights(X1, xind, id = NULL)

integrationWeightsLeft(X1, xind, leftWeight = c("first", "mean", "zero"))

Arguments

X1 for functional data that is observed on one common grid, a matrix containing the
observations of the functional variable. For a functional variable that is observed
on curve specific grids, a long vector.

xind evaluation points (index) of functional variable

id defaults to NULL. Only necessary for response in long format. In this case id
specifies which curves belong together.

leftWeight one of c("mean", "first", "zero"). With left Riemann sums different as-
sumptions for the weight of the first observation are possible. The default is to
use the mean over all integration weights, "mean". Alternatively one can use the
first integration weight, "first", or use the distance to zero, "zero".

Details

The function integrationWeights() computes trapezoidal integration weights, that are symmet-
ric. Per default those weights are used in the bsignal-base-learner. In the special case of evaluation
points (xind) with equal distances, all integration weights are equal.

The function integrationWeightsLeft() computes weights, that take into account only the dis-
tance to the prior observation point. Thus one has to decide what to do with the first observation.
The left weights are adequate for historical effects like in bhist.

Value

Matrix with integration

See Also

bsignal and bhist for the base-learners.

Examples

Example for trapezoidal integration weights
xind0 <- seq(0,1,l = 5)
xind <- c(0, 0.1, 0.3, 0.7, 1)
X1 <- matrix(xind^2, ncol = length(xind0), nrow = 2)

Regualar observation points
integrationWeights(X1, xind0)

66 is.hmatrix

Irregular observation points
integrationWeights(X1, xind)

with missing value
X1[1,2] <- NA
integrationWeights(X1, xind0)
integrationWeights(X1, xind)

Example for left integration weights
xind0 <- seq(0,1,l = 5)
xind <- c(0, 0.1, 0.3, 0.7, 1)
X1 <- matrix(xind^2, ncol = length(xind0), nrow = 2)

Regular observation points
integrationWeightsLeft(X1, xind0, leftWeight = "mean")
integrationWeightsLeft(X1, xind0, leftWeight = "first")
integrationWeightsLeft(X1, xind0, leftWeight = "zero")

Irregular observation points
integrationWeightsLeft(X1, xind, leftWeight = "mean")
integrationWeightsLeft(X1, xind, leftWeight = "first")
integrationWeightsLeft(X1, xind, leftWeight = "zero")

obervation points that do not start with 0
xind2 <- xind + 0.5
integrationWeightsLeft(X1, xind2, leftWeight = "zero")

is.hmatrix Test to class of hmatrix

Description

is.hmatrix tests if its argument is an object of class hmatrix.

Usage

is.hmatrix(object)

Arguments

object object of class hmatrix

Value

logical value

mstop.validateFDboost 67

mstop.validateFDboost Methods for objects of class validateFDboost

Description

Methods for objects that are fitted to determine the optimal mstop and the prediction error of a
model fitted by FDboost.

Usage

S3 method for class 'validateFDboost'
mstop(object, riskopt = c("mean", "median"), ...)

S3 method for class 'validateFDboost'
print(x, ...)

S3 method for class 'validateFDboost'
plot(
x,
riskopt = c("mean", "median"),
ylab = attr(x, "risk"),
xlab = "Number of boosting iterations",
ylim = range(x$oobrisk),
which = 1,
modObject = NULL,
predictNA = FALSE,
names.arg = NULL,
ask = TRUE,
...

)

plotPredCoef(
x,
which = NULL,
pers = TRUE,
commonRange = TRUE,
showNumbers = FALSE,
showQuantiles = TRUE,
ask = TRUE,
terms = TRUE,
probs = c(0.25, 0.5, 0.75),
ylim = NULL,
...

)

Arguments

object object of class validateFDboost

68 mstop.validateFDboost

riskopt how the risk is minimized to obtain the optimal stopping iteration; defaults to
the mean, can be changed to the median.

... additional arguments passed to callies.

x an object of class validateFDboost.

ylab label for y-axis

xlab label for x-axis

ylim values for limits of y-axis

which In the case of plotPredCoef() the subset of base-learners to take into account
for plotting. In the case of plot.validateFDboost() the diagnostic plots that
are given (1: empirical risk per fold as a funciton of the boosting iterations, 2:
empirical risk per fold, 3: MRD per fold, 4: observed and predicted values, 5:
residuals; 2-5 for the model with the optimal number of boosting iterations).

modObject if the original model object of class FDboost is given predicted values of the
whole model can be compared to the predictions of the cross-validated models

predictNA should missing values in the response be predicted? Defaults to FALSE.

names.arg names of the observed curves

ask defaults to TRUE, ask for next plot using par(ask = ask) ?

pers plot coefficient surfaces as persp-plots? Defaults to TRUE.

commonRange plot predicted coefficients on a common range, defaults to TRUE.

showNumbers show number of curve in plot of predicted coefficients, defaults to FALSE

showQuantiles plot the 0.05 and the 0.95 Quantile of coefficients in 1-dim effects.

terms logical, defaults to TRUE; plot the added terms (default) or the coefficients?

probs vector of quantiles to be used in the plotting of 2-dimensional coefficients sur-
faces, defaults to probs = c(0.25, 0.5, 0.75)

Details

The function mstop.validateFDboost extracts the optimal mstop by minimizing the mean (or
the median) risk. plot.validateFDboost plots cross-validated risk, RMSE, MRD, measured and
predicted values and residuals as determined by validateFDboost. The function plotPredCoef
plots the coefficients that were estimated in the folds - only possible if the argument getCoefCV is
TRUE in the call to validateFDboost.

Value

No return value (plot method) or the object itself (print method)

o_control 69

o_control Function to control estimation of smooth offset

Description

Function to control estimation of smooth offset

Usage

o_control(k_min = 20, rule = 2, silent = TRUE, cyclic = FALSE, knots = NULL)

Arguments

k_min maximal number of k in s()

rule which rule to use in approx() of the response before calculating the global mean,
rule=1 means no extrapolation, rule=2 means to extrapolate the closest non-
missing value, see approx

silent print error messages of model fit?

cyclic defaults to FALSE, if TRUE cyclic splines are used

knots arguments knots passed to gam

Value

a list with controls

plot.bootstrapCI Methods for objects of class bootstrapCI

Description

Methods for objects that are fitted to compute bootstrap confidence intervals.

Usage

S3 method for class 'bootstrapCI'
plot(
x,
which = NULL,
pers = TRUE,
commonRange = TRUE,
showNumbers = FALSE,
showQuantiles = TRUE,
ask = TRUE,
probs = c(0.25, 0.5, 0.75),

70 plot.FDboost

ylim = NULL,
...

)

S3 method for class 'bootstrapCI'
print(x, ...)

Arguments

x an object of class bootstrapCI.

which base-learners that are plotted

pers plot coefficient surfaces as persp-plots? Defaults to TRUE.

commonRange plot predicted coefficients on a common range, defaults to TRUE.

showNumbers show number of curve in plot of predicted coefficients, defaults to FALSE

showQuantiles plot the 0.05 and the 0.95 Quantile of coefficients in 1-dim effects.

ask defaults to TRUE, ask for next plot using par(ask = ask)?

probs vector of quantiles to be used in the plotting of 2-dimensional coefficients sur-
faces, defaults to probs = c(0.25, 0.5, 0.75)

ylim values for limits of y-axis

... additional arguments passed to callies.

Details

plot.bootstrapCI plots the bootstrapped coefficients.

Value

No return value (plot method) or x itself (print method)

plot.FDboost Plot the fit or the coefficients of a boosted functional regression model

Description

Takes a fitted FDboost-object produced by FDboost() and plots the fitted effects or the coefficient-
functions/surfaces.

Usage

S3 method for class 'FDboost'
plot(
x,
raw = FALSE,
rug = TRUE,
which = NULL,

plot.FDboost 71

includeOffset = TRUE,
ask = TRUE,
n1 = 40,
n2 = 40,
n3 = 20,
n4 = 11,
onlySelected = TRUE,
pers = FALSE,
commonRange = FALSE,
...

)

plotPredicted(
x,
subset = NULL,
posLegend = "topleft",
lwdObs = 1,
lwdPred = 1,
...

)

plotResiduals(x, subset = NULL, posLegend = "topleft", ...)

Arguments

x a fitted FDboost-object

raw logical defaults to FALSE. If raw = FALSE for each effect the estimated func-
tion/surface is calculated. If raw = TRUE the coefficients of the model are re-
turned.

rug when TRUE (default) then the covariate to which the plot applies is displayed
as a rug plot at the foot of each plot of a 1-d smooth, and the locations of the
covariates are plotted as points on the contour plot representing a 2-d smooth.

which a subset of base-learners to take into account for plotting.

includeOffset logical, defaults to TRUE. Should the offset be included in the plot of the intercept
(default) or should it be plotted separately.

ask logical, defaults to TRUE, if several effects are plotted the user has to hit Return
to see next plot.

n1 see below

n2 see below

n3 n1, n2, n3 give the number of grid-points for 1-/2-/3-dimensional smooth terms
used in the marginal equidistant grids over the range of the covariates at which
the estimated effects are evaluated.

n4 gives the number of points for the third dimension in a 3-dimensional smooth
term

onlySelected logical, defaults to TRUE. Only plot effects that where selected in at least one
boosting iteration.

72 predict.FDboost

pers logical, defaults to FALSE, If TRUE, perspective plots (persp) for 2- and 3-dimensional
effects are drawn. If FALSE, image/contour-plots (image, contour) are drawn
for 2- and 3-dimensional effects.

commonRange logical, defaults to FALSE, if TRUE the range over all effects is the same (does not
affect perspecitve or image plots).

... other arguments, passed to funplot (only used in plotPredicted)

subset subset of the observed response curves and their predictions that is plotted. Per
default all observations are plotted.

posLegend location of the legend, if a legend is drawn automatically (only used in plotPre-
dicted). The default is "topleft".

lwdObs lwd of observed curves (only used in plotPredicted)

lwdPred lwd of predicted curves (only used in plotPredicted)

Value

no return value (plot method)

See Also

FDboost for the model fit and coef.FDboost for the calculation of the coefficient functions.

predict.FDboost Prediction for boosted functional regression model

Description

Takes a fitted FDboost-object produced by FDboost() and produces predictions given a new set
of values for the model covariates or the original values used for the model fit. This is a wrapper
function for predict.mboost()

Usage

S3 method for class 'FDboost'
predict(object, newdata = NULL, which = NULL, toFDboost = TRUE, ...)

Arguments

object a fitted FDboost-object

newdata a named list or a data frame containing the values of the model covariates at
which predictions are required. If this is not provided then predictions cor-
responding to the original data are returned. If newdata is provided then it
should contain all the variables needed for prediction, in the format supplied to
FDboost, i.e., functional predictors must be supplied as matrices with each row
corresponding to one observed function.

predict.FDboost_fac 73

which a subset of base-learners to take into account for computing predictions or coef-
ficients. If which is given (as an integer vector corresponding to base-learners)
a list is returned.

toFDboost logical, defaults to TRUE. In case of regular response in wide format (i.e. re-
sponse is supplied as matrix): should the predictions be returned as matrix, or
list of matrices instead of vectors

... additional arguments passed on to predict.mboost().

Value

a matrix or list of predictions depending on values of unlist and which

See Also

FDboost for the model fit and plotPredicted for a plot of the observed values and their predic-
tions.

predict.FDboost_fac Prediction and plotting for factorized FDboost model components

Description

Prediction and plotting for factorized FDboost model components

Usage

S3 method for class 'FDboost_fac'
predict(object, newdata = NULL, which = NULL, ...)

S3 method for class 'FDboost_fac'
plot(x, which = NULL, main = NULL, ...)

Arguments

object, x a model-factor given as a FDboost_fac object

newdata optionally, a data frame or list in which to look for variables with which to
predict. See predict.mboost.

which a subset of base-learner components to take into account for computing pre-
dictions or coefficients. Different components are never aggregated to a joint
prediction, but always returned as a matrix or list. Select the k-th component
by name in the format bl(x, ...)[k] or all components of a base-learner by
dropping the index or all base-learners of a variable by using the variable name.

... additional arguments passed to underlying methods.

main the plot title. By default, base-learner names are used with component numbers
[k].

74 residuals.FDboost

Value

A matrix of predictions (for predict method) or no return value (plot method)

See Also

[factorize(), factorize.FDboost()]

residuals.FDboost Residual values of a boosted functional regression model

Description

Takes a fitted FDboost-object and computes the residuals, more precisely the current value of the
negative gradient is returned.

Usage

S3 method for class 'FDboost'
residuals(object, ...)

Arguments

object a fitted FDboost-object

... not used

Details

The residual is missing if the corresponding value of the response was missing.

Value

matrix of residual values

See Also

FDboost for the model fit.

reweightData 75

reweightData Function to Reweight Data

Description

Function to Reweight Data

Usage

reweightData(
data,
argvals,
vars,
longvars = NULL,
weights,
index,
idvars = NULL,
compress = FALSE

)

Arguments

data a named list or data.frame.

argvals character (vector); name(s) for entries in data giving the index for observed grid
points; must be supplied if vars is not supplied.

vars character (vector); name(s) for entries in data, which are subsetted according to
weights or index. Must be supplied if argvals is not supplied.

longvars variables in long format, e.g., a response that is observed at curve specific grids.

weights vector of weights for observations. Must be supplied if index is not supplied.

index vector of indices for observations. Must be supplied if weights is not supplied.

idvars character (vector); index, which is needed to expand vars to be conform with
the hmatrix structure when using bhistx-base-learners or to be conform with
variables in long format specified in longvars.

compress logical; whether hmatrix objects are saved in compressed form or not. Default
is TRUE. Should be set to FALSE when using reweightData for nested resam-
pling.

Details

reweightData indexes the rows of matrices and / or positions of vectors by using either the index or
the weights-argument. To prevent the function from indexing the list entry / entries, which serve as
time index for observed grid points of each trajectory of functional observations, the argvals argu-
ment (vector of character names for these list entries) can be supplied. If argvals is not supplied,
vars must be supplied and it is assumed that argvals is equal to names(data)[!names(data)
%in% vars].

76 reweightData

When using weights, a weight vector of length N must be supplied, where N is the number of
observations. When using index, the vector must contain the index of each row as many times as it
shall be included in the new data set.

Value

A list with the reweighted or subsetted data.

Author(s)

David Ruegamer, Sarah Brockhaus

Examples

load data
data("viscosity", package = "FDboost")
interval <- "101"
end <- which(viscosity$timeAll == as.numeric(interval))
viscosity$vis <- log(viscosity$visAll[, 1:end])
viscosity$time <- viscosity$timeAll[1:end]

what does data look like
str(viscosity)

do some reweighting
correct weights
str(reweightData(viscosity, vars=c("vis", "T_C", "T_A", "rspeed", "mflow"),

argvals = "time", weights = c(0, 32, 32, rep(0, 61))))

str(visNew <- reweightData(viscosity, vars=c("vis", "T_C", "T_A", "rspeed", "mflow"),
argvals = "time", weights = c(0, 32, 32, rep(0, 61))))

check the result
visNew$vis[1:5, 1:5] ## image(visNew$vis)

incorrect weights
str(reweightData(viscosity, vars=c("vis", "T_C", "T_A", "rspeed", "mflow"),

argvals = "time", weights = sample(1:64, replace = TRUE)), 1)

supply meaningful index
str(visNew <- reweightData(viscosity, vars = c("vis", "T_C", "T_A", "rspeed", "mflow"),

argvals = "time", index = rep(1:32, each = 2)))
check the result
visNew$vis[1:5, 1:5]

errors
if(FALSE){

reweightData(viscosity, argvals = "")
reweightData(viscosity, argvals = "covThatDoesntExist", index = rep(1,64))
}

stabsel.FDboost 77

stabsel.FDboost Stability Selection

Description

Function for stability selection with functional response. Per default the sampling is done on the
level of curves and if the model contains a smooth functional intercept, this intercept is refittedn in
each sampling fold.

Usage

S3 method for class 'FDboost'
stabsel(
x,
refitSmoothOffset = TRUE,
cutoff,
q,
PFER,
folds = cvLong(x$id, weights = rep(1, l = length(x$id)), type = "subsampling", B = B),
B = ifelse(sampling.type == "MB", 100, 50),
assumption = c("unimodal", "r-concave", "none"),
sampling.type = c("SS", "MB"),
papply = mclapply,
verbose = TRUE,
eval = TRUE,
...

)

Arguments

x fitted FDboost-object
refitSmoothOffset

logical, should the offset be refitted in each learning sample? Defaults to TRUE.

cutoff cutoff between 0.5 and 1. Preferably a value between 0.6 and 0.9 should be
used.

q number of (unique) selected variables (or groups of variables depending on the
model) that are selected on each subsample.

PFER upper bound for the per-family error rate. This specifies the amount of falsely
selected base-learners, which is tolerated. See details of stabsel.

folds a weight matrix with number of rows equal to the number of observations, see
{cvLong}. Usually one should not change the default here as subsampling with
a fraction of 1/2 is needed for the error bounds to hold. One usage scenario
where specifying the folds by hand might be the case when one has dependent
data (e.g. clusters) and thus wants to draw clusters (i.e., multiple rows together)
not individuals.

78 stabsel.FDboost

B number of subsampling replicates. Per default, we use 50 complementary pairs
for the error bounds of Shah & Samworth (2013) and 100 for the error bound
derived in Meinshausen & Buehlmann (2010). As we use B complementary
pairs in the former case this leads to 2B subsamples.

assumption Defines the type of assumptions on the distributions of the selection probabilities
and simultaneous selection probabilities. Only applicable for sampling.type =
"SS". For sampling.type = "MB" we always use "none".

sampling.type use sampling scheme of of Shah & Samworth (2013), i.e., with complemen-
tary pairs (sampling.type = "SS"), or the original sampling scheme of Mein-
shausen & Buehlmann (2010).

papply (parallel) apply function, defaults to mclapply. Alternatively, parLapply can be
used. In the latter case, usually more setup is needed (see example of cvrisk for
some details).

verbose logical (default: TRUE) that determines wether warnings should be issued.

eval logical. Determines whether stability selection is evaluated (eval = TRUE; de-
fault) or if only the parameter combination is returned.

... additional arguments to cvrisk or validateFDboost.

Details

The number of boosting iterations is an important hyper-parameter of the boosting algorithms and
can be chosen using the functions cvrisk.FDboost and validateFDboost as they compute honest,
i.e. out-of-bag, estimates of the empirical risk for different numbers of boosting iterations. The
weights (zero weights correspond to test cases) are defined via the folds matrix, see cvrisk in
package mboost. See Hofner et al. (2015) for the combination of stability selection and component-
wise boosting.

Value

An object of class stabsel with a special print method. For the elements of the object, see stabsel

References

B. Hofner, L. Boccuto and M. Goeker (2015), Controlling false discoveries in high-dimensional
situations: boosting with stability selection. BMC Bioinformatics, 16, 1-17.

N. Meinshausen and P. Buehlmann (2010), Stability selection. Journal of the Royal Statistical
Society, Series B, 72, 417-473.

R.D. Shah and R.J. Samworth (2013), Variable selection with error control: another look at stability
selection. Journal of the Royal Statistical Society, Series B, 75, 55-80.

See Also

stabsel to perform stability selection for a mboost-object.

subset_hmatrix 79

Examples

######## Example for function-on-scalar-regression
data("viscosity", package = "FDboost")
set time-interval that should be modeled
interval <- "101"

model time until "interval" and take log() of viscosity
end <- which(viscosity$timeAll == as.numeric(interval))
viscosity$vis <- log(viscosity$visAll[,1:end])
viscosity$time <- viscosity$timeAll[1:end]
with(viscosity, funplot(time, vis, pch = 16, cex = 0.2))

fit a model cotaining all main effects
modAll <- FDboost(vis ~ 1

+ bolsc(T_C, df=1) %A0% bbs(time, df=5)
+ bolsc(T_A, df=1) %A0% bbs(time, df=5)
+ bolsc(T_B, df=1) %A0% bbs(time, df=5)
+ bolsc(rspeed, df=1) %A0% bbs(time, df=5)
+ bolsc(mflow, df=1) %A0% bbs(time, df=5),

timeformula = ~bbs(time, df=5),
numInt = "Riemann", family = QuantReg(),
offset = NULL, offset_control = o_control(k_min = 10),
data = viscosity,
control = boost_control(mstop = 100, nu = 0.2))

create folds for stability selection
only 5 folds for a fast example, usually use 50 folds
set.seed(1911)
folds <- cvLong(modAll$id, weights = rep(1, l = length(modAll$id)),

type = "subsampling", B = 5)

stability selection with refit of the smooth intercept
stabsel_parameters(q = 3, PFER = 1, p = 6, sampling.type = "SS")
sel1 <- stabsel(modAll, q = 3, PFER = 1, folds = folds, grid = 1:200, sampling.type = "SS")
sel1

stability selection without refit of the smooth intercept
sel2 <- stabsel(modAll, refitSmoothOffset = FALSE, q = 3, PFER = 1,

folds = folds, grid = 1:200, sampling.type = "SS")
sel2

subset_hmatrix Subsets hmatrix according to an index

Description

Subsets hmatrix according to an index

80 summary.FDboost

Usage

subset_hmatrix(x, index, compress = TRUE)

Arguments

x hmatix object that should be subsetted
index integer vector with (possibly duplicated) indices for each curve to select
compress logical, defaults to TRUE. Only used to force a meaningful behaviour of applyFolds

with hmatrix objects when using nested resampling.

Details

This methods is primary useful when subsetting repeatedly.

Value

a hmatrix object

Examples

t1 <- rep((1:5)/2, each = 3)
id1 <- rep(1:3, 5)
x1 <- matrix(1:15, ncol = 5)
s1 <- (1:5)/2
hmat <- hmatrix(time = t1, id = id1, x = x1, argvals = s1, timeLab = "t1",

argvalsLab = "s1", xLab = "test")

index1 <- c(1, 1, 3)
index2 <- c(2, 3, 3)
resMat <- subset_hmatrix(hmat, index = index1)
try(resMat2 <- subset_hmatrix(resMat, index = index2))
resMat <- subset_hmatrix(hmat, index = index1, compress = FALSE)
try(resMat2 <- subset_hmatrix(resMat, index = index2))

summary.FDboost Print and summary of a boosted functional regression model

Description

Takes a fitted FDboost-object and produces a print to the console or a summary.

Usage

S3 method for class 'FDboost'
summary(object, ...)

S3 method for class 'FDboost'
print(x, ...)

truncateTime 81

Arguments

object a fitted FDboost-object

... currently not used

x a fitted FDboost-object

Value

a list with information on the model / a list with summary information

See Also

FDboost for the model fit.

truncateTime Function to truncate time in functional data

Description

Function to truncate time in functional data

Usage

truncateTime(funVar, time, newtime, data)

Arguments

funVar names of functional variables that should be truncated

time name of time variable

newtime new time vector that should be used. Must be part of the old time-line.

data list containing all the data

Value

A list with the data containing all variables of the original dataset with the variables of funVar
truncated according to newtime.

Note

All variables that are not part if funVar, or time are simply copied into the new data list

82 update.FDboost

Examples

if(require(fda)){
dat <- fda::growth
dat$hgtm <- t(dat$hgtm[,1:10])
dat$hgtf <- t(dat$hgtf[,1:10])

only use time-points 1:16 of variable age
datTr <- truncateTime(funVar=c("hgtm","hgtf"), time="age", newtime=1:16, data=dat)

oldpar <- par(mfrow=c(1,2))
with(dat, funplot(age, hgtm, main="Original data"))
with(datTr, funplot(age, hgtm, main="Yearly data"))
par(mfrow=c(1,1))
par(oldpar)

}

update.FDboost Function to update FDboost objects

Description

Function to update FDboost objects

Usage

S3 method for class 'FDboost'
update(
object,
weights = NULL,
oobweights = NULL,
risk = NULL,
trace = NULL,
...,
evaluate = TRUE

)

Arguments

object fitted FDboost-object
weights, oobweights, risk, trace

see ?FDboost

... Additional arguments to the call, or arguments with changed values.

evaluate If true evaluate the new call else return the call.

validateFDboost 83

Value

Returns the call of (evaluate = FALSE) or the updated (evaluate = TRUE) FDboost model

Author(s)

David Ruegamer

Examples

######## Example from \code{?FDboost}
data("viscosity", package = "FDboost")
set time-interval that should be modeled
interval <- "101"

model time until "interval" and take log() of viscosity
end <- which(viscosity$timeAll == as.numeric(interval))
viscosity$vis <- log(viscosity$visAll[,1:end])
viscosity$time <- viscosity$timeAll[1:end]
with(viscosity, funplot(time, vis, pch = 16, cex = 0.2))

mod1 <- FDboost(vis ~ 1 + bolsc(T_C, df = 2) + bolsc(T_A, df = 2),
timeformula = ~ bbs(time, df = 4),
numInt = "equal", family = QuantReg(),
offset = NULL, offset_control = o_control(k_min = 9),
data = viscosity, control=boost_control(mstop = 10, nu = 0.4))

update nu
mod2 <- update(mod1, control=boost_control(nu = 1)) # mstop will stay the same
update mstop
mod3 <- update(mod2, control=boost_control(mstop = 100)) # nu=1 does not get changed
mod4 <- update(mod1, formula = vis ~ 1 + bolsc(T_C, df = 2)) # drop one term

validateFDboost Cross-Validation and Bootstrapping over Curves

Description

DEPRECATED! The function validateFDboost() is deprecated, use applyFolds and bootstrapCI
instead.

Usage

validateFDboost(
object,
response = NULL,
folds = cv(rep(1, length(unique(object$id))), type = "bootstrap"),
grid = 1:mstop(object),
fun = NULL,
getCoefCV = TRUE,

84 validateFDboost

riskopt = c("mean", "median"),
mrdDelete = 0,
refitSmoothOffset = TRUE,
showProgress = TRUE,
...

)

Arguments

object fitted FDboost-object

response optional, specify a response vector for the computation of the prediction errors.
Defaults to NULL which means that the response of the fitted model is used.

folds a weight matrix with number of rows equal to the number of observed trajecto-
ries.

grid the grid over which the optimal number of boosting iterations (mstop) is searched.

fun if fun is NULL, the out-of-bag risk is returned. fun, as a function of object,
may extract any other characteristic of the cross-validated models. These are
returned as is.

getCoefCV logical, defaults to TRUE. Should the coefficients and predictions be computed
for all the models on the sampled data?

riskopt how is the optimal stopping iteration determined. Defaults to the mean, but
median is possible as well.

mrdDelete Delete values that are mrdDelete percent smaller than the mean of the response.
Defaults to 0 which means that only response values being 0 are not used in the
calculation of the MRD (= mean relative deviation).

refitSmoothOffset

logical, should the offset be refitted in each learning sample? Defaults to TRUE.
In cvrisk the offset of the original model fit in object is used in all folds.

showProgress logical, defaults to TRUE.

... further arguments passed to mclapply

Details

The number of boosting iterations is an important hyper-parameter of boosting and can be chosen
using the function validateFDboost as they compute honest, i.e., out-of-bag, estimates of the
empirical risk for different numbers of boosting iterations.

The function validateFDboost is especially suited to models with functional response. Using the
option refitSmoothOffset the offset is refitted on each fold. Note, that the function validateFDboost
expects folds that give weights per curve without considering integration weights. The integration
weights of object are used to compute the empirical risk as integral. The argument response can
be useful in simulation studies where the true value of the response is known but for the model fit
the response is used with noise.

validateFDboost 85

Value

The function validateFDboost returns a validateFDboost-object, which is a named list contain-
ing:

response the response

yind the observation points of the response

id the id variable of the response

folds folds that were used

grid grid of possible numbers of boosting iterations

coefCV if getCoefCV is TRUE the estimated coefficient functions in the folds

predCV if getCoefCV is TRUE the out-of-bag predicted values of the response

oobpreds if the type of folds is curves the out-of-bag predictions for each trajectory

oobrisk the out-of-bag risk

oobriskMean the out-of-bag risk at the minimal mean risk

oobmse the out-of-bag mean squared error (MSE)

oobrelMSE the out-of-bag relative mean squared error (relMSE)

oobmrd the out-of-bag mean relative deviation (MRD)

oobrisk0 the out-of-bag risk without consideration of integration weights

oobmse0 the out-of-bag mean squared error (MSE) without consideration of integration
weights

oobmrd0 the out-of-bag mean relative deviation (MRD) without consideration of integra-
tion weights

format one of "FDboostLong" or "FDboost" depending on the class of the object

fun_ret list of what fun returns if fun was specified

Examples

if(require(fda)){
load the data
data("CanadianWeather", package = "fda")

use data on a daily basis
canada <- with(CanadianWeather,

list(temp = t(dailyAv[, , "Temperature.C"]),
l10precip = t(dailyAv[, , "log10precip"]),

l10precip_mean = log(colMeans(dailyAv[, , "Precipitation.mm"]), base = 10),
lat = coordinates[, "N.latitude"],
lon = coordinates[, "W.longitude"],
region = factor(region),
place = factor(place),

day = 1:365, ## corresponds to t: evaluation points of the fun. response
day_s = 1:365)) ## corresponds to s: evaluation points of the fun. covariate

center temperature curves per day
canada$tempRaw <- canada$temp

86 validateFDboost

canada$temp <- scale(canada$temp, scale = FALSE)
rownames(canada$temp) <- NULL ## delete row-names

fit the model
mod <- FDboost(l10precip ~ 1 + bolsc(region, df = 4) +

bsignal(temp, s = day_s, cyclic = TRUE, boundary.knots = c(0.5, 365.5)),
timeformula = ~ bbs(day, cyclic = TRUE, boundary.knots = c(0.5, 365.5)),
data = canada)

mod <- mod[75]

create folds for 3-fold bootstrap: one weight for each curve
set.seed(124)
folds_bs <- cv(weights = rep(1, mod$ydim[1]), type = "bootstrap", B = 3)

compute out-of-bag risk on the 3 folds for 1 to 75 boosting iterations
cvr <- applyFolds(mod, folds = folds_bs, grid = 1:75)

compute out-of-bag risk and coefficient estimates on folds
cvr2 <- validateFDboost(mod, folds = folds_bs, grid = 1:75)

weights per observation point
folds_bs_long <- folds_bs[rep(1:nrow(folds_bs), times = mod$ydim[2]),]
attr(folds_bs_long, "type") <- "3-fold bootstrap"
compute out-of-bag risk on the 3 folds for 1 to 75 boosting iterations
cvr3 <- cvrisk(mod, folds = folds_bs_long, grid = 1:75)

plot the out-of-bag risk
oldpar <- par(mfrow = c(1,3))
plot(cvr); legend("topright", lty=2, paste(mstop(cvr)))
plot(cvr2)
plot(cvr3); legend("topright", lty=2, paste(mstop(cvr3)))

plot the estimated coefficients per fold
more meaningful for higher number of folds, e.g., B = 100
par(mfrow = c(2,2))
plotPredCoef(cvr2, terms = FALSE, which = 1)
plotPredCoef(cvr2, terms = FALSE, which = 3)

compute out-of-bag risk and predictions for leaving-one-curve-out cross-validation
cvr_jackknife <- validateFDboost(mod, folds = cvLong(unique(mod$id),

type = "curves"), grid = 1:75)
plot(cvr_jackknife)
plot oob predictions per fold for 3rd effect
plotPredCoef(cvr_jackknife, which = 3)
plot coefficients per fold for 2nd effect
plotPredCoef(cvr_jackknife, which = 2, terms = FALSE)

par(oldpar)

}

viscosity 87

viscosity Viscosity of resin over time

Description

In an experimental setting the viscosity of resin was measured over time to asses the curing process
depending on 5 binary factors (low-high).

Usage

data("viscosity")

Format

A data list with 64 observations on the following 7 variables.

visAll viscosity measures over all available time points

timeAll time points of viscosity measures

T_C temperature of tools

T_A temperature of resin

T_B temperature of curing agent

rspeed rotational speed

mflow mass flow

Details

The aim is to determine factors that affect the curing process in the mold. The desired viscosity-
curve has low values in the beginning followed by a sharp increase. Due to technical reasons the
measuring method of the rheometer has to be changed in a certain range of viscosity. The first
observations are measured by rotation of a blade giving observations every two seconds, the later
observations are measured through oscillation of a blade giving observations every ten seconds.
In the later observations the resin is quite hard so the measurements should be interpreted as a
qualitative measure of hardening.

Source

Wolfgang Raffelt, Technical University of Munich, Institute for Carbon Composites

Examples

data("viscosity", package = "FDboost")
set time-interval that should be modeled
interval <- "101"

model time until "interval" and take log() of viscosity
end <- which(viscosity$timeAll==as.numeric(interval))
viscosity$vis <- log(viscosity$visAll[,1:end])

88 [.hmatrix

viscosity$time <- viscosity$timeAll[1:end]

fit median regression model with 100 boosting iterations,
step-length 0.4 and smooth time-specific offset
the factors are in effect coding -1, 1 for the levels
mod <- FDboost(vis ~ 1 + bols(T_C, contrasts.arg = "contr.sum", intercept=FALSE)

+ bols(T_A, contrasts.arg = "contr.sum", intercept=FALSE),
timeformula=~bbs(time, lambda=100),
numInt="equal", family=QuantReg(),
offset=NULL, offset_control = o_control(k_min = 9),
data=viscosity, control=boost_control(mstop = 100, nu = 0.4))

summary(mod)

wide2long Transform id and time of wide format into long format

Description

Transform id and time from wide format into long format, i.e., time and id are repeated accordingly
so that two vectors of the same length are returned.

Usage

wide2long(time, id)

Arguments

time the observation points

id the id for the curve

Value

a list with time and id

[.hmatrix Extract or replace parts of a hmatrix-object

Description

Operator acting on hmatrix preserving the attributes when rows are extracted.

Usage

S3 method for class 'hmatrix'
x[i, j, ..., drop = FALSE]

%Xc% 89

Arguments

x object from which to extract element(s) or in which to replace element(s).

i, j indices specifying elements to extract or replace. Indices are numeric vectors
or empty (missing) or NULL. Numeric values are coerced to integer as by
as.integer (and hence truncated towards zero).

... not used

drop If TRUE the result is coerced to the lowest possible dimension (or just a matrix).
This only works for extracting elements, not for the replacement, defaults to
FALSE.

Details

If used on columns or rows/columns a matrix is returned. If used on rows only, i.e. x[i,] an object
of class hmatrix is returned. The id is changed so that it runs from 1, ..., nNew, where nNew is the
number of different id values in the new hmatrix-object. From the functional covariate x rows are
selected accordingly.

Value

a "hmatrix" object

See Also

?"["

%Xc% Constrained row tensor product

Description

Combining single base-learners to form new, more complex base-learners, with an identifiability
constraint to center the interaction around the intercept and around the two main effects. Suitable
for functional response.

Usage

bl1 %Xc% bl2

Arguments

bl1 base-learner 1, e.g. bols(x1)

bl2 base-learner 2, e.g. bols(x2)

90 %Xc%

Details

Similar to %X% in package mboost, see %X%, a row tensor product of linear base-learners is returned
by %Xc%. %Xc% applies a sum-to-zero constraint to the design matrix suitable for functional response
if an interaction of two scalar covariates is specified in the case that the model contains a global
intercept and both main effects, as the interaction is centered around the intercept and centered
around the two main effects. See Web Appendix A of Brockhaus et al. (2015) for details on how to
enforce the constraint for the functional intercept. Use, e.g., in a model call to FDboost, following
the scheme, y ~ 1 + bolsc(x1) + bolsc(x2) + bols(x1) %Xc% bols(x2), where 1 induces a global
intercept and x1, x2 are factor variables, see Ruegamer et al. (2018).

Value

An object of class blg (base-learner generator) with a dpp function as for other baselearners.

Author(s)

Sarah Brockhaus, David Ruegamer

References

Brockhaus, S., Scheipl, F., Hothorn, T. and Greven, S. (2015): The functional linear array model.
Statistical Modelling, 15(3), 279-300.

Ruegamer D., Brockhaus, S., Gentsch K., Scherer, K., Greven, S. (2018). Boosting factor-specific
functional historical models for the detection of synchronization in bioelectrical signals. Journal of
the Royal Statistical Society: Series C (Applied Statistics), 67, 621-642.

Examples

######## Example for function-on-scalar-regression with interaction effect of two scalar covariates
data("viscosity", package = "FDboost")
set time-interval that should be modeled
interval <- "101"

model time until "interval" and take log() of viscosity
end <- which(viscosity$timeAll == as.numeric(interval))
viscosity$vis <- log(viscosity$visAll[,1:end])
viscosity$time <- viscosity$timeAll[1:end]
with(viscosity, funplot(time, vis, pch = 16, cex = 0.2))

fit model with interaction that is centered around the intercept
and the two main effects
mod1 <- FDboost(vis ~ 1 + bolsc(T_C, df=1) + bolsc(T_A, df=1) +

bols(T_C, df=1) %Xc% bols(T_A, df=1),
timeformula = ~bbs(time, df=6),
numInt = "equal", family = QuantReg(),
offset = NULL, offset_control = o_control(k_min = 9),
data = viscosity, control=boost_control(mstop = 100, nu = 0.4))

check centering around intercept
colMeans(predict(mod1, which = 4))

%Xc% 91

check centering around main effects
colMeans(predict(mod1, which = 4)[viscosity$T_A == "low",])
colMeans(predict(mod1, which = 4)[viscosity$T_A == "high",])
colMeans(predict(mod1, which = 4)[viscosity$T_C == "low",])
colMeans(predict(mod1, which = 4)[viscosity$T_C == "low",])

find optimal mstop using cvrsik() or validateFDboost()
...

look at interaction effect in one plot
funplot(mod1$yind, predict(mod1, which=4))

Index

∗ datasets
birthDistribution, 17
emotion, 35
fuelSubset, 56
viscosity, 87

∗ models
bbsc, 11
bhistx, 14
bsignal, 23
FDboost, 43
FDboostLSS, 52

∗ nonlinear
FDboost, 43
FDboostLSS, 52

∗ regression
FDboost, 43
FDboostLSS, 52

∗ smooth
FDboost, 43
FDboostLSS, 52

[.hmatrix, 88
%A0% (anisotropic_Kronecker), 4
%A% (anisotropic_Kronecker), 4
%Xa0% (anisotropic_Kronecker), 4
%A%, 45
%O%, 45
%X%, 45, 90
%Xc%, 46, 89
_PACKAGE (FDboost-package), 3

anisotropic_Kronecker, 4
applyFolds, 3, 4, 7, 20, 21, 83
approx, 69

baselearners, 5, 90
bbs, 12, 13, 15, 25
bbsc, 11, 46, 48
bconcurrent, 46
bconcurrent (bsignal), 23
bfpc, 46

bfpc (bsignal), 23
bhist, 16, 46, 65
bhist (bsignal), 23
bhistx, 14, 46
birthDistribution, 17
bols, 13
bolsc, 46
bolsc (bbsc), 11
boost_control, 52
bootstrapCI, 20, 83
brandom, 13
brandomc (bbsc), 11
bsignal, 23, 46, 48, 65

clr, 19, 30
coef.FDboost, 32, 47, 72
contour, 72
cvLong (applyFolds), 7
cvMa (applyFolds), 7
cvrisk, 8–10, 21, 78, 84
cvrisk.FDboost, 47
cvrisk.FDboost (applyFolds), 7
cvrisk.FDboostLSS, 33
cvrisk.mboostLSS, 34

emotion, 35
extract, 37, 46, 47
extract.blg, 36

factorise (factorize), 37
factorize, 3, 37
Families, 52
Family, 45
FDboost, 3, 4, 8, 13, 16, 18, 27, 32, 43, 48, 52,

53, 55, 70, 72–74, 81
FDboost-package, 3
FDboost_fac-class, 55
FDboost_package (FDboost-package), 3
FDboostLSS, 52
ffpc, 27

92

INDEX 93

fitted.FDboost, 55
fpca.sc, 27
fuelSubset, 56
funMRD, 57
funMSE, 58
funplot, 59
funRsquared, 60

gam, 69
GaussianLSS, 52
getArgvals (getTime), 61
getArgvals.hmatrix (getTime.hmatrix), 62
getArgvalsLab (getTime), 61
getArgvalsLab.hmatrix

(getTime.hmatrix), 62
getId (getTime), 61
getId.hmatrix (getTime.hmatrix), 62
getIdLab (getTime), 61
getIdLab.hmatrix (getTime.hmatrix), 62
getTime, 61
getTime.hmatrix, 62, 64
getTimeLab (getTime), 61
getTimeLab.hmatrix (getTime.hmatrix), 62
getX (getTime), 61
getX.hmatrix (getTime.hmatrix), 62
getXLab (getTime), 61
getXLab.hmatrix (getTime.hmatrix), 62

hmatrix, 61, 63

image, 72
integrationWeights, 64
integrationWeightsLeft

(integrationWeights), 64
is.hmatrix, 66

matplot, 59
mboost, 44, 45, 47, 48
mboostLSS, 53
mclapply, 8, 34, 84
mstop.validateFDboost, 67

o_control, 45, 69

package-FDboost (FDboost-package), 3
persp, 72
pffr, 46
plot.bootstrapCI, 69
plot.FDboost, 47, 70

plot.FDboost_fac (predict.FDboost_fac),
73

plot.validateFDboost
(mstop.validateFDboost), 67

plotPredCoef (mstop.validateFDboost), 67
plotPredicted, 73
plotPredicted (plot.FDboost), 70
plotResiduals (plot.FDboost), 70
predict.FDboost, 47, 55, 72
predict.FDboost_fac, 73
predict.mboost, 72, 73
print.bootstrapCI (plot.bootstrapCI), 69
print.FDboost (summary.FDboost), 80
print.validateFDboost

(mstop.validateFDboost), 67

residuals.FDboost, 74
reweightData, 75

stabsel, 77, 78
stabsel.FDboost, 77
subset_hmatrix, 79
summary.FDboost, 80

truncateTime, 81

update.FDboost, 82

validateFDboost, 78, 83
viscosity, 87

wide2long, 88

	FDboost-package
	anisotropic_Kronecker
	applyFolds
	bbsc
	bhistx
	birthDistribution
	bootstrapCI
	bsignal
	clr
	coef.FDboost
	cvrisk.FDboostLSS
	emotion
	extract.blg
	factorize
	FDboost
	FDboostLSS
	FDboost_fac-class
	fitted.FDboost
	fuelSubset
	funMRD
	funMSE
	funplot
	funRsquared
	getTime
	getTime.hmatrix
	hmatrix
	integrationWeights
	is.hmatrix
	mstop.validateFDboost
	o_control
	plot.bootstrapCI
	plot.FDboost
	predict.FDboost
	predict.FDboost_fac
	residuals.FDboost
	reweightData
	stabsel.FDboost
	subset_hmatrix
	summary.FDboost
	truncateTime
	update.FDboost
	validateFDboost
	viscosity
	wide2long
	[.hmatrix
	Xc
	Index

