
Package ‘ZVCV’
January 20, 2025

Type Package

Title Zero-Variance Control Variates

Version 2.1.2

Date 2022-11-02

Description Stein control variates can be used to improve Monte Carlo estimates of expecta-
tions when the derivatives of the log target are available. This package implements a vari-
ety of such methods, including zero-variance control variates (ZV-
CV, Mira et al. (2013) <doi:10.1007/s11222-012-9344-6>), regularised ZV-
CV (South et al., 2018 <arXiv:1811.05073>), control function-
als (CF, Oates et al. (2017) <doi:10.1111/rssb.12185>) and semi-exact control function-
als (SECF, South et al., 2020 <arXiv:2002.00033>). ZV-CV is a parametric approach that is ex-
act for (low order) polynomial integrands with Gaussian targets. CF is a non-parametric alterna-
tive that offers better than the standard Monte Carlo convergence rates. SECF has both a paramet-
ric and a non-parametric component and it offers the advantages of both for an additional compu-
tational cost. Functions for applying ZV-CV and CF to two estimators for the normalising con-
stant of the posterior distribution in Bayesian statistics are also supplied in this package. The ba-
sic requirements for using the package are a set of samples, derivatives and function evaluations.

BugReports https://github.com/LeahPrice/ZVCV/issues

License GPL (>= 2)

LazyLoad yes

Imports Rcpp (>= 0.11.0), glmnet, abind, mvtnorm, stats, Rlinsolve,
magrittr, dplyr

Suggests partitions, ggplot2, ggthemes

LinkingTo Rcpp, RcppArmadillo, BH

LazyData true

Encoding UTF-8

RoxygenNote 7.1.1

NeedsCompilation yes

Author Leah F. South [aut, cre] (<https://orcid.org/0000-0002-5646-2963>)

Maintainer Leah F. South <leah.south@hdr.qut.edu.au>

Repository CRAN

Date/Publication 2022-11-02 09:30:19 UTC

1

https://doi.org/10.1007/s11222-012-9344-6
https://arxiv.org/abs/1811.05073
https://doi.org/10.1111/rssb.12185
https://arxiv.org/abs/2002.00033
https://github.com/LeahPrice/ZVCV/issues
https://orcid.org/0000-0002-5646-2963

2 aSECF

Contents
aSECF . 2
aSECF_crossval . 5
CF . 9
CF_crossval . 12
evidence . 15
Expand_Temperatures . 20
getX . 21
K0_fn . 21
logsumexp . 24
medianTune . 24
nearPD . 25
Phi_fn . 26
SECF . 27
SECF_crossval . 30
squareNorm . 33
VDP . 34
zvcv . 36
ZVCV_package . 40

Index 45

aSECF Approximate semi-exact control functionals (aSECF)

Description

This function performs approximate semi-exact control functionals as described in South et al
(2020). It uses a nystrom approximation and conjugate gradient to speed up SECF. This is faster
than SECF for large N . If you would like to choose between different kernels using cross-validation,
then you can use aSECF_crossval.

Usage

aSECF(
integrands,
samples,
derivatives,
polyorder = NULL,
steinOrder = NULL,
kernel_function = NULL,
sigma = NULL,
K0 = NULL,
nystrom_inds = NULL,
est_inds = NULL,
apriori = NULL,
conjugate_gradient = TRUE,

aSECF 3

reltol = 0.01,
diagnostics = FALSE

)

Arguments

integrands An N by k matrix of integrands (evaluations of the function of interest)

samples An N by d matrix of samples from the target

derivatives An N by d matrix of derivatives of the log target with respect to the parameters

polyorder (optional) The order of the polynomial to be used in the parametric component,
with a default of 1. We recommend keeping this value low (e.g. only 1-2).

steinOrder (optional) This is the order of the Stein operator. The default is 1 in the control
functionals paper (Oates et al, 2017) and 2 in the semi-exact control functionals
paper (South et al, 2020). The following values are currently available: 1 for all
kernels and 2 for "gaussian", "matern" and "RQ". See below for further details.

kernel_function

(optional) Choose between "gaussian", "matern", "RQ", "product" or "prodsim".
See below for further details.

sigma (optional) The tuning parameters of the specified kernel. This involves a single
length-scale parameter in "gaussian" and "RQ", a length-scale and a smoothness
parameter in "matern" and two parameters in "product" and "prodsim". See
below for further details.

K0 (optional) The kernel matrix. One can specify either this or all of sigma, steinOrder
and kernel_function. The former involves pre-computing the kernel matrix
using K0_fn and is more efficient when using multiple estimators out of CF, SECF
and aSECF or when using the cross-validation functions.

nystrom_inds (optional) The sample indices to be used in the Nystrom approximation.

est_inds (optional) A vector of indices for the estimation-only samples. The default when
est_inds is missing or NULL is to perform both estimation of the control variates
and evaluation of the integral using all samples. Otherwise, the samples from
est_inds are used in estimating the control variates and the remainder are used
in evaluating the integral. Splitting the indices in this way can be used to reduce
bias from adaption and to make computation feasible for very large sample sizes
(small est_inds is faster), but in general in will increase the variance of the
estimator.

apriori (optional) A vector containing the subset of parameter indices to use in the poly-
nomial. Typically this argument would only be used if the dimension of the
problem is very large or if prior information about parameter dependencies is
known. The default is to use all parameters 1 : d where d is the dimension of
the target.

conjugate_gradient

(optional) A flag for whether to perform conjugate gradient to further speed up
the nystrom approximation (the default is true).

reltol (optional) The relative tolerance for choosing when the stop conjugate gradient
iterations (the default is 1e-02). using squareNorm, as long as the nystrom_inds
are NULL.

4 aSECF

diagnostics (optional) A flag for whether to return the necessary outputs for plotting or es-
timating using the fitted model. The default is false since this requires some
additional computation when est_inds is NULL.

Value

A list with the following elements:

• expectation: The estimate(s) of the (k) expectations(s).

• cond_no: (Only if conjugate_gradient = TRUE) The condition number of the matrix being
solved using conjugate gradient.

• iter: (Only if conjugate_gradient = TRUE) The number of conjugate gradient iterations

• f_true: (Only if est_inds is not NULL) The integrands for the evaluation set. This should be
the same as integrands[setdiff(1:N,est_inds),].

• f_hat: (Only if est_inds is not NULL) The fitted values for the integrands in the evaluation
set. This can be used to help assess the performance of the Gaussian process model.

• a: (Only if diagnostics = TRUE) The value of a as described in South et al (2020), where
predictions are of the form fhat = K0 ∗ a + Phi ∗ b for heldout K0 and Phi matrices and
estimators using heldout samples are of the form mean(f − fhat) + b[1].

• b: (Only if diagnostics = TRUE) The value of b as described in South et al (2020), where
predictions are of the form fhat = K0 ∗ a + Phi ∗ b for heldout K0 and Phi matrices and
estimators using heldout samples are of the form mean(f − fhat) + b[1].

• ny_inds: (Only if diagnostics = TRUE) The indices of the samples used in the nystrom
approximation (this will match nystrom_inds if this argument was not NULL).

On the choice of σ, the kernel and the Stein order

The kernel in Stein-based kernel methods is LxLyk(x, y) where Lx is a first or second order Stein
operator in x and k(x, y) is some generic kernel to be specified.

The Stein operators for distribution p(x) are defined as:

• steinOrder=1: Lxg(x) = ∇T
x g(x) +∇x log p(x)

T g(x) (see e.g. Oates el al (2017))

• steinOrder=2: Lxg(x) = ∆xg(x) +∇xlogp(x)
T∇xg(x) (see e.g. South el al (2020))

Here ∇x is the first order derivative wrt x and ∆x = ∇T
x∇x is the Laplacian operator.

The generic kernels which are implemented in this package are listed below. Note that the input
parameter sigma defines the kernel parameters σ.

• "gaussian": A Gaussian kernel,

k(x, y) = exp(−z(x, y)/σ2)

• "matern": A Matern kernel with σ = (λ, ν),

k(x, y) = bcνz(x, y)ν/2Kν(cz(x, y)
0.5)

where b = 21−ν(Γ(ν))−1, c = (2ν)0.5λ−1 and Kν(x) is the modified Bessel function of the
second kind. Note that λ is the length-scale parameter and ν is the smoothness parameter
(which defaults to 2.5 for steinOrder = 1 and 4.5 for steinOrder = 2).

aSECF_crossval 5

• "RQ": A rational quadratic kernel,

k(x, y) = (1 + σ−2z(x, y))−1

• "product": The product kernel that appears in Oates et al (2017) with σ = (a, b)

k(x, y) = (1 + az(x) + az(y))−1exp(−0.5b−2z(x, y))

• "prodsim": A slightly different product kernel with σ = (a, b) (see e.g. https://www.
imperial.ac.uk/inference-group/projects/monte-carlo-methods/control-functionals/),

k(x, y) = (1 + az(x))−1(1 + az(y))−1exp(−0.5b−2z(x, y))

In the above equations, z(x) =
∑

j x[j]
2 and z(x, y) =

∑
j(x[j] − y[j])2. For the last two ker-

nels, the code only has implementations for steinOrder=1. Each combination of steinOrder and
kernel_function above is currently hard-coded but it may be possible to extend this to other ker-
nels in future versions using autodiff. The calculations for the first three kernels above are detailed
in South et al (2020).

Author(s)

Leah F. South

References

South, L. F., Karvonen, T., Nemeth, C., Girolami, M. and Oates, C. J. (2020). Semi-Exact Control
Functionals From Sard’s Method. https://arxiv.org/abs/2002.00033

See Also

See ZVCV for examples and related functions. See aSECF_crossval for a function to choose
between different kernels for this estimator.

aSECF_crossval Approximate semi-exact control functionals (aSECF) with cross-
validation

Description

This function chooses between a list of kernel tuning parameters (sigma_list) or a list of K0
matrices (K0_list) for the approximate semi-exact control functionals method described in South
et al (2020). The latter requires calculating and storing kernel matrices using K0_fn but it is more
flexible because it can be used to choose the Stein operator order and the kernel function, in addition
to its parameters. It is also faster to pre-specify K0_fn. For estimation with fixed kernel parameters,
use aSECF.

https://www.imperial.ac.uk/inference-group/projects/monte-carlo-methods/control-functionals/
https://www.imperial.ac.uk/inference-group/projects/monte-carlo-methods/control-functionals/
https://arxiv.org/abs/2002.00033

6 aSECF_crossval

Usage

aSECF_crossval(
integrands,
samples,
derivatives,
polyorder = NULL,
steinOrder = NULL,
kernel_function = NULL,
sigma_list = NULL,
est_inds = NULL,
apriori = NULL,
num_nystrom = NULL,
conjugate_gradient = TRUE,
reltol = 0.01,
folds = NULL,
diagnostics = FALSE

)

Arguments

integrands An N by k matrix of integrands (evaluations of the function of interest)

samples An N by d matrix of samples from the target

derivatives An N by d matrix of derivatives of the log target with respect to the parameters

polyorder (optional) The order of the polynomial to be used in the parametric component,
with a default of 1. We recommend keeping this value low (e.g. only 1-2).

steinOrder (optional) This is the order of the Stein operator. The default is 1 in the control
functionals paper (Oates et al, 2017) and 2 in the semi-exact control functionals
paper (South et al, 2020). The following values are currently available: 1 for all
kernels and 2 for "gaussian", "matern" and "RQ". See below for further details.

kernel_function

(optional) Choose between "gaussian", "matern", "RQ", "product" or "prodsim".
See below for further details.

sigma_list (optional between this and K0_list) A list of tuning parameters for the specified
kernel. This involves a list of single length-scale parameter in "gaussian" and
"RQ", a list of vectors containing length-scale and smoothness parameters in
"matern" and a list of vectors of the two parameters in "product" and "prodsim".
See below for further details. When sigma_list is specified and not K0_list,
the K0 matrix is computed twice for each selected tuning parameter.

est_inds (optional) A vector of indices for the estimation-only samples. The default when
est_inds is missing or NULL is to perform both estimation of the control variates
and evaluation of the integral using all samples. Otherwise, the samples from
est_inds are used in estimating the control variates and the remainder are used
in evaluating the integral. Splitting the indices in this way can be used to reduce
bias from adaption and to make computation feasible for very large sample sizes
(small est_inds is faster), but in general in will increase the variance of the
estimator.

aSECF_crossval 7

apriori (optional) A vector containing the subset of parameter indices to use in the poly-
nomial. Typically this argument would only be used if the dimension of the
problem is very large or if prior information about parameter dependencies is
known. The default is to use all parameters 1 : d where d is the dimension of
the target.

num_nystrom (optional) The number of samples to use in the Nystrom approximation, with
a default of ceiling(sqrt(N)). The nystrom indices cannot be passed in here be-
cause of the way the cross-validation has been set up.

conjugate_gradient

(optional) A flag for whether to perform conjugate gradient to further speed up
the nystrom approximation (the default is true).

reltol (optional) The relative tolerance for choosing when the stop conjugate gradient
iterations (the default is 1e-02). using squareNorm, as long as the nystrom_inds
are NULL.

folds (optional) The number of folds for cross-validation. The default is five.

diagnostics (optional) A flag for whether to return the necessary outputs for plotting or es-
timating using the fitted model. The default is false since this requires some
additional computation when est_inds is NULL.

Value

A list with the following elements:

• expectation: The estimate(s) of the (k) expectations(s).

• mse: A matrix of the cross-validation mean square prediction errors. The number of columns
is the number of tuning options given and the number of rows is k, the number of integrands
of interest.

• optinds: The optimal indices from the list for each expectation.

• cond_no: (Only if conjugate_gradient = TRUE) The condition number of the matrix being
solved using conjugate gradient.

• iter: (Only if conjugate_gradient = TRUE) The number of conjugate gradient iterations

• f_true: (Only if est_inds is not NULL) The integrands for the evaluation set. This should be
the same as integrands[setdiff(1:N,est_inds),].

• f_hat: (Only if est_inds is not NULL) The fitted values for the integrands in the evaluation
set. This can be used to help assess the performance of the Gaussian process model.

• a: (Only if diagnostics = TRUE) The value of a as described in South et al (2020), where
predictions are of the form fhat = K0 ∗ a + Phi ∗ b for heldout K0 and Phi matrices and
estimators using heldout samples are of the form mean(f − fhat) + b[1].

• b: (Only if diagnostics = TRUE) The value of b as described in South et al (2020), where
predictions are of the form fhat = K0 ∗ a + Phi ∗ b for heldout K0 and Phi matrices and
estimators using heldout samples are of the form mean(f − fhat) + b[1].

• ny_inds: (Only if diagnostics = TRUE) The indices of the samples used in the nystrom
approximation (this will match nystrom_inds if this argument was not NULL).

8 aSECF_crossval

On the choice of σ, the kernel and the Stein order

The kernel in Stein-based kernel methods is LxLyk(x, y) where Lx is a first or second order Stein
operator in x and k(x, y) is some generic kernel to be specified.

The Stein operators for distribution p(x) are defined as:

• steinOrder=1: Lxg(x) = ∇T
x g(x) +∇x log p(x)

T g(x) (see e.g. Oates el al (2017))

• steinOrder=2: Lxg(x) = ∆xg(x) +∇xlogp(x)
T∇xg(x) (see e.g. South el al (2020))

Here ∇x is the first order derivative wrt x and ∆x = ∇T
x∇x is the Laplacian operator.

The generic kernels which are implemented in this package are listed below. Note that the input
parameter sigma defines the kernel parameters σ.

• "gaussian": A Gaussian kernel,

k(x, y) = exp(−z(x, y)/σ2)

• "matern": A Matern kernel with σ = (λ, ν),

k(x, y) = bcνz(x, y)ν/2Kν(cz(x, y)
0.5)

where b = 21−ν(Γ(ν))−1, c = (2ν)0.5λ−1 and Kν(x) is the modified Bessel function of the
second kind. Note that λ is the length-scale parameter and ν is the smoothness parameter
(which defaults to 2.5 for steinOrder = 1 and 4.5 for steinOrder = 2).

• "RQ": A rational quadratic kernel,

k(x, y) = (1 + σ−2z(x, y))−1

• "product": The product kernel that appears in Oates et al (2017) with σ = (a, b)

k(x, y) = (1 + az(x) + az(y))−1exp(−0.5b−2z(x, y))

• "prodsim": A slightly different product kernel with σ = (a, b) (see e.g. https://www.
imperial.ac.uk/inference-group/projects/monte-carlo-methods/control-functionals/),

k(x, y) = (1 + az(x))−1(1 + az(y))−1exp(−0.5b−2z(x, y))

In the above equations, z(x) =
∑

j x[j]
2 and z(x, y) =

∑
j(x[j] − y[j])2. For the last two ker-

nels, the code only has implementations for steinOrder=1. Each combination of steinOrder and
kernel_function above is currently hard-coded but it may be possible to extend this to other ker-
nels in future versions using autodiff. The calculations for the first three kernels above are detailed
in South et al (2020).

Author(s)

Leah F. South

References

South, L. F., Karvonen, T., Nemeth, C., Girolami, M. and Oates, C. J. (2020). Semi-Exact Control
Functionals From Sard’s Method. https://arxiv.org/abs/2002.00033

https://www.imperial.ac.uk/inference-group/projects/monte-carlo-methods/control-functionals/
https://www.imperial.ac.uk/inference-group/projects/monte-carlo-methods/control-functionals/
https://arxiv.org/abs/2002.00033

CF 9

See Also

See ZVCV for examples and related functions. See aSECF_crossval for a function to choose
between different kernels for this estimator.

CF Control functionals (CF)

Description

This function performs control functionals as described in Oates et al (2017). To choose between
different kernels using cross-validation, use CF_crossval.

Usage

CF(
integrands,
samples,
derivatives,
steinOrder = NULL,
kernel_function = NULL,
sigma = NULL,
K0 = NULL,
est_inds = NULL,
one_in_denom = FALSE,
diagnostics = FALSE

)

Arguments

integrands An N by k matrix of integrands (evaluations of the function of interest)

samples An N by d matrix of samples from the target

derivatives An N by d matrix of derivatives of the log target with respect to the parameters

steinOrder (optional) This is the order of the Stein operator. The default is 1 in the control
functionals paper (Oates et al, 2017) and 2 in the semi-exact control functionals
paper (South et al, 2020). The following values are currently available: 1 for all
kernels and 2 for "gaussian", "matern" and "RQ". See below for further details.

kernel_function

(optional) Choose between "gaussian", "matern", "RQ", "product" or "prodsim".
See below for further details.

sigma (optional) The tuning parameters of the specified kernel. This involves a single
length-scale parameter in "gaussian" and "RQ", a length-scale and a smoothness
parameter in "matern" and two parameters in "product" and "prodsim". See
below for further details.

10 CF

K0 (optional) The kernel matrix. One can specify either this or all of sigma, steinOrder
and kernel_function. The former involves pre-computing the kernel matrix
using K0_fn and is more efficient when using multiple estimators out of CF, SECF
and aSECF or when using the cross-validation functions.

est_inds (optional) A vector of indices for the estimation-only samples. The default when
est_inds is missing or NULL is to perform both estimation of the control variates
and evaluation of the integral using all samples. Otherwise, the samples from
est_inds are used in estimating the control variates and the remainder are used
in evaluating the integral. Splitting the indices in this way can be used to reduce
bias from adaption and to make computation feasible for very large sample sizes
(small est_inds is faster), but in general in will increase the variance of the
estimator.

one_in_denom (optional) Whether or not to include a 1+ in the denominator of the control
functionals estimator, as in equation 2 on p703 of Oates et al (2017). The 1+ in
the denominator is an arbitrary choice so we set it to zero by default.

diagnostics (optional) A flag for whether to return the necessary outputs for plotting or es-
timating using the fitted model. The default is false since this requires some
additional computation when est_inds is NULL.

Value

A list with the following elements:

• expectation: The estimate(s) of the (k) expectation(s).

• f_true: (Only if est_inds is not NULL) The integrands for the evaluation set. This should be
the same as integrands[setdiff(1:N,est_inds),].

• f_hat: (Only if est_inds is not NULL) The fitted values for the integrands in the evaluation
set. This can be used to help assess the performance of the Gaussian process model.

• a: (Only if diagnostics = TRUE) The value of a as described in South et al (2020), where
predictions are of the form fhat = K0∗a+1∗ b for heldout K0 and estimators using heldout
samples are of the form mean(f − fhat) + b.

• b: (Only if diagnostics = TRUE) The value of b as described in South et al (2020), where
predictions are of the form fhat = K0∗a+1∗ b for heldout K0 and estimators using heldout
samples are of the form mean(f − fhat) + b.

• ksd: (Only if diagnostics = TRUE) An estimated kernel Stein discrepancy based on the fitted
model that can be used for diagnostic purposes. See South et al (2020) for further details.

• bound_const: (Only if diagnostics = TRUE and est_inds=NULL) This is such that the ab-
solute error for the estimator should be less than ksd× boundconst.

Warning

Solving the linear system in CF has O(N3) complexity and is therefore not suited to large N . Using
estinds will instead have an O(N3

0) cost in solving the linear system and an O((N −N0)
2) cost in

handling the remaining samples, where N0 is the length of estinds. This can be much cheaper for
large N .

CF 11

On the choice of σ, the kernel and the Stein order

The kernel in Stein-based kernel methods is LxLyk(x, y) where Lx is a first or second order Stein
operator in x and k(x, y) is some generic kernel to be specified.

The Stein operators for distribution p(x) are defined as:

• steinOrder=1: Lxg(x) = ∇T
x g(x) +∇x log p(x)

T g(x) (see e.g. Oates el al (2017))
• steinOrder=2: Lxg(x) = ∆xg(x) +∇xlogp(x)

T∇xg(x) (see e.g. South el al (2020))

Here ∇x is the first order derivative wrt x and ∆x = ∇T
x∇x is the Laplacian operator.

The generic kernels which are implemented in this package are listed below. Note that the input
parameter sigma defines the kernel parameters σ.

• "gaussian": A Gaussian kernel,

k(x, y) = exp(−z(x, y)/σ2)

• "matern": A Matern kernel with σ = (λ, ν),

k(x, y) = bcνz(x, y)ν/2Kν(cz(x, y)
0.5)

where b = 21−ν(Γ(ν))−1, c = (2ν)0.5λ−1 and Kν(x) is the modified Bessel function of the
second kind. Note that λ is the length-scale parameter and ν is the smoothness parameter
(which defaults to 2.5 for steinOrder = 1 and 4.5 for steinOrder = 2).

• "RQ": A rational quadratic kernel,

k(x, y) = (1 + σ−2z(x, y))−1

• "product": The product kernel that appears in Oates et al (2017) with σ = (a, b)

k(x, y) = (1 + az(x) + az(y))−1exp(−0.5b−2z(x, y))

• "prodsim": A slightly different product kernel with σ = (a, b) (see e.g. https://www.
imperial.ac.uk/inference-group/projects/monte-carlo-methods/control-functionals/),

k(x, y) = (1 + az(x))−1(1 + az(y))−1exp(−0.5b−2z(x, y))

In the above equations, z(x) =
∑

j x[j]
2 and z(x, y) =

∑
j(x[j] − y[j])2. For the last two ker-

nels, the code only has implementations for steinOrder=1. Each combination of steinOrder and
kernel_function above is currently hard-coded but it may be possible to extend this to other ker-
nels in future versions using autodiff. The calculations for the first three kernels above are detailed
in South et al (2020).

Author(s)

Leah F. South

References

Oates, C. J., Girolami, M. & Chopin, N. (2017). Control functionals for Monte Carlo integration.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(3), 695-718.

South, L. F., Karvonen, T., Nemeth, C., Girolami, M. and Oates, C. J. (2020). Semi-Exact Control
Functionals From Sard’s Method. https://arxiv.org/abs/2002.00033

https://www.imperial.ac.uk/inference-group/projects/monte-carlo-methods/control-functionals/
https://www.imperial.ac.uk/inference-group/projects/monte-carlo-methods/control-functionals/
https://arxiv.org/abs/2002.00033

12 CF_crossval

See Also

See ZVCV for examples and related functions. See CF_crossval for a function to choose between
different kernels for this estimator.

CF_crossval Control functionals (CF) with cross-validation

Description

This function chooses between a list of kernel tuning parameters (sigma_list) or a list of K0
matrices (K0_list) for the control functionals method described in Oates et al (2017). The latter
requires calculating and storing kernel matrices using K0_fn but it is more flexible because it can
be used to choose the Stein operator order and the kernel function, in addition to its parameters. It
is also faster to pre-specify K0_fn. For estimation with fixed kernel parameters, use CF.

Usage

CF_crossval(
integrands,
samples,
derivatives,
steinOrder = NULL,
kernel_function = NULL,
sigma_list = NULL,
K0_list = NULL,
est_inds = NULL,
log_weights = NULL,
one_in_denom = FALSE,
folds = NULL,
diagnostics = FALSE

)

Arguments

integrands An N by k matrix of integrands (evaluations of the function of interest)

samples An N by d matrix of samples from the target

derivatives An N by d matrix of derivatives of the log target with respect to the parameters

steinOrder (optional) This is the order of the Stein operator. The default is 1 in the control
functionals paper (Oates et al, 2017) and 2 in the semi-exact control functionals
paper (South et al, 2020). The following values are currently available: 1 for all
kernels and 2 for "gaussian", "matern" and "RQ". See below for further details.

kernel_function

(optional) Choose between "gaussian", "matern", "RQ", "product" or "prodsim".
See below for further details.

CF_crossval 13

sigma_list (optional between this and K0_list) A list of tuning parameters for the specified
kernel. This involves a list of single length-scale parameter in "gaussian" and
"RQ", a list of vectors containing length-scale and smoothness parameters in
"matern" and a list of vectors of the two parameters in "product" and "prodsim".
See below for further details. When sigma_list is specified and not K0_list,
the K0 matrix is computed twice for each selected tuning parameter.

K0_list (optional between this and sigma_list) A list of kernel matrices, which can be
calculated using K0_fn.

est_inds (optional) A vector of indices for the estimation-only samples. The default when
est_inds is missing or NULL is to perform both estimation of the control variates
and evaluation of the integral using all samples. Otherwise, the samples from
est_inds are used in estimating the control variates and the remainder are used
in evaluating the integral. Splitting the indices in this way can be used to reduce
bias from adaption and to make computation feasible for very large sample sizes
(small est_inds is faster), but in general in will increase the variance of the
estimator.

log_weights (optional) A vector of length N containing the logged weights of the samples.
The default is equal weights. The weights are only used in estimating the cross-
validation error. This method is not implemented for the case where est_inds is
specified becausing specifying est_inds typically indicates a desire for an un-
biased estimator and using self-normalised importance weights introduces bias.

one_in_denom (optional) Whether or not to include a 1+ in the denominator of the control
functionals estimator, as in equation 2 on p703 of Oates et al (2017). The 1+ in
the denominator is an arbitrary choice so we set it to zero by default.

folds (optional) The number of folds for cross-validation. The default is five.

diagnostics (optional) A flag for whether to return the necessary outputs for plotting or es-
timating using the fitted model. The default is false since this requires some
additional computation when est_inds is NULL.

Value

A list with the following elements:

• expectation: The estimate(s) of the (k) expectation(s).

• mse: A matrix of the cross-validation mean square prediction errors. The number of columns
is the number of tuning options given and the number of rows is k, the number of integrands
of interest.

• optinds: The optimal indices from the list for each expectation.

• f_true: (Only if est_inds is not NULL) The integrands for the evaluation set. This should be
the same as integrands[setdiff(1:N,est_inds),].

• f_hat: (Only if est_inds is not NULL) The fitted values for the integrands in the evaluation
set. This can be used to help assess the performance of the Gaussian process model.

• a: (Only if diagnostics = TRUE) The value of a as described in South et al (2020), where
predictions are of the form fhat = K0∗a+1∗ b for heldout K0 and estimators using heldout
samples are of the form mean(f − fhat) + b.

14 CF_crossval

• b: (Only if diagnostics = TRUE) The value of b as described in South et al (2020), where
predictions are of the form fhat = K0∗a+1∗ b for heldout K0 and estimators using heldout
samples are of the form mean(f − fhat) + b.

• ksd: (Only if diagnostics = TRUE) An estimated kernel Stein discrepancy based on the fitted
model that can be used for diagnostic purposes. See South et al (2020) for further details.

• bound_const: (Only if diagnostics = TRUE and est_inds=NULL) This is such that the ab-
solute error for the estimator should be less than ksd× boundconst.

Warning

Solving the linear system in CF has O(N3) complexity and is therefore not suited to large N . Using
estinds will instead have an O(N3

0) cost in solving the linear system and an O((N −N0)
2) cost in

handling the remaining samples, where N0 is the length of estinds. This can be much cheaper for
large N .

On the choice of σ, the kernel and the Stein order

The kernel in Stein-based kernel methods is LxLyk(x, y) where Lx is a first or second order Stein
operator in x and k(x, y) is some generic kernel to be specified.

The Stein operators for distribution p(x) are defined as:

• steinOrder=1: Lxg(x) = ∇T
x g(x) +∇x log p(x)

T g(x) (see e.g. Oates el al (2017))

• steinOrder=2: Lxg(x) = ∆xg(x) +∇xlogp(x)
T∇xg(x) (see e.g. South el al (2020))

Here ∇x is the first order derivative wrt x and ∆x = ∇T
x∇x is the Laplacian operator.

The generic kernels which are implemented in this package are listed below. Note that the input
parameter sigma defines the kernel parameters σ.

• "gaussian": A Gaussian kernel,

k(x, y) = exp(−z(x, y)/σ2)

• "matern": A Matern kernel with σ = (λ, ν),

k(x, y) = bcνz(x, y)ν/2Kν(cz(x, y)
0.5)

where b = 21−ν(Γ(ν))−1, c = (2ν)0.5λ−1 and Kν(x) is the modified Bessel function of the
second kind. Note that λ is the length-scale parameter and ν is the smoothness parameter
(which defaults to 2.5 for steinOrder = 1 and 4.5 for steinOrder = 2).

• "RQ": A rational quadratic kernel,

k(x, y) = (1 + σ−2z(x, y))−1

• "product": The product kernel that appears in Oates et al (2017) with σ = (a, b)

k(x, y) = (1 + az(x) + az(y))−1exp(−0.5b−2z(x, y))

• "prodsim": A slightly different product kernel with σ = (a, b) (see e.g. https://www.
imperial.ac.uk/inference-group/projects/monte-carlo-methods/control-functionals/),

k(x, y) = (1 + az(x))−1(1 + az(y))−1exp(−0.5b−2z(x, y))

https://www.imperial.ac.uk/inference-group/projects/monte-carlo-methods/control-functionals/
https://www.imperial.ac.uk/inference-group/projects/monte-carlo-methods/control-functionals/

evidence 15

In the above equations, z(x) =
∑

j x[j]
2 and z(x, y) =

∑
j(x[j] − y[j])2. For the last two ker-

nels, the code only has implementations for steinOrder=1. Each combination of steinOrder and
kernel_function above is currently hard-coded but it may be possible to extend this to other ker-
nels in future versions using autodiff. The calculations for the first three kernels above are detailed
in South et al (2020).

Author(s)

Leah F. South

References

Oates, C. J., Girolami, M. & Chopin, N. (2017). Control functionals for Monte Carlo integration.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(3), 695-718.

South, L. F., Karvonen, T., Nemeth, C., Girolami, M. and Oates, C. J. (2020). Semi-Exact Control
Functionals From Sard’s Method. https://arxiv.org/abs/2002.00033

See Also

See ZVCV for examples and related functions. See CF for a function to perform control functionals
with fixed kernel specifications.

evidence Evidence estimation with ZV-CV

Description

The functions evidence_CTI and evidence_CTI_CF can be used to improve upon the thermody-
namic integration (TI) estimate of the normalising constant with ZV-CV and CF, respectively. The
functions evidence_SMC and evidence_SMC_CF do the same thing for the sequential Monte Carlo
(SMC) normalising constant identity.

Usage

evidence_CTI(
samples,
loglike,
der_loglike,
der_logprior,
temperatures,
temperatures_all,
most_recent,
est_inds,
options,
folds = 5

)

https://arxiv.org/abs/2002.00033

16 evidence

evidence_CTI_CF(
samples,
loglike,
der_loglike,
der_logprior,
temperatures,
temperatures_all,
most_recent,
est_inds,
steinOrder,
kernel_function,
sigma_list,
folds = 5

)

evidence_SMC(
samples,
loglike,
der_loglike,
der_logprior,
temperatures,
temperatures_all,
most_recent,
est_inds,
options,
folds = 5

)

evidence_SMC_CF(
samples,
loglike,
der_loglike,
der_logprior,
temperatures,
temperatures_all,
most_recent,
est_inds,
steinOrder,
kernel_function,
sigma_list,
folds = 5

)

Arguments

samples An N by d by T matrix of samples from the T power posteriors, where N is the
number of samples and d is the dimension of the target distribution

loglike An N by T matrix of log likelihood values corresponding to samples

evidence 17

der_loglike An N by d by T matrix of the derivatives of the log likelihood with respect to
the parameters, with parameter values corresponding to samples

der_logprior An N by d by T matrix of the derivatives of the log prior with respect to the
parameters, with parameter values corresponding to samples

temperatures A vector of length T of temperatures for the power posterior temperatures
temperatures_all

An adjusted vector of length tau of temperatures. Better performance should be
obtained with a more conservative temperature schedule. See Expand_Temperatures
for a function to adjust the temperatures.

most_recent A vector of length tau which gives the indices in the original temperatures that
the new temperatures correspond to.

est_inds (optional) A vector of indices for the estimation-only samples. The default when
est_inds is missing or NULL is to perform both estimation of the control variates
and evaluation of the integral using all samples. Otherwise, the samples from
est_inds are used in estimating the control variates and the remainder are used
in evaluating the integral. Splitting the indices in this way can be used to reduce
bias from adaption and to make computation feasible for very large sample sizes
(small est_inds is faster), but in general in will increase the variance of the
estimator.

options A list of control variate specifications for ZV-CV. This can be a single list con-
taining the elements below (the defaults are used for elements which are not
specified). Alternatively, it can be a list of lists containing any or all of the ele-
ments below. Where the latter is used, the function zvcv automatically selects
the best performing option based on cross-validation.

folds The number of folds used in k-fold cross-validation for selecting the optimal
control variate. For ZV-CV, this may include selection of the optimal polynomial
order, regression type and subset of parameters depending on options. For CF,
this includes the selection of the optimal tuning parameters in sigma_list. The
default is five.

steinOrder (optional) This is the order of the Stein operator. The default is 1 in the control
functionals paper (Oates et al, 2017) and 2 in the semi-exact control functionals
paper (South et al, 2020). The following values are currently available: 1 for all
kernels and 2 for "gaussian", "matern" and "RQ". See below for further details.

kernel_function

(optional) Choose between "gaussian", "matern", "RQ", "product" or "prodsim".
See below for further details.

sigma_list (optional between this and K0_list) A list of tuning parameters for the specified
kernel. This involves a list of single length-scale parameter in "gaussian" and
"RQ", a list of vectors containing length-scale and smoothness parameters in
"matern" and a list of vectors of the two parameters in "product" and "prodsim".
See below for further details. When sigma_list is specified and not K0_list,
the K0 matrix is computed twice for each selected tuning parameter.

Value

The function evidence_CTI returns a list, containing the following components:

18 evidence

• log_evidence_PS1: The 1st order quadrature estimate for the log normalising constant

• log_evidence_PS2: The 2nd order quadrature estimate for the log normalising constant

• regression_LL: The set of tau zvcv type returns for the 1st order quadrature expectations

• regression_vLL: The set of tau zvcv type returns for the 2nd order quadrature expectations

The function evidence_CTI_CF returns a list, containing the following components:

• log_evidence_PS1: The 1st order quadrature estimate for the log normalising constant

• log_evidence_PS2: The 2nd order quadrature estimate for the log normalising constant

• regression_LL: The set of tau CF_crossval type returns for the 1st order quadrature expec-
tations

• regression_vLL: The set of tau CF_crossval type returns for the 2nd order quadrature ex-
pectations

• selected_LL_CF: The set of tau selected tuning parameters from sigma_list for the 1st
order quadrature expectations.

• selected_vLL_CF: The set of tau selected tuning parameters from sigma_list for the 2nd
order quadrature expectations.

The function evidence_SMC returns a list, containing the following components:

• log_evidence: The logged SMC estimate for the normalising constant

• regression_SMC: The set of tau zvcv type returns for the expectations

The function evidence_SMC_CF returns a list, containing the following components:

• log_evidence: The logged SMC estimate for the normalising constant

• regression_SMC: The set of tau CF_crossval type returns for the expectations

• selected_CF: The set of tau selected tuning parameters from sigma_list for the expecta-
tions

On the choice of σ, the kernel and the Stein order

The kernel in Stein-based kernel methods is LxLyk(x, y) where Lx is a first or second order Stein
operator in x and k(x, y) is some generic kernel to be specified.

The Stein operators for distribution p(x) are defined as:

• steinOrder=1: Lxg(x) = ∇T
x g(x) +∇x log p(x)

T g(x) (see e.g. Oates el al (2017))

• steinOrder=2: Lxg(x) = ∆xg(x) +∇xlogp(x)
T∇xg(x) (see e.g. South el al (2020))

Here ∇x is the first order derivative wrt x and ∆x = ∇T
x∇x is the Laplacian operator.

The generic kernels which are implemented in this package are listed below. Note that the input
parameter sigma defines the kernel parameters σ.

• "gaussian": A Gaussian kernel,

k(x, y) = exp(−z(x, y)/σ2)

evidence 19

• "matern": A Matern kernel with σ = (λ, ν),

k(x, y) = bcνz(x, y)ν/2Kν(cz(x, y)
0.5)

where b = 21−ν(Γ(ν))−1, c = (2ν)0.5λ−1 and Kν(x) is the modified Bessel function of the
second kind. Note that λ is the length-scale parameter and ν is the smoothness parameter
(which defaults to 2.5 for steinOrder = 1 and 4.5 for steinOrder = 2).

• "RQ": A rational quadratic kernel,

k(x, y) = (1 + σ−2z(x, y))−1

• "product": The product kernel that appears in Oates et al (2017) with σ = (a, b)

k(x, y) = (1 + az(x) + az(y))−1exp(−0.5b−2z(x, y))

• "prodsim": A slightly different product kernel with σ = (a, b) (see e.g. https://www.
imperial.ac.uk/inference-group/projects/monte-carlo-methods/control-functionals/),

k(x, y) = (1 + az(x))−1(1 + az(y))−1exp(−0.5b−2z(x, y))

In the above equations, z(x) =
∑

j x[j]
2 and z(x, y) =

∑
j(x[j] − y[j])2. For the last two ker-

nels, the code only has implementations for steinOrder=1. Each combination of steinOrder and
kernel_function above is currently hard-coded but it may be possible to extend this to other ker-
nels in future versions using autodiff. The calculations for the first three kernels above are detailed
in South et al (2020).

Author(s)

Leah F. South

References

Mira, A., Solgi, R., & Imparato, D. (2013). Zero variance Markov chain Monte Carlo for Bayesian
estimators. Statistics and Computing, 23(5), 653-662.

South, L. F., Oates, C. J., Mira, A., & Drovandi, C. (2019). Regularised zero variance control
variates for high-dimensional variance reduction. https://arxiv.org/abs/1811.05073

See Also

See an example at VDP and see ZVCV for more package details. See Expand_Temperatures for
a function that can be used to find stricter (or less stricter) temperature schedules based on the
conditional effective sample size.

https://www.imperial.ac.uk/inference-group/projects/monte-carlo-methods/control-functionals/
https://www.imperial.ac.uk/inference-group/projects/monte-carlo-methods/control-functionals/
https://arxiv.org/abs/1811.05073

20 Expand_Temperatures

Expand_Temperatures Adjusting the temperature schedule

Description

This function is used to adjust the temperature schedule so that it is more (or less) strict than the
original.

Usage

Expand_Temperatures(
temperatures,
loglike,
rho,
bisec_tol = .Machine$double.eps^0.25

)

Arguments

temperatures A vector of length T temperatures for the power posterior temperatures.

loglike An N by T matrix of log likelihood values corresponding to the samples.

rho The tolerance for the new temperatures. Temperatures are selected so that the
conditional effective sample size (CESS) at each temperature is ρ ∗N where N
is the population size.

bisec_tol The tolerance for the bisection method used in selecting temperatures. The de-
fault is .Machine$double.eps^0.25

Value

A list is returned, containing the following components:

• temperatures_all: The new set of temperatures of length tau.

• relevant_samples: A vector of length tau containing indices to show which particle sets the
new temperatures are based on.

• logw: An N by tau matrix of log normalised weights of the particles

Author(s)

Leah F. South

References

South, L. F., Oates, C. J., Mira, A., & Drovandi, C. (2019). Regularised zero variance control
variates for high-dimensional variance reduction. https://arxiv.org/abs/1811.05073

https://arxiv.org/abs/1811.05073

getX 21

See Also

See evidence for functions to estimate the evidence, VDP for an example and ZVCV for more
package details.

getX ZV-CV design matrix

Description

The function getX is used to get the matrix of covariates for the regression based on a specified
polynomial order.

Usage

getX(samples, derivatives, polyorder)

Arguments

samples An N by d matrix of samples from the target

derivatives An N by d matrix of derivatives of the log target with respect to the parameters

polyorder The order of the polynomial.

Value

The design matrix for the regression (except for the column of 1’s for the intercept).

See Also

Phi_fn for a very similar function for use in semi-exact control functionals. The function Phi_fn
essentially gets the same matrix but with a column of ones added.

K0_fn Kernel matrix calculation

Description

This function calculates the full K0 matrix, which is a first or second order Stein operator applied
to a standard kernel. The output of this function can be used as an argument to CF, CF_crossval,
SECF, SECF_crossval, aSECF and aSECF_crossval. The kernel matrix is automatically computed
in all of the above methods, but it is faster to calculate in advance when using more than one of the
above functions and when using any of the crossval functions.

22 K0_fn

Usage

K0_fn(
samples,
derivatives,
sigma,
steinOrder,
kernel_function,
Z = NULL,
nystrom_inds = NULL

)

Arguments

samples An N by d matrix of samples from the target

derivatives An N by d matrix of derivatives of the log target with respect to the parameters

sigma The tuning parameters of the specified kernel. This involves a single length-scale
parameter in "gaussian" and "RQ", a length-scale and a smoothness parameter in
"matern" and two parameters in "product" and "prodsim". See below for further
details.

steinOrder This is the order of the Stein operator. The default is 1 in the control functionals
paper (Oates et al, 2017) and 2 in the semi-exact control functionals paper (South
et al, 2020). The following values are currently available: 1 for all kernels and
2 for "gaussian", "matern" and "RQ". See below for further details.

kernel_function

Choose between "gaussian", "matern", "RQ", "product" or "prodsim". See be-
low for further details.

Z (optional) An N by N (or N by m where m is the length of nystrom_inds).
This can be calculated using squareNorm.

nystrom_inds (optional) The sample indices to be used in the Nystrom approximation (for
when using aSECF).

Value

An N by N kernel matrix (or N by m where m is the length of nystrom_inds).

On the choice of σ, the kernel and the Stein order

The kernel in Stein-based kernel methods is LxLyk(x, y) where Lx is a first or second order Stein
operator in x and k(x, y) is some generic kernel to be specified.

The Stein operators for distribution p(x) are defined as:

• steinOrder=1: Lxg(x) = ∇T
x g(x) +∇x log p(x)

T g(x) (see e.g. Oates el al (2017))

• steinOrder=2: Lxg(x) = ∆xg(x) +∇xlogp(x)
T∇xg(x) (see e.g. South el al (2020))

Here ∇x is the first order derivative wrt x and ∆x = ∇T
x∇x is the Laplacian operator.

The generic kernels which are implemented in this package are listed below. Note that the input
parameter sigma defines the kernel parameters σ.

K0_fn 23

• "gaussian": A Gaussian kernel,

k(x, y) = exp(−z(x, y)/σ2)

• "matern": A Matern kernel with σ = (λ, ν),

k(x, y) = bcνz(x, y)ν/2Kν(cz(x, y)
0.5)

where b = 21−ν(Γ(ν))−1, c = (2ν)0.5λ−1 and Kν(x) is the modified Bessel function of the
second kind. Note that λ is the length-scale parameter and ν is the smoothness parameter
(which defaults to 2.5 for steinOrder = 1 and 4.5 for steinOrder = 2).

• "RQ": A rational quadratic kernel,

k(x, y) = (1 + σ−2z(x, y))−1

• "product": The product kernel that appears in Oates et al (2017) with σ = (a, b)

k(x, y) = (1 + az(x) + az(y))−1exp(−0.5b−2z(x, y))

• "prodsim": A slightly different product kernel with σ = (a, b) (see e.g. https://www.
imperial.ac.uk/inference-group/projects/monte-carlo-methods/control-functionals/),

k(x, y) = (1 + az(x))−1(1 + az(y))−1exp(−0.5b−2z(x, y))

In the above equations, z(x) =
∑

j x[j]
2 and z(x, y) =

∑
j(x[j] − y[j])2. For the last two ker-

nels, the code only has implementations for steinOrder=1. Each combination of steinOrder and
kernel_function above is currently hard-coded but it may be possible to extend this to other ker-
nels in future versions using autodiff. The calculations for the first three kernels above are detailed
in South et al (2020).

Author(s)

Leah F. South

References

Oates, C. J., Girolami, M. & Chopin, N. (2017). Control functionals for Monte Carlo integration.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(3), 695-718.

South, L. F., Karvonen, T., Nemeth, C., Girolami, M. and Oates, C. J. (2020). Semi-Exact Control
Functionals From Sard’s Method. https://arxiv.org/abs/2002.00033

https://www.imperial.ac.uk/inference-group/projects/monte-carlo-methods/control-functionals/
https://www.imperial.ac.uk/inference-group/projects/monte-carlo-methods/control-functionals/
https://arxiv.org/abs/2002.00033

24 medianTune

logsumexp Stable log sum of exponential calculations

Description

The function logsumexp is used for stable computation of log(sum(exp(x))), which is useful when
summing weights for example.

Usage

logsumexp(x)

Arguments

x The values for which you want to compute log(sum(exp(x)))

Value

The stable result of log(sum(exp(x)))

See Also

See ZVCV for more package details.

medianTune Median heuristic

Description

This function calculates the median heuristic for use in e.g. the Gaussian, Matern and rational
quadratic kernels.

Usage

medianTune(samples, Z = NULL)

Arguments

samples An N by d matrix of samples from the target

Z (optional) An NxN matrix of square norms, which can be calculated using squareNorm,
as long as the nystrom_inds are NULL.

Value

The median heuristic, which can then be used as the length-scale parameter in the Gaussian, Matern
and rational quadratic kernels

nearPD 25

Author(s)

Leah F. South

References

Garreau, D., Jitkrittum, W. and Kanagawa, M. (2017). Large sample analysis of the median heuris-
tic. https://arxiv.org/abs/1707.07269

See Also

See medianTune and K0_fn for functions which use this.

nearPD Nearest symmetric positive definite matrix

Description

This function finds the nearest symmetric positive definite matrix to the given matrix. It is used
throughout the package to handle numerical issues in matrix inverses and cholesky decompositions.

Usage

nearPD(K0)

Arguments

K0 A square matrix

Value

The closest symmetric positive definite matrix to K0.

Author(s)

Adapted from Matlab code by John D’Errico

References

Higham, N. J. (1988). Computing a nearest symmetric positive semidefinite matrix. Linear Algebra
and its Applications, 103, 103-118.

D’Errico, J. (2013). nearestSPD Matlab function. https://uk.mathworks.com/matlabcentral/
fileexchange/42885-nearestspd.

https://arxiv.org/abs/1707.07269
https://uk.mathworks.com/matlabcentral/fileexchange/42885-nearestspd
https://uk.mathworks.com/matlabcentral/fileexchange/42885-nearestspd

26 Phi_fn

Phi_fn Phi matrix calculation

Description

This function calculates the Φ matrix, which is a second order Stein operator applied to a polyno-
mial. See South et al (2020) for further details. This function is not required for estimation but may
be useful when evaluation samples are not initially available since estimators using heldout samples
are of the form mean(f − fhat) + b[1] where fhat = K0 ∗ a + Phi ∗ b for heldout K0 and Phi
matrices.

Usage

Phi_fn(samples, derivatives, polyorder = NULL, apriori = NULL)

Arguments

samples An N by d matrix of samples from the target

derivatives An N by d matrix of derivatives of the log target with respect to the parameters

polyorder (optional) The order of the polynomial to be used in the parametric component,
with a default of 1. We recommend keeping this value low (e.g. only 1-2).

apriori (optional) A vector containing the subset of parameter indices to use in the poly-
nomial. Typically this argument would only be used if the dimension of the
problem is very large or if prior information about parameter dependencies is
known. The default is to use all parameters 1 : d where d is the dimension of
the target.

Value

An N by Q matrix (where Q is determined by the polynomial order and the apriori).

Author(s)

Leah F. South

References

South, L. F., Karvonen, T., Nemeth, C., Girolami, M. and Oates, C. J. (2020). Semi-Exact Control
Functionals From Sard’s Method. https://arxiv.org/abs/2002.00033

https://arxiv.org/abs/2002.00033

SECF 27

SECF Semi-exact control functionals (SECF)

Description

This function performs semi-exact control functionals as described in South et al (2020). To choose
between different kernels using cross-validation, use SECF_crossval.

Usage

SECF(
integrands,
samples,
derivatives,
polyorder = NULL,
steinOrder = NULL,
kernel_function = NULL,
sigma = NULL,
K0 = NULL,
est_inds = NULL,
apriori = NULL,
diagnostics = FALSE

)

Arguments

integrands An N by k matrix of integrands (evaluations of the function of interest)
samples An N by d matrix of samples from the target
derivatives An N by d matrix of derivatives of the log target with respect to the parameters
polyorder (optional) The order of the polynomial to be used in the parametric component,

with a default of 1. We recommend keeping this value low (e.g. only 1-2).
steinOrder (optional) This is the order of the Stein operator. The default is 1 in the control

functionals paper (Oates et al, 2017) and 2 in the semi-exact control functionals
paper (South et al, 2020). The following values are currently available: 1 for all
kernels and 2 for "gaussian", "matern" and "RQ". See below for further details.

kernel_function

(optional) Choose between "gaussian", "matern", "RQ", "product" or "prodsim".
See below for further details.

sigma (optional) The tuning parameters of the specified kernel. This involves a single
length-scale parameter in "gaussian" and "RQ", a length-scale and a smoothness
parameter in "matern" and two parameters in "product" and "prodsim". See
below for further details.

K0 (optional) The kernel matrix. One can specify either this or all of sigma, steinOrder
and kernel_function. The former involves pre-computing the kernel matrix
using K0_fn and is more efficient when using multiple estimators out of CF, SECF
and aSECF or when using the cross-validation functions.

28 SECF

est_inds (optional) A vector of indices for the estimation-only samples. The default when
est_inds is missing or NULL is to perform both estimation of the control variates
and evaluation of the integral using all samples. Otherwise, the samples from
est_inds are used in estimating the control variates and the remainder are used
in evaluating the integral. Splitting the indices in this way can be used to reduce
bias from adaption and to make computation feasible for very large sample sizes
(small est_inds is faster), but in general in will increase the variance of the
estimator.

apriori (optional) A vector containing the subset of parameter indices to use in the poly-
nomial. Typically this argument would only be used if the dimension of the
problem is very large or if prior information about parameter dependencies is
known. The default is to use all parameters 1 : d where d is the dimension of
the target.

diagnostics (optional) A flag for whether to return the necessary outputs for plotting or es-
timating using the fitted model. The default is false since this requires some
additional computation when est_inds is NULL.

Value

A list with the following elements:

• expectation: The estimate(s) of the (k) expectation(s).

• f_true: (Only if est_inds is not NULL) The integrands for the evaluation set. This should be
the same as integrands[setdiff(1:N,est_inds),].

• f_hat: (Only if est_inds is not NULL) The fitted values for the integrands in the evaluation
set. This can be used to help assess the performance of the Gaussian process model.

• a: (Only if diagnostics = TRUE) The value of a as described in South et al (2020), where
predictions are of the form fhat = K0 ∗ a + Phi ∗ b for heldout K0 and Phi matrices and
estimators using heldout samples are of the form mean(f − fhat) + b[1].

• b: (Only if diagnostics = TRUE) The value of b as described in South et al (2020), where
predictions are of the form fhat = K0 ∗ a + Phi ∗ b for heldout K0 and Phi matrices and
estimators using heldout samples are of the form mean(f − fhat) + b[1].

• ksd: (Only if diagnostics = TRUE) An estimated kernel Stein discrepancy based on the fitted
model that can be used for diagnostic purposes. See South et al (2020) for further details.

• bound_const: (Only if diagnostics = TRUE and est_inds=NULL) This is such that the ab-
solute error for the estimator should be less than ksd× boundconst.

Warning

Solving the linear system in SECF has O(N3 +Q3) complexity where N is the sample size and Q
is the number of terms in the polynomial. Standard SECF is therefore not suited to large N . The
method aSECF is designed for larger N and details can be found at aSECF and in South et al (2020).
An alternative would be to use estinds which has O(N3

0 + Q3) complexity in solving the linear
system and O((N−N0)

2) complexity in handling the remaining samples, where N0 is the length of
estinds. This can be much cheaper for small N0 but the estimation of the Gaussian process model
is only done using N0 samples and the evaluation of the integral only uses N −N0 samples.

SECF 29

On the choice of σ, the kernel and the Stein order

The kernel in Stein-based kernel methods is LxLyk(x, y) where Lx is a first or second order Stein
operator in x and k(x, y) is some generic kernel to be specified.

The Stein operators for distribution p(x) are defined as:

• steinOrder=1: Lxg(x) = ∇T
x g(x) +∇x log p(x)

T g(x) (see e.g. Oates el al (2017))
• steinOrder=2: Lxg(x) = ∆xg(x) +∇xlogp(x)

T∇xg(x) (see e.g. South el al (2020))

Here ∇x is the first order derivative wrt x and ∆x = ∇T
x∇x is the Laplacian operator.

The generic kernels which are implemented in this package are listed below. Note that the input
parameter sigma defines the kernel parameters σ.

• "gaussian": A Gaussian kernel,

k(x, y) = exp(−z(x, y)/σ2)

• "matern": A Matern kernel with σ = (λ, ν),

k(x, y) = bcνz(x, y)ν/2Kν(cz(x, y)
0.5)

where b = 21−ν(Γ(ν))−1, c = (2ν)0.5λ−1 and Kν(x) is the modified Bessel function of the
second kind. Note that λ is the length-scale parameter and ν is the smoothness parameter
(which defaults to 2.5 for steinOrder = 1 and 4.5 for steinOrder = 2).

• "RQ": A rational quadratic kernel,

k(x, y) = (1 + σ−2z(x, y))−1

• "product": The product kernel that appears in Oates et al (2017) with σ = (a, b)

k(x, y) = (1 + az(x) + az(y))−1exp(−0.5b−2z(x, y))

• "prodsim": A slightly different product kernel with σ = (a, b) (see e.g. https://www.
imperial.ac.uk/inference-group/projects/monte-carlo-methods/control-functionals/),

k(x, y) = (1 + az(x))−1(1 + az(y))−1exp(−0.5b−2z(x, y))

In the above equations, z(x) =
∑

j x[j]
2 and z(x, y) =

∑
j(x[j] − y[j])2. For the last two ker-

nels, the code only has implementations for steinOrder=1. Each combination of steinOrder and
kernel_function above is currently hard-coded but it may be possible to extend this to other ker-
nels in future versions using autodiff. The calculations for the first three kernels above are detailed
in South et al (2020).

Author(s)

Leah F. South

References

Oates, C. J., Girolami, M. & Chopin, N. (2017). Control functionals for Monte Carlo integration.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(3), 695-718.

South, L. F., Karvonen, T., Nemeth, C., Girolami, M. and Oates, C. J. (2020). Semi-Exact Control
Functionals From Sard’s Method. https://arxiv.org/abs/2002.00033

https://www.imperial.ac.uk/inference-group/projects/monte-carlo-methods/control-functionals/
https://www.imperial.ac.uk/inference-group/projects/monte-carlo-methods/control-functionals/
https://arxiv.org/abs/2002.00033

30 SECF_crossval

See Also

See ZVCV for examples and related functions. See SECF_crossval for a function to choose be-
tween different kernels for this estimator.

SECF_crossval Semi-exact control functionals (SECF) with cross-validation

Description

This function chooses between a list of kernel tuning parameters (sigma_list) or a list of K0 ma-
trices (K0_list) for the semi-exact control functionals method described in South et al (2020). The
latter requires calculating and storing kernel matrices using K0_fn but it is more flexible because it
can be used to choose the Stein operator order and the kernel function, in addition to its parameters.
It is also faster to pre-specify K0_fn. For estimation with fixed kernel parameters, use SECF.

Usage

SECF_crossval(
integrands,
samples,
derivatives,
polyorder = NULL,
steinOrder = NULL,
kernel_function = NULL,
sigma_list = NULL,
K0_list = NULL,
est_inds = NULL,
apriori = NULL,
folds = NULL,
diagnostics = FALSE

)

Arguments

integrands An N by k matrix of integrands (evaluations of the function of interest)

samples An N by d matrix of samples from the target

derivatives An N by d matrix of derivatives of the log target with respect to the parameters

polyorder (optional) The order of the polynomial to be used in the parametric component,
with a default of 1. We recommend keeping this value low (e.g. only 1-2).

steinOrder (optional) This is the order of the Stein operator. The default is 1 in the control
functionals paper (Oates et al, 2017) and 2 in the semi-exact control functionals
paper (South et al, 2020). The following values are currently available: 1 for all
kernels and 2 for "gaussian", "matern" and "RQ". See below for further details.

kernel_function

(optional) Choose between "gaussian", "matern", "RQ", "product" or "prodsim".
See below for further details.

SECF_crossval 31

sigma_list (optional between this and K0_list) A list of tuning parameters for the specified
kernel. This involves a list of single length-scale parameter in "gaussian" and
"RQ", a list of vectors containing length-scale and smoothness parameters in
"matern" and a list of vectors of the two parameters in "product" and "prodsim".
See below for further details. When sigma_list is specified and not K0_list,
the K0 matrix is computed twice for each selected tuning parameter.

K0_list (optional between this and sigma_list) A list of kernel matrices, which can be
calculated using K0_fn.

est_inds (optional) A vector of indices for the estimation-only samples. The default when
est_inds is missing or NULL is to perform both estimation of the control variates
and evaluation of the integral using all samples. Otherwise, the samples from
est_inds are used in estimating the control variates and the remainder are used
in evaluating the integral. Splitting the indices in this way can be used to reduce
bias from adaption and to make computation feasible for very large sample sizes
(small est_inds is faster), but in general in will increase the variance of the
estimator.

apriori (optional) A vector containing the subset of parameter indices to use in the poly-
nomial. Typically this argument would only be used if the dimension of the
problem is very large or if prior information about parameter dependencies is
known. The default is to use all parameters 1 : d where d is the dimension of
the target.

folds (optional) The number of folds for cross-validation. The default is five.

diagnostics (optional) A flag for whether to return the necessary outputs for plotting or es-
timating using the fitted model. The default is false since this requires some
additional computation when est_inds is NULL.

Value

A list with the following elements:

• expectation: The estimate(s) of the (k) expectation(s).

• mse: A matrix of the cross-validation mean square prediction errors. The number of columns
is the number of tuning options given and the number of rows is k, the number of integrands
of interest.

• optinds: The optimal indices from the list for each expectation.

• f_true: (Only if est_inds is not NULL) The integrands for the evaluation set. This should be
the same as integrands[setdiff(1:N,est_inds),].

• f_hat: (Only if est_inds is not NULL) The fitted values for the integrands in the evaluation
set. This can be used to help assess the performance of the Gaussian process model.

• a: (Only if diagnostics = TRUE) The value of a as described in South et al (2020), where
predictions are of the form fhat = K0 ∗ a + Phi ∗ b for heldout K0 and Phi matrices and
estimators using heldout samples are of the form mean(f − fhat) + b[1].

• b: (Only if diagnostics = TRUE) The value of b as described in South et al (2020), where
predictions are of the form fhat = K0 ∗ a + Phi ∗ b for heldout K0 and Phi matrices and
estimators using heldout samples are of the form mean(f − fhat) + b[1].

32 SECF_crossval

• ksd: (Only if diagnostics = TRUE) An estimated kernel Stein discrepancy based on the fitted
model that can be used for diagnostic purposes. See South et al (2020) for further details.

• bound_const: (Only if diagnostics = TRUE and est_inds=NULL) This is such that the ab-
solute error for the estimator should be less than ksd× boundconst.

Warning

Solving the linear system in SECF has O(N3 +Q3) complexity where N is the sample size and Q
is the number of terms in the polynomial. Standard SECF is therefore not suited to large N . The
method aSECF is designed for larger N and details can be found at aSECF and in South et al (2020).
An alternative would be to use estinds which has O(N3

0 + Q3) complexity in solving the linear
system and O((N −N0)

2) complexity in handling the remaining samples, where N0 is the length
of estinds. This can be much cheaper for large N but the estimation of the Gaussian process model
is only done using N0 samples and the evaluation of the integral only uses N −N0 samples.

On the choice of σ, the kernel and the Stein order

The kernel in Stein-based kernel methods is LxLyk(x, y) where Lx is a first or second order Stein
operator in x and k(x, y) is some generic kernel to be specified.

The Stein operators for distribution p(x) are defined as:

• steinOrder=1: Lxg(x) = ∇T
x g(x) +∇x log p(x)

T g(x) (see e.g. Oates el al (2017))

• steinOrder=2: Lxg(x) = ∆xg(x) +∇xlogp(x)
T∇xg(x) (see e.g. South el al (2020))

Here ∇x is the first order derivative wrt x and ∆x = ∇T
x∇x is the Laplacian operator.

The generic kernels which are implemented in this package are listed below. Note that the input
parameter sigma defines the kernel parameters σ.

• "gaussian": A Gaussian kernel,

k(x, y) = exp(−z(x, y)/σ2)

• "matern": A Matern kernel with σ = (λ, ν),

k(x, y) = bcνz(x, y)ν/2Kν(cz(x, y)
0.5)

where b = 21−ν(Γ(ν))−1, c = (2ν)0.5λ−1 and Kν(x) is the modified Bessel function of the
second kind. Note that λ is the length-scale parameter and ν is the smoothness parameter
(which defaults to 2.5 for steinOrder = 1 and 4.5 for steinOrder = 2).

• "RQ": A rational quadratic kernel,

k(x, y) = (1 + σ−2z(x, y))−1

• "product": The product kernel that appears in Oates et al (2017) with σ = (a, b)

k(x, y) = (1 + az(x) + az(y))−1exp(−0.5b−2z(x, y))

• "prodsim": A slightly different product kernel with σ = (a, b) (see e.g. https://www.
imperial.ac.uk/inference-group/projects/monte-carlo-methods/control-functionals/),

k(x, y) = (1 + az(x))−1(1 + az(y))−1exp(−0.5b−2z(x, y))

https://www.imperial.ac.uk/inference-group/projects/monte-carlo-methods/control-functionals/
https://www.imperial.ac.uk/inference-group/projects/monte-carlo-methods/control-functionals/

squareNorm 33

In the above equations, z(x) =
∑

j x[j]
2 and z(x, y) =

∑
j(x[j] − y[j])2. For the last two ker-

nels, the code only has implementations for steinOrder=1. Each combination of steinOrder and
kernel_function above is currently hard-coded but it may be possible to extend this to other ker-
nels in future versions using autodiff. The calculations for the first three kernels above are detailed
in South et al (2020).

Author(s)

Leah F. South

References

Oates, C. J., Girolami, M. & Chopin, N. (2017). Control functionals for Monte Carlo integration.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(3), 695-718.

South, L. F., Karvonen, T., Nemeth, C., Girolami, M. and Oates, C. J. (2020). Semi-Exact Control
Functionals From Sard’s Method. https://arxiv.org/abs/2002.00033

See Also

See ZVCV for examples and related functions. See SECF for a function to perform semi-exact
control functionals with fixed kernel specifications.

squareNorm Squared norm matrix calculation

Description

This function gets the matrix of square norms which is needed for all kernels. Calculating this can
help to save time if you are also interested in calculating the median heuristic, handling multiple
tuning parameters or trying other kernels.

Usage

squareNorm(samples, nystrom_inds = NULL)

Arguments

samples An N by d matrix of samples from the target

nystrom_inds The (optional) sample indices to be used in the Nystrom approximation (for
when using aSECF).

Value

An N by N matrix of squared norms between samples (or N by m where m is the length of
nystrom_inds).

https://arxiv.org/abs/2002.00033

34 VDP

Author(s)

Leah F. South

See Also

See medianTune and K0_fn for functions which use this.

VDP Example of estimation using SMC

Description

This example illustrates how ZV-CV can be used for post-processing of results from likelihood-
annealing SMC. In particular, we use ZV-CV to estimate posterior expectations and the evidence
for a single SMC run of this example based on the Van der Pol oscillatory differential equations
(Van der Pol, 1926). Further details about this example and applications to ZV-CV can be found in
Oates et al. (2017) and South et al. (2019).

Given that the focus of this R package is on ZV-CV, we assume that samples have already been
obtained from SMC and put into the correct format. One could use the R package RcppSMC or
implement their own sampler in order to obtain results like this. The key is to make sure the
derivatives of the log likelihood and log prior are stored, along with the inverse temperatures.

Usage

data(VDP)

Format

A list containing the following :

N The size of the SMC population

rho The tolerance for the new temperatures, which are selected so that the CESS at each tempera-
ture is ρ ∗N where N is the population size.

temperatures A vector of length T of inverse power posterior temperatures

samples An N by d by T matrix of samples from the T power posteriors, where d is the dimension
of the target distribution. The samples are transformed to be on the log scale and all derivatives
are with respect to log samples.

loglike An N by T matrix of log likelihood values corresponding to samples

logprior An N by T matrix of log prior values corresponding to samples

der_loglike An N by d by T matrix of the derivatives of the log likelihood with respect to the
parameters, with parameter values corresponding to samples

der_logprior An N by d by T matrix of the derivatives of the log prior with respect to the param-
eters, with parameter values corresponding to samples

VDP 35

References

Oates, C. J., Girolami, M. & Chopin, N. (2017). Control functionals for Monte Carlo integration.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(3), 695-718.

South, L. F., Oates, C. J., Mira, A., & Drovandi, C. (2019). Regularised zero-variance control
variates for high-dimensional variance reduction.

Van der Pol, B. (1926). On relaxation-oscillations. The London, Edinburgh and Dublin Philosoph-
ical Magazine and Journal of Science, 2(11), 978-992.

See Also

See ZVCV for more package details.

Examples

set.seed(1)

Load the SMC results
data(VDP)

Set up the list of control variates to choose from
options <- list()
Vanilla Monte Carlo
options[[1]] <- list(polyorder = 0)
Standard ZV-CV with polynomial order selected through cross-validation
options[[2]] <- list(polyorder = Inf, regul_reg = FALSE)

##############################
Posterior expectation - The true expectation is 0.9852 to 4 decimal places
##############################

Note the exp() because samples and derivatives were stored on the log scale
but we are interested in the expectation on the original scale
posterior <- zvcv(exp(VDP$samples[,,8]), VDP$samples[,,8],
VDP$der_loglike[,,8] + VDP$der_logprior[,,8], options = options)
posterior$expectation # The posterior expectation estimate
posterior$polyorder # The selected polynomial order

##############################
Evidence estimation - The true logged evidence is 10.36 to 2 decimal places
##############################

Getting additional temperatures based on maintaing a CESS of 0.91N rather than 0.9N.
The value 0.91 is used for speed but South et al. (2019) use 0.99.
temp <- Expand_Temperatures(VDP$temperatures, VDP$loglike, 0.91)
VDP$temperatures_new <- temp$temperatures_all # the new temperatures
VDP$most_recent <- temp$relevant_samples # the samples associated with the new temperatures

n_sigma <- 3 # For speed, South et al. (2019) uses 15
sigma_list <- as.list(10^(0.5*seq(-3,4,length.out=n_sigma)))

Evidence estimation using the SMC identity

36 zvcv

Z_SMC <- evidence_SMC(VDP$samples, VDP$loglike, VDP$der_loglike, VDP$der_logprior,
VDP$temperatures, VDP$temperatures_new, VDP$most_recent, options = options)
Z_SMC$log_evidence

Evidence estimation using the SMC identity
Z_SMC_CF <- evidence_SMC_CF(VDP$samples, VDP$loglike, VDP$der_loglike, VDP$der_logprior,
VDP$temperatures, VDP$temperatures_new, VDP$most_recent, steinOrder = 2,
kernel_function = "gaussian", sigma_list = sigma_list, folds = 2)
Z_SMC_CF$log_evidence

Evidence estimation using the CTI identity
Z_CTI <- evidence_CTI(VDP$samples, VDP$loglike, VDP$der_loglike, VDP$der_logprior,
VDP$temperatures, VDP$temperatures_new, VDP$most_recent, options = options)
Z_CTI$log_evidence_PS2

Evidence estimation using the CTI identity
Z_CTI_CF <- evidence_CTI_CF(VDP$samples, VDP$loglike, VDP$der_loglike, VDP$der_logprior,
VDP$temperatures, VDP$temperatures_new, VDP$most_recent, steinOrder = 2,
kernel_function = "gaussian", sigma_list = sigma_list, folds = 2)
Z_CTI_CF$log_evidence_PS2

zvcv ZV-CV for general expectations

Description

The function zvcv is used to perform (regularised) ZV-CV given a set of samples, derivatives and
function evaluations.

Usage

zvcv(
integrand,
samples,
derivatives,
log_weights,
integrand_logged = FALSE,
est_inds,
options = list(polyorder = 2, regul_reg = TRUE, alpha_elnet = 1, nfolds = 10, apriori

= (1:NCOL(samples)), intercept = TRUE, polyorder_max = Inf),
folds = 5

)

Arguments

integrand An N by k matrix of integrands (evaluations of the functions of interest)

samples An N by d matrix of samples from the target

derivatives An N by d matrix of derivatives of the log target with respect to the parameters

zvcv 37

log_weights (optional) A vector of length N containing log weights of the samples. The
default is equal weights.

integrand_logged

(optional) Sometimes it is better to input the integrand on the logged scale for
stability. If the actual integrand is the exponential of integrand, then integrand_logged
= TRUE. Otherwise, the default of integrand_logged = FALSE should be used.

est_inds (optional) A vector of indices for the estimation-only samples. The default when
est_inds is missing or NULL is to perform both estimation of the control variates
and evaluation of the integral using all samples. Otherwise, the samples from
est_inds are used in estimating the control variates and the remainder are used
in evaluating the integral. Splitting the indices in this way can be used to reduce
bias from adaption and to make computation feasible for very large sample sizes
(small est_inds is faster), but in general in will increase the variance of the
estimator.

options A list of control variate specifications. This can be a single list containing the
elements below (the defaults are used for elements which are not specified).
Alternatively, it can be a list of lists containing any or all of the elements be-
low. Where the latter is used, the function zvcv automatically selects the best
performing option based on cross-validation.

• polyorder: The order of the polynomial, with a default of 2. A value of
Inf will get the cross-validation method to choose between orders.

• regul_reg: A flag for whether regularised regression is to be used. The
default is TRUE, i.e. regularised regression is used.

• alpha_elnet: The alpha parameter for elastic net. The default is 1, which
correponds to LASSO. A value of 0 would correspond to ridge regression.

• nfolds: The number of folds used in cross-validation to select lambda for
LASSO or elastic net. The default is 10.

• apriori: A vector containing the subset of parameter indices to use in the
polynomial. Typically this argument would only be used if the dimension
of the problem is very large or if prior information about parameter depen-
dencies is known. The default is to use all parameters 1 : d where d is the
dimension of the target. In zvcv, this is equivalent to using only the relevant
columns in samples and derivatives).

• intercept: A flag for whether the intercept should be estimated or fixed to
the empirical mean of the integrand in the estimation set. The default is to
include an intercept (intercept = TRUE) as this tends to lead to better vari-
ance reductions. Note that an intercept = TRUE flag may be changed to
intercept = FALSE within the function if integrand_logged = TRUE and
a NaN is encountered. See South et al. (2018) for further details.

• polyorder_max: The maximum allowable polynomial order. This may
be used to prevent memory issues in the case that the polynomial order is
selected automatically. A default maximum polynomial order based on the
regression design matrix having no more than ten million elements will be
selected if the polyorder is infinite and in this case a warning will be given.
Recall that setting your default R settings to options(warn=1) will ensure
that you receive these warnings in real time. Optimal polynomial order
selection may go to at most this maximum value, or it may stop earlier.

38 zvcv

folds The number of folds used in k-fold cross-validation for selecting the optimal
control variate. Depending on the options, this may include selection of the
optimal polynomial order, regression type and subset of parameters in the poly-
nomial. The default is five.

Value

A list is returned, containing the following components:

• expectation: The estimates of the expectations.

• num_select: The number of non-zero coefficients in the polynomial.

• mse: The mean square error for the evaluation set.

• coefs: The estimated coefficients for the regression (columns are for the different integrands).

• integrand_logged: The integrand_logged input stored for reference.

• est_inds: The est_inds input stored for reference.

• polyorder: The polyorder value used in the final estimate.

• regul_reg: The regul_reg flag used in the final estimate.

• alpha_elnet: The alpha_elnet value used in the final estimate.

• nfolds: The nfolds value used in the final estimate.

• apriori: The apriori vector used in the final estimate.

• intercept: The intercept flag used in the final estimate.

• polyorder_max: The polyorder_max flag used in the final estimate, if multiple options are
specified.

Author(s)

Leah F. South

References

Mira, A., Solgi, R., & Imparato, D. (2013). Zero variance Markov chain Monte Carlo for Bayesian
estimators. Statistics and Computing, 23(5), 653-662.

South, L. F., Oates, C. J., Mira, A., & Drovandi, C. (2019). Regularised zero variance control
variates for high-dimensional variance reduction. https://arxiv.org/abs/1811.05073

See Also

See ZVCV and VDP for additional examples. See evidence for functions which use zvcv to estimate
the normalising constant of the posterior.

https://arxiv.org/abs/1811.05073

zvcv 39

Examples

An example where ZV-CV can result in zero-variance estimators

Estimating some expectations when theta is bivariate normally distributed with:
mymean <- c(-1.5,1.5)
mycov <- matrix(c(1,0.5,0.5,2),nrow=2)

Perfect draws from the target distribution (could be replaced with
approximate draws from e.g. MCMC or SMC)
N <- 30
require(mvtnorm)
set.seed(1)
samples <- rmvnorm(N, mean = mymean, sigma = mycov)
derivatives of Gaussian wrt x
derivatives <- t(apply(samples,1,function(x) -solve(mycov)%*%(x - mymean)))

The integrands are the marginal posterior means of theta, the variances and the
covariance (true values are c(-1.5,1.5,1,2,0.5))
integrand <- cbind(samples[,1],samples[,2],(samples[,1] - mymean[1])^2,

(samples[,2] - mymean[2])^2, (samples[,1] - mymean[1])*(samples[,2] - mymean[2]))

Estimates without ZV-CV (i.e. vanilla Monte Carlo integration)
Vanilla Monte Carlo
sprintf("%.15f",colMeans(integrand))

ZV-CV with fixed specifications
For this example, polyorder = 1 with OLS is exact for the first two integrands and
polyorder = 2 with OLS is exact for the last three integrands

ZV-CV with 2nd order polynomial, OLS and a polynomial based on only x_1.
For diagonal mycov, this would be exact for the first and third expectations.
sprintf("%.15f",zvcv(integrand, samples, derivatives,

options = list(polyorder = 2, regul_reg = FALSE, apriori = 1))$expectation)

ZV-CV with 1st order polynomial and OLS (exact for the first two integrands)
sprintf("%.15f",zvcv(integrand, samples, derivatives,

options = list(polyorder = 1, regul_reg = FALSE))$expectation)

ZV-CV with 2nd order polynomial and OLS (exact for all)
sprintf("%.15f",zvcv(integrand, samples, derivatives,

options = list(polyorder = 2, regul_reg = FALSE))$expectation)

ZV-CV with cross validation
myopts <- list(list(polyorder = Inf, regul_reg = FALSE),list(polyorder = Inf, nfolds = 4))
temp <- zvcv(integrand,samples,derivatives,options = myopts, folds = 2)
temp$polyorder # The chosen control variate order
temp$regul_reg # Flag for if the chosen control variate uses regularisation
Cross-val ZV-CV to choose the polynomial order and whether to perform OLS or LASSO
sprintf("%.15f",temp$expectation) # Estimate based on the chosen control variate

40 ZVCV_package

ZVCV_package Zero-Variance Control Variates

Description

This package can be used to perform post-hoc variance reduction of Monte Carlo estimators when
the derivatives of the log target are available. The main functionality is available through the fol-
lowing functions. All of these use a set of N d-dimensional samples along with the associated
derivatives of the log target. You can evaluate posterior expectations of k functions.

• zvcv: For estimating expectations using (regularised) zero-variance control variates (ZV-CV,
Mira et al, 2013; South et al, 2018). This function can also be used to choose between various
versions of ZV-CV using cross-validation.

• CF: For estimating expectations using control functionals (CF, Oates et al, 2017).

• SECF: For estimating expectations using semi-exact control functionals (SECF, South et al,
2020).

• aSECF: For estimating expectations using approximate semi-exact control functionals (aSECF,
South et al, 2020).

• CF_crossval: CF with cross-validation tuning.

• SECF_crossval: SECF with cross-validation tuning.

• aSECF_crossval: aSECF with cross-validation tuning.

ZV-CV is exact for polynomials of order at most polyorder under Gaussian targets and is fast for
large N (although setting a limit on polyorder through polyorder_max is recommended for large
N). CF is a non-parametric approach that offers better than the standard Monte Carlo convergence
rates. SECF has both a parametric and a non-parametric component and it offers the advantages of
both for an additional computational cost. The cost of SECF is reduced in aSECF using nystrom
approximations and conjugate gradient.

Helper functions

• getX: Calculates the design matrix for ZV-CV (without the column of 1’s for the intercept)

• medianTune: Calculates the median heuristic for use in e.g. the Gaussian, Matern and rational
quadratic kernels. Using the median heuristic is an alternative to cross-validation.

• K0_fn: Calculates the K0 matrix. The output of this function can be used as an argument
to CF, CF_crossval, SECF, SECF_crossval, aSECF and aSECF_crossval. The kernel matrix
is automatically computed in all of the above methods, but it is faster to calculate in advance
when using more than one of the above functions and when using any of the crossval functions.

• Phi_fn: Calculates the Phi matrix for SECF and aSECF (similar to getX but with different
arguments and it includes the column of 1’s)

• squareNorm: Gets the matrix of square norms which is needed for all kernels. Calculating this
can help to save time if you are also interested in calculating the median heuristic, handling
multiple tuning parameters or trying other kernels.

ZVCV_package 41

• nearPD: Finds the nearest symmetric positive definite matrix to the given matrix, for handling
numerical issues.

• logsumexp: Performs stable computation of the log sum of exponential (useful when handling
the sum of weights)

Evidence estimation

The following functions are used to estimate the evidence (the normalisiing constant of the poste-
rior) as described in South et al (2018). They are relevant when sequential Monte Carlo with an
annealing schedule has been used to collect the samples, and therefore are not of interest to those
who are interested in variance reduction based on vanilla MCMC.

• evidence_CTI and evidence_CTI_CF: Functions to estimate the evidence using thermody-
namic integration (TI) with ZV-CV and CF, respectively

• evidence_SMC and evidence_SMC_CF: Function to estimate the evidence using the SMC evi-
dence identity with ZV-CV and CF, respectively.

The function Expand_Temperatures can be used to adjust the temperature schedule so that it is
more (or less) strict than the original schedule of T temperatures.

Author(s)

Leah F. South

References

Mira, A., Solgi, R., & Imparato, D. (2013). Zero variance Markov chain Monte Carlo for Bayesian
estimators. Statistics and Computing, 23(5), 653-662.

South, L. F., Karvonen, T., Nemeth, C., Girolami, M. and Oates, C. J. (2020). Semi-Exact Control
Functionals From Sard’s Method. https://arxiv.org/abs/2002.00033

South, L. F., Oates, C. J., Mira, A., & Drovandi, C. (2018). Regularised zero-variance control
variates for high-dimensional variance reduction. https://arxiv.org/abs/1811.05073

See Also

Useful links:

• Report bugs at https://github.com/LeahPrice/ZVCV/issues

Examples

A real data example using ZV-CV is available at \link{VDP}.
This involves estimating posterior expectations and the evidence from SMC samples.

The remainder of this section is duplicating (albeit with a different random
seed) Figure 2a of South et al. (2020).

N_repeats <- 2 # For speed, the actual code uses 100
N_all <- 25 # For speed, the actual code uses c(10,25,50,100,250,500,1000)
sigma_list <- list(10^(-1.5),10^(-1),10^(-0.5),1,10^(0.5),10)

https://arxiv.org/abs/2002.00033
https://arxiv.org/abs/1811.05073
https://github.com/LeahPrice/ZVCV/issues

42 ZVCV_package

nfolds <- 4 # For speed, the actual code uses 10
folds <- 2 # For speed, the actual code uses 5
d <- 4

integrand_fn <- function(x){
return (1 + x[,2] + 0.1*x[,1]*x[,2]*x[,3] + sin(x[,1])*exp(-(x[,2]*x[,3])^2))

}

results <- data.frame()
for (N in N_all){

identify the largest polynomial order that can be fit without regularisation for auto ZV-CV
max_r <- 0
while (choose(d + max_r + 1,d)<((folds-1)/folds*N)){
max_r <- max_r + 1
}

MC <- ZV1 <- ZV2 <- ZVchoose <- rep(NaN,N_repeats)
CF <- SECF1 <- aSECF1 <- SECF2 <- aSECF2 <- rep(NaN,N_repeats)
CF_medHeur <- SECF1_medHeur <- aSECF1_medHeur <- rep(NaN,N_repeats)
SECF2_medHeur <- aSECF2_medHeur <- rep(NaN,N_repeats)
for (i in 1:N_repeats){

x <- matrix(rnorm(N*d),ncol=d)
u <- -x
f <- integrand_fn(x)

MC[i] <- mean(f)
ZV1[i] <- zvcv(f,x,u,options=list(polyorder=1,regul_reg=FALSE))$expectation
Checking if the sample size is large enough to accommodation a second order polynomial
if (N > choose(d+2,d)){

ZV2[i] <- zvcv(f,x,u,options=list(polyorder=2,regul_reg=FALSE))$expectation
}
myopts <- list(list(polyorder=Inf,regul_reg=FALSE,polyorder_max=max_r),

list(polyorder=Inf,nfolds=nfolds))
ZVchoose[i] <- zvcv(f,x,u,options=myopts,folds = folds)$expectation

Calculating the kernel matrix in advance for CF and SECF
K0_list <- list()
for (j in 1:length(sigma_list)){

K0_list[[j]] <- K0_fn(x,u,sigma_list[[j]],steinOrder=2,kernel_function="RQ")
}

CF[i] <- CF_crossval(f,x,u,K0_list=K0_list,folds = folds)$expectation
SECF1[i] <- SECF_crossval(f,x,u,K0_list=K0_list,folds = folds)$expectation
aSECF1[i] <- aSECF_crossval(f,x,u,steinOrder=2,kernel_function="RQ",

sigma_list=sigma_list,reltol=1e-05,folds = folds)$expectation
if (max_r>=2){
SECF2[i] <- SECF_crossval(f,x,u,polyorder=2,K0_list=K0_list,folds = folds)$expectation

aSECF2[i] <- aSECF_crossval(f,x,u,polyorder=2,steinOrder=2,kernel_function="RQ",
sigma_list=sigma_list,reltol=1e-05,folds = folds)$expectation

}

medHeur <- medianTune(x)

ZVCV_package 43

K0_medHeur <- K0_fn(x,u,medHeur,steinOrder=2,kernel_function="RQ")
CF_medHeur[i] <- CF(f,x,u,K0=K0_medHeur)$expectation
SECF1_medHeur[i] <- SECF(f,x,u,K0=K0_medHeur)$expectation
aSECF1_medHeur[i] <- aSECF(f,x,u,steinOrder=2,kernel_function="RQ",

sigma=medHeur,reltol=1e-05)$expectation
if (max_r>=2){

SECF2_medHeur[i] <- SECF(f,x,u,polyorder=2,K0=K0_medHeur)$expectation
aSECF2_medHeur[i] <- aSECF(f,x,u,polyorder=2,steinOrder=2,kernel_function="RQ",

sigma=medHeur,reltol=1e-05)$expectation
}

print(sprintf("--%d",i))
}
Adding the results to a data frame
MSE_crude <- mean((MC - 1)^2)
results <- rbind(results,data.frame(N=N, order = "1 or NA",

efficiency = 1, type = "MC"))
results <- rbind(results,data.frame(N=N, order = "1 or NA",

efficiency = MSE_crude/mean((ZV1 - 1)^2), type = "ZV"))
results <- rbind(results,data.frame(N=N, order = "2",

efficiency = MSE_crude/mean((ZV2 - 1)^2), type = "ZV"))
results <- rbind(results,data.frame(N=N, order = "1 or NA",

efficiency = MSE_crude/mean((ZVchoose - 1)^2), type = "ZVchoose"))
results <- rbind(results,data.frame(N=N, order = "1 or NA",

efficiency = MSE_crude/mean((CF - 1)^2), type = "CF"))
results <- rbind(results,data.frame(N=N, order = "1 or NA",

efficiency = MSE_crude/mean((SECF1 - 1)^2), type = "SECF"))
results <- rbind(results,data.frame(N=N, order = "1 or NA",

efficiency = MSE_crude/mean((aSECF1 - 1)^2), type = "aSECF"))
if (((folds-1)/folds*N) > choose(d+2,d)){

results <- rbind(results,data.frame(N=N, order = "2",
efficiency = MSE_crude/mean((SECF2 - 1)^2), type = "SECF"))

results <- rbind(results,data.frame(N=N, order = "2",
efficiency = MSE_crude/mean((aSECF2 - 1)^2), type = "aSECF"))

}

results <- rbind(results,data.frame(N=N, order = "1 or NA",
efficiency = MSE_crude/mean((CF_medHeur - 1)^2), type = "CF_medHeur"))

results <- rbind(results,data.frame(N=N, order = "1 or NA",
efficiency = MSE_crude/mean((SECF1_medHeur - 1)^2), type = "SECF_medHeur"))

results <- rbind(results,data.frame(N=N, order = "1 or NA",
efficiency = MSE_crude/mean((aSECF1_medHeur - 1)^2), type = "aSECF_medHeur"))

if (((folds-1)/folds*N) > choose(d+2,d)){
results <- rbind(results,data.frame(N=N, order = "2",

efficiency = MSE_crude/mean((SECF2_medHeur - 1)^2), type = "SECF_medHeur"))
results <- rbind(results,data.frame(N=N, order = "2",

efficiency = MSE_crude/mean((aSECF2_medHeur - 1)^2), type = "aSECF_medHeur"))
}
print(N)

}

Not run:

44 ZVCV_package

Plotting results where cross-validation is used for kernel methods
require(ggplot2)
require(ggthemes)
a <- ggplot(data=subset(results,!(type %in% c("CF_medHeur","SECF_medHeur",

"aSECF_medHeur","SECF_medHeur","aSECF_medHeur"))),
aes(x=N,y=efficiency,col=type,linetype=order)) + scale_color_pander() +
ggtitle("") + geom_line(size=1.5) + scale_x_log10() + scale_y_log10() +
annotation_logticks(base=10) + labs(x="N",y="Efficiency",color="Method",
linetype="Polynomial Order") + theme_minimal(base_size = 15) +
theme(legend.key.size = unit(0.5, "cm"),legend.key.width = unit(1, "cm")) +
guides(linetype = guide_legend(override.aes = list(size=1),title.position = "top"),
color = guide_legend(override.aes = list(size=1),title.position = "top"))

print(a)

Plotting results where the median heuristic is used for kernel methods
b <- ggplot(data=subset(results,!(type %in% c("CF","SECF","aSECF","SECF","aSECF"))),

aes(x=N,y=efficiency,col=type,linetype=order)) + scale_color_pander() +
ggtitle("") + geom_line(size=1.5) + scale_x_log10() + scale_y_log10() +
annotation_logticks(base=10) + labs(x="N",y="Efficiency",color="Method",
linetype="Polynomial Order") + theme_minimal(base_size = 15) +
theme(legend.key.size = unit(0.5, "cm"),legend.key.width = unit(1, "cm")) +
guides(linetype = guide_legend(override.aes = list(size=1),title.position = "top"),
color = guide_legend(override.aes = list(size=1),title.position = "top"))

print(b)

End(Not run)

Index

aSECF, 2, 3, 5, 10, 21, 27, 28, 32, 40
aSECF_crossval, 2, 5, 5, 9, 21, 40

CF, 3, 9, 10, 12, 15, 21, 27, 40
CF_crossval, 9, 12, 12, 21, 40

evidence, 15, 21, 38
evidence_CTI, 41
evidence_CTI (evidence), 15
evidence_CTI_CF, 41
evidence_CTI_CF (evidence), 15
evidence_SMC, 41
evidence_SMC (evidence), 15
evidence_SMC_CF, 41
evidence_SMC_CF (evidence), 15
Expand_Temperatures, 17, 19, 20, 41

getX, 21, 40

K0_fn, 3, 5, 10, 12, 13, 21, 25, 27, 30, 31, 34,
40

logsumexp, 24, 41

medianTune, 24, 25, 34, 40

nearPD, 25, 41

Phi_fn, 21, 26, 40

SECF, 2, 3, 10, 21, 27, 27, 30, 33, 40
SECF_crossval, 21, 27, 30, 30, 40
squareNorm, 3, 7, 22, 24, 33, 40

VDP, 19, 21, 34, 38

ZVCV, 5, 9, 12, 15, 19, 21, 24, 30, 33, 35, 38
ZVCV (ZVCV_package), 40
zvcv, 36, 40
ZVCV-package (ZVCV_package), 40
ZVCV_package, 40

45

	aSECF
	aSECF_crossval
	CF
	CF_crossval
	evidence
	Expand_Temperatures
	getX
	K0_fn
	logsumexp
	medianTune
	nearPD
	Phi_fn
	SECF
	SECF_crossval
	squareNorm
	VDP
	zvcv
	ZVCV_package
	Index

