Package 'grandR'

January 22, 2025

Version 0.2.6

Title Comprehensive Analysis of Nucleotide Conversion Sequencing Data

Description Nucleotide conversion sequencing experiments have been developed to add a temporal dimension to RNA-seq and single-cell RNA-seq. Such experiments require specialized tools for primary processing such as GRAND-SLAM, (see 'Jürges et al' [<doi:10.1093/bioinformatics/bty256>](https://doi.org/10.1093/bioinformatics/bty256)) and specialized tools for downstream analyses. 'grandR' provides a comprehensive toolbox for quality control, kinetic modeling, differential gene expression analysis and visualization of such data.

Author Florian Erhard [aut, cre] (<<https://orcid.org/0000-0002-3574-6983>>), Teresa Rummel [ctb], Lygeri Sakellaridi [ctb],

Kevin Berg [ctb]

Maintainer Florian Erhard <Florian.Erhard@informatik.uni-regensburg.de>

License Apache License (>= 2)

Encoding UTF-8

URL <https://github.com/erhard-lab/grandR>

BugReports <https://github.com/erhard-lab/grandR/issues>

Depends $R (= 3.5.0)$

- Imports stats, Matrix, rlang, ggplot2, grDevices, patchwork, RCurl, plyr, parallel, reshape2, MASS, scales, cowplot, minpack.lm, lfc, labeling, methods, utils, numDeriv
- Suggests knitr, rmarkdown, circlize, Seurat, ComplexHeatmap, ggrepel, DESeq2, S4Vectors, data.table, clusterProfiler, biomaRt, msigdbr, fgsea, rclipboard, cubature, DT, shinyjs, shinyjqui, RColorBrewer, gsl, htmltools, matrixStats, monocle, VGAM, quantreg, graphics, shiny, ggrastr, viridisLite, deSolve

RoxygenNote 7.3.2

VignetteBuilder knitr

NeedsCompilation yes

Repository CRAN

Date/Publication 2025-01-22 22:10:02 UTC

Contents

Index 2003 **[145](#page-144-0)**

Analyses *Analysis table functions*

Description

Get analysis names and add or remove analyses

```
Analyses(data, description = FALSE)
AddAnalysis(
  data,
 name,
```
Analyses 5

```
table,
 by = NULL,warn.present = TRUE,
 warn.genes = TRUE
)
```
DropAnalysis(data, pattern = NULL)

Arguments

Details

The columns in the analysis tables are defined by the analysis method (e.g. "Synthesis","Half-life" and "rmse" by FitKinetics). A call to an analysis function might produce more than one table (e.g. because kinetic modeling is done for multiple [Conditions](#page-22-1)). In this case, AddAnalysisTable produces more than one analysis table.

AddAnalysis is in most cases not called directly by the user, but is used by analysis methods to add their final result to a grandR object (e.g., [FitKinetics,](#page-46-1)[LikelihoodRatioTest](#page-80-1)[,LFC,](#page-78-1)[PairwiseDESeq2\)](#page-88-1).

If it is called by the user (e.g. to add analysis results from external tools or from the literature, see pulse-chase vignette), then the user must make sure that either the rownames of the given table can be recognized as genes (names or symbols), or that there is a column in the table giving genes (this must be specified as the "by" parameter). The table does neither have to be sorted the same way the grandR object is, nor does it have to be complete. AddAnalysis will take care or reordering and inserting NA for missing genes (and it will issue a warning in case of missing genes).

Value

Either the analysis names or a grandR data with added/removed slots or the metatable to be used with AddAnalysis

Functions

- Analyses(): Obtain the analyses names
- AddAnalysis(): Add an analysis table
- DropAnalysis(): Remove analyses from the grandR object

See Also

[Slots,](#page-137-1) [DefaultSlot](#page-27-1)

Examples

```
sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
                  design=c("Cell",Design$dur.4sU,Design$Replicate))
```
sars <- Normalize(sars) # default behavior is to update the default slot; this calls AddSlot Slots(sars) DefaultSlot(sars) sars <- DropSlot(sars,"norm") sars **A** note that the default slot reverted to count

AnalyzeGeneSets *Gene set analysis*

Description

Perform gene-set enrichment and overrepresentation analysis (GSEA/ORA) for a specified set of genes

Usage

```
AnalyzeGeneSets(
  data,
  analysis = Analyses(data)[1],
  criteria = LFC,
  genes = NULL,
  species = NULL,
  category = NULL,
  subcategory = NULL,
  verbose = TRUE,
  minSize = 10,
 maxSize = 500,
 process.genesets = NULL
)
```
Arguments

ApplyContrasts 7

a function to process geneset names; can be NULL (see details)

Details

The analysis parameter (just like for [GetAnalysisTable](#page-63-1) can be a regex (that will be matched against all available analysis names). It can also be a vector (of regexes). Be careful with this, if more than one table e.g. with column LFC ends up in here, only the first is used (if criteria=LFC).

The criteria parameter can be used to define how analyses are performed. The criteria must be an expression that either evaluates into a numeric or logical vector. In the first case, GSEA is performed, in the latter it is ORA. The columns of the given analysis table(s) can be used to build this expression.

If no species is given, a very simple automatic inference is done, which will only work when having human or mouse ENSEMBL identifiers as gene ids.

The process.genesets parameters can be function that takes the character vector representing the names of all gene sets. The original names are replaced by the return value of this function.

Value

the clusterprofile object representing the analysis results.

See Also

[GSEA,enricher,msigdbr](#page-0-0)

Examples

See the differential-expression vignette!

ApplyContrasts *Apply a function over contrasts*

Description

Helper function to run many pairwise comparisons using a contrast matrix

Usage

```
ApplyContrasts(
  data,
  analysis,
  name.prefix,
  contrasts,
  mode.slot = NULL,
  genes = NULL,
  verbose = FALSE,
  FUN,
  ...
\mathcal{L}
```
Arguments

Details

To implement most pairwise analyses, you only have to define FUN; see the source code of [LFC](#page-78-1) for an example!

Value

a new grandR object with added analysis tables (that were returned by FUN)

See Also

[LFC,](#page-78-1)[PairwiseDESeq2](#page-88-1)[,GetContrasts](#page-64-1)

as.Seurat.grandR *Create Seurat object from a grandR object*

Description

Create Seurat object from a grandR object

Usage

```
as.Seurat.grandR(
  data,
  modalities = c(RNA = "total", newRNA = "new"),hls = NULL,time = NULL.
  mode = c("assay", "cells", "genes", "list")
)
```
Arguments

Details

Modalities must be a named character vector. The only allowed elements are "total" (total counts), "new" (new counts), "old" (old counts), "prev" (estimated previous time point counts). The names of the elements are further used depending on mode.

To compute the previous time point counts, a vector of half lives and the labeling time is required. The half-lives must be given in the correct order (same as in the grandR object).

The mode parameter defines how the defined modalities are represented in the Seurat object. "assay" means that for each modality, the Seurat object will contain an assay (named according to the corresponding name in modalities). "cells" means that cells will be copied for each modality and cell names are prefixed by the corresponding name in modalities (i.e., if the grandR object has 1000 cells named c1,...,c1000, and modalities=c(RNA="total",newRNA="new"), the Seurat object will have 2000 cells named RNA.c1,...,RNA.c1000,newRNA.c1,...,newRNA.c1000). "genes" means that genes fill be copied for each modality and gene names are prefixed by the corresponding name in modalities. "list" means that instead of a single Seurat object, a list of Seurat objects is returned.

Value

a Seurat object

CalibrateEffectiveLabelingTimeKineticFit

Uses the kinetic model to calibrate the effective labeling time.

Description

The NTRs of each sample might be systematically too small (or large). This function identifies such systematic deviations and computes labeling durations without systematic deviations.

Usage

```
CalibrateEffectiveLabelingTimeKineticFit(
  data,
  slot = DefaultSlot(data),
  time = Design$dur.4sU,
  time.name = "calibrated_time",
  time.conf.name = "calibrated_time_conf",
 CI.size = 0.95,
  compute.confidence = FALSE,
  n.estimate = 1000,
 n.iter = 10000,
  verbose = FALSE,
  ...
\mathcal{L}
```
Arguments

Details

There are many reasons why the nominal (wall-clock) time of 4sU labeling might be distinct from the effective labeling time. Most importantly, 4sU needs some time to enter the cells and get activated to be ready for transcription. Therefore, the 4sU concentration (relative to the U concentration) rises, based on observations, over the timeframe of 1-2h. GRAND-SLAM assumes a constant 4sU incorporation rate, i.e. specifically new RNA made early during the labeling is underestimated. This, especially for short labeling (<2h), the effective labeling duration might be significantly less than the nominal labeling duration.

It is impossible to obtain a perfect absolute calibration, i.e. all durations might be off by a factor.

Value

A new grandR object containing the calibrated durations in the column data annotation

See Also

[FitKinetics](#page-46-1)

CalibrateEffectiveLabelingTimeMatchHalflives *Calibrate the effective labeling time by matching half-lives to a .reference*

Description

The NTRs of each sample might be systematically too small (or large). This function identifies such systematic deviations and computes labeling durations without systematic deviations.

```
CalibrateEffectiveLabelingTimeMatchHalflives(
  data,
  reference.halflives = NULL,
  reference.columns = NULL,
  slot = DefaultSlot(data),
  time.labeling = Design$dur.4sU,
  time.experiment = NULL,
  time.name = "calibrated_time",
  n.estimate = 1000,
  verbose = FALSE
)
```
Arguments

Value

A new grandR object containing the calibrated durations in the column data annotation

See Also

[FitKineticsGeneSnapshot](#page-54-1)

check.analysis *Internal functions to check for a valid analysis or slot names.*

Description

Internal functions to check for a valid analysis or slot names.

Usage

```
check.analysis(data, analyses, regex)
```

```
check.slot(data, slot, allow.ntr = TRUE)
```

```
check.mode.slot(data, mode.slot, allow.ntr = TRUE)
```
Arguments

ClassifyGenes 13

Details

A mode.slot is a mode followed by a dot followed by a slot name, or just a slot name. A mode is either *total*, *new* or *old*.

Value

Whether or not the given name is valid and unique for the grandR object

ClassifyGenes *Build the type column for the gene info table.*

Description

Returns a function to be used as classify.genes parameter for [ReadGRAND](#page-121-1).

Usage

```
ClassifyGenes(
  ...,
 use.default = TRUE,
 drop.levels = TRUE,
  name.unknown = "Unknown"
)
```
Arguments

Details

This function returns a function. Usually, you do not use it yourself but ClassifyGenes is usually as classify.genes parameter for [ReadGRAND](#page-121-1) to build the *Type* column in the [GeneInfo](#page-60-1) table. See the example to see how to use it directly.

Each ... parameter must be a function that receives the gene info table and must return a logical vector, indicating for each row in the gene info table, whether it matches to a specific type. The name of the parameter is used as the type name.

If a gene matches to multiple type, the first function returning TRUE for a row in the table is used.

By default, this function will recognize mitochondrial genes (MT prefix of the gene symbol), ERCC spike-ins, and Ensembl gene identifiers (which it will call "cellular"). These three are the last functions to be checked (in case a user defined type via ...) also matches to, e.g., an Ensembl gene).

Value

a function that takes the original [GeneInfo](#page-60-1) table and adds the Type column

See Also

[ReadGRAND](#page-121-1)

Examples

```
viral.genes <- c('ORF3a','E','M','ORF6','ORF7a','ORF7b','ORF8','N','ORF10','ORF1ab','S')
sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
                  design=c("Cell",Design$dur.4sU,Design$Replicate),
                  classify.genes=ClassifyGenes(`SARS-CoV-2`=
                             function(gene.info) gene.info$Symbol %in% viral.genes),
                  verbose=TRUE)
table(GeneInfo(sars)$Type)
```
fun<-ClassifyGenes(viral=function(gene.info) gene.info\$Symbol %in% viral.genes) table(fun(GeneInfo(sars)))

Coldata *Get the column annotation table or add additional columns to it*

Description

The columns of a grandR object are samples or cells. The column annotation table contains meta information for the columns of a grandR object. When loaded from the GRAND-SLAM output, this this constructed from the sample/cell names by [MakeColdata](#page-82-1)

Usage

```
Coldata(data, column = NULL, value = NULL)
Coldata(data, column) <- value
```
Arguments

Compute Absolute 15

Details

A new column can be added either by data<-Coldata(data,name,values) or by Coldata(data,name)<-values.

Several new columns can be added by data<-Coldata(data,df) where df is either a data frame or matrix.

The column named *Condition* has a special meaning in this table: It is used by several functions to stratify the columns during the analysis (e.g. to estimate separate kinetic parameters with [FitKinetics](#page-46-1) or it is used as covariate for [LFC](#page-78-1) or [LikelihoodRatioTest](#page-80-1)). For that reason there are special functions to set and get this column.

Value

Either the column annotation table or a new grandR object having an updated column annotation table

See Also

[GeneInfo,](#page-60-1) [MakeColdata,](#page-82-1) [Condition](#page-22-1)

Examples

```
sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
                  design=c("Cell",Design$dur.4sU,Design$Replicate))
head(GeneInfo(sars))
```

```
GeneInfo(sars,"LengthCategory")<-cut(GeneInfo(sars)$Length,c(0,1500,2500,Inf),
                                          labels=c("Short","Medium","Long"))
table(GeneInfo(sars)$LengthCategory)
```
ComputeAbsolute *Compute absolute expression using ERCC spike ins*

Description

Compute absolute expression in a grandR object and puts the normalized data into a new slot

```
ComputeAbsolute(
  data,
 dilution = 40000.
 volume = 10,
  slot = "tpm",name = "absolute"
)
```
Arguments

Value

a new grandR object with an additional slot

See Also

[relative2abs](#page-0-0)

ComputeColumnStatistics

Compute statistics for all columns (i.e. samples or cells)

Description

Compute statistics for all columns (i.e. samples or cells)

Usage

```
ComputeColumnStatistics(data, verbose = TRUE)
```
Arguments

Value

a new grandR object containing additional columns in the [Coldata](#page-13-1) table:

- p.conv.X: the T-to-C mismatch frequency in the given ("X") subread category
- percent.new: new overall percentage of new RNA
- total.reads: the total number of reads (or UMIs, if UMIs were sequences)
- total.genes: the total number of genes detected
- percentage per type: the percentage (up to 100!) of the counts of each type in the GeneInfo

ComputeExpressionPercentage

Expression percentage computation

Description

Compute the expression percentage for a particular set of genes.

Usage

```
ComputeExpressionPercentage(
  data,
 name,
  genes = Genes(data),
 mode.slot = DefaultSlot(data),
  genes.total = Genes(data),
 mode.slot.total = mode.slot,
 multiply.by.100 = TRUE
)
```
Arguments

Details

The percentages are computed for the given genes with the given mode.slot, w.r.t the mode.slot.total from the genes.total. Thus to compute the percentage of mitochondrial gene expression in total RNA (unnormalized), only set genes=Genes(data,"^MT-",regex=TRUE). To compute the percentage of new RNA among all genes, set mode.slot="new.count" and mode.slot.total="count".

Genes can be referred to by their names, symbols, row numbers in the gene table, or a logical vector referring to the gene table rows.

To refer to data slots, the mode.slot syntax can be used: Each name is either a data slot, or one of (new,old,total) followed by a dot followed by a slot. For new or old, the data slot value is multiplied by ntr or 1-ntr. This can be used e.g. to filter by *new counts*.

Value

a new grandR object having the expression percentage in its Coldata table

See Also

[Coldata](#page-13-1)

ComputeNonConstantParam

Compute and evaluate functions for non constant rates

Description

For simplicity, non constant rates here have the following form \$o+f*t^e\$.

Usage

```
ComputeNonConstantParam(start, end = start, exponent = 1, end.time = 2)
```

```
EvaluateNonConstantParam(t, param)
```
Arguments

Value

data frame containing either the parameters o, f and e (ComputeNonConstantParam), or containing the value of \$o+f*t^e\$ for the given times (EvaluateNonConstantParam).

Functions

- ComputeNonConstantParam(): compute a data frame containing the parameters for non constant rates
- EvaluateNonConstantParam(): compute a data frame containing the rates for the given parameter set (computed from ComputeNonConstantParam)

ComputeNtrPosteriorQuantile

Compute NTR quantiles

Description

Computes quantiles from the NTR posterior and puts them into a new slot

Usage

```
ComputeNtrPosteriorQuantile(data, quantile, name)
ComputeNtrCI(data, CI.size = 0.95, name.lower = "lower", name.upper = "upper")
ComputeNtrPosteriorLower(data, CI.size = 0.95, name = "lower")
ComputeNtrPosteriorUpper(data, CI.size = 0.95, name = "upper")
```
Arguments

Details

The NTR posterior distribution can be approximated by a beta distribution. ComputeNtrPosteriorQuantile computes any quantile from this Beta approximation ComputeNtrPosteriorLower computes the (1-CI.size)/2 quantile ComputeNtrPosteriorUpper computes the 1-(1-CI.size)/2 quantile ComputeNtrCI computes both of these quantiles.

Value

a new grandR object containing an additional slot

Description

NTRs can be computed from given new and total counts.

Usage

```
ComputePseudoNtr(
  data,
  new.slot,
  total.slot = DefaultSlot(data),
  detection.rate = 1
)
```
Arguments

Details

To correct for some bias, a detection rate (as suggested by Cao et al., Nature Biotech 2020) should be provided. This detection rate defines, how much new RNA is detected on average using the T-to-C mismatch reads.

Value

a new grandR object

ComputeSteadyStateHalfLives

Steady state half-lives for each sample

Description

Transforms each NTR to a half-life value (assuming steady state gene expression) and puts them into a new slot or adds an analysis

ComputeSummaryStatistics 21

Usage

```
ComputeSteadyStateHalfLives(
  data,
  time = Design$dur.4sU,
  name = "HL",columns = NULL,
  max.HL = 48,
 CI.size = 0.95,compute.CI = FALSE,
  as.analysis = FALSE
)
```
Arguments

Details

An NTR value p can be transformed into an RNA half-live using the equation $log(2)/(-1/t[*]log(1-p))$ This is described in our GRAND-SLAM paper (Juerges et al., Bioinformatics 2018).

Columns can be given as a logical, integer or character vector representing a selection of the columns (samples or cells). The expression is evaluated in an environment havin the [Coldata](#page-13-1), i.e. you can use names of [Coldata](#page-13-1) as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

Value

a new grandR object with an additional slot or analysis

ComputeSummaryStatistics

Compute summary statistics

Description

Summary statistics are computed for all samples (or cells).

Usage

```
ComputeSummaryStatistics(
  data,
 pairs = Findno4sUPairs(data),
  coldata = FALSE,
  do.bootstrap = FALSE,
  seed = 1337
)
```
Arguments

Value

a table of summary statistics including:

- Mean LFC: the mean absolute log2 fold change of each sample vs the corresponding 4sU naive sample
- 4sU dropout: the estimated 4sU dropout percentage
- p.conv: The 4sU incorporation frequency estimated by GRAND-SLAM
- Frction labelled: the global NTR

ComputeTotalExpression

Total expression computation

Description

Compute the total expression for a particular set of genes.

```
ComputeTotalExpression(
  data,
  name,
  genes = Genes(data),
  mode.slot = DefaultSlot(data)
\mathcal{E}
```


Condition 23

Arguments

Details

Genes can be referred to by their names, symbols, row numbers in the gene table, or a logical vector referring to the gene table rows.

To refer to data slots, the mode.slot syntax can be used: Each name is either a data slot, or one of (new,old,total) followed by a dot followed by a slot. For new or old, the data slot value is multiplied by ntr or 1-ntr. This can be used e.g. to filter by *new counts*.

Value

a new grandR object having the total expression in its Coldata table

See Also

[Coldata](#page-13-1)

Condition *Get or set the conditions in the column annotation table.*

Description

The conditions column from the column annotation table is used by several functions to stratify the columns (samples or cells) during the analysis (e.g. to estimate separate kinetic parameters with [FitKinetics](#page-46-1) or it is used as covariate for [LFC](#page-78-1) or [LikelihoodRatioTest](#page-80-1)). For that reason there are special functions to set and get this column.

Usage

Condition(data, value = NULL)

Condition(data) <- value

Arguments

Details

If the conditions column does not exist (or has been set to NULL), all analysis functions will work without stratifying samples or cells. The condition can also be set up directly when loading data, by using *Condition* as one of the design vector entries (see below).

The condition can be set either by data <- Condition(data, names) or by Condition(data) <- names.

Value

Either the values of the condition column for Condition(data) or the grandR data object having the new condition column

See Also

[Coldata](#page-13-1)

Examples

```
sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
                 design=c("Cell",Design$dur.4sU,Design$Replicate))
```

```
Condition(sars)
Condition(sars) <- c("Cell","duration.4sU.original")
Condition(sars)
sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
                  design=c("Condition",Design$dur.4sU,Design$Replicate))
Condition(sars)
```
correctdropout *Correct for 4sU dropout*

Description

For several potential reasons, a sample specific percentage of reads from labelled RNA might be lost. This can be corrected for by increasing the amount of labelled RNA (see details).

Usage

```
Correct4sUDropoutHLFactor(
  data,
  pairs = Findno4sUPairs(data),
  factors = Estimate4sUDropoutPercentage(data, pairs = pairs, ...),...
)
```
Correct4sUDropoutHLSpline(data, pairs = Findno4sUPairs(data), spline.df = 15)

CreateConvolutionTable 25

Arguments

Details

The factor based correction approach requires estimates of the 4sU dropout percentage d. Labelled RNA is multiplied by 1/(1-d), and total count and NTRs are adapted accordingly. alpha and beta are also adapted such that their sum is maintained, but the mean of the corresponding beta function is the new NTR. All other slots are treated to be expression estimates (and are adapted accordingly).

The spline approach uses quantile regression to fit a smoothing spline to the 4sU dropout rank plot, which is then used to correct labelled RNA.

Value

a new grandR object that is corrected for 4sU dropout

See Also

[Estimate4sUDropoutPercentage,](#page-34-1)[ComputeSummaryStatistics](#page-20-1)

CreateConvolutionTable

Create Convolution Table from a Seurat object

Description

Create Convolution Table from a Seurat object

Usage

```
CreateConvolutionTable(data, n.neighbors = 20)
```
Arguments

Details

This function returns a table which can be used as input for GRAND3. Note that a data set contatining multiple time points should be split before convolution.

Value

a table with two columns "Cell" and "Pseudobulk"

CreatePdfs *Convencience methods for creating QC pdfs*

Description

These methods are invoked by GRAND3 to generate pdfs.

Usage

```
CreatePdfs(data, labels = NULL, estimators = NULL)
CreatePdfsParameters(data, labels = NULL, estimators = NULL)
CreatePdfsComparison(data, labels = NULL, estimators = NULL)
CreatePdfsProfiles(data, labels = NULL, estimators = NULL)
```
Arguments

Functions

- CreatePdfs(): Create all pdfs
- CreatePdfsParameters(): Create pdfs visualizing the estimated parameters
- CreatePdfsComparison(): Create pdfs comparing the estimated parameters
- CreatePdfsProfiles(): Create pdfs visualizing the profile likelihoods

CreatePseudobulkTable *Create Pseudobulk Table from a Seurat object*

Description

Create Pseudobulk Table from a Seurat object

Usage

```
CreatePseudobulkTable(
  data,
 name.column = "Name",
 pseudobulk.column = "Condition"
)
```
Arguments

Details

This function returns a table which can be used as input for GRAND3

Value

a table with two columns "Cell" and "Pseudobulk"

data.apply *Internal function to apply functions to all slots etc.*

Description

Internal function to apply functions to all slots etc.

```
data.apply(data, fun, fun.gene.info = NULL, fun.coldata = NULL, ...)
```
Arguments

Details

The additional parameters are provided to each of the functions.

Value

A new grandR object

DefaultSlot *Get or set the default slot for a grandR object.*

Description

The default slot is used by default by many functions including [GetData](#page-66-1),[GetTable](#page-73-1) or [FitKinetics](#page-46-1)

Usage

DefaultSlot(data, value = NULL)

DefaultSlot(data) <- value

Arguments

Details

The default slot can be set either by data<-DefaultSlot(data,"norm") or by DefaultSlot(data)<-"norm".

Value

Either the name of the default slot for DefaultSlot(data) or the grandR data object having the new default slot

See Also

[Slots](#page-137-1)

Defer 29

Examples

```
sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
                 design=c("Cell",Design$dur.4sU,Design$Replicate))
DefaultSlot(sars)
sars <- Normalize(sars) # default behavior is to update the default slot
DefaultSlot(sars)
DefaultSlot(sars)="count"
```


Defer *Defer calling a function*

Description

This generates a function with one mandatory parameter (and additional optional parameters) that, when called, (i) also receives the parameters given when calling Defer, and (ii) after calling it each element of the add list is appended by +. When no optional parameters are given, the result is cached.

Usage

 $Defer$ (FUN, ..., add = NULL, cache = TRUE, width.height = NULL)

Arguments

Details

The following expressions are very similar: f <- function(d) Heavy.function(d) and f <- Defer(Heavy.function). In both cases, you get a function f that you can call for some d, which in turn calls Heavy. function. The only difference is that in the second case, the result is cached: Heavy. function is called only once when first calling f, if f is called a second time, the previous result is returned. This makes sense if the parameter d is constant (like a grandR object) and if Heavy.function is deterministic.

If additional parameters are provided to f, caching is disabled. If any of these additional parameters has the same name as the parameters given to Defer(), the parameters given to Defer() are overwritten. Be careful if Heavy. function is not deterministic (see examples).

Use case scenario: You want to produce a heatmap from a grandR object to be used as plot. static in the shiny web interface. [PlotHeatmap](#page-99-1) takes some time, and the resulting object is pretty large in memory. Saving the heatmap object to disk is very inefficient (the Rdata file will be huge, especially with many heatmaps). Deferring the call without caching also is bad, because whenever the user clicks onto the heatmap, it is regenerated.

Value

a function that can be called

Examples

```
Heavy.function <- function(data) rnorm(5,mean=data)
f1=Defer(Heavy.function)
f2=function(d) Heavy.function(d)
f2(4)
f2(4) # these are not equal, as rnorm is called twice
f1(4)
f1(4) # these are equal, as the result of rnorm is cached
```
density2d *Density estimation in 2d*

Description

Estimate point densities on a regular grid for.

Usage

```
density2d(x, y, facet = NULL, n = 100, margin = "n")
```
Arguments

Value

a density value for each point

Description

Compute the delta BIC for a list of potential models

Usage

```
DESeq2BIC(
  data,
  name = "BIC",mode = "total",
  normalization = mode,
  formulas = list(Condition = \simCondition, Background = \sim1),
  no4sU = FALSE,columns = NULL,
  verbose = FALSE
\mathcal{E}
```
Arguments

Details

DESeq2 by default performs size factor normalization. When computing differential expression of new RNA, it might be sensible to normalize w.r.t. to total RNA, i.e. use the size factors computed from total RNA instead of computed from new RNA. This can be accomplished by setting mode to "new", and normalization to "total"!

Value

a new grandR object including a new analysis table. The columns of the new analysis table are named as <name in list>.dBIC

Description

These predefined names mainly are implemented here to harmonize analyses. It is good practise to use these names if sensible.

Usage

Design

Format

An object of class list of length 11.

DesignSemantics *Build the design semantics list*

Description

This is used to add additional columns to the [Coldata](#page-13-1) table by giving additional semantics to existing columns.

Usage

DesignSemantics(...)

Arguments

... named parameter list of functions (see details)

Details

DesignSemantics returns a list of functions that is supposed to be used as semantics parameter when calling [MakeColdata](#page-82-1). For each design vector element matching a name of this list the corre-sponding function is called by [MakeColdata](#page-82-1) to add additional columns.

Each function takes two parameters, the first being the original column in the Coldata table column, the second being its name.

Semantics.time is such a predefined function: Contents such as 3h or 30min are converted into a numerical value (in hours), and no4sU is converted into 0.

Semantics.concentration is such a predefined function: Contents such as 200uM or 1mM are converted into a numerical value (in uM), and no4sU is converted into 0.

By default, Semantics.time is used for the names duration.4sU and Experimental.time, and Semantics.concentration is used for concentration.4sU

dropout 33

Value

a named list; the names should correspond to column names in the [Coldata](#page-13-1) table, and the values are functions to add semantics to this table

See Also

[MakeColdata](#page-82-1)

Semantics.time(c("5h","30min","no4sU"),"Test")

Examples

```
myfun <- function(s,name) {
       r<-Semantics.time(s,name)
       cbind(r,data.frame(hpi=paste0(r$duration.4sU+3,"h")))
}
sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
                  design=function(names)
                    MakeColdata(names,c("Cell",Design$dur.4sU,Design$Replicate),
                  semantics=DesignSemantics(duration.4sU=myfun)),
                  verbose=TRUE)
Coldata(sars)
```


Perform 4sU dropout tests

Description

Testing for RNA dropout of a 4sU sample is performed by comparing half-lives or NTR ranks against the log2 fold change of the 4sU sample vs equivalent no4sU samples.

```
Plot4sUDropoutRankAll(data, pairs = Findno4sUPairs(data), ...)
Plot4sUDropoutAll(data, pairs = Findno4sUPairs(data), ...)
Plot4sUDropoutDeferAll(data, pairs = NULL, ...)
Plot4sUDropoutRankDeferAll(data, pairs = NULL, ...)
Plot4sUDropoutRank(
  data,
 w4sU,
  no4sU = Findno4sUPairs(data)[[w4sU]],
 ntr = w4sU,
```
34 dropout

```
ylim = NULL,
  LFC.fun = lfc::PsiLFC,
  slot = "count",correction = 1,
  label.corr = TRUE,
  return.corr = FALSE,
  boxplot.bins = 10,
  title = w4sU,
  size = 1.5,
  invert.ranks = FALSE
\mathcal{L}Plot4sUDropout(
  data,
  w4sU,
  no4sU = Findno4sUPairs(data)[[w4sU]],
  ntr = w4sU,ylim = NULL,
  LFC.fun = lfc::PsiLFC,
  slot = "count",hl.quantile = 0.8,
  h1 = NULL,correction = 1,
  label.corr = FALSE,
  return.corr = FALSE,
  title = w4sU,
  size = 1.5,
  color.by.ntr = FALSE
\mathcal{L}
```
Arguments

dropoutpercent 35

Details

The deferred versions are useful to be used in conjunction with [ServeGrandR](#page-128-1) plot.static. Their implementation make sure that they are lightweight, i.e. when saving the returned function to an Rdata file, the grandR object is not stored.

Value

either a ggplot object, a list of ggplot objects, or a list of deferred functions for plotting

See Also

[Findno4sUPairs](#page-43-1)[,Defer](#page-28-1)

dropoutpercent *Estimate 4sU dropout percentages*

Description

For several potential reasons, a sample specific percentage of reads from labelled RNA might be lost. This percentage can be estimated from data of this sample and an equivalent 4sU naive control (see details).

```
Estimate4sUDropoutPercentage(data, pairs = Findno4sUPairs(data), ...)
```

```
Estimate4sUDropoutPercentageForSample(
  data,
 w4sU,
 no4sU,
  ntr = w4sU,
 LFC.fun = lfc::PsiLFC,
  type = c("spearman", "quantreg", "linear", "lowess"),
  bootstrap = FALSE
)
```
Arguments

Details

The percentage of 4sU dropout is estimated by numerical optimization of the factor f that has to be multiplied with the NTR to mitigate the effect of 4sU dropout. The exact objective function depends on the type parameter:

- spearman: f is estimated such that the spearman correlation coefficient of the log2 fold change 4sU/no4sU vs the ntr rank is 0
- quantreg: f is estimated such that the slope of a median regression with the the ntr rank as independent variable and the log2 fold change 4sU/no4sU as dependent variable is 0
- linear: f is estimated such that the slope of a linear regression with the the ntr rank as independent variable and the log2 fold change 4sU/no4sU as dependent variable is 0
- lowess: f is estimated by minimizing the sum-of-squares of the residuals from a lowess regression with the the ntr rank as independent variable and the log2 fold change 4sU/no4sU as dependent variable is 0

Once f is computed the percentage of 4sU dropout is f/(f+1).

Value

the percentage of 4sU dropout for a single sample (Estimate4sUDropoutPercentageForSample) or all samples (Estimate4sUDropoutPercentage)

See Also

[Correct4sUDropoutHLFactor,](#page-23-1)[ComputeSummaryStatistics](#page-20-1)
estimate.dispersion *Estimate dispersion parameters for a count matrix using DESeq2*

Description

Estimate dispersion parameters for a count matrix using DESeq2

Usage

```
estimate.dispersion(ss)
```
Arguments

ss the count matrix

Value

a vector of dispersion parameters (to be used as size=1/dispersion for Xnbinom functions)

EstimateRegulation *Estimate regulation from snapshot experiments*

Description

Compute the posterior log2 fold change distributions of RNA synthesis and degradation

Usage

```
EstimateRegulation(
  data,
  name.prefix = "Regulation",
  contrasts,
  reference.columns = NULL,
  slot = DefaultSlot(data),
  time.labeling = Design$dur.4sU,
  time.experiment = NULL,
  ROPE.max.log2FC = 0.25,
  sample.f0.in.ss = TRUE,
 N = 10000,
 N.max = N * 10,
  CI.size = 0.95,
  seed = 1337,
  dispersion = NULL,
  sample.level = 2,
  correct.labeling = FALSE,
  verbose = FALSE
)
```
Arguments

Details

The kinetic parameters s and d are computed using [TransformSnapshot.](#page-141-0) For that, the sample either must be in steady state (this is the case if defined in the reference.columns matrix), or if the levels at an earlier time point are known from separate samples, so called temporal reference samples. Thus, if s and d are estimated for a set of samples x_1,...,x_k (that must be from the same time point t), we need to find (i) the corresponding temporal reference samples from time t0, and (ii) the time difference between t and t0.

EstimateRegulation 39

The temporal reference samples are identified by the reference.columns matrix. This is a square matrix of logicals, rows and columns correspond to all samples and TRUE indicates that the row sample is a temporal reference of the columns sample. This time point is defined by time. experiment. If time.experiment is NULL, then the labeling time of the A or B samples is used (e.g. useful if labeling was started concomitantly with the perturbation, and the steady state samples are unperturbed samples).

By default, the hierarchical Bayesian model is estimated. If sample.level = 0, the NTRs are sampled from a beta distribution that approximates the mixture of betas from the replicate samples. If sample.level $= 1$, only the first level from the hierarchical model is sampled (corresponding to the uncertainty of estimating the biological variability). If sample. level $= 2$, the first and second levels are estimated (corresponding to the full hierarchical model).

if N is set to 0, then no sampling from the posterior is performed, but the transformed MAP estimates are returned

Value

a new grandR object including a new analysis table. The columns of the new analysis table are

See Also

[FitKineticsGeneSnapshot,](#page-54-0)[FitKineticsSnapshot](#page-56-0)

Examples

```
banp <- ReadGRAND(system.file("extdata", "BANP.tsv.gz", package = "grandR"),
          design=c("Cell","Experimental.time","Genotype",
                      Design$dur.4sU,Design$has.4sU,Design$Replicate))
contrasts <- GetContrasts(banp,contrast=c("Experimental.time.original","0h"),name.format="$A")
reference.columns <- FindReferences(banp,reference= Experimental.time==0)
```

```
banp <- EstimateRegulation(banp,"Regulation",
                           contrasts=contrasts,
                           reference.columns=reference.columns,
                           verbose=TRUE,
                           time.experiment = "Experimental.time",
                           N=0, # don't sample in the example
                          dispersion=0.1) # don't estimate dispersion in the example
head(GetAnalysisTable(banp))
```
f.nonconst *Function to compute the abundance of new or old RNA at time t for non-constant rates.*

Description

The standard mass action kinetics model of gene expression arises from the differential equation $df/dt = s(t) - d(t) f(t)$, with s(t) being the synthesis rate at time t, d(t) the degradation rate at time t and $f0 = f(0)$ (the abundance at time 0). Here, both s and d have the following form $s(t) = so + sf \cdot t^{se}.$

Usage

f.nonconst(t, f0, s, d)

Arguments

Details

Both rates can be either (i) a single number (constant rate), (ii) a data frame with names "offset", "factor" and "exponent" (for linear functions, see [ComputeNonConstantParam;](#page-17-0) only one row allowed) or (iii) a unary function time->rate. Functions

Value

the RNA abundance at time t

See Also

[f.nonconst.linear](#page-40-0)

f.nonconst.linear *Function to compute the abundance of new or old RNA at time t for non-constant rates.*

Description

The standard mass action kinetics model of gene expression arises from the differential equation $df/dt = s(t) - d(t)f(t)$, with s(t) being the synthesis rate at time t, d(t) the degradation rate at time t and $f0 = f(0)$ (the abundance at time 0). Here, both s and d have the following form $s(t) = so + sf \cdot t^{se}.$

Usage

f.nonconst.linear(t, f0, so, sf, se, do, df, de)

Arguments

Value

the RNA abundance at time t

See Also

[f.nonconst](#page-39-0)

Description

The standard mass action kinetics model of gene expression arises from the differential equation $df/dt = s - df(t)$, with s being the constant synthesis rate, d the constant degradation rate and $f0 = f(0)$ (the abundance at time 0).

Usage

f.old.equi(t, s, d) f.old.nonequi(t, f0, s, d) f.new(t, s, d)

Arguments

Value

the RNA abundance at time t

Functions

- f.old.equi(): abundance of old RNA assuming steady state (i.e. f0=s/d)
- f.old.nonequi(): abundance of old RNA without assuming steady state
- f.new(): abundance of new RNA (steady state does not matter)

Examples

```
d=log(2)/2
s=10
f.new(2,s,d) # Half-life 2, so after 2h the abundance should be half the steady state
f.old.equi(2,s,d)
s/d
t<-seq(0,10,length.out=100)
plot(t,f.new(t,s,d),type='l',col='blue',ylim=c(0,s/d))
lines(t,f.old.equi(t,s,d),col='red')
abline(h=s/d,lty=2)
```
FilterGenes 43

```
abline(v=2,lty=2)
# so old and new RNA are equal at t=HL (if it is at steady state at t=0)
plot(t,f.new(t,s,d),type='l',col='blue')
lines(t,f.old.nonequi(t,f0=15,s,d),col='red')
abline(h=s/d,lty=2)
abline(v=2,lty=2)
# so old and new RNA are not equal at t=HL (if it is not at steady state at t=0)
```
FilterGenes *Filter genes*

Description

Return a grandR object with fewer genes than the given grandR object (usually to filter out weakly expressed genes).

Usage

```
FilterGenes(
  data,
  mode.slot = "count",
  minval = 100,
  mincol = ncol(data)/2,
  min.cond = NULL,use = NULL,keep = NULL,
  return.genes = FALSE
\mathcal{L}
```
Arguments

Details

By default genes are retained, if they have 100 read counts in at least half of the columns (i.e. samples or cells).

The use parameter can be used to define genes to be retained directly. The keep parameter, in contrast, defines *additional* genes to be retained. For both, genes can be referred to by their names, symbols, row numbers in the gene table, or a logical vector referring to the gene table rows.

To refer to data slots, the mode.slot syntax can be used: Each name is either a data slot, or one of (new,old,total) followed by a dot followed by a slot. For new or old, the data slot value is multiplied by ntr or 1-ntr. This can be used e.g. to filter by *new counts*.

if the min.cond parameter is given, first all columns belonging to the same [Condition](#page-22-0) are summed up, and then the usual filtering is performed by conditions instead of by columns.

Value

either a new grandR object (if return.genes=FALSE), or a vector containing the gene names that would be retained

Examples

```
sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
                  design=c("Condition",Design$dur.4sU,Design$Replicate))
nrow(sars)
# This is already filtered and has 1045 genes
nrow(FilterGenes(sars,minval=1000))
# There are 966 genes with at least 1000 read counts in half of the samples
nrow(FilterGenes(sars,minval=10000,min.cond=1))
# There are 944 genes with at least 10000 read counts in the Mock or SARS condition
nrow(FilterGenes(sars,use=GeneInfo(sars,"Type")!="Cellular"))
# These are the 11 viral genes.
```
Findno4sUPairs *Find equivalent no4sU samples for 4sU samples*

Description

Identify all no4sU samples in the same condition, and return everything as a list to be used in [Plot4sUDropout,](#page-32-0) [Plot4sUDropoutRank,](#page-32-0) [Plot4sUDropoutAll,](#page-32-0) [Plot4sUDropoutRankAll](#page-32-0)

Usage

```
Findno4sUPairs(data, paired.replicates = FALSE, discard.no4sU = TRUE)
```
FindReferences 45

Arguments

Value

a named list containing, for each 4sU sample, a vector of equivalent no4sU samples

See Also

[Plot4sUDropout,](#page-32-0) [Plot4sUDropoutRank,](#page-32-0) [Plot4sUDropoutAll,](#page-32-0) [Plot4sUDropoutRankAll](#page-32-0)

Examples

```
sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
                  design=c("Condition",Design$dur.4sU,Design$Replicate))
Findno4sUPairs(sars)
```


Description

In some situations (see examples) it is required to find a reference sample of some kind for each sample in a data set. This is a convenience method to find such reference samples, and provide them as a lookup table.

Usage

```
FindReferences(
  data,
  reference = NULL,
  reference.function = NULL,
  group = NULL,
 as.list = FALSE,
  columns = NULL
)
```
Arguments

Details

Without any group, the list simply contains all references for each sample/cell. With groups defined, each list entry consists of all references from the same group.

Columns can be given as a logical, integer or character vector representing a selection of the columns (samples or cells). The expression is evaluated in an environment havin the [Coldata](#page-13-0), i.e. you can use names of [Coldata](#page-13-0) as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

Value

A logical matrix that contains for each sample or cell (in columns) a TRUE for the corresponding corresponding reference samples or cells in rows

See Also

[Coldata](#page-13-0)[,Findno4sUPairs,](#page-43-0) [Condition](#page-22-0)

Examples

```
sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
                  design=c("Condition",Design$dur.4sU,Design$Replicate))
FindReferences(sars,reference=no4sU)
# obtain the corresponding no4sU sample for each sample; use the Condition column
FindReferences(sars,Condition=="Mock",group="duration.4sU.original")
# obtain for each sample the corresponding sample in the Mock condition
FindReferences(sars,Condition=="Mock",group=c("duration.4sU.original","Replicate"))
# obtain for each sample the corresponding Mock sample, paying attention to replicates
```


Description

Fit the standard mass action kinetics model of gene expression by different methods. Some methods require steady state assumptions, for others data must be properly normalized. The parameters are fit per [Condition.](#page-22-0)

Usage

```
FitKinetics(
  data,
  name.prefix = "kinetics",
  type = c("nlls", "ntr", "lm", "chase"),
  slot = DefaultSlot(data),
  time = Design$dur.4sU,
  CI.size = 0.95,return.fields = c("Synthesis", "Half-life"),
  return.extra = NULL,
  ...
)
```
Arguments

Details

The start of labeling for all samples should be the same experimental time point. The fit gets more precise with multiple samples from multiple labeling durations.

The standard mass action kinetics model of gene expression arises from the following differential equation:

$$
df/dt = s - df(t)
$$

This model assumes constant synthesis and degradation rates. Based on this, there are different ways for fitting the parameters:

- [FitKineticsGeneLeastSquares:](#page-47-0) non-linear least squares fit on the full model; depends on proper normalization; can work without steady state; assumption of homoscedastic gaussian errors is theoretically not justified
- [FitKineticsGeneLogSpaceLinear:](#page-50-0) linear model fit on the old RNA; depends on proper normalization; assumes steady state for estimating the synthesis rate; assumption of homoscedastic gaussian errors in log space is problematic and theoretically not justified
- [FitKineticsGeneNtr:](#page-52-0) maximum a posteriori fit on the NTR posterior transformed to the degradation rate; as it is based on the NTR only, it is independent on proper normalization; assumes steady state; theoretically well justified

Pulse-chase designs are fit using [FitKineticsGeneLeastSquares](#page-47-0) while only considering the drop of labeled RNA. Note that in this case the notion "new" / "old" RNA is misleading, since labeled RNA corresponds to pre-existing RNA!

This function is flexible in what to put in the analysis table. You can specify the statistics using return.fields and return.extra (see [kinetics2vector](#page-138-0))

Value

A new grandR object with the fitted parameters as an analysis table

See Also

[FitKineticsGeneNtr,](#page-52-0) [FitKineticsGeneLeastSquares,](#page-47-0) [FitKineticsGeneLogSpaceLinear](#page-50-0)

Examples

```
sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
                  design=c("Cell",Design$dur.4sU,Design$Replicate))
sars <- FilterGenes(sars,use=1:10)
sars<-FitKinetics(sars,name="kinetics.ntr",type='ntr')
sars<-Normalize(sars)
sars<-FitKinetics(sars,name="kinetics.nlls",type='nlls')
sars<-FitKinetics(sars,name="kinetics.lm",type='lm')
head(GetAnalysisTable(sars,columns="Half-life"))
```
FitKineticsGeneLeastSquares *Fit a kinetic model according to non-linear least squares.*

Description

Fit the standard mass action kinetics model of gene expression using least squares (i.e. assuming gaussian homoscedastic errors) for the given gene. The fit takes both old and new RNA into account and requires proper normalization, but can be performed without assuming steady state. The parameters are fit per [Condition.](#page-22-0)

Usage

```
FitKineticsGeneLeastSquares(
  data,
  gene,
  slot = DefaultSlot(data),
  time = Design$dur.4sU,
  chase = FALSE,
  CI.size = 0.95,
  steady.state = NULL,
  use.old = TRUE,use.new = TRUE,
 maxiter = 250,
  compute.residuals = TRUE
)
```
Arguments

set this to TRUE to compute the residual matrix

Details

The start of labeling for all samples should be the same experimental time point. The fit gets more precise with multiple samples from multiple labeling durations. In particular (but not only) without assuming steady state, also a sample without 4sU (representing time 0) is useful.

The standard mass action kinetics model of gene expression arises from the following differential equation:

$$
df/dt = s - df(t)
$$

This model assumes constant synthesis and degradation rates (but not necessarily that the system is in steady state at time 0). From the solution of this differential equation, it is straight forward to derive the expected abundance of old and new RNA at time t for given parameters s (synthesis

50 FitKineticsGeneLeastSquares

rate), d (degradation rate) and f0=f(0) (the abundance at time 0). These equations are implemented in [f.old.equi](#page-41-0) (old RNA assuming steady state gene expression, i.e. f0=s/d), [f.old.nonequi](#page-41-1) (old RNA without assuming steady state gene expression) and [f.new](#page-41-1) (new RNA; whether or not it is steady state does not matter).

This function finds s and d such that the squared error between the observed values of old and new RNA and their corresponding functions is minimized. For that to work, data has to be properly normalized.

For pulse-chase designs, only the drop of the labeled RNA is considered. Note that in this case the notion "new" / "old" RNA is misleading, since labeled RNA corresponds to pre-existing RNA!

Value

A named list containing the model fit:

- data: a data frame containing the observed value used for fitting
- residuals: the computed residuals if compute.residuals=TRUE, otherwise NA
- Synthesis: the synthesis rate (in U/h, where U is the unit of the slot)
- Degradation: the degradation rate (in 1/h)
- Half-life: the RNA half-life (in h, always equal to log(2)/degradation-rate
- conf.lower: a vector containing the lower confidence bounds for Synthesis, Degradation and Half-life
- conf.upper: a vector containing the lower confidence bounds for Synthesis, Degradation and Half-life
- f0: The abundance at time 0 (in U)
- logLik: the log likelihood of the model
- rmse: the total root mean square error
- rmse.new: the total root mean square error for all new RNA values used for fitting
- rmse.old: the total root mean square error for all old RNA values used for fitting
- total: the total sum of all new and old RNA values used for fitting
- type: non-equi or equi

If Condition(data) is not NULL, the return value is a named list (named according to the levels of Condition(data)), each element containing such a structure.

See Also

[FitKinetics,](#page-46-0) [FitKineticsGeneLogSpaceLinear,](#page-50-0) [FitKineticsGeneNtr](#page-52-0)

Examples

```
sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
                 design=c("Condition",Design$dur.4sU,Design$Replicate))
sars <- Normalize(sars)
FitKineticsGeneLeastSquares(sars,"SRSF6",steady.state=list(Mock=TRUE,SARS=FALSE))
```
FitKineticsGeneLogSpaceLinear *Fit a kinetic model using a linear model.*

Description

Fit the standard mass action kinetics model of gene expression using a linear model after logtransforming the observed values (i.e. assuming gaussian homoscedastic errors of the logarithmized values) for the given gene. The fit takes only old RNA into account and requires proper normalization, but can be performed without assuming steady state for the degradation rate. The parameters are fit per [Condition.](#page-22-0)

Usage

```
FitKineticsGeneLogSpaceLinear(
  data,
  gene,
  slot = DefaultSlot(data),
  time = Design$dur.4sU,
  CI.size = 0.95)
```
Arguments

Details

The start of labeling for all samples should be the same experimental time point. The fit gets more precise with multiple samples from multiple labeling durations. Also a sample without 4sU (representing time 0) is useful.

The standard mass action kinetics model of gene expression arises from the following differential equation:

$$
df/dt = s - df(t)
$$

This model assumes constant synthesis and degradation rates (but not necessarily that the system is in steady state at time 0). From the solution of this differential equation, it is straight forward to derive the expected abundance of old and new RNA at time t for given parameters s (synthesis rate), d (degradation rate) and f0=f(0) (the abundance at time 0). These equations are implemented in [f.old.equi](#page-41-0) (old RNA assuming steady state gene expression, i.e. f0=s/d), [f.old.nonequi](#page-41-1) (old RNA without assuming steady state gene expression) and [f.new](#page-41-1) (new RNA; whether or not it is steady state does not matter).

This function primarily finds d such that the squared error between the observed values of old and new RNA and their corresponding functions is minimized in log space. For that to work, data has to be properly normalized, but this is independent on any steady state assumptions. The synthesis rate is computed (under the assumption of steady state) as $s = f0 \cdot d$

Value

A named list containing the model fit:

- data: a data frame containing the observed value used for fitting
- Synthesis: the synthesis rate (in U/h, where U is the unit of the slot)
- Degradation: the degradation rate (in 1/h)
- Half-life: the RNA half-life (in h, always equal to log(2)/degradation-rate
- conf.lower: a vector containing the lower confidence bounds for Synthesis, Degradation and Half-life
- conf.upper: a vector containing the lower confidence bounds for Synthesis, Degradation and Half-life
- f0: The abundance at time 0 (in U)
- logLik: the log likelihood of the model
- rmse: the total root mean square error
- adj.r.squared: adjusted R^2 of the linear model fit
- total: the total sum of all new and old RNA values used for fitting
- type: always "lm"

If Condition(data) is not NULL, the return value is a named list (named according to the levels of Condition(data)), each element containing such a structure.

See Also

[FitKinetics,](#page-46-0) [FitKineticsGeneLeastSquares,](#page-47-0) [FitKineticsGeneNtr](#page-52-0)

Examples

```
sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
                 design=c("Condition",Design$dur.4sU,Design$Replicate))
sars <- Normalize(sars)
FitKineticsGeneLogSpaceLinear(sars,"SRSF6") # fit per condition
```
FitKineticsGeneNtr *Fit a kinetic model using the degradation rate transformed NTR posterior distribution.*

Description

Fit the standard mass action kinetics model of gene expression by maximum a posteriori on a model based on the NTR posterior. The fit takes only the NTRs into account and is completely independent on normalization, but it cannot be performed without assuming steady state. The parameters are fit per [Condition.](#page-22-0)

Usage

```
FitKineticsGeneNtr(
  data,
  gene,
  slot = DefaultSlot(data),
  time = Design$dur.4sU,
  CI.size = 0.95,
  transformed.NTR.MAP = TRUE,
  exact.ci = FALSE,total.fun = median\lambda
```
Arguments

Details

The start of labeling for all samples should be the same experimental time point. The fit gets more precise with multiple samples from multiple labeling durations.

The standard mass action kinetics model of gene expression arises from the following differential equation:

$$
df/dt = s - df(t)
$$

This model assumes constant synthesis and degradation rates. Further assuming steady state allows to derive the function transforming from the NTR to the degradation rate d as $d(ntr)$ = $-1/tlog(1-ntr)$. Furthermore, if the ntr is (approximately) beta distributed, it is possible to derive the distribution of the transformed random variable for the degradation rate (see Juerges et al., Bioinformatics 2018).

This function primarily finds d by maximizing the degradation rate posterior distribution. For that, data does not have to be normalized, but this only works under steady-state conditions. The synthesis rate is then computed (under the assumption of steady state) as $s = f0 \cdot d$

The maximum-a-posteriori estimator is biased. Bias can be removed by a correction factor (which is done by default).

By default the chi-squared approximation of the log-posterior function is used to compute credible intervals. If exact.ci is used, the posterior is integrated numerically.

Value

A named list containing the model fit:

- data: a data frame containing the observed value used for fitting
- Synthesis: the synthesis rate (in U/h, where U is the unit of the slot)
- Degradation: the degradation rate (in 1/h)
- Half-life: the RNA half-life (in h, always equal to $log(2)/deg$ radation-rate
- conf.lower: a vector containing the lower confidence bounds for Synthesis, Degradation and Half-life
- conf.upper: a vector containing the lower confidence bounds for Synthesis, Degradation and Half-life
- f0: The abundance at time 0 (in U)
- logLik: the log likelihood of the model
- rmse: the total root mean square error
- total: the total sum of all new and old RNA values used for fitting
- type: always "ntr"

If Condition(data) is not NULL, the return value is a named list (named according to the levels of Condition(data)), each element containing such a structure.

See Also

[FitKinetics,](#page-46-0) [FitKineticsGeneLeastSquares,](#page-47-0) [FitKineticsGeneLogSpaceLinear](#page-50-0)

FitKineticsGeneSnapshot 55

Examples

```
sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
                  design=c("Condition",Design$dur.4sU,Design$Replicate))
sars <- Normalize(sars)
sars <- subset(sars,columns=Condition=="Mock")
FitKineticsGeneNtr(sars,"SRSF6")
```
FitKineticsGeneSnapshot

Compute the posterior distributions of RNA synthesis and degradation for a particular gene

Description

Compute the posterior distributions of RNA synthesis and degradation for a particular gene

Usage

```
FitKineticsGeneSnapshot(
  data,
  gene,
  columns = NULL,
  reference.columns = NULL,
  dispersion = NULL,
  slot = DefaultSlot(data),
  time.labeling = Design$dur.4sU,
  time.experiment = NULL,
  sample.f0.in.ss = TRUE,
  sample.level = 2,
  beta.prior = NULL,
  return.samples = FALSE,
  return.points = FALSE,
 N = 10000,
 N.max = N * 10,CI.size = 0.95,correct.labeling = FALSE
)
```
Arguments

whether to correct labeling times

Details

The kinetic parameters s and d are computed using [TransformSnapshot.](#page-141-0) For that, the sample either must be in steady state (this is the case if defined in the reference.columns matrix), or if the levels of reference samples from a specific prior time point are known. This time point is defined by time.experiment (i.e. the difference between the reference samples and samples themselves). If time.experiment is NULL, then the labeling time of the samples is used (e.g. useful if labeling was started concomitantly with the perturbation, and the reference samples are unperturbed samples).

By default, the hierarchical Bayesian model is estimated. If sample.level = 0, the NTRs are sampled from a beta distribution that approximates the mixture of betas from the replicate samples. If sample.level = 1, only the first level from the hierarchical model is sampled (corresponding to the uncertainty of estimating the biological variability). If sample. level $= 2$, the first and second levels are estimated (corresponding to the full hierarchical model).

Columns can be given as a logical, integer or character vector representing a selection of the columns (samples or cells). The expression is evaluated in an environment having the [Coldata](#page-13-0), i.e. you can use names of [Coldata](#page-13-0) as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

FitKineticsPulseR 57

Value

a list containing the posterior mean of s and s, its credible intervals and, if return.samples=TRUE a data frame containing all posterior samples

FitKineticsPulseR *Fit kinetics using pulseR*

Description

Fit kinetics using pulseR

Usage

```
FitKineticsPulseR(data, name = "pulseR", time = Design$dur.4sU)
```
Arguments

Details

This is adapted code from https://github.com/dieterich-lab/ComparisonOfMetabolicLabeling

Value

a new grandR object containing the pulseR analyses in a new analysis table

FitKineticsSnapshot *Fits RNA kinetics from snapshot experiments*

Description

Compute the posterior distributions of RNA synthesis and degradation from snapshot experiments for each condition

Usage

```
FitKineticsSnapshot(
 data,
 name.prefix = "Kinetics",
 reference.columns = NULL,
 slot = DefaultSlot(data),
 conditions = NULL,
  time.labeling = Design$dur.4sU,
  time.experiment = NULL,
  sample.f0.in.ss = TRUE,
 N = 10000,N.max = N * 10,CI.size = 0.95,seed = 1337,
 dispersion = NULL,
  sample.level = 2,
 correct.labeling = FALSE,
 verbose = FALSE
)
```
Arguments

Details

The kinetic parameters s and d are computed using [TransformSnapshot.](#page-141-0) For that, the sample either must be in steady state (this is the case if defined in the reference.columns matrix), or if the levels at an earlier time point are known from separate samples, so called temporal reference samples. Thus, if s and d are estimated for a set of samples $x_1,...,x_k$ (that must be from the same time point t), we need to find (i) the corresponding temporal reference samples from time t0, and (ii) the time difference between t and t0.

The temporal reference samples are identified by the reference.columns matrix. This is a square matrix of logicals, rows and columns correspond to all samples and TRUE indicates that the row sample is a temporal reference of the columns sample. This time point is defined by time.experiment. If time.experiment is NULL, then the labeling time of the A or B samples is used (e.g. useful if labeling was started concomitantly with the perturbation, and the steady state samples are unperturbed samples).

By default, the hierarchical Bayesian model is estimated. If sample.level = 0, the NTRs are sampled from a beta distribution that approximates the mixture of betas from the replicate samples. If sample.level $= 1$, only the first level from the hierarchical model is sampled (corresponding to the uncertainty of estimating the biological variability). If sample.level = 2, the first and second levels are estimated (corresponding to the full hierarchical model).

if N is set to 0, then no sampling from the posterior is performed, but the transformed MAP estimates are returned

Value

a new grandR object including new analysis tables (one per condition). The columns of the new analysis table are

the upper CI boundary of the half-life

Description

Returns a function that takes x and y and returns a formatted output to describe the correlation of x and y

Usage

```
FormatCorrelation(
 method = "pearson",
 n.format = NULL,
 coeff.format = "%.2f",p.format = "%, 2g",slope.format = NULL,
 rmsd.format = NULL,
 min.obs = 5)
```
Arguments

Details

Use this for the correlation parameter of [PlotScatter](#page-112-0)

The slope is computed via a principal component analysis and *not* by linear regression

Value

a function

GeneInfo 61

Examples

```
set.seed(42)
data <- data.frame(u=runif(500)) # generate some correlated data
data$x <- rnorm(500,mean=data$u)
data$y <- rnorm(500,mean=data$u)
fun <- FormatCorrelation()
fun(data$x,data$y)
fun <- FormatCorrelation(method="spearman",p.format="%.4g")
fun(data$x,data$y)
```
GeneInfo *Get the gene annotation table or add additional columns to it*

Description

The gene annotation table contains meta information for the rows of a grandR object. When loaded from the GRAND-SLAM output, this this contains gene ids, gene symbols, the transcript length and the type.

Usage

```
GeneInfo(data, column = NULL, value = NULL)
```
GeneInfo(data, column) <- value

Arguments

Details

New columns can be added either by data<-GeneInfo(data,name,values) or by GeneInfo(data,name)<-values.

Value

Either the gene annotation table or a new grandR object having an updated gene annotation table

See Also

[Genes,](#page-61-0) [Coldata,](#page-13-0) [ReadGRAND](#page-121-0)

62 Genes Genes

Examples

```
sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
                  design=c("Cell",Design$dur.4sU,Design$Replicate))
head(GeneInfo(sars))
GeneInfo(sars,"LengthCategory")<-cut(GeneInfo(sars)$Length,c(0,1500,2500,Inf),
                                          labels=c("Short","Medium","Long"))
table(GeneInfo(sars)$LengthCategory)
```


Genes *Gene and sample (or cell) names*

Description

Get the genes and sample (or cell) names for a grandR object, or add an additional gene annotation column

Usage

Genes(data, genes = NULL, use.symbols = TRUE, regex = FALSE)

```
Columns(data, columns = NULL, reorder = FALSE)
```
Arguments

Details

The genes are either the (often unreadable) gene ids (e.g. Ensembl ids), or the symbols.

Genes(data,use.symbols=FALSE) it the same as rownames(data), and Columns(data) is the same as colnames(data)

If both column and value are specified for GeneInfo, a new column is added to the gene annotation table

Columns can be given as a logical, integer or character vector representing a selection of the columns (samples or cells). The expression is evaluated in an environment having the [Coldata](#page-13-0), i.e. you can use names of [Coldata](#page-13-0) as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

get.mode.slot 63

Value

Either the gene or column names of the grandR data object, or the columns of an analysis table in the grandR object

See Also

[Coldata,](#page-13-0) [GeneInfo,](#page-60-0) [Analyses](#page-3-0)

Examples

```
sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
                  design=c("Cell",Design$dur.4sU,Design$Replicate))
```

```
all(Genes(sars,use.symbols = FALSE)==rownames(sars))
all(Columns(sars)==colnames(sars))
```
get.mode.slot *Internal functions to parse mode.slot strings*

Description

Internal functions to parse mode.slot strings

Usage

get.mode.slot(data, mode.slot, allow.ntr = TRUE)

Arguments

Details

A mode.slot is a mode followed by a dot followed by a slot name, or just a slot name. A mode is either *total*, *new* or *old*

Value

a named list with elements mode and slot (or only slot in case of *ntr*,*alpha* or *beta*)

Description

This is the main function to access analysis results. For slot data, use [GetTable](#page-73-0) (as a large matrix) or [GetData](#page-66-0) (as tidy table).

Usage

```
GetAnalysisTable(
  data,
  analyses = NULL,
  regex = TRUE,
  columns = NULL,
  genes = Genes(data),
 by.rows = FALSE,
 gene.info = TRUE,
 name.by = "Symbol",
 prefix.by.analysis = TRUE
)
```
Arguments

Details

The names for the output table are <Analysis name>.<columns name>

GetContrasts 65

Value

A data frame containing the analysis results

See Also

[GetTable,](#page-73-0)[GetData](#page-66-0)[,Genes](#page-61-0)

Examples

```
sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
                  design=c("Condition",Design$dur.4sU,Design$Replicate))
sars<-LFC(sars,contrasts=GetContrasts(sars,group = "duration.4sU"))
head(GetAnalysisTable(sars,columns="LFC"))
```
GetContrasts *Create a contrast matrix*

Description

Each column of a contrast matrix represents a pairwise comparison of all samples or cells of a grandR object (or a column annotation table). Elements being 1 are contrasted vs. elements being -1 (and all 0 are irrelevant for this comparison).

Usage

```
GetContrasts(x, ...)
## S3 method for class 'grandR'
GetContrasts(
  x,
  contrast = "Condition",
  no4sU = FALSE,columns = NULL,
  group = NULL,
  name.format = NULL,
  ...
)
## Default S3 method:
GetContrasts(
  x,
  contrast,
  columns = NULL,
  group = NULL,name.format = NULL,
  ...
)
```
Arguments

Details

To compare one specific factor level *A* against another level *B* in a particular column *COL* of the column annotation table, specify contrast=c("COL","A","B")

To compare all levels against a specific level *A* in a particular column *COL* of the column annotation table, specify contrast=c("COL","A")

To perform all pairwise comparisons of all levels from a particular column *COL* of the column annotation table, specify contrast=c("COL")

If the column *COL* only has two levels, all three are equivalent.

In all cases, if groups is not NULL, the columns annotation table is first split and contrasts are applied within all samples or cells with the same *group* factor level.

The format string specifies the column name in the generated contrast matrix (which is used as the *Analysis* name when calling [ApplyContrasts](#page-6-0), [LFC](#page-78-0), [PairwiseDESeq2](#page-88-0), etc.). The keywords *\$GRP*, *\$COL*, *\$A* and *\$B* are substituted by the respective elements of the contrast vector or the group this comparison refers to. By default, it is "\$A vs \$B" if group is NULL, and "\$A vs \$B.\$GRP" otherwise.

The method for grandR objects simply calls the general method

For grandR objects, columns can be given as a logical, integer or character vector representing a selection of the columns (samples or cells). The expression is evaluated in an environment having the [Coldata](#page-13-0), i.e. you can use names of [Coldata](#page-13-0) as variables to conveniently build a logical vector (e.g., columns=Condition="x").

Value

A data frame representig a contrast matrix to be used in [ApplyContrasts](#page-6-0), [LFC](#page-78-0), [PairwiseDESeq2](#page-88-0)

See Also

[ApplyContrasts](#page-6-0), [LFC](#page-78-0), [PairwiseDESeq2](#page-88-0)

GetData 67

Examples

```
sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
                  design=c("Condition","Time",Design$Replicate))
GetContrasts(sars,contrast="Condition")
# Compare all Mock vs. all SARS
GetContrasts(sars,contrast=c("Condition","SARS","Mock"))
# This direction of the comparison is more reasonable
GetContrasts(sars,contrast=c("Condition","SARS","Mock"),group="Time")
# Compare SARS vs Mock per time point
GetContrasts(sars,contrast=c("Time.original","no4sU"), group="Condition",no4sU=TRUE,
                                                name.format="$A vs $B ($GRP)")
# Compare each sample against the respective no4sU sample
# See the differential-expression vignette for more examples!
```
GetData *Obtain a tidy table of values for a gene or a small set of genes*

Description

This is the main function to access slot data data from a particular gene (or a small set of genes) as a tidy table. If data for all genes must be retrieved (as a large matrix), use the [GetTable](#page-73-0) function. For analysis results, use the [GetAnalysisTable](#page-63-0) function.

Usage

```
GetData(
  data,
  mode.slot = DefaultSlot(data),
  columns = NULL,
  genes = Genes(data),
  by.rows = FALSE,
  coldata = TRUE,
  ntr.na = TRUE,
  name.by = "Symbol"
)
```
Arguments

Details

To refer to data slots, the mode.slot syntax can be used: Each name is either a data slot, or one of (new,old,total) followed by a dot followed by a slot. For new or old, the data slot value is multiplied by ntr or 1-ntr. This can be used e.g. to obtain the *new counts*.

If only one mode.slot and one gene is given, the output table contains one column (and potentially columns from [Coldata\)](#page-13-0) named *Value*. If one gene and multiple mode.slots are given, the columns are named according to the mode.slots. If one mode.slot and multiple genes are given, the columns are named according to the genes. If multiple genes and mode.slots are given, columns are named gene.mode.slot.

If by.rows=TRUE, the table is molten such that each row contains only one value (for one of the genes and for one of the mode.slots). If only one gene and one mode.slot is given, melting does not have an effect.

Columns can be given as a logical, integer or character vector representing a selection of the columns (samples or cells). The expression is evaluated in an environment havin the [Coldata](#page-13-0), i.e. you can use names of [Coldata](#page-13-0) as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

Value

A data frame containing the desired values

See Also

[GetTable,](#page-73-0)[GetAnalysisTable,](#page-63-0)[DefaultSlot,](#page-27-0)[Genes](#page-61-0)

Examples

```
sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
                  design=c("Cell",Design$dur.4sU,Design$Replicate))
GetData(sars,mode.slot="ntr",gene="MYC")
# one gene, one mode.slot
GetData(sars,mode.slot=c("count","ntr"),gene="MYC",coldata = FALSE)
# one gene, multiple mode.slots
GetData(sars,mode.slot=c("count","ntr"),gene=c("SRSF6","MYC"),by.rows=TRUE)
# multiple genes, multiple mode.slots, by rows
```
GetDiagnosticParameters

Describe parameters relevant to diagnostics

Description

Many of the diagnostics functions expect (optional or mandatory) parameters that are described by this function

Usage

```
GetDiagnosticParameters(data)
```
Arguments

data a grandR object

Value

a list with

- orientation: Sense or Antisense, only relevant to mismatches for strand unspecific data
- category: all available categories (Exonic/Intronic, genomes). Note that this might differ from what is available from GeneInfo(data,"Category"), since Grand3 might not have estimated NTRs for all categories!
- label: which nucleoside analogs have been used
- model: which model (binom or tbbinom) to inspect
- estimator: which estimator (joint or separate NTRs were estimated for subreads)

GetMatrix *Obtain a genes x values table as a large matrix*

Description

This is the main function to access slot data for all genes as a (potentially sparse) matrix.

Usage

```
GetMatrix(
  data,
 mode.slot = DefaultSlot(data),
  columns = NULL,
  genes = Genes(data),
 name.by = "Symbol",
  summarize = NULL
)
```
Arguments

Details

To refer to data slots, the mode.slot syntax can be used: It is either a data slot, or one of (new,old,total) followed by a dot followed by a slot. For new or old, the data slot value is multiplied by ntr or 1-ntr. This can be used e.g. to obtain the *new counts*.

Columns can be given as a logical, integer or character vector representing a selection of the columns (samples or cells). The expression is evaluated in an environment havin the [Coldata](#page-13-0), i.e. you can use names of [Coldata](#page-13-0) as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

The summarization parameter can only be specified if columns is NULL. It is either a summarization matrix [\(GetSummarizeMatrix\)](#page-71-0) or TRUE (in which case [GetSummarizeMatrix\(](#page-71-0)data) is called). If there a NA values, they are imputed as the mean per group!

Value

A (potentially) sparse matrix containing the desired values

See Also

[GetData,](#page-66-0)[GetAnalysisTable,](#page-63-0)[DefaultSlot](#page-27-0)[,Genes](#page-61-0)[,GetSummarizeMatrix](#page-71-0)

GetPairContrasts *Create a contrast matrix for two given conditions*

Description

Each column of a contrast matrix represents a pairwise comparison of all samples or cells of a grandR object (or a column annotation table). Elements being 1 are contrasted vs. elements being -1 (and all 0 are irrelevant for this comparison).

Usage

GetPairContrasts(d, name, A, B)

GetSignificantGenes 71

Arguments

Details

This creates a contrast A vs B (i.e. the fold change would be A/B)

Columns that belong to A or B can be given as a logical, integer or character vector representing a selection of the columns (samples or cells). The expression is evaluated in an environment having the [Coldata](#page-13-0), i.e. you can use names of [Coldata](#page-13-0) as variables to conveniently build a logical vector (e.g., columns=Condition="x").

Value

A data frame with a single column representig a contrast matrix to be used in [ApplyContrasts](#page-6-0), [LFC](#page-78-0), [PairwiseDESeq2](#page-88-0)

See Also

[ApplyContrasts](#page-6-0), [LFC](#page-78-0), [PairwiseDESeq2](#page-88-0), [GetContrasts](#page-64-0)

GetSignificantGenes *Significant genes*

Description

Return significant genes for this grandR object

Usage

```
GetSignificantGenes(
  data,
  analysis = NULL,
  regex = TRUE,
  criteria = NULL,
  as.table = FALSE,
  use.symbols = TRUE,
  gene.info = TRUE
)
```
Arguments

Details

The analysis parameter (just like for [GetAnalysisTable](#page-63-0) can be a regex (that will be matched against all available analysis names). It can also be a vector (of regexes). Be careful with this, if more than one table e.g. with column LFC ends up in here, only the first is used (if criteria=LFC).

The criteria parameter can be used to define how analyses are performed. If criteria is a logical, it obtains significant genes defined by cut-offs (e.g. on q value and LFC). If it is a numerical, all genes are returned sorted (descendingly) by this value. The columns of the given analysis table(s) can be used to build this expression.

Value

a vector of gene names (or symbols), or a table

Examples

```
sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
                  design=c(Design$Condition,Design$dur.4sU,Design$Replicate))
sars <- subset(sars,Coldata(sars,Design$dur.4sU)==2)
sars<-LFC(sars,mode="total",contrasts=GetContrasts(sars,contrast=c("Condition","Mock")))
GetSignificantGenes(sars,criteria=LFC>1)
```
GetSummarizeMatrix *Create a summarize matrix*

Description

If this matrix is multiplied with a count table (e.g. obtained by [GetTable](#page-73-0)), either the average (average=TRUE) or the sum (average=FALSE) of all columns (samples or cells) belonging to the same [Condition](#page-22-0) is computed.
GetSummarizeMatrix 73

Usage

```
GetSummarizeMatrix(x, ...)
## S3 method for class 'grandR'
GetSummarizeMatrix(x, no4sU = FALSE, columns = NULL, average = TRUE, \dots)
## Default S3 method:
GetSummarizeMatrix(x, subset = NULL, average = TRUE, \ldots)
```
Arguments

Details

Columns can be given as a logical, integer or character vector representing a selection of the columns (samples or cells). The expression is evaluated in an environment having the [Coldata](#page-13-0), i.e. you can use names of [Coldata](#page-13-0) as variables to conveniently build a logical vector (e.g., columns=Condition="x").

The method for grandR object simply calls the general method

Value

A matrix to be multiplied with a count table

See Also

[GetTable](#page-73-0)

Examples

```
sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
                  design=c("Condition",Design$dur.4sU,Design$Replicate))
```

```
GetSummarizeMatrix(sars)
head(as.matrix(GetTable(sars)) %*% GetSummarizeMatrix(sars)) # average by matrix multiplication
head(GetTable(sars,summarize = TRUE)) # shortcut, does the same
```
See the data-matrices-and-analysis-results vignette for more examples!

Description

This is the main function to access slot data for all genes as a large matrix. If data from a particular gene (or a small set of genes) must be retrieved, use the [GetData](#page-66-0) function. For analysis results, use the [GetAnalysisTable](#page-63-0) function.

Usage

```
GetTable(
  data,
  type = DefaultSlot(data),
  columns = NULL,
  genes = Genes(data),
  ntr.na = TRUE,gene.info = FALSE,
  summarize = NULL,
  prefix = NULL,
 name.by = "Symbol",
  reorder.columns = FALSE
)
```
Arguments

GetTable 75

Details

This is a convenience wrapper for [GetData](#page-66-0) (values from data slots) and [GetAnalysisTable](#page-63-0) (values from analyses). Types can refer to any of the two (and can be mixed). If there are types from both data and analyses, columns must be NULL. Otherwise columns must either be condition/cell names (if type refers to one or several data slots), or regular expressions to match against the names in the analysis tables.

Columns definitions for data slots can be given as a logical, integer or character vector representing a selection of the columns (samples or cells). The expression is evaluated in an environment having the [Coldata](#page-13-0), i.e. you can use names of [Coldata](#page-13-0) as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

To refer to data slots via type, the mode.slot syntax can be used: Each name is either a data slot, or one of (new,old,total) followed by a dot followed by a slot. For new or old, the data slot value is multiplied by ntr or 1-ntr. This can be used e.g. to obtain the *new counts*.

The summarization parameter can only be specified if columns is NULL. It is either a summarization matrix [\(GetSummarizeMatrix\)](#page-71-0) or TRUE (in which case [GetSummarizeMatrix\(](#page-71-0)data) is called). If there a NA values, they are imputed as the mean per group!

Value

A data frame containing the desired values

See Also

[GetData,](#page-66-0)[GetAnalysisTable,](#page-63-0)[DefaultSlot](#page-27-0)[,Genes](#page-61-1)[,GetSummarizeMatrix](#page-71-0)

Examples

```
sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
                  design=c("Condition",Design$dur.4sU,Design$Replicate))
sars <- Normalize(FilterGenes(sars))
head(GetTable(sars))
# DefaultSlot values, i.e. size factor normalized read counts for all samples
head(GetTable(sars,summarize=TRUE))
# DefaultSlot values averaged over the two conditions
head(GetTable(sars,type="new.count",columns=!no4sU))
# Estimated counts for new RNA for all samples with 4sU
sars<-LFC(sars,contrasts=GetContrasts(sars,group = "duration.4sU"))
head(GetAnalysisTable(sars,columns="LFC"))
# Estimated fold changes SARS vs Mock for each time point
```
Description

The grandR object contains

- metadata about the origin (file/url) of the GRAND-SLAM output
- the current state (e.g., what is the current default slot) of the grandR object
- a gene info table (i.e. metadata for the rows of the data matrices)
- a column annotation table (i.e. metadata for the columns of the data matrices)
- several data matrices for read counts, normalized expression values, NTRs, etc. (genes x samples or genes x cells; stored in so-called *slots*)
- potentially several analysis output tables (for kinetic modeling, differential gene expression testing)

Usually, this constructor is not invoked directly (but by [ReadGRAND](#page-121-0) or [SimulateTimeCourse](#page-134-0)).

Usage

```
grandR(
 prefix = parent$prefix,
 gene.info = parent$gene.info,
  slots = parent$data,
 coldata = parent$coldata,
 metadata = parent$metadata,
  analyses = NULL,
 plots = NULL,
 parent = NULL
)
Title(data)
IsSparse(data)
## S3 method for class 'grandR'
dim(x)
is.grandR(x)
## S3 method for class 'grandR'
dimnames(x)
## S3 method for class 'grandR'
print(x, \ldots)
```
grandR \sim 77

```
Metadata(x, ...)
## S3 method for class 'grandR'
subset(x, columns, reorder = TRUE, ...)## S3 method for class 'grandR'
split(x, f = Design\\ \mathcal{E}ondition, drop = FALSE, ...)RenameColumns(data, map = NULL, fun = NULL)
SwapColumns(data, s1, s2)
## S3 method for class 'grandR'
merge(..., list = NULL, by.columns = TRUE, column.name = Design$Origin)
```
Arguments

Details

The dimensions (nrow, ncol) of the grandR object are considered to be the dimensions of the data tables, i.e. nrow(data) provides the number of genes and ncol(data) the number of samples (or cells).

Currently, the object is implemented as a list of the above mentioned items. This implementation is subject to change. Make sure to use accessor functions to obtain the information you want.

Columns can be given as a logical, integer or character vector representing a selection of the columns (samples or cells). The expression is evaluated in an environment havin the [Coldata](#page-13-0), i.e. you can use names of [Coldata](#page-13-0) as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

Value

A grandR object containing the read counts, NTRs, information on the NTR posterior distribution (alpha,beta) and potentially additional information of all genes detected by GRAND-SLAM

Functions

Title Obtain a useful title for the project (from the prefix parameter)

dim Obtain the dimensions (genes x samples or genes x cells)

is Check whether it is a grandR object

dimnames Obtain the row and column names of this object (genes x samples or genes x cells)

print Print information on this grandR object

- subset Create a new grandR object with a subset of the columns (use [FilterGenes](#page-42-0) to subset on genes)
- split Split the grandR object into a list of multiple grandR objects (according to the levels of an annotation table column)
- RenameColumns Rename the column names according to a lookup table (map) or a function (invoked on the current names)
- **SwapColumns** Swap two columns (samples or cells); this is what you do if samples were mislabeled!

Metadata Obtain global metadata

merge Merge several grandR objects into one

See Also

[Slots,](#page-137-0) [DefaultSlot,](#page-27-0) [Genes,](#page-61-1) [GeneInfo,](#page-60-0) [Coldata,](#page-13-0) [GetTable,](#page-73-0) [GetData,](#page-66-0) [Analyses,](#page-3-0) [GetAnalysisTable](#page-63-0)

Examples

```
sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
                  design=c("Cell",Design$dur.4sU,Design$Replicate))
# this is part of the corona data from Finkel et al.
dim(sars)
head(rownames(sars))
```
Description

Checks for parallel execution

Usage

IsParallel()

Value

whether or not parallelism is activated

LFC *Estimation of log2 fold changes*

Description

Estimate the log fold changes based on a contrast matrix, requires the LFC package.

Usage

```
LFC(
  data,
  name.prefix = mode,contrasts,
  slot = "count",
  LFC.fun = lfc::PsiLFC,
  mode = "total",
  normalization = NULL,
  compute.M = TRUE,genes = NULL,
  verbose = FALSE,
  ...
```
)

Arguments

data the grandR object name.prefix the prefix for the new analysis name; a dot and the column names of the contrast matrix are appended; can be NULL (then only the contrast matrix names are used)

Details

Both [PsiLFC](#page-0-0) and [NormLFC\)](#page-0-0) by default perform normalization by subtracting the median log2 fold change from all log2 fold changes. When computing LFCs of new RNA, it might be sensible to normalize w.r.t. to total RNA, i.e. subtract the median log2 fold change of total RNA from all the log2 fold change of new RNA. This can be accomplished by setting mode to "new", and normalization to "total"!

Normalization can also be a mode.slot! Importantly, do not specify a slot containing normalized values, but specify a slot of unnormalized values (which are used to compute the size factors for normalization!) Can also be a numeric vector of size factors with the same length as the data as columns. Then each value is divided by the corresponding size factor entry.

Value

a new grandR object including a new analysis table. The columns of the new analysis table are

"LFC" the log2 fold change

See Also

[PairwiseDESeq2,](#page-88-0)[GetContrasts](#page-64-0)

Examples

```
sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
                  design=c(Design$Condition,Design$dur.4sU,Design$Replicate))
sars <- subset(sars,Coldata(sars,Design$dur.4sU)==2)
sars<-LFC(sars,mode="total",contrasts=GetContrasts(sars,contrast=c("Condition","Mock")))
sars<-LFC(sars,mode="new",normalization="total",
                            contrasts=GetContrasts(sars,contrast=c("Condition","Mock")))
head(GetAnalysisTable(sars))
```
LikelihoodRatioTest *Compute a likelihood ratio test.*

Description

The test is computed on any of total/old/new counts using DESeq2 based on two nested models specified using formulas.

Usage

```
LikelihoodRatioTest(
  data,
  name = "LRT",mode = "total"slot = "count",
  normalization = mode,
  target = \simCondition,
  background = -1,
  columns = NULL,
  logFC = FALSE,
  verbose = FALSE
)
```
Arguments

Details

This is a convenience wrapper around the likelihood ratio test implemented in DESeq2.

DESeq2 by default performs size factor normalization. When computing differential expression of new RNA, it might be sensible to normalize w.r.t. to total RNA, i.e. use the size factors computed from total RNA instead of computed from new RNA. This can be accomplished by setting mode to "new", and normalization to "total"!

Value

a new grandR object including a new analysis table. The columns of the new analysis table are

Description

Helper function to return a table with all available gene sets for [AnalyzeGeneSets.](#page-5-0)

Usage

ListGeneSets()

Details

This is a convenience wrapper for [msigdbr_collections.](#page-0-0)

Value

the gene set table; use the values in the category and subcategory columns for the corresponding parameters of [AnalyzeGeneSets](#page-5-0)

See Also

[AnalyzeGeneSets](#page-5-0)

Description

If columns (i.e. sample or cell) follow a specific naming pattern, this can be used to conveniently set up an annotation table.

Usage

```
MakeColdata(
  names,
  design,
  semantics = DesignSemantics(),
  rownames = TRUE,
  keep.originals = TRUE
)
```
Arguments

Details

The names have to contain dots (.) to separate the fields for the column annotation table. E.g. the name *Mock.4h.A* will be split into the fields *Mock*, *4h* and *A*. For such names, a design vector of length 3 has to be given, that describes the meaning of each field. A reasonable design vector for the example would be c("Treatment","Time","Replicate"). Some names are predefined in the list [Design.](#page-31-0)

The names given in the design vector might even have additional semantics: E.g. for the name *duration.4sU* the values are interpreted (e.g. 4h is converted into the number 4, or 30min into 0.5, or no4sU into 0).

Semantics can be user-defined via the *semantics* list: For each name in the design vector matching to a name in this list, the corresponding function in the list is run. Functions must accept 2 parameters, the first is the original column in the annotation table, the second the original name. The function must return a data.frame with the number of rows matching to the annotation table. In most cases it is easier to manipulate the returned data frame instead of changing the semantics. However, the build-in semantics provide a convenient way to reduce this kind of manipulation in most cases.

Value

A data frame representing the annotation table

See Also

[ReadGRAND,](#page-121-0)[DesignSemantics](#page-31-1)[,Coldata](#page-13-0)

Examples

```
coldata <- MakeColdata(c("Mock.0h.A","Mock.0h.B","Mock.2h.A","Mock.2h.B"),
                                   design=c("Cell",Design$dur.4sU,Design$Replicate))
```
MAPlot *Make an MA plot*

Description

Plot average expression vs. log2 fold changes

Usage

```
MAPlot(
  data,
  analysis = Analyses(data)[1],
  p.cutoff = 0.05,lfc.cutoff = 1,
  annotate.numbers = TRUE,
  ...
)
```
Arguments

Value

a ggplot object

Description

Normalizes data in a grandR object and puts the normalized data into a new slot

Usage

```
Normalize(
  data,
  genes = Genes(data),
 name = "norm",slot = "count",
  set.to.default = TRUE,
  size.factors = NULL,
  return.sf = FALSE
)
NormalizeFPKM(
  data,
  genes = Genes(data),
 name = "fphm",
 slot = "count",
  set.to.default = TRUE,
  tlen = GeneInfo(data, "Length")
\mathcal{L}NormalizeRPM(
  data,
  genes = Genes(data),
 name = "rpm",slot = "count",set.to.default = TRUE,
  factor = 1e+06)
NormalizeTPM(
  data,
  genes = Genes(data),
 name = "tpm",slot = "count",
  set.to.default = TRUE,
  tlen = GeneInfo(data, "Length")
)
```
Arguments

Details

Normalize will perform DESeq2 normalization, i.e. it will use [estimateSizeFactorsForMatrix](#page-0-0) to estimate size factors, and divide each value by this. If genes are given, size factors will be computed only w.r.t. these genes (but then all genes are normalized).

NormalizeFPKM will compute fragments per kilobase and million mapped reads. If genes are given, the scaling factor will only be computed w.r.t. these genes (but then all genes are normalized).

NormalizeRPM will compute reads per million mapped reads. If genes are given, the scaling factor will only be computed w.r.t. these genes (but then all genes are normalized).

NormalizeTPM will compute transcripts per million mapped reads. If genes are given, the scaling factor will only be computed w.r.t. these genes (but then all genes are normalized).

Genes can be referred to by their names, symbols, row numbers in the gene table, or a logical vector referring to the gene table rows.

Value

a new grandR object with a new data slot

See Also

[NormalizeBaseline](#page-86-0)

Examples

```
sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
                 design=c("Cell",Design$dur.4sU,Design$Replicate))
sars <- Normalize(sars)
DefaultSlot(sars)
```
Description

Normalizes data in a grandR object to a baseline and puts the normalized data into a new slot

Usage

```
NormalizeBaseline(
  data,
 baseline = FindReferences(data, reference = Condition == levels(Condition)[1]),
 name = "baseline",
  slot = DefaultSlot(data),
  set.to.default = FALSE,
 LFC.fun = lfc::PsiLFC,
  ...
)
```
Arguments

Details

Baseline normalization computes the log2 fold change for a column (i.e. sample or cell) to a baseline columns (or several baseline columns). This is by default done using the [PsiLFC](#page-0-0) function from the lfc package, which, by default, also normalizes log2 fold changes by adding a constant such that the median is zero.

Baselines are defined by a square logical matrix, defining for each sample or cell of the grandR object, represented by the column of the matrix, which samples or cells are indeed the baseline (represented by the rows). Such matrices can conveniently be obtained by [FindReferences](#page-44-0).

Value

a new grandR object with an additional slot

See Also

[Normalize](#page-84-0),[FindReferences](#page-44-0)

Examples

```
sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
                  design=c("Cell",Design$dur.4sU,Design$Replicate))
blmat <- FindReferences(sars,reference = duration.4sU==0, group = "Cell")
# the Mock.no4sU or SARS.no4sU sample are the baselines for each sample
sars <- NormalizeBaseline(sars,baseline=blmat)
head(GetTable(sars,type="baseline"))
```
Pairwise *Log2 fold changes and Wald tests for differential expression*

Description

This function is a shortcut for first calling [PairwiseDESeq2](#page-88-0) and then [LFC.](#page-78-0)

Usage

```
Pairwise(
  data,
  name.prefix = mode,contrasts,
 LFC.fun = lfc::PsiLFC,
  slot = "count",
 mode = "total",
 normalization = mode,
  genes = NULL,
  verbose = FALSE
\lambda
```
Arguments

Details

Both [PsiLFC](#page-0-0) and [NormLFC\)](#page-0-0) by default perform normalization by subtracting the median log2 fold change from all log2 fold changes. When computing LFCs of new RNA, it might be sensible to normalize w.r.t. to total RNA, i.e. subtract the median log2 fold change of total RNA from all the log2 fold change of new RNA. This can be accomplished by setting mode to "new", and normalization to "total"!

Normalization can also be a mode.slot! Importantly, do not specify a slot containing normalized values, but specify a slot of unnormalized values (which are used to compute the size factors for normalization!) Can also be a numeric vector of size factors with the same length as the data as columns. Then each value is divided by the corresponding size factor entry.

Value

a new grandR object including a new analysis table. The columns of the new analysis table are

See Also

[PairwiseDESeq2,](#page-88-0)[GetContrasts](#page-64-0)

PairwiseDESeq2 *Perform Wald tests for differential expression*

Description

Apply DESeq2 for comparisons defined in a contrast matrix, requires the DESeq2 package.

Usage

```
PairwiseDESeq2(
  data,
 name.prefix = mode,contrasts,
  separate = FALSE,
  mode = "total",
  slot = "count",
```

```
normalization = NULL,
  logFC = FALSE,
  genes = NULL,
  verbose = FALSE
)
```
Arguments

Details

DESeq2 by default performs size factor normalization. When computing differential expression of new RNA, it might be sensible to normalize w.r.t. to total RNA, i.e. use the size factors computed from total RNA instead of computed from new RNA. This can be accomplished by setting mode to "new", and normalization to "total"!

Normalization can also be a mode.slot! Importantly, do not specify a slot containing normalized values, but specify a slot of unnormalized values (which are used to compute the size factors for normalization!) Can also be a numeric vector of size factors with the same length as the data as columns. Then each value is divided by the corresponding size factor entry.

Value

a new grandR object including a new analysis table. The columns of the new analysis table are

PlotAnalyses 91

See Also

[LFC,](#page-78-0)[GetContrasts](#page-64-0)

Examples

```
sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
                  design=c(Design$Condition,Design$dur.4sU,Design$Replicate))
sars <- subset(sars,Coldata(sars,Design$dur.4sU)==2)
sars<-PairwiseDESeq2(sars,mode="total",
                            contrasts=GetContrasts(sars,contrast=c("Condition","Mock")))
sars<-PairwiseDESeq2(sars,mode="new",normalization="total",
                            contrasts=GetContrasts(sars,contrast=c("Condition","Mock")))
head(GetAnalysisTable(sars,column="Q"))
```


Description

Convenience function to make the same type of plot for multple analyses.

Usage

```
PlotAnalyses(data, plot.fun, analyses = Analyses(data), add = NULL, ...)
```
Arguments

Value

ggplot objects

PlotConversionFreq *Diagnostic plot for conversion frequencies*

Description

This is the second diagnostic plot (estimated conversions) generated by GRAND3.

Usage

```
PlotConversionFreq(data, category, sample = NULL, max.columns = 120)
```
Arguments

Details

Show the percentage of all conversion types for all samples. In contrast to mismatches (see [PlotMis](#page-101-0)[matchPositionForSample](#page-101-0) and [PlotMismatchPositionForType\)](#page-102-0), the correct strand is already inferred for conversions, i.e. conversions refer to actual conversion events on RNA, whereas mismatches are observed events in mapped reads.

Value

a list with a ggplot object, a description, and the desired size for the plot

PlotGeneGroupsBars *Plot gene values as bars*

Description

Plot old and new RNA of a gene in a row.

PlotGeneGroupsBars 93

Usage

```
PlotGeneGroupsBars(
  data,
  gene,
  slot = DefaultSlot(data),
  columns = NULL,
  show.CI = FALSE,xlab = NULL,
  transform = NULL
\lambda
```
Arguments

Details

xlab can be given as a character vector or an expression that evaluates into a character vector. The expression is evaluated in an environment having the [Coldata](#page-13-0), i.e. you can use names of [Coldata](#page-13-0) as variables to conveniently it.

Columns can be given as a logical, integer or character vector representing a selection of the columns (samples or cells). The expression is evaluated in an environment having the [Coldata](#page-13-0), i.e. you can use names of [Coldata](#page-13-0) as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

Value

a ggplot object.

See Also

[GetData,](#page-66-0) [PlotGeneTotalVsNtr,](#page-98-0)[PlotGeneOldVsNew](#page-94-0)[,PlotGeneGroupsBars](#page-91-0)

PlotGeneGroupsPoints *Plot gene groups as points*

Description

Plot either old, new or total RNA of a gene in a row, per condition.

Usage

```
PlotGeneGroupsPoints(
  data,
  gene,
  group = "Condition",
  mode.slot = DefaultSlot(data),
  columns = NULL,
  log = TRUE,show.CI = FALSE,aest = NULL,size = 2,
  transform = NULL
\lambda
```
Arguments

Details

The value of the aest parameter must be an *Aesthetic mapping* as generated by [aes.](#page-0-0)

To refer to data slots, the mode.slot syntax can be used: Each name is either a data slot, or one of (new,old,total) followed by a dot followed by a slot. For new or old, the data slot value is multiplied by ntr or 1-ntr. This can be used e.g. to obtain the *new counts*.

The table used for plotting is the table returned by [GetData](#page-66-0) with coldata set to TRUE, i.e. you can use all names from the [Coldata](#page-13-0) table for aest.

PlotGeneOldVsNew 95

By default, aest is set to aes(color=Condition,shape=Replicate) (if both Condition and Replicate are names in the Coldata table).

Columns can be given as a logical, integer or character vector representing a selection of the columns (samples or cells). The expression is evaluated in an environment having the [Coldata](#page-13-0), i.e. you can use names of [Coldata](#page-13-0) as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

Value

a ggplot object.

See Also

[GetData,](#page-66-0) [PlotGeneTotalVsNtr,](#page-98-0)[PlotGeneOldVsNew](#page-94-0)[,PlotGeneGroupsBars](#page-91-0)

PlotGeneOldVsNew *Gene plot comparing old vs new RNA*

Description

Plot the old vs new RNA values of a gene

Usage

```
PlotGeneOldVsNew(
  data,
  gene,
  slot = DefaultSlot(data),
 columns = NULL,
 log = TRUE,show.CI = FALSE,aest = NULL,size = 2)
```
Arguments

Details

The value of the aest parameter must be an *Aesthetic mapping* as generated by [aes.](#page-0-0)

The table used for plotting is the table returned by [GetData](#page-66-0) with coldata set to TRUE, i.e. you can use all names from the [Coldata](#page-13-0) table for aest.

By default, aest is set to aes(color=Condition,shape=Replicate) (if both Condition and Replicate are names in the Coldata table).

Columns can be given as a logical, integer or character vector representing a selection of the columns (samples or cells). The expression is evaluated in an environment having the [Coldata](#page-13-0), i.e. you can use names of [Coldata](#page-13-0) as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

Value

a ggplot object.

See Also

[GetData,](#page-66-0) [PlotGeneTotalVsNtr,](#page-98-0)[PlotGeneGroupsPoints](#page-93-0)[,PlotGeneGroupsBars](#page-91-0)

PlotGeneProgressiveTimecourse

Plot progressive labeling timecourses

Description

Plot the abundance of new and old RNA and the fitted model over time for a single gene.

Usage

```
PlotGeneProgressiveTimecourse(
  data,
  gene,
  slot = DefaultSlot(data),
  time = Design$dur.4sU,
  type = c("nlls", "ntr", "lm"),
  exact.tics = TRUE,
  show.CI = FALSE,return.tables = FALSE,
  rescale = TRUE,
  ...
)
```
Arguments

Details

For each [Condition](#page-22-0) there will be one panel containing the values and the corresponding model fit.

Value

either a ggplot object, or a list containing all tables used for plotting and the ggplot object.

See Also

[FitKineticsGeneNtr,](#page-52-0) [FitKineticsGeneLeastSquares,](#page-47-0) [FitKineticsGeneLogSpaceLinear](#page-50-0)

```
PlotGeneSnapshotTimecourse
```
Gene plot for snapshot timecourse data

Description

Plot the total RNA expression vs the new-to-total RNA ratio for a gene

Usage

```
PlotGeneSnapshotTimecourse(
 data,
 gene,
  time = Design$dur.4sU,
 mode.slot = DefaultSlot(data),
 columns = NULL,
  average.lines = TRUE,
  exact.tics = TRUE,
 log = TRUE,show.CI = FALSE,aest = NULL,size = 2)
```
Arguments

Details

The x axis of this plot will show a temporal dimension. The time parameter defines a name in the [Coldata](#page-13-0) table containing the temporal values for each sample.

The value of the aest parameter must be an *Aesthetic mapping* as generated by [aes.](#page-0-0)

The table used for plotting is the table returned by [GetData](#page-66-0) with coldata set to TRUE, i.e. you can use all names from the [Coldata](#page-13-0) table for aest.

By default, aest is set to aes(color=Condition,shape=Replicate) (if both Condition and Replicate are names in the Coldata table).

Columns can be given as a logical, integer or character vector representing a selection of the columns (samples or cells). The expression is evaluated in an environment having the [Coldata](#page-13-0), i.e. you can use names of [Coldata](#page-13-0) as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

Value

a ggplot object.

See Also

[GetData,](#page-66-0) [PlotGeneOldVsNew,](#page-94-0)[PlotGeneGroupsPoints](#page-93-0)[,PlotGeneGroupsBars](#page-91-0)

PlotGeneTotalVsNtr *Gene plot comparing total RNA vs the NTR*

Description

Plot the total RNA expression vs the new-to-total RNA ratio for a gene

Usage

```
PlotGeneTotalVsNtr(
  data,
  gene,
  slot = DefaultSlot(data),
  columns = NULL,
  log = TRUE,show.CI = FALSE,aest = NULL,
  size = 2\lambda
```
Arguments

Details

The value of the aest parameter must be an *Aesthetic mapping* as generated by [aes.](#page-0-0)

The table used for plotting is the table returned by [GetData](#page-66-0) with coldata set to TRUE, i.e. you can use all names from the [Coldata](#page-13-0) table for aest.

By default, aest is set to aes(color=Condition,shape=Replicate) (if both Condition and Replicate are names in the Coldata table).

Columns can be given as a logical, integer or character vector representing a selection of the columns (samples or cells). The expression is evaluated in an environment having the [Coldata](#page-13-0), i.e. you can use names of [Coldata](#page-13-0) as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

Value

a ggplot object.

See Also

[GetData,](#page-66-0) [PlotGeneOldVsNew,](#page-94-0)[PlotGeneGroupsPoints](#page-93-0)[,PlotGeneGroupsBars](#page-91-0)

PlotHeatmap *Create heatmaps from grandR objects*

Description

Convenience method to compare among more two variables (slot data or analyses results).

Usage

```
PlotHeatmap(
  data,
  type = DefaultSlot(data),
  columns = NULL,
  genes = NULL,
  summarize = NULL,
  transform = "Z",cluster.genes = TRUE,
  cluster.columns = FALSE,
  label.genes = NULL,
 xlab = NULL,
 breaks = NULL,
 colors = NULL,
  title = NULL,
  return.matrix = FALSE,
 na.to = NA,...
)
```
Arguments

PlotHeatmap 101

Details

This is just a convenience function which

- 1. Calls [GetTable](#page-73-0) with the parameter type, columns, summarize, genes
- 2. Transforms the returned table using the transform parameter
- 3. Determines reasonable colors using breaks and colors
- 4. and then calls ComplexHeatmap::Heatmap

type and columns can refer to values from data slots values from analyses (and can be mixed). If there are types from both data and analyses, columns must be NULL. Otherwise columns must either be condition/cell names (if type refers to one or several data slots), or regular expressions to match against the names in the analysis tables.

Columns definitions for data slots can be given as a logical, integer or character vector representing a selection of the columns (samples or cells). The expression is evaluated in an environment having the [Coldata](#page-13-0), i.e. you can use names of [Coldata](#page-13-0) as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

To refer to data slots, the mode.slot syntax can be used: Each name is either a data slot, or one of (new,old,total) followed by a dot followed by a slot. For new or old, the data slot value is multiplied by ntr or 1-ntr. This can be used e.g. to obtain the *new counts*.

The transform parameter either is a function that transforms a matrix (which can conveniently be done using the Transform.XXX functions described next), or a character (which must be the XXX to find such a function). Available data transformations are

- transform=Transform.Z() or transform="Z": compute z scores for each row (see [Transform.Z\)](#page-140-0)
- transform=Transform.VST() or transform="VST": do a variance stabilizing transformation (see [Transform.VST\)](#page-140-0)
- transform=Transform.logFC() or transform="logFC": compute log2 fold changes to one or several reference columns; which must be defined via parameters (see [Transform.logFC\)](#page-140-0)
- transform=Transform.no() or transform="no": do not transform (see [Transform.no\)](#page-140-1)

Reasonable coloring is chosen depending on the value distribution in the matrix. If the values are zero centered (e.g. z scores or most often log fold changes), then by default the 50 quantile with the larger value. The breaks are -q90,q50,0,q50,q90, and, by default, the red to blue "RdBu" palette from RColorBrewer is taken. If the values are not zero centered, the 5

xlab can be given as a character vector or an expression that evaluates into a character vector. The expression is evaluated in an environment having the [Coldata](#page-13-0), i.e. you can use names of [Coldata](#page-13-0) as variables.

Value

a ComplexHeatmap object

See Also

[GetTable,](#page-73-0)[Heatmap](#page-0-0)

PlotMismatchPositionForSample

Diagnostic plot for mismatch position for columns (by sample)

Description

This belongs to the first diagnostic plots (raw mismatches) generated by GRAND3.

Usage

```
PlotMismatchPositionForSample(
  data,
  sample,
  orientation = NULL,
  category = NULL,
  max.pos = 2500)
```
Arguments

Details

For all positions along the reads (x axis; potentially paired end, shown left and right), show the percentage of all mismatch types. The panel in column T and row C shows T-to-C mismatches. Positions outside of shaded areas are clipped. Uncorrected and Retained means before and after correcting multiply sequenced bases. Sense/Antisense means reads (first read for paired end) that are (based on the annotation) oriented in sense or antisense direction to a gene (i.e. this is only relevant for sequencing protocols that do not preserve strand information).

Value

a list with a ggplot object, a description, and the desired size for the plot

```
PlotMismatchPositionForType
```
Diagnostic plot for mismatch position for columns (by mismatch type)

Description

This belongs to the first diagnostic plots (raw mismatches) generated by GRAND3.

Usage

```
PlotMismatchPositionForType(
  data,
  genomic,
  read,
  orientation = NULL,
  category = NULL,
  max.pos = 2500)
```
Arguments

Details

For all positions along the reads (x axis; potentially paired end, shown left and right), show the percentage of a specific mismatch type for all samples. Positions outside of shaded areas are clipped. Uncorrected and Retained means before and after correcting multiply sequenced bases. Sense/Antisense means reads (first read for paired end) that are (based on the annotation) oriented in sense or antisense direction to a gene (i.e. this is only relevant for sequencing protocols that do not preserve strand information).

Value

a list with a ggplot object, a description, and the desired size for the plot

PlotModelCompareConv *Diagnostic plot for estimated models (global conversion rate)*

Description

This belongs to the fourth kind (model comparison) of diagnostic plots

Usage

```
PlotModelCompareConv(data, label = "4sU", estimator = "Separate")
```
Arguments

Details

Compares the estimated conversion rate (i.e., the probability for a conversion on a new RNA molecule) for the binom and tbbinom models (mean conversion rate).

Value

a list with a ggplot object, a description, and the desired size for the plot

PlotModelCompareErr *Diagnostic plot for estimated models (global error rate)*

Description

This belongs to the fourth kind (model comparison) of diagnostic plots

Usage

```
PlotModelCompareErr(data, label = "4sU", estimator = "Separate")
```
Arguments

Details

Compares the estimated error rate (i.e., the probability for a conversion on an old RNA molecule) for the binom and tbbinom models.

Value

a list with a ggplot object, a description, and the desired size for the plot

PlotModelCompareErrPrior

Diagnostic plot for estimated models (global error rate)

Description

This belongs to the fourth kind (model comparison) of diagnostic plots

Usage

```
PlotModelCompareErrPrior(
  data,
  label = "4sU",estimator = "Separate",
  model = "Binom"
\mathcal{L}
```
Arguments

Details

Compares the prior error rate (estimated from no4sU samples or from all other mismatch types) against the final error rate estimate.

Value

a list with a ggplot object, a description, and the desired size for the plot

PlotModelCompareLL *Diagnostic plot for estimated models (log likelihoods)*

Description

This belongs to the fourth kind (model comparison) of diagnostic plots

Usage

```
PlotModelCompareLL(data, label = "4sU", estimator = "Separate")
```
Arguments

Details

Shows the difference in log likelihoods between the binom and tbbinom models.

Value

a list with a ggplot object, a description, and the desired size for the plot

PlotModelCompareNtr *Diagnostic plot for estimated models (global NTR)*

Description

This belongs to the fourth kind (model comparison) of diagnostic plots

Usage

```
PlotModelCompareNtr(data, label = "4sU", estimator = "Separate")
```
Arguments

Details

Compares the global NTR (i.e. for all reads used for estimation of global parameters, what is the percentage of new RNA) for the binom and tbbinom models.

PlotModelConv 107

Value

a list with a ggplot object, a description, and the desired size for the plot

PlotModelConv *Diagnostic plot for estimated models (global conversion rate)*

Description

This belongs to the third kind (model) of diagnostic plots

Usage

```
PlotModelConv(data, label = "4sU", estimator = "Separate", model = "Binom")
```
Arguments

Details

Shows the estimated conversion rate (i.e., the probability for a conversion on a new RNA molecule) for each sample.

Value

a list with a ggplot object, a description, and the desired size for the plot

Description

This belongs to the third kind (model) of diagnostic plots

Usage

```
PlotModelErr(data, label = "4sU", estimator = "Separate", model = "Binom")
```
Arguments

Details

Shows the estimated error rate (i.e., the probability for a conversion on an old RNA molecule) for each sample.

Value

a list with a ggplot object, a description, and the desired size for the plot

PlotModelLabelTimeCourse

Diagnostic plot for estimated models (4sU increase)

Description

This belongs to the third kind (model) of diagnostic plots

Usage

```
PlotModelLabelTimeCourse(data, label = "4sU", estimator = "Separate")
```
Arguments

Details

Shows the estimated time evolution of 4sU increase in the tbbinom model for each sample.

Value

a list with a ggplot object, a description, and the desired size for the plot
This belongs to the third kind (model) of diagnostic plots

Usage

```
PlotModelNtr(data, label = "4sU", estimator = "Separate", model = "Binom")
```
Arguments

Details

Shows the estimated global NTR (i.e. for all reads used for estimation of global paramters, what is the percentage of new RNA) for each sample.

Value

a list with a ggplot object, a description, and the desired size for the plot

PlotModelShape *Diagnostic plot for estimated models (global shape parameter)*

Description

This belongs to the third kind (model) of diagnostic plots

Usage

```
PlotModelShape(data, label = "4sU", estimator = "Separate")
```
Arguments

Details

Shows the estimated shape parameter (describing the increase of 4sU over time) in the tbbinom model for each sample.

Value

a list with a ggplot object, a description, and the desired size for the plot

PlotPCA *Make a PCA plot*

Description

Make a PCA plot

Usage

```
PlotPCA(
  data,
 mode.slot = DefaultSlot(data),
 ntop = 500,
  aest = NULL,x = 1,
 y = 2,
  columns = NULL,
  do. vst = TRUE)
```
Arguments

Details

Columns can be given as a logical, integer or character vector representing a selection of the columns (samples or cells). The expression is evaluated in an environment having the [Coldata](#page-13-0), i.e. you can use names of [Coldata](#page-13-0) as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

Value

a PCA plot

PlotProfileLikelihood *Diagnostic plot for estimated models (global error rate)*

Description

This belongs to the fifth kind (profile likelihoods) of diagnostic plots

Usage

```
PlotProfileLikelihood(
  data,
  label = "4sU",estimator = NULL,
  sample = NULL,
  subread = NULL
)
```
Arguments

Details

Shows the profile likelihoods for all parameters of the tbbinom model.

Value

a list with a ggplot object, a description, and the desired size for the plot

Get plot names and add or remove plots

Usage

```
Plots(data)
AddGenePlot(data, name, FUN)
AddGlobalPlot(data, name, FUN, floating = FALSE)
PlotGene(data, name, gene)
PlotGlobal(data, name)
DropPlots(data, pattern = NULL)
```
Arguments

Details

FUN has to be a function with a single parameter for global plots (i.e., the grandR object) or two parameters for gene plots (i.e., the grandR object and the gene name). Usually, it is either the name of a plotting function, such as [PlotGeneOldVsNew,](#page-94-0) or, if it is necessary to parametrize it, a call to [Defer](#page-28-0) (which takes care of caching plots without storing an additional copy of the grandR object).

For floating window plots, if names are given in the format \lt title \gt . \lt name \gt , a plot is created for each <title> with several subplots.

Value

Either the plot names or a grandR data with added/removed plots

PlotScatter 113

Functions

- Plots(): Obtain the plot names
- AddGenePlot(): Add a gene plot to the grandR object
- AddGlobalPlot(): Add a global plot to the grandR object
- PlotGene(): Create a gene plot
- PlotGlobal(): Create a global plot
- DropPlots(): Remove plots from the grandR object

PlotScatter *Make a scatter plot*

Description

Convenience method to compare two variables (slot data or analyses results).

```
PlotScatter(
  data,
  x = NULL,y = NULL,analysis = NULL,
 mode.slot = NULL,
 xcol = NULL,ycol = NULL,
  xlab = NULL,
 ylab = NULL,
  log = FALSE,
  log.x = log,
  log.y = log,
  axis = TRUE,axis.x = axis,axis.y = axis,remove.outlier = 1.5,
  show.outlier = TRUE,
  \lim = NULL,
  xlim = lim,ylim = lim,size = 0.3,
  cross = NULL,
  diag = NULL,filter = NULL,
  genes = NULL,
  highlight = NULL,
  label = NULL,
```

```
label.repel = 1,facet = NULL,color = NULL,
 colorpalette = NULL,
 colorbreaks = NULL,
 color.label = NULL,
 density.margin = "n",
 density.n = 100,
 rasterize = NULL,
 correlation = NULL,
 correlation.x = -Inf,
 correlation.y = Inf,
 correlation.hjust = 0.5,
 correlation.vjust = 0.5,
 layers.below = NULL
\mathcal{L}
```


PlotScatter 115

Details

Both the x and y parameter are either expressions or names. Names are either sample (or cell, in case of single cell experiments) names or fully qualified analysis results (analysis name followed by a dot and the analysis result table column). If the analysis parameter is given, the analysis name must be omitted from x and y. These names can be used within expressions using non-standard evaluation. Defining by names only works with character literals like "kinetics.Synthesis", but if you give an expression (e.g. a variable name that contains a character), the situation is more complicated, since PlotScatter will try to evaluate this for defining the values, not the name of the column. If the expression evaluates into a single character string that is equal to a name (see above!), PlotScatter knows what to do. For more complicated situations that cannot be resolved by this, you can use the xcol and ycol parameters instead of the x and y parameters!

By default the limits of x and y axis are chosen after removing outliers (using the same algorithm used for [boxplot\)](#page-0-0). Thus, larger numbers filter less stringently. remove.outlier can also be set to FALSE (no outlier filtering). If xlim or ylim are set, this overrides outlier filtering. Points outside of the limits (i.e. outliers or points outside of xlim or ylim) are set to infinity (such that they are shown at the border of the plot in gray)

By default, all genes are shown. This can be restricted using the genes parameter (see [ToIndex\)](#page-139-0). It is also possible to highlight a subset of the genes using highlight. This parameter either describes a subset of the genes (either numeric indices, gene names, gene symbols or a logical vector), in which case these genes are plotted in red and with larger points size, or it can be a list of such vectors. The names of this list must be valid colors. Genes can also be labeled (make sure that this is really only a small subset of the genes).

When rendering to vector based devices (such as svg or pds), a genome-wide scatterplot often is painfully big (and rendering therefore slow). The rasterize parameter can be used to automatically rasterize the points only (via the ggrastr package). If this parameter is NULL, ggrastr is used if more than 1000 points are plotted!

Often scatter plots show that x and y coordinates are correlated. Correlations can be annotated using the [FormatCorrelation](#page-59-0) function. Most often you will use PlotScatter(data,x,y,correlation=FormatCorrelation()). To use a different correlation measure, other formats for correlation coefficient and P values or omit one of these statistics, parametrize FormatCorrelation. Use correlation.x and correlation.y to place the annotation in the plot, and correlation.hjust/correlation.vjust to align the annotation at the given x,y coordinates. Infinite values for correlation.x/correlation.y will put the annotation at the border of the plot.

Value

a ggplot object with the data frame used as the df attribute

PlotSimulation *Plot simulated data*

Description

The input data is usually created by [SimulateKinetics](#page-131-0)

PlotTypeDistribution 117

Usage

```
PlotSimulation(
 sim.df,
 ntr = TRUE,old = TRUE,
 new = TRUE,total = TRUE,line.size = 1
\mathcal{L}
```
Arguments

Value

a ggplot object

See Also

[SimulateKinetics](#page-131-0) for creating the input data frame

Examples

PlotSimulation(SimulateKinetics(hl=2))

PlotTypeDistribution *Plot the distribution of gene types*

Description

Plot the distribution of gene types

Usage

PlotTypeDistribution(data, mode.slot = DefaultSlot(data), relative = FALSE)

Arguments

Value

a ggplot object

PoolColumns *Pool reads across columns*

Description

Pool read counts, ntrs, and alpha/beta values across columns defined by a pooling matrix

Usage

```
PoolColumns(
  data,
  pooling = GetSummarizeMatrix(data, average = FALSE, no4sU = TRUE)
)
```
Arguments

Details

The pooling matrix must have as many rows as there are columns (i.e., samples or cells) in data, and as many columns as you want to have columns in the resulting object. The matrix should consist of 0 and 1, where 1 indicates a column of the original object that should go into a column of the new object. In essence, to obtain the new count matrix, the old count matrix is matrix-multiplied with the pooling matrix.

The new ntr matrix is computed by componentwise division of the new count and total count matrices derived as just described. alpha and beta are computed using matrix multiplication, i.e. summing up all alpha and beta values of all the columns belonging to a pool.

Value

a new grandR object

Depending on whether [SetParallel](#page-130-0) has been called, execute in parallel or not.

Usage

 $psapply(..., seed = NULL, enforce = NA)$ $plapply(..., seed = NULL, enforce = NA)$

Arguments

Details

If the code uses random number specify the seed to make it deterministic

Value

a vector (psapply) or list (plapply)

Description

grandR can also be used to analyze standard RNA-seq data, and this function is here to read such data.

```
ReadCounts(
  file,
  design = c(Design$Condition, Design$Replicate),
  classify.genes = ClassifyGenes(),
  rename.sample = NULL,
  filter.table = NULL,
  num.samples = NULL,
  verbose = FALSE,
  sep = "\t"
\mathcal{E}
```


Details

The table is assumed to have read counts in the last n columns, which must be named according to sample names. If num.samples is NULL this n is automatically recognized as the number of numeric columns (so make sure to either specify num.samples, or that the column immediately prior to the first sample column is *not* numeric).

If these columns are named systematically in a particular way, the design vector provides a powerful and easy way to create the column annotations.

The column names have to contain dots (.) to separate the fields for the column annotation table. E.g. the name *Mock.4h.A* will be split into the fields *Mock*, *4h* and *A*. For such names, a design vector of length 3 has to be given, that describes the meaning of each field. A reasonable design vector for the example would be c("Treatment","Time","Replicate"). Some names are predefined in the list [Design.](#page-31-0)

The names given in the design vector might even have additional semantics: E.g. for the name *duration.4sU* the values are interpreted (e.g. 4h is converted into the number 4, or 30min into 0.5, or no4sU into 0). Semantics can be user-defined by calling [MakeColdata](#page-82-0) and using the return value as the design parameter, or a function that calls MakeColdata. In most cases it is easier to manipulate the [Coldata](#page-13-0) table after loading data instead of using this mechanism; the build-in semantics simply provide a convenient way to reduce this kind of manipulation in most cases.

Sometimes you might have forgotten to name all samples consistently (or you simply messed something up). In this case, the rename.sample parameter can be handy (e.g. to rename a particular misnamed sample).

Sometimes the table contains more than you want to read. In this case, use the filter.table parameter to preprocess it. This should be a function that receives a data.frame, and returns a data.frame.

If there are no columns named "Gene" or "Symbol", the first column is used!

Value

a grandR object

ReadFeatureCounts *Read featureCounts*

Description

grandR can also be used to analyze standard RNA-seq data, and this function is here to read such data.

Usage

```
ReadFeatureCounts(
  file,
  design = c(Design$Condition, Design$Replicate),
  classify.genes = ClassifyGenes(),
  rename.sample = NULL,
  filter.table = NULL,
  num.samples = NULL,
  verbose = FALSE,
  sep = "\t"
\mathcal{L}
```
Arguments

Details

The table is assumed to have read counts in the last n columns, which must be named according to sample names. If num.samples is NULL this n is automatically recognized as the number of columns containing .bam (so make sure to either specify num.samples, or that the count columns are called after the bam files).

If these columns are named systematically in a particular way, the design vector provides a powerful and easy way to create the column annotations.

The column names have to contain dots (.) to separate the fields for the column annotation table. E.g. the name *Mock.4h.A* will be split into the fields *Mock*, *4h* and *A*. For such names, a design vector

of length 3 has to be given, that describes the meaning of each field. A reasonable design vector for the example would be c("Treatment","Time","Replicate"). Some names are predefined in the list [Design.](#page-31-0)

The names given in the design vector might even have additional semantics: E.g. for the name *duration.4sU* the values are interpreted (e.g. 4h is converted into the number 4, or 30min into 0.5, or no4sU into 0). Semantics can be user-defined by calling [MakeColdata](#page-82-0) and using the return value as the design parameter, or a function that calls MakeColdata. In most cases it is easier to manipulate the [Coldata](#page-13-0) table after loading data instead of using this mechanism; the build-in semantics simply provide a convenient way to reduce this kind of manipulation in most cases.

Sometimes you might have forgotten to name all samples consistently (or you simply messed something up). In this case, the rename.sample parameter can be handy (e.g. to rename a particular misnamed sample).

Sometimes the table contains more than you want to read. In this case, use the filter.table parameter to preprocess it. This should be a function that receives a data.frame, and returns a data.frame.

If there are no columns named "Geneid", "Gene" or "Symbol", the first column is used!

Value

a grandR object

ReadGRAND *Read the output of GRAND-SLAM 2.0 into a grandR object.*

Description

Metabolic labeling - nucleotide conversion RNA-seq data (such as generated by SLAM-seq,TimeLapseseq or TUC-seq) must be carefully analyzed to remove bias due to incomplete labeling. GRAND-SLAM is a software package that employs a binomial mixture modeling approach to obtain precise estimates of the new-to-total RNA ratio (NTR) per gene and sample (or cell). This function directly reads the output of GRAND-SLAM 2.0 into a grandR object.

```
ReadGRAND(
 prefix,
  design = c(Design$Condition, Design$Replicate),
  classify.genes = ClassifyGenes(),
  read.percent.conv = FALSE,
  read.min2 = FALSE,
  rename.sample = NULL,
  verbose = FALSE
)
```


Details

If columns (samples/cells) are named systematically in a particular way, the design vector provides a powerful and easy way to create the column annotations.

The column names have to contain dots (.) to separate the fields for the column annotation table. E.g. the name *Mock.4h.A* will be split into the fields *Mock*, *4h* and *A*. For such names, a design vector of length 3 has to be given, that describes the meaning of each field. A reasonable design vector for the example would be c("Treatment","Time","Replicate"). Some names are predefined in the list [Design.](#page-31-0)

The names given in the design vector might even have additional semantics: E.g. for the name *duration.4sU* the values are interpreted (e.g. 4h is converted into the number 4, or 30min into 0.5, or no4sU into 0). Semantics can be user-defined by calling [MakeColdata](#page-82-0) and using the return value as the design parameter, or a function that calls MakeColdata. In most cases it is easier to manipulate the [Coldata](#page-13-0) table after loading data instead of using this mechanism; the build-in semantics simply provide a convenient way to reduce this kind of manipulation in most cases.

Sometimes you might have forgotten to name all samples consistently (or you simply messed something up). In this case, the rename.sample parameter can be handy (e.g. to rename a particular misnamed sample).

Value

A grandR object containing the read counts, NTRs, information on the NTR posterior distribution (alpha,beta) and potentially additional information of all genes detected by GRAND-SLAM

See Also

[ReadGRAND3,](#page-123-0)[ClassifyGenes](#page-12-0)[,MakeColdata](#page-82-0)[,DesignSemantics](#page-31-1)

Examples

```
sars <- ReadGRAND("https://zenodo.org/record/5834034/files/sars.tsv.gz",
                     design=c("Cell",Design$dur.4sU,Design$Replicate), verbose=TRUE)
```
ReadGRAND3 *Read the output of GRAND-SLAM 3.0 into a grandR object.*

Description

Metabolic labeling - nucleotide conversion RNA-seq data (such as generated by SLAM-seq,TimeLapseseq or TUC-seq) must be carefully analyzed to remove bias due to incomplete labeling. GRAND-SLAM is a software package that employs a binomial mixture modeling approach to obtain precise estimates of the new-to-total RNA ratio (NTR) per gene and sample (or cell). This function directly reads the output of GRAND-SLAM 3.0 into a grandR object.

Usage

```
ReadGRAND3(
 prefix,
  design = NULL,
  label = "4sU",estimator = "Binom",
  classify.genes = ClassifyGenes(),
  read.posterior = NULL,
  rename.sample = NULL,
  verbose = FALSE
\lambda
```
Arguments

ReadNewTotal 125

Details

If columns (samples/cells) are named systematically in a particular way, the design vector provides a powerful and easy way to create the column annotations.

The column names have to contain dots (.) to separate the fields for the column annotation table. E.g. the name *Mock.4h.A* will be split into the fields *Mock*, *4h* and *A*. For such names, a design vector of length 3 has to be given, that describes the meaning of each field. A reasonable design vector for the example would be c("Treatment","Time","Replicate"). Some names are predefined in the list [Design.](#page-31-0)

The names given in the design vector might even have additional semantics: E.g. for the name *duration.4sU* the values are interpreted (e.g. 4h is converted into the number 4, or 30min into 0.5, or no4sU into 0). Semantics can be user-defined by calling [MakeColdata](#page-82-0) and using the return value as the design parameter, or a function that calls MakeColdata. In most cases it is easier to manipulate the [Coldata](#page-13-0) table after loading data instead of using this mechanism; the build-in semantics simply provide a convenient way to reduce this kind of manipulation in most cases.

Sometimes you might have forgotten to name all samples consistently (or you simply messed something up). In this case, the rename.sample parameter can be handy (e.g. to rename a particular misnamed sample).

Value

A grandR object containing the read counts, NTRs, information on the NTR posterior distribution (alpha,beta) and potentially additional information of all genes detected by GRAND-SLAM

See Also

[ReadGRAND,](#page-121-0)[ClassifyGenes](#page-12-0)[,MakeColdata](#page-82-0)[,DesignSemantics](#page-31-1)

ReadNewTotal *Read sparse new/total matrices*

Description

This function can be used to load matrix market data in case genes were quantified by (i) counting all reads (for total RNA) and (ii) counting T-to-C mismatch reads (for new RNA)

```
ReadNewTotal(
  genes,
  cells,
  new.matrix,
  total.matrix,
  detection.rate = 1,
  verbose = FALSE
)
```


Details

Metabolic labeling - nucleotide conversion RNA-seq data (such as generated by SLAM-seq,TimeLapseseq or TUC-seq) must be carefully analyzed to remove bias due to incomplete labeling. We advice against counting read with and without T-to-C mismatches for quantification, and encourage using a statistical method such as GRAND-SLAM that properly deals with incomplete labeling.

To correct for some bias, a detection rate (as suggested by Cao et al., Nature Biotech 2020) should be provided. This detection rate defines, how much new RNA is detected on average using the T-to-C mismatch reads.

Value

a grandR object

RotatateAxisLabels *Rotate x axis labels*

Description

Add this to a ggplot object to rotate the x axis labels

Usage

```
RotatateAxisLabels(angle = 90)
```
Arguments

angle the angle by which to rotate

Value

a ggplot theme object

Copy the NTR slot and save under new name

Usage

SaveNtrSlot(data, name)

Arguments

Value

a grandR object

Scale *Scale data*

Description

Compute values for all genes standardized (i.e. z scores) across samples.

```
Scale(
  data,
 name = "scaled",
 slot = DefaultSlot(data),
  set.to.default = FALSE,
 group = NULL,center = TRUE,
  scale = TRUE
\mathcal{E}
```


Details

Standardization can be done per group. For this, the group parameter has to be a name of the [Coldata](#page-13-0) table, to define groups of columns (i.e. samples or cells).

Value

a new grandR object with a new slot

See Also

[scale](#page-0-0)

Semantics.concentration

Semantics for concentration columns

Description

Defines additional semantics for columns representing concentrations

Usage

Semantics.concentration(s, name)

Arguments

Value

a data frame with a single numeric column, where $\langle x \rangle$ uM from s is replaced by x, $\langle x \rangle$ mM is replaced by x*1000, and no4sU is replaced by 0

Semantics.time *Semantics for time columns*

Description

Defines additional semantics for columns representing temporal dimensions

Usage

```
Semantics.time(s, name)
```
Arguments

Value

a data frame with a single numeric column, where $\langle x \rangle$ from s is replaced by x, $\langle x \rangle$ min is replaced by x/60, and no4sU is replaced by 0

ServeGrandR *Serve a shiny web interface*

Description

Fire up a shiny web server for exploratory analysis of grandR data.

```
ServeGrandR(
  data,
  table = NULL,
  sizes = NA,
 height = 400,
  floating.size = c(350, 350),
 plot.gene = NULL,
 plot.global = NULL,
 plot.window = NULL,
 highlight = NULL,
 df.identifier = "Symbol",
  title = Title(data),
  show.sessionInfo = FALSE,
 help = list(".Q: multiple testing corrected p values", ".LFC: log2 fold changes")
)
```


Details

If the table parameter is NULL, either an analysis table named "ServeGrandR" is used (if it exists), otherwise the columns "Q", "LFC", "Synthesis" and "Half-life" of all analysis tables are used. If it is a list, a menu is created in the navbar

plot.window must be a list of plotting functions that receive the grandR object and return a plot. It can also be a list of list, in which case more than one plotting windows are generated. Each plot will be rendered with a size of 350x350.

The gene plots must be functions that accept two parameters: the grandR object and a gene identifier. You can either use functions directly (e.g. plot.gene=list(PlotGeneOldVsNew)), or use [De](#page-28-0)[fer](#page-28-0) in cases you need to specify additional parameters, e.g. plot.gene=list(Defer(PlotGeneOldVsNew, log=FALSE)). The global plots are functions accepting a single parameter (the grandR object). Here the use of [Defer](#page-28-0) is encouraged due to its caching mechanism.

Value

a shiny web server

SetParallel 131

Examples

```
## Not run:
sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
                  design=c("Condition",Design$dur.4sU,Design$Replicate))
sars <- Normalize(sars)
sars <- Pairwise(sars,contrasts = GetContrasts(sars,contrast = c("Condition","SARS","Mock")))
sars <- AddGenePlot(sars,"timecourse",
             Defer(PlotGeneProgressiveTimecourse,steady.state=c(Mock=TRUE,SARS=FALSE)))
sars <- AddGlobalPlot(sars,"Vulcano",VulcanoPlot)
ServeGrandR(sars)
```
End(Not run)

SetParallel *Set up parallel execution*

Description

Set the number of cores for parallel execution.

Usage

```
SetParallel(cores = max(1, parallel::detectCores() - 2))
```
Arguments

cores number of cores

Details

Whenever [psapply](#page-118-0) or [plapply](#page-118-1) are used, they are executed in parallel.

Value

No return value, called for side effects

The standard mass action kinetics model of gene expression arises from the differential equation $df/dt = s - df(t)$, with s being the constant synthesis rate, d the constant degradation rate and $f(0) = f(0)$ (the abundance at time 0). The RNA half-life is directly related to d via $HL = \log(2)/d$. This model dictates the time evolution of old and new RNA abundance after metabolic labeling starting at time t=0. This function simulates data according to this model.

Usage

```
SimulateKinetics(
  s = 100 * d,d = \log(2)/hl,
 h1 = 2,
  f0 = NULL,dropout = 0,
  min.time = -1,max.time = 10,
 N = 1000,name = NULL,
  out = c("Old", "New", "Total", "NTR")
)
```
Arguments

Details

Both rates can be either (i) a single number (constant rate), (ii) a data frame with names "off-set", "factor" and "exponent" (for linear functions, see [ComputeNonConstantParam\)](#page-17-0) or (iii) a unary function time->rate. Functions

Value

a data frame containing the simulated values

See Also

[PlotSimulation](#page-115-0) for plotting the simulation

Examples

head(SimulateKinetics(hl=2)) # simulate steady state kinetics for an RNA with half-life 2h

SimulateReadsForSample

Simulate metabolic labeling - nucleotide conversion RNA-seq data.

Description

This function takes a vector of *true* relative abundances and NTRs, and then simulates (i) read counts per gene and (ii) 4sU incorporation and conversion events. Subsequently, it uses the same approach as implemented in the GRAND-SLAM 2.0 software (Juerges et al., Bioinformatics 2018) to estimate the NTR from these simulated data.

```
SimulateReadsForSample(
 num.reads = 2e+07,
 rel.abundance = setNames(rlnorm(10000, meanlog = 4.5, sdlog = 1), paste0("Gene",
    1:10000)),
 ntr = setNames(rbeta(10000, 1.5, 3), paste0("Gene", 1:10000)),
  dispersion = 0.05,
 beta.approx = FALSE,
  conversion.reads = FALSE,
 u.content = 0.25,
 u. content.sd = 0.05,
  read.length = 75,
 p.old = 1e-04,
 p.new = 0.04,
 p.new.fit = p.new,enforce.parallelized = NA,
  seed = NULL
)
```


Details

The simulation proceeds as follows:

- 1. Draw for each gene the number of reads from a negative binomial distribution parametrized with the relative abundances x read number and the dispersion parameter
- 2. For each gene: Draw for each read the number of uridines according to a beta binomial distribution for the given read length (the beta prior is parametrized to match the u.content and u.content.sd parameters)
- 3. For each read: Draw the number of conversions according to the binomial mixture model of GRAND-SLAM (parametrized with p_old, p_new, the gene specific NTR and the read specific number of uridines)
- 4. Estimate the NTR by using the GRAND-SLAM approach

Value

a matrix containing, per column, the simulated counts, the simulated NTRs, (potentially the shape parameters of the beta distribution approximation,) and the true relative frequencies and ntrs

See Also

[SimulateTimeCourse](#page-134-0)

Examples

```
SimulateReadsForSample(num.reads = 10000,rel.abundance = rep(1,5),ntr=0.9)
SimulateReadsForSample(num.reads = 10000,rel.abundance = rep(1,5),ntr=0.9,seed=1337)
SimulateReadsForSample(num.reads = 10000,rel.abundance = rep(1,5),ntr=0.9,seed=1337)
# the second and third matrix should be equal, the first should be distinct
```


Description

This function takes a vector of *true* synthesis rates and RNA half-lives, and then simulates data for multiple time points and replicates. Both synthesis rate and RNA half-lives are assumed to be constant, but the system might not be in steady-state.

Usage

```
SimulateTimeCourse(
 condition,
  gene.info,
  s,
  d,
  f\emptyset = s/d,
  s.variation = 1,
  d.variation = 1,
  dispersion,
  num.reads = 1e+07,
  timepoints = c(0, 0, 0, 1, 1, 1, 2, 2, 2, 4, 4, 4),
  beta.approx = FALSE,
  conversion.reads = FALSE,
  verbose = TRUE,
  seed = NULL,
  ...
)
```
Arguments

Details

If *s.variation* or *d.variation* are > 1, then for each gene a random gaussian is added to s (or d) such that 90 of the gaussian is log2(s.variation).

Value

a grandR object containing the simulated data in its data slots and the true parameters in the gene annotation table

```
SimulateTimeCourseNonConstant
```
Simulate a complete time course of metabolic labeling - nucleotide conversion RNA-seq data.

Description

This function takes a vector of *true* synthesis rates and RNA half-lives, and then simulates data for multiple time points and replicates. Both synthesis rate and RNA half-lives are assumed to be constant, but the system might not be in steady-state.

```
SimulateTimeCourseNonConstant(
  condition,
  gene.info,
 s,
  d,
  dispersion,
 num.reads = 1e+07,
  t = 2,
  replicates = 3,
 beta.approx = FALSE,
```
SimulateTimeCourseNonConstant 137

```
conversion.reads = FALSE,
verbose = TRUE,
seed = NULL,
...
```
Arguments

)

Details

Both rates can be either (i) a single number (constant rate), (ii) a data frame with names "offset", "factor" and "exponent" (for linear functions, see [ComputeNonConstantParam;](#page-17-0) only one row allowed) or (iii) a unary function time->rate. Functions

Value

a grandR object containing the simulated data in its data slots and the true parameters in the gene annotation table

See Also

[SimulateTimeCourse](#page-134-0)

Get slot names and add or remove slots

Usage

Slots(data) DropSlot(data, pattern = NULL) AddSlot(data, name, matrix, set.to.default = FALSE, warn = TRUE)

Arguments

Value

Either the slot names or a grandR data with added/removed slots

Functions

- Slots(): Obtain the slot names
- DropSlot(): Remove one or several slots from this grandR object
- AddSlot(): Add an additional slot to this grandR object

See Also

[DefaultSlot](#page-27-0)

Examples

```
sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
                 design=c("Cell",Design$dur.4sU,Design$Replicate))
sars \leq Normalize(sars) # default behavior is to update the default slot
sars
sars <- DropSlot(sars,"norm")
sars \qquad \qquad # note that the defauls slot reverted to count
```
The structure is supposed to be a list. Flattening is done by extracting the given fields (return.fields) and applying the additional function (return.extra). This is mainly to be used within sapply and similar.

Usage

```
structure2vector(d, return.fields = NULL, return.extra = NULL)
kinetics2vector(
  d,
  condition = NULL,
  return.fields = c("Synthesis", "Half-life"),
  return.extra = NULL
)
```
Arguments

Value

the data flattened into a vector

Functions

• kinetics2vector(): Convert the output of the FitKinetics methods into a vector

Examples

```
sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
                  design=c("Condition",Design$dur.4sU,Design$Replicate))
sars <- Normalize(sars)
fit <- FitKineticsGeneLeastSquares(sars,"SRSF6")$Mock
print(fit)
kinetics2vector(fit)
```
Helper function to work in conjunction with [GetMatrix](#page-68-1) or similar to obtain a summarized matrix.

Usage

```
Summarize(mat, summarize.mat)
```
Arguments

Details

The summarize.mat can be obtained via [GetSummarizeMatrix.](#page-71-0) If there are missing (NA) values in the matrix, they are imputed from the rest (average)

Value

the summarized matrix

ToIndex *Obtain the indices of the given genes*

Description

Genes can be referred to by their names, symbols, row numbers in the gene table, or a logical vector referring to the gene table rows. This function accepts all these possibilities and returns the row number in the gene table for the given genes,

Usage

```
ToIndex(data, gene, regex = FALSE, remove.missing = TRUE, warn = TRUE)
```
Arguments

Transform.no 141

Value

Numeric indices corresponding to the given genes

See Also

[GeneInfo](#page-60-0)

Examples

```
sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
                  design=c("Cell",Design$dur.4sU,Design$Replicate))
ToIndex(sars,c("MYC"))
ToIndex(sars,GeneInfo(sars)$Symbol=="MYC")
```
Transform.no *Transformations for PlotHeatmap*

Description

Functions to perform transformations on the matrix used for [PlotHeatmap.](#page-99-0)

Usage

```
Transform.no(label = "")Transform.Z(label = "z score", center = TRUE, scale = TRUE)
Transform.VST(label = "VST")
```
Transform.logFC(label = "log2 FC", LFC.fun = NULL, columns = NULL, ...)

Arguments

Details

These functions should be used as transform parameter to [PlotHeatmap.](#page-99-0) Available data transformations are

- transform=Transform.Z(): compute z scores for each row; you can omit the usual centering or scaling by setting the respective parameters to false; see [scale](#page-0-0)
- transform=Transform.VST(): do a variance stabilizing transformation using [vst](#page-0-0)
- transform=Transform.logFC(): compute log2 fold changes to one or several reference columns; see below how to define them; fold changes are computed using the lfc package)
- transform=Transform.no(): do not transform

The label to be used in the heatmap legend can be changed by specifying the label parameter.

For Transform.logFC, columns can be given as a logical, integer or character vector representing a selection of the columns (samples or cells).

Value

A function that transforms a matrix.

TransformSnapshot *Estimate parameters for a one-shot experiment.*

Description

Under steady state conditions it is straight-forward to estimate s and d. Otherwise, the total levels at some other time point are needed.

Usage

TransformSnapshot(ntr, total, t, t0 = NULL, f0 = NULL, full.return = FALSE)

Arguments

Details

t0 must be given as the total time in between the measurement of f0 and the given ntr and total values!

UpdateSymbols 143

Value

a named vector for s and d

UpdateSymbols *Update symbols using biomaRt*

Description

If your input files only contained ENSEMBL ids, use this to add gene symbols!

Usage

```
UpdateSymbols(data, species = NULL, current.value = "ensembl_gene_id")
```
Arguments

Details

If no species is given, a very simple automatic inference is done, which will only work when having human or mouse ENSEMBL identifiers as gene ids. If you need to specify species, it must be one of biomaRt::listDatasets(biomaRt::useMart("ensembl"))\$dataset!

Current.value must be one of biomaRt::listAttributes(biomaRt::useMart("ensembl"))\$name!

Value

a grandR object with updated symbol names

UseNtrSlot *Copy the NTR slot and save under new name*

Description

Copy the NTR slot and save under new name

Usage

UseNtrSlot(data, name)

Value

a grandR object

VulcanoPlot *Make a Vulcano plot*

Description

Plot log2 fold changes against -log10 multiple testing adjusted P values

Usage

```
VulcanoPlot(
 data,
  analysis = Analyses(data)[1],
 p.cutoff = 0.05,lfc.cutoff = 1,
  annotate.numbers = TRUE,
  ...
)
```
Arguments

Value

a ggplot object
Index

∗ datasets Design, [32](#page-31-0) ∗ data ComputeColumnStatistics, [16](#page-15-0) ComputeExpressionPercentage, [17](#page-16-0) ComputePseudoNtr, [20](#page-19-0) ComputeTotalExpression, [22](#page-21-0) CreateConvolutionTable, [25](#page-24-0) CreatePseudobulkTable, [27](#page-26-0) GetAnalysisTable, [64](#page-63-0) GetData, [67](#page-66-0) GetMatrix, [69](#page-68-0) GetSummarizeMatrix, [72](#page-71-0) GetTable, [74](#page-73-0) PoolColumns, [118](#page-117-0) SaveNtrSlot, [127](#page-126-0) Summarize, [140](#page-139-0) UseNtrSlot, [143](#page-142-0) ∗ diagnostics CreatePdfs, [26](#page-25-0) GetDiagnosticParameters, [69](#page-68-0) PlotConversionFreq, [92](#page-91-0) PlotMismatchPositionForSample, [102](#page-101-0) PlotMismatchPositionForType, [103](#page-102-0) PlotModelCompareConv, [104](#page-103-0) PlotModelCompareErr, [104](#page-103-0) PlotModelCompareErrPrior, [105](#page-104-0) PlotModelCompareLL, [106](#page-105-0) PlotModelCompareNtr, [106](#page-105-0) PlotModelConv, [107](#page-106-0) PlotModelErr, [107](#page-106-0) PlotModelLabelTimeCourse, [108](#page-107-0) PlotModelNtr, [109](#page-108-0) PlotModelShape, [109](#page-108-0) PlotProfileLikelihood, [111](#page-110-0) ∗ diffexp DESeq2BIC, [31](#page-30-0) EstimateRegulation, [37](#page-36-0) GetContrasts, [65](#page-64-0)

GetPairContrasts, [70](#page-69-0) GetSignificantGenes, [71](#page-70-0) LFC, [79](#page-78-0) LikelihoodRatioTest, [81](#page-80-0) Pairwise, [88](#page-87-0) PairwiseDESeq2, [89](#page-88-0) ∗ dropout ComputeSummaryStatistics, [21](#page-20-0) correctdropout, [24](#page-23-0) dropout, [33](#page-32-0) dropoutpercent, [35](#page-34-0) Findno4sUPairs, [44](#page-43-0) ∗ geneplot PlotGeneGroupsBars, [92](#page-91-0) PlotGeneGroupsPoints, [94](#page-93-0) PlotGeneOldVsNew, [95](#page-94-0) PlotGeneProgressiveTimecourse, [96](#page-95-0) PlotGeneSnapshotTimecourse, [97](#page-96-0) PlotGeneTotalVsNtr, [99](#page-98-0) ∗ genesets AnalyzeGeneSets, [6](#page-5-0) ListGeneSets, [82](#page-81-0) ∗ globalplot FormatCorrelation, [60](#page-59-0) MAPlot, [84](#page-83-0) PlotAnalyses, [91](#page-90-0) PlotHeatmap, [100](#page-99-0) PlotPCA, [110](#page-109-0) PlotScatter, [113](#page-112-0) PlotTypeDistribution, [117](#page-116-0) Transform.no, [141](#page-140-0) VulcanoPlot, [144](#page-143-0) ∗ grandr Analyses, [4](#page-3-0) Coldata, [14](#page-13-0) Condition, [23](#page-22-0) DefaultSlot, [28](#page-27-0) GeneInfo, [61](#page-60-0) Genes, [62](#page-61-0)

146 INDEX

grandR, [76](#page-75-0) Plots, [112](#page-111-0) Slots, [138](#page-137-0) UpdateSymbols, [143](#page-142-0) ∗ helper ApplyContrasts, [7](#page-6-0) check.analysis, [12](#page-11-0) data.apply, [27](#page-26-0) Defer, [29](#page-28-0) density2d, [30](#page-29-0) estimate.dispersion, [37](#page-36-0) get.mode.slot, [63](#page-62-0) IsParallel, [79](#page-78-0) psapply, [119](#page-118-0) RotatateAxisLabels, [126](#page-125-0) SetParallel, [131](#page-130-0) structure2vector, [139](#page-138-0) ToIndex, [140](#page-139-0) ∗ kinetics ComputeNonConstantParam, [18](#page-17-0) f.nonconst, [40](#page-39-0) f.nonconst.linear, [41](#page-40-0) f.old.equi, [42](#page-41-0) FitKinetics, [47](#page-46-0) FitKineticsGeneLeastSquares, [48](#page-47-0) FitKineticsGeneLogSpaceLinear, [51](#page-50-0) FitKineticsGeneNtr, [53](#page-52-0) FitKineticsPulseR, [57](#page-56-0) PlotSimulation, [116](#page-115-0) SimulateKinetics, [132](#page-131-0) ∗ load as.Seurat.grandR, [9](#page-8-0) ClassifyGenes, [13](#page-12-0) Design, [32](#page-31-0) DesignSemantics, [32](#page-31-0) MakeColdata, [83](#page-82-0) ReadCounts, [119](#page-118-0) ReadFeatureCounts, [121](#page-120-0) ReadGRAND, [122](#page-121-0) ReadGRAND3, [124](#page-123-0) ReadNewTotal, [125](#page-124-0) Semantics.concentration, [128](#page-127-0) Semantics.time, [129](#page-128-0) ∗ preprocess ComputeAbsolute, [15](#page-14-0) ComputeNtrPosteriorQuantile, [19](#page-18-0) FilterGenes, [43](#page-42-0) Normalize, [85](#page-84-0)

NormalizeBaseline, [87](#page-86-0) Scale, [127](#page-126-0) ∗ recalibration CalibrateEffectiveLabelingTimeKineticFit, [10](#page-9-0) CalibrateEffectiveLabelingTimeMatchHalflives, [11](#page-10-0) ∗ shiny ServeGrandR, [129](#page-128-0) ∗ simulation SimulateReadsForSample, [133](#page-132-0) SimulateTimeCourse, [135](#page-134-0) SimulateTimeCourseNonConstant, [136](#page-135-0) ∗ snapshot ComputeSteadyStateHalfLives, [20](#page-19-0) FindReferences, [45](#page-44-0) FitKineticsGeneSnapshot, [55](#page-54-0) FitKineticsSnapshot, [57](#page-56-0) TransformSnapshot, [142](#page-141-0) AddAnalysis *(*Analyses*)*, [4](#page-3-0) AddGenePlot *(*Plots*)*, [112](#page-111-0) AddGlobalPlot *(*Plots*)*, [112](#page-111-0) AddSlot *(*Slots*)*, [138](#page-137-0) aes, *[94](#page-93-0)*, *[96](#page-95-0)*, *[98,](#page-97-0) [99](#page-98-0)* Analyses, [4,](#page-3-0) *[63,](#page-62-0) [64](#page-63-0)*, *[78](#page-77-0)* AnalyzeGeneSets, [6,](#page-5-0) *[82](#page-81-0)* ApplyContrasts, [7,](#page-6-0) *[66](#page-65-0)*, *[71](#page-70-0)* as.Seurat.grandR, [9](#page-8-0) boxplot, *[116](#page-115-0)* boxplot.stats, *[114](#page-113-0)* CalibrateEffectiveLabelingTimeKineticFit, [10](#page-9-0) CalibrateEffectiveLabelingTimeMatchHalflives, [11](#page-10-0) check.analysis, [12](#page-11-0) check.mode.slot *(*check.analysis*)*, [12](#page-11-0) check.slot *(*check.analysis*)*, [12](#page-11-0) ClassifyGenes, [13,](#page-12-0) *[120,](#page-119-0) [121](#page-120-0)*, *[123](#page-122-0)[–125](#page-124-0)* Coldata, [14,](#page-13-0) *[16](#page-15-0)*, *[18](#page-17-0)*, *[21](#page-20-0)*, *[23,](#page-22-0) [24](#page-23-0)*, *[31](#page-30-0)[–33](#page-32-0)*, *[38](#page-37-0)*, *[46](#page-45-0)*, *[56](#page-55-0)*, *[61](#page-60-0)[–64](#page-63-0)*, *[66](#page-65-0)*, *[68](#page-67-0)*, *[70,](#page-69-0) [71](#page-70-0)*, *[73](#page-72-0)[–75](#page-74-0)*, *[78](#page-77-0)*, *[81](#page-80-0)*, *[84](#page-83-0)*, *[93](#page-92-0)[–96](#page-95-0)*, *[98,](#page-97-0) [99](#page-98-0)*, *[101,](#page-100-0) [102](#page-101-0)*, *[110](#page-109-0)*, *[120](#page-119-0)*, *[122,](#page-121-0) [123](#page-122-0)*, *[125](#page-124-0)*, *[128](#page-127-0)*, *[135](#page-134-0)*, *[137](#page-136-0)* Coldata<- *(*Coldata*)*, [14](#page-13-0) Columns, *[74](#page-73-0)*, *[100](#page-99-0)* Columns *(*Genes*)*, [62](#page-61-0) ComputeAbsolute, [15](#page-14-0)

INDEX 147

ComputeColumnStatistics, [16](#page-15-0) ComputeExpressionPercentage, [17](#page-16-0) ComputeNonConstantParam, [18,](#page-17-0) *[40](#page-39-0)*, *[132](#page-131-0)*, *[137](#page-136-0)* ComputeNtrCI *(*ComputeNtrPosteriorQuantile*)*, [19](#page-18-0) ComputeNtrPosteriorLower *(*ComputeNtrPosteriorQuantile*)*, [19](#page-18-0) ComputeNtrPosteriorQuantile, [19](#page-18-0) ComputeNtrPosteriorUpper *(*ComputeNtrPosteriorQuantile*)*, [19](#page-18-0) ComputePseudoNtr, [20](#page-19-0) ComputeSteadyStateHalfLives, [20](#page-19-0) ComputeSummaryStatistics, [21,](#page-20-0) *[25](#page-24-0)*, *[36](#page-35-0)* ComputeTotalExpression, [22](#page-21-0) Condition, *[5](#page-4-0)*, *[15](#page-14-0)*, [23,](#page-22-0) *[44](#page-43-0)*, *[46–](#page-45-0)[48](#page-47-0)*, *[51](#page-50-0)*, *[53](#page-52-0)*, *[72](#page-71-0)*, *[97](#page-96-0)*, *[139](#page-138-0)* Condition<- *(*Condition*)*, [23](#page-22-0) Correct4sUDropoutHLFactor, *[36](#page-35-0)* Correct4sUDropoutHLFactor *(*correctdropout*)*, [24](#page-23-0) Correct4sUDropoutHLSpline *(*correctdropout*)*, [24](#page-23-0) correctdropout, [24](#page-23-0) CreateConvolutionTable, [25](#page-24-0) CreatePdfs, [26](#page-25-0) CreatePdfsComparison *(*CreatePdfs*)*, [26](#page-25-0) CreatePdfsParameters *(*CreatePdfs*)*, [26](#page-25-0) CreatePdfsProfiles *(*CreatePdfs*)*, [26](#page-25-0) CreatePseudobulkTable, [27](#page-26-0)

data.apply, [27](#page-26-0) DefaultSlot, *[6](#page-5-0)*, [28,](#page-27-0) *[68](#page-67-0)*, *[70](#page-69-0)*, *[75](#page-74-0)*, *[78](#page-77-0)*, *[138](#page-137-0)* DefaultSlot<- *(*DefaultSlot*)*, [28](#page-27-0) Defer, [29,](#page-28-0) *[35](#page-34-0)*, *[112](#page-111-0)*, *[130](#page-129-0)* density2d, [30](#page-29-0) DESeq2BIC, [31](#page-30-0) Design, [32,](#page-31-0) *[83](#page-82-0)*, *[120](#page-119-0)*, *[122,](#page-121-0) [123](#page-122-0)*, *[125](#page-124-0)* DesignSemantics, [32,](#page-31-0) *[84](#page-83-0)*, *[123](#page-122-0)*, *[125](#page-124-0)* dim.grandR *(*grandR*)*, [76](#page-75-0) dimnames.grandR *(*grandR*)*, [76](#page-75-0) DropAnalysis *(*Analyses*)*, [4](#page-3-0) dropout, [33](#page-32-0) dropoutpercent, [35](#page-34-0) DropPlots *(*Plots*)*, [112](#page-111-0) DropSlot *(*Slots*)*, [138](#page-137-0)

enricher, *[7](#page-6-0)* estimate.dispersion, [37](#page-36-0) Estimate4sUDropoutPercentage, *[25](#page-24-0)* Estimate4sUDropoutPercentage *(*dropoutpercent*)*, [35](#page-34-0) Estimate4sUDropoutPercentageForSample *(*dropoutpercent*)*, [35](#page-34-0) EstimateRegulation, [37](#page-36-0) estimateSizeFactorsForMatrix, *[86](#page-85-0)* EvaluateNonConstantParam *(*ComputeNonConstantParam*)*, [18](#page-17-0)

f.new, *[50](#page-49-0)*, *[52](#page-51-0)* f.new *(*f.old.equi*)*, [42](#page-41-0) f.nonconst, [40,](#page-39-0) *[41](#page-40-0)* f.nonconst.linear, *[40](#page-39-0)*, [41](#page-40-0) f.old.equi, [42,](#page-41-0) *[50,](#page-49-0) [51](#page-50-0)* f.old.nonequi, *[50,](#page-49-0) [51](#page-50-0)* f.old.nonequi *(*f.old.equi*)*, [42](#page-41-0) FilterGenes, [43,](#page-42-0) *[78](#page-77-0)* Findno4sUPairs, *[22](#page-21-0)*, *[25](#page-24-0)*, *[34](#page-33-0)[–36](#page-35-0)*, [44,](#page-43-0) *[46](#page-45-0)* FindReferences, *[38](#page-37-0)*, [45,](#page-44-0) *[56](#page-55-0)*, *[58](#page-57-0)*, *[87,](#page-86-0) [88](#page-87-0)* FitKinetics, *[5](#page-4-0)*, *[11](#page-10-0)*, *[15](#page-14-0)*, *[23](#page-22-0)*, *[28](#page-27-0)*, [47,](#page-46-0) *[50](#page-49-0)*, *[52](#page-51-0)*, *[54](#page-53-0)*, *[97](#page-96-0)* FitKineticsGeneLeastSquares, *[47,](#page-46-0) [48](#page-47-0)*, [48,](#page-47-0) *[52](#page-51-0)*, *[54](#page-53-0)*, *[97](#page-96-0)* FitKineticsGeneLogSpaceLinear, *[47,](#page-46-0) [48](#page-47-0)*, *[50](#page-49-0)*, [51,](#page-50-0) *[54](#page-53-0)*, *[97](#page-96-0)* FitKineticsGeneNtr, *[47,](#page-46-0) [48](#page-47-0)*, *[50](#page-49-0)*, *[52](#page-51-0)*, [53,](#page-52-0) *[97](#page-96-0)* FitKineticsGeneSnapshot, *[12](#page-11-0)*, *[39](#page-38-0)*, [55](#page-54-0) FitKineticsPulseR, [57](#page-56-0) FitKineticsSnapshot, *[39](#page-38-0)*, [57](#page-56-0) FormatCorrelation, [60,](#page-59-0) *[116](#page-115-0)*

GeneInfo, *[13](#page-12-0)[–15](#page-14-0)*, [61,](#page-60-0) *[63,](#page-62-0) [64](#page-63-0)*, *[74](#page-73-0)*, *[78](#page-77-0)*, *[115](#page-114-0)*, *[141](#page-140-0)* GeneInfo<- *(*GeneInfo*)*, [61](#page-60-0) Genes, *[61](#page-60-0)*, [62,](#page-61-0) *[65](#page-64-0)*, *[68](#page-67-0)*, *[70](#page-69-0)*, *[75](#page-74-0)*, *[78](#page-77-0)* get.mode.slot, [63](#page-62-0) GetAnalysisTable, *[7](#page-6-0)*, [64,](#page-63-0) *[67,](#page-66-0) [68](#page-67-0)*, *[70](#page-69-0)*, *[72](#page-71-0)*, *[74,](#page-73-0) [75](#page-74-0)*, *[78](#page-77-0)* GetContrasts, *[8](#page-7-0)*, *[38](#page-37-0)*, [65,](#page-64-0) *[71](#page-70-0)*, *[80](#page-79-0)*, *[88](#page-87-0)[–91](#page-90-0)* GetData, *[28](#page-27-0)*, *[64,](#page-63-0) [65](#page-64-0)*, [67,](#page-66-0) *[70](#page-69-0)*, *[74,](#page-73-0) [75](#page-74-0)*, *[78](#page-77-0)*, *[93](#page-92-0)[–96](#page-95-0)*, *[98](#page-97-0)[–100](#page-99-0)* GetDiagnosticParameters, *[26](#page-25-0)*, [69,](#page-68-0) *[92](#page-91-0)*, *[102](#page-101-0)[–109](#page-108-0)*, *[111](#page-110-0)* GetMatrix, [69,](#page-68-0) *[140](#page-139-0)* GetPairContrasts, [70](#page-69-0) GetSignificantGenes, [71](#page-70-0) GetSummarizeMatrix, *[70](#page-69-0)*, [72,](#page-71-0) *[75](#page-74-0)*, *[100](#page-99-0)*, *[140](#page-139-0)*

GetTable, *[28](#page-27-0)*, *[64,](#page-63-0) [65](#page-64-0)*, *[67,](#page-66-0) [68](#page-67-0)*, *[72,](#page-71-0) [73](#page-72-0)*, [74,](#page-73-0) *[78](#page-77-0)*, *[101,](#page-100-0) [102](#page-101-0)* grandR, [76](#page-75-0) GSEA, *[7](#page-6-0)*

Heatmap, *[101,](#page-100-0) [102](#page-101-0)*

is.grandR *(*grandR*)*, [76](#page-75-0) IsParallel, [79](#page-78-0) IsSparse *(*grandR*)*, [76](#page-75-0)

kde2d, *[115](#page-114-0)* kinetics2vector, *[48](#page-47-0)* kinetics2vector *(*structure2vector*)*, [139](#page-138-0)

LFC, *[5](#page-4-0)*, *[8](#page-7-0)*, *[15](#page-14-0)*, *[23](#page-22-0)*, *[66](#page-65-0)*, *[71](#page-70-0)*, [79,](#page-78-0) *[88](#page-87-0)*, *[91](#page-90-0)* LikelihoodRatioTest, *[5](#page-4-0)*, *[15](#page-14-0)*, *[23](#page-22-0)*, [81](#page-80-0) ListGeneSets, *[7](#page-6-0)*, [82](#page-81-0)

MakeColdata, *[14,](#page-13-0) [15](#page-14-0)*, *[32,](#page-31-0) [33](#page-32-0)*, [83,](#page-82-0) *[120](#page-119-0)*, *[122,](#page-121-0) [123](#page-122-0)*, *[125](#page-124-0)* MAPlot, [84](#page-83-0) merge.grandR *(*grandR*)*, [76](#page-75-0) Metadata *(*grandR*)*, [76](#page-75-0) msigdbr, *[7](#page-6-0)* msigdbr_collections, *[82](#page-81-0)*

Normalize, [85,](#page-84-0) *[88](#page-87-0)* NormalizeBaseline, *[86](#page-85-0)*, [87](#page-86-0) NormalizeFPKM *(*Normalize*)*, [85](#page-84-0) NormalizeRPM *(*Normalize*)*, [85](#page-84-0) NormalizeTPM *(*Normalize*)*, [85](#page-84-0) NormLFC, *[34](#page-33-0)*, *[36](#page-35-0)*, *[80](#page-79-0)*, *[87–](#page-86-0)[89](#page-88-0)*, *[141](#page-140-0)*

```
Pairwise, 88
PairwiseDESeq2, 5, 8, 66, 71, 80, 88, 89, 89
plapply, 131
plapply (psapply), 119
Plot4sUDropout, 44, 45
Plot4sUDropout (dropout), 33
Plot4sUDropoutAll, 44, 45
Plot4sUDropoutAll (dropout), 33
Plot4sUDropoutDeferAll (dropout), 33
Plot4sUDropoutRank, 44, 45
Plot4sUDropoutRank (dropout), 33
Plot4sUDropoutRankAll, 44, 45
Plot4sUDropoutRankAll (dropout), 33
Plot4sUDropoutRankDeferAll (dropout), 33
PlotAnalyses, 91
PlotConversionFreq, 92
```
PlotGene *(*Plots*)*, [112](#page-111-0) PlotGeneGroupsBars, [92,](#page-91-0) *[93](#page-92-0)*, *[95,](#page-94-0) [96](#page-95-0)*, *[98](#page-97-0)*, *[100](#page-99-0)* PlotGeneGroupsPoints, [94,](#page-93-0) *[96](#page-95-0)*, *[98](#page-97-0)*, *[100](#page-99-0)* PlotGeneOldVsNew, *[93](#page-92-0)*, *[95](#page-94-0)*, [95,](#page-94-0) *[98](#page-97-0)*, *[100](#page-99-0)*, *[112](#page-111-0)* PlotGeneProgressiveTimecourse, [96](#page-95-0) PlotGeneSnapshotTimecourse, [97](#page-96-0) PlotGeneTotalVsNtr, *[93](#page-92-0)*, *[95,](#page-94-0) [96](#page-95-0)*, [99](#page-98-0) PlotGlobal *(*Plots*)*, [112](#page-111-0) PlotHeatmap, *[29](#page-28-0)*, [100,](#page-99-0) *[141,](#page-140-0) [142](#page-141-0)* PlotMismatchPositionForSample, *[92](#page-91-0)*, [102](#page-101-0) PlotMismatchPositionForType, *[92](#page-91-0)*, [103](#page-102-0) PlotModelCompareConv, [104](#page-103-0) PlotModelCompareErr, [104](#page-103-0) PlotModelCompareErrPrior, [105](#page-104-0) PlotModelCompareLL, [106](#page-105-0) PlotModelCompareNtr, [106](#page-105-0) PlotModelConv, [107](#page-106-0) PlotModelErr, [107](#page-106-0) PlotModelLabelTimeCourse, [108](#page-107-0) PlotModelNtr, [109](#page-108-0) PlotModelShape, [109](#page-108-0) PlotPCA, [110](#page-109-0) PlotProfileLikelihood, [111](#page-110-0) Plots, [112,](#page-111-0) *[130](#page-129-0)* PlotScatter, *[60](#page-59-0)*, *[84](#page-83-0)*, [113,](#page-112-0) *[144](#page-143-0)* PlotSimulation, [116,](#page-115-0) *[133](#page-132-0)* PlotTypeDistribution, [117](#page-116-0) PoolColumns, [118](#page-117-0) print.grandR *(*grandR*)*, [76](#page-75-0) psapply, [119,](#page-118-0) *[131](#page-130-0)* PsiLFC, *[34](#page-33-0)*, *[36](#page-35-0)*, *[80](#page-79-0)*, *[87](#page-86-0)[–89](#page-88-0)*, *[141](#page-140-0)*

ReadCounts, [119](#page-118-0) ReadFeatureCounts, [121](#page-120-0) ReadGRAND, *[13,](#page-12-0) [14](#page-13-0)*, *[61](#page-60-0)*, *[76](#page-75-0)*, *[84](#page-83-0)*, [122,](#page-121-0) *[125](#page-124-0)* ReadGRAND3, *[123](#page-122-0)*, [124](#page-123-0) ReadNewTotal, [125](#page-124-0) relative2abs, *[16](#page-15-0)* RenameColumns *(*grandR*)*, [76](#page-75-0) RotatateAxisLabels, [126](#page-125-0)

SaveNtrSlot, [127](#page-126-0) Scale, [127](#page-126-0) scale, *[128](#page-127-0)*, *[141,](#page-140-0) [142](#page-141-0)* Semantics.concentration, [128](#page-127-0) Semantics.time, [129](#page-128-0) ServeGrandR, *[35](#page-34-0)*, [129](#page-128-0) SetParallel, *[119](#page-118-0)*, [131](#page-130-0) SimulateKinetics, *[116,](#page-115-0) [117](#page-116-0)*, [132](#page-131-0)

INDEX 2008 2012 149

SimulateReadsForSample , [133](#page-132-0) , *[136,](#page-135-0) [137](#page-136-0)* SimulateTimeCourse , *[76](#page-75-0)* , *[134](#page-133-0)* , [135](#page-134-0) , *[137](#page-136-0)* SimulateTimeCourseNonConstant , [136](#page-135-0) Slots , *[6](#page-5-0)* , *[28](#page-27-0)* , *[78](#page-77-0)* , [138](#page-137-0) split.grandR *(*grandR *)* , [76](#page-75-0) sprintf , *[60](#page-59-0)* structure2vector , [139](#page-138-0) subset.grandR *(*grandR *)* , [76](#page-75-0) Summarize , [140](#page-139-0) SwapColumns *(*grandR *)* , [76](#page-75-0)

Title *(*grandR *)* , [76](#page-75-0) ToIndex , *[116](#page-115-0)* , [140](#page-139-0) Transform.logFC , *[101](#page-100-0)* Transform.logFC *(*Transform.no *)* , [141](#page-140-0) Transform.no , *[101](#page-100-0)* , [141](#page-140-0) Transform.VST , *[101](#page-100-0)* Transform.VST *(*Transform.no *)* , [141](#page-140-0) Transform.Z , *[101](#page-100-0)* Transform.Z *(*Transform.no *)* , [141](#page-140-0) TransformSnapshot , *[38](#page-37-0)* , *[56](#page-55-0)* , *[59](#page-58-0)* , [142](#page-141-0)

UpdateSymbols , [143](#page-142-0) UseNtrSlot , [143](#page-142-0)

vst , *[142](#page-141-0)* VulcanoPlot , [144](#page-143-0)