survML: Tools for Flexible Survival Analysis Using Machine Learning

Statistical tools for analyzing time-to-event data using machine learning. Implements survival stacking for conditional survival estimation, standardized survival function estimation for current status data, and methods for algorithm-agnostic variable importance. See Wolock CJ, Gilbert PB, Simon N, and Carone M (2024) <doi:10.1080/10618600.2024.2304070>.

Version: 1.2.0
Depends: SuperLearner (≥ 2.0.28)
Imports: Iso (≥ 0.0.18.1), haldensify (≥ 0.2.3), fdrtool (≥ 1.2.17), ChernoffDist (≥ 0.1.0), dplyr (≥ 1.0.10), gtools (≥ 3.9.5), mboost (≥ 2.9.0), survival (≥ 3.5.0), stats (≥ 4.3.2), methods (≥ 4.3.2)
Suggests: knitr, rmarkdown, testthat (≥ 3.0.0), ggplot2 (≥ 3.4.0), gam (≥ 1.22.0)
Published: 2024-10-31
DOI: 10.32614/CRAN.package.survML
Author: Charles Wolock ORCID iD [aut, cre, cph], Avi Kenny ORCID iD [ctb]
Maintainer: Charles Wolock <cwolock at gmail.com>
BugReports: https://github.com/cwolock/survML/issues
License: GPL (≥ 3)
URL: https://github.com/cwolock/survML, https://cwolock.github.io/survML/
NeedsCompilation: no
Materials: README NEWS
CRAN checks: survML results

Documentation:

Reference manual: survML.pdf
Vignettes: Estimating a conditional survival function using off-the-shelf machine learning tools (source, R code)
Estimating a covariate-adjusted survival function using current status data (source, R code)
Assessing variable importance in survival analysis using machine learning (source, R code)

Downloads:

Package source: survML_1.2.0.tar.gz
Windows binaries: r-devel: survML_1.2.0.zip, r-release: survML_1.2.0.zip, r-oldrel: survML_1.2.0.zip
macOS binaries: r-release (arm64): survML_1.2.0.tgz, r-oldrel (arm64): survML_1.2.0.tgz, r-release (x86_64): survML_1.2.0.tgz, r-oldrel (x86_64): survML_1.2.0.tgz
Old sources: survML archive

Reverse dependencies:

Reverse imports: vaccine

Linking:

Please use the canonical form https://CRAN.R-project.org/package=survML to link to this page.

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy