
Package ‘Matrix’
January 23, 2025

Version 1.7-2

VersionNote do also bump src/version.h, inst/include/Matrix/version.h

Date 2025-01-20

Priority recommended

Title Sparse and Dense Matrix Classes and Methods

Description A rich hierarchy of sparse and dense matrix classes,
including general, symmetric, triangular, and diagonal matrices
with numeric, logical, or pattern entries. Efficient methods for
operating on such matrices, often wrapping the 'BLAS', 'LAPACK',
and 'SuiteSparse' libraries.

License GPL (>= 2) | file LICENCE

URL https://Matrix.R-forge.R-project.org

BugReports https://R-forge.R-project.org/tracker/?atid=294&group_id=61

Contact Matrix-authors@R-project.org

Depends R (>= 4.4), methods

Imports grDevices, graphics, grid, lattice, stats, utils

Suggests MASS, datasets, sfsmisc, tools

Enhances SparseM, graph

LazyData no

LazyDataNote not possible, since we use data/*.R and our S4 classes

BuildResaveData no

Encoding UTF-8

NeedsCompilation yes

Author Douglas Bates [aut] (<https://orcid.org/0000-0001-8316-9503>),
Martin Maechler [aut, cre] (<https://orcid.org/0000-0002-8685-9910>),
Mikael Jagan [aut] (<https://orcid.org/0000-0002-3542-2938>),
Timothy A. Davis [ctb] (<https://orcid.org/0000-0001-7614-6899>,
SuiteSparse libraries, collaborators listed in
dir(system.file(``doc'', ``SuiteSparse'', package=``Matrix''),

1

https://Matrix.R-forge.R-project.org
https://R-forge.R-project.org/tracker/?atid=294&group_id=61
https://orcid.org/0000-0001-8316-9503
https://orcid.org/0000-0002-8685-9910
https://orcid.org/0000-0002-3542-2938
https://orcid.org/0000-0001-7614-6899

2 Contents

pattern=``License'', full.names=TRUE, recursive=TRUE)),
George Karypis [ctb] (<https://orcid.org/0000-0003-2753-1437>, METIS
library, Copyright: Regents of the University of Minnesota),

Jason Riedy [ctb] (<https://orcid.org/0000-0002-4345-4200>, GNU
Octave's condest() and onenormest(), Copyright: Regents of the
University of California),

Jens Oehlschlägel [ctb] (initial nearPD()),
R Core Team [ctb] (02zz1nj61, base R's matrix implementation)

Maintainer Martin Maechler <mmaechler+Matrix@gmail.com>

Repository CRAN

Date/Publication 2025-01-23 16:40:11 UTC

Contents
abIndex-class . 5
abIseq . 6
all.equal-methods . 7
asUniqueT . 8
band-methods . 9
bandSparse . 11
bdiag . 12
boolmatmult-methods . 14
BunchKaufman-class . 16
BunchKaufman-methods . 18
CAex . 20
cbind2-methods . 21
CHMfactor-class . 22
chol-methods . 26
chol2inv-methods . 30
Cholesky-class . 31
Cholesky-methods . 34
coerce-methods-graph . 39
coerce-methods-SparseM . 41
colSums-methods . 42
condest . 43
CsparseMatrix-class . 45
ddenseMatrix-class . 47
ddiMatrix-class . 48
denseLU-class . 49
denseMatrix-class . 51
dgCMatrix-class . 52
dgeMatrix-class . 53
dgRMatrix-class . 54
dgTMatrix-class . 55
Diagonal . 56
diagonalMatrix-class . 58
diagU2N . 59

https://orcid.org/0000-0003-2753-1437
https://orcid.org/0000-0002-4345-4200

Contents 3

dimScale . 61
dMatrix-class . 62
dmperm . 63
dpoMatrix-class . 65
drop0 . 67
dsCMatrix-class . 68
dsparseMatrix-class . 70
dsRMatrix-class . 70
dsyMatrix-class . 72
dtCMatrix-class . 73
dtpMatrix-class . 75
dtRMatrix-class . 76
dtrMatrix-class . 78
expand-methods . 79
expm-methods . 82
externalFormats . 83
facmul-methods . 85
fastMisc . 86
forceSymmetric-methods . 90
formatSparseM . 91
generalMatrix-class . 92
Hilbert . 93
image-methods . 94
index-class . 96
indMatrix-class . 97
invertPerm . 99
is.na-methods . 101
is.null.DN . 102
isSymmetric-methods . 103
isTriangular-methods . 105
KhatriRao . 106
KNex . 108
kronecker-methods . 109
ldenseMatrix-class . 110
ldiMatrix-class . 110
lgeMatrix-class . 111
lsparseMatrix-class . 112
lsyMatrix-class . 114
ltrMatrix-class . 115
lu-methods . 116
mat2triplet . 118
matmult-methods . 120
Matrix . 122
Matrix-class . 124
Matrix-notyet . 126
MatrixClass . 126
MatrixFactorization-class . 127
ndenseMatrix-class . 128

4 Contents

nearPD . 129
ngeMatrix-class . 132
nMatrix-class . 133
nnzero-methods . 134
norm-methods . 136
nsparseMatrix-class . 137
nsyMatrix-class . 139
ntrMatrix-class . 140
pack-methods . 141
packedMatrix-class . 143
pMatrix-class . 144
printSpMatrix . 146
qr-methods . 148
rankMatrix . 151
rcond-methods . 154
rep2abI . 157
rleDiff-class . 157
rsparsematrix . 158
RsparseMatrix-class . 160
Schur-class . 161
Schur-methods . 162
solve-methods . 164
sparse.model.matrix . 167
sparseLU-class . 169
sparseMatrix . 171
sparseMatrix-class . 175
sparseQR-class . 177
sparseVector . 181
sparseVector-class . 182
spMatrix . 185
subassign-methods . 186
subscript-methods . 188
symmetricMatrix-class . 188
symmpart-methods . 190
triangularMatrix-class . 191
TsparseMatrix-class . 192
unpackedMatrix-class . 193
updown-methods . 194
USCounties . 195
wrld_1deg . 196

Index 199

abIndex-class 5

abIndex-class Class "abIndex" of Abstract Index Vectors

Description

The "abIndex" class, short for “Abstract Index Vector”, is used for dealing with large index
vectors more efficiently, than using integer (or numeric) vectors of the kind 2:1000000 or c(0:1e5,
1000:1e6).

Note that the current implementation details are subject to change, and if you consider working with
these classes, please contact the package maintainers (packageDescription("Matrix")$Maintainer).

Objects from the Class

Objects can be created by calls of the form new("abIndex", ...), but more easily and typically
either by as(x, "abIndex") where x is an integer (valued) vector, or directly by abIseq() and
combination c(...) of such.

Slots

kind: a character string, one of ("int32", "double", "rleDiff"), denoting the internal struc-
ture of the abIndex object.

x: Object of class "numLike"; is used (i.e., not of length 0) only iff the object is not compressed,
i.e., currently exactly when kind != "rleDiff".

rleD: object of class "rleDiff", used for compression via rle.

Methods

as.numeric, as.integer, as.vector signature(x = "abIndex"): ...

[signature(x = "abIndex", i = "index", j = "ANY", drop = "ANY"): ...

coerce signature(from = "numeric", to = "abIndex"): ...

coerce signature(from = "abIndex", to = "numeric"): ...

coerce signature(from = "abIndex", to = "integer"): ...

length signature(x = "abIndex"): ...

Ops signature(e1 = "numeric", e2 = "abIndex"): These and the following arithmetic and logic
operations are not yet implemented; see Ops for a list of these (S4) group methods.

Ops signature(e1 = "abIndex", e2 = "abIndex"): ...

Ops signature(e1 = "abIndex", e2 = "numeric"): ...

Summary signature(x = "abIndex"): ...

show ("abIndex"): simple show method, building on show(<rleDiff>).

is.na ("abIndex"): works analogously to regular vectors.

is.finite, is.infinite ("abIndex"): ditto.

6 abIseq

Note

This is currently experimental and not yet used for our own code. Please contact us (packageDescription("Matrix")$Maintainer),
if you plan to make use of this class.
Partly builds on ideas and code from Jens Oehlschlaegel, as implemented (around 2008, in the
GPL’ed part of) package ff.

See Also

rle (base) which is used here; numeric

Examples

showClass("abIndex")
ii <- c(-3:40, 20:70)
str(ai <- as(ii, "abIndex"))# note
ai # -> show() method

stopifnot(identical(-3:20,
as(abIseq1(-3,20), "vector")))

abIseq Sequence Generation of "abIndex", Abstract Index Vectors

Description

Generation of abstract index vectors, i.e., objects of class "abIndex".
abIseq() is designed to work entirely like seq, but producing "abIndex" vectors.
abIseq1() is its basic building block, where abIseq1(n,m) corresponds to n:m.
c(x, ...) will return an "abIndex" vector, when x is one.

Usage

abIseq1(from = 1, to = 1)
abIseq (from = 1, to = 1, by = ((to - from)/(length.out - 1)),

length.out = NULL, along.with = NULL)

S3 method for class 'abIndex'
c(...)

Arguments

from, to the starting and (maximal) end value of the sequence.
by number: increment of the sequence.
length.out desired length of the sequence. A non-negative number, which for seq and

seq.int will be rounded up if fractional.
along.with take the length from the length of this argument.
... in general an arbitrary number of R objects; here, when the first is an "abIndex"

vector, these arguments will be concatenated to a new "abIndex" object.

all.equal-methods 7

Value

An abstract index vector, i.e., object of class "abIndex".

See Also

the class abIndex documentation; rep2abI() for another constructor; rle (base).

Examples

stopifnot(identical(-3:20,
as(abIseq1(-3,20), "vector")))

try(## (arithmetic) not yet implemented
abIseq(1, 50, by = 3)
)

all.equal-methods Matrix Package Methods for Function all.equal()

Description

Methods for function all.equal() (from R package base) are defined for all Matrix classes.

Methods

target = "Matrix", current = "Matrix" \

target = "ANY", current = "Matrix" \

target = "Matrix", current = "ANY" these three methods are simply using all.equal.numeric
directly and work via as.vector().

There are more methods, notably also for "sparseVector"’s, see showMethods("all.equal").

Examples

showMethods("all.equal")

(A <- spMatrix(3,3, i= c(1:3,2:1), j=c(3:1,1:2), x = 1:5))
ex <- expand(lu. <- lu(A))
stopifnot(all.equal(as(A[lu.@p + 1L, lu.@q + 1L], "CsparseMatrix"),

lu.@L %*% lu.@U),
with(ex, all.equal(as(P %*% A %*% t(Q), "CsparseMatrix"),

L %*% U)),
with(ex, all.equal(as(A, "CsparseMatrix"),

t(P) %*% L %*% U %*% Q)))

8 asUniqueT

asUniqueT Standardize a Sparse Matrix in Triplet Format

Description

Detect or standardize a TsparseMatrix with unsorted or duplicated (i, j) pairs.

Usage

anyDuplicatedT(x, ...)
isUniqueT(x, byrow = FALSE, isT = is(x, "TsparseMatrix"))
asUniqueT(x, byrow = FALSE, isT = is(x, "TsparseMatrix"))
aggregateT(x)

Arguments

x an R object. anyDuplicatedT and aggregateT require x inheriting from TsparseMatrix.
asUniqueT requires x inheriting from Matrix and coerces x to TsparseMatrix
if necessary.

... optional arguments passed to the default method for generic function anyDuplicated.

byrow a logical indicating if x should be sorted by row then by column.

isT a logical indicating if x inherits from virtual class TsparseMatrix.

Value

anyDuplicatedT(x) returns the index of the first duplicated (i, j) pair in x (0 if there are no dupli-
cated pairs).

isUniqueT(x) returns TRUE if x is a TsparseMatrix with sorted, nonduplicated (i, j) pairs and
FALSE otherwise.

asUniqueT(x) returns the unique TsparseMatrix representation of x with sorted, nonduplicated
(i, j) pairs. Values corresponding to identical (i, j) pairs are aggregated by addition, where in the
logical case “addition” refers to logical OR.

aggregateT(x) aggregates without sorting.

See Also

Virtual class TsparseMatrix.

Examples

example("dgTMatrix-class", echo=FALSE)
-> 'T2' with (i,j,x) slots of length 5 each
T2u <- asUniqueT(T2)
stopifnot(## They "are" the same (and print the same):

all.equal(T2, T2u, tol=0),
but not internally:

band-methods 9

anyDuplicatedT(T2) == 2,
anyDuplicatedT(T2u) == 0,
length(T2 @x) == 5,
length(T2u@x) == 3)

isUniqueT(T2) # FALSE
isUniqueT(T2u) # TRUE

T3 <- T2u
T3[1, c(1,3)] <- 10; T3[2, c(1,5)] <- 20
T3u <- asUniqueT(T3)
str(T3u) # sorted in 'j', and within j, sorted in i
stopifnot(isUniqueT(T3u))

Logical l.TMatrix and n.TMatrix :
(L2 <- T2 > 0)
validObject(L2u <- asUniqueT(L2))
(N2 <- as(L2, "nMatrix"))
validObject(N2u <- asUniqueT(N2))
stopifnot(N2u@i == L2u@i, L2u@i == T2u@i, N2@i == L2@i, L2@i == T2@i,

N2u@j == L2u@j, L2u@j == T2u@j, N2@j == L2@j, L2@j == T2@j)
now with a nasty NA [partly failed in Matrix 1.1-5]:
L.0N <- L.1N <- L2
L.0N@x[1:2] <- c(FALSE, NA)
L.1N@x[1:2] <- c(TRUE, NA)
validObject(L.0N)
validObject(L.1N)
(m.0N <- as.matrix(L.0N))
(m.1N <- as.matrix(L.1N))
stopifnot(identical(10L, which(is.na(m.0N))), !anyNA(m.1N))
symnum(m.0N)
symnum(m.1N)

band-methods Extract bands of a matrix

Description

Return the matrix obtained by setting to zero elements below a diagonal (triu), above a diagonal
(tril), or outside of a general band (band).

Usage

band(x, k1, k2, ...)
triu(x, k = 0L, ...)
tril(x, k = 0L, ...)

10 band-methods

Arguments

x a matrix-like object

k, k1, k2 integers specifying the diagonals that are not set to zero, k1 <= k2. These are
interpreted relative to the main diagonal, which is k = 0. Positive and negative
values of k indicate diagonals above and below the main diagonal, respectively.

... optional arguments passed to methods, currently unused by package Matrix.

Details

triu(x, k) is equivalent to band(x, k, dim(x)[2]). Similarly, tril(x, k) is equivalent to band(x,
-dim(x)[1], k).

Value

An object of a suitable matrix class, inheriting from triangularMatrix where appropriate. It
inherits from sparseMatrix if and only if x does.

Methods

x = "CsparseMatrix" method for compressed, sparse, column-oriented matrices.

x = "RsparseMatrix" method for compressed, sparse, row-oriented matrices.

x = "TsparseMatrix" method for sparse matrices in triplet format.

x = "diagonalMatrix" method for diagonal matrices.

x = "denseMatrix" method for dense matrices in packed or unpacked format.

x = "matrix" method for traditional matrices of implicit class matrix.

See Also

bandSparse for the construction of a banded sparse matrix directly from its non-zero diagonals.

Examples

A random sparse matrix :
set.seed(7)
m <- matrix(0, 5, 5)
m[sample(length(m), size = 14)] <- rep(1:9, length=14)
(mm <- as(m, "CsparseMatrix"))

tril(mm) # lower triangle
tril(mm, -1) # strict lower triangle
triu(mm, 1) # strict upper triangle
band(mm, -1, 2) # general band
(m5 <- Matrix(rnorm(25), ncol = 5))
tril(m5) # lower triangle
tril(m5, -1) # strict lower triangle
triu(m5, 1) # strict upper triangle
band(m5, -1, 2) # general band
(m65 <- Matrix(rnorm(30), ncol = 5)) # not square

bandSparse 11

triu(m65) # result not "dtrMatrix" unless square
(sm5 <- crossprod(m65)) # symmetric

band(sm5, -1, 1)# "dsyMatrix": symmetric band preserves symmetry property
as(band(sm5, -1, 1), "sparseMatrix")# often preferable
(sm <- round(crossprod(triu(mm/2)))) # sparse symmetric ("dsC*")
band(sm, -1,1) # remains "dsC", *however*
band(sm, -2,1) # -> "dgC"

bandSparse Construct Sparse Banded Matrix from (Sup-/Super-) Diagonals

Description

Construct a sparse banded matrix by specifying its non-zero sup- and super-diagonals.

Usage

bandSparse(n, m = n, k, diagonals, symmetric = FALSE,
repr = "C", giveCsparse = (repr == "C"))

Arguments

n, m the matrix dimension (n,m) = (nrow, ncol).

k integer vector of “diagonal numbers”, with identical meaning as in band(*, k),
i.e., relative to the main diagonal, which is k=0.

diagonals optional list of sub-/super- diagonals; if missing, the result will be a pattern
matrix, i.e., inheriting from class nMatrix.
diagonals can also be n′×d matrix, where d <- length(k) and n′ >= min(n,m).
In that case, the sub-/super- diagonals are taken from the columns of diagonals,
where only the first several rows will be used (typically) for off-diagonals.

symmetric logical; if true the result will be symmetric (inheriting from class symmetricMatrix)
and only the upper or lower triangle must be specified (via k and diagonals).

repr character string, one of "C", "T", or "R", specifying the sparse representation
to be used for the result, i.e., one from the super classes CsparseMatrix, TsparseMatrix,
or RsparseMatrix.

giveCsparse (deprecated, replaced with repr): logical indicating if the result should be a
CsparseMatrix or a TsparseMatrix, where the default was TRUE, and now is
determined from repr; very often Csparse matrices are more efficient subse-
quently, but not always.

Value

a sparse matrix (of class CsparseMatrix) of dimension n×m with diagonal “bands” as specified.

12 bdiag

See Also

band, for extraction of matrix bands; bdiag, diag, sparseMatrix, Matrix.

Examples

diags <- list(1:30, 10*(1:20), 100*(1:20))
s1 <- bandSparse(13, k = -c(0:2, 6), diag = c(diags, diags[2]), symm=TRUE)
s1
s2 <- bandSparse(13, k = c(0:2, 6), diag = c(diags, diags[2]), symm=TRUE)
stopifnot(identical(s1, t(s2)), is(s1,"dsCMatrix"))

a pattern Matrix of *full* (sub-)diagonals:
bk <- c(0:4, 7,9)
(s3 <- bandSparse(30, k = bk, symm = TRUE))

If you want a pattern matrix, but with "sparse"-diagonals,
you currently need to go via logical sparse:
lLis <- lapply(list(rpois(20, 2), rpois(20, 1), rpois(20, 3))[c(1:3, 2:3, 3:2)],

as.logical)
(s4 <- bandSparse(20, k = bk, symm = TRUE, diag = lLis))
(s4. <- as(drop0(s4), "nsparseMatrix"))

n <- 1e4
bk <- c(0:5, 7,11)
bMat <- matrix(1:8, n, 8, byrow=TRUE)
bLis <- as.data.frame(bMat)
B <- bandSparse(n, k = bk, diag = bLis)
Bs <- bandSparse(n, k = bk, diag = bLis, symmetric=TRUE)
B [1:15, 1:30]
Bs[1:15, 1:30]
can use a list *or* a matrix for specifying the diagonals:
stopifnot(identical(B, bandSparse(n, k = bk, diag = bMat)),

identical(Bs, bandSparse(n, k = bk, diag = bMat, symmetric=TRUE))
, inherits(B, "dtCMatrix") # triangular!

)

bdiag Construct a Block Diagonal Matrix

Description

Build a block diagonal matrix given several building block matrices.

Usage

bdiag(...)
.bdiag(lst)

bdiag 13

Arguments

... individual matrices or a list of matrices.

lst non-empty list of matrices.

Details

For non-trivial argument list, bdiag() calls .bdiag(). The latter maybe useful to programmers.

Value

A sparse matrix obtained by combining the arguments into a block diagonal matrix.

The value of bdiag() inherits from class CsparseMatrix, whereas .bdiag() returns a TsparseMatrix.

Note

This function has been written and is efficient for the case of relatively few block matrices which
are typically sparse themselves.

It is currently inefficient for the case of many small dense block matrices. For the case of many
dense k × k matrices, the bdiag_m() function in the ‘Examples’ is an order of magnitude faster.

Author(s)

Martin Maechler, built on a version posted by Berton Gunter to R-help; earlier versions have been
posted by other authors, notably Scott Chasalow to S-news. Doug Bates’s faster implementation
builds on TsparseMatrix objects.

See Also

Diagonal for constructing matrices of class diagonalMatrix, or kronecker which also works for
"Matrix" inheriting matrices.

bandSparse constructs a banded sparse matrix from its non-zero sub-/super - diagonals.

Note that other CRAN R packages have own versions of bdiag() which return traditional matrices.

Examples

bdiag(matrix(1:4, 2), diag(3))
combine "Matrix" class and traditional matrices:
bdiag(Diagonal(2), matrix(1:3, 3,4), diag(3:2))

mlist <- list(1, 2:3, diag(x=5:3), 27, cbind(1,3:6), 100:101)
bdiag(mlist)
stopifnot(identical(bdiag(mlist),

bdiag(lapply(mlist, as.matrix))))

ml <- c(as(matrix((1:24)%% 11 == 0, 6,4),"nMatrix"),
rep(list(Diagonal(2, x=TRUE)), 3))

mln <- c(ml, Diagonal(x = 1:3))
stopifnot(is(bdiag(ml), "lsparseMatrix"),

is(bdiag(mln),"dsparseMatrix"))

14 boolmatmult-methods

random (diagonal-)block-triangular matrices:
rblockTri <- function(nb, max.ni, lambda = 3) {

.bdiag(replicate(nb, {
n <- sample.int(max.ni, 1)
tril(Matrix(rpois(n * n, lambda = lambda), n, n)) }))

}

(T4 <- rblockTri(4, 10, lambda = 1))
image(T1 <- rblockTri(12, 20))

##' Fast version of Matrix :: .bdiag() -- for the case of *many* (k x k) matrices:
##' @param lmat list(<mat1>, <mat2>,, <mat_N>) where each mat_j is a k x k 'matrix'
##' @return a sparse (N*k x N*k) matrix of class \code{"\linkS4class{dgCMatrix}"}.
bdiag_m <- function(lmat) {

Copyright (C) 2016 Martin Maechler, ETH Zurich
if(!length(lmat)) return(new("dgCMatrix"))
stopifnot(is.list(lmat), is.matrix(lmat[[1]]),

(k <- (d <- dim(lmat[[1]]))[1]) == d[2], # k x k
all(vapply(lmat, dim, integer(2)) == k)) # all of them

N <- length(lmat)
if(N * k > .Machine$integer.max)

stop("resulting matrix too large; would be M x M, with M=", N*k)
M <- as.integer(N * k)
result: an M x M matrix
new("dgCMatrix", Dim = c(M,M),

'i :' maybe there's a faster way (w/o matrix indexing), but elegant?
i = as.vector(matrix(0L:(M-1L), nrow=k)[, rep(seq_len(N), each=k)]),
p = k * 0L:M,
x = as.double(unlist(lmat, recursive=FALSE, use.names=FALSE)))

}

l12 <- replicate(12, matrix(rpois(16, lambda = 6.4), 4, 4),
simplify=FALSE)

dim(T12 <- bdiag_m(l12))# 48 x 48
T12[1:20, 1:20]

boolmatmult-methods Boolean Arithmetic Matrix Products: %&% and Methods

Description

For boolean or “pattern” matrices, i.e., R objects of class nMatrix, it is natural to allow matrix
products using boolean instead of numerical arithmetic.

In package Matrix, we use the binary operator %&% (aka “infix”) function) for this and provide
methods for all our matrices and the traditional R matrices (see matrix).

Value

a pattern matrix, i.e., inheriting from "nMatrix", or an "ldiMatrix" in case of a diagonal matrix.

boolmatmult-methods 15

Methods

We provide methods for both the “traditional” (R base) matrices and numeric vectors and concep-
tually all matrices and sparseVectors in package Matrix.

signature(x = "ANY", y = "ANY")

signature(x = "ANY", y = "Matrix")

signature(x = "Matrix", y = "ANY")

signature(x = "nMatrix", y = "nMatrix")

signature(x = "nMatrix", y = "nsparseMatrix")

signature(x = "nsparseMatrix", y = "nMatrix")

signature(x = "nsparseMatrix", y = "nsparseMatrix")

signature(x = "sparseVector", y = "sparseVector")

Note

These boolean arithmetic matrix products had been newly introduced for Matrix 1.2.0 (March
2015). Its implementation has still not been tested extensively.

Originally, it was left unspecified how non-structural zeros, i.e., 0’s as part of the M@x slot should
be treated for numeric ("dMatrix") and logical ("lMatrix") sparse matrices. We now specify that
boolean matrix products should behave as if applied to drop0(M), i.e., as if dropping such zeros
from the matrix before using it.
Equivalently, for all matrices M, boolean arithmetic should work as if applied to M != 0 (or M !=
FALSE).

The current implementation ends up coercing both x and y to (virtual) class nsparseMatrix which
may be quite inefficient for dense matrices. A future implementation may well return a matrix with
different class, but the “same” content, i.e., the same matrix entries mij.

See Also

%*%, crossprod(), or tcrossprod(), for (regular) matrix product methods.

Examples

set.seed(7)
L <- Matrix(rnorm(20) > 1, 4,5)
(N <- as(L, "nMatrix"))
L. <- L; L.[1:2,1] <- TRUE; L.@x[1:2] <- FALSE; L. # has "zeros" to drop0()
D <- Matrix(round(rnorm(30)), 5,6) # -> values in -1:1 (for this seed)
L %&% D
stopifnot(identical(L %&% D, N %&% D),

all(L %&% D == as((L %*% abs(D)) > 0, "sparseMatrix")))

cross products , possibly with boolArith = TRUE :
crossprod(N) # -> sparse patter'n' (TRUE/FALSE : boolean arithmetic)
crossprod(N +0) # -> numeric Matrix (with same "pattern")
stopifnot(all(crossprod(N) == t(N) %&% N),

identical(crossprod(N), crossprod(N +0, boolArith=TRUE)),

16 BunchKaufman-class

identical(crossprod(L), crossprod(N , boolArith=FALSE)))
crossprod(D, boolArith = TRUE) # pattern: "nsCMatrix"
crossprod(L, boolArith = TRUE) # ditto
crossprod(L, boolArith = FALSE) # numeric: "dsCMatrix"

BunchKaufman-class Dense Bunch-Kaufman Factorizations

Description

Classes BunchKaufman and pBunchKaufman represent Bunch-Kaufman factorizations of n×n real,
symmetric matrices A, having the general form

A = UDUU
′ = LDLL

′

where DU and DL are symmetric, block diagonal matrices composed of bU and bL 1 × 1 or 2 ×
2 diagonal blocks; U =

∏bU
k=1 PkUk is the product of bU row-permuted unit upper triangular

matrices, each having nonzero entries above the diagonal in 1 or 2 columns; and L =
∏bL

k=1 PkLk

is the product of bL row-permuted unit lower triangular matrices, each having nonzero entries below
the diagonal in 1 or 2 columns.

These classes store the nonzero entries of the 2bU + 1 or 2bL + 1 factors, which are individually
sparse, in a dense format as a vector of length nn (BunchKaufman) or n(n+1)/2 (pBunchKaufman),
the latter giving the “packed” representation.

Slots

Dim, Dimnames inherited from virtual class MatrixFactorization.

uplo a string, either "U" or "L", indicating which triangle (upper or lower) of the factorized sym-
metric matrix was used to compute the factorization and in turn how the x slot is partitioned.

x a numeric vector of length n*n (BunchKaufman) or n*(n+1)/2 (pBunchKaufman), where n=Dim[1].
The details of the representation are specified by the manual for LAPACK routines dsytrf and
dsptrf.

perm an integer vector of length n=Dim[1] specifying row and column interchanges as described
in the manual for LAPACK routines dsytrf and dsptrf.

Extends

Class BunchKaufmanFactorization, directly. Class MatrixFactorization, by class BunchKaufmanFactorization,
distance 2.

Instantiation

Objects can be generated directly by calls of the form new("BunchKaufman", ...) or new("pBunchKaufman",
...), but they are more typically obtained as the value of BunchKaufman(x) for x inheriting from
dsyMatrix or dspMatrix.

BunchKaufman-class 17

Methods

coerce signature(from = "BunchKaufman", to = "dtrMatrix"): returns a dtrMatrix, useful
for inspecting the internal representation of the factorization; see ‘Note’.

coerce signature(from = "pBunchKaufman", to = "dtpMatrix"): returns a dtpMatrix, useful
for inspecting the internal representation of the factorization; see ‘Note’.

determinant signature(from = "p?BunchKaufman", logarithm = "logical"): computes the
determinant of the factorized matrix A or its logarithm.

expand1 signature(x = "p?BunchKaufman"): see expand1-methods.

expand2 signature(x = "p?BunchKaufman"): see expand2-methods.

solve signature(a = "p?BunchKaufman", b = .): see solve-methods.

Note

In Matrix < 1.6-0, class BunchKaufman extended dtrMatrix and class pBunchKaufman extended
dtpMatrix, reflecting the fact that the internal representation of the factorization is fundamentally
triangular: there are n(n+ 1)/2 “parameters”, and these can be arranged systematically to form an
n× n triangular matrix. Matrix 1.6-0 removed these extensions so that methods would no longer
be inherited from dtrMatrix and dtpMatrix. The availability of such methods gave the wrong
impression that BunchKaufman and pBunchKaufman represent a (singular) matrix, when in fact they
represent an ordered set of matrix factors.

The coercions as(., "dtrMatrix") and as(., "dtpMatrix") are provided for users who under-
stand the caveats.

References

The LAPACK source code, including documentation; see https://netlib.org/lapack/double/
dsytrf.f and https://netlib.org/lapack/double/dsptrf.f.

Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). Johns Hopkins University
Press. doi:10.56021/9781421407944

See Also

Class dsyMatrix and its packed counterpart.

Generic functions BunchKaufman, expand1, and expand2.

Examples

showClass("BunchKaufman")
set.seed(1)

n <- 6L
(A <- forceSymmetric(Matrix(rnorm(n * n), n, n)))

With dimnames, to see that they are propagated :
dimnames(A) <- rep.int(list(paste0("x", seq_len(n))), 2L)

(bk.A <- BunchKaufman(A))

https://netlib.org/lapack/double/dsytrf.f
https://netlib.org/lapack/double/dsytrf.f
https://netlib.org/lapack/double/dsptrf.f
https://doi.org/10.56021/9781421407944

18 BunchKaufman-methods

str(e.bk.A <- expand2(bk.A, complete = FALSE), max.level = 2L)
str(E.bk.A <- expand2(bk.A, complete = TRUE), max.level = 2L)

Underlying LAPACK representation
(m.bk.A <- as(bk.A, "dtrMatrix"))
stopifnot(identical(as(m.bk.A, "matrix"), `dim<-`(bk.A@x, bk.A@Dim)))

Number of factors is 2*b+1, b <= n, which can be nontrivial ...
(b <- (length(E.bk.A) - 1L) %/% 2L)

ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)

A ~ U DU U', U := prod(Pk Uk) in floating point
stopifnot(exprs = {

identical(names(e.bk.A), c("U", "DU", "U."))
identical(e.bk.A[["U"]], Reduce(`%*%`, E.bk.A[seq_len(b)]))
identical(e.bk.A[["U."]], t(e.bk.A[["U"]]))
ae1(A, with(e.bk.A, U %*% DU %*% U.))

})

Factorization handled as factorized matrix
b <- rnorm(n)
stopifnot(identical(det(A), det(bk.A)),

identical(solve(A, b), solve(bk.A, b)))

BunchKaufman-methods Methods for Bunch-Kaufman Factorization

Description

Computes the Bunch-Kaufman factorization of an n × n real, symmetric matrix A, which has the
general form

A = UDUU
′ = LDLL

′

where DU and DL are symmetric, block diagonal matrices composed of bU and bL 1 × 1 or 2 ×
2 diagonal blocks; U =

∏bU
k=1 PkUk is the product of bU row-permuted unit upper triangular

matrices, each having nonzero entries above the diagonal in 1 or 2 columns; and L =
∏bL

k=1 PkLk

is the product of bL row-permuted unit lower triangular matrices, each having nonzero entries below
the diagonal in 1 or 2 columns.

Methods are built on LAPACK routines dsytrf and dsptrf.

Usage

BunchKaufman(x, ...)
S4 method for signature 'dsyMatrix'
BunchKaufman(x, warnSing = TRUE, ...)
S4 method for signature 'dspMatrix'
BunchKaufman(x, warnSing = TRUE, ...)

BunchKaufman-methods 19

S4 method for signature 'matrix'
BunchKaufman(x, uplo = "U", ...)

Arguments

x a finite symmetric matrix or Matrix to be factorized. If x is square but not
symmetric, then it will be treated as symmetric; see uplo.

warnSing a logical indicating if a warning should be signaled for singular x.

uplo a string, either "U" or "L", indicating which triangle of x should be used to
compute the factorization.

... further arguments passed to or from methods.

Value

An object representing the factorization, inheriting from virtual class BunchKaufmanFactorization.
The specific class is BunchKaufman unless x inherits from virtual class packedMatrix, in which
case it is pBunchKaufman.

References

The LAPACK source code, including documentation; see https://netlib.org/lapack/double/
dsytrf.f and https://netlib.org/lapack/double/dsptrf.f.

Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). Johns Hopkins University
Press. doi:10.56021/9781421407944

See Also

Classes BunchKaufman and pBunchKaufman and their methods.

Classes dsyMatrix and dspMatrix.

Generic functions expand1 and expand2, for constructing matrix factors from the result.

Generic functions Cholesky, Schur, lu, and qr, for computing other factorizations.

Examples

showMethods("BunchKaufman", inherited = FALSE)
set.seed(0)

data(CAex, package = "Matrix")
class(CAex) # dgCMatrix
isSymmetric(CAex) # symmetric, but not formally

A <- as(CAex, "symmetricMatrix")
class(A) # dsCMatrix

Have methods for denseMatrix (unpacked and packed),
but not yet sparseMatrix ...
Not run:
(bk.A <- BunchKaufman(A))

https://netlib.org/lapack/double/dsytrf.f
https://netlib.org/lapack/double/dsytrf.f
https://netlib.org/lapack/double/dsptrf.f
https://doi.org/10.56021/9781421407944

20 CAex

End(Not run)
(bk.A <- BunchKaufman(as(A, "unpackedMatrix")))

A ~ U DU U' in floating point
str(e.bk.A <- expand2(bk.A), max.level = 2L)
stopifnot(all.equal(as(A, "matrix"), as(Reduce(`%*%`, e.bk.A), "matrix")))

CAex Albers’ example Matrix with "Difficult" Eigen Factorization

Description

An example of a sparse matrix for which eigen() seemed to be difficult, an unscaled version of
this has been posted to the web, accompanying an E-mail to R-help (https://stat.ethz.ch/
mailman/listinfo/r-help), by Casper J Albers, Open University, UK.

Usage

data(CAex)

Format

This is a 72× 72 symmetric matrix with 216 non-zero entries in five bands, stored as sparse matrix
of class dgCMatrix.

Details

Historical note (2006-03-30): In earlier versions of R, eigen(CAex) fell into an infinite loop
whereas eigen(CAex, EISPACK=TRUE) had been okay.

Examples

data(CAex, package = "Matrix")
str(CAex) # of class "dgCMatrix"

image(CAex)# -> it's a simple band matrix with 5 bands
and the eigen values are basically 1 (42 times) and 0 (30 x):
zapsmall(ev <- eigen(CAex, only.values=TRUE)$values)
i.e., the matrix is symmetric, hence
sCA <- as(CAex, "symmetricMatrix")
and
stopifnot(class(sCA) == "dsCMatrix",

as(sCA, "matrix") == as(CAex, "matrix"))

https://stat.ethz.ch/mailman/listinfo/r-help
https://stat.ethz.ch/mailman/listinfo/r-help

cbind2-methods 21

cbind2-methods ’cbind()’ and ’rbind()’ recursively built on cbind2/rbind2

Description

The base functions cbind and rbind are defined for an arbitrary number of arguments and hence
have the first formal argument Now, when S4 objects are found among the arguments, base
cbind() and rbind() internally “dispatch” recursively, calling cbind2 or rbind2 respectively,
where these have methods defined and so should dispatch appropriately.

cbind2() and rbind2() are from the methods package, i.e., standard R, and have been provided
for binding together two matrices, where in Matrix, we have defined methods for these and the
'Matrix' matrices.

Usage

cbind(..., deparse.level = 1)
rbind(..., deparse.level = 1)

S4 method for signature 'Matrix,Matrix'
cbind2(x, y, ...)
S4 method for signature 'Matrix,Matrix'
rbind2(x, y, ...)

Arguments

... for [cr]bind, vector- or matrix-like R objects to be bound together; for [cr]bind2,
further arguments passed to or from methods; see cbind and cbind2.

deparse.level integer controlling the construction of labels in the case of non-matrix-like ar-
guments; see cbind.

x, y vector- or matrix-like R objects to be bound together.

Value

typically a ‘matrix-like’ object of a similar class as the first argument in

Note that sometimes by default, the result is a sparseMatrix if one of the arguments is (even in
the case where this is not efficient). In other cases, the result is chosen to be sparse when there are
more zero entries is than non-zero ones (as the default sparse in Matrix()).

Author(s)

Martin Maechler

See Also

cbind, cbind2.

Our class definition help pages mentioning cbind2() and rbind2() methods: "denseMatrix",
"diagonalMatrix", "indMatrix".

22 CHMfactor-class

Examples

(a <- matrix(c(2:1,1:2), 2,2))

(M1 <- cbind(0, rbind(a, 7))) # a traditional matrix

D <- Diagonal(2)
(M2 <- cbind(4, a, D, -1, D, 0)) # a sparse Matrix

stopifnot(validObject(M2), inherits(M2, "sparseMatrix"),
dim(M2) == c(2,9))

CHMfactor-class Sparse Cholesky Factorizations

Description

CHMfactor is the virtual class of sparse Cholesky factorizations of n× n real, symmetric matrices
A, having the general form

P1AP ′
1 = L1DL′

1

Djj≥0
= LL′

or (equivalently)

A = P ′
1L1DL′

1P1
Djj≥0
= P ′

1LL
′P1

where P1 is a permutation matrix, L1 is a unit lower triangular matrix, D is a diagonal matrix, and
L = L1

√
D. The second equalities hold only for positive semidefinite A, for which the diagonal

entries of D are non-negative and
√
D is well-defined.

The implementation of class CHMfactor is based on CHOLMOD’s C-level cholmod_factor_struct.
Virtual subclasses CHMsimpl and CHMsuper separate the simplicial and supernodal variants. These
have nonvirtual subclasses [dn]CHMsimpl and [dn]CHMsuper, where prefix ‘d’ and prefix ‘n’ are
reserved for numeric and symbolic factorizations, respectively.

Usage

isLDL(x)

Arguments

x an object inheriting from virtual class CHMfactor, almost always the result of a
call to generic function Cholesky.

Value

isLDL(x) returns TRUE or FALSE: TRUE if x stores the lower triangular entries of L1− I+D, FALSE
if x stores the lower triangular entries of L.

CHMfactor-class 23

Slots

Of CHMfactor:

Dim, Dimnames inherited from virtual class MatrixFactorization.

colcount an integer vector of length Dim[1] giving an estimate of the number of nonzero entries
in each column of the lower triangular Cholesky factor. If symbolic analysis was performed
prior to factorization, then the estimate is exact.

perm a 0-based integer vector of length Dim[1] specifying the permutation applied to the rows
and columns of the factorized matrix. perm of length 0 is valid and equivalent to the identity
permutation, implying no pivoting.

type an integer vector of length 6 specifying details of the factorization. The elements correspond
to members ordering, is_ll, is_super, is_monotonic, maxcsize, and maxesize of the
original cholmod_factor_struct. Simplicial and supernodal factorizations are distinguished
by is_super. Simplicial factorizations do not use maxcsize or maxesize. Supernodal factor-
izations do not use is_ll or is_monotonic.

Of CHMsimpl (all unused by nCHMsimpl):

nz an integer vector of length Dim[1] giving the number of nonzero entries in each column of the
lower triangular Cholesky factor. There is at least one nonzero entry in each column, because
the diagonal elements of the factor are stored explicitly.

p an integer vector of length Dim[1]+1. Row indices of nonzero entries in column j of the lower
triangular Cholesky factor are obtained as i[p[j]+seq_len(nz[j])]+1.

i an integer vector of length greater than or equal to sum(nz) containing the row indices of nonzero
entries in the lower triangular Cholesky factor. These are grouped by column and sorted within
columns, but the columns themselves need not be ordered monotonically. Columns may be
overallocated, i.e., the number of elements of i reserved for column j may exceed nz[j].

prv, nxt integer vectors of length Dim[1]+2 indicating the order in which the columns of the lower
triangular Cholesky factor are stored in i and x. Starting from j <- Dim[1]+2, the recursion
j <- nxt[j+1]+1 traverses the columns in forward order and terminates when nxt[j+1] =
-1. Starting from j <- Dim[1]+1, the recursion j <- prv[j+1]+1 traverses the columns in
backward order and terminates when prv[j+1] = -1.

Of dCHMsimpl:

x a numeric vector parallel to i containing the corresponding nonzero entries of the lower triangular
Cholesky factor L or (if and only if type[2] is 0) of the lower triangular matrix L1 − I +D.

Of CHMsuper:

super, pi, px integer vectors of length nsuper+1, where nsuper is the number of supernodes.
super[j]+1 is the index of the leftmost column of supernode j. The row indices of supernode
j are obtained as s[pi[j]+seq_len(pi[j+1]-pi[j])]+1. The numeric entries of supernode
j are obtained as x[px[j]+seq_len(px[j+1]-px[j])]+1 (if slot x is available).

s an integer vector of length greater than or equal to Dim[1] containing the row indices of the
supernodes. s may contain duplicates, but not within a supernode, where the row indices must
be increasing.

Of dCHMsuper:

24 CHMfactor-class

x a numeric vector of length less than or equal to prod(Dim) containing the numeric entries of the
supernodes.

Extends

Class MatrixFactorization, directly.

Instantiation

Objects can be generated directly by calls of the form new("dCHMsimpl", ...), etc., but dCHMsimpl
and dCHMsuper are more typically obtained as the value of Cholesky(x, ...) for x inheriting from
sparseMatrix (often dsCMatrix).

There is currently no API outside of calls to new for generating nCHMsimpl and nCHMsuper. These
classes are vestigial and may be formally deprecated in a future version of Matrix.

Methods

coerce signature(from = "CHMsimpl", to = "dtCMatrix"): returns a dtCMatrix representing
the lower triangular Cholesky factor L or the lower triangular matrix L1 − I +D, the latter if
and only if from@type[2] is 0.

coerce signature(from = "CHMsuper", to = "dgCMatrix"): returns a dgCMatrix representing
the lower triangular Cholesky factor L. Note that, for supernodes spanning two or more
columns, the supernodal algorithm by design stores non-structural zeros above the main diag-
onal, hence dgCMatrix is indeed more appropriate than dtCMatrix as a coercion target.

determinant signature(from = "CHMfactor", logarithm = "logical"): behaves according to
an optional argument sqrt. If sqrt = FALSE, then this method computes the determinant of
the factorized matrix A or its logarithm. If sqrt = TRUE, then this method computes the de-
terminant of the factor L = L1sqrt(D) or its logarithm, giving NaN for the modulus when
D has negative diagonal elements. For backwards compatibility, the default value of sqrt is
TRUE, but that can be expected change in a future version of Matrix, hence defensive code
will always set sqrt (to TRUE, if the code must remain backwards compatible with Matrix
< 1.6-0). Calls to this method not setting sqrt may warn about the pending change. The
warnings can be disabled with options(Matrix.warnSqrtDefault = 0).

diag signature(x = "CHMfactor"): returns a numeric vector of length n containing the diagonal
elements of D, which (if they are all non-negative) are the squared diagonal elements of L.

expand signature(x = "CHMfactor"): see expand-methods.

expand1 signature(x = "CHMsimpl"): see expand1-methods.

expand1 signature(x = "CHMsuper"): see expand1-methods.

expand2 signature(x = "CHMsimpl"): see expand2-methods.

expand2 signature(x = "CHMsuper"): see expand2-methods.

image signature(x = "CHMfactor"): see image-methods.

nnzero signature(x = "CHMfactor"): see nnzero-methods.

solve signature(a = "CHMfactor", b = .): see solve-methods.

CHMfactor-class 25

update signature(object = "CHMfactor"): returns a copy of object with the same nonzero
pattern but with numeric entries updated according to additional arguments parent and mult,
where parent is (coercible to) a dsCMatrix or a dgCMatrix and mult is a numeric vector of
positive length.
The numeric entries are updated with those of the Cholesky factor of F(parent) + mult[1] *
I, i.e., F(parent) plus mult[1] times the identity matrix, where F = identity for symmetric
parent and F = tcrossprod for other parent. The nonzero pattern of F(parent) must match
that of S if object = Cholesky(S, ...).

updown signature(update = ., C = ., object = "CHMfactor"): see updown-methods.

References

The CHOLMOD source code; see https://github.com/DrTimothyAldenDavis/SuiteSparse,
notably the header file ‘CHOLMOD/Include/cholmod.h’ defining cholmod_factor_struct.

Chen, Y., Davis, T. A., Hager, W. W., & Rajamanickam, S. (2008). Algorithm 887: CHOLMOD,
supernodal sparse Cholesky factorization and update/downdate. ACM Transactions on Mathemati-
cal Software, 35(3), Article 22, 1-14. doi:10.1145/1391989.1391995

Amestoy, P. R., Davis, T. A., & Duff, I. S. (2004). Algorithm 837: AMD, an approximate min-
imum degree ordering algorithm. ACM Transactions on Mathematical Software, 17(4), 886-905.
doi:10.1145/1024074.1024081

Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). Johns Hopkins University
Press. doi:10.56021/9781421407944

See Also

Class dsCMatrix.

Generic functions Cholesky, updown, expand1 and expand2.

Examples

showClass("dCHMsimpl")
showClass("dCHMsuper")
set.seed(2)

m <- 1000L
n <- 200L
M <- rsparsematrix(m, n, 0.01)
A <- crossprod(M)

With dimnames, to see that they are propagated :
dimnames(A) <- dn <- rep.int(list(paste0("x", seq_len(n))), 2L)

(ch.A <- Cholesky(A)) # pivoted, by default
str(e.ch.A <- expand2(ch.A, LDL = TRUE), max.level = 2L)
str(E.ch.A <- expand2(ch.A, LDL = FALSE), max.level = 2L)

ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)

https://github.com/DrTimothyAldenDavis/SuiteSparse
https://doi.org/10.1145/1391989.1391995
https://doi.org/10.1145/1024074.1024081
https://doi.org/10.56021/9781421407944

26 chol-methods

A ~ P1' L1 D L1' P1 ~ P1' L L' P1 in floating point
stopifnot(exprs = {

identical(names(e.ch.A), c("P1.", "L1", "D", "L1.", "P1"))
identical(names(E.ch.A), c("P1.", "L" , "L." , "P1"))
identical(e.ch.A[["P1"]],

new("pMatrix", Dim = c(n, n), Dimnames = c(list(NULL), dn[2L]),
margin = 2L, perm = invertPerm(ch.A@perm, 0L, 1L)))

identical(e.ch.A[["P1."]], t(e.ch.A[["P1"]]))
identical(e.ch.A[["L1."]], t(e.ch.A[["L1"]]))
identical(E.ch.A[["L."]], t(E.ch.A[["L"]]))
identical(e.ch.A[["D"]], Diagonal(x = diag(ch.A)))
all.equal(E.ch.A[["L"]], with(e.ch.A, L1 %*% sqrt(D)))
ae1(A, with(e.ch.A, P1. %*% L1 %*% D %*% L1. %*% P1))
ae1(A, with(E.ch.A, P1. %*% L %*% L. %*% P1))
ae2(A[ch.A@perm + 1L, ch.A@perm + 1L], with(e.ch.A, L1 %*% D %*% L1.))
ae2(A[ch.A@perm + 1L, ch.A@perm + 1L], with(E.ch.A, L %*% L.))

})

Factorization handled as factorized matrix
(in some cases only optionally, depending on arguments)
b <- rnorm(n)
stopifnot(identical(det(A), det(ch.A, sqrt = FALSE)),

identical(solve(A, b), solve(ch.A, b, system = "A")))

u1 <- update(ch.A, A , mult = sqrt(2))
u2 <- update(ch.A, t(M), mult = sqrt(2)) # updating with crossprod(M), not M
stopifnot(all.equal(u1, u2, tolerance = 1e-14))

chol-methods Compute the Cholesky Factor of a Matrix

Description

Computes the upper triangular Cholesky factor of an n × n real, symmetric, positive semidefinite
matrix A, optionally after pivoting. That is the factor L′ in

P1AP ′
1 = LL′

or (equivalently)

A = P ′
1LL

′P1

where P1 is a permutation matrix.

Methods for denseMatrix are built on LAPACK routines dpstrf, dpotrf, and dpptrf, The latter
two do not permute rows or columns, so that P1 is an identity matrix.

Methods for sparseMatrix are built on CHOLMOD routines cholmod_analyze and cholmod_factorize_p.

chol-methods 27

Usage

chol(x, ...)
S4 method for signature 'dsyMatrix'
chol(x, pivot = FALSE, tol = -1, ...)
S4 method for signature 'dspMatrix'
chol(x, ...)
S4 method for signature 'dsCMatrix'
chol(x, pivot = FALSE, ...)
S4 method for signature 'ddiMatrix'
chol(x, ...)
S4 method for signature 'generalMatrix'
chol(x, uplo = "U", ...)
S4 method for signature 'triangularMatrix'
chol(x, uplo = "U", ...)

Arguments

x a finite, symmetric, positive semidefinite matrix or Matrix to be factorized. If
x is square but not symmetric, then it will be treated as symmetric; see uplo.
Methods for dense x require positive definiteness when pivot = FALSE. Methods
for sparse (but not diagonal) x require positive definiteness unconditionally.

pivot a logical indicating if the rows and columns of x should be pivoted. Methods for
sparse x employ the approximate minimum degree (AMD) algorithm in order to
reduce fill-in, i.e., without regard for numerical stability.

tol a finite numeric tolerance, used only if pivot = TRUE. The factorization algo-
rithm stops if the pivot is less than or equal to tol. Negative tol is equivalent
to nrow(x) * .Machine$double.eps * max(diag(x)).

uplo a string, either "U" or "L", indicating which triangle of x should be used to
compute the factorization. The default is "U", even for lower triangular x, to be
consistent with chol from base.

... further arguments passed to or from methods.

Details

For x inheriting from diagonalMatrix, the diagonal result is computed directly and without pivot-
ing, i.e., bypassing CHOLMOD.

For all other x, chol(x, pivot = value) calls Cholesky(x, perm = value, ...) under the hood.
If you must know the permutation P1 in addition to the Cholesky factor L′, then call Cholesky
directly, as the result of chol(x, pivot = TRUE) specifies L′ but not P1.

Value

A matrix, triangularMatrix, or diagonalMatrix representing the upper triangular Cholesky fac-
tor L′. The result is a traditional matrix if x is a traditional matrix, dense if x is dense, and sparse if
x is sparse.

28 chol-methods

References

The LAPACK source code, including documentation; see https://netlib.org/lapack/double/
dpstrf.f, https://netlib.org/lapack/double/dpotrf.f, and https://netlib.org/lapack/
double/dpptrf.f.

The CHOLMOD source code; see https://github.com/DrTimothyAldenDavis/SuiteSparse,
notably the header file ‘CHOLMOD/Include/cholmod.h’ defining cholmod_factor_struct.

Chen, Y., Davis, T. A., Hager, W. W., & Rajamanickam, S. (2008). Algorithm 887: CHOLMOD,
supernodal sparse Cholesky factorization and update/downdate. ACM Transactions on Mathemati-
cal Software, 35(3), Article 22, 1-14. doi:10.1145/1391989.1391995

Amestoy, P. R., Davis, T. A., & Duff, I. S. (2004). Algorithm 837: AMD, an approximate min-
imum degree ordering algorithm. ACM Transactions on Mathematical Software, 17(4), 886-905.
doi:10.1145/1024074.1024081

Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). Johns Hopkins University
Press. doi:10.56021/9781421407944

See Also

The default method from base, chol, called for traditional matrices x.

Generic function Cholesky, for more flexibility notably when computing the Cholesky factorization
and not only the factor L′.

Examples

showMethods("chol", inherited = FALSE)
set.seed(0)

---- Dense --

chol(x, pivot = value) wrapping Cholesky(x, perm = value)
selectMethod("chol", "dsyMatrix")

Except in packed cases where pivoting is not yet available
selectMethod("chol", "dspMatrix")

.... Positive definite ..

(A1 <- new("dsyMatrix", Dim = c(2L, 2L), x = c(1, 2, 2, 5)))
(R1.nopivot <- chol(A1))
(R1 <- chol(A1, pivot = TRUE))

In 2-by-2 cases, we know that the permutation is 1:2 or 2:1,
even if in general 'chol' does not say ...

stopifnot(exprs = {
all.equal(A1 , as(crossprod(R1.nopivot), "dsyMatrix"))
all.equal(t(A1[2:1, 2:1]), as(crossprod(R1), "dsyMatrix"))
identical(Cholesky(A1)@perm, 2:1) # because 5 > 1

})

https://netlib.org/lapack/double/dpstrf.f
https://netlib.org/lapack/double/dpstrf.f
https://netlib.org/lapack/double/dpotrf.f
https://netlib.org/lapack/double/dpptrf.f
https://netlib.org/lapack/double/dpptrf.f
https://github.com/DrTimothyAldenDavis/SuiteSparse
https://doi.org/10.1145/1391989.1391995
https://doi.org/10.1145/1024074.1024081
https://doi.org/10.56021/9781421407944

chol-methods 29

.... Positive semidefinite but not positive definite

(A2 <- new("dpoMatrix", Dim = c(2L, 2L), x = c(1, 2, 2, 4)))
try(R2.nopivot <- chol(A2)) # fails as not positive definite
(R2 <- chol(A2, pivot = TRUE)) # returns, with a warning and ...

stopifnot(exprs = {
all.equal(t(A2[2:1, 2:1]), as(crossprod(R2), "dsyMatrix"))
identical(Cholesky(A2)@perm, 2:1) # because 4 > 1

})

.... Not positive semidefinite

(A3 <- new("dsyMatrix", Dim = c(2L, 2L), x = c(1, 2, 2, 3)))
try(R3.nopivot <- chol(A3)) # fails as not positive definite
(R3 <- chol(A3, pivot = TRUE)) # returns, with a warning and ...

Not equal: see details and examples in help("Cholesky")
all.equal(t(A3[2:1, 2:1]), as(crossprod(R3), "dsyMatrix"))

---- Sparse ---

chol(x, pivot = value) wrapping
Cholesky(x, perm = value, LDL = FALSE, super = FALSE)
selectMethod("chol", "dsCMatrix")

Except in diagonal cases which are handled "directly"
selectMethod("chol", "ddiMatrix")

(A4 <- toeplitz(as(c(10, 0, 1, 0, 3), "sparseVector")))
(ch.A4.nopivot <- Cholesky(A4, perm = FALSE, LDL = FALSE, super = FALSE))
(ch.A4 <- Cholesky(A4, perm = TRUE, LDL = FALSE, super = FALSE))
(R4.nopivot <- chol(A4))
(R4 <- chol(A4, pivot = TRUE))

det4 <- det(A4)
b4 <- rnorm(5L)
x4 <- solve(A4, b4)

stopifnot(exprs = {
identical(R4.nopivot, expand1(ch.A4.nopivot, "L."))
identical(R4, expand1(ch.A4, "L."))
all.equal(A4, crossprod(R4.nopivot))
all.equal(A4[ch.A4@perm + 1L, ch.A4@perm + 1L], crossprod(R4))
all.equal(diag(R4.nopivot), sqrt(diag(ch.A4.nopivot)))
all.equal(diag(R4), sqrt(diag(ch.A4)))
all.equal(sqrt(det4), det(R4.nopivot))
all.equal(sqrt(det4), det(R4))
all.equal(det4, det(ch.A4.nopivot, sqrt = FALSE))
all.equal(det4, det(ch.A4, sqrt = FALSE))
all.equal(x4, solve(R4.nopivot, solve(t(R4.nopivot), b4)))
all.equal(x4, solve(ch.A4.nopivot, b4))
all.equal(x4, solve(ch.A4, b4))

30 chol2inv-methods

})

chol2inv-methods Inverse from Cholesky Factor

Description

Given formally upper and lower triangular matrices U and L, compute (U ′U)−1 and (LL′)−1,
respectively.

This function can be seen as way to compute the inverse of a symmetric positive definite matrix
given its Cholesky factor. Equivalently, it can be seen as a way to compute (X ′X)−1 given the R
part of the QR factorization of X , if R is constrained to have positive diagonal entries.

Usage

chol2inv(x, ...)
S4 method for signature 'dtrMatrix'
chol2inv(x, ...)
S4 method for signature 'dtCMatrix'
chol2inv(x, ...)
S4 method for signature 'generalMatrix'
chol2inv(x, uplo = "U", ...)

Arguments

x a square matrix or Matrix, typically the result of a call to chol. If x is square
but not (formally) triangular, then only the upper or lower triangle is considered,
depending on optional argument uplo if x is a Matrix.

uplo a string, either "U" or "L", indicating which triangle of x contains the Cholesky
factor. The default is "U", to be consistent with chol2inv from base.

... further arguments passed to or from methods.

Value

A matrix, symmetricMatrix, or diagonalMatrix representing the inverse of the positive definite
matrix whose Cholesky factor is x. The result is a traditional matrix if x is a traditional matrix,
dense if x is dense, and sparse if x is sparse.

See Also

The default method from base, chol2inv, called for traditional matrices x.

Generic function chol, for computing the upper triangular Cholesky factor L′ of a symmetric posi-
tive semidefinite matrix.

Generic function solve, for solving linear systems and (as a corollary) for computing inverses more
generally.

Cholesky-class 31

Examples

(A <- Matrix(cbind(c(1, 1, 1), c(1, 2, 4), c(1, 4, 16))))
(R <- chol(A))
(L <- t(R))
(R2i <- chol2inv(R))
(L2i <- chol2inv(R))
stopifnot(exprs = {

all.equal(R2i, tcrossprod(solve(R)))
all.equal(L2i, crossprod(solve(L)))
all.equal(as(R2i %*% A, "matrix"), diag(3L)) # the identity
all.equal(as(L2i %*% A, "matrix"), diag(3L)) # ditto

})

Cholesky-class Dense Cholesky Factorizations

Description

Classes Cholesky and pCholesky represent dense, pivoted Cholesky factorizations of n × n real,
symmetric, positive semidefinite matrices A, having the general form

P1AP ′
1 = L1DL′

1 = LL′

or (equivalently)
A = P ′

1L1DL′
1P1 = P ′

1LL
′P1

where P1 is a permutation matrix, L1 is a unit lower triangular matrix, D is a non-negative diagonal
matrix, and L = L1

√
D.

These classes store the entries of the Cholesky factor L or its transpose L′ in a dense format as a
vector of length nn (Cholesky) or n(n + 1)/2 (pCholesky), the latter giving the “packed” repre-
sentation.

Slots

Dim, Dimnames inherited from virtual class MatrixFactorization.

uplo a string, either "U" or "L", indicating which triangle (upper or lower) of the factorized sym-
metric matrix was used to compute the factorization and in turn whether x stores L′ or L.

x a numeric vector of length n*n (Cholesky) or n*(n+1)/2 (pCholesky), where n=Dim[1], listing
the entries of the Cholesky factor L or its transpose L′ in column-major order.

perm a 1-based integer vector of length Dim[1] specifying the permutation applied to the rows
and columns of the factorized matrix. perm of length 0 is valid and equivalent to the identity
permutation, implying no pivoting.

Extends

Class CholeskyFactorization, directly. Class MatrixFactorization, by class CholeskyFactorization,
distance 2.

32 Cholesky-class

Instantiation

Objects can be generated directly by calls of the form new("Cholesky", ...) or new("pCholesky",
...), but they are more typically obtained as the value of Cholesky(x) for x inheriting from
dsyMatrix or dspMatrix (often the subclasses of those reserved for positive semidefinite matri-
ces, namely dpoMatrix and dppMatrix).

Methods

coerce signature(from = "Cholesky", to = "dtrMatrix"): returns a dtrMatrix representing
the Cholesky factor L or its transpose L′; see ‘Note’.

coerce signature(from = "pCholesky", to = "dtpMatrix"): returns a dtpMatrix represent-
ing the Cholesky factor L or its transpose L′; see ‘Note’.

determinant signature(from = "p?Cholesky", logarithm = "logical"): computes the deter-
minant of the factorized matrix A or its logarithm.

diag signature(x = "p?Cholesky"): returns a numeric vector of length n containing the diago-
nal elements of D, which are the squared diagonal elements of L.

expand1 signature(x = "p?Cholesky"): see expand1-methods.

expand2 signature(x = "p?Cholesky"): see expand2-methods.

solve signature(a = "p?Cholesky", b = .): see solve-methods.

Note

In Matrix < 1.6-0, class Cholesky extended dtrMatrix and class pCholesky extended dtpMatrix,
reflecting the fact that the factor L is indeed a triangular matrix. Matrix 1.6-0 removed these
extensions so that methods would no longer be inherited from dtrMatrix and dtpMatrix. The
availability of such methods gave the wrong impression that Cholesky and pCholesky represent a
(singular) matrix, when in fact they represent an ordered set of matrix factors.

The coercions as(., "dtrMatrix") and as(., "dtpMatrix") are provided for users who under-
stand the caveats.

References

The LAPACK source code, including documentation; see https://netlib.org/lapack/double/
dpstrf.f, https://netlib.org/lapack/double/dpotrf.f, and https://netlib.org/lapack/
double/dpptrf.f.

Lucas, C. (2004). LAPACK-style codes for level 2 and 3 pivoted Cholesky factorizations. LAPACK
Working Note, Number 161. https://www.netlib.org/lapack/lawnspdf/lawn161.pdf

Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). Johns Hopkins University
Press. doi:10.56021/9781421407944

See Also

Class CHMfactor for sparse Cholesky factorizations.

Classes dpoMatrix and dppMatrix.

Generic functions Cholesky, expand1 and expand2.

https://netlib.org/lapack/double/dpstrf.f
https://netlib.org/lapack/double/dpstrf.f
https://netlib.org/lapack/double/dpotrf.f
https://netlib.org/lapack/double/dpptrf.f
https://netlib.org/lapack/double/dpptrf.f
https://www.netlib.org/lapack/lawnspdf/lawn161.pdf
https://doi.org/10.56021/9781421407944

Cholesky-class 33

Examples

showClass("Cholesky")
set.seed(1)

m <- 30L
n <- 6L
(A <- crossprod(Matrix(rnorm(m * n), m, n)))

With dimnames, to see that they are propagated :
dimnames(A) <- dn <- rep.int(list(paste0("x", seq_len(n))), 2L)

(ch.A <- Cholesky(A)) # pivoted, by default
str(e.ch.A <- expand2(ch.A, LDL = TRUE), max.level = 2L)
str(E.ch.A <- expand2(ch.A, LDL = FALSE), max.level = 2L)

Underlying LAPACK representation
(m.ch.A <- as(ch.A, "dtrMatrix")) # which is L', not L, because
A@uplo == "U"
stopifnot(identical(as(m.ch.A, "matrix"), `dim<-`(ch.A@x, ch.A@Dim)))

ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)

A ~ P1' L1 D L1' P1 ~ P1' L L' P1 in floating point
stopifnot(exprs = {

identical(names(e.ch.A), c("P1.", "L1", "D", "L1.", "P1"))
identical(names(E.ch.A), c("P1.", "L" , "L." , "P1"))
identical(e.ch.A[["P1"]],

new("pMatrix", Dim = c(n, n), Dimnames = c(list(NULL), dn[2L]),
margin = 2L, perm = invertPerm(ch.A@perm)))

identical(e.ch.A[["P1."]], t(e.ch.A[["P1"]]))
identical(e.ch.A[["L1."]], t(e.ch.A[["L1"]]))
identical(E.ch.A[["L."]], t(E.ch.A[["L"]]))
identical(e.ch.A[["D"]], Diagonal(x = diag(ch.A)))
all.equal(E.ch.A[["L"]], with(e.ch.A, L1 %*% sqrt(D)))
ae1(A, with(e.ch.A, P1. %*% L1 %*% D %*% L1. %*% P1))
ae1(A, with(E.ch.A, P1. %*% L %*% L. %*% P1))
ae2(A[ch.A@perm, ch.A@perm], with(e.ch.A, L1 %*% D %*% L1.))
ae2(A[ch.A@perm, ch.A@perm], with(E.ch.A, L %*% L.))

})

Factorization handled as factorized matrix
b <- rnorm(n)
all.equal(det(A), det(ch.A), tolerance = 0)
all.equal(solve(A, b), solve(ch.A, b), tolerance = 0)

For identical results, we need the _unpivoted_ factorization
computed by det(A) and solve(A, b)
(ch.A.nopivot <- Cholesky(A, perm = FALSE))
stopifnot(identical(det(A), det(ch.A.nopivot)),

identical(solve(A, b), solve(ch.A.nopivot, b)))

34 Cholesky-methods

Cholesky-methods Methods for Cholesky Factorization

Description

Computes the pivoted Cholesky factorization of an n× n real, symmetric matrix A, which has the
general form

P1AP ′
1 = L1DL′

1

Djj≥0
= LL′

or (equivalently)

A = P ′
1L1DL′

1P1
Djj≥0
= P ′

1LL
′P1

where P1 is a permutation matrix, L1 is a unit lower triangular matrix, D is a diagonal matrix, and
L = L1

√
D. The second equalities hold only for positive semidefinite A, for which the diagonal

entries of D are non-negative and
√
D is well-defined.

Methods for denseMatrix are built on LAPACK routines dpstrf, dpotrf, and dpptrf. The latter
two do not permute rows or columns, so that P1 is an identity matrix.

Methods for sparseMatrix are built on CHOLMOD routines cholmod_analyze and cholmod_factorize_p.

Usage

Cholesky(A, ...)
S4 method for signature 'dsyMatrix'
Cholesky(A, perm = TRUE, tol = -1, ...)
S4 method for signature 'dspMatrix'
Cholesky(A, ...)
S4 method for signature 'dsCMatrix'
Cholesky(A, perm = TRUE, LDL = !super, super = FALSE,

Imult = 0, ...)
S4 method for signature 'ddiMatrix'
Cholesky(A, ...)
S4 method for signature 'generalMatrix'
Cholesky(A, uplo = "U", ...)
S4 method for signature 'triangularMatrix'
Cholesky(A, uplo = "U", ...)
S4 method for signature 'matrix'
Cholesky(A, uplo = "U", ...)

Arguments

A a finite, symmetric matrix or Matrix to be factorized. If A is square but not
symmetric, then it will be treated as symmetric; see uplo. Methods for dense A
require positive definiteness when perm = FALSE and positive semidefiniteness
when perm = TRUE. Methods for sparse A require positive definiteness when LDL
= TRUE and nonzero leading principal minors (after pivoting) when LDL = FALSE.
Methods for sparse, diagonal A are an exception, requiring positive semidefinite-
ness unconditionally.

Cholesky-methods 35

perm a logical indicating if the rows and columns of A should be pivoted. Methods for
sparse A employ the approximate minimum degree (AMD) algorithm in order to
reduce fill-in, i.e., without regard for numerical stability. Pivoting for sparsity
may introduce nonpositive leading principal minors, causing the factorization to
fail, in which case it may be necessary to set perm = FALSE.

tol a finite numeric tolerance, used only if perm = TRUE. The factorization algorithm
stops if the pivot is less than or equal to tol. Negative tol is equivalent to
nrow(A) * .Machine$double.eps * max(diag(A)).

LDL a logical indicating if the simplicial factorization should be computed as P ′
1L1DL′

1P1,
such that the result stores the lower triangular entries of L1 − I + D. The al-
ternative is P ′

1LL
′P1, such that the result stores the lower triangular entries of

L = L1

√
D. This argument is ignored if super = TRUE (or if super = NA and

the supernodal algorithm is chosen), as the supernodal code does not yet support
the LDL = TRUE variant.

super a logical indicating if the factorization should use the supernodal algorithm. The
alternative is the simplicial algorithm. Setting super = NA leaves the choice to a
CHOLMOD-internal heuristic.

Imult a finite number. The matrix that is factorized is A + Imult * diag(nrow(A)),
i.e., A plus Imult times the identity matrix. This argument is useful for symmet-
ric, indefinite A, as Imult > max(rowSums(abs(A)) - diag(abs(A))) ensures
that A + Imult * diag(nrow(A)) is diagonally dominant. (Symmetric, diago-
nally dominant matrices are positive definite.)

uplo a string, either "U" or "L", indicating which triangle of A should be used to
compute the factorization. The default is "U", even for lower triangular A, to be
consistent with chol from base.

... further arguments passed to or from methods.

Details

Note that the result of a call to Cholesky inherits from CholeskyFactorization but not Matrix.
Users who just want a matrix should consider using chol, whose methods are simple wrappers
around Cholesky returning just the upper triangular Cholesky factor L′, typically as a triangularMatrix.
However, a more principled approach would be to construct factors as needed from the CholeskyFactorization
object, e.g., with expand1(x, "L"), if x is the object.

The behaviour of Cholesky(A, perm = TRUE) for dense A is somewhat exceptional, in that it expects
without checking that A is positive semidefinite. By construction, if A is positive semidefinite and
the exact algorithm encounters a zero pivot, then the unfactorized trailing submatrix is the zero
matrix, and there is nothing left to do. Hence when the finite precision algorithm encounters a pivot
less than tol, it signals a warning instead of an error and zeros the trailing submatrix in order to
guarantee that P ′LL′P is positive semidefinite even if A is not. It follows that one way to test for
positive semidefiniteness of A in the event of a warning is to analyze the error

∥A− P ′LL′P∥
∥A∥

.

See the examples and LAPACK Working Note (“LAWN”) 161 for details.

36 Cholesky-methods

Value

An object representing the factorization, inheriting from virtual class CholeskyFactorization.
For a traditional matrix A, the specific class is Cholesky. For A inheriting from unpackedMatrix,
packedMatrix, and sparseMatrix, the specific class is Cholesky, pCholesky, and dCHMsimpl or
dCHMsuper, respectively.

References

The LAPACK source code, including documentation; see https://netlib.org/lapack/double/
dpstrf.f, https://netlib.org/lapack/double/dpotrf.f, and https://netlib.org/lapack/
double/dpptrf.f.

The CHOLMOD source code; see https://github.com/DrTimothyAldenDavis/SuiteSparse,
notably the header file ‘CHOLMOD/Include/cholmod.h’ defining cholmod_factor_struct.

Lucas, C. (2004). LAPACK-style codes for level 2 and 3 pivoted Cholesky factorizations. LAPACK
Working Note, Number 161. https://www.netlib.org/lapack/lawnspdf/lawn161.pdf

Chen, Y., Davis, T. A., Hager, W. W., & Rajamanickam, S. (2008). Algorithm 887: CHOLMOD,
supernodal sparse Cholesky factorization and update/downdate. ACM Transactions on Mathemati-
cal Software, 35(3), Article 22, 1-14. doi:10.1145/1391989.1391995

Amestoy, P. R., Davis, T. A., & Duff, I. S. (2004). Algorithm 837: AMD, an approximate min-
imum degree ordering algorithm. ACM Transactions on Mathematical Software, 17(4), 886-905.
doi:10.1145/1024074.1024081

Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). Johns Hopkins University
Press. doi:10.56021/9781421407944

See Also

Classes Cholesky, pCholesky, dCHMsimpl and dCHMsuper and their methods.

Classes dpoMatrix, dppMatrix, and dsCMatrix.

Generic function chol, for obtaining the upper triangular Cholesky factor L′ as a matrix or Matrix.

Generic functions expand1 and expand2, for constructing matrix factors from the result.

Generic functions BunchKaufman, Schur, lu, and qr, for computing other factorizations.

Examples

showMethods("Cholesky", inherited = FALSE)
set.seed(0)

---- Dense --

.... Positive definite ..

n <- 6L
(A1 <- crossprod(Matrix(rnorm(n * n), n, n)))
(ch.A1.nopivot <- Cholesky(A1, perm = FALSE))
(ch.A1 <- Cholesky(A1))
stopifnot(exprs = {

length(ch.A1@perm) == ncol(A1)

https://netlib.org/lapack/double/dpstrf.f
https://netlib.org/lapack/double/dpstrf.f
https://netlib.org/lapack/double/dpotrf.f
https://netlib.org/lapack/double/dpptrf.f
https://netlib.org/lapack/double/dpptrf.f
https://github.com/DrTimothyAldenDavis/SuiteSparse
https://www.netlib.org/lapack/lawnspdf/lawn161.pdf
https://doi.org/10.1145/1391989.1391995
https://doi.org/10.1145/1024074.1024081
https://doi.org/10.56021/9781421407944

Cholesky-methods 37

isPerm(ch.A1@perm)
is.unsorted(ch.A1@perm) # typically not the identity permutation
length(ch.A1.nopivot@perm) == 0L

})

A ~ P1' L D L' P1 ~ P1' L L' P1 in floating point
str(e.ch.A1 <- expand2(ch.A1, LDL = TRUE), max.level = 2L)
str(E.ch.A1 <- expand2(ch.A1, LDL = FALSE), max.level = 2L)
stopifnot(exprs = {

all.equal(as(A1, "matrix"), as(Reduce(`%*%`, e.ch.A1), "matrix"))
all.equal(as(A1, "matrix"), as(Reduce(`%*%`, E.ch.A1), "matrix"))

})

.... Positive semidefinite but not positive definite

A2 <- A1
A2[1L,] <- A2[, 1L] <- 0
A2
try(Cholesky(A2, perm = FALSE)) # fails as not positive definite
ch.A2 <- Cholesky(A2) # returns, with a warning and ...
A2.hat <- Reduce(`%*%`, expand2(ch.A2, LDL = FALSE))
norm(A2 - A2.hat, "2") / norm(A2, "2") # 7.670858e-17

.... Not positive semidefinite

A3 <- A1
A3[1L,] <- A3[, 1L] <- -1
A3
try(Cholesky(A3, perm = FALSE)) # fails as not positive definite
ch.A3 <- Cholesky(A3) # returns, with a warning and ...
A3.hat <- Reduce(`%*%`, expand2(ch.A3, LDL = FALSE))
norm(A3 - A3.hat, "2") / norm(A3, "2") # 1.781568

Indeed, 'A3' is not positive semidefinite, but 'A3.hat' _is_
ch.A3.hat <- Cholesky(A3.hat)
A3.hat.hat <- Reduce(`%*%`, expand2(ch.A3.hat, LDL = FALSE))
norm(A3.hat - A3.hat.hat, "2") / norm(A3.hat, "2") # 1.777944e-16

---- Sparse ---

Really just three cases modulo permutation :
##
type factorization minors of P1 A P1'
1 simplicial P1 A P1' = L1 D L1' nonzero
2 simplicial P1 A P1' = L L ' positive
3 supernodal P1 A P2' = L L ' positive

data(KNex, package = "Matrix")
A4 <- crossprod(KNex[["mm"]])

ch.A4 <-
list(pivoted =

list(simpl1 = Cholesky(A4, perm = TRUE, super = FALSE, LDL = TRUE),

38 Cholesky-methods

simpl0 = Cholesky(A4, perm = TRUE, super = FALSE, LDL = FALSE),
super0 = Cholesky(A4, perm = TRUE, super = TRUE)),

unpivoted =
list(simpl1 = Cholesky(A4, perm = FALSE, super = FALSE, LDL = TRUE),

simpl0 = Cholesky(A4, perm = FALSE, super = FALSE, LDL = FALSE),
super0 = Cholesky(A4, perm = FALSE, super = TRUE)))

ch.A4

s <- simplify2array
rapply2 <- function(object, f, ...) rapply(object, f, , , how = "list", ...)

s(rapply2(ch.A4, isLDL))
s(m.ch.A4 <- rapply2(ch.A4, expand1, "L")) # giving L = L1 sqrt(D)

By design, the pivoted and simplicial factorizations
are more sparse than the unpivoted and supernodal ones ...
s(rapply2(m.ch.A4, object.size))

Which is nicely visualized by lattice-based methods for 'image'
inm <- c("pivoted", "unpivoted")
jnm <- c("simpl1", "simpl0", "super0")
for(i in 1:2)

for(j in 1:3)
print(image(m.ch.A4[[c(i, j)]], main = paste(inm[i], jnm[j])),

split = c(j, i, 3L, 2L), more = i * j < 6L)

simpl1 <- ch.A4[[c("pivoted", "simpl1")]]
stopifnot(exprs = {

length(simpl1@perm) == ncol(A4)
isPerm(simpl1@perm, 0L)
is.unsorted(simpl1@perm) # typically not the identity permutation

})

One can expand with and without D regardless of isLDL(.),
but "without" requires L = L1 sqrt(D), which is conditional
on min(diag(D)) >= 0, hence "with" is the default
isLDL(simpl1)
stopifnot(min(diag(simpl1)) >= 0)
str(e.ch.A4 <- expand2(simpl1, LDL = TRUE), max.level = 2L) # default
str(E.ch.A4 <- expand2(simpl1, LDL = FALSE), max.level = 2L)
stopifnot(exprs = {

all.equal(E.ch.A4[["L"]], e.ch.A4[["L1"]] %*% sqrt(e.ch.A4[["D"]]))
all.equal(E.ch.A4[["L."]], sqrt(e.ch.A4[["D"]]) %*% e.ch.A4[["L1."]])
all.equal(A4, as(Reduce(`%*%`, e.ch.A4), "symmetricMatrix"))
all.equal(A4, as(Reduce(`%*%`, E.ch.A4), "symmetricMatrix"))

})

The "same" permutation matrix with "alternate" representation
[i, perm[i]] {margin=1} <-> [invertPerm(perm)[j], j] {margin=2}
alt <- function(P) {

P@margin <- 1L + !(P@margin - 1L) # 1 <-> 2
P@perm <- invertPerm(P@perm)
P

coerce-methods-graph 39

}

Expansions are elegant but inefficient (transposes are redundant)
hence programmers should consider methods for 'expand1' and 'diag'
stopifnot(exprs = {

identical(expand1(simpl1, "P1"), alt(e.ch.A4[["P1"]]))
identical(expand1(simpl1, "L"), E.ch.A4[["L"]])
identical(Diagonal(x = diag(simpl1)), e.ch.A4[["D"]])

})

chol(A, pivot = value) is a simple wrapper around
Cholesky(A, perm = value, LDL = FALSE, super = FALSE),
returning L' = sqrt(D) L1' _but_ giving no information
about the permutation P1
selectMethod("chol", "dsCMatrix")
stopifnot(all.equal(chol(A4, pivot = TRUE), E.ch.A4[["L."]]))

Now a symmetric matrix with positive _and_ negative eigenvalues,
hence _not_ positive semidefinite
A5 <- new("dsCMatrix",

Dim = c(7L, 7L),
p = c(0:1, 3L, 6:7, 10:11, 15L),
i = c(0L, 0:1, 0:3, 2:5, 3:6),
x = c(1, 6, 38, 10, 60, 103, -4, 6, -32, -247, -2, -16, -128, -2, -67))

(ev <- eigen(A5, only.values = TRUE)$values)
(t.ev <- table(factor(sign(ev), -1:1))) # the matrix "inertia"

ch.A5 <- Cholesky(A5)
isLDL(ch.A5)
(d.A5 <- diag(ch.A5)) # diag(D) is partly negative

Sylvester's law of inertia holds here, but not in general
in finite precision arithmetic
stopifnot(identical(table(factor(sign(d.A5), -1:1)), t.ev))

try(expand1(ch.A5, "L")) # unable to compute L = L1 sqrt(D)
try(expand2(ch.A5, LDL = FALSE)) # ditto
try(chol(A5, pivot = TRUE)) # ditto

The default expansion is "square root free" and still works here
str(e.ch.A5 <- expand2(ch.A5, LDL = TRUE), max.level = 2L)
stopifnot(all.equal(A5, as(Reduce(`%*%`, e.ch.A5), "symmetricMatrix")))

Version of the SuiteSparse library, which includes CHOLMOD
Mv <- Matrix.Version()
Mv[["suitesparse"]]

coerce-methods-graph Conversions "graph" <–> (sparse) Matrix

40 coerce-methods-graph

Description

Since 2005, package Matrix has supported coercions to and from class graph from package graph.
Since 2013, this functionality has been exposed via functions T2graph and graph2T, which, unlike
methods for as(from, "<Class>"), support optional arguments.

Usage

graph2T(from, use.weights =)
T2graph(from, need.uniq = !isUniqueT(from), edgemode = NULL)

Arguments

from for graph2T(), an R object of class "graph";
for T2graph(), a sparse matrix inheriting from "TsparseMatrix".

use.weights logical indicating if weights should be used, i.e., equivalently the result will be
numeric, i.e. of class dgTMatrix; otherwise the result will be ngTMatrix or
nsTMatrix, the latter if the graph is undirected. The default looks if there are
weights in the graph, and if any differ from 1, weights are used.

need.uniq a logical indicating if from may need to be internally “uniqified”; do not set this
and hence rather use the default, unless you know what you are doing!

edgemode one of NULL, "directed", or "undirected". The default NULL looks if the
matrix is symmetric and assumes "undirected" in that case.

Value

For graph2T(), a sparse matrix inheriting from "TsparseMatrix".

For T2graph() an R object of class "graph".

See Also

Package igraph, which provides similar coercions to and from its class igraph via functions
graph_from_adjacency_matrix and as_adjacency_matrix.

Examples

if(requireNamespace("graph")) {
n4 <- LETTERS[1:4]; dns <- list(n4,n4)
show(a1 <- sparseMatrix(i= c(1:4), j=c(2:4,1), x = 2, dimnames=dns))
show(g1 <- as(a1, "graph")) # directed
unlist(graph::edgeWeights(g1)) # all '2'

show(a2 <- sparseMatrix(i= c(1:4,4), j=c(2:4,1:2), x = TRUE, dimnames=dns))
show(g2 <- as(a2, "graph")) # directed
now if you want it undirected:
show(g3 <- T2graph(as(a2,"TsparseMatrix"), edgemode="undirected"))
show(m3 <- as(g3,"Matrix"))
show(graph2T(g3)) # a "pattern Matrix" (nsTMatrix)

a. <- sparseMatrix(i=4:1, j=1:4, dimnames=list(n4, n4), repr="T") # no 'x'

https://bioconductor.org/packages/graph/
https://CRAN.R-project.org/package=igraph

coerce-methods-SparseM 41

show(a.) # "ngTMatrix"
show(g. <- as(a., "graph"))

}

coerce-methods-SparseM

Sparse Matrix Coercion from and to those from package SparseM

Description

Methods for coercion from and to sparse matrices from package SparseM are provided here, for
ease of porting functionality to the Matrix package, and comparing functionality of the two pack-
ages. All these work via the usual as(., "<class>") coercion,

as(from, Class)

Methods

from = "matrix.csr", to = "dgRMatrix" ...

from = "matrix.csc", to = "dgCMatrix" ...

from = "matrix.coo", to = "dgTMatrix" ...

from = "dgRMatrix", to = "matrix.csr" ...

from = "dgCMatrix", to = "matrix.csc" ...

from = "dgTMatrix", to = "matrix.coo" ...

from = "Matrix", to = "matrix.csr" ...

from = "matrix.csr", to = "dgCMatrix" ...

from = "matrix.coo", to = "dgCMatrix" ...

from = "matrix.csr", to = "Matrix" ...

from = "matrix.csc", to = "Matrix" ...

from = "matrix.coo", to = "Matrix" ...

See Also

The documentation in CRAN package SparseM, such as SparseM.ontology, and one important
class, matrix.csr.

https://CRAN.R-project.org/package=SparseM

42 colSums-methods

colSums-methods Form Row and Column Sums and Means

Description

Form row and column sums and means for objects, for sparseMatrix the result may optionally be
sparse (sparseVector), too. Row or column names are kept respectively as for base matrices and
colSums methods, when the result is numeric vector.

Usage

colSums(x, na.rm = FALSE, dims = 1L, ...)
rowSums(x, na.rm = FALSE, dims = 1L, ...)

colMeans(x, na.rm = FALSE, dims = 1L, ...)
rowMeans(x, na.rm = FALSE, dims = 1L, ...)

S4 method for signature 'CsparseMatrix'
colSums(x, na.rm = FALSE, dims = 1L,

sparseResult = FALSE, ...)
S4 method for signature 'CsparseMatrix'
rowSums(x, na.rm = FALSE, dims = 1L,

sparseResult = FALSE, ...)
S4 method for signature 'CsparseMatrix'
colMeans(x, na.rm = FALSE, dims = 1L,

sparseResult = FALSE, ...)
S4 method for signature 'CsparseMatrix'
rowMeans(x, na.rm = FALSE, dims = 1L,

sparseResult = FALSE, ...)

Arguments

x a Matrix, i.e., inheriting from Matrix.
na.rm logical. Should missing values (including NaN) be omitted from the calculations?
dims completely ignored by the Matrix methods.
... potentially further arguments, for method <-> generic compatibility.
sparseResult logical indicating if the result should be sparse, i.e., inheriting from class sparseVector.

Only applicable when x is inheriting from a sparseMatrix class.

Value

returns a numeric vector if sparseResult is FALSE as per default. Otherwise, returns a sparseVector.

dimnames(x) are only kept (as names(v)) when the resulting v is numeric, since sparseVectors
do not have names.

See Also

colSums and the sparseVector classes.

condest 43

Examples

(M <- bdiag(Diagonal(2), matrix(1:3, 3,4), diag(3:2))) # 7 x 8
colSums(M)
d <- Diagonal(10, c(0,0,10,0,2,rep(0,5)))
MM <- kronecker(d, M)
dim(MM) # 70 80
length(MM@x) # 160, but many are '0' ; drop those:
MM <- drop0(MM)
length(MM@x) # 32

cm <- colSums(MM)
(scm <- colSums(MM, sparseResult = TRUE))
stopifnot(is(scm, "sparseVector"),

identical(cm, as.numeric(scm)))
rowSums (MM, sparseResult = TRUE) # 14 of 70 are not zero
colMeans(MM, sparseResult = TRUE) # 16 of 80 are not zero
Since we have no 'NA's, these two are equivalent :
stopifnot(identical(rowMeans(MM, sparseResult = TRUE),

rowMeans(MM, sparseResult = TRUE, na.rm = TRUE)),
rowMeans(Diagonal(16)) == 1/16,
colSums(Diagonal(7)) == 1)

dimnames(x) --> names(<value>) :
dimnames(M) <- list(paste0("r", 1:7), paste0("V",1:8))
M
colSums(M)
rowMeans(M)
Assertions :
stopifnot(exprs = {

all.equal(colSums(M),
structure(c(1,1,6,6,6,6,3,2), names = colnames(M)))

all.equal(rowMeans(M),
structure(c(1,1,4,8,12,3,2)/8, names = paste0("r", 1:7)))

})

condest Compute Approximate CONDition number and 1-Norm of (Large)
Matrices

Description

“Estimate”, i.e. compute approximately the CONDition number of a (potentially large, often sparse)
matrix A. It works by apply a fast randomized approximation of the 1-norm, norm(A,"1"), through
onenormest(.).

Usage

condest(A, t = min(n, 5), normA = norm(A, "1"),
silent = FALSE, quiet = TRUE)

44 condest

onenormest(A, t = min(n, 5), A.x, At.x, n,
silent = FALSE, quiet = silent,
iter.max = 10, eps = 4 * .Machine$double.eps)

Arguments

A a square matrix, optional for onenormest(), where instead of A, A.x and At.x
can be specified, see there.

t number of columns to use in the iterations.

normA number; (an estimate of) the 1-norm of A, by default norm(A, "1"); may be
replaced by an estimate.

silent logical indicating if warning and (by default) convergence messages should be
displayed.

quiet logical indicating if convergence messages should be displayed.

A.x, At.x when A is missing, these two must be given as functions which compute A %% x,
or t(A) %% x, respectively.

n == nrow(A), only needed when A is not specified.

iter.max maximal number of iterations for the 1-norm estimator.

eps the relative change that is deemed irrelevant.

Details

condest() calls lu(A), and subsequently onenormest(A.x = , At.x =) to compute an approxi-
mate norm of the inverse of A, A−1, in a way which keeps using sparse matrices efficiently when A
is sparse.

Note that onenormest() uses random vectors and hence both functions’ results are random, i.e.,
depend on the random seed, see, e.g., set.seed().

Value

Both functions return a list; condest() with components,

est a number > 0, the estimated (1-norm) condition number κ̂; when r :=rcond(A),
1/κ̂ ≈ r.

v the maximal Ax column, scaled to norm(v) = 1. Consequently, norm(Av) =
norm(A)/est; when est is large, v is an approximate null vector.

The function onenormest() returns a list with components,

est a number > 0, the estimated norm(A, "1").

v 0-1 integer vector length n, with an 1 at the index j with maximal column A[,j]
in A.

w numeric vector, the largest Ax found.

iter the number of iterations used.

CsparseMatrix-class 45

Author(s)

This is based on octave’s condest() and onenormest() implementations with original author Jason
Riedy, U Berkeley; translation to R and adaption by Martin Maechler.

References

Nicholas J. Higham and Françoise Tisseur (2000). A Block Algorithm for Matrix 1-Norm Estima-
tion, with an Application to 1-Norm Pseudospectra. SIAM J. Matrix Anal. Appl. 21, 4, 1185–1201.

William W. Hager (1984). Condition Estimates. SIAM J. Sci. Stat. Comput. 5, 311–316.

See Also

norm, rcond.

Examples

data(KNex, package = "Matrix")
mtm <- with(KNex, crossprod(mm))
system.time(ce <- condest(mtm))
sum(abs(ce$v)) ## || v ||_1 == 1
Prove that || A v || = || A || / est (as ||v|| = 1):
stopifnot(all.equal(norm(mtm %*% ce$v),

norm(mtm) / ce$est))

reciprocal
1 / ce$est
system.time(rc <- rcond(mtm)) # takes ca 3 x longer
rc
all.equal(rc, 1/ce$est) # TRUE -- the approximation was good

one <- onenormest(mtm)
str(one) ## est = 12.3
the maximal column:
which(one$v == 1) # mostly 4, rarely 1, depending on random seed

CsparseMatrix-class Class "CsparseMatrix" of Sparse Matrices in Column-compressed
Form

Description

The "CsparseMatrix" class is the virtual class of all sparse matrices coded in sorted compressed
column-oriented form. Since it is a virtual class, no objects may be created from it. See showClass("CsparseMatrix")
for its subclasses.

46 CsparseMatrix-class

Slots

i: Object of class "integer" of length nnzero (number of non-zero elements). These are the 0-
based row numbers for each non-zero element in the matrix, i.e., i must be in 0:(nrow(.)-1).

p: integer vector for providing pointers, one for each column, to the initial (zero-based) index of
elements in the column. .@p is of length ncol(.) + 1, with p[1] == 0 and p[length(p)] ==
nnzero, such that in fact, diff(.@p) are the number of non-zero elements for each column.
In other words, m@p[1:ncol(m)] contains the indices of those elements in m@x that are the
first elements in the respective column of m.

Dim, Dimnames: inherited from the superclass, see the sparseMatrix class.

Extends

Class "sparseMatrix", directly. Class "Matrix", by class "sparseMatrix".

Methods

matrix products %*%, crossprod() and tcrossprod(), several solve methods, and other
matrix methods available:

signature(e1 = "CsparseMatrix", e2 = "numeric"): ...

ArithArith signature(e1 = "numeric", e2 = "CsparseMatrix"): ...

Math signature(x = "CsparseMatrix"): ...

band signature(x = "CsparseMatrix"): ...

- signature(e1 = "CsparseMatrix", e2 = "numeric"): ...

- signature(e1 = "numeric", e2 = "CsparseMatrix"): ...

+ signature(e1 = "CsparseMatrix", e2 = "numeric"): ...

+ signature(e1 = "numeric", e2 = "CsparseMatrix"): ...

coerce signature(from = "CsparseMatrix", to = "TsparseMatrix"): ...

coerce signature(from = "CsparseMatrix", to = "denseMatrix"): ...

coerce signature(from = "CsparseMatrix", to = "matrix"): ...

coerce signature(from = "TsparseMatrix", to = "CsparseMatrix"): ...

coerce signature(from = "denseMatrix", to = "CsparseMatrix"): ...

diag signature(x = "CsparseMatrix"): ...

gamma signature(x = "CsparseMatrix"): ...

lgamma signature(x = "CsparseMatrix"): ...

log signature(x = "CsparseMatrix"): ...

t signature(x = "CsparseMatrix"): ...

tril signature(x = "CsparseMatrix"): ...

triu signature(x = "CsparseMatrix"): ...

ddenseMatrix-class 47

Note

All classes extending CsparseMatrix have a common validity (see validObject) check function.
That function additionally checks the i slot for each column to contain increasing row numbers.
In earlier versions of Matrix (<= 0.999375-16), validObject automatically re-sorted the entries
when necessary, and hence new() calls with somewhat permuted i and x slots worked, as new(...)
(with slot arguments) automatically checks the validity.

Now, you have to use sparseMatrix to achieve the same functionality or know how to use .validateCsparse()
to do so.

See Also

colSums, kronecker, and other such methods with own help pages.

Further, the super class of CsparseMatrix, sparseMatrix, and, e.g., class dgCMatrix for the links
to other classes.

Examples

getClass("CsparseMatrix")

The common validity check function (based on C code):
getValidity(getClass("CsparseMatrix"))

ddenseMatrix-class Virtual Class "ddenseMatrix" of Numeric Dense Matrices

Description

This is the virtual class of all dense numeric (i.e., double, hence “ddense”) S4 matrices.

Its most important subclass is the dgeMatrix class.

Extends

Class "dMatrix" directly; class "Matrix", by the above.

Slots

the same slots at its subclass dgeMatrix, see there.

Methods

Most methods are implemented via as(*, "generalMatrix") and are mainly used as “fallbacks”
when the subclass doesn’t need its own specialized method.

Use showMethods(class = "ddenseMatrix", where = "package:Matrix") for an overview.

See Also

The virtual classes Matrix, dMatrix, and dsparseMatrix.

48 ddiMatrix-class

Examples

showClass("ddenseMatrix")

showMethods(class = "ddenseMatrix", where = "package:Matrix")

ddiMatrix-class Class "ddiMatrix" of Diagonal Numeric Matrices

Description

The class "ddiMatrix" of numerical diagonal matrices. Note that diagonal matrices now extend
sparseMatrix, whereas they did extend dense matrices earlier.

Objects from the Class

Objects can be created by calls of the form new("ddiMatrix", ...) but typically rather via Diagonal.

Slots

x: numeric vector. For an n× n matrix, the x slot is of length n or 0, depending on the diag slot:

diag: "character" string, either "U" or "N" where "U" denotes unit-diagonal, i.e., identity matri-
ces.

Dim,Dimnames: matrix dimension and dimnames, see the Matrix class description.

Extends

Class "diagonalMatrix", directly. Class "dMatrix", directly. Class "sparseMatrix", indirectly,
see showClass("ddiMatrix").

Methods

%*% signature(x = "ddiMatrix", y = "ddiMatrix"): ...

See Also

Class diagonalMatrix and function Diagonal.

Examples

(d2 <- Diagonal(x = c(10,1)))
str(d2)
slightly larger in internal size:
str(as(d2, "sparseMatrix"))

M <- Matrix(cbind(1,2:4))
M %*% d2 #> `fast' multiplication

chol(d2) # trivial

denseLU-class 49

stopifnot(is(cd2 <- chol(d2), "ddiMatrix"),
all.equal(cd2@x, c(sqrt(10),1)))

denseLU-class Dense LU Factorizations

Description

denseLU is the class of dense, row-pivoted LU factorizations of m× n real matrices A, having the
general form

P1A = LU

or (equivalently)
A = P ′

1LU

where P1 is an m×m permutation matrix, L is an m×min(m,n) unit lower trapezoidal matrix, and
U is a min(m,n)× n upper trapezoidal matrix. If m = n, then the factors L and U are triangular.

Slots

Dim, Dimnames inherited from virtual class MatrixFactorization.

x a numeric vector of length prod(Dim) storing the triangular L and U factors together in a packed
format. The details of the representation are specified by the manual for LAPACK routine
dgetrf.

perm an integer vector of length min(Dim) specifying the permutation P1 as a product of transpo-
sitions. The corresponding permutation vector can be obtained as asPerm(perm).

Extends

Class LU, directly. Class MatrixFactorization, by class LU, distance 2.

Instantiation

Objects can be generated directly by calls of the form new("denseLU", ...), but they are more
typically obtained as the value of lu(x) for x inheriting from denseMatrix (often dgeMatrix).

Methods

coerce signature(from = "denseLU", to = "dgeMatrix"): returns a dgeMatrix with the di-
mensions of the factorized matrix A, equal to L below the diagonal and equal to U on and
above the diagonal.

determinant signature(from = "denseLU", logarithm = "logical"): computes the determi-
nant of the factorized matrix A or its logarithm.

expand signature(x = "denseLU"): see expand-methods.

expand1 signature(x = "denseLU"): see expand1-methods.

expand2 signature(x = "denseLU"): see expand2-methods.

solve signature(a = "denseLU", b = "missing"): see solve-methods.

50 denseLU-class

References

The LAPACK source code, including documentation; see https://netlib.org/lapack/double/
dgetrf.f.

Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). Johns Hopkins University
Press. doi:10.56021/9781421407944

See Also

Class sparseLU for sparse LU factorizations.

Class dgeMatrix.

Generic functions lu, expand1 and expand2.

Examples

showClass("denseLU")
set.seed(1)

n <- 3L
(A <- Matrix(round(rnorm(n * n), 2L), n, n))

With dimnames, to see that they are propagated :
dimnames(A) <- dn <- list(paste0("r", seq_len(n)),

paste0("c", seq_len(n)))

(lu.A <- lu(A))
str(e.lu.A <- expand2(lu.A), max.level = 2L)

Underlying LAPACK representation
(m.lu.A <- as(lu.A, "dgeMatrix")) # which is L and U interlaced
stopifnot(identical(as(m.lu.A, "matrix"), `dim<-`(lu.A@x, lu.A@Dim)))

ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)

A ~ P1' L U in floating point
stopifnot(exprs = {

identical(names(e.lu.A), c("P1.", "L", "U"))
identical(e.lu.A[["P1."]],

new("pMatrix", Dim = c(n, n), Dimnames = c(dn[1L], list(NULL)),
margin = 1L, perm = invertPerm(asPerm(lu.A@perm))))

identical(e.lu.A[["L"]],
new("dtrMatrix", Dim = c(n, n), Dimnames = list(NULL, NULL),

uplo = "L", diag = "U", x = lu.A@x))
identical(e.lu.A[["U"]],

new("dtrMatrix", Dim = c(n, n), Dimnames = c(list(NULL), dn[2L]),
uplo = "U", diag = "N", x = lu.A@x))

ae1(A, with(e.lu.A, P1. %*% L %*% U))
ae2(A[asPerm(lu.A@perm),], with(e.lu.A, L %*% U))

})

https://netlib.org/lapack/double/dgetrf.f
https://netlib.org/lapack/double/dgetrf.f
https://doi.org/10.56021/9781421407944

denseMatrix-class 51

Factorization handled as factorized matrix
b <- rnorm(n)
stopifnot(identical(det(A), det(lu.A)),

identical(solve(A, b), solve(lu.A, b)))

denseMatrix-class Virtual Class "denseMatrix" of All Dense Matrices

Description

This is the virtual class of all dense (S4) matrices. It partitions into two subclasses packedMatrix
and unpackedMatrix. Alternatively into the (currently) three subclasses ddenseMatrix, ldenseMatrix,
and ndenseMatrix.

denseMatrix is (hence) the direct superclass of these (2 + 3 = 5) classes.

Extends

class "Matrix" directly.

Slots

exactly those of its superclass "Matrix", i.e., "Dim" and "Dimnames".

Methods

Use showMethods(class = "denseMatrix", where = "package:Matrix") for an overview of meth-
ods.

Extraction ("[") methods, see [-methods.

See Also

colSums, kronecker, and other such methods with own help pages.

Its superclass Matrix, and main subclasses, ddenseMatrix and sparseMatrix.

Examples

showClass("denseMatrix")

52 dgCMatrix-class

dgCMatrix-class Compressed, sparse, column-oriented numeric matrices

Description

The dgCMatrix class is a class of sparse numeric matrices in the compressed, sparse, column-
oriented format. In this implementation the non-zero elements in the columns are sorted into in-
creasing row order. dgCMatrix is the “standard” class for sparse numeric matrices in the Matrix
package.

Objects from the Class

Objects can be created by calls of the form new("dgCMatrix", ...), more typically via as(*,
"CsparseMatrix") or similar. Often however, more easily via Matrix(*, sparse = TRUE), or
most efficiently via sparseMatrix().

Slots

x: Object of class "numeric" - the non-zero elements of the matrix.

. . . all other slots are inherited from the superclass "CsparseMatrix".

Methods

Matrix products (e.g., crossprod-methods), and (among other)

coerce signature(from = "matrix", to = "dgCMatrix")

diag signature(x = "dgCMatrix"): returns the diagonal of x

dim signature(x = "dgCMatrix"): returns the dimensions of x

image signature(x = "dgCMatrix"): plots an image of x using the levelplot function

solve signature(a = "dgCMatrix", b = "..."): see solve-methods, notably the extra argument
sparse.

lu signature(x = "dgCMatrix"): computes the LU decomposition of a square dgCMatrix object

See Also

Classes dsCMatrix, dtCMatrix, lu

Examples

(m <- Matrix(c(0,0,2:0), 3,5))
str(m)
m[,1]

dgeMatrix-class 53

dgeMatrix-class Class "dgeMatrix" of Dense Numeric (S4 Class) Matrices

Description

A general numeric dense matrix in the S4 Matrix representation. dgeMatrix is the “standard” class
for dense numeric matrices in the Matrix package.

Objects from the Class

Objects can be created by calls of the form new("dgeMatrix", ...) or, more commonly, by coer-
cion from the Matrix class (see Matrix) or by Matrix(..).

Slots

x: Object of class "numeric" - the numeric values contained in the matrix, in column-major order.

Dim: Object of class "integer" - the dimensions of the matrix - must be an integer vector with
exactly two non-negative values.

Dimnames: a list of length two - inherited from class Matrix.

factors: Object of class "list" - a list of factorizations of the matrix.

Methods

The are group methods (see, e.g., Arith)

Arith signature(e1 = "dgeMatrix", e2 = "dgeMatrix"): ...

Arith signature(e1 = "dgeMatrix", e2 = "numeric"): ...

Arith signature(e1 = "numeric", e2 = "dgeMatrix"): ...

Math signature(x = "dgeMatrix"): ...

Math2 signature(x = "dgeMatrix", digits = "numeric"): ...

matrix products %*%, crossprod() and tcrossprod(), several solve methods, and other matrix
methods available:

Schur signature(x = "dgeMatrix", vectors = "logical"): ...

Schur signature(x = "dgeMatrix", vectors = "missing"): ...

chol signature(x = "dgeMatrix"): see chol.

colMeans signature(x = "dgeMatrix"): columnwise means (averages)

colSums signature(x = "dgeMatrix"): columnwise sums

diag signature(x = "dgeMatrix"): ...

dim signature(x = "dgeMatrix"): ...

dimnames signature(x = "dgeMatrix"): ...

eigen signature(x = "dgeMatrix", only.values= "logical"): ...

54 dgRMatrix-class

eigen signature(x = "dgeMatrix", only.values= "missing"): ...
norm signature(x = "dgeMatrix", type = "character"): ...
norm signature(x = "dgeMatrix", type = "missing"): ...
rcond signature(x = "dgeMatrix", norm = "character") or norm = "missing": the reciprocal

condition number, rcond().
rowMeans signature(x = "dgeMatrix"): rowwise means (averages)
rowSums signature(x = "dgeMatrix"): rowwise sums
t signature(x = "dgeMatrix"): matrix transpose

See Also

Classes Matrix, dtrMatrix, and dsyMatrix.

dgRMatrix-class Sparse Compressed, Row-oriented Numeric Matrices

Description

The dgRMatrix class is a class of sparse numeric matrices in the compressed, sparse, row-oriented
format. In this implementation the non-zero elements in the rows are sorted into increasing column
order.
Note: The column-oriented sparse classes, e.g., dgCMatrix, are preferred and better supported in
the Matrix package.

Objects from the Class

Objects can be created by calls of the form new("dgRMatrix", ...).

Slots

j: Object of class "integer" of length nnzero (number of non-zero elements). These are the
column numbers for each non-zero element in the matrix.

p: Object of class "integer" of pointers, one for each row, to the initial (zero-based) index of
elements in the row.

x: Object of class "numeric" - the non-zero elements of the matrix.
Dim: Object of class "integer" - the dimensions of the matrix.

Methods

diag signature(x = "dgRMatrix"): returns the diagonal of x
dim signature(x = "dgRMatrix"): returns the dimensions of x
image signature(x = "dgRMatrix"): plots an image of x using the levelplot function

See Also

the RsparseMatrix class, the virtual class of all sparse compressed row-oriented matrices, with its
methods. The dgCMatrix class (column compressed sparse) is really preferred.

dgTMatrix-class 55

dgTMatrix-class Sparse matrices in triplet form

Description

The "dgTMatrix" class is the class of sparse matrices stored as (possibly redundant) triplets. The
internal representation is not at all unique, contrary to the one for class dgCMatrix.

Objects from the Class

Objects can be created by calls of the form new("dgTMatrix", ...), but more typically via spMatrix()
or sparseMatrix(*, repr = "T").

Slots

i: integer row indices of non-zero entries in 0-base, i.e., must be in 0:(nrow(.)-1).

j: integer column indices of non-zero entries. Must be the same length as slot i and 0-based as
well, i.e., in 0:(ncol(.)-1).

x: numeric vector - the (non-zero) entry at position (i,j). Must be the same length as slot i. If
an index pair occurs more than once, the corresponding values of slot x are added to form the
element of the matrix.

Dim: Object of class "integer" of length 2 - the dimensions of the matrix.

Methods

+ signature(e1 = "dgTMatrix", e2 = "dgTMatrix")

image signature(x = "dgTMatrix"): plots an image of x using the levelplot function

t signature(x = "dgTMatrix"): returns the transpose of x

Note

Triplet matrices are a convenient form in which to construct sparse matrices after which they can be
coerced to dgCMatrix objects.

Note that both new(.) and spMatrix constructors for "dgTMatrix" (and other "TsparseMatrix"
classes) implicitly add xk’s that belong to identical (ik, jk) pairs.

However this means that a matrix typically can be stored in more than one possible "TsparseMatrix"
representations. Use asUniqueT() in order to ensure uniqueness of the internal representation of
such a matrix.

See Also

Class dgCMatrix or the superclasses dsparseMatrix and TsparseMatrix; asUniqueT.

56 Diagonal

Examples

m <- Matrix(0+1:28, nrow = 4)
m[-3,c(2,4:5,7)] <- m[3, 1:4] <- m[1:3, 6] <- 0
(mT <- as(m, "TsparseMatrix"))
str(mT)
mT[1,]
mT[4, drop = FALSE]
stopifnot(identical(mT[lower.tri(mT)],

m [lower.tri(m)]))
mT[lower.tri(mT,diag=TRUE)] <- 0
mT

Triplet representation with repeated (i,j) entries
adds the corresponding x's:
T2 <- new("dgTMatrix",

i = as.integer(c(1,1,0,3,3)),
j = as.integer(c(2,2,4,0,0)), x=10*1:5, Dim=4:5)

str(T2) # contains (i,j,x) slots exactly as above, but
T2 ## has only three non-zero entries, as for repeated (i,j)'s,

the corresponding x's are "implicitly" added
stopifnot(nnzero(T2) == 3)

Diagonal Construct a Diagonal Matrix

Description

Construct a formally diagonal Matrix, i.e., an object inheriting from virtual class diagonalMatrix
(or, if desired, a mathematically diagonal CsparseMatrix).

Usage

Diagonal(n, x = NULL, names = FALSE)

.sparseDiagonal(n, x = NULL, uplo = "U", shape = "t", unitri = TRUE, kind, cols)
.trDiagonal(n, x = NULL, uplo = "U", unitri = TRUE, kind)

.symDiagonal(n, x = NULL, uplo = "U", kind)

Arguments

n integer indicating the dimension of the (square) matrix. If missing, then length(x)
is used.

x numeric or logical vector listing values for the diagonal entries, to be recycled
as necessary. If NULL (the default), then the result is a unit diagonal matrix.
.sparseDiagonal() and friends ignore non-NULL x when kind = "n".

names either logical TRUE or FALSE or then a character vector of length n. If
true and names(x) is not NULL, use that as both row and column names for the
resulting matrix. When a character vector, use it for both dimnames.

Diagonal 57

uplo one of c("U","L"), specifying the uplo slot of the result if the result is formally
triangular of symmetric.

shape one of c("t","s","g"), indicating if the result should be formally triangular,
symmetric, or “general”. The result will inherit from virtual class triangularMatrix,
symmetricMatrix, or generalMatrix, respectively.

unitri logical indicating if a formally triangular result with ones on the diagonal should
be formally unit triangular, i.e., with diag slot equal to "U" rather than "N".

kind one of c("d","l","n"), indicating the “mode” of the result: numeric, logical,
or pattern. The result will inherit from virtual class dsparseMatrix, lsparseMatrix,
or nsparseMatrix, respectively. Values other than "n" are ignored when x is
non-NULL; in that case the mode is determined by typeof(x).

cols optional integer vector with values in 0:(n-1), indexing columns of the speci-
fied diagonal matrix. If specified, then the result is (mathematically) D[, cols+1]
rather than D, where D = Diagonal(n, x), and it is always “general” (i.e., shape
is ignored).

Value

Diagonal() returns an object inheriting from virtual class diagonalMatrix.

.sparseDiagonal() returns a CsparseMatrix representation of Diagonal(n, x) or, if cols is
given, of Diagonal(n, x)[, cols+1]. The precise class of the result depends on shape and kind.

.trDiagonal() and .symDiagonal() are simple wrappers, for .sparseDiagonal(shape = "t")
and .sparseDiagonal(shape = "s"), respectively.

.sparseDiagonal() exists primarily to leverage efficient C-level methods available for CsparseMatrix.

Author(s)

Martin Maechler

See Also

the generic function diag for extraction of the diagonal from a matrix works for all “Matrices”.

bandSparse constructs a banded sparse matrix from its non-zero sub-/super - diagonals. band(A)
returns a band matrix containing some sub-/super - diagonals of A.

Matrix for general matrix construction; further, class diagonalMatrix.

Examples

Diagonal(3)
Diagonal(x = 10^(3:1))
Diagonal(x = (1:4) >= 2)#-> "ldiMatrix"

Use Diagonal() + kronecker() for "repeated-block" matrices:
M1 <- Matrix(0+0:5, 2,3)
(M <- kronecker(Diagonal(3), M1))

(S <- crossprod(Matrix(rbinom(60, size=1, prob=0.1), 10,6)))

58 diagonalMatrix-class

(SI <- S + 10*.symDiagonal(6)) # sparse symmetric still
stopifnot(is(SI, "dsCMatrix"))
(I4 <- .sparseDiagonal(4, shape="t"))# now (2012-10) unitriangular
stopifnot(I4@diag == "U", all(I4 == diag(4)))

diagonalMatrix-class Class "diagonalMatrix" of Diagonal Matrices

Description

Class "diagonalMatrix" is the virtual class of all diagonal matrices.

Objects from the Class

A virtual Class: No objects may be created from it.

Slots

diag: character string, either "U" or "N", where "U" means ‘unit-diagonal’.

Dim: matrix dimension, and

Dimnames: the dimnames, a list, see the Matrix class description. Typically list(NULL,NULL)
for diagonal matrices.

Extends

Class "sparseMatrix", directly.

Methods

These are just a subset of the signature for which defined methods. Currently, there are (too) many
explicit methods defined in order to ensure efficient methods for diagonal matrices.

coerce signature(from = "matrix", to = "diagonalMatrix"): ...

coerce signature(from = "Matrix", to = "diagonalMatrix"): ...

coerce signature(from = "diagonalMatrix", to = "generalMatrix"): ...

coerce signature(from = "diagonalMatrix", to = "triangularMatrix"): ...

coerce signature(from = "diagonalMatrix", to = "nMatrix"): ...

coerce signature(from = "diagonalMatrix", to = "matrix"): ...

coerce signature(from = "diagonalMatrix", to = "sparseVector"): ...

t signature(x = "diagonalMatrix"): ...
and many more methods

solve signature(a = "diagonalMatrix", b, ...): is trivially implemented, of course; see also
solve-methods.

which signature(x = "nMatrix"), semantically equivalent to base function which(x, arr.ind).

diagU2N 59

"Math" signature(x = "diagonalMatrix"): all these group methods return a "diagonalMatrix",
apart from cumsum() etc which return a vector also for base matrix.

* signature(e1 = "ddiMatrix", e2="denseMatrix"): arithmetic and other operators from the
Ops group have a few dozen explicit method definitions, in order to keep the results diagonal
in many cases, including the following:

/ signature(e1 = "ddiMatrix", e2="denseMatrix"): the result is from class ddiMatrix which
is typically very desirable. Note that when e2 contains off-diagonal zeros or NAs, we implicitly
use 0/x = 0, hence differing from traditional R arithmetic (where 0/0 7→ NaN), in order to
preserve sparsity.

summary (object = "diagonalMatrix"): Returns an object of S3 class "diagSummary" which
is the summary of the vector object@x plus a simple heading, and an appropriate print
method.

See Also

Diagonal() as constructor of these matrices, and isDiagonal. ddiMatrix and ldiMatrix are
“actual” classes extending "diagonalMatrix".

Examples

I5 <- Diagonal(5)
D5 <- Diagonal(x = 10*(1:5))
trivial (but explicitly defined) methods:
stopifnot(identical(crossprod(I5), I5),

identical(tcrossprod(I5), I5),
identical(crossprod(I5, D5), D5),
identical(tcrossprod(D5, I5), D5),
identical(solve(D5), solve(D5, I5)),
all.equal(D5, solve(solve(D5)), tolerance = 1e-12)
)

solve(D5)# efficient as is diagonal

an unusual way to construct a band matrix:
rbind2(cbind2(I5, D5),

cbind2(D5, I5))

diagU2N Transform Triangular Matrices from Unit Triangular to General Tri-
angular and Back

Description

Transform a triangular matrix x, i.e., of class triangularMatrix, from (internally!) unit trian-
gular (“unitriangular”) to “general” triangular (diagU2N(x)) or back (diagN2U(x)). Note that the
latter, diagN2U(x), also sets the diagonal to one in cases where diag(x) was not all one.

.diagU2N(x) and .diagN2U(x) assume without checking that x is a triangularMatrix with suit-
able diag slot ("U" and "N", respectively), hence they should be used with care.

60 diagU2N

Usage

diagU2N(x, cl = getClassDef(class(x)), checkDense = FALSE)
diagN2U(x, cl = getClassDef(class(x)), checkDense = FALSE)

.diagU2N(x, cl = getClassDef(class(x)), checkDense = FALSE)

.diagN2U(x, cl = getClassDef(class(x)), checkDense = FALSE)

Arguments

x a triangularMatrix, often sparse.

cl (optional, for speedup only:) class (definition) of x.

checkDense logical indicating if dense (see denseMatrix) matrices should be considered at
all; i.e., when false, as per default, the result will be sparse even when x is dense.

Details

The concept of unit triangular matrices with a diag slot of "U" stems from LAPACK.

Value

a triangular matrix of the same class but with a different diag slot. For diagU2N (semantically)
with identical entries as x, whereas in diagN2U(x), the off-diagonal entries are unchanged and the
diagonal is set to all 1 even if it was not previously.

Note

Such internal storage details should rarely be of relevance to the user. Hence, these functions really
are rather internal utilities.

See Also

"triangularMatrix", "dtCMatrix".

Examples

(T <- Diagonal(7) + triu(Matrix(rpois(49, 1/4), 7, 7), k = 1))
(uT <- diagN2U(T)) # "unitriangular"
(t.u <- diagN2U(10*T))# changes the diagonal!
stopifnot(all(T == uT), diag(t.u) == 1,

identical(T, diagU2N(uT)))
T[upper.tri(T)] <- 5 # still "dtC"
T <- diagN2U(as(T,"triangularMatrix"))
dT <- as(T, "denseMatrix") # (unitriangular)
dT.n <- diagU2N(dT, checkDense = TRUE)
sT.n <- diagU2N(dT)
stopifnot(is(dT.n, "denseMatrix"), is(sT.n, "sparseMatrix"),

dT@diag == "U", dT.n@diag == "N", sT.n@diag == "N",
all(dT == dT.n), all(dT == sT.n))

dimScale 61

dimScale Scale the Rows and Columns of a Matrix

Description

dimScale, rowScale, and colScale implement D1 %*% x %*% D2, D %*% x, and x %*% D for diagonal
matrices D1, D2, and D with diagonal entries d1, d2, and d, respectively. Unlike the explicit products,
these functions preserve dimnames(x) and symmetry where appropriate.

Usage

dimScale(x, d1 = sqrt(1/diag(x, names = FALSE)), d2 = d1)
rowScale(x, d)
colScale(x, d)

Arguments

x a matrix, possibly inheriting from virtual class Matrix.

d1, d2, d numeric vectors giving factors by which to scale the rows or columns of x; they
are recycled as necessary.

Details

dimScale(x) (with d1 and d2 unset) is only roughly equivalent to cov2cor(x). cov2cor sets the
diagonal entries of the result to 1 (exactly); dimScale does not.

Value

The result of scaling x, currently always inheriting from virtual class dMatrix.

It inherits from triangularMatrix if and only if x does. In the special case of dimScale(x, d1,
d2) with identical d1 and d2, it inherits from symmetricMatrix if and only if x does.

Author(s)

Mikael Jagan

See Also

cov2cor

Examples

n <- 6L
(x <- forceSymmetric(matrix(1, n, n)))
dimnames(x) <- rep.int(list(letters[seq_len(n)]), 2L)

d <- seq_len(n)
(D <- Diagonal(x = d))

62 dMatrix-class

(scx <- dimScale(x, d)) # symmetry and 'dimnames' kept
(mmx <- D %*% x %*% D) # symmetry and 'dimnames' lost
stopifnot(identical(unname(as(scx, "generalMatrix")), mmx))

rowScale(x, d)
colScale(x, d)

dMatrix-class (Virtual) Class "dMatrix" of "double" Matrices

Description

The dMatrix class is a virtual class contained by all actual classes of numeric matrices in the Matrix
package. Similarly, all the actual classes of logical matrices inherit from the lMatrix class.

Slots

Common to all matrix object in the package:

Dim: Object of class "integer" - the dimensions of the matrix - must be an integer vector with
exactly two non-negative values.

Dimnames: list of length two; each component containing NULL or a character vector length
equal the corresponding Dim element.

Methods

There are (relatively simple) group methods (see, e.g., Arith)

Arith signature(e1 = "dMatrix", e2 = "dMatrix"): ...
Arith signature(e1 = "dMatrix", e2 = "numeric"): ...
Arith signature(e1 = "numeric", e2 = "dMatrix"): ...
Math signature(x = "dMatrix"): ...
Math2 signature(x = "dMatrix", digits = "numeric"): this group contains round() and signif().
Compare signature(e1 = "numeric", e2 = "dMatrix"): ...
Compare signature(e1 = "dMatrix", e2 = "numeric"): ...
Compare signature(e1 = "dMatrix", e2 = "dMatrix"): ...
Summary signature(x = "dMatrix"): The "Summary" group contains the seven functions max(),

min(), range(), prod(), sum(), any(), and all().

The following methods are also defined for all double matrices:

expm signature(x = "dMatrix"): computes the “Matrix Exponential”, see expm.

The following methods are defined for all logical matrices:

which signature(x = "lsparseMatrix") and many other subclasses of "lMatrix": as the base
function which(x, arr.ind) returns the indices of the TRUE entries in x; if arr.ind is true,
as a 2-column matrix of row and column indices. Since Matrix version 1.2-9, if useNames is
true, as by default, with dimnames, the same as base::which.

dmperm 63

See Also

The nonzero-pattern matrix class nMatrix, which can be used to store non-NA logical matrices
even more compactly.

The numeric matrix classes dgeMatrix, dgCMatrix, and Matrix.

drop0(x, tol=1e-10) is sometimes preferable to (and more efficient than) zapsmall(x, digits=10).

Examples

showClass("dMatrix")

set.seed(101)
round(Matrix(rnorm(28), 4,7), 2)
M <- Matrix(rlnorm(56, sd=10), 4,14)
(M. <- zapsmall(M))
table(as.logical(M. == 0))

dmperm Dulmage-Mendelsohn Permutation / Decomposition

Description

For any n × m (typically) sparse matrix x compute the Dulmage-Mendelsohn row and columns
permutations which at first splits the n rows and m columns into coarse partitions each; and then a
finer one, reordering rows and columns such that the permutated matrix is “as upper triangular” as
possible.

Usage

dmperm(x, nAns = 6L, seed = 0L)

Arguments

x a typically sparse matrix; internally coerced to either "dgCMatrix" or "dtCMatrix".

nAns an integer specifying the length of the resulting list. Must be 2, 4, or 6.

seed an integer code in -1,0,1; determining the (initial) permutation; by default, seed
= 0, no (or the identity) permutation; seed = -1 uses the “reverse” permutation
k:1; for seed = 1, it is a random permutation (using R’s RNG, seed, etc).

Details

See the book section by Tim Davis; page 122–127, in the References.

64 dmperm

Value

a named list with (by default) 6 components,

p integer vector with the permutation p, of length nrow(x).

q integer vector with the permutation q, of length ncol(x).

r integer vector of length nb+1, where block k is rows r[k] to r[k+1]-1 in A[p,q].

s integer vector of length nb+1, where block k is cols s[k] to s[k+1]-1 in A[p,q].

rr5 integer vector of length 5, defining the coarse row decomposition.

cc5 integer vector of length 5, defining the coarse column decomposition.

Author(s)

Martin Maechler, with a lot of “encouragement” by Mauricio Vargas.

References

Section 7.4 Dulmage-Mendelsohn decomposition, pp. 122 ff of
Timothy A. Davis (2006) Direct Methods for Sparse Linear Systems, SIAM Series “Fundamentals
of Algorithms”.

See Also

Schur, the class of permutation matrices; "pMatrix".

Examples

set.seed(17)
(S9 <- rsparsematrix(9, 9, nnz = 10, symmetric=TRUE)) # dsCMatrix
str(dm9 <- dmperm(S9))
(S9p <- with(dm9, S9[p, q]))
looks good, but *not* quite upper triangular; these, too:
str(dm9.0 <- dmperm(S9, seed=-1)) # non-random too.
str(dm9_1 <- dmperm(S9, seed= 1)) # a random one
The last two permutations differ, but have the same effect!
(S9p0 <- with(dm9.0, S9[p, q])) # .. hmm ..
stopifnot(all.equal(S9p0, S9p))# same as as default, but different from the random one

set.seed(11)
(M <- triu(rsparsematrix(9,11, 1/4)))
dM <- dmperm(M); with(dM, M[p, q])
(Mp <- M[sample.int(nrow(M)), sample.int(ncol(M))])
dMp <- dmperm(Mp); with(dMp, Mp[p, q])

set.seed(7)
(n7 <- rsparsematrix(5, 12, nnz = 10, rand.x = NULL))
str(dm.7 <- dmperm(n7))
stopifnot(exprs = {

lengths(dm.7[1:2]) == dim(n7)

dpoMatrix-class 65

identical(dm.7, dmperm(as(n7, "dMatrix")))
identical(dm.7[1:4], dmperm(n7, nAns=4))
identical(dm.7[1:2], dmperm(n7, nAns=2))

})

dpoMatrix-class Positive Semi-definite Dense (Packed | Non-packed) Numeric Matrices

Description

• The "dpoMatrix" class is the class of positive-semidefinite symmetric matrices in nonpacked
storage.

• The "dppMatrix" class is the same except in packed storage. Only the upper triangle or the
lower triangle is required to be available.

• The "corMatrix" and "copMatrix" classes represent correlation matrices. They extend
"dpoMatrix" and "dppMatrix", respectively, with an additional slot sd allowing restoration
of the original covariance matrix.

Objects from the Class

Objects can be created by calls of the form new("dpoMatrix", ...) or from crossprod applied
to an "dgeMatrix" object.

Slots

uplo: Object of class "character". Must be either "U", for upper triangular, and "L", for lower
triangular.

x: Object of class "numeric". The numeric values that constitute the matrix, stored in column-
major order.

Dim: Object of class "integer". The dimensions of the matrix which must be a two-element vector
of non-negative integers.

Dimnames: inherited from class "Matrix"

factors: Object of class "list". A named list of factorizations that have been computed for the
matrix.

sd: (for "corMatrix" and "copMatrix") a numeric vector of length n containing the (original)√
var(.) entries which allow reconstruction of a covariance matrix from the correlation ma-

trix.

Extends

Class "dsyMatrix", directly.
Classes "dgeMatrix", "symmetricMatrix", and many more by class "dsyMatrix".

66 dpoMatrix-class

Methods

chol signature(x = "dpoMatrix"): Returns (and stores) the Cholesky decomposition of x, see
chol.

determinant signature(x = "dpoMatrix"): Returns the determinant of x, via chol(x), see
above.

rcond signature(x = "dpoMatrix", norm = "character"): Returns (and stores) the reciprocal
of the condition number of x. The norm can be "O" for the one-norm (the default) or "I" for
the infinity-norm. For symmetric matrices the result does not depend on the norm.

solve signature(a = "dpoMatrix", b = "...."), and
solve signature(a = "dppMatrix", b = "....") work via the Cholesky composition, see also the

Matrix solve-methods.
Arith signature(e1 = "dpoMatrix", e2 = "numeric") (and quite a few other signatures): The

result of (“elementwise” defined) arithmetic operations is typically not positive-definite any-
more. The only exceptions, currently, are multiplications, divisions or additions with positive
length(.) == 1 numbers (or logicals).

Note

Currently the validity methods for these classes such as getValidity(getClass("dpoMatrix"))
for efficiency reasons only check the diagonal entries of the matrix – they may not be negative. This
is only necessary but not sufficient for a symmetric matrix to be positive semi-definite.

A more reliable (but often more expensive) check for positive semi-definiteness would look at the
signs of diag(BunchKaufman(.)) (with some tolerance for very small negative values), and for
(strict) positive definiteness at something like !inherits(tryCatch(chol(.), error=identity),
"error") . Indeed, when coercing to these classes, a version of Cholesky() or chol() is typically
used, e.g., see selectMethod("coerce", c(from="dsyMatrix", to="dpoMatrix")) .

See Also

Classes dsyMatrix and dgeMatrix; further, Matrix, rcond, chol, solve, crossprod.

Examples

h6 <- Hilbert(6)
rcond(h6)
str(h6)
h6 * 27720 # is ``integer''
solve(h6)
str(hp6 <- pack(h6))

Note that as(*, "corMatrix") *scales* the matrix
(ch6 <- as(h6, "corMatrix"))
stopifnot(all.equal(as(h6 * 27720, "dsyMatrix"), round(27720 * h6),

tolerance = 1e-14),
all.equal(ch6@sd^(-2), 2*(1:6)-1,

tolerance = 1e-12))
chch <- Cholesky(ch6, perm = FALSE)
stopifnot(identical(chch, ch6@factors$Cholesky),

all(abs(crossprod(as(chch, "dtrMatrix")) - ch6) < 1e-10))

drop0 67

drop0 Drop Non-Structural Zeros from a Sparse Matrix

Description

Deletes “non-structural” zeros (i.e., zeros stored explicitly, in memory) from a sparse matrix and
returns the result.

Usage

drop0(x, tol = 0, is.Csparse = NA, give.Csparse = TRUE)

Arguments

x a Matrix, typically inheriting from virtual class sparseMatrix. denseMatrix
and traditional vectors and matrices are coerced to CsparseMatrix, with ze-
ros dropped automatically, hence users passing such x should consider as(x,
"CsparseMatrix") instead, notably in the tol = 0 case.

tol a non-negative number. If x is numeric, then entries less than or equal to tol in
absolute value are deleted.

is.Csparse a logical used only if give.Csparse is TRUE, indicating if x already inherits
from virtual class CsparseMatrix, in which case coercion is not attempted,
permitting some (typically small) speed-up.

give.Csparse a logical indicating if the result must inherit from virtual class CsparseMatrix.
If FALSE and x inherits from RsparseMatrix, TsparseMatrix, or indMatrix,
then the result preserves the class of x. The default value is TRUE only for back-
wards compatibility.

Value

A sparseMatrix, the result of deleting non-structural zeros from x, possibly after coercion.

Note

drop0 is sometimes called in conjunction with zapsmall, e.g., when dealing with sparse matrix
products; see the example.

See Also

Function sparseMatrix, for constructing objects inheriting from virtual class sparseMatrix; nnzero.

68 dsCMatrix-class

Examples

(m <- sparseMatrix(i = 1:8, j = 2:9, x = c(0:2, 3:-1),
dims = c(10L, 20L)))

drop0(m)

A larger example:
t5 <- new("dtCMatrix", Dim = c(5L, 5L), uplo = "L",

x = c(10, 1, 3, 10, 1, 10, 1, 10, 10),
i = c(0L,2L,4L, 1L, 3L,2L,4L, 3L, 4L),
p = c(0L, 3L, 5L, 7:9))

TT <- kronecker(t5, kronecker(kronecker(t5, t5), t5))
IT <- solve(TT)
I. <- TT %*% IT ; nnzero(I.) # 697 (== 625 + 72)
I.0 <- drop0(zapsmall(I.))
which actually can be more efficiently achieved by
I.. <- drop0(I., tol = 1e-15)
stopifnot(all(I.0 == Diagonal(625)), nnzero(I..) == 625)

dsCMatrix-class Numeric Symmetric Sparse (column compressed) Matrices

Description

The dsCMatrix class is a class of symmetric, sparse numeric matrices in the compressed, column-
oriented format. In this implementation the non-zero elements in the columns are sorted into in-
creasing row order.

The dsTMatrix class is the class of symmetric, sparse numeric matrices in triplet format.

Objects from the Class

Objects can be created by calls of the form new("dsCMatrix", ...) or new("dsTMatrix", ...),
or automatically via e.g., as(*, "symmetricMatrix"), or (for dsCMatrix) also from Matrix(.).

Creation “from scratch” most efficiently happens via sparseMatrix(*, symmetric=TRUE).

Slots

uplo: A character object indicating if the upper triangle ("U") or the lower triangle ("L") is stored.
i: Object of class "integer" of length nnZ (half number of non-zero elements). These are the

row numbers for each non-zero element in the lower triangle of the matrix.
p: (only in class "dsCMatrix":) an integer vector for providing pointers, one for each column,

see the detailed description in CsparseMatrix.
j: (only in class "dsTMatrix":) Object of class "integer" of length nnZ (as i). These are the

column numbers for each non-zero element in the lower triangle of the matrix.
x: Object of class "numeric" of length nnZ – the non-zero elements of the matrix (to be duplicated

for full matrix).
factors: Object of class "list" - a list of factorizations of the matrix.
Dim: Object of class "integer" - the dimensions of the matrix - must be an integer vector with

exactly two non-negative values.

dsCMatrix-class 69

Extends

Both classes extend classes and symmetricMatrix dsparseMatrix directly; dsCMatrix further
directly extends CsparseMatrix, where dsTMatrix does TsparseMatrix.

Methods

solve signature(a = "dsCMatrix", b = "...."): x <- solve(a,b) solves Ax = b for x; see
solve-methods.

chol signature(x = "dsCMatrix", pivot = "logical"): Returns (and stores) the Cholesky de-
composition of x, see chol.

Cholesky signature(A = "dsCMatrix",...): Computes more flexibly Cholesky decompositions,
see Cholesky.

determinant signature(x = "dsCMatrix", logarithm = "missing"): Evaluate the determinant
of x on the logarithm scale. This creates and stores the Cholesky factorization.

determinant signature(x = "dsCMatrix", logarithm = "logical"): Evaluate the determinant
of x on the logarithm scale or not, according to the logarithm argument. This creates and
stores the Cholesky factorization.

t signature(x = "dsCMatrix"): Transpose. As for all symmetric matrices, a matrix for which
the upper triangle is stored produces a matrix for which the lower triangle is stored and vice
versa, i.e., the uplo slot is swapped, and the row and column indices are interchanged.

t signature(x = "dsTMatrix"): Transpose. The uplo slot is swapped from "U" to "L" or vice
versa, as for a "dsCMatrix", see above.

See Also

Classes dgCMatrix, dgTMatrix, dgeMatrix and those mentioned above.

Examples

mm <- Matrix(toeplitz(c(10, 0, 1, 0, 3)), sparse = TRUE)
mm # automatically dsCMatrix
str(mm)
mT <- as(as(mm, "generalMatrix"), "TsparseMatrix")

Either
(symM <- as(mT, "symmetricMatrix")) # dsT
(symC <- as(symM, "CsparseMatrix")) # dsC
or
sT <- Matrix(mT, sparse=TRUE, forceCheck=TRUE) # dsT

sym2 <- as(symC, "TsparseMatrix")
--> the same as 'symM', a "dsTMatrix"

70 dsRMatrix-class

dsparseMatrix-class Virtual Class "dsparseMatrix" of Numeric Sparse Matrices

Description

The Class "dsparseMatrix" is the virtual (super) class of all numeric sparse matrices.

Slots

Dim: the matrix dimension, see class "Matrix".

Dimnames: see the "Matrix" class.

x: a numeric vector containing the (non-zero) matrix entries.

Extends

Class "dMatrix" and "sparseMatrix", directly.
Class "Matrix", by the above classes.

See Also

the documentation of the (non virtual) sub classes, see showClass("dsparseMatrix"); in particu-
lar, dgTMatrix, dgCMatrix, and dgRMatrix.

Examples

showClass("dsparseMatrix")

dsRMatrix-class Symmetric Sparse Compressed Row Matrices

Description

The dsRMatrix class is a class of symmetric, sparse matrices in the compressed, row-oriented
format. In this implementation the non-zero elements in the rows are sorted into increasing column
order.

Objects from the Class

These "..RMatrix" classes are currently still mostly unimplemented!

Objects can be created by calls of the form new("dsRMatrix", ...).

dsRMatrix-class 71

Slots

uplo: A character object indicating if the upper triangle ("U") or the lower triangle ("L") is stored.
At present only the lower triangle form is allowed.

j: Object of class "integer" of length nnzero (number of non-zero elements). These are the row
numbers for each non-zero element in the matrix.

p: Object of class "integer" of pointers, one for each row, to the initial (zero-based) index of
elements in the row.

factors: Object of class "list" - a list of factorizations of the matrix.

x: Object of class "numeric" - the non-zero elements of the matrix.

Dim: Object of class "integer" - the dimensions of the matrix - must be an integer vector with
exactly two non-negative values.

Dimnames: List of length two, see Matrix.

Extends

Classes dsparseMatrix, symmetricMatrix, and RsparseMatrix, directly.

Class "dMatrix", by class "dsparseMatrix"; class "sparseMatrix", by classes "dsparseMatrix"
and "RsparseMatrix".

Methods

forceSymmetric signature(x = "dsRMatrix", uplo = "missing"): a trivial method just return-
ing x

forceSymmetric signature(x = "dsRMatrix", uplo = "character"): if uplo == x@uplo, this
trivially returns x; otherwise t(x).

See Also

the classes dgCMatrix, dgTMatrix, and dgeMatrix.

Examples

(m0 <- new("dsRMatrix"))
m2 <- new("dsRMatrix", Dim = c(2L,2L),

x = c(3,1), j = c(1L,1L), p = 0:2)
m2
stopifnot(colSums(as(m2, "TsparseMatrix")) == 3:4)
str(m2)
(ds2 <- forceSymmetric(diag(2))) # dsy*
dR <- as(ds2, "RsparseMatrix")
dR # dsRMatrix

72 dsyMatrix-class

dsyMatrix-class Symmetric Dense (Packed or Unpacked) Numeric Matrices

Description

• The "dsyMatrix" class is the class of symmetric, dense matrices in non-packed storage and

• "dspMatrix" is the class of symmetric dense matrices in packed storage, see pack(). Only
the upper triangle or the lower triangle is stored.

Objects from the Class

Objects can be created by calls of the form new("dsyMatrix", ...) or new("dspMatrix", ...),
respectively.

Slots

uplo: Object of class "character". Must be either "U", for upper triangular, and "L", for lower
triangular.

x: Object of class "numeric". The numeric values that constitute the matrix, stored in column-
major order.

Dim,Dimnames: The dimension (a length-2 "integer") and corresponding names (or NULL), see the
Matrix.

factors: Object of class "list". A named list of factorizations that have been computed for the
matrix.

Extends

"dsyMatrix" extends class "dgeMatrix", directly, whereas
"dspMatrix" extends class "ddenseMatrix", directly.

Both extend class "symmetricMatrix", directly, and class "Matrix" and others, indirectly, use
showClass("dsyMatrix"), e.g., for details.

Methods

norm signature(x = "dspMatrix", type = "character"), or x = "dsyMatrix" or type = "missing":
Computes the matrix norm of the desired type, see, norm.

rcond signature(x = "dspMatrix", type = "character"), or x = "dsyMatrix" or type = "missing":
Computes the reciprocal condition number, rcond().

solve signature(a = "dspMatrix", b = "...."), and

solve signature(a = "dsyMatrix", b = "...."): x <- solve(a,b) solves Ax = b for x; see
solve-methods.

t signature(x = "dsyMatrix"): Transpose; swaps from upper triangular to lower triangular stor-
age, i.e., the uplo slot from "U" to "L" or vice versa, the same as for all symmetric matrices.

dtCMatrix-class 73

See Also

The positive (Semi-)definite dense (packed or non-packed numeric matrix classes dpoMatrix, dppMatrix
and corMatrix,

Classes dgeMatrix and Matrix; solve, norm, rcond, t

Examples

Only upper triangular part matters (when uplo == "U" as per default)
(sy2 <- new("dsyMatrix", Dim = as.integer(c(2,2)), x = c(14, NA,32,77)))
str(t(sy2)) # uplo = "L", and the lower tri. (i.e. NA is replaced).

chol(sy2) #-> "Cholesky" matrix
(sp2 <- pack(sy2)) # a "dspMatrix"

Coercing to dpoMatrix gives invalid object:
sy3 <- new("dsyMatrix", Dim = as.integer(c(2,2)), x = c(14, -1, 2, -7))
try(as(sy3, "dpoMatrix")) # -> error: not positive definite

4x4 example
m <- matrix(0,4,4); m[upper.tri(m)] <- 1:6
(sym <- m+t(m)+diag(11:14, 4))
(S1 <- pack(sym))
(S2 <- t(S1))
stopifnot(all(S1 == S2)) # equal "seen as matrix", but differ internally :
str(S1)
S2@x

dtCMatrix-class Triangular, (compressed) sparse column matrices

Description

The "dtCMatrix" class is a class of triangular, sparse matrices in the compressed, column-oriented
format. In this implementation the non-zero elements in the columns are sorted into increasing row
order.

The "dtTMatrix" class is a class of triangular, sparse matrices in triplet format.

Objects from the Class

Objects can be created by calls of the form new("dtCMatrix", ...) or calls of the form new("dtTMatrix",
...), but more typically automatically via Matrix() or coercions such as as(x, "triangularMatrix").

Slots

uplo: Object of class "character". Must be either "U", for upper triangular, and "L", for lower
triangular.

74 dtCMatrix-class

diag: Object of class "character". Must be either "U", for unit triangular (diagonal is all ones),
or "N"; see triangularMatrix.

p: (only present in "dtCMatrix":) an integer vector for providing pointers, one for each column,
see the detailed description in CsparseMatrix.

i: Object of class "integer" of length nnzero (number of non-zero elements). These are the row
numbers for each non-zero element in the matrix.

j: Object of class "integer" of length nnzero (number of non-zero elements). These are the
column numbers for each non-zero element in the matrix. (Only present in the dtTMatrix
class.)

x: Object of class "numeric" - the non-zero elements of the matrix.

Dim,Dimnames: The dimension (a length-2 "integer") and corresponding names (or NULL), inher-
ited from the Matrix, see there.

Extends

Class "dgCMatrix", directly. Class "triangularMatrix", directly. Class "dMatrix", "sparseMatrix",
and more by class "dgCMatrix" etc, see the examples.

Methods

solve signature(a = "dtCMatrix", b = "...."): sparse triangular solve (aka “backsolve” or “for-
wardsolve”), see solve-methods.

t signature(x = "dtCMatrix"): returns the transpose of x

t signature(x = "dtTMatrix"): returns the transpose of x

See Also

Classes dgCMatrix, dgTMatrix, dgeMatrix, and dtrMatrix.

Examples

showClass("dtCMatrix")
showClass("dtTMatrix")
t1 <- new("dtTMatrix", x= c(3,7), i= 0:1, j=3:2, Dim= as.integer(c(4,4)))
t1
from 0-diagonal to unit-diagonal {low-level step}:
tu <- t1 ; tu@diag <- "U"
tu
(cu <- as(tu, "CsparseMatrix"))
str(cu)# only two entries in @i and @x
stopifnot(cu@i == 1:0,

all(2 * symmpart(cu) == Diagonal(4) + forceSymmetric(cu)))

t1[1,2:3] <- -1:-2
diag(t1) <- 10*c(1:2,3:2)
t1 # still triangular
(it1 <- solve(t1))
t1. <- solve(it1)
all(abs(t1 - t1.) < 10 * .Machine$double.eps)

dtpMatrix-class 75

2nd example
U5 <- new("dtCMatrix", i= c(1L, 0:3), p=c(0L,0L,0:2, 5L), Dim = c(5L, 5L),

x = rep(1, 5), diag = "U")
U5
(iu <- solve(U5)) # contains one '0'
validObject(iu2 <- solve(U5, Diagonal(5)))# failed in earlier versions

I5 <- iu %*% U5 # should equal the identity matrix
i5 <- iu2 %*% U5
m53 <- matrix(1:15, 5,3, dimnames=list(NULL,letters[1:3]))
asDiag <- function(M) as(drop0(M), "diagonalMatrix")
stopifnot(

all.equal(Diagonal(5), asDiag(I5), tolerance=1e-14) ,
all.equal(Diagonal(5), asDiag(i5), tolerance=1e-14) ,
identical(list(NULL, dimnames(m53)[[2]]), dimnames(solve(U5, m53)))

)

dtpMatrix-class Packed Triangular Dense Matrices - "dtpMatrix"

Description

The "dtpMatrix" class is the class of triangular, dense, numeric matrices in packed storage. The
"dtrMatrix" class is the same except in nonpacked storage.

Objects from the Class

Objects can be created by calls of the form new("dtpMatrix", ...) or by coercion from other
classes of matrices.

Slots

uplo: Object of class "character". Must be either "U", for upper triangular, and "L", for lower
triangular.

diag: Object of class "character". Must be either "U", for unit triangular (diagonal is all ones),
or "N"; see triangularMatrix.

x: Object of class "numeric". The numeric values that constitute the matrix, stored in column-
major order. For a packed square matrix of dimension d×d, length(x) is of length d(d+1)/2
(also when diag == "U"!).

Dim,Dimnames: The dimension (a length-2 "integer") and corresponding names (or NULL), inher-
ited from the Matrix, see there.

Extends

Class "ddenseMatrix", directly. Class "triangularMatrix", directly. Class "dMatrix" and more
by class "ddenseMatrix" etc, see the examples.

76 dtRMatrix-class

Methods

%*% signature(x = "dtpMatrix", y = "dgeMatrix"): Matrix multiplication; ditto for several
other signature combinations, see showMethods("%*%", class = "dtpMatrix").

determinant signature(x = "dtpMatrix", logarithm = "logical"): the determinant(x) triv-
ially is prod(diag(x)), but computed on log scale to prevent over- and underflow.

diag signature(x = "dtpMatrix"): ...

norm signature(x = "dtpMatrix", type = "character"): ...

rcond signature(x = "dtpMatrix", norm = "character"): ...

solve signature(a = "dtpMatrix", b = "..."): efficiently using internal backsolve or forward-
solve, see solve-methods.

t signature(x = "dtpMatrix"): t(x) remains a "dtpMatrix", lower triangular if x is upper tri-
angular, and vice versa.

See Also

Class dtrMatrix

Examples

showClass("dtrMatrix")

example("dtrMatrix-class", echo=FALSE)
(p1 <- pack(T2))
str(p1)
(pp <- pack(T))
ip1 <- solve(p1)
stopifnot(length(p1@x) == 3, length(pp@x) == 3,

p1 @ uplo == T2 @ uplo, pp @ uplo == T @ uplo,
identical(t(pp), p1), identical(t(p1), pp),
all((l.d <- p1 - T2) == 0), is(l.d, "dtpMatrix"),
all((u.d <- pp - T) == 0), is(u.d, "dtpMatrix"),
l.d@uplo == T2@uplo, u.d@uplo == T@uplo,
identical(t(ip1), solve(pp)), is(ip1, "dtpMatrix"),
all.equal(as(solve(p1,p1), "diagonalMatrix"), Diagonal(2)))

dtRMatrix-class Triangular Sparse Compressed Row Matrices

Description

The dtRMatrix class is a class of triangular, sparse matrices in the compressed, row-oriented for-
mat. In this implementation the non-zero elements in the rows are sorted into increasing columnd
order.

dtRMatrix-class 77

Objects from the Class

This class is currently still mostly unimplemented!

Objects can be created by calls of the form new("dtRMatrix", ...).

Slots

uplo: Object of class "character". Must be either "U", for upper triangular, and "L", for lower
triangular. At present only the lower triangle form is allowed.

diag: Object of class "character". Must be either "U", for unit triangular (diagonal is all ones),
or "N"; see triangularMatrix.

j: Object of class "integer" of length nnzero(.) (number of non-zero elements). These are the
row numbers for each non-zero element in the matrix.

p: Object of class "integer" of pointers, one for each row, to the initial (zero-based) index of
elements in the row. (Only present in the dsRMatrix class.)

x: Object of class "numeric" - the non-zero elements of the matrix.

Dim: The dimension (a length-2 "integer")

Dimnames: corresponding names (or NULL), inherited from the Matrix, see there.

Extends

Class "dgRMatrix", directly. Class "dsparseMatrix", by class "dgRMatrix". Class "dMatrix",
by class "dgRMatrix". Class "sparseMatrix", by class "dgRMatrix". Class "Matrix", by class
"dgRMatrix".

Methods

No methods currently with class "dsRMatrix" in the signature.

See Also

Classes dgCMatrix, dgTMatrix, dgeMatrix

Examples

(m0 <- new("dtRMatrix"))
(m2 <- new("dtRMatrix", Dim = c(2L,2L),

x = c(5, 1:2), p = c(0L,2:3), j= c(0:1,1L)))
str(m2)
(m3 <- as(Diagonal(2), "RsparseMatrix"))# --> dtRMatrix

78 dtrMatrix-class

dtrMatrix-class Triangular, dense, numeric matrices

Description

The "dtrMatrix" class is the class of triangular, dense, numeric matrices in nonpacked storage.
The "dtpMatrix" class is the same except in packed storage, see pack().

Objects from the Class

Objects can be created by calls of the form new("dtrMatrix", ...).

Slots

uplo: Object of class "character". Must be either "U", for upper triangular, and "L", for lower
triangular.

diag: Object of class "character". Must be either "U", for unit triangular (diagonal is all ones),
or "N"; see triangularMatrix.

x: Object of class "numeric". The numeric values that constitute the matrix, stored in column-
major order.

Dim: Object of class "integer". The dimensions of the matrix which must be a two-element vector
of non-negative integers.

Extends

Class "ddenseMatrix", directly. Class "triangularMatrix", directly. Class "Matrix" and oth-
ers, by class "ddenseMatrix".

Methods

Among others (such as matrix products, e.g. ?crossprod-methods),

norm signature(x = "dtrMatrix", type = "character"): ..

rcond signature(x = "dtrMatrix", norm = "character"): ..

solve signature(a = "dtrMatrix", b = "...."): efficiently use a “forwardsolve” or backsolve
for a lower or upper triangular matrix, respectively, see also solve-methods.

+, -, *, . . . , ==, >=, . . . all the Ops group methods are available. When applied to two triangular
matrices, these return a triangular matrix when easily possible.

See Also

Classes ddenseMatrix, dtpMatrix, triangularMatrix

expand-methods 79

Examples

(m <- rbind(2:3, 0:-1))
(M <- as(m, "generalMatrix"))

(T <- as(M, "triangularMatrix")) # formally upper triangular
(T2 <- as(t(M), "triangularMatrix"))
stopifnot(T@uplo == "U", T2@uplo == "L", identical(T2, t(T)))

m <- matrix(0,4,4); m[upper.tri(m)] <- 1:6
(t1 <- Matrix(m+diag(,4)))
str(t1p <- pack(t1))
(t1pu <- diagN2U(t1p))
stopifnot(exprs = {

inherits(t1 , "dtrMatrix"); validObject(t1)
inherits(t1p, "dtpMatrix"); validObject(t1p)
inherits(t1pu,"dtCMatrix"); validObject(t1pu)
t1pu@x == 1:6
all(t1pu == t1p)
identical((t1pu - t1)@x, numeric())# sparse all-0

})

expand-methods Expand Matrix Factorizations

Description

expand1 and expand2 construct matrix factors from objects specifying matrix factorizations. Such
objects typically do not store the factors explicitly, employing instead a compact representation to
save memory.

Usage

expand1(x, which, ...)
expand2(x, ...)

expand (x, ...)

Arguments

x a matrix factorization, typically inheriting from virtual class MatrixFactorization.

which a character string indicating a matrix factor.

... further arguments passed to or from methods.

80 expand-methods

Details

Methods for expand are retained only for backwards compatibility with Matrix < 1.6-0. New
code should use expand1 and expand2, whose methods provide more control and behave more
consistently. Notably, expand2 obeys the rule that the product of the matrix factors in the returned
list should reproduce (within some tolerance) the factorized matrix, including its dimnames.

Hence if x is a matrix and y is its factorization, then

all.equal(as(x, "matrix"), as(Reduce(`%*%`, expand2(y)), "matrix"))

should in most cases return TRUE.

Value

expand1 returns an object inheriting from virtual class Matrix, representing the factor indicated by
which, always without row and column names.

expand2 returns a list of factors, typically with names using conventional notation, as in list(L=,
U=). The first and last factors get the row and column names of the factorized matrix, which are
preserved in the Dimnames slot of x.

Methods

The following table lists methods for expand1 together with allowed values of argument which.

class(x) which
Schur c("Q", "T", "Q.")

denseLU c("P1", "P1.", "L", "U")
sparseLU c("P1", "P1.", "P2", "P2.", "L", "U")
sparseQR c("P1", "P1.", "P2", "P2.", "Q", "Q1", "R", "R1")

BunchKaufman, pBunchKaufman c("U", "DU", "U.", "L", "DL", "L.")
Cholesky, pCholesky c("P1", "P1.", "L1", "D", "L1.", "L", "L.")
CHMsimpl, CHMsimpl c("P1", "P1.", "L1", "D", "L1.", "L", "L.")

Methods for expand2 and expand are described below. Factor names and classes apply also to
expand1.

expand2 signature(x = "CHMsimpl"): expands the factorization A = P ′
1L1DL′

1P1 = P ′
1LL

′P1

as list(P1., L1, D, L1., P1) (the default) or as list(P1., L, L., P1), depending on op-
tional logical argument LDL. P1 and P1. are pMatrix, L1, L1., L, and L. are dtCMatrix, and
D is a ddiMatrix.

expand2 signature(x = "CHMsuper"): as CHMsimpl, but the triangular factors are stored as dgCMatrix.

expand2 signature(x = "p?Cholesky"): expands the factorization A = L1DL′
1 = LL′ as

list(L1, D, L1.) (the default) or as list(L, L.), depending on optional logical argument
LDL. L1, L1., L, and L. are dtrMatrix or dtpMatrix, and D is a ddiMatrix.

expand2 signature(x = "p?BunchKaufman"): expands the factorization A = UDUU
′ = LDLL

′

where U =
∏bU

k=1 PkUk and L =
∏bL

k=1 PkLk as list(U, DU, U.) or list(L, DL, L.),
depending on x@uplo. If optional argument complete is TRUE, then an unnamed list giving the
full expansion with 2bU + 1 or 2bL + 1 matrix factors is returned instead. Pk are represented

expand-methods 81

as pMatrix, Uk and Lk are represented as dtCMatrix, and DU and DL are represented as
dsCMatrix.

expand2 signature(x = "Schur"): expands the factorization A = QTQ′ as list(Q, T, Q.). Q
and Q. are x@Q and t(x@Q) modulo Dimnames, and T is x@T.

expand2 signature(x = "sparseLU"): expands the factorization A = P ′
1LUP ′

2 as list(P1., L,
U, P2.). P1. and P2. are pMatrix, and L and U are dtCMatrix.

expand2 signature(x = "denseLU"): expands the factorization A = P ′
1LU as list(P1., L, U).

P1. is a pMatrix, and L and U are dtrMatrix if square and dgeMatrix otherwise.

expand2 signature(x = "sparseQR"): expands the factorization A = P ′
1QRP ′

2 = P ′
1Q1R1P

′
2 as

list(P1., Q, R, P2.) or list(P1., Q1, R1, P2.), depending on optional logical argument
complete. P1. and P2. are pMatrix, Q and Q1 are dgeMatrix, R is a dgCMatrix, and R1 is a
dtCMatrix.

expand signature(x = "CHMfactor"): as expand2, but returning list(P, L). expand(x)[["P"]]
and expand2(x)[["P1"]] represent the same permutation matrix P1 but have opposite margin
slots and inverted perm slots. The components of expand(x) do not preserve x@Dimnames.

expand signature(x = "sparseLU"): as expand2, but returning list(P, L, U, Q). expand(x)[["Q"]]
and expand2(x)[["P2."]] represent the same permutation matrix P ′

2 but have opposite margin
slots and inverted perm slots. expand(x)[["P"]] represents the permutation matrix P1 rather
than its transpose P ′

1; it is expand2(x)[["P1."]] with an inverted perm slot. expand(x)[["L"]]
and expand2(x)[["L"]] represent the same unit lower triangular matrix L, but with diag slot
equal to "N" and "U", respectively. expand(x)[["L"]] and expand(x)[["U"]] store the per-
muted first and second components of x@Dimnames in their Dimnames slots.

expand signature(x = "denseLU"): as expand2, but returning list(L, U, P). expand(x)[["P"]]
and expand2(x)[["P1."]] are identical modulo Dimnames. The components of expand(x)
do not preserve x@Dimnames.

See Also

The virtual class MatrixFactorization of matrix factorizations.

Generic functions Cholesky, BunchKaufman, Schur, lu, and qr for computing factorizations.

Examples

showMethods("expand1", inherited = FALSE)
showMethods("expand2", inherited = FALSE)
set.seed(0)

(A <- Matrix(rnorm(9L, 0, 10), 3L, 3L))
(lu.A <- lu(A))
(e.lu.A <- expand2(lu.A))
stopifnot(exprs = {

is.list(e.lu.A)
identical(names(e.lu.A), c("P1.", "L", "U"))
all(sapply(e.lu.A, is, "Matrix"))
all.equal(as(A, "matrix"), as(Reduce(`%*%`, e.lu.A), "matrix"))

})

'expand1' and 'expand2' give equivalent results modulo

82 expm-methods

dimnames and representation of permutation matrices;
see also function 'alt' in example("Cholesky-methods")
(a1 <- sapply(names(e.lu.A), expand1, x = lu.A, simplify = FALSE))
all.equal(a1, e.lu.A)

see help("denseLU-class") and others for more examples

expm-methods Matrix Exponential

Description

Compute the exponential of a matrix.

Usage

expm(x)

Arguments

x a matrix, typically inheriting from the dMatrix class.

Details

The exponential of a matrix is defined as the infinite Taylor series expm(A) = I + A + A^2/2! +
A^3/3! + ... (although this is definitely not the way to compute it). The method for the dgeMatrix
class uses Ward’s diagonal Pade’ approximation with three step preconditioning, a recommendation
from Moler & Van Loan (1978) “Nineteen dubious ways. . . ”.

Value

The matrix exponential of x.

Author(s)

This is a translation of the implementation of the corresponding Octave function contributed to the
Octave project by A. Scottedward Hodel <A.S.Hodel@Eng.Auburn.EDU>. A bug in there has been
fixed by Martin Maechler.

References

https://en.wikipedia.org/wiki/Matrix_exponential

Cleve Moler and Charles Van Loan (2003) Nineteen dubious ways to compute the exponential of a
matrix, twenty-five years later. SIAM Review 45, 1, 3–49. doi:10.1137/S00361445024180

for historical reference mostly:
Moler, C. and Van Loan, C. (1978) Nineteen dubious ways to compute the exponential of a matrix.
SIAM Review 20, 4, 801–836. doi:10.1137/1020098

Eric W. Weisstein et al. (1999) Matrix Exponential. From MathWorld, https://mathworld.
wolfram.com/MatrixExponential.html

https://en.wikipedia.org/wiki/Matrix_exponential
https://doi.org/10.1137/S00361445024180
https://doi.org/10.1137/1020098
https://mathworld.wolfram.com/MatrixExponential.html
https://mathworld.wolfram.com/MatrixExponential.html

externalFormats 83

See Also

Package expm, which provides newer (in some cases faster, more accurate) algorithms for com-
puting the matrix exponential via its own (non-generic) function expm(). expm also implements
logm(), sqrtm(), etc.

Generic function Schur.

Examples

(m1 <- Matrix(c(1,0,1,1), ncol = 2))
(e1 <- expm(m1)) ; e <- exp(1)
stopifnot(all.equal(e1@x, c(e,0,e,e), tolerance = 1e-15))
(m2 <- Matrix(c(-49, -64, 24, 31), ncol = 2))
(e2 <- expm(m2))
(m3 <- Matrix(cbind(0,rbind(6*diag(3),0))))# sparse!
(e3 <- expm(m3)) # upper triangular

externalFormats Read and write external matrix formats

Description

Read matrices stored in the Harwell-Boeing or MatrixMarket formats or write sparseMatrix ob-
jects to one of these formats.

Usage

readHB(file)
readMM(file)
writeMM(obj, file, ...)

Arguments

obj a real sparse matrix

file for writeMM - the name of the file to be written. For readHB and readMM the
name of the file to read, as a character scalar. The names of files storing matrices
in the Harwell-Boeing format usually end in ".rua" or ".rsa". Those storing
matrices in the MatrixMarket format usually end in ".mtx".
Alternatively, readHB and readMM accept connection objects.

... optional additional arguments. Currently none are used in any methods.

Value

The readHB and readMM functions return an object that inherits from the "Matrix" class. Methods
for the writeMM generic functions usually return NULL and, as a side effect, the matrix obj is written
to file in the MatrixMarket format (writeMM).

https://CRAN.R-project.org/package=expm

84 externalFormats

Note

The Harwell-Boeing format is older and less flexible than the MatrixMarket format. The function
writeHB was deprecated and has now been removed. Please use writeMM instead.

Note that these formats do not know anything about dimnames, hence these are dropped by writeMM().

A very simple way to export small sparse matrices S, is to use summary(S) which returns a data.frame
with columns i, j, and possibly x, see summary in sparseMatrix-class, and an example below.

References

https://math.nist.gov/MatrixMarket/

https://sparse.tamu.edu/

Examples

str(pores <- readMM(system.file("external/pores_1.mtx", package = "Matrix")))
str(utm <- readHB(system.file("external/utm300.rua" , package = "Matrix")))
str(lundA <- readMM(system.file("external/lund_a.mtx" , package = "Matrix")))
str(lundA <- readHB(system.file("external/lund_a.rsa" , package = "Matrix")))
https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/counterx/counterx.htm
str(jgl <- readMM(system.file("external/jgl009.mtx" , package = "Matrix")))

NOTE: The following examples take quite some time
---- even on a fast internet connection:
if(FALSE) {
The URL has been corrected, but we need an untar step:
u. <- url("https://www.cise.ufl.edu/research/sparse/RB/Boeing/msc00726.tar.gz")
str(sm <- readHB(gzcon(u.)))
}

data(KNex, package = "Matrix")
Store as MatrixMarket (".mtx") file, here inside temporary dir./folder:
(MMfile <- file.path(tempdir(), "mmMM.mtx"))
writeMM(KNex$mm, file=MMfile)
file.info(MMfile)[,c("size", "ctime")] # (some confirmation of the file's)

very simple export - in triplet format - to text file:
data(CAex, package = "Matrix")
s.CA <- summary(CAex)
s.CA # shows (i, j, x) [columns of a data frame]
message("writing to ", outf <- tempfile())
write.table(s.CA, file = outf, row.names=FALSE)
and read it back -- showing off sparseMatrix():
str(dd <- read.table(outf, header=TRUE))
has columns (i, j, x) -> we can use via do.call() as arguments to sparseMatrix():
mm <- do.call(sparseMatrix, dd)
stopifnot(all.equal(mm, CAex, tolerance=1e-15))

https://math.nist.gov/MatrixMarket/
https://sparse.tamu.edu/

facmul-methods 85

facmul-methods Multiplication by Factors from Matrix Factorizations

Description

Multiplies a matrix or vector on the left or right by a factor from a matrix factorization or its
transpose.

Usage

facmul(x, factor, y, trans = FALSE, left = TRUE, ...)

Arguments

x a MatrixFactorization object.

factor a character string indicating a factor in the factorization represented by x, typi-
cally an element of names(expand2(x, ...)).

y a matrix or vector to be multiplied on the left or right by the factor or its trans-
pose.

trans a logical indicating if the transpose of the factor should be used, rather than the
factor itself.

left a logical indicating if the y should be multiplied on the left by the factor, rather
than on the right.

... further arguments passed to or from methods.

Details

facmul is experimental and currently no methods are exported from Matrix.

Value

The value of op(M) %*% y or y %*% op(M), depending on left, where M is the factor (always without
dimnames) and op(M) is M or t(M), depending on trans.

Examples

Conceptually, methods for 'facmul' _would_ behave as follows ...
Not run:
n <- 3L
x <- lu(Matrix(rnorm(n * n), n, n))
y <- rnorm(n)
L <- unname(expand2(x)[[nm <- "L"]])
stopifnot(exprs = {

all.equal(facmul(x, nm, y, trans = FALSE, left = TRUE), L %*% y)
all.equal(facmul(x, nm, y, trans = FALSE, left = FALSE), y %*% L)
all.equal(facmul(x, nm, y, trans = TRUE, left = TRUE), crossprod(L, y))
all.equal(facmul(x, nm, y, trans = TRUE, left = FALSE), tcrossprod(y, L))

86 fastMisc

})

End(Not run)

fastMisc “Low Level” Coercions and Methods

Description

“Semi-API” functions used internally by Matrix, often to bypass S4 dispatch and avoid the as-
sociated overhead. These are exported to provide this capability to expert users. Typical users
should continue to rely on S4 generic functions to dispatch suitable methods, by calling, e.g., as(.,
<class>) for coercions.

Usage

.M2kind(from, kind = ".", sparse = NA)

.M2gen(from, kind = ".")

.M2sym(from, ...)

.M2tri(from, ...)

.M2diag(from)

.M2v(from)

.M2m(from)

.M2unpacked(from)

.M2packed(from)

.M2C(from)

.M2R(from)

.M2T(from)

.M2V(from)

.m2V(from, kind = ".")

.sparse2dense(from, packed = FALSE)

.diag2dense(from, kind = ".", shape = "t", packed = FALSE, uplo = "U")

.ind2dense(from, kind = "n")

.m2dense(from, class = ".ge", uplo = "U", diag = "N", trans = FALSE)

.dense2sparse(from, repr = "C")

.diag2sparse(from, kind = ".", shape = "t", repr = "C", uplo = "U")

.ind2sparse(from, kind = "n", repr = ".")

.m2sparse(from, class = ".gC", uplo = "U", diag = "N", trans = FALSE)

.tCRT(x, lazy = TRUE)

.diag.dsC(x, Chx = Cholesky(x, LDL = TRUE), res.kind = "diag")

fastMisc 87

.solve.dgC.lu (a, b, tol = .Machine$double.eps, check = TRUE)

.solve.dgC.qr (a, b, order = 3L, check = TRUE)

.solve.dgC.chol(a, b, check = TRUE)

.updateCHMfactor(object, parent, mult = 0)

Arguments

from, x, a, b a Matrix, matrix, or vector.

kind a string (".", ",", "n", "l", or "d") specifying the “kind” of the result. "."
indicates that the kind of from should be preserved. "," is equivalent to "z"
if from is complex and to "d" otherwise. "n" indicates that the result should
inherit from nMatrix or nsparseVector (and so on).

shape a string (".", "g", "s", or "t") specifying the “shape” of the result. "." indi-
cates that the shape of from should be preserved. "g" indicates that the result
should inherit from generalMatrix (and so on).

repr a string (".", "C", "R", or "T") specifying the sparse representation of the result.
"." is accepted only by .ind2sparse and indicates the most efficient represen-
tation, which is "C" ("R") for margin = 2 (1). "C" indicates that the result should
inherit from CsparseMatrix (and so on).

packed a logical indicating if the result should inherit from packedMatrix rather than
from unpackedMatrix. It is ignored for from inheriting from generalMatrix.

sparse a logical indicating if the result should inherit from sparseMatrix rather than
from denseMatrix. If NA, then the result will be formally sparse if and only if
from is.

uplo a string ("U" or "L") indicating whether the result (if symmetric or triangular)
should store the upper or lower triangle of from. The elements of from in the
opposite triangle are ignored.

diag a string ("N" or "U") indicating whether the result (if triangular) should be for-
mally nonunit or unit triangular. In the unit triangular case, the diagonal ele-
ments of from are ignored.

trans a logical indicating if the result should be a 1-row matrix rather than a 1-column
matrix where from is a vector but not a matrix.

class a string whose first three characters specify the class of the result. It should
match the pattern "^[.nld](ge|sy|tr|sp|tp)" for .m2dense and "^[.nld][gst][CRT]"
for .m2sparse, where "." in the first position is equivalent to "l" for logical
arguments and "d" for numeric arguments.

... optional arguments passed to isSymmetric or isTriangular.

lazy a logical indicating if the transpose should be constructed with minimal alloca-
tion, but possibly without preserving representation.

Chx optionally, the Cholesky(x, ...) factorization of x. If supplied, then x is un-
used.

res.kind a string in c("trace", "sumLog", "prod", "min", "max", "range", "diag",
"diagBack").

88 fastMisc

tol see lu-methods.

order see qr-methods.

check a logical indicating if the first argument should be tested for inheritance from
dgCMatrix and coerced if necessary. Set to FALSE for speed only if it is known
to already inherit from dgCMatrix.

object a Cholesky factorization inheriting from virtual class CHMfactor, almost always
the result of a call to generic function Cholesky.

parent an object of class dsCMatrix or class dgCMatrix.

mult a numeric vector of postive length. Only the first element is used, and that must
be finite.

Details

Functions with names of the form .<A>2 implement coercions from virtual class A to the “near-
est” non-virtual subclass of virtual class B, where the virtual classes are abbreviated as follows:

M Matrix

V sparseVector

m matrix

v vector

dense denseMatrix

unpacked unpackedMatrix

packed packedMatrix

sparse CsparseMatrix, RsparseMatrix, or TsparseMatrix

C CsparseMatrix

R RsparseMatrix

T TsparseMatrix

gen generalMatrix

sym symmetricMatrix

tri triangularMatrix

diag diagonalMatrix

ind indMatrix

Abbreviations should be seen as a guide, rather than as an exact description of behaviour. Notably,
.m2dense, .m2sparse, and .m2V accept vectors that are not matrices.

.tCRT(x): If lazy = TRUE, then .tCRT constructs the transpose of x using the most efficient
representation, which for ‘CRT’ is ‘RCT’. If lazy = FALSE, then .tCRT preserves the representation
of x, behaving as the corresponding methods for generic function t.

.diag.dsC(x): .diag.dsC computes (or uses if Chx is supplied) the Cholesky factorization of
x as LDL′ in order to calculate one of several possible statistics from the diagonal entries of D.
See res.kind under ‘Arguments’.

fastMisc 89

.solve.dgC.*(a, b): .solve.dgC.lu(a, b) needs a square matrix a. .solve.dgC.qr(a, b)
needs a “long” matrix a, with nrow(a) >= ncol(a). .solve.dgC.chol(a, b) needs a “wide”
matrix a, with nrow(a) <= ncol(a).
All three may be used to solve sparse linear systems directly. Only .solve.dgC.qr and .solve.dgC.chol
be used to solve sparse least squares problems.

.updateCHMfactor(object, parent, mult): .updateCHMfactor updates object with the
result of Cholesky factorizing F(parent) + mult[1] * diag(nrow(parent)), i.e., F(parent)
plus mult[1] times the identity matrix, where F = identity if parent is a dsCMatrix and F =
tcrossprod if parent is a dgCMatrix. The nonzero pattern of F(parent) must match that of S
if object = Cholesky(S, ...).

Examples

D. <- diag(x = c(1, 1, 2, 3, 5, 8))
D.0 <- Diagonal(x = c(0, 0, 0, 3, 5, 8))
S. <- toeplitz(as.double(1:6))
C. <- new("dgCMatrix", Dim = c(3L, 4L),

p = c(0L, 1L, 1L, 1L, 3L), i = c(1L, 0L, 2L), x = c(-8, 2, 3))

stopifnot(exprs = {
identical(.M2tri (D.), as(D., "triangularMatrix"))
identical(.M2sym (D.), as(D., "symmetricMatrix"))
identical(.M2diag(D.), as(D., "diagonalMatrix"))
identical(.M2kind(C., "l"),

as(C., "lMatrix"))
identical(.M2kind(.sparse2dense(C.), "l"),

as(as(C., "denseMatrix"), "lMatrix"))
identical(.diag2sparse(D.0, ".", "t", "C"),

.dense2sparse(.diag2dense(D.0, ".", "t", TRUE), "C"))
identical(.M2gen(.diag2dense(D.0, ".", "s", FALSE)),

.sparse2dense(.M2gen(.diag2sparse(D.0, ".", "s", "T"))))
identical(S.,

.M2m(.m2sparse(S., ".sR")))
identical(S. * lower.tri(S.) + diag(1, 6L),

.M2m(.m2dense (S., ".tr", "L", "U")))
identical(.M2R(C.), .M2R(.M2T(C.)))
identical(.tCRT(C.), .M2R(t(C.)))

})

A <- tcrossprod(C.)/6 + Diagonal(3, 1/3); A[1,2] <- 3; A
stopifnot(exprs = {

is.numeric(x. <- c(2.2, 0, -1.2))
all.equal(x., .solve.dgC.lu(A, c(1,0,0), check=FALSE))
all.equal(x., .solve.dgC.qr(A, c(1,0,0), check=FALSE))

})

Solving sparse least squares:

X <- rbind(A, Diagonal(3)) # design matrix X (for L.S.)
Xt <- t(X) # *transposed* X (for L.S.)
(y <- drop(crossprod(Xt, 1:3)) + c(-1,1)/1000) # small rand.err.

90 forceSymmetric-methods

str(solveCh <- .solve.dgC.chol(Xt, y, check=FALSE)) # Xt *is* dgC..
stopifnot(exprs = {

all.equal(solveCh$coef, 1:3, tol = 1e-3)# rel.err ~ 1e-4
all.equal(solveCh$coef, drop(solve(tcrossprod(Xt), Xt %*% y)))
all.equal(solveCh$coef, .solve.dgC.qr(X, y, check=FALSE))

})

forceSymmetric-methods

Force a Matrix to ’symmetricMatrix’ Without Symmetry Checks

Description

Force a square matrix x to a symmetricMatrix, without a symmetry check as it would be applied
for as(x, "symmetricMatrix").

Usage

forceSymmetric(x, uplo)

Arguments

x any square matrix (of numbers), either “"traditional"” (matrix) or inheriting
from Matrix.

uplo optional string, "U" or "L" indicating which “triangle” half of x should deter-
mine the result. The default is "U" unless x already has a uplo slot (i.e., when it
is symmetricMatrix, or triangularMatrix), where the default will be x@uplo.

Value

a square matrix inheriting from class symmetricMatrix.

See Also

symmpart for the symmetric part of a matrix, or the coercions as(x, <symmetricMatrix class>).

Examples

Hilbert matrix
i <- 1:6
h6 <- 1/outer(i - 1L, i, "+")
sd <- sqrt(diag(h6))
hh <- t(h6/sd)/sd # theoretically symmetric
isSymmetric(hh, tol=0) # FALSE; hence
try(as(hh, "symmetricMatrix")) # fails, but this works fine:
H6 <- forceSymmetric(hh)

result can be pretty surprising:
(M <- Matrix(1:36, 6))

formatSparseM 91

forceSymmetric(M) # symmetric, hence very different in lower triangle
(tm <- tril(M))
forceSymmetric(tm)

formatSparseM Formatting Sparse Numeric Matrices Utilities

Description

Utilities for formatting sparse numeric matrices in a flexible way. These functions are used by the
format and print methods for sparse matrices and can be applied as well to standard R matrices.
Note that all arguments but the first are optional.

formatSparseM() is the main “workhorse” of formatSpMatrix, the format method for sparse
matrices.

.formatSparseSimple() is a simple helper function, also dealing with (short/empty) column
names construction.

Usage

formatSparseM(x, zero.print = ".", align = c("fancy", "right"),
m = as(x,"matrix"), asLogical=NULL, uniDiag=NULL,
digits=NULL, cx, iN0, dn = dimnames(m))

.formatSparseSimple(m, asLogical=FALSE, digits=NULL,
col.names, note.dropping.colnames = TRUE,

dn=dimnames(m))

Arguments

x an R object inheriting from class sparseMatrix.

zero.print character which should be used for structural zeroes. The default "." may occa-
sionally be replaced by " " (blank); using "0" would look almost like print()ing
of non-sparse matrices.

align a string specifying how the zero.print codes should be aligned, see formatSpMatrix.

m (optional) a (standard R) matrix version of x.

asLogical should the matrix be formatted as a logical matrix (or rather as a numeric one);
mostly for formatSparseM().

uniDiag logical indicating if the diagonal entries of a sparse unit triangular or unit-
diagonal matrix should be formatted as "I" instead of "1" (to emphasize that
the 1’s are “structural”).

digits significant digits to use for printing, see print.default.

cx (optional) character matrix; a formatted version of x, still with strings such as
"0.00" for the zeros.

iN0 (optional) integer vector, specifying the location of the non-zeroes of x.

92 generalMatrix-class

col.names, note.dropping.colnames
see formatSpMatrix.

dn dimnames to be used; a list (of length two) with row and column names (or
NULL).

Value

a character matrix like cx, where the zeros have been replaced with (padded versions of) zero.print.
As this is a dense matrix, do not use these functions for really large (really) sparse matrices!

Author(s)

Martin Maechler

See Also

formatSpMatrix which calls formatSparseM() and is the format method for sparse matrices.
printSpMatrix which is used by the (typically implicitly called) show and print methods for
sparse matrices.

Examples

m <- suppressWarnings(matrix(c(0, 3.2, 0,0, 11,0,0,0,0,-7,0), 4,9))
fm <- formatSparseM(m)
noquote(fm)
nice, but this is nicer {with "units" vertically aligned}:
print(fm, quote=FALSE, right=TRUE)
and "the same" as :
Matrix(m)

align = "right" is cheaper --> the "." are not aligned:
noquote(f2 <- formatSparseM(m,align="r"))
stopifnot(f2 == fm | m == 0, dim(f2) == dim(m),

(f2 == ".") == (m == 0))

generalMatrix-class Class "generalMatrix" of General Matrices

Description

Virtual class of “general” matrices; i.e., matrices that do not have a known property such as sym-
metric, triangular, or diagonal.

Objects from the Class

A virtual Class: No objects may be created from it.

Hilbert 93

Slots

Dim, Dimnames inherited from virtual class Matrix.

factors a list of MatrixFactorization objects caching factorizations of the matrix. Typically, it
is initialized as an empty list and updated “automagically” whenever a factorization is com-
puted.

Extends

Class "Matrix", directly.

See Also

Virtual classes symmetricMatrix, triangularMatrix, and diagonalMatrix.

Hilbert Generate a Hilbert matrix

Description

Generate the n by n symmetric Hilbert matrix. Because these matrices are ill-conditioned for mod-
erate to large n, they are often used for testing numerical linear algebra code.

Usage

Hilbert(n)

Arguments

n a non-negative integer.

Value

the n by n symmetric Hilbert matrix as a "dpoMatrix" object.

See Also

the class dpoMatrix

Examples

Hilbert(6)

94 image-methods

image-methods Methods for image() in Package ’Matrix’

Description

Methods for function image in package Matrix. An image of a matrix simply color codes all matrix
entries and draws the n×m matrix using an n×m grid of (colored) rectangles.

The Matrix package image methods are based on levelplot() from package lattice; hence these
methods return an “object” of class "trellis", producing a graphic when (auto-) print()ed.

Usage

S4 method for signature 'dgTMatrix'
image(x,

xlim = c(1, di[2]),
ylim = c(di[1], 1), aspect = "iso",
sub = sprintf("Dimensions: %d x %d", di[1], di[2]),
xlab = "Column", ylab = "Row", cuts = 15,
useRaster = FALSE,
useAbs = NULL, colorkey = !useAbs,
col.regions = NULL,
lwd = NULL, border.col = NULL, ...)

Arguments

x a Matrix object, i.e., fulfilling is(x, "Matrix").

xlim, ylim x- and y-axis limits; may be used to “zoom into” matrix. Note that x, y “feel
reversed”: ylim is for the rows (= 1st index) and xlim for the columns (= 2nd
index). For convenience, when the limits are integer valued, they are both ex-
tended by 0.5; also, ylim is always used decreasingly.

aspect aspect ratio specified as number (y/x) or string; see levelplot.

sub, xlab, ylab axis annotation with sensible defaults; see plot.default.

cuts number of levels the range of matrix values would be divided into.

useRaster logical indicating if raster graphics should be used (instead of the tradition rect-
angle vector drawing). If true, panel.levelplot.raster (from lattice pack-
age) is used, and the colorkey is also done via rasters, see also levelplot and
possibly grid.raster.
Note that using raster graphics may often be faster, but can be slower, depending
on the matrix dimensions and the graphics device (dimensions).

useAbs logical indicating if abs(x) should be shown; if TRUE, the former (implicit)
default, the default col.regions will be grey colors (and no colorkey drawn).
The default is FALSE unless the matrix has no negative entries.

colorkey logical indicating if a color key aka ‘legend’ should be produced. Default is to
draw one, unless useAbs is true. You can also specify a list, see levelplot,
such aslist(raster=TRUE) in the case of rastering.

image-methods 95

col.regions vector of gradually varying colors; see levelplot.

lwd (only used when useRaster is false:) non-negative number or NULL (default),
specifying the line-width of the rectangles of each non-zero matrix entry (drawn
by grid.rect). The default depends on the matrix dimension and the device
size.

border.col color for the border of each rectangle. NA means no border is drawn. When NULL
as by default, border.col <- if(lwd < .01) NA else NULL is used. Consider
using an opaque color instead of NULL which corresponds to grid::get.gpar("col").

... further arguments passed to methods and levelplot, notably at for specifying
(possibly non equidistant) cut values for dividing the matrix values (superseding
cuts above).

Value

as all lattice graphics functions, image(<Matrix>) returns a "trellis" object, effectively the
result of levelplot().

Methods

All methods currently end up calling the method for the dgTMatrix class. Use showMethods(image)
to list them all.

See Also

levelplot, and print.trellis from package lattice.

Examples

showMethods(image)
And if you want to see the method definitions:
showMethods(image, includeDefs = TRUE, inherited = FALSE)

data(CAex, package = "Matrix")
image(CAex, main = "image(CAex)") -> imgC; imgC
stopifnot(!is.null(leg <- imgC$legend), is.list(leg$right)) # failed for 2 days ..
image(CAex, useAbs=TRUE, main = "image(CAex, useAbs=TRUE)")

cCA <- Cholesky(crossprod(CAex), Imult = .01)
See ?print.trellis --- place two image() plots side by side:
print(image(cCA, main="Cholesky(crossprod(CAex), Imult = .01)"),

split=c(x=1,y=1,nx=2, ny=1), more=TRUE)
print(image(cCA, useAbs=TRUE),

split=c(x=2,y=1,nx=2,ny=1))

data(USCounties, package = "Matrix")
image(USCounties)# huge
image(sign(USCounties))## just the pattern

how the result looks, may depend heavily on
the device, screen resolution, antialiasing etc
e.g. x11(type="Xlib") may show very differently than cairo-based

96 index-class

Drawing borders around each rectangle;
again, viewing depends very much on the device:

image(USCounties[1:400,1:200], lwd=.1)
Using (xlim,ylim) has advantage : matrix dimension and (col/row) indices:
image(USCounties, c(1,200), c(1,400), lwd=.1)
image(USCounties, c(1,300), c(1,200), lwd=.5)
image(USCounties, c(1,300), c(1,200), lwd=.01)
These 3 are all equivalent :
(I1 <- image(USCounties, c(1,100), c(1,100), useAbs=FALSE))
I2 <- image(USCounties, c(1,100), c(1,100), useAbs=FALSE, border.col=NA)
I3 <- image(USCounties, c(1,100), c(1,100), useAbs=FALSE, lwd=2, border.col=NA)

stopifnot(all.equal(I1, I2, check.environment=FALSE),
all.equal(I2, I3, check.environment=FALSE))

using an opaque border color
image(USCounties, c(1,100), c(1,100), useAbs=FALSE, lwd=3, border.col = adjustcolor("skyblue", 1/2))

if(interactive() || nzchar(Sys.getenv("R_MATRIX_CHECK_EXTRA"))) {
Using raster graphics: For PDF this would give a 77 MB file,
however, for such a large matrix, this is typically considerably
slower (than vector graphics rectangles) in most cases :
if(doPNG <- !dev.interactive())

png("image-USCounties-raster.png", width=3200, height=3200)
image(USCounties, useRaster = TRUE) # should not suffer from anti-aliasing
if(doPNG)

dev.off()
and now look at the *.png image in a viewer you can easily zoom in and out

}#only if(doExtras)

index-class Virtual Class “index” of Index Vectors

Description

Class index is a virtual class designating index vectors, or “subscripts”, for (possibly named) vec-
tors and arrays. It is typically used in signatures of methods for the subscript and subassignment
operators, namely [and [<-. It is implemented as a union of the atomic vector classes numeric,
logical, and character.

See Also

[, [-methods, and [<--methods.

Examples

showClass("index")

indMatrix-class 97

indMatrix-class Index Matrices

Description

The indMatrix class is the class of row and column index matrices, stored as 1-based integer index
vectors. A row (column) index matrix is a matrix whose rows (columns) are standard unit vectors.
Such matrices are useful when mapping observations to discrete sets of covariate values.

Multiplying a matrix on the left by a row index matrix is equivalent to indexing its rows, i.e., sam-
pling the rows “with replacement”. Analogously, multiplying a matrix on the right by a column
index matrix is equivalent to indexing its columns. Indeed, such products are implemented in Ma-
trix as indexing operations; see ‘Details’ below.

A matrix whose rows and columns are standard unit vectors is called a permutation matrix. This
special case is designated by the pMatrix class, a direct subclass of indMatrix.

Details

The transpose of an index matrix is an index matrix with identical perm but opposite margin. Hence
the transpose of a row index matrix is a column index matrix, and vice versa.

The cross product of a row index matrix R and itself is a diagonal matrix whose diagonal entries are
the the number of entries in each column of R.

Given a row index matrix R with perm slot p, a column index matrix C with perm slot q, and a matrix
M with conformable dimensions, we have

RM = R %*% M = M[p,]
MC = M %*% C = M[, q]
C ′M = crossprod(C, M) = M[q,]
MR′ = tcrossprod(M, R) = M[, p]
R′R = crossprod(R) = Diagonal(x=tabulate(p, ncol(R)))
CC ′ = tcrossprod(C) = Diagonal(x=tabulate(q, nrow(C)))

Operations on index matrices that result in index matrices will accordingly return an indMatrix.
These include products of two column index matrices and (equivalently) column-indexing of a
column index matrix (when dimensions are not dropped). Most other operations on indMatrix treat
them as sparse nonzero pattern matrices (i.e., inheriting from virtual class nsparseMatrix). Hence
vector-valued subsets of indMatrix, such as those given by diag, are always of type "logical".

Objects from the Class

Objects can be created explicitly with calls of the form new("indMatrix", ...), but they are
more commonly created by coercing 1-based integer index vectors, with calls of the form as(.,
"indMatrix"); see ‘Methods’ below.

98 indMatrix-class

Slots

margin an integer, either 1 or 2, specifying whether the matrix is a row (1) or column (2) index.

perm a 1-based integer index vector, i.e., a vector of length Dim[margin] with elements taken from
1:Dim[1+margin%%2].

Dim,Dimnames inherited from virtual superclass Matrix.

Extends

Classes "sparseMatrix" and "generalMatrix", directly.

Methods

%*% signature(x = "indMatrix", y = "Matrix") and others listed by showMethods("%*%", classes
= "indMatrix"): matrix products implemented where appropriate as indexing operations.

coerce signature(from = "numeric", to = "indMatrix"): supporting typical indMatrix con-
struction from a vector of positive integers. Row indexing is assumed.

coerce signature(from = "list", to = "indMatrix"): supporting indMatrix construction for
row and column indexing, including index vectors of length 0 and index vectors whose maxi-
mum is less than the number of rows or columns being indexed.

coerce signature(from = "indMatrix", to = "matrix"): coercion to a traditional matrix of
logical type, with FALSE and TRUE in place of 0 and 1.

t signature(x = "indMatrix"): the transpose, which is an indMatrix with identical perm but
opposite margin.

rowSums,rowMeans,colSums,colMeans signature(x = "indMatrix"): row and column sums and
means.

rbind2,cbind2 signature(x = "indMatrix", y = "indMatrix"): row-wise catenation of two row
index matrices with equal numbers of columns and column-wise catenation of two column in-
dex matrices with equal numbers of rows.

kronecker signature(X = "indMatrix", Y = "indMatrix"): Kronecker product of two row in-
dex matrices or two column index matrices, giving the row or column index matrix corre-
sponding to their “interaction”.

Author(s)

Fabian Scheipl at ‘uni-muenchen.de’, building on the existing class pMatrix after a nice hike’s
conversation with Martin Maechler. Methods for crossprod(x, y) and kronecker(x, y) with
both arguments inheriting from indMatrix were made considerably faster thanks to a suggestion
by Boris Vaillant. Diverse tweaks by Martin Maechler and Mikael Jagan, notably the latter’s im-
plementation of margin, prior to which the indMatrix class was designated only for row index
matrices.

See Also

Subclass pMatrix of permutation matrices, a special case of index matrices; virtual class nMatrix
of nonzero pattern matrices, and its subclasses.

invertPerm 99

Examples

p1 <- as(c(2,3,1), "pMatrix")
(sm1 <- as(rep(c(2,3,1), e=3), "indMatrix"))
stopifnot(all(sm1 == p1[rep(1:3, each=3),]))

row-indexing of a <pMatrix> turns it into an <indMatrix>:
class(p1[rep(1:3, each=3),])

set.seed(12) # so we know '10' is in sample
random index matrix for 30 observations and 10 unique values:
(s10 <- as(sample(10, 30, replace=TRUE),"indMatrix"))

Sample rows of a numeric matrix :
(mm <- matrix(1:10, nrow=10, ncol=3))
s10 %*% mm

set.seed(27)
IM1 <- as(sample(1:20, 100, replace=TRUE), "indMatrix")
IM2 <- as(sample(1:18, 100, replace=TRUE), "indMatrix")
(c12 <- crossprod(IM1,IM2))
same as cross-tabulation of the two index vectors:
stopifnot(all(c12 - unclass(table(IM1@perm, IM2@perm)) == 0))

3 observations, 4 implied values, first does not occur in sample:
as(2:4, "indMatrix")
3 observations, 5 values, first and last do not occur in sample:
as(list(2:4, 5), "indMatrix")

as(sm1, "nMatrix")
s10[1:7, 1:4] # gives an "ngTMatrix" (most economic!)
s10[1:4,] # preserves "indMatrix"-class

I1 <- as(c(5:1,6:4,7:3), "indMatrix")
I2 <- as(7:1, "pMatrix")
(I12 <- rbind(I1, I2))
stopifnot(is(I12, "indMatrix"),

identical(I12, rbind(I1, I2)),
colSums(I12) == c(2L,2:4,4:2))

invertPerm Utilities for Permutation Vectors

Description

invertPerm and signPerm compute the inverse and sign of a length-n permutation vector. isPerm
tests if a length-n integer vector is a valid permutation vector. asPerm coerces a length-m transposi-
tion vector to a length-n permutation vector, where m <= n.

100 invertPerm

Usage

invertPerm(p, off = 1L, ioff = 1L)
signPerm(p, off = 1L)
isPerm(p, off = 1L)
asPerm(pivot, off = 1L, ioff = 1L, n = length(pivot))

invPerm(p, zero.p = FALSE, zero.res = FALSE)

Arguments

p an integer vector of length n.

pivot an integer vector of length m.

off an integer offset, indicating that p is a permutation of off+0:(n-1) or that
pivot contains m values sampled with replacement from off+0:(n-1).

ioff an integer offset, indicating that the result should be a permutation of ioff+0:(n-1).

n a integer greater than or equal to m, indicating the length of the result. Transpo-
sitions are applied to a permutation vector vector initialized as seq_len(n).

zero.p a logical. Equivalent to off=0 if TRUE and off=1 if FALSE.

zero.res a logical. Equivalent to ioff=0 if TRUE and ioff=1 if FALSE.

Details

invertPerm(p, off, ioff=1) is equivalent to order(p) or sort.list(p) for all values of off.
For the default value off=1, it returns the value of p after p[p] <- seq_along(p).

invPerm is a simple wrapper around invertPerm, retained for backwards compatibility.

Value

By default, i.e., with off=1 and ioff=1:

invertPerm(p) returns an integer vector of length length(p) such that p[invertPerm(p)] and
invertPerm(p)[p] are both seq_along(p), i.e., the identity permutation.

signPerm(p) returns 1 if p is an even permutation and -1 otherwise (i.e., if p is odd).

isPerm(p) returns TRUE if p is a permutation of seq_along(p) and FALSE otherwise.

asPerm(pivot) returns the result of transposing elements i and pivot[i] of a permutation vector
initialized as seq_len(n), for i in seq_along(pivot).

See Also

Class pMatrix of permutation matrices.

Examples

p <- sample(10L) # a random permutation vector
ip <- invertPerm(p)
s <- signPerm(p)

is.na-methods 101

'p' and 'ip' are indeed inverses:
stopifnot(exprs = {

isPerm(p)
isPerm(ip)
identical(s, 1L) || identical(s, -1L)
identical(s, signPerm(ip))
identical(p[ip], 1:10)
identical(ip[p], 1:10)
identical(invertPerm(ip), p)

})

Product of transpositions (1 2)(2 1)(4 3)(6 8)(10 1) = (3 4)(6 8)(1 10)
pivot <- c(2L, 1L, 3L, 3L, 5L, 8L, 7L, 8L, 9L, 1L)
q <- asPerm(pivot)
stopifnot(exprs = {

identical(q, c(10L, 2L, 4L, 3L, 5L, 8L, 7L, 6L, 9L, 1L))
identical(q[q], seq_len(10L)) # because the permutation is odd:
signPerm(q) == -1L

})

invPerm # a less general version of 'invertPerm'

is.na-methods is.na(), is.finite() Methods for ’Matrix’ Objects

Description

Methods for generic functions anyNA(), is.na(), is.nan(), is.infinite(), and is.finite(),
for objects inheriting from virtual class Matrix or sparseVector.

Usage

S4 method for signature 'denseMatrix'
is.na(x)
S4 method for signature 'sparseMatrix'
is.na(x)
S4 method for signature 'diagonalMatrix'
is.na(x)
S4 method for signature 'indMatrix'
is.na(x)
S4 method for signature 'sparseVector'
is.na(x)
...
and likewise for anyNA, is.nan, is.infinite, is.finite

Arguments

x an R object, here a sparse or dense matrix or vector.

102 is.null.DN

Value

For is.*(), an nMatrix or nsparseVector matching the dimensions of x and specifying the po-
sitions in x of (some subset of) NA, NaN, Inf, and -Inf. For anyNA(), TRUE if x contains NA or NaN
and FALSE otherwise.

See Also

NA, NaN, Inf

Examples

(M <- Matrix(1:6, nrow = 4, ncol = 3,
dimnames = list(letters[1:4], LETTERS[1:3])))

stopifnot(!anyNA(M), !any(is.na(M)))

M[2:3, 2] <- NA
(inM <- is.na(M))
stopifnot(anyNA(M), sum(inM) == 2)

(A <- spMatrix(nrow = 10, ncol = 20,
i = c(1, 3:8), j = c(2, 9, 6:10), x = 7 * (1:7)))

stopifnot(!anyNA(A), !any(is.na(A)))

A[2, 3] <- A[1, 2] <- A[5, 5:9] <- NA
(inA <- is.na(A))
stopifnot(anyNA(A), sum(inA) == 1 + 1 + 5)

is.null.DN Are the Dimnames dn NULL-like ?

Description

Are the dimnames dn NULL-like?

is.null.DN(dn) is less strict than is.null(dn), because it is also true (TRUE) when the dim-
names dn are “like” NULL, or list(NULL,NULL), as they can easily be for the traditional R matrices
(matrix) which have no formal class definition, and hence much freedom in how their dimnames
look like.

Usage

is.null.DN(dn)

Arguments

dn dimnames() of a matrix-like R object.

Value

logical TRUE or FALSE.

isSymmetric-methods 103

Note

This function is really to be used on “traditional” matrices rather than those inheriting from Matrix,
as the latter will always have dimnames list(NULL,NULL) exactly, in such a case.

Author(s)

Martin Maechler

See Also

is.null, dimnames, matrix.

Examples

m1 <- m2 <- m3 <- m4 <- m <-
matrix(round(100 * rnorm(6)), 2, 3)

dimnames(m1) <- list(NULL, NULL)
dimnames(m2) <- list(NULL, character())
dimnames(m3) <- rev(dimnames(m2))
dimnames(m4) <- rep(list(character()),2)

m4 # prints absolutely identically to m

c.o <- capture.output
cm <- c.o(m)
stopifnot(exprs = {

m == m1; m == m2; m == m3; m == m4
identical(cm, c.o(m1)); identical(cm, c.o(m2))
identical(cm, c.o(m3)); identical(cm, c.o(m4))
})

hasNoDimnames <- function(.) is.null.DN(dimnames(.))
stopifnot(exprs = {

hasNoDimnames(m)
hasNoDimnames(m1); hasNoDimnames(m2)
hasNoDimnames(m3); hasNoDimnames(m4)
hasNoDimnames(Matrix(m) -> M)
hasNoDimnames(as(M, "sparseMatrix"))

})

isSymmetric-methods Methods for Function ’isSymmetric’ in Package ’Matrix’

Description

isSymmetric tests whether its argument is a symmetric square matrix, by default tolerating some
numerical fuzz and requiring symmetric [dD]imnames in addition to symmetry in the mathematical
sense. isSymmetric is a generic function in base, which has a method for traditional matrices
of implicit class "matrix". Methods are defined here for various proper and virtual classes in
Matrix, so that isSymmetric works for all objects inheriting from virtual class "Matrix".

104 isSymmetric-methods

Usage

S4 method for signature 'denseMatrix'
isSymmetric(object, checkDN = TRUE, ...)
S4 method for signature 'CsparseMatrix'
isSymmetric(object, checkDN = TRUE, ...)
S4 method for signature 'RsparseMatrix'
isSymmetric(object, checkDN = TRUE, ...)
S4 method for signature 'TsparseMatrix'
isSymmetric(object, checkDN = TRUE, ...)
S4 method for signature 'diagonalMatrix'
isSymmetric(object, checkDN = TRUE, ...)
S4 method for signature 'indMatrix'
isSymmetric(object, checkDN = TRUE, ...)
S4 method for signature 'dgeMatrix'
isSymmetric(object, checkDN = TRUE, tol = 100 * .Machine$double.eps, tol1 = 8 * tol, ...)
S4 method for signature 'dgCMatrix'
isSymmetric(object, checkDN = TRUE, tol = 100 * .Machine$double.eps, ...)

Arguments

object a "Matrix".

checkDN a logical indicating whether symmetry of the Dimnames slot of object should
be checked.

tol, tol1 numerical tolerances allowing approximate symmetry of numeric (rather than
logical) matrices. See also isSymmetric.matrix.

... further arguments passed to methods (typically methods for all.equal).

Details

The Dimnames slot of object, say dn, is considered to be symmetric if and only if

• dn[[1]] and dn[[2]] are identical or one is NULL; and

• ndn <- names(dn) is NULL or ndn[1] and ndn[2] are identical or one is the empty string "".

Hence list(a=nms, a=nms) is considered to be symmetric, and so too are list(a=nms, NULL) and
list(NULL, a=nms).

Note that this definition is looser than that employed by isSymmetric.matrix, which requires
dn[1] and dn[2] to be identical, where dn is the dimnames attribute of a traditional matrix.

Value

A logical, either TRUE or FALSE (never NA).

See Also

forceSymmetric; symmpart and skewpart; virtual class "symmetricMatrix" and its subclasses.

isTriangular-methods 105

Examples

isSymmetric(Diagonal(4)) # TRUE of course
M <- Matrix(c(1,2,2,1), 2,2)
isSymmetric(M) # TRUE (*and* of formal class "dsyMatrix")
isSymmetric(as(M, "generalMatrix")) # still symmetric, even if not "formally"
isSymmetric(triu(M)) # FALSE

Look at implementations:
showMethods("isSymmetric", includeDefs = TRUE) # includes S3 generic from base

isTriangular-methods Test whether a Matrix is Triangular or Diagonal

Description

isTriangular and isDiagonal test whether their argument is a triangular or diagonal matrix,
respectively. Unlike the analogous isSymmetric, these two functions are generically from Matrix
rather than base. Hence Matrix defines methods for traditional matrices of implicit class "matrix"
in addition to matrices inheriting from virtual class "Matrix".

By our definition, triangular and diagonal matrices are square, i.e., they have the same number of
rows and columns.

Usage

isTriangular(object, upper = NA, ...)

isDiagonal(object)

Arguments

object an R object, typically a matrix.

upper a logical, either TRUE or FALSE, in which case TRUE is returned only for upper
or lower triangular object; or otherwise NA (the default), in which case TRUE is
returned for any triangular object.

... further arguments passed to methods (currently unused by Matrix).

Value

A logical, either TRUE or FALSE (never NA).

If object is triangular and upper is NA, then isTriangular returns TRUE with an attribute kind,
either "U" or "L", indicating that object is upper or lower triangular, respectively. Users should not
rely on how kind is determined for diagonal matrices, which are both upper and lower triangular.

See Also

isSymmetric; virtual classes "triangularMatrix" and "diagonalMatrix" and their subclasses.

106 KhatriRao

Examples

isTriangular(Diagonal(4))
is TRUE: a diagonal matrix is also (both upper and lower) triangular
(M <- Matrix(c(1,2,0,1), 2,2))
isTriangular(M) # TRUE (*and* of formal class "dtrMatrix")
isTriangular(as(M, "generalMatrix")) # still triangular, even if not "formally"
isTriangular(crossprod(M)) # FALSE

isDiagonal(matrix(c(2,0,0,1), 2,2)) # TRUE

Look at implementations:
showMethods("isTriangular", includeDefs = TRUE)
showMethods("isDiagonal", includeDefs = TRUE)

KhatriRao Khatri-Rao Matrix Product

Description

Computes Khatri-Rao products for any kind of matrices.

The Khatri-Rao product is a column-wise Kronecker product. Originally introduced by Khatri and
Rao (1968), it has many different applications, see Liu and Trenkler (2008) for a survey. Notably,
it is used in higher-dimensional tensor decompositions, see Bader and Kolda (2008).

Usage

KhatriRao(X, Y = X, FUN = "*", sparseY = TRUE, make.dimnames = FALSE)

Arguments

X, Y matrices of with the same number of columns.

FUN the (name of the) function to be used for the column-wise Kronecker products,
see kronecker, defaulting to the usual multiplication.

sparseY logical specifying if Y should be coerced and treated as sparseMatrix. Set this
to FALSE, e.g., to distinguish structural zeros from zero entries.

make.dimnames logical indicating if the result should inherit dimnames from X and Y in a simple
way.

Value

a "CsparseMatrix", say R, the Khatri-Rao product of X (n × k) and Y (m × k), is of dimension
(n ·m)× k, where the j-th column, R[,j] is the kronecker product kronecker(X[,j], Y[,j]).

Note

The current implementation is efficient for large sparse matrices.

KhatriRao 107

Author(s)

Original by Michael Cysouw, Univ. Marburg; minor tweaks, bug fixes etc, by Martin Maechler.

References

Khatri, C. G., and Rao, C. Radhakrishna (1968) Solutions to Some Functional Equations and Their
Applications to Characterization of Probability Distributions. Sankhya: Indian J. Statistics, Series
A 30, 167–180.

Bader, Brett W, and Tamara G Kolda (2008) Efficient MATLAB Computations with Sparse and
Factored Tensors. SIAM J. Scientific Computing 30, 205–231.

See Also

kronecker.

Examples

Example with very small matrices:
m <- matrix(1:12,3,4)
d <- diag(1:4)
KhatriRao(m,d)
KhatriRao(d,m)
dimnames(m) <- list(LETTERS[1:3], letters[1:4])
KhatriRao(m,d, make.dimnames=TRUE)
KhatriRao(d,m, make.dimnames=TRUE)
dimnames(d) <- list(NULL, paste0("D", 1:4))
KhatriRao(m,d, make.dimnames=TRUE)
KhatriRao(d,m, make.dimnames=TRUE)
dimnames(d) <- list(paste0("d", 10*1:4), paste0("D", 1:4))
(Kmd <- KhatriRao(m,d, make.dimnames=TRUE))
(Kdm <- KhatriRao(d,m, make.dimnames=TRUE))

nm <- as(m, "nsparseMatrix")
nd <- as(d, "nsparseMatrix")
KhatriRao(nm,nd, make.dimnames=TRUE)
KhatriRao(nd,nm, make.dimnames=TRUE)

stopifnot(dim(KhatriRao(m,d)) == c(nrow(m)*nrow(d), ncol(d)))
border cases / checks:
zm <- nm; zm[] <- FALSE # all FALSE matrix
stopifnot(all(K1 <- KhatriRao(nd, zm) == 0), identical(dim(K1), c(12L, 4L)),

all(K2 <- KhatriRao(zm, nd) == 0), identical(dim(K2), c(12L, 4L)))

d0 <- d; d0[] <- 0; m0 <- Matrix(d0[-1,])
stopifnot(all(K3 <- KhatriRao(d0, m) == 0), identical(dim(K3), dim(Kdm)),

all(K4 <- KhatriRao(m, d0) == 0), identical(dim(K4), dim(Kmd)),
all(KhatriRao(d0, d0) == 0), all(KhatriRao(m0, d0) == 0),
all(KhatriRao(d0, m0) == 0), all(KhatriRao(m0, m0) == 0),
identical(dimnames(KhatriRao(m, d0, make.dimnames=TRUE)), dimnames(Kmd)))

a matrix with "structural" and non-structural zeros:

108 KNex

m01 <- new("dgCMatrix", i = c(0L, 2L, 0L, 1L), p = c(0L, 0L, 0L, 2L, 4L),
Dim = 3:4, x = c(1, 0, 1, 0))

D4 <- Diagonal(4, x=1:4) # "as" d
DU <- Diagonal(4)# unit-diagonal: uplo="U"
(K5 <- KhatriRao(d, m01))
K5d <- KhatriRao(d, m01, sparseY=FALSE)
K5Dd <- KhatriRao(D4, m01, sparseY=FALSE)
K5Ud <- KhatriRao(DU, m01, sparseY=FALSE)
(K6 <- KhatriRao(diag(3), t(m01)))
K6D <- KhatriRao(Diagonal(3), t(m01))
K6d <- KhatriRao(diag(3), t(m01), sparseY=FALSE)
K6Dd <- KhatriRao(Diagonal(3), t(m01), sparseY=FALSE)
stopifnot(exprs = {

all(K5 == K5d)
identical(cbind(c(7L, 10L), c(3L, 4L)),

which(K5 != 0, arr.ind = TRUE, useNames=FALSE))
identical(K5d, K5Dd)
identical(K6, K6D)
all(K6 == K6d)
identical(cbind(3:4, 1L),

which(K6 != 0, arr.ind = TRUE, useNames=FALSE))
identical(K6d, K6Dd)

})

KNex Koenker-Ng Example Sparse Model Matrix and Response Vector

Description

A model matrix mm and corresponding response vector y used in an example by Koenker and Ng.
The matrix mm is a sparse matrix with 1850 rows and 712 columns but only 8758 non-zero entries.
It is a "dgCMatrix" object. The vector y is just numeric of length 1850.

Usage

data(KNex)

References

Roger Koenker and Pin Ng (2003). SparseM: A sparse matrix package for R; J. of Statistical
Software, 8 (6), doi:10.18637/jss.v008.i06

Examples

data(KNex, package = "Matrix")
class(KNex$mm)
dim(KNex$mm)
image(KNex$mm)
str(KNex)

https://doi.org/10.18637/jss.v008.i06

kronecker-methods 109

system.time(# a fraction of a second
sparse.sol <- with(KNex, solve(crossprod(mm), crossprod(mm, y))))

head(round(sparse.sol,3))

Compare with QR-based solution ("more accurate, but slightly slower"):
system.time(

sp.sol2 <- with(KNex, qr.coef(qr(mm), y)))

all.equal(sparse.sol, sp.sol2, tolerance = 1e-13) # TRUE

kronecker-methods Methods for Function ’kronecker()’ in Package ’Matrix’

Description

Computes Kronecker products for objects inheriting from "Matrix".

In order to preserver sparseness, we treat 0 * NA as 0, not as NA as usually in R (and as used for the
base function kronecker).

Methods

kronecker signature(X = "Matrix", Y = "ANY")

kronecker signature(X = "ANY", Y = "Matrix")

kronecker signature(X = "diagonalMatrix", Y = "ANY")

kronecker signature(X = "sparseMatrix", Y = "ANY")

kronecker signature(X = "TsparseMatrix", Y = "TsparseMatrix")

kronecker signature(X = "dgTMatrix", Y = "dgTMatrix")

kronecker signature(X = "dtTMatrix", Y = "dtTMatrix")

kronecker signature(X = "indMatrix", Y = "indMatrix")

Examples

(t1 <- spMatrix(5,4, x= c(3,2,-7,11), i= 1:4, j=4:1)) # 5 x 4
(t2 <- kronecker(Diagonal(3, 2:4), t1)) # 15 x 12

should also work with special-cased logical matrices
l3 <- upper.tri(matrix(,3,3))
M <- Matrix(l3)
(N <- as(M, "nsparseMatrix")) # "ntCMatrix" (upper triangular)
N2 <- as(N, "generalMatrix") # (lost "t"riangularity)
MM <- kronecker(M,M)
NN <- kronecker(N,N) # "dtTMatrix" i.e. did keep
NN2 <- kronecker(N2,N2)
stopifnot(identical(NN,MM),

is(NN2, "sparseMatrix"), all(NN2 == NN),
is(NN, "triangularMatrix"))

110 ldiMatrix-class

ldenseMatrix-class Virtual Class "ldenseMatrix" of Dense Logical Matrices

Description

ldenseMatrix is the virtual class of all dense logical (S4) matrices. It extends both denseMatrix
and lMatrix directly.

Slots

x: logical vector containing the entries of the matrix.

Dim, Dimnames: see Matrix.

Extends

Class "lMatrix", directly. Class "denseMatrix", directly. Class "Matrix", by class "lMatrix".
Class "Matrix", by class "denseMatrix".

Methods

as.vector signature(x = "ldenseMatrix", mode = "missing"): ...

which signature(x = "ndenseMatrix"), semantically equivalent to base function which(x, arr.ind);
for details, see the lMatrix class documentation.

See Also

Class lgeMatrix and the other subclasses.

Examples

showClass("ldenseMatrix")

as(diag(3) > 0, "ldenseMatrix")

ldiMatrix-class Class "ldiMatrix" of Diagonal Logical Matrices

Description

The class "ldiMatrix" of logical diagonal matrices.

Objects from the Class

Objects can be created by calls of the form new("ldiMatrix", ...) but typically rather via Diagonal.

lgeMatrix-class 111

Slots

x: "logical" vector.

diag: "character" string, either "U" or "N", see ddiMatrix.

Dim,Dimnames: matrix dimension and dimnames, see the Matrix class description.

Extends

Class "diagonalMatrix" and class "lMatrix", directly.

Class "sparseMatrix", by class "diagonalMatrix".

See Also

Classes ddiMatrix and diagonalMatrix; function Diagonal.

Examples

(lM <- Diagonal(x = c(TRUE,FALSE,FALSE)))
str(lM)#> gory details (slots)

crossprod(lM) # numeric
(nM <- as(lM, "nMatrix"))
crossprod(nM) # pattern sparse

lgeMatrix-class Class "lgeMatrix" of General Dense Logical Matrices

Description

This is the class of general dense logical matrices.

Slots

x: Object of class "logical". The logical values that constitute the matrix, stored in column-major
order.

Dim,Dimnames: The dimension (a length-2 "integer") and corresponding names (or NULL), see the
Matrix class.

factors: Object of class "list". A named list of factorizations that have been computed for the
matrix.

Extends

Class "ldenseMatrix", directly. Class "lMatrix", by class "ldenseMatrix". Class "denseMatrix",
by class "ldenseMatrix". Class "Matrix", by class "ldenseMatrix". Class "Matrix", by class
"ldenseMatrix".

112 lsparseMatrix-class

Methods

Currently, mainly t() and coercion methods (for as(.)); use, e.g., showMethods(class="lgeMatrix")
for details.

See Also

Non-general logical dense matrix classes such as ltrMatrix, or lsyMatrix; sparse logical classes
such as lgCMatrix.

Examples

showClass("lgeMatrix")
str(new("lgeMatrix"))
set.seed(1)
(lM <- Matrix(matrix(rnorm(28), 4,7) > 0))# a simple random lgeMatrix
set.seed(11)
(lC <- Matrix(matrix(rnorm(28), 4,7) > 0))# a simple random lgCMatrix
as(lM, "CsparseMatrix")

lsparseMatrix-class Sparse logical matrices

Description

The lsparseMatrix class is a virtual class of logical sparse matrices, i.e., sparse matrices with
entries TRUE, FALSE, or NA.

These can be stored in the “triplet” form (class TsparseMatrix, subclasses lgTMatrix, lsTMatrix,
and ltTMatrix) or in compressed column-oriented form (class CsparseMatrix, subclasses lgCMatrix,
lsCMatrix, and ltCMatrix) or–rarely–in compressed row-oriented form (class RsparseMatrix,
subclasses lgRMatrix, lsRMatrix, and ltRMatrix). The second letter in the name of these non-
virtual classes indicates general, symmetric, or triangular.

Details

Note that triplet stored (TsparseMatrix) matrices such as lgTMatrix may contain duplicated pairs
of indices (i, j) as for the corresponding numeric class dgTMatrix where for such pairs, the cor-
responding x slot entries are added. For logical matrices, the x entries corresponding to duplicated
index pairs (i, j) are “added” as well if the addition is defined as logical or, i.e., “TRUE + TRUE |->
TRUE” and “TRUE + FALSE |-> TRUE”. Note the use of asUniqueT() for getting an internally unique
representation without duplicated (i, j) entries.

Objects from the Class

Objects can be created by calls of the form new("lgCMatrix", ...) and so on. More frequently
objects are created by coercion of a numeric sparse matrix to the logical form, e.g. in an expression
x != 0.

lsparseMatrix-class 113

The logical form is also used in the symbolic analysis phase of an algorithm involving sparse ma-
trices. Such algorithms often involve two phases: a symbolic phase wherein the positions of the
non-zeros in the result are determined and a numeric phase wherein the actual results are calcu-
lated. During the symbolic phase only the positions of the non-zero elements in any operands are
of interest, hence any numeric sparse matrices can be treated as logical sparse matrices.

Slots

x: Object of class "logical", i.e., either TRUE, NA, or FALSE.

uplo: Object of class "character". Must be either "U", for upper triangular, and "L", for lower
triangular. Present in the triangular and symmetric classes but not in the general class.

diag: Object of class "character". Must be either "U", for unit triangular (diagonal is all ones),
or "N" for non-unit. The implicit diagonal elements are not explicitly stored when diag is
"U". Present in the triangular classes only.

p: Object of class "integer" of pointers, one for each column (row), to the initial (zero-based)
index of elements in the column. Present in compressed column-oriented and compressed
row-oriented forms only.

i: Object of class "integer" of length nnzero (number of non-zero elements). These are the row
numbers for each TRUE element in the matrix. All other elements are FALSE. Present in
triplet and compressed column-oriented forms only.

j: Object of class "integer" of length nnzero (number of non-zero elements). These are the
column numbers for each TRUE element in the matrix. All other elements are FALSE. Present
in triplet and compressed row-oriented forms only.

Dim: Object of class "integer" - the dimensions of the matrix.

Methods

coerce signature(from = "dgCMatrix", to = "lgCMatrix")

t signature(x = "lgCMatrix"): returns the transpose of x

which signature(x = "lsparseMatrix"), semantically equivalent to base function which(x,
arr.ind); for details, see the lMatrix class documentation.

See Also

the class dgCMatrix and dgTMatrix

Examples

(m <- Matrix(c(0,0,2:0), 3,5, dimnames=list(LETTERS[1:3],NULL)))
(lm <- (m > 1)) # lgC
!lm # no longer sparse
stopifnot(is(lm,"lsparseMatrix"),

identical(!lm, m <= 1))

data(KNex, package = "Matrix")
str(mmG.1 <- (KNex $ mm) > 0.1)# "lgC..."
table(mmG.1@x)# however with many ``non-structural zeros''
from logical to nz_pattern -- okay when there are no NA's :

114 lsyMatrix-class

nmG.1 <- as(mmG.1, "nMatrix") # <<< has "TRUE" also where mmG.1 had FALSE
from logical to "double"
dmG.1 <- as(mmG.1, "dMatrix") # has '0' and back:
lmG.1 <- as(dmG.1, "lMatrix")
stopifnot(identical(nmG.1, as((KNex $ mm) != 0,"nMatrix")),

validObject(lmG.1),
identical(lmG.1, mmG.1))

class(xnx <- crossprod(nmG.1))# "nsC.."
class(xlx <- crossprod(mmG.1))# "dsC.." : numeric
is0 <- (xlx == 0)
mean(as.vector(is0))# 99.3% zeros: quite sparse, but
table(xlx@x == 0)# more than half of the entries are (non-structural!) 0
stopifnot(isSymmetric(xlx), isSymmetric(xnx),

compare xnx and xlx : have the *same* non-structural 0s :
sapply(slotNames(xnx),

function(n) identical(slot(xnx, n), slot(xlx, n))))

lsyMatrix-class Symmetric Dense Logical Matrices

Description

The "lsyMatrix" class is the class of symmetric, dense logical matrices in non-packed storage and
"lspMatrix" is the class of of these in packed storage. In the packed form, only the upper triangle
or the lower triangle is stored.

Objects from the Class

Objects can be created by calls of the form new("lsyMatrix", ...).

Slots

uplo: Object of class "character". Must be either "U", for upper triangular, and "L", for lower
triangular.

x: Object of class "logical". The logical values that constitute the matrix, stored in column-major
order.

Dim,Dimnames: The dimension (a length-2 "integer") and corresponding names (or NULL), see the
Matrix class.

factors: Object of class "list". A named list of factorizations that have been computed for the
matrix.

Extends

Both extend classes "ldenseMatrix" and "symmetricMatrix", directly; further, class "Matrix"
and others, indirectly. Use showClass("lsyMatrix"), e.g., for details.

ltrMatrix-class 115

Methods

Currently, mainly t() and coercion methods (for as(.); use, e.g., showMethods(class="lsyMatrix")
for details.

See Also

lgeMatrix, Matrix, t

Examples

(M2 <- Matrix(c(TRUE, NA, FALSE, FALSE), 2, 2)) # logical dense (ltr)
str(M2)
can
(sM <- M2 | t(M2)) # "lge"
as(sM, "symmetricMatrix")
str(sM <- as(sM, "packedMatrix")) # packed symmetric

ltrMatrix-class Triangular Dense Logical Matrices

Description

The "ltrMatrix" class is the class of triangular, dense, logical matrices in nonpacked storage. The
"ltpMatrix" class is the same except in packed storage.

Slots

x: Object of class "logical". The logical values that constitute the matrix, stored in column-major
order.

uplo: Object of class "character". Must be either "U", for upper triangular, and "L", for lower
triangular.

diag: Object of class "character". Must be either "U", for unit triangular (diagonal is all ones),
or "N"; see triangularMatrix.

Dim,Dimnames: The dimension (a length-2 "integer") and corresponding names (or NULL), see the
Matrix class.

factors: Object of class "list". A named list of factorizations that have been computed for the
matrix.

Extends

Both extend classes "ldenseMatrix" and "triangularMatrix", directly; further, class "Matrix",
"lMatrix" and others, indirectly. Use showClass("ltrMatrix"), e.g., for details.

Methods

Currently, mainly t() and coercion methods (for as(.); use, e.g., showMethods(class="ltrMatrix")
for details.

116 lu-methods

See Also

Classes lgeMatrix, Matrix; function t

Examples

showClass("ltrMatrix")

str(new("ltpMatrix"))
(lutr <- as(upper.tri(matrix(, 4, 4)), "ldenseMatrix"))
str(lutp <- pack(lutr)) # packed matrix: only 10 = 4*(4+1)/2 entries
!lutp # the logical negation (is *not* logical triangular !)
but this one is:
stopifnot(all.equal(lutp, pack(!!lutp)))

lu-methods Methods for LU Factorization

Description

Computes the pivoted LU factorization of an m× n real matrix A, which has the general form

P1AP2 = LU

or (equivalently)
A = P ′

1LUP ′
2

where P1 is an m×m permutation matrix, P2 is an n×n permutation matrix, L is an m×min(m,n)
unit lower trapezoidal matrix, and U is a min(m,n)× n upper trapezoidal matrix.

Methods for denseMatrix are built on LAPACK routine dgetrf, which does not permute columns,
so that P2 is an identity matrix.

Methods for sparseMatrix are built on CXSparse routine cs_lu, which requires m = n, so that L
and U are triangular matrices.

Usage

lu(x, ...)
S4 method for signature 'dgeMatrix'
lu(x, warnSing = TRUE, ...)
S4 method for signature 'dgCMatrix'
lu(x, errSing = TRUE, order = NA_integer_,
tol = 1, ...)

S4 method for signature 'dsyMatrix'
lu(x, cache = TRUE, ...)
S4 method for signature 'dsCMatrix'
lu(x, cache = TRUE, ...)
S4 method for signature 'matrix'
lu(x, ...)

lu-methods 117

Arguments

x a finite matrix or Matrix to be factorized, which must be square if sparse.

warnSing a logical indicating if a warning should be signaled for singular x. Used only by
methods for dense matrices.

errSing a logical indicating if an error should be signaled for singular x. Used only by
methods for sparse matrices.

order an integer in 0:3 passed to CXSparse routine cs_sqr, indicating a strategy for
choosing the column permutation P2. 0 means no column permutation. 1, 2,
and 3 indicate a fill-reducing ordering of A+ A′, Ã′Ã, and A′A, where Ã is A
with “dense” rows removed. NA (the default) is equivalent to 2 if tol == 1 and 1
otherwise. Do not set to 0 unless you know that the column order of A is already
sensible.

tol a number. The original pivot element is used if its absolute value exceeds tol *
a, where a is the maximum in absolute value of the other possible pivot elements.
Set tol < 1 only if you know what you are doing.

cache a logical indicating if the result should be cached in x@factors[["LU"]]. Note
that caching is experimental and that only methods for classes extending generalMatrix
or symmetricMatrix will have this argument.

... further arguments passed to or from methods.

Details

What happens when x is determined to be near-singular differs by method. The method for class
dgeMatrix completes the factorization, warning if warnSing = TRUE and in any case returning a
valid denseLU object. Users of this method can detect singular x with a suitable warning handler;
see tryCatch. In contrast, the method for class dgCMatrix abandons further computation, throwing
an error if errSing = TRUE and otherwise returning NA. Users of this method can detect singular x
with an error handler or by setting errSing = FALSE and testing for a formal result with is(.,
"sparseLU").

Value

An object representing the factorization, inheriting from virtual class LU. The specific class is
denseLU unless x inherits from virtual class sparseMatrix, in which case it is sparseLU.

References

The LAPACK source code, including documentation; see https://netlib.org/lapack/double/
dgetrf.f.

Davis, T. A. (2006). Direct methods for sparse linear systems. Society for Industrial and Applied
Mathematics. doi:10.1137/1.9780898718881

Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). Johns Hopkins University
Press. doi:10.56021/9781421407944

https://netlib.org/lapack/double/dgetrf.f
https://netlib.org/lapack/double/dgetrf.f
https://doi.org/10.1137/1.9780898718881
https://doi.org/10.56021/9781421407944

118 mat2triplet

See Also

Classes denseLU and sparseLU and their methods.

Classes dgeMatrix and dgCMatrix.

Generic functions expand1 and expand2, for constructing matrix factors from the result.

Generic functions Cholesky, BunchKaufman, Schur, and qr, for computing other factorizations.

Examples

showMethods("lu", inherited = FALSE)
set.seed(0)

---- Dense --

(A1 <- Matrix(rnorm(9L), 3L, 3L))
(lu.A1 <- lu(A1))

(A2 <- round(10 * A1[, -3L]))
(lu.A2 <- lu(A2))

A ~ P1' L U in floating point
str(e.lu.A2 <- expand2(lu.A2), max.level = 2L)
stopifnot(all.equal(A2, Reduce(`%*%`, e.lu.A2)))

---- Sparse ---

A3 <- as(readMM(system.file("external/pores_1.mtx", package = "Matrix")),
"CsparseMatrix")

(lu.A3 <- lu(A3))

A ~ P1' L U P2' in floating point
str(e.lu.A3 <- expand2(lu.A3), max.level = 2L)
stopifnot(all.equal(A3, Reduce(`%*%`, e.lu.A3)))

mat2triplet Map Matrix to its Triplet Representation

Description

From an R object coercible to "TsparseMatrix", typically a (sparse) matrix, produce its triplet rep-
resentation which may collapse to a “Duplet” in the case of binary aka pattern, such as "nMatrix"
objects.

Usage

mat2triplet(x, uniqT = FALSE)

mat2triplet 119

Arguments

x any R object for which as(x, "TsparseMatrix") works; typically a matrix of
one of the Matrix package matrices.

uniqT logical indicating if the triplet representation should be ‘unique’ in the sense
of asUniqueT(byrow=FALSE).

Value

A list, typically with three components,

i vector of row indices for all non-zero entries of x

i vector of columns indices for all non-zero entries of x

x vector of all non-zero entries of x; exists only when as(x, "TsparseMatrix")
is not a "nsparseMatrix".

Note that the order of the entries is determined by the coercion to "TsparseMatrix" and hence
typically with increasing j (and increasing i within ties of j).

Note

The mat2triplet() utility was created to be a more efficient and more predictable substitute for
summary(<sparseMatrix>). UseRs have wrongly expected the latter to return a data frame with
columns i and j which however is wrong for a "diagonalMatrix".

See Also

The summary() method for "sparseMatrix", summary,sparseMatrix-method.

mat2triplet() is conceptually the inverse function of spMatrix and (one case of) sparseMatrix.

Examples

mat2triplet # simple definition

i <- c(1,3:8); j <- c(2,9,6:10); x <- 7 * (1:7)
(Ax <- sparseMatrix(i, j, x = x)) ## 8 x 10 "dgCMatrix"
str(trA <- mat2triplet(Ax))
stopifnot(i == sort(trA$i), sort(j) == trA$j, x == sort(trA$x))

D <- Diagonal(x=4:2)
summary(D)
str(mat2triplet(D))

120 matmult-methods

matmult-methods Matrix (Cross) Products (of Transpose)

Description

The basic matrix product, %*% is implemented for all our Matrix and also for sparseVector
classes, fully analogously to R’s base matrix and vector objects.

The functions crossprod and tcrossprod are matrix products or “cross products”, ideally imple-
mented efficiently without computing t(.)’s unnecessarily. They also return symmetricMatrix
classed matrices when easily detectable, e.g., in crossprod(m), the one argument case.

tcrossprod() takes the cross-product of the transpose of a matrix. tcrossprod(x) is formally
equivalent to, but faster than, the call x %*% t(x), and so is tcrossprod(x, y) instead of x %*%
t(y).

Boolean matrix products are computed via either %&% or boolArith = TRUE.

Usage

S4 method for signature 'CsparseMatrix,diagonalMatrix'
x %*% y

S4 method for signature 'CsparseMatrix,diagonalMatrix'
crossprod(x, y = NULL, boolArith = NA, ...)

.... and for many more signatures

S4 method for signature 'TsparseMatrix,missing'
tcrossprod(x, y = NULL, boolArith = NA, ...)

.... and for many more signatures

Arguments

x a matrix-like object
y a matrix-like object, or for [t]crossprod() NULL (by default); the latter case is

formally equivalent to y = x.
boolArith logical, i.e., NA, TRUE, or FALSE. If true the result is (coerced to) a pattern

matrix, i.e., "nMatrix", unless there are NA entries and the result will be a
"lMatrix". If false the result is (coerced to) numeric. When NA, currently the
default, the result is a pattern matrix when x and y are "nsparseMatrix" and
numeric otherwise.

... potentially more arguments passed to and from methods.

Details

For some classes in the Matrix package, such as dgCMatrix, it is much faster to calculate the cross-
product of the transpose directly instead of calculating the transpose first and then its cross-product.

boolArith = TRUE for regular (“non cross”) matrix products, %*% cannot be specified. Instead, we
provide the %&% operator for boolean matrix products.

matmult-methods 121

Value

A Matrix object, in the one argument case of an appropriate symmetric matrix class, i.e., inheriting
from symmetricMatrix.

Methods

%*% signature(x = "dgeMatrix", y = "dgeMatrix"): Matrix multiplication; ditto for several
other signature combinations, see showMethods("%*%", class = "dgeMatrix").

%*% signature(x = "dtrMatrix", y = "matrix") and other signatures (use showMethods("%*%",
class="dtrMatrix")): matrix multiplication. Multiplication of (matching) triangular matri-
ces now should remain triangular (in the sense of class triangularMatrix).

crossprod signature(x = "dgeMatrix", y = "dgeMatrix"): ditto for several other signatures,
use showMethods("crossprod", class = "dgeMatrix"), matrix crossproduct, an efficient
version of t(x) %*% y.

crossprod signature(x = "CsparseMatrix", y = "missing") returns t(x) %*% x as an dsCMatrix
object.

crossprod signature(x = "TsparseMatrix", y = "missing") returns t(x) %*% x as an dsCMatrix
object.

crossprod,tcrossprod signature(x = "dtrMatrix", y = "matrix") and other signatures, see "%*%"
above.

Note

boolArith = TRUE, FALSE or NA has been newly introduced for Matrix 1.2.0 (March 2015). Its
implementation has still not been tested extensively. Notably the behaviour for sparse matrices with
x slots containing extra zeros had not been documented previously, see the %&% help page.

Currently, boolArith = TRUE is implemented via CsparseMatrix coercions which may be quite
inefficient for dense matrices. Contributions for efficiency improvements are welcome.

See Also

tcrossprod in R’s base, and crossprod and %*%. Matrix package %&% for boolean matrix product
methods.

Examples

A random sparse "incidence" matrix :
m <- matrix(0, 400, 500)
set.seed(12)
m[runif(314, 0, length(m))] <- 1
mm <- as(m, "CsparseMatrix")
object.size(m) / object.size(mm) # smaller by a factor of > 200

tcrossprod() is very fast:
system.time(tCmm <- tcrossprod(mm))# 0 (PIII, 933 MHz)
system.time(cm <- crossprod(t(m))) # 0.16
system.time(cm. <- tcrossprod(m)) # 0.02

122 Matrix

stopifnot(cm == as(tCmm, "matrix"))

show sparse sub matrix
tCmm[1:16, 1:30]

Matrix Construct a Classed Matrix

Description

Construct a Matrix of a class that inherits from Matrix.

Usage

Matrix(data=NA, nrow=1, ncol=1, byrow=FALSE, dimnames=NULL,
sparse = NULL, doDiag = TRUE, forceCheck = FALSE)

Arguments

data an optional numeric data vector or matrix.
nrow when data is not a matrix, the desired number of rows
ncol when data is not a matrix, the desired number of columns
byrow logical. If FALSE (the default) the matrix is filled by columns, otherwise the

matrix is filled by rows.
dimnames a dimnames attribute for the matrix: a list of two character components. They

are set if not NULL (as per default).
sparse logical or NULL, specifying if the result should be sparse or not. By default, it is

made sparse when more than half of the entries are 0.
doDiag logical indicating if a diagonalMatrix object should be returned when the re-

sulting matrix is diagonal (mathematically). As class diagonalMatrix extends
sparseMatrix, this is a natural default for all values of sparse.
Otherwise, if doDiag is false, a dense or sparse (depending on sparse) symmet-
ric matrix will be returned.

forceCheck logical indicating if the checks for structure should even happen when data is
already a "Matrix" object.

Details

If either of nrow or ncol is not given, an attempt is made to infer it from the length of data and the
other parameter. Further, Matrix() makes efforts to keep logical matrices logical, i.e., inheriting
from class lMatrix, and to determine specially structured matrices such as symmetric, triangular
or diagonal ones. Note that a symmetric matrix also needs symmetric dimnames, e.g., by specifying
dimnames = list(NULL,NULL), see the examples.

Most of the time, the function works via a traditional (full) matrix. However, Matrix(0, nrow,ncol)
directly constructs an “empty” sparseMatrix, as does Matrix(FALSE, *).

Although it is sometime possible to mix unclassed matrices (created with matrix) with ones of
class "Matrix", it is much safer to always use carefully constructed ones of class "Matrix".

Matrix 123

Value

Returns matrix of a class that inherits from "Matrix". Only if data is not a matrix and does not
already inherit from class Matrix are the arguments nrow, ncol and byrow made use of.

See Also

The classes Matrix, symmetricMatrix, triangularMatrix, and diagonalMatrix; further, matrix.

Special matrices can be constructed, e.g., via sparseMatrix (sparse), bdiag (block-diagonal),
bandSparse (banded sparse), or Diagonal.

Examples

Matrix(0, 3, 2) # 3 by 2 matrix of zeros -> sparse
Matrix(0, 3, 2, sparse=FALSE)# -> 'dense'

4 cases - 3 different results :
Matrix(0, 2, 2) # diagonal !
Matrix(0, 2, 2, sparse=FALSE)# (ditto)
Matrix(0, 2, 2, doDiag=FALSE)# -> sparse symm. "dsCMatrix"
Matrix(0, 2, 2, sparse=FALSE, doDiag=FALSE)# -> dense symm. "dsyMatrix"

Matrix(1:6, 3, 2) # a 3 by 2 matrix (+ integer warning)
Matrix(1:6 + 1, nrow=3)

logical ones:
Matrix(diag(4) > 0) # -> "ldiMatrix" with diag = "U"
Matrix(diag(4) > 0, sparse=TRUE) # (ditto)
Matrix(diag(4) >= 0) # -> "lsyMatrix" (of all 'TRUE')
triangular
l3 <- upper.tri(matrix(,3,3))
(M <- Matrix(l3)) # -> "ltCMatrix"
Matrix(! l3) # -> "ltrMatrix"
as(l3, "CsparseMatrix")# "lgCMatrix"

Matrix(1:9, nrow=3,
dimnames = list(c("a", "b", "c"), c("A", "B", "C")))

(I3 <- Matrix(diag(3)))# identity, i.e., unit "diagonalMatrix"
str(I3) # note 'diag = "U"' and the empty 'x' slot

(A <- cbind(a=c(2,1), b=1:2))# symmetric *apart* from dimnames
Matrix(A) # hence 'dgeMatrix'
(As <- Matrix(A, dimnames = list(NULL,NULL)))# -> symmetric
forceSymmetric(A) # also symmetric, w/ symm. dimnames
stopifnot(is(As, "symmetricMatrix"),

is(Matrix(0, 3,3), "sparseMatrix"),
is(Matrix(FALSE, 1,1), "sparseMatrix"))

124 Matrix-class

Matrix-class Virtual Class "Matrix" of Matrices

Description

The Matrix class is a class contained by all actual classes in the Matrix package. It is a “virtual”
class.

Slots

Dim an integer vector of length 2 giving the dimensions of the matrix.

Dimnames a list of length 2. Each element must be NULL or a character vector of length equal to the
corresponding element of Dim.

Methods

determinant signature(x = "Matrix", logarithm = "missing"): and

determinant signature(x = "Matrix", logarithm = "logical"): compute the (log) determi-
nant of x. The method chosen depends on the actual Matrix class of x. Note that det also
works for all our matrices, calling the appropriate determinant() method. The Matrix::det
is an exact copy of base::det, but in the correct namespace, and hence calling the S4-aware
version of determinant().).

diff signature(x = "Matrix"): As diff() for traditional matrices, i.e., applying diff() to each
column.

dim signature(x = "Matrix"): extract matrix dimensions dim.

dim<- signature(x = "Matrix", value = "ANY"): where value is integer of length 2. Allows to
reshape Matrix objects, but only when prod(value) == prod(dim(x)).

dimnames signature(x = "Matrix"): extract dimnames.

dimnames<- signature(x = "Matrix", value = "list"): set the dimnames to a list of length
2, see dimnames<-.

length signature(x = "Matrix"): simply defined as prod(dim(x)) (and hence of mode "double").

show signature(object = "Matrix"): show method for printing. For printing sparse matrices,
see printSpMatrix.

zapsmall signature(x = "Matrix"): typically used for "dMatrix": round() matrix entries such
that (relatively) very small entries become zero exactly.

image signature(object = "Matrix"): draws an image of the matrix entries, using levelplot()
from package lattice.

head signature(object = "Matrix"): return only the “head”, i.e., the first few rows.

tail signature(object = "Matrix"): return only the “tail”, i.e., the last few rows of the respec-
tive matrix.

as.matrix, as.array signature(x = "Matrix"): the same as as(x, "matrix"); see also the note
below.

Matrix-class 125

as.vector signature(x = "Matrix", mode = "missing"): as.vector(m) should be identical to
as.vector(as(m,"matrix")), implemented more efficiently for some subclasses.

as(x, "vector"), as(x, "numeric") etc, similarly.

coerce signature(from = "ANY", to = "Matrix"): This relies on a correct as.matrix() method
for from.

There are many more methods that (conceptually should) work for all "Matrix" objects, e.g.,
colSums, rowMeans. Even base functions may work automagically (if they first call as.matrix()
on their principal argument), e.g., apply, eigen, svd or kappa all do work via coercion to a “tradi-
tional” (dense) matrix.

Note

Loading the Matrix namespace “overloads” as.matrix and as.array in the base namespace by
the equivalent of function(x) as(x, "matrix"). Consequently, as.matrix(m) or as.array(m)
will properly work when m inherits from the "Matrix" class — also for functions in package base
and other packages. E.g., apply or outer can therefore be applied to "Matrix" matrices.

Author(s)

Douglas Bates <bates@stat.wisc.edu> and Martin Maechler

See Also

the classes dgeMatrix, dgCMatrix, and function Matrix for construction (and examples).

Methods, e.g., for kronecker.

Examples

slotNames("Matrix")

cl <- getClass("Matrix")
names(cl@subclasses) # more than 40 ..

showClass("Matrix")#> output with slots and all subclasses

(M <- Matrix(c(0,1,0,0), 6, 4))
dim(M)
diag(M)
cm <- M[1:4,] + 10*Diagonal(4)
diff(M)
can reshape it even :
dim(M) <- c(2, 12)
M
stopifnot(identical(M, Matrix(c(0,1,0,0), 2,12)),

all.equal(det(cm),
determinant(as(cm,"matrix"), log=FALSE)$modulus,
check.attributes=FALSE))

126 MatrixClass

Matrix-notyet Virtual Classes Not Yet Really Implemented and Used

Description

iMatrix is the virtual class of all integer (S4) matrices. It extends the Matrix class directly.

zMatrix is the virtual class of all complex (S4) matrices. It extends the Matrix class directly.

Examples

showClass("iMatrix")
showClass("zMatrix")

MatrixClass The Matrix (Super-) Class of a Class

Description

Return the (maybe super-)class of class cl from package Matrix, returning character(0) if there
is none.

Usage

MatrixClass(cl, cld = getClassDef(cl), ...Matrix = TRUE,
dropVirtual = TRUE, ...)

Arguments

cl string, class name

cld its class definition

...Matrix logical indicating if the result must be of pattern "[dlniz]..Matrix" where
the first letter "[dlniz]" denotes the content kind.

dropVirtual logical indicating if virtual classes are included or not.

... further arguments are passed to .selectSuperClasses().

Value

a character string

Author(s)

Martin Maechler, 24 Mar 2009

MatrixFactorization-class 127

See Also

Matrix, the mother of all Matrix classes.

Examples

mkA <- setClass("A", contains="dgCMatrix")
(A <- mkA())
stopifnot(identical(

MatrixClass("A"),
"dgCMatrix"))

MatrixFactorization-class

Virtual Class "MatrixFactorization" of Matrix Factorizations

Description

MatrixFactorization is the virtual class of factorizations of m×n matrices A, having the general
form

P1AP2 = A1 · · ·Ap

or (equivalently)
A = P ′

1A1 · · ·ApP
′
2

where P1 and P2 are permutation matrices. Factorizations requiring symmetric A have the con-
straint P2 = P ′

1, and factorizations without row or column pivoting have the constraints P1 = Im
and P2 = In, where Im and In are the m×m and n× n identity matrices.

CholeskyFactorization, BunchKaufmanFactorization, SchurFactorization, LU, and QR are
the virtual subclasses of MatrixFactorization containing all Cholesky, Bunch-Kaufman, Schur,
LU, and QR factorizations, respectively.

Slots

Dim an integer vector of length 2 giving the dimensions of the factorized matrix.

Dimnames a list of length 2 preserving the dimnames of the factorized matrix. Each element must
be NULL or a character vector of length equal to the corresponding element of Dim.

Methods

determinant signature(x = "MatrixFactorization", logarithm = "missing"): sets logarithm
= TRUE and recalls the generic function.

dim signature(x = "MatrixFactorization"): returns x@Dim.

dimnames signature(x = "MatrixFactorization"): returns x@Dimnames.

dimnames<- signature(x = "MatrixFactorization", value = "NULL"): returns x with x@Dimnames
set to list(NULL, NULL).

dimnames<- signature(x = "MatrixFactorization", value = "list"): returns x with x@Dimnames
set to value.

128 ndenseMatrix-class

length signature(x = "MatrixFactorization"): returns prod(x@Dim).

show signature(object = "MatrixFactorization"): prints the internal representation of the
factorization using str.

solve signature(a = "MatrixFactorization", b = .): see solve-methods.

unname signature(obj = "MatrixFactorization"): returns obj with obj@Dimnames set to list(NULL,
NULL).

See Also

Classes extending CholeskyFactorization, namely Cholesky, pCholesky, and CHMfactor.

Classes extending BunchKaufmanFactorization, namely BunchKaufman and pBunchKaufman.

Classes extending SchurFactorization, namely Schur.

Classes extending LU, namely denseLU and sparseLU.

Classes extending QR, namely sparseQR.

Generic functions Cholesky, BunchKaufman, Schur, lu, and qr for computing factorizations.

Generic functions expand1 and expand2 for constructing matrix factors from MatrixFactorization
objects.

Examples

showClass("MatrixFactorization")

ndenseMatrix-class Virtual Class "ndenseMatrix" of Dense Logical Matrices

Description

ndenseMatrix is the virtual class of all dense logical (S4) matrices. It extends both denseMatrix
and lMatrix directly.

Slots

x: logical vector containing the entries of the matrix.

Dim, Dimnames: see Matrix.

Extends

Class "nMatrix", directly. Class "denseMatrix", directly. Class "Matrix", by class "nMatrix".
Class "Matrix", by class "denseMatrix".

nearPD 129

Methods

%*% signature(x = "nsparseMatrix", y = "ndenseMatrix"): ...

%*% signature(x = "ndenseMatrix", y = "nsparseMatrix"): ...

crossprod signature(x = "nsparseMatrix", y = "ndenseMatrix"): ...

crossprod signature(x = "ndenseMatrix", y = "nsparseMatrix"): ...

as.vector signature(x = "ndenseMatrix", mode = "missing"): ...

diag signature(x = "ndenseMatrix"): extracts the diagonal as for all matrices, see the generic
diag().

which signature(x = "ndenseMatrix"), semantically equivalent to base function which(x, arr.ind);
for details, see the lMatrix class documentation.

See Also

Class ngeMatrix and the other subclasses.

Examples

showClass("ndenseMatrix")

as(diag(3) > 0, "ndenseMatrix")# -> "nge"

nearPD Nearest Positive Definite Matrix

Description

Compute the nearest positive definite matrix to an approximate one, typically a correlation or
variance-covariance matrix.

Usage

nearPD(x, corr = FALSE, keepDiag = FALSE, base.matrix = FALSE,
do2eigen = TRUE, doSym = FALSE,
doDykstra = TRUE, only.values = FALSE,
ensureSymmetry = !isSymmetric(x),
eig.tol = 1e-06, conv.tol = 1e-07, posd.tol = 1e-08,
maxit = 100, conv.norm.type = "I", trace = FALSE)

Arguments

x numeric n × n approximately positive definite matrix, typically an approxima-
tion to a correlation or covariance matrix. If x is not symmetric (and ensureSymmetry
is not false), symmpart(x) is used.

corr logical indicating if the matrix should be a correlation matrix.

130 nearPD

keepDiag logical, generalizing corr: if TRUE, the resulting matrix should have the same
diagonal (diag(x)) as the input matrix.

base.matrix logical indicating if the resulting mat component should be a base matrix or
(by default) a Matrix of class dpoMatrix.

do2eigen logical indicating if a posdefify() eigen step should be applied to the result of
the Higham algorithm.

doSym logical indicating if X <- (X + t(X))/2 should be done, after X <- tcrossprod(Qd,
Q); some doubt if this is necessary.

doDykstra logical indicating if Dykstra’s correction should be used; true by default. If false,
the algorithm is basically the direct fixpoint iteration Yk = PU (PS(Yk−1)).

only.values logical; if TRUE, the result is just the vector of eigenvalues of the approximating
matrix.

ensureSymmetry logical; by default, symmpart(x) is used whenever isSymmetric(x) is not true.
The user can explicitly set this to TRUE or FALSE, saving the symmetry test.
Beware however that setting it FALSE for an asymmetric input x, is typically
nonsense!

eig.tol defines relative positiveness of eigenvalues compared to largest one, λ1. Eigen-
values λk are treated as if zero when λk/λ1 ≤ eig.tol.

conv.tol convergence tolerance for Higham algorithm.

posd.tol tolerance for enforcing positive definiteness (in the final posdefify step when
do2eigen is TRUE).

maxit maximum number of iterations allowed.

conv.norm.type convergence norm type (norm(*, type)) used for Higham algorithm. The de-
fault is "I" (infinity), for reasons of speed (and back compatibility); using "F"
is more in line with Higham’s proposal.

trace logical or integer specifying if convergence monitoring should be traced.

Details

This implements the algorithm of Higham (2002), and then (if do2eigen is true) forces positive
definiteness using code from posdefify. The algorithm of Knol and ten Berge (1989) (not imple-
mented here) is more general in that it allows constraints to (1) fix some rows (and columns) of the
matrix and (2) force the smallest eigenvalue to have a certain value.

Note that setting corr = TRUE just sets diag(.) <- 1 within the algorithm.

Higham (2002) uses Dykstra’s correction, but the version by Jens Oehlschlägel did not use it (ac-
cidentally), and still gave reasonable results; this simplification, now only used if doDykstra =
FALSE, was active in nearPD() up to Matrix version 0.999375-40.

Value

If only.values = TRUE, a numeric vector of eigenvalues of the approximating matrix; Otherwise,
as by default, an S3 object of class "nearPD", basically a list with components

mat a matrix of class dpoMatrix, the computed positive-definite matrix.

eigenvalues numeric vector of eigenvalues of mat.

nearPD 131

corr logical, just the argument corr.

normF the Frobenius norm (norm(x-X, "F")) of the difference between the original
and the resulting matrix.

iterations number of iterations needed.

converged logical indicating if iterations converged.

Author(s)

Jens Oehlschlägel donated a first version. Subsequent changes by the Matrix package authors.

References

Cheng, Sheung Hun and Higham, Nick (1998) A Modified Cholesky Algorithm Based on a Sym-
metric Indefinite Factorization; SIAM J. Matrix Anal.\ Appl., 19, 1097–1110.

Knol DL, ten Berge JMF (1989) Least-squares approximation of an improper correlation matrix by
a proper one. Psychometrika 54, 53–61.

Higham, Nick (2002) Computing the nearest correlation matrix - a problem from finance; IMA
Journal of Numerical Analysis 22, 329–343.

See Also

A first version of this (with non-optional corr=TRUE) has been available as nearcor(); and more
simple versions with a similar purpose posdefify(), both from package sfsmisc.

Examples

Higham(2002), p.334f - simple example
A <- matrix(1, 3,3); A[1,3] <- A[3,1] <- 0
n.A <- nearPD(A, corr=TRUE, do2eigen=FALSE)
n.A[c("mat", "normF")]
n.A.m <- nearPD(A, corr=TRUE, do2eigen=FALSE, base.matrix=TRUE)$mat
stopifnot(exprs = { #=--------------

all.equal(n.A$mat[1,2], 0.760689917)
all.equal(n.A$normF, 0.52779033, tolerance=1e-9)
all.equal(n.A.m, unname(as.matrix(n.A$mat)), tolerance = 1e-15)# seen rel.d.= 1.46e-16

})
set.seed(27)
m <- matrix(round(rnorm(25),2), 5, 5)
m <- m + t(m)
diag(m) <- pmax(0, diag(m)) + 1
(m <- round(cov2cor(m), 2))

str(near.m <- nearPD(m, trace = TRUE))
round(near.m$mat, 2)
norm(m - near.m$mat) # 1.102 / 1.08

if(requireNamespace("sfsmisc")) {
m2 <- sfsmisc::posdefify(m) # a simpler approach
norm(m - m2) # 1.185, i.e., slightly "less near"

}

132 ngeMatrix-class

round(nearPD(m, only.values=TRUE), 9)

A longer example, extended from Jens' original,
showing the effects of some of the options:

pr <- Matrix(c(1, 0.477, 0.644, 0.478, 0.651, 0.826,
0.477, 1, 0.516, 0.233, 0.682, 0.75,
0.644, 0.516, 1, 0.599, 0.581, 0.742,
0.478, 0.233, 0.599, 1, 0.741, 0.8,
0.651, 0.682, 0.581, 0.741, 1, 0.798,
0.826, 0.75, 0.742, 0.8, 0.798, 1),

nrow = 6, ncol = 6)

nc. <- nearPD(pr, conv.tol = 1e-7) # default
nc.$iterations # 2
nc.1 <- nearPD(pr, conv.tol = 1e-7, corr = TRUE)
nc.1$iterations # 11 / 12 (!)
ncr <- nearPD(pr, conv.tol = 1e-15)
str(ncr)# still 2 iterations
ncr.1 <- nearPD(pr, conv.tol = 1e-15, corr = TRUE)
ncr.1 $ iterations # 27 / 30 !

ncF <- nearPD(pr, conv.tol = 1e-15, conv.norm = "F")
stopifnot(all.equal(ncr, ncF))# norm type does not matter at all in this example

But indeed, the 'corr = TRUE' constraint did ensure a better solution;
cov2cor() does not just fix it up equivalently :
norm(pr - cov2cor(ncr$mat)) # = 0.09994
norm(pr - ncr.1$mat) # = 0.08746 / 0.08805

3) a real data example from a 'systemfit' model (3 eq.):
(load(system.file("external", "symW.rda", package="Matrix"))) # "symW"
dim(symW) # 24 x 24
class(symW)# "dsCMatrix": sparse symmetric
if(dev.interactive()) image(symW)
EV <- eigen(symW, only=TRUE)$values
summary(EV) ## looking more closely {EV sorted decreasingly}:
tail(EV)# all 6 are negative
EV2 <- eigen(sWpos <- nearPD(symW)$mat, only=TRUE)$values
stopifnot(EV2 > 0)
if(requireNamespace("sfsmisc")) {

plot(pmax(1e-3,EV), EV2, type="o", log="xy", xaxt="n", yaxt="n")
for(side in 1:2) sfsmisc::eaxis(side)

} else
plot(pmax(1e-3,EV), EV2, type="o", log="xy")

abline(0, 1, col="red3", lty=2)

ngeMatrix-class Class "ngeMatrix" of General Dense Nonzero-pattern Matrices

nMatrix-class 133

Description

This is the class of general dense nonzero-pattern matrices, see nMatrix.

Slots

x: Object of class "logical". The logical values that constitute the matrix, stored in column-major
order.

Dim,Dimnames: The dimension (a length-2 "integer") and corresponding names (or NULL), see the
Matrix class.

factors: Object of class "list". A named list of factorizations that have been computed for the
matrix.

Extends

Class "ndenseMatrix", directly. Class "lMatrix", by class "ndenseMatrix". Class "denseMatrix",
by class "ndenseMatrix". Class "Matrix", by class "ndenseMatrix". Class "Matrix", by class
"ndenseMatrix".

Methods

Currently, mainly t() and coercion methods (for as(.)); use, e.g., showMethods(class="ngeMatrix")
for details.

See Also

Non-general logical dense matrix classes such as ntrMatrix, or nsyMatrix; sparse logical classes
such as ngCMatrix.

Examples

showClass("ngeMatrix")
"lgeMatrix" is really more relevant

nMatrix-class Class "nMatrix" of Non-zero Pattern Matrices

Description

The nMatrix class is the virtual “mother” class of all non-zero pattern (or simply pattern) matrices
in the Matrix package.

Slots

Common to all matrix object in the package:

Dim: Object of class "integer" - the dimensions of the matrix - must be an integer vector with
exactly two non-negative values.

Dimnames: list of length two; each component containing NULL or a character vector length
equal the corresponding Dim element.

134 nnzero-methods

Methods

coerce signature(from = "matrix", to = "nMatrix"): Note that these coercions (must) coerce
NAs to non-zero, hence conceptually TRUE. This is particularly important when sparseMatrix
objects are coerced to "nMatrix" and hence to nsparseMatrix.

— — —

Additional methods contain group methods, such as

Ops signature(e1 = "nMatrix", e2 = "...."), . . .

Arith signature(e1 = "nMatrix", e2 = "...."), . . .

Compare signature(e1 = "nMatrix", e2 = "...."), . . .

Logic signature(e1 = "nMatrix", e2 = "...."), . . .

Summary signature(x = "nMatrix", "...."), . . .

See Also

The classes lMatrix, nsparseMatrix, and the mother class, Matrix.

Examples

getClass("nMatrix")

L3 <- Matrix(upper.tri(diag(3)))
L3 # an "ltCMatrix"
as(L3, "nMatrix") # -> ntC*

similar, not using Matrix()
as(upper.tri(diag(3)), "nMatrix")# currently "ngTMatrix"

nnzero-methods The Number of Non-Zero Values of a Matrix

Description

Returns the number of non-zero values of a numeric-like R object, and in particular an object x
inheriting from class Matrix.

Usage

nnzero(x, na.counted = NA)

nnzero-methods 135

Arguments

x an R object, typically inheriting from class Matrix or numeric.

na.counted a logical describing how NAs should be counted. There are three possible
settings for na.counted:

TRUE NAs are counted as non-zero (since “they are not zero”).
NA (default)the result will be NA if there are NA’s in x (since “NA’s are not

known, i.e., may be zero”).
FALSE NAs are omitted from x before the non-zero entries are counted.

For sparse matrices, you may often want to use na.counted = TRUE.

Value

the number of non zero entries in x (typically integer).

Note that for a symmetric sparse matrix S (i.e., inheriting from class symmetricMatrix), nnzero(S)
is typically twice the length(S@x).

Methods

signature(x = "ANY") the default method for non-Matrix class objects, simply counts the num-
ber 0s in x, counting NA’s depending on the na.counted argument, see above.

signature(x = "denseMatrix") conceptually the same as for traditional matrix objects, care has
to be taken for "symmetricMatrix" objects.

signature(x = "diagonalMatrix"), and signature(x = "indMatrix") fast simple methods for
these special "sparseMatrix" classes.

signature(x = "sparseMatrix") typically, the most interesting method, also carefully taking
"symmetricMatrix" objects into account.

See Also

The Matrix class also has a length method; typically, length(M) is much larger than nnzero(M)
for a sparse matrix M, and the latter is a better indication of the size of M.

drop0, zapsmall.

Examples

m <- Matrix(0+1:28, nrow = 4)
m[-3,c(2,4:5,7)] <- m[3, 1:4] <- m[1:3, 6] <- 0
(mT <- as(m, "TsparseMatrix"))
nnzero(mT)
(S <- crossprod(mT))
nnzero(S)
str(S) # slots are smaller than nnzero()
stopifnot(nnzero(S) == sum(as.matrix(S) != 0))# failed earlier

data(KNex, package = "Matrix")
M <- KNex$mm
class(M)

136 norm-methods

dim(M)
length(M); stopifnot(length(M) == prod(dim(M)))
nnzero(M) # more relevant than length
the above are also visible from
str(M)

norm-methods Matrix Norms

Description

Computes a matrix norm of x, using Lapack for dense matrices. The norm can be the one ("O", or
"1") norm, the infinity ("I") norm, the Frobenius ("F") norm, the maximum modulus ("M") among
elements of a matrix, or the spectral norm or 2-norm ("2"), as determined by the value of type.

Usage

norm(x, type, ...)

Arguments

x a real or complex matrix.

type A character indicating the type of norm desired.

"O", "o" or "1" specifies the one norm, (maximum absolute column sum);
"I" or "i" specifies the infinity norm (maximum absolute row sum);
"F" or "f" specifies the Frobenius norm (the Euclidean norm of x treated as if

it were a vector);
"M" or "m" specifies the maximum modulus of all the elements in x; and
"2" specifies the “spectral norm” aka “2-norm”, which is the largest singular

value (svd) of x.

The default is "O". Only the first character of type[1] is used.

... further arguments passed to or from other methods.

Details

For dense matrices, the methods eventually call the Lapack functions dlange, dlansy, dlantr,
zlange, zlansy, and zlantr.

Value

A numeric value of class "norm", representing the quantity chosen according to type.

References

Anderson, E., et al. (1994). LAPACK User’s Guide, 2nd edition, SIAM, Philadelphia.

nsparseMatrix-class 137

See Also

onenormest(), an approximate randomized estimate of the 1-norm condition number, efficient for
large sparse matrices.

The norm() function from R’s base package.

Examples

x <- Hilbert(9)
norm(x)# = "O" = "1"
stopifnot(identical(norm(x), norm(x, "1")))
norm(x, "I")# the same, because 'x' is symmetric

allnorms <- function(x) {
norm(NA, "2") did not work until R 4.0.0
do2 <- getRversion() >= "4.0.0" || !anyNA(x)
vapply(c("1", "I", "F", "M", if(do2) "2"), norm, 0, x = x)

}
allnorms(x)
allnorms(Hilbert(10))

i <- c(1,3:8); j <- c(2,9,6:10); x <- 7 * (1:7)
A <- sparseMatrix(i, j, x = x) ## 8 x 10 "dgCMatrix"
(sA <- sparseMatrix(i, j, x = x, symmetric = TRUE)) ## 10 x 10 "dsCMatrix"
(tA <- sparseMatrix(i, j, x = x, triangular= TRUE)) ## 10 x 10 "dtCMatrix"
(allnorms(A) -> nA)
allnorms(sA)
allnorms(tA)
stopifnot(all.equal(nA, allnorms(as(A, "matrix"))),

all.equal(nA, allnorms(tA))) # because tA == rbind(A, 0, 0)
A. <- A; A.[1,3] <- NA
stopifnot(is.na(allnorms(A.))) # gave error

nsparseMatrix-class Sparse "pattern" Matrices

Description

The nsparseMatrix class is a virtual class of sparse “pattern” matrices, i.e., binary matrices con-
ceptually with TRUE/FALSE entries. Only the positions of the elements that are TRUE are stored.

These can be stored in the “triplet” form (TsparseMatrix, subclasses ngTMatrix, nsTMatrix, and
ntTMatrix which really contain pairs, not triplets) or in compressed column-oriented form (class
CsparseMatrix, subclasses ngCMatrix, nsCMatrix, and ntCMatrix) or–rarely–in compressed
row-oriented form (class RsparseMatrix, subclasses ngRMatrix, nsRMatrix, and ntRMatrix).
The second letter in the name of these non-virtual classes indicates general, symmetric, or triangular.

138 nsparseMatrix-class

Objects from the Class

Objects can be created by calls of the form new("ngCMatrix", ...) and so on. More frequently
objects are created by coercion of a numeric sparse matrix to the pattern form for use in the symbolic
analysis phase of an algorithm involving sparse matrices. Such algorithms often involve two phases:
a symbolic phase wherein the positions of the non-zeros in the result are determined and a numeric
phase wherein the actual results are calculated. During the symbolic phase only the positions of the
non-zero elements in any operands are of interest, hence numeric sparse matrices can be treated as
sparse pattern matrices.

Slots

uplo: Object of class "character". Must be either "U", for upper triangular, and "L", for lower
triangular. Present in the triangular and symmetric classes but not in the general class.

diag: Object of class "character". Must be either "U", for unit triangular (diagonal is all ones),
or "N" for non-unit. The implicit diagonal elements are not explicitly stored when diag is
"U". Present in the triangular classes only.

p: Object of class "integer" of pointers, one for each column (row), to the initial (zero-based)
index of elements in the column. Present in compressed column-oriented and compressed
row-oriented forms only.

i: Object of class "integer" of length nnzero (number of non-zero elements). These are the row
numbers for each TRUE element in the matrix. All other elements are FALSE. Present in
triplet and compressed column-oriented forms only.

j: Object of class "integer" of length nnzero (number of non-zero elements). These are the
column numbers for each TRUE element in the matrix. All other elements are FALSE. Present
in triplet and compressed row-oriented forms only.

Dim: Object of class "integer" - the dimensions of the matrix.

Methods

coerce signature(from = "dgCMatrix", to = "ngCMatrix"), and many similar ones; typically
you should coerce to "nsparseMatrix" (or "nMatrix"). Note that coercion to a sparse pattern
matrix records all the potential non-zero entries, i.e., explicit (“non-structural”) zeroes are
coerced to TRUE, not FALSE, see the example.

t signature(x = "ngCMatrix"): returns the transpose of x

which signature(x = "lsparseMatrix"), semantically equivalent to base function which(x,
arr.ind); for details, see the lMatrix class documentation.

See Also

the class dgCMatrix

Examples

(m <- Matrix(c(0,0,2:0), 3,5, dimnames=list(LETTERS[1:3],NULL)))
``extract the nonzero-pattern of (m) into an nMatrix'':
nm <- as(m, "nsparseMatrix") ## -> will be a "ngCMatrix"
str(nm) # no 'x' slot

nsyMatrix-class 139

nnm <- !nm # no longer sparse
consistency check:
stopifnot(xor(as(nm, "matrix"),

as(nnm, "matrix")))

low-level way of adding "non-structural zeros" :
nnm <- as(nnm, "lsparseMatrix") # "lgCMatrix"
nnm@x[2:4] <- c(FALSE, NA, NA)
nnm
as(nnm, "nMatrix") # NAs *and* non-structural 0 |---> 'TRUE'

data(KNex, package = "Matrix")
nmm <- as(KNex $ mm, "nMatrix")
str(xlx <- crossprod(nmm))# "nsCMatrix"
stopifnot(isSymmetric(xlx))
image(xlx, main=paste("crossprod(nmm) : Sparse", class(xlx)))

nsyMatrix-class Symmetric Dense Nonzero-Pattern Matrices

Description

The "nsyMatrix" class is the class of symmetric, dense nonzero-pattern matrices in non-packed
storage and "nspMatrix" is the class of of these in packed storage. Only the upper triangle or the
lower triangle is stored.

Objects from the Class

Objects can be created by calls of the form new("nsyMatrix", ...).

Slots

uplo: Object of class "character". Must be either "U", for upper triangular, and "L", for lower
triangular.

x: Object of class "logical". The logical values that constitute the matrix, stored in column-major
order.

Dim,Dimnames: The dimension (a length-2 "integer") and corresponding names (or NULL), see the
Matrix class.

factors: Object of class "list". A named list of factorizations that have been computed for the
matrix.

Extends

"nsyMatrix" extends class "ngeMatrix", directly, whereas
"nspMatrix" extends class "ndenseMatrix", directly.

Both extend class "symmetricMatrix", directly, and class "Matrix" and others, indirectly, use
showClass("nsyMatrix"), e.g., for details.

140 ntrMatrix-class

Methods

Currently, mainly t() and coercion methods (for as(.); use, e.g., showMethods(class="nsyMatrix")
for details.

See Also

ngeMatrix, Matrix, t

Examples

(s0 <- new("nsyMatrix"))

(M2 <- Matrix(c(TRUE, NA, FALSE, FALSE), 2, 2)) # logical dense (ltr)
(sM <- M2 & t(M2)) # -> "lge"
class(sM <- as(sM, "nMatrix")) # -> "nge"

(sM <- as(sM, "symmetricMatrix")) # -> "nsy"
str(sM <- as(sM, "packedMatrix")) # -> "nsp", i.e., packed symmetric

ntrMatrix-class Triangular Dense Logical Matrices

Description

The "ntrMatrix" class is the class of triangular, dense, logical matrices in nonpacked storage. The
"ntpMatrix" class is the same except in packed storage.

Slots

x: Object of class "logical". The logical values that constitute the matrix, stored in column-major
order.

uplo: Object of class "character". Must be either "U", for upper triangular, and "L", for lower
triangular.

diag: Object of class "character". Must be either "U", for unit triangular (diagonal is all ones),
or "N"; see triangularMatrix.

Dim,Dimnames: The dimension (a length-2 "integer") and corresponding names (or NULL), see the
Matrix class.

factors: Object of class "list". A named list of factorizations that have been computed for the
matrix.

Extends

"ntrMatrix" extends class "ngeMatrix", directly, whereas
"ntpMatrix" extends class "ndenseMatrix", directly.

Both extend Class "triangularMatrix", directly, and class "denseMatrix", "lMatrix" and oth-
ers, indirectly, use showClass("nsyMatrix"), e.g., for details.

pack-methods 141

Methods

Currently, mainly t() and coercion methods (for as(.); use, e.g., showMethods(class="ntrMatrix")
for details.

See Also

Classes ngeMatrix, Matrix; function t

Examples

showClass("ntrMatrix")

str(new("ntpMatrix"))
(nutr <- as(upper.tri(matrix(, 4, 4)), "ndenseMatrix"))
str(nutp <- pack(nutr)) # packed matrix: only 10 = 4*(4+1)/2 entries
!nutp # the logical negation (is *not* logical triangular !)
but this one is:
stopifnot(all.equal(nutp, pack(!!nutp)))

pack-methods Representation of Packed and Unpacked Dense Matrices

Description

pack() coerces dense symmetric and dense triangular matrices from unpacked format (storing the
full matrix) to packed format (storing only one of the upper and lower triangles). unpack() per-
forms the reverse coercion. The two formats are formalized by the virtual classes "packedMatrix"
and "unpackedMatrix".

Usage

pack(x, ...)
S4 method for signature 'dgeMatrix'
pack(x, symmetric = NA, upperTri = NA, ...)
S4 method for signature 'lgeMatrix'
pack(x, symmetric = NA, upperTri = NA, ...)
S4 method for signature 'ngeMatrix'
pack(x, symmetric = NA, upperTri = NA, ...)
S4 method for signature 'matrix'
pack(x, symmetric = NA, upperTri = NA, ...)

unpack(x, ...)

142 pack-methods

Arguments

x A dense symmetric or dense triangular matrix.

For pack(): typically an "unpackedMatrix" or a standard "matrix", though
"packedMatrix" are allowed and returned unchanged.

For unpack(): typically a "packedMatrix", though "unpackedMatrix" are
allowed and returned unchanged.

symmetric logical (including NA) optionally indicating whether x is symmetric (or triangu-
lar).

upperTri (for triangular x only) logical (including NA) indicating whether x is upper (or
lower) triangular.

... further arguments passed to or from other methods.

Details

pack(x) checks matrices x not inheriting from one of the virtual classes "symmetricMatrix"
"triangularMatrix" for symmetry (via isSymmetric()) then for upper and lower triangularity
(via isTriangular()) in order to identify a suitable coercion. Setting one or both of symmetric
and upperTri to TRUE or FALSE rather than NA allows skipping of irrelevant tests for large matrices
known to be symmetric or (upper or lower) triangular.

Users should not assume that pack() and unpack() are inverse operations. Specifically, y <-
unpack(pack(x)) may not reproduce an "unpackedMatrix" x in the sense of identical(). See
the examples.

Value

For pack(): a "packedMatrix" giving the condensed representation of x.

For unpack(): an "unpackedMatrix" giving the full storage representation of x.

Examples

showMethods("pack")
(s <- crossprod(matrix(sample(15), 5,3))) # traditional symmetric matrix
(sp <- pack(s))
mt <- as.matrix(tt <- tril(s))
(pt <- pack(mt))
stopifnot(identical(pt, pack(tt)),

dim(s) == dim(sp), all(s == sp),
dim(mt) == dim(pt), all(mt == pt), all(mt == tt))

showMethods("unpack")
(cp4 <- chol(Hilbert(4))) # is triangular
tp4 <- pack(cp4) # [t]riangular [p]acked
str(tp4)
(unpack(tp4))
stopifnot(identical(tp4, pack(unpack(tp4))))

z1 <- new("dsyMatrix", Dim = c(2L, 2L), x = as.double(1:4), uplo = "U")
z2 <- unpack(pack(z1))

packedMatrix-class 143

stopifnot(!identical(z1, z2), # _not_ identical
all(z1 == z2)) # but mathematically equal

cbind(z1@x, z2@x) # (unused!) lower triangle is "lost" in translation

packedMatrix-class Virtual Class "packedMatrix" of Packed Dense Matrices

Description

Class "packedMatrix" is the virtual class of dense symmetric or triangular matrices in "packed"
format, storing only the choose(n+1,2) == n*(n+1)/2 elements of the upper or lower triangle of
an n-by-n matrix. It is used to define common methods for efficient subsetting, transposing, etc. of
its proper subclasses: currently "[dln]spMatrix" (packed symmetric), "[dln]tpMatrix" (packed
triangular), and subclasses of these, such as "dppMatrix".

Slots

uplo: "character"; either "U", for upper triangular, and "L", for lower.
Dim, Dimnames: as all Matrix objects.

Extends

Class "denseMatrix", directly. Class "Matrix", by class "denseMatrix", distance 2.

Methods

pack signature(x = "packedMatrix"): ...
unpack signature(x = "packedMatrix"): ...
isSymmetric signature(object = "packedMatrix"): ...
isTriangular signature(object = "packedMatrix"): ...
isDiagonal signature(object = "packedMatrix"): ...
t signature(x = "packedMatrix"): ...
diag signature(x = "packedMatrix"): ...
diag<- signature(x = "packedMatrix"): ...

Author(s)

Mikael Jagan

See Also

pack and unpack; its virtual "complement" "unpackedMatrix"; its proper subclasses "dspMatrix",
"ltpMatrix", etc.

Examples

showClass("packedMatrix")
showMethods(classes = "packedMatrix")

144 pMatrix-class

pMatrix-class Permutation matrices

Description

The pMatrix class is the class of permutation matrices, stored as 1-based integer permutation vec-
tors. A permutation matrix is a square matrix whose rows and columns are all standard unit vectors.
It follows that permutation matrices are a special case of index matrices (hence pMatrix is defined
as a direct subclass of indMatrix).

Multiplying a matrix on the left by a permutation matrix is equivalent to permuting its rows. Anal-
ogously, multiplying a matrix on the right by a permutation matrix is equivalent to permuting its
columns. Indeed, such products are implemented in Matrix as indexing operations; see ‘Details’
below.

Details

By definition, a permutation matrix is both a row index matrix and a column index matrix. However,
the perm slot of a pMatrix cannot be used interchangeably as a row index vector and column index
vector. If margin=1, then perm is a row index vector, and the corresponding column index vector
can be computed as invPerm(perm), i.e., by inverting the permutation. Analogously, if margin=2,
then perm and invPerm(perm) are column and row index vectors, respectively.

Given an n-by-n row permutation matrix P with perm slot p and a matrix M with conformable di-
mensions, we have

PM = P %*% M = M[p,]
MP = M %*% P = M[, i(p)]
P ′M = crossprod(P, M) = M[i(p),]
MP ′ = tcrossprod(M, P) = M[, p]
P ′P = crossprod(P) = Diagonal(n)
PP ′ = tcrossprod(P) = Diagonal(n)

where i := invPerm.

Objects from the Class

Objects can be created explicitly with calls of the form new("pMatrix", ...), but they are more
commonly created by coercing 1-based integer index vectors, with calls of the form as(., "pMatrix");
see ‘Methods’ below.

Slots

margin,perm inherited from superclass indMatrix. Here, perm is an integer vector of length
Dim[1] and a permutation of 1:Dim[1].

Dim,Dimnames inherited from virtual superclass Matrix.

pMatrix-class 145

Extends

Class "indMatrix", directly.

Methods

%*% signature(x = "pMatrix", y = "Matrix") and others listed by showMethods("%*%", classes
= "pMatrix"): matrix products implemented where appropriate as indexing operations.

coerce signature(from = "numeric", to = "pMatrix"): supporting typical pMatrix construc-
tion from a vector of positive integers, specifically a permutation of 1:n. Row permutation is
assumed.

t signature(x = "pMatrix"): the transpose, which is a pMatrix with identical perm but opposite
margin. Coincides with the inverse, as permutation matrices are orthogonal.

solve signature(a = "pMatrix", b = "missing"): the inverse permutation matrix, which is a
pMatrix with identical perm but opposite margin. Coincides with the transpose, as permuta-
tion matrices are orthogonal. See showMethods("solve", classes = "pMatrix") for more
signatures.

determinant signature(x = "pMatrix", logarithm = "logical"): always returning 1 or -1, as
permutation matrices are orthogonal. In fact, the result is exactly the sign of the permutation.

See Also

Superclass indMatrix of index matrices, for many inherited methods; invPerm, for computing
inverse permutation vectors.

Examples

(pm1 <- as(as.integer(c(2,3,1)), "pMatrix"))
t(pm1) # is the same as
solve(pm1)
pm1 %*% t(pm1) # check that the transpose is the inverse
stopifnot(all(diag(3) == as(pm1 %*% t(pm1), "matrix")),

is.logical(as(pm1, "matrix")))

set.seed(11)
random permutation matrix :
(p10 <- as(sample(10),"pMatrix"))

Permute rows / columns of a numeric matrix :
(mm <- round(array(rnorm(3 * 3), c(3, 3)), 2))
mm %*% pm1
pm1 %*% mm
try(as(as.integer(c(3,3,1)), "pMatrix"))# Error: not a permutation

as(pm1, "TsparseMatrix")
p10[1:7, 1:4] # gives an "ngTMatrix" (most economic!)

row-indexing of a <pMatrix> keeps it as an <indMatrix>:
p10[1:3,]

146 printSpMatrix

printSpMatrix Format and Print Sparse Matrices Flexibly

Description

Format and print sparse matrices flexibly. These are the “workhorses” used by the format, show
and print methods for sparse matrices. If x is large, printSpMatrix2(x) calls printSpMatrix()
twice, namely, for the first and the last few rows, suppressing those in between, and also suppresses
columns when x is too wide.

printSpMatrix() basically prints the result of formatSpMatrix().

Usage

formatSpMatrix(x, digits = NULL, maxp = 1e9,
cld = getClassDef(class(x)), zero.print = ".",
col.names, note.dropping.colnames = TRUE, uniDiag = TRUE,
align = c("fancy", "right"), ...)

printSpMatrix(x, digits = NULL, maxp = max(100L, getOption("max.print")),
cld = getClassDef(class(x)),
zero.print = ".", col.names, note.dropping.colnames = TRUE,
uniDiag = TRUE, col.trailer = "",
align = c("fancy", "right"), ...)

printSpMatrix2(x, digits = NULL, maxp = max(100L, getOption("max.print")),
zero.print = ".", col.names, note.dropping.colnames = TRUE,
uniDiag = TRUE, suppRows = NULL, suppCols = NULL,
col.trailer = if(suppCols) "......" else "",
align = c("fancy", "right"),
width = getOption("width"), fitWidth = TRUE, ...)

Arguments

x an R object inheriting from class sparseMatrix.

digits significant digits to use for printing, see print.default, the default, NULL, cor-
responds to using getOption("digits").

maxp integer, default from options(max.print), influences how many entries of
large matrices are printed at all. Typically should not be smaller than around
1000; values smaller than 100 are silently “rounded up” to 100.

cld the class definition of x; must be equivalent to getClassDef(class(x)) and
exists mainly for possible speedup.

zero.print character which should be printed for structural zeroes. The default "." may oc-
casionally be replaced by " " (blank); using "0" would look almost like print()ing
of non-sparse matrices.

printSpMatrix 147

col.names logical or string specifying if and how column names of x should be printed, pos-
sibly abbreviated. The default is taken from options("sparse.colnames") if
that is set, otherwise FALSE unless there are less than ten columns. When TRUE
the full column names are printed.
When col.names is a string beginning with "abb" or "sub" and ending with an
integer n (i.e., of the form "abb... <n>"), the column names are abbreviate()d
or substring()ed to (target) length n, see the examples.

note.dropping.colnames

logical specifying, when col.names is FALSE if the dropping of the column
names should be noted, TRUE by default.

uniDiag logical indicating if the diagonal entries of a sparse unit triangular or unit-
diagonal matrix should be formatted as "I" instead of "1" (to emphasize that
the 1’s are “structural”).

col.trailer a string to be appended to the right of each column; this is typically made use of
by show(<sparseMatrix>) only, when suppressing columns.

suppRows, suppCols
logicals or NULL, for printSpMatrix2() specifying if rows or columns should
be suppressed in printing. If NULL, sensible defaults are determined from dim(x)
and options(c("width", "max.print")). Setting both to FALSE may be a
very bad idea.

align a string specifying how the zero.print codes should be aligned, i.e., padded as
strings. The default, "fancy", takes some effort to align the typical zero.print
= "." with the position of 0, i.e., the first decimal (one left of decimal point) of
the numbers printed, whereas align = "right" just makes use of print(*,
right = TRUE).

width number, a positive integer, indicating the approximately desired (line) width of
the output, see also fitWidth.

fitWidth logical indicating if some effort should be made to match the desired width or
temporarily enlarge that if deemed necessary.

... unused optional arguments.

Details

formatSpMatrix: If x is large, only the first rows making up the approximately first maxp entries
is used, otherwise all of x. .formatSparseSimple() is applied to (a dense version of) the
matrix. Then, formatSparseM is used, unless in trivial cases or for sparse matrices without x
slot.

Value
formatSpMatrix()

returns a character matrix with possibly empty column names, depending on
col.names etc, see above.

printSpMatrix*()

return x invisibly, see invisible.

148 qr-methods

Author(s)

Martin Maechler

See Also

the virtual class sparseMatrix and the classes extending it; maybe sparseMatrix or spMatrix as
simple constructors of such matrices.

The underlying utilities formatSparseM and .formatSparseSimple() (on the same page).

Examples

f1 <- gl(5, 3, labels = LETTERS[1:5])
X <- as(f1, "sparseMatrix")
X ## <==> show(X) <==> print(X)
t(X) ## shows column names, since only 5 columns

X2 <- as(gl(12, 3, labels = paste(LETTERS[1:12],"c",sep=".")),
"sparseMatrix")

X2
less nice, but possible:
print(X2, col.names = TRUE) # use [,1] [,2] .. => does not fit

Possibilities with column names printing:
t(X2) # suppressing column names

print(t(X2), col.names=TRUE)
print(t(X2), zero.print = "", col.names="abbr. 1")
print(t(X2), zero.print = "-", col.names="substring 2")

qr-methods Methods for QR Factorization

Description

Computes the pivoted QR factorization of an m× n real matrix A, which has the general form

P1AP2 = QR

or (equivalently)
A = P ′

1QRP ′
2

where P1 and P2 are permutation matrices, Q =
∏n

j=1 Hj is an m×m orthogonal matrix equal to
the product of n Householder matrices Hj , and R is an m× n upper trapezoidal matrix.

denseMatrix use the default method implemented in base, namely qr.default. It is built on
LINPACK routine dqrdc and LAPACK routine dgeqp3, which do not pivot rows, so that P1 is an
identity matrix.

Methods for sparseMatrix are built on CXSparse routines cs_sqr and cs_qr, which require m ≥
n.

qr-methods 149

Usage

qr(x, ...)
S4 method for signature 'dgCMatrix'
qr(x, order = 3L, ...)

Arguments

x a finite matrix or Matrix to be factorized, satisfying nrow(x) >= ncol(x) if
sparse.

order an integer in 0:3 passed to CXSparse routine cs_sqr, indicating a strategy for
choosing the column permutation P2. 0 means no column permutation. 1, 2,
and 3 indicate a fill-reducing ordering of A+ A′, Ã′Ã, and A′A, where Ã is A
with “dense” rows removed. Do not set to 0 unless you know that the column
order of A is already sensible.

... further arguments passed to or from methods.

Details

If x is sparse and structurally rank deficient, having structural rank r < n, then x is augmented with
(n− r) rows of (partly non-structural) zeros, such that the augmented matrix has structural rank n.
This augmented matrix is factorized as described above:

P1AP2 = P1

[
A0

0

]
P2 = QR

where A0 denotes the original, user-supplied (m− (n− r))× n matrix.

Value

An object representing the factorization, inheriting from virtual S4 class QR or S3 class qr. The
specific class is qr unless x inherits from virtual class sparseMatrix, in which case it is sparseQR.

References

Davis, T. A. (2006). Direct methods for sparse linear systems. Society for Industrial and Applied
Mathematics. doi:10.1137/1.9780898718881

Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). Johns Hopkins University
Press. doi:10.56021/9781421407944

See Also

Class sparseQR and its methods.

Class dgCMatrix.

Generic function qr from base, whose default method qr.default “defines” the S3 class qr of
dense QR factorizations.

Generic functions expand1 and expand2, for constructing matrix factors from the result.

Generic functions Cholesky, BunchKaufman, Schur, and lu, for computing other factorizations.

https://doi.org/10.1137/1.9780898718881
https://doi.org/10.56021/9781421407944

150 qr-methods

Examples

showMethods("qr", inherited = FALSE)

Rank deficient: columns 3 {b2} and 6 {c3} are "extra"
M <- as(cbind(a1 = 1,

b1 = rep(c(1, 0), each = 3L),
b2 = rep(c(0, 1), each = 3L),
c1 = rep(c(1, 0, 0), 2L),
c2 = rep(c(0, 1, 0), 2L),
c3 = rep(c(0, 0, 1), 2L)),

"CsparseMatrix")
rownames(M) <- paste0("r", seq_len(nrow(M)))
b <- 1:6
eps <- .Machine$double.eps

.... [1] full rank ..
===> a least squares solution of A x = b exists
and is unique _in exact arithmetic_

(A1 <- M[, -c(3L, 6L)])
(qr.A1 <- qr(A1))

stopifnot(exprs = {
rankMatrix(A1) == ncol(A1)
{ d1 <- abs(diag(qr.A1@R)); sum(d1 < max(d1) * eps) == 0L }
rcond(crossprod(A1)) >= eps
all.equal(qr.coef(qr.A1, b), drop(solve(crossprod(A1), crossprod(A1, b))))
all.equal(qr.fitted(qr.A1, b) + qr.resid(qr.A1, b), b)

})

.... [2] numerically rank deficient with full structural rank
===> a least squares solution of A x = b does not
exist or is not unique _in exact arithmetic_

(A2 <- M)
(qr.A2 <- qr(A2))

stopifnot(exprs = {
rankMatrix(A2) == ncol(A2) - 2L
{ d2 <- abs(diag(qr.A2@R)); sum(d2 < max(d2) * eps) == 2L }
rcond(crossprod(A2)) < eps

'qr.coef' computes unique least squares solution of "nearby" problem
Z x = b for some full rank Z ~ A, currently without warning {FIXME} !
tryCatch({ qr.coef(qr.A2, b); TRUE }, condition = function(x) FALSE)

all.equal(qr.fitted(qr.A2, b) + qr.resid(qr.A2, b), b)
})

.... [3] numerically and structurally rank deficient
===> factorization of _augmented_ matrix with
full structural rank proceeds as in [2]

rankMatrix 151

NB: implementation details are subject to change; see (*) below

A3 <- M
A3[, c(3L, 6L)] <- 0
A3
(qr.A3 <- qr(A3)) # with a warning ... "additional 2 row(s) of zeros"

stopifnot(exprs = {
sparseQR object preserves the unaugmented dimensions (*)
dim(qr.A3) == dim(A3)
dim(qr.A3@V) == dim(A3) + c(2L, 0L)
dim(qr.A3@R) == dim(A3) + c(2L, 0L)

The augmented matrix remains numerically rank deficient
rankMatrix(A3) == ncol(A3) - 2L
{ d3 <- abs(diag(qr.A3@R)); sum(d3 < max(d3) * eps) == 2L }
rcond(crossprod(A3)) < eps

})

Auxiliary functions accept and return a vector or matrix
with dimensions corresponding to the unaugmented matrix (*),
in all cases with a warning
qr.coef (qr.A3, b)
qr.fitted(qr.A3, b)
qr.resid (qr.A3, b)

.... [4] yet more examples ..

By disabling column pivoting, one gets the "vanilla" factorization
A = Q~ R, where Q~ := P1' Q is orthogonal because P1 and Q are

(qr.A1.pp <- qr(A1, order = 0L)) # partial pivoting

ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)

stopifnot(exprs = {
length(qr.A1 @q) == ncol(A1)
length(qr.A1.pp@q) == 0L # indicating no column pivoting
ae2(A1[, qr.A1@q + 1L], qr.Q(qr.A1) %*% qr.R(qr.A1))
ae2(A1 , qr.Q(qr.A1.pp) %*% qr.R(qr.A1.pp))

})

rankMatrix Rank of a Matrix

Description

Compute ‘the’ matrix rank, a well-defined functional in theory(*), somewhat ambiguous in practice.
We provide several methods, the default corresponding to Matlab’s definition.

152 rankMatrix

(*) The rank of a n×m matrix A, rk(A), is the maximal number of linearly independent columns
(or rows); hence rk(A) ≤ min(n,m).

Usage

rankMatrix(x, tol = NULL,
method = c("tolNorm2", "qr.R", "qrLINPACK", "qr",

"useGrad", "maybeGrad"),
sval = svd(x, 0, 0)$d, warn.t = TRUE, warn.qr = TRUE)

qr2rankMatrix(qr, tol = NULL, isBqr = is.qr(qr), do.warn = TRUE)

Arguments

x numeric matrix, of dimension n×m, say.

tol nonnegative number specifying a (relative, “scalefree”) tolerance for testing
of “practically zero” with specific meaning depending on method; by default,
max(dim(x)) * .Machine$double.eps is according to Matlab’s default (for its
only method which is our method="tolNorm2").

method a character string specifying the computational method for the rank, can be ab-
breviated:

"tolNorm2": the number of singular values >= tol * max(sval);
"qrLINPACK": for a dense matrix, this is the rank of qr(x, tol, LAPACK=FALSE)

(which is qr(...)$rank);
This ("qr*", dense) version used to be the recommended way to compute a
matrix rank for a while in the past.
For sparse x, this is equivalent to "qr.R".

"qr.R": this is the rank of triangular matrix R, where qr() uses LAPACK or a
"sparseQR" method (see qr-methods) to compute the decomposition QR.
The rank of R is then defined as the number of “non-zero” diagonal entries
di of R, and “non-zero”s fulfill |di| ≥ tol ·max(|di|).

"qr": is for back compatibility; for dense x, it corresponds to "qrLINPACK",
whereas for sparse x, it uses "qr.R".
For all the "qr*" methods, singular values sval are not used, which may be
crucially important for a large sparse matrix x, as in that case, when sval is
not specified, the default, computing svd() currently coerces x to a dense
matrix.

"useGrad": considering the “gradient” of the (decreasing) singular values, the
index of the smallest gap.

"maybeGrad": choosing method "useGrad" only when that seems reasonable;
otherwise using "tolNorm2".

sval numeric vector of non-increasing singular values of x; typically unspecified and
computed from x when needed, i.e., unless method = "qr".

warn.t logical indicating if rankMatrix() should warn when it needs t(x) instead of
x. Currently, for method = "qr" only, gives a warning by default because the
caller often could have passed t(x) directly, more efficiently.

rankMatrix 153

warn.qr in the QR cases (i.e., if method starts with "qr"), rankMatrix() calls qr2rankMarix(..,
do.warn = warn.qr), see below.

qr an R object resulting from qr(x,..), i.e., typically inheriting from class "qr"
or "sparseQR".

isBqr logical indicating if qr is resulting from base qr(). (Otherwise, it is typically
from Matrix package sparse qr.)

do.warn logical; if true, warn about non-finite diagonal entries in the R matrix of the QR
decomposition. Do not change lightly!

Details

qr2rankMatrix() is typically called from rankMatrix() for the "qr"* methods, but can be used
directly - much more efficiently in case the qr-decomposition is available anyway.

Value

If x is a matrix of all 0 (or of zero dimension), the rank is zero; otherwise, typically a positive integer
in 1:min(dim(x)) with attributes detailing the method used.

There are rare cases where the sparse QR decomposition “fails” in so far as the diagonal entries
of R, the di (see above), end with non-finite, typically NaN entries. Then, a warning is signalled
(unless warn.qr / do.warn is not true) and NA (specifically, NA_integer_) is returned.

Note

For large sparse matrices x, unless you can specify sval yourself, currently method = "qr" may
be the only feasible one, as the others need sval and call svd() which currently coerces x to a
denseMatrix which may be very slow or impossible, depending on the matrix dimensions.

Note that in the case of sparse x, method = "qr", all non-strictly zero diagonal entries di where
counted, up to including Matrix version 1.1-0, i.e., that method implicitly used tol = 0, see also
the set.seed(42) example below.

Author(s)

Martin Maechler; for the "*Grad" methods building on suggestions by Ravi Varadhan.

See Also

qr, svd.

Examples

rankMatrix(cbind(1, 0, 1:3)) # 2

(meths <- eval(formals(rankMatrix)$method))

a "border" case:
H12 <- Hilbert(12)
rankMatrix(H12, tol = 1e-20) # 12; but 11 with default method & tol.
sapply(meths, function(.m.) rankMatrix(H12, method = .m.))

154 rcond-methods

tolNorm2 qr.R qrLINPACK qr useGrad maybeGrad
11 11 12 12 11 11
The meaning of 'tol' for method="qrLINPACK" and *dense* x is not entirely "scale free"
rMQL <- function(ex, M) rankMatrix(M, method="qrLINPACK",tol = 10^-ex)
rMQR <- function(ex, M) rankMatrix(M, method="qr.R", tol = 10^-ex)
sapply(5:15, rMQL, M = H12) # result is platform dependent
7 7 8 10 10 11 11 11 12 12 12 {x86_64}
sapply(5:15, rMQL, M = 1000 * H12) # not identical unfortunately
7 7 8 10 11 11 12 12 12 12 12
sapply(5:15, rMQR, M = H12)
5 6 7 8 8 9 9 10 10 11 11
sapply(5:15, rMQR, M = 1000 * H12) # the *same*

"sparse" case:
M15 <- kronecker(diag(x=c(100,1,10)), Hilbert(5))
sapply(meths, function(.m.) rankMatrix(M15, method = .m.))
#--> all 15, but 'useGrad' has 14.
sapply(meths, function(.m.) rankMatrix(M15, method = .m., tol = 1e-7)) # all 14

"large" sparse
n <- 250000; p <- 33; nnz <- 10000
L <- sparseMatrix(i = sample.int(n, nnz, replace=TRUE),

j = sample.int(p, nnz, replace=TRUE),
x = rnorm(nnz))

(st1 <- system.time(r1 <- rankMatrix(L))) # warning+ ~1.5 sec (2013)
(st2 <- system.time(r2 <- rankMatrix(L, method = "qr"))) # considerably faster!
r1[[1]] == print(r2[[1]]) ## --> (33 TRUE)

another sparse-"qr" one, which ``failed'' till 2013-11-23:
set.seed(42)
f1 <- factor(sample(50, 1000, replace=TRUE))
f2 <- factor(sample(50, 1000, replace=TRUE))
f3 <- factor(sample(50, 1000, replace=TRUE))
D <- t(do.call(rbind, lapply(list(f1,f2,f3), as, 'sparseMatrix')))
dim(D); nnzero(D) ## 1000 x 150 // 3000 non-zeros (= 2%)
stopifnot(rankMatrix(D, method='qr') == 148,

rankMatrix(crossprod(D),method='qr') == 148)

zero matrix has rank 0 :
stopifnot(sapply(meths, function(.m.)

rankMatrix(matrix(0, 2, 2), method = .m.)) == 0)

rcond-methods Estimate the Reciprocal Condition Number

Description

Estimate the reciprocal of the condition number of a matrix.

This is a generic function with several methods, as seen by showMethods(rcond).

rcond-methods 155

Usage

rcond(x, norm, ...)

S4 method for signature 'sparseMatrix,character'
rcond(x, norm, useInv=FALSE, ...)

Arguments

x an R object that inherits from the Matrix class.

norm character string indicating the type of norm to be used in the estimate. The
default is "O" for the 1-norm ("O" is equivalent to "1"). For sparse matrices,
when useInv=TRUE, norm can be any of the kinds allowed for norm; otherwise,
the other possible value is "I" for the infinity norm, see also norm.

useInv logical (or "Matrix" containing solve(x)). If not false, compute the reciprocal
condition number as 1/(∥x∥ · ∥x−1∥), where x−1 is the inverse of x, solve(x).
This may be an efficient alternative (only) in situations where solve(x) is fast
(or known), e.g., for (very) sparse or triangular matrices.
Note that the result may differ depending on useInv, as per default, when it is
false, an approximation is computed.

... further arguments passed to or from other methods.

Value

An estimate of the reciprocal condition number of x.

BACKGROUND

The condition number of a regular (square) matrix is the product of the norm of the matrix and the
norm of its inverse (or pseudo-inverse).

More generally, the condition number is defined (also for non-square matrices A) as

κ(A) =
max∥v∥=1 ∥Av∥
min∥v∥=1 ∥Av∥

.

Whenever x is not a square matrix, in our method definitions, this is typically computed via rcond(qr.R(qr(X)),
...) where X is x or t(x).

The condition number takes on values between 1 and infinity, inclusive, and can be viewed as a
factor by which errors in solving linear systems with this matrix as coefficient matrix could be
magnified.

rcond() computes the reciprocal condition number 1/κ with values in [0, 1] and can be viewed as
a scaled measure of how close a matrix is to being rank deficient (aka “singular”).

Condition numbers are usually estimated, since exact computation is costly in terms of floating-
point operations. An (over) estimate of reciprocal condition number is given, since by doing so
overflow is avoided. Matrices are well-conditioned if the reciprocal condition number is near 1 and
ill-conditioned if it is near zero.

156 rcond-methods

References

Golub, G., and Van Loan, C. F. (1989). Matrix Computations, 2nd edition, Johns Hopkins, Balti-
more.

See Also

norm, kappa() from package base computes an approximate condition number of a “traditional”
matrix, even non-square ones, with respect to the p = 2 (Euclidean) norm. solve.

condest, a newer approximate estimate of the (1-norm) condition number, particularly efficient for
large sparse matrices.

Examples

x <- Matrix(rnorm(9), 3, 3)
rcond(x)
typically "the same" (with more computational effort):
1 / (norm(x) * norm(solve(x)))
rcond(Hilbert(9)) # should be about 9.1e-13

For non-square matrices:
rcond(x1 <- cbind(1,1:10))# 0.05278
rcond(x2 <- cbind(x1, 2:11))# practically 0, since x2 does not have full rank

sparse
(S1 <- Matrix(rbind(0:1,0, diag(3:-2))))
rcond(S1)
m1 <- as(S1, "denseMatrix")
all.equal(rcond(S1), rcond(m1))

wide and sparse
rcond(Matrix(cbind(0, diag(2:-1))))

Large sparse example ----------
m <- Matrix(c(3,0:2), 2,2)
M <- bdiag(kronecker(Diagonal(2), m), kronecker(m,m))
36*(iM <- solve(M)) # still sparse
MM <- kronecker(Diagonal(10), kronecker(Diagonal(5),kronecker(m,M)))
dim(M3 <- kronecker(bdiag(M,M),MM)) # 12'800 ^ 2
if(interactive()) ## takes about 2 seconds if you have >= 8 GB RAM

system.time(r <- rcond(M3))
whereas this is *fast* even though it computes solve(M3)
system.time(r. <- rcond(M3, useInv=TRUE))
if(interactive()) ## the values are not the same

c(r, r.) # 0.05555 0.013888
for all 4 norms available for sparseMatrix :
cbind(rr <- sapply(c("1","I","F","M"),

function(N) rcond(M3, norm=N, useInv=TRUE)))

rep2abI 157

rep2abI Replicate Vectors into ’abIndex’ Result

Description

rep2abI(x, times) conceptually computes rep.int(x, times) but with an abIndex class result.

Usage

rep2abI(x, times)

Arguments

x numeric vector

times integer (valued) scalar: the number of repetitions

Value

a vector of class abIndex

See Also

rep.int(), the base function; abIseq, abIndex.

Examples

(ab <- rep2abI(2:7, 4))
stopifnot(identical(as(ab, "numeric"),

rep(2:7, 4)))

rleDiff-class Class "rleDiff" of rle(diff(.)) Stored Vectors

Description

Class "rleDiff" is for compactly storing long vectors which mainly consist of linear stretches. For
such a vector x, diff(x) consists of constant stretches and is hence well compressable via rle().

Objects from the Class

Objects can be created by calls of the form new("rleDiff", ...).

Currently experimental, see below.

158 rsparsematrix

Slots

first: A single number (of class "numLike", a class union of "numeric" and "logical").

rle: Object of class "rle", basically a list with components "lengths" and "values", see
rle(). As this is used to encode potentially huge index vectors, lengths may be of type
double here.

Methods

There is a simple show method only.

Note

This is currently an experimental auxiliary class for the class abIndex, see there.

See Also

rle, abIndex.

Examples

showClass("rleDiff")

ab <- c(abIseq(2, 100), abIseq(20, -2))
ab@rleD # is "rleDiff"

rsparsematrix Random Sparse Matrix

Description

Generate a random sparse matrix efficiently. The default has rounded gaussian non-zero entries,
and rand.x = NULL generates random pattern matrices, i.e. inheriting from nsparseMatrix.

Usage

rsparsematrix(nrow, ncol, density, nnz = round(density * maxE),
symmetric = FALSE,
rand.x = function(n) signif(rnorm(n), 2), ...)

Arguments

nrow, ncol number of rows and columns, i.e., the matrix dimension (dim).

density optional number in [0, 1], the density is the proportion of non-zero entries among
all matrix entries. If specified it determines the default for nnz, otherwise nnz
needs to be specified.

nnz number of non-zero entries, for a sparse matrix typically considerably smaller
than nrow*ncol. Must be specified if density is not.

rsparsematrix 159

symmetric logical indicating if result should be a matrix of class symmetricMatrix. Note
that in the symmetric case, nnz denotes the number of non zero entries of the
upper (or lower) part of the matrix, including the diagonal.

rand.x NULL or the random number generator for the x slot, a function such that
rand.x(n) generates a numeric vector of length n. Typical examples are rand.x
= rnorm, or rand.x = runif; the default is nice for didactical purposes.

... optionally further arguments passed to sparseMatrix(), notably repr.

Details

The algorithm first samples “encoded” (i, j)s without replacement, via one dimensional indices, if
not symmetric sample.int(nrow*ncol, nnz), then—if rand.x is not NULL—gets x <- rand.x(nnz)
and calls sparseMatrix(i=i, j=j, x=x, ..). When rand.x=NULL, sparseMatrix(i=i, j=j,
..) will return a pattern matrix (i.e., inheriting from nsparseMatrix).

Value

a sparseMatrix, say M of dimension (nrow, ncol), i.e., with dim(M) == c(nrow, ncol), if symmetric
is not true, with nzM <- nnzero(M) fulfilling nzM <= nnz and typically, nzM == nnz.

Author(s)

Martin Maechler

Examples

set.seed(17)# to be reproducible
M <- rsparsematrix(8, 12, nnz = 30) # small example, not very sparse
M
M1 <- rsparsematrix(1000, 20, nnz = 123, rand.x = runif)
summary(M1)

a random *symmetric* Matrix
(S9 <- rsparsematrix(9, 9, nnz = 10, symmetric=TRUE)) # dsCMatrix
nnzero(S9)# ~ 20: as 'nnz' only counts one "triangle"

a random patter*n* aka boolean Matrix (no 'x' slot):
(n7 <- rsparsematrix(5, 12, nnz = 10, rand.x = NULL))

a [T]riplet representation sparseMatrix:
T2 <- rsparsematrix(40, 12, nnz = 99, repr = "T")
head(T2)

160 RsparseMatrix-class

RsparseMatrix-class Class "RsparseMatrix" of Sparse Matrices in Row-compressed Form

Description

The "RsparseMatrix" class is the virtual class of all sparse matrices coded in sorted compressed
row-oriented form. Since it is a virtual class, no objects may be created from it. See showClass("RsparseMatrix")
for its subclasses.

Slots

j: Object of class "integer" of length nnzero (number of non-zero elements). These are the row
numbers for each non-zero element in the matrix.

p: Object of class "integer" of pointers, one for each row, to the initial (zero-based) index of
elements in the row.

Dim, Dimnames: inherited from the superclass, see sparseMatrix.

Extends

Class "sparseMatrix", directly. Class "Matrix", by class "sparseMatrix".

Methods

Originally, few methods were defined on purpose, as we rather use the CsparseMatrix in Matrix.
Then, more methods were added but beware that these typically do not return "RsparseMatrix"
results, but rather Csparse* or Tsparse* ones; e.g., R[i, j] <- v for an "RsparseMatrix" R works,
but after the assignment, R is a (triplet) "TsparseMatrix".

t signature(x = "RsparseMatrix"): ...

coerce signature(from = "RsparseMatrix", to = "CsparseMatrix"): ...

coerce signature(from = "RsparseMatrix", to = "TsparseMatrix"): ...

See Also

its superclass, sparseMatrix, and, e.g., class dgRMatrix for the links to other classes.

Examples

showClass("RsparseMatrix")

Schur-class 161

Schur-class Schur Factorizations

Description

Schur is the class of Schur factorizations of n× n real matrices A, having the general form

A = QTQ′

where Q is an orthogonal matrix and T is a block upper triangular matrix with 1 × 1 or 2 × 2
diagonal blocks specifying the real and complex conjugate eigenvalues of A. The column vectors
of Q are the Schur vectors of A, and T is the Schur form of A.

The Schur factorization generalizes the spectral decomposition of normal matrices A, whose Schur
form is block diagonal, to arbitrary square matrices.

Details

The matrix A and its Schur form T are similar and thus have the same spectrum. The eigenvalues
are computed trivially as the eigenvalues of the diagonal blocks of T .

Slots

Dim, Dimnames inherited from virtual class MatrixFactorization.

Q an orthogonal matrix, inheriting from virtual class Matrix.

T a block upper triangular matrix, inheriting from virtual class Matrix. The diagonal blocks have
dimensions 1-by-1 or 2-by-2.

EValues a numeric or complex vector containing the eigenvalues of the diagonal blocks of T, which
are the eigenvalues of T and consequently of the factorized matrix.

Extends

Class SchurFactorization, directly. Class MatrixFactorization, by class SchurFactorization,
distance 2.

Instantiation

Objects can be generated directly by calls of the form new("Schur", ...), but they are more
typically obtained as the value of Schur(x) for x inheriting from Matrix (often dgeMatrix).

Methods

determinant signature(from = "Schur", logarithm = "logical"): computes the determinant
of the factorized matrix A or its logarithm.

expand1 signature(x = "Schur"): see expand1-methods.

expand2 signature(x = "Schur"): see expand2-methods.

solve signature(a = "Schur", b = .): see solve-methods.

162 Schur-methods

References

The LAPACK source code, including documentation; see https://netlib.org/lapack/double/
dgees.f.

Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). Johns Hopkins University
Press. doi:10.56021/9781421407944

See Also

Class dgeMatrix.

Generic functions Schur, expand1 and expand2.

Examples

showClass("Schur")
set.seed(0)

n <- 4L
(A <- Matrix(rnorm(n * n), n, n))

With dimnames, to see that they are propagated :
dimnames(A) <- list(paste0("r", seq_len(n)),

paste0("c", seq_len(n)))

(sch.A <- Schur(A))
str(e.sch.A <- expand2(sch.A), max.level = 2L)

A ~ Q T Q' in floating point
stopifnot(exprs = {

identical(names(e.sch.A), c("Q", "T", "Q."))
all.equal(A, with(e.sch.A, Q %*% T %*% Q.))

})

Factorization handled as factorized matrix
b <- rnorm(n)
stopifnot(all.equal(det(A), det(sch.A)),

all.equal(solve(A, b), solve(sch.A, b)))

One of the non-general cases:
Schur(Diagonal(6L))

Schur-methods Methods for Schur Factorization

Description

Computes the Schur factorization of an n× n real matrix A, which has the general form

A = QTQ′

https://netlib.org/lapack/double/dgees.f
https://netlib.org/lapack/double/dgees.f
https://doi.org/10.56021/9781421407944

Schur-methods 163

where Q is an orthogonal matrix and T is a block upper triangular matrix with 1 × 1 and 2 × 2
diagonal blocks specifying the real and complex conjugate eigenvalues of A. The column vectors
of Q are the Schur vectors of A, and T is the Schur form of A.

Methods are built on LAPACK routine dgees.

Usage

Schur(x, vectors = TRUE, ...)

Arguments

x a finite square matrix or Matrix to be factorized.

vectors a logical. If TRUE (the default), then Schur vectors are computed in addition to
the Schur form.

... further arguments passed to or from methods.

Value

An object representing the factorization, inheriting from virtual class SchurFactorization if
vectors = TRUE. Currently, the specific class is always Schur in that case. An exception is if x
is a traditional matrix, in which case the result is a named list containing Q, T, and EValues slots of
the Schur object.

If vectors = FALSE, then the result is the same named list but without Q.

References

The LAPACK source code, including documentation; see https://netlib.org/lapack/double/
dgees.f.

Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). Johns Hopkins University
Press. doi:10.56021/9781421407944

See Also

Class Schur and its methods.

Class dgeMatrix.

Generic functions expand1 and expand2, for constructing matrix factors from the result.

Generic functions Cholesky, BunchKaufman, lu, and qr, for computing other factorizations.

Examples

showMethods("Schur", inherited = FALSE)
set.seed(0)

Schur(Hilbert(9L)) # real eigenvalues

(A <- Matrix(round(rnorm(25L, sd = 100)), 5L, 5L))
(sch.A <- Schur(A)) # complex eigenvalues

https://netlib.org/lapack/double/dgees.f
https://netlib.org/lapack/double/dgees.f
https://doi.org/10.56021/9781421407944

164 solve-methods

A ~ Q T Q' in floating point
str(e.sch.A <- expand2(sch.A), max.level = 2L)
stopifnot(all.equal(A, Reduce(`%*%`, e.sch.A)))

(e1 <- eigen(sch.A@T, only.values = TRUE)$values)
(e2 <- eigen(A , only.values = TRUE)$values)
(e3 <- sch.A@EValues)

stopifnot(exprs = {
all.equal(e1, e2, tolerance = 1e-13)
all.equal(e1, e3[order(Mod(e3), decreasing = TRUE)], tolerance = 1e-13)
identical(Schur(A, vectors = FALSE),

list(T = sch.A@T, EValues = e3))
identical(Schur(as(A, "matrix")),

list(Q = as(sch.A@Q, "matrix"),
T = as(sch.A@T, "matrix"), EValues = e3))

})

solve-methods Methods in Package Matrix for Function solve

Description

Methods for generic function solve for solving linear systems of equations, i.e., for X in AX = B,
where A is a square matrix and X and B are matrices with dimensions consistent with A.

Usage

solve(a, b, ...)

S4 method for signature 'dgeMatrix,ANY'
solve(a, b, tol = .Machine$double.eps, ...)

S4 method for signature 'dgCMatrix,missing'
solve(a, b, sparse = TRUE, ...)
S4 method for signature 'dgCMatrix,matrix'
solve(a, b, sparse = FALSE, ...)
S4 method for signature 'dgCMatrix,denseMatrix'
solve(a, b, sparse = FALSE, ...)
S4 method for signature 'dgCMatrix,sparseMatrix'
solve(a, b, sparse = TRUE, ...)

S4 method for signature 'denseLU,dgeMatrix'
solve(a, b, ...)
S4 method for signature 'BunchKaufman,dgeMatrix'
solve(a, b, ...)
S4 method for signature 'Cholesky,dgeMatrix'
solve(a, b, ...)

solve-methods 165

S4 method for signature 'sparseLU,dgCMatrix'
solve(a, b, tol = .Machine$double.eps, ...)
S4 method for signature 'sparseQR,dgCMatrix'
solve(a, b, ...)
S4 method for signature 'CHMfactor,dgCMatrix'
solve(a, b, system = c("A", "LDLt", "LD", "DLt", "L", "Lt", "D", "P", "Pt"), ...)

Arguments

a a finite square matrix or Matrix containing the coefficients of the linear sys-
tem, or otherwise a MatrixFactorization, in which case methods behave (by
default) as if the factorized matrix were specified.

b a vector, sparseVector, matrix, or Matrix satisfying NROW(b) == nrow(a),
giving the right-hand side(s) of the linear system. Vectors b are treated as
length(b)-by-1 matrices. If b is missing, then methods take b to be an identity
matrix.

tol a non-negative number. For a inheriting from denseMatrix, an error is signaled
if the reciprocal one-norm condition number (see rcond) of a is less than tol,
indicating that a is near-singular. For a of class sparseLU, an error is signaled
if the ratio min(d)/max(d) is less than tol, where d = abs(diag(a@U)). (In-
terpret with care, as this ratio is a cheap heuristic and not in general equal to or
even proportional to the reciprocal one-norm condition number.) Setting tol =
0 disables the test.

sparse a logical indicating if the result should be formally sparse, i.e., if the result
should inherit from virtual class sparseMatrix. Only methods for sparse a and
missing or matrix b have this argument. Methods for missing or sparse b use
sparse = TRUE by default. Methods for dense b use sparse = FALSE by default.

system a string specifying a linear system to be solved. Only methods for a inheriting
from CHMfactor have this argument. See ‘Details’.

... further arguments passed to or from methods.

Details

Methods for general and symmetric matrices a compute a triangular factorization (LU, Bunch-
Kaufman, or Cholesky) and call the method for the corresponding factorization class. The factor-
ization is sparse if a is. Methods for sparse, symmetric matrices a attempt a Cholesky factorization
and perform an LU factorization only if that fails (typically because a is not positive definite).

Triangular, diagonal, and permutation matrices do not require factorization (they are already “fac-
tors”), hence methods for those are implemented directly. For triangular a, solutions are obtained
by forward or backward substitution; for diagonal a, they are obtained by scaling the rows of b; and
for permutations a, they are obtained by permuting the rows of b.

Methods for dense a are built on 14 LAPACK routines: class d..Matrix, where ..=(ge|tr|tp|sy|sp|po|pp),
uses routines d..tri and d..trs for missing and non-missing b, respectively. A corollary is that
these methods always give a dense result.

Methods for sparse a are built on CXSparse routines cs_lsolve, cs_usolve, and cs_spsolve and
CHOLMOD routines cholmod_solve and cholmod_spsolve. By default, these methods give a

166 solve-methods

vector result if b is a vector, a sparse matrix result if b is missing or a sparse matrix, and a dense
matrix result if b is a dense matrix. One can override this behaviour by setting the sparse argument,
where available, but that should be done with care. Note that a sparse result may be sparse only in
the formal sense and not at all in the mathematical sense, depending on the nonzero patterns of a
and b. Furthermore, whereas dense results are fully preallocated, sparse results must be “grown” in
a loop over the columns of b.

Methods for a of class sparseQR are simple wrappers around qr.coef, giving the least squares
solution in overdetermined cases.

Methods for a inheriting from CHMfactor can solve systems other than the default one AX = B.
The correspondence between its system argument the system actually solved is outlined in the table
below. See CHMfactor-class for a definition of notation.

system isLDL(a)=TRUE isLDL(a)=FALSE
"A" AX = B AX = B

"LDLt" L1DL′
1X = B LL′X = B

"LD" L1DX = B LX = B
"DLt" DL′

1X = B L′X = B
"L" L1X = B LX = B
"Lt" L′

1X = B L′X = B
"D" DX = B X = B
"P" X = P1B X = P1B
"Pt" X = P ′

1B X = P ′
1B

See Also

Virtual class MatrixFactorization and its subclasses.

Generic functions Cholesky, BunchKaufman, Schur, lu, and qr for computing factorizations.

Generic function solve from base.

Function qr.coef from base for computing least squares solutions of overdetermined linear sys-
tems.

Examples

A close to symmetric example with "quite sparse" inverse:
n1 <- 7; n2 <- 3
dd <- data.frame(a = gl(n1,n2), b = gl(n2,1,n1*n2))# balanced 2-way
X <- sparse.model.matrix(~ -1+ a + b, dd)# no intercept --> even sparser
XXt <- tcrossprod(X)
diag(XXt) <- rep(c(0,0,1,0), length.out = nrow(XXt))

n <- nrow(ZZ <- kronecker(XXt, Diagonal(x=c(4,1))))
image(a <- 2*Diagonal(n) + ZZ %*% Diagonal(x=c(10, rep(1, n-1))))
isSymmetric(a) # FALSE
image(drop0(skewpart(a)))
image(ia0 <- solve(a, tol = 0)) # checker board, dense [but really, a is singular!]
try(solve(a, sparse=TRUE))##-> error [TODO: assertError]
ia. <- solve(a, sparse=TRUE, tol = 1e-19)##-> *no* error
if(R.version$arch == "x86_64")

Fails on 32-bit [Fedora 19, R 3.0.2] from Matrix 1.1-0 on [FIXME ??] only

sparse.model.matrix 167

stopifnot(all.equal(as.matrix(ia.), as.matrix(ia0)))
a <- a + Diagonal(n)
iad <- solve(a)
ias <- solve(a, sparse=FALSE)
stopifnot(all.equal(as(iad,"denseMatrix"), ias, tolerance=1e-14))
I. <- iad %*% a ; image(I.)
I0 <- drop0(zapsmall(I.)); image(I0)
.I <- a %*% iad
.I0 <- drop0(zapsmall(.I))
stopifnot(all.equal(as(I0, "diagonalMatrix"), Diagonal(n)),

all.equal(as(.I0,"diagonalMatrix"), Diagonal(n)))

sparse.model.matrix Construct Sparse Design / Model Matrices

Description

Construct a sparse model or “design” matrix, from a formula and data frame (sparse.model.matrix)
or a single factor (fac2sparse).

The fac2[Ss]parse() functions are utilities, also used internally in the principal user level function
sparse.model.matrix().

Usage

sparse.model.matrix(object, data = environment(object),
contrasts.arg = NULL, xlev = NULL, transpose = FALSE,
drop.unused.levels = FALSE, row.names = TRUE,
sep = "", verbose = FALSE, ...)

fac2sparse(from, to = c("d", "l", "n"),
drop.unused.levels = TRUE, repr = c("C", "R", "T"), giveCsparse)

fac2Sparse(from, to = c("d", "l", "n"),
drop.unused.levels = TRUE, repr = c("C", "R", "T"), giveCsparse,
factorPatt12, contrasts.arg = NULL)

Arguments

object an object of an appropriate class. For the default method, a model formula or
terms object.

data a data frame created with model.frame. If another sort of object, model.frame
is called first.

contrasts.arg for sparse.model.matrix(): A list, whose entries are contrasts suitable for
input to the contrasts replacement function and whose names are the
names of columns of data containing factors.

for fac2Sparse(): character string or NULL or (coercable to) "sparseMatrix",
specifying the contrasts to be applied to the factor levels.

168 sparse.model.matrix

xlev to be used as argument of model.frame if data has no "terms" attribute.
transpose logical indicating if the transpose should be returned; if the transposed is used

anyway, setting transpose = TRUE is more efficient.
drop.unused.levels

should factors have unused levels dropped? The default for sparse.model.matrix
has been changed to FALSE, 2010-07, for compatibility with R’s standard (dense)
model.matrix().

row.names logical indicating if row names should be used.
sep character string passed to paste() when constructing column names from the

variable name and its levels.
verbose logical or integer indicating if (and how much) progress output should be printed.
... further arguments passed to or from other methods.
from (for fac2sparse():) a factor.
to a character indicating the “kind” of sparse matrix to be returned. The default,

"d" is for double.
giveCsparse deprecated, replaced with repr; logical indicating if the result must be a CsparseMatrix.
repr character string, one of "C", "T", or "R", specifying the sparse representation

to be used for the result, i.e., one from the super classes CsparseMatrix, TsparseMatrix,
or RsparseMatrix.

factorPatt12 logical vector, say fp, of length two; when fp[1] is true, return “contrasted”
t(X); when fp[2] is true, the original (“dummy”) t(X), i.e, the result of fac2sparse().

Value

a sparse matrix, extending CsparseMatrix (for fac2sparse() if repr = "C" as per default; a
TsparseMatrix or RsparseMatrix, otherwise).

For fac2Sparse(), a list of length two, both components with the corresponding transposed
model matrix, where the corresponding factorPatt12 is true.

fac2sparse(), the basic workhorse of sparse.model.matrix(), returns the transpose (t) of the
model matrix.

Note

model.Matrix(sparse = TRUE) from package MatrixModels may be nowadays be preferable to
sparse.model.matrix, as model.Matrix returns an object of class modelMatrix with additional
slots assign and contrasts relating to the model variables.

Author(s)

Doug Bates and Martin Maechler, with initial suggestions from Tim Hesterberg.

See Also

model.matrix in package stats, part of base R.

model.Matrix in package MatrixModels; see ‘Note’.

as(f, "sparseMatrix") (see coerce(from = "factor", ..) in the class doc sparseMatrix) pro-
duces the transposed sparse model matrix for a single factor f (and no contrasts).

https://CRAN.R-project.org/package=MatrixModels
https://CRAN.R-project.org/package=MatrixModels

sparseLU-class 169

Examples

dd <- data.frame(a = gl(3,4), b = gl(4,1,12))# balanced 2-way
options("contrasts") # the default: "contr.treatment"
sparse.model.matrix(~ a + b, dd)
sparse.model.matrix(~ -1+ a + b, dd)# no intercept --> even sparser
sparse.model.matrix(~ a + b, dd, contrasts = list(a="contr.sum"))
sparse.model.matrix(~ a + b, dd, contrasts = list(b="contr.SAS"))

Sparse method is equivalent to the traditional one :
stopifnot(all(sparse.model.matrix(~ a + b, dd) ==

Matrix(model.matrix(~ a + b, dd), sparse=TRUE)),
all(sparse.model.matrix(~0 + a + b, dd) ==

Matrix(model.matrix(~0 + a + b, dd), sparse=TRUE)))

(ff <- gl(3,4,, c("X","Y", "Z")))
fac2sparse(ff) # 3 x 12 sparse Matrix of class "dgCMatrix"
##
X 1 1 1 1
Y 1 1 1 1
Z 1 1 1 1

can also be computed via sparse.model.matrix():
f30 <- gl(3,0)
f12 <- gl(3,0, 12)
stopifnot(

all.equal(t(fac2sparse(ff)),
sparse.model.matrix(~ 0+ff),
tolerance = 0, check.attributes=FALSE),

is(M <- fac2sparse(f30, drop= TRUE),"CsparseMatrix"), dim(M) == c(0, 0),
is(M <- fac2sparse(f30, drop=FALSE),"CsparseMatrix"), dim(M) == c(3, 0),
is(M <- fac2sparse(f12, drop= TRUE),"CsparseMatrix"), dim(M) == c(0,12),
is(M <- fac2sparse(f12, drop=FALSE),"CsparseMatrix"), dim(M) == c(3,12)
)

sparseLU-class Sparse LU Factorizations

Description

sparseLU is the class of sparse, row- and column-pivoted LU factorizations of n× n real matrices
A, having the general form

P1AP2 = LU

or (equivalently)
A = P ′

1LUP ′
2

where P1 and P2 are permutation matrices, L is a unit lower triangular matrix, and U is an upper
triangular matrix.

170 sparseLU-class

Slots

Dim, Dimnames inherited from virtual class MatrixFactorization.

L an object of class dtCMatrix, the unit lower triangular L factor.

U an object of class dtCMatrix, the upper triangular U factor.

p, q 0-based integer vectors of length Dim[1], specifying the permutations applied to the rows
and columns of the factorized matrix. q of length 0 is valid and equivalent to the identity
permutation, implying no column pivoting. Using R syntax, the matrix P1AP2 is precisely
A[p+1, q+1] (A[p+1,] when q has length 0).

Extends

Class LU, directly. Class MatrixFactorization, by class LU, distance 2.

Instantiation

Objects can be generated directly by calls of the form new("sparseLU", ...), but they are more
typically obtained as the value of lu(x) for x inheriting from sparseMatrix (often dgCMatrix).

Methods

determinant signature(from = "sparseLU", logarithm = "logical"): computes the determi-
nant of the factorized matrix A or its logarithm.

expand signature(x = "sparseLU"): see expand-methods.

expand1 signature(x = "sparseLU"): see expand1-methods.

expand2 signature(x = "sparseLU"): see expand2-methods.

solve signature(a = "sparseLU", b = .): see solve-methods.

References

Davis, T. A. (2006). Direct methods for sparse linear systems. Society for Industrial and Applied
Mathematics. doi:10.1137/1.9780898718881

Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). Johns Hopkins University
Press. doi:10.56021/9781421407944

See Also

Class denseLU for dense LU factorizations.

Class dgCMatrix.

Generic functions lu, expand1 and expand2.

https://doi.org/10.1137/1.9780898718881
https://doi.org/10.56021/9781421407944

sparseMatrix 171

Examples

showClass("sparseLU")
set.seed(2)

A <- as(readMM(system.file("external", "pores_1.mtx", package = "Matrix")),
"CsparseMatrix")

(n <- A@Dim[1L])

With dimnames, to see that they are propagated :
dimnames(A) <- dn <- list(paste0("r", seq_len(n)),

paste0("c", seq_len(n)))

(lu.A <- lu(A))
str(e.lu.A <- expand2(lu.A), max.level = 2L)

ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)

A ~ P1' L U P2' in floating point
stopifnot(exprs = {

identical(names(e.lu.A), c("P1.", "L", "U", "P2."))
identical(e.lu.A[["P1."]],

new("pMatrix", Dim = c(n, n), Dimnames = c(dn[1L], list(NULL)),
margin = 1L, perm = invertPerm(lu.A@p, 0L, 1L)))

identical(e.lu.A[["P2."]],
new("pMatrix", Dim = c(n, n), Dimnames = c(list(NULL), dn[2L]),

margin = 2L, perm = invertPerm(lu.A@q, 0L, 1L)))
identical(e.lu.A[["L"]], lu.A@L)
identical(e.lu.A[["U"]], lu.A@U)
ae1(A, with(e.lu.A, P1. %*% L %*% U %*% P2.))
ae2(A[lu.A@p + 1L, lu.A@q + 1L], with(e.lu.A, L %*% U))

})

Factorization handled as factorized matrix
b <- rnorm(n)
stopifnot(identical(det(A), det(lu.A)),

identical(solve(A, b), solve(lu.A, b)))

sparseMatrix General Sparse Matrix Construction from Nonzero Entries

Description

User-friendly construction of sparse matrices (inheriting from virtual class CsparseMatrix, RsparseMatrix,
or TsparseMatrix) from the positions and values of their nonzero entries.

This interface is recommended over direct construction via calls such as new("..[CRT]Matrix",
...).

172 sparseMatrix

Usage

sparseMatrix(i, j, p, x, dims, dimnames,
symmetric = FALSE, triangular = FALSE, index1 = TRUE,
repr = c("C", "R", "T"), giveCsparse,
check = TRUE, use.last.ij = FALSE)

Arguments

i, j integer vectors of equal length specifying the positions (row and column in-
dices) of the nonzero (or non-TRUE) entries of the matrix. Note that, when x
is non-missing, the xk corresponding to repeated pairs (ik, jk) are added, for
consistency with the definition of class TsparseMatrix, unless use.last.ij is
TRUE, in which case only the last such xk is used.

p integer vector of pointers, one for each column (or row), to the initial (zero-
based) index of elements in the column (or row). Exactly one of i, j, and p
must be missing.

x optional, typically nonzero values for the matrix entries. If specified, then the
length must equal that of i (or j) or equal 1, in which case x is recycled as
necessary. If missing, then the result is a nonzero pattern matrix, i.e., inheriting
from class nsparseMatrix.

dims optional length-2 integer vector of matrix dimensions. If missing, then !index1+c(max(i),max(j))
is used.

dimnames optional list of dimnames; if missing, then NULL ones are used.

symmetric logical indicating if the resulting matrix should be symmetric. In that case,
(i, j, p) should specify only one triangle (upper or lower).

triangular logical indicating if the resulting matrix should be triangular. In that case,
(i, j, p) should specify only one triangle (upper or lower).

index1 logical. If TRUE (the default), then i and j are interpreted as 1-based indices,
following the R convention. That is, counting of rows and columns starts at 1.
If FALSE, then they are interpreted as 0-based indices.

repr character string, one of "C", "R", and "T", specifying the representation of the
sparse matrix result, i.e., specifying one of the virtual classes CsparseMatrix,
RsparseMatrix, and TsparseMatrix.

giveCsparse (deprecated, replaced by repr) logical indicating if the result should inherit
from CsparseMatrix or TsparseMatrix. Note that operations involving CsparseMatrix
are very often (but not always) more efficient.

check logical indicating whether to check that the result is formally valid before re-
turning. Do not set to FALSE unless you know what you are doing!

use.last.ij logical indicating if, in the case of repeated (duplicated) pairs (ik, jk), only the
last pair should be used. FALSE (the default) is consistent with the definiton of
class TsparseMatrix.

Details

Exactly one of the arguments i, j and p must be missing.

sparseMatrix 173

In typical usage, p is missing, i and j are vectors of positive integers and x is a numeric vector.
These three vectors, which must have the same length, form the triplet representation of the sparse
matrix.

If i or j is missing then p must be a non-decreasing integer vector whose first element is zero. It
provides the compressed, or “pointer” representation of the row or column indices, whichever is
missing. The expanded form of p, rep(seq_along(dp),dp) where dp <- diff(p), is used as the
(1-based) row or column indices.

You cannot set both singular and triangular to true; rather use Diagonal() (or its alternatives,
see there).

The values of i, j, p and index1 are used to create 1-based index vectors i and j from which a
TsparseMatrix is constructed, with numerical values given by x, if non-missing. Note that in that
case, when some pairs (ik, jk) are repeated (aka “duplicated”), the corresponding xk are added, in
consistency with the definition of the TsparseMatrix class, unless use.last.ij is set to true.

By default, when repr = "C", the CsparseMatrix derived from this triplet form is returned, where
repr = "R" now allows to directly get an RsparseMatrix and repr = "T" leaves the result as
TsparseMatrix.

The reason for returning a CsparseMatrix object instead of the triplet format by default is that the
compressed column form is easier to work with when performing matrix operations. In particular,
if there are no zeros in x then a CsparseMatrix is a unique representation of the sparse matrix.

Value

A sparse matrix, by default in compressed sparse column format and (formally) without symmetric
or triangular structure, i.e., by default inheriting from both CsparseMatrix and generalMatrix.

Note

You do need to use index1 = FALSE (or add + 1 to i and j) if you want use the 0-based i (and j)
slots from existing sparse matrices.

See Also

Matrix(*, sparse=TRUE) for the constructor of such matrices from a dense matrix. That is easier
in small sample, but much less efficient (or impossible) for large matrices, where something like
sparseMatrix() is needed. Further bdiag and Diagonal for (block-)diagonal and bandSparse for
banded sparse matrix constructors.

Random sparse matrices via rsparsematrix().

The standard R xtabs(*, sparse=TRUE), for sparse tables and sparse.model.matrix() for build-
ing sparse model matrices.

Consider CsparseMatrix and similar class definition help files.

Examples

simple example
i <- c(1,3:8); j <- c(2,9,6:10); x <- 7 * (1:7)
(A <- sparseMatrix(i, j, x = x)) ## 8 x 10 "dgCMatrix"
summary(A)

174 sparseMatrix

str(A) # note that *internally* 0-based row indices are used

(sA <- sparseMatrix(i, j, x = x, symmetric = TRUE)) ## 10 x 10 "dsCMatrix"
(tA <- sparseMatrix(i, j, x = x, triangular= TRUE)) ## 10 x 10 "dtCMatrix"
stopifnot(all(sA == tA + t(tA)) ,

identical(sA, as(tA + t(tA), "symmetricMatrix")))

dims can be larger than the maximum row or column indices
(AA <- sparseMatrix(c(1,3:8), c(2,9,6:10), x = 7 * (1:7), dims = c(10,20)))
summary(AA)

i, j and x can be in an arbitrary order, as long as they are consistent
set.seed(1); (perm <- sample(1:7))
(A1 <- sparseMatrix(i[perm], j[perm], x = x[perm]))
stopifnot(identical(A, A1))

The slots are 0-index based, so
try(sparseMatrix(i=A@i, p=A@p, x= seq_along(A@x)))
fails and you should say so: 1-indexing is FALSE:

sparseMatrix(i=A@i, p=A@p, x= seq_along(A@x), index1 = FALSE)

the (i,j) pairs can be repeated, in which case the x's are summed
(args <- data.frame(i = c(i, 1), j = c(j, 2), x = c(x, 2)))
(Aa <- do.call(sparseMatrix, args))
explicitly ask for elimination of such duplicates, so
that the last one is used:
(A. <- do.call(sparseMatrix, c(args, list(use.last.ij = TRUE))))
stopifnot(Aa[1,2] == 9, # 2+7 == 9

A.[1,2] == 2) # 2 was *after* 7

for a pattern matrix, of course there is no "summing":
(nA <- do.call(sparseMatrix, args[c("i","j")]))

dn <- list(LETTERS[1:3], letters[1:5])
pointer vectors can be used, and the (i,x) slots are sorted if necessary:
m <- sparseMatrix(i = c(3,1, 3:2, 2:1), p= c(0:2, 4,4,6), x = 1:6, dimnames = dn)
m
str(m)
stopifnot(identical(dimnames(m), dn))

sparseMatrix(x = 2.72, i=1:3, j=2:4) # recycling x
sparseMatrix(x = TRUE, i=1:3, j=2:4) # recycling x, |--> "lgCMatrix"

no 'x' --> patter*n* matrix:
(n <- sparseMatrix(i=1:6, j=rev(2:7)))# -> ngCMatrix

an empty sparse matrix:
(e <- sparseMatrix(dims = c(4,6), i={}, j={}))

a symmetric one:
(sy <- sparseMatrix(i= c(2,4,3:5), j= c(4,7:5,5), x = 1:5,

dims = c(7,7), symmetric=TRUE))
stopifnot(isSymmetric(sy),

sparseMatrix-class 175

identical(sy, ## switch i <-> j {and transpose }
t(sparseMatrix(j= c(2,4,3:5), i= c(4,7:5,5), x = 1:5,

dims = c(7,7), symmetric=TRUE))))

rsparsematrix() calls sparseMatrix() :
M1 <- rsparsematrix(1000, 20, nnz = 200)
summary(M1)

pointers example in converting from other sparse matrix representations.
if(requireNamespace("SparseM") &&

packageVersion("SparseM") >= "0.87" &&
nzchar(dfil <- system.file("extdata", "rua_32_ax.rua", package = "SparseM"))) {
X <- SparseM::model.matrix(SparseM::read.matrix.hb(dfil))
XX <- sparseMatrix(j = X@ja, p = X@ia - 1L, x = X@ra, dims = X@dimension)
validObject(XX)

Alternatively, and even more user friendly :
X. <- as(X, "Matrix") # or also
X2 <- as(X, "sparseMatrix")
stopifnot(identical(XX, X.), identical(X., X2))

}

sparseMatrix-class Virtual Class "sparseMatrix" — Mother of Sparse Matrices

Description

Virtual Mother Class of All Sparse Matrices

Slots

Dim: Object of class "integer" - the dimensions of the matrix - must be an integer vector with
exactly two non-negative values.

Dimnames: a list of length two - inherited from class Matrix, see Matrix.

Extends

Class "Matrix", directly.

Methods

show (object = "sparseMatrix"): The show method for sparse matrices prints “structural” ze-
roes as "." using printSpMatrix() which allows further customization.

print signature(x = "sparseMatrix"),
The print method for sparse matrices by default is the same as show() but can be called with
extra optional arguments, see printSpMatrix().

format signature(x = "sparseMatrix"),
The format method for sparse matrices, see formatSpMatrix() for details such as the extra
optional arguments.

176 sparseMatrix-class

summary (object = "sparseMatrix", uniqT=FALSE): Returns an object of S3 class "sparseSummary"
which is basically a data.frame with columns (i,j,x) (or just (i,j) for nsparseMatrix
class objects) with the stored (typically non-zero) entries. The print method resembles Mat-
lab’s way of printing sparse matrices, and also the MatrixMarket format, see writeMM.

cbind2 (x = *, y = *): several methods for binding matrices together, column-wise, see the basic
cbind and rbind functions.
Note that the result will typically be sparse, even when one argument is dense and larger than
the sparse one.

rbind2 (x = *, y = *): binding matrices together row-wise, see cbind2 above.

determinant (x = "sparseMatrix", logarithm=TRUE): determinant() methods for sparse ma-
trices typically work via Cholesky or lu decompositions.

diag (x = "sparseMatrix"): extracts the diagonal of a sparse matrix.

dim<- signature(x = "sparseMatrix", value = "ANY"): allows to reshape a sparse matrix to a
sparse matrix with the same entries but different dimensions. value must be of length two
and fulfill prod(value) == prod(dim(x)).

coerce signature(from = "factor", to = "sparseMatrix"): Coercion of a factor to "sparseMatrix"
produces the matrix of indicator rows stored as an object of class "dgCMatrix". To obtain
columns representing the interaction of the factor and a numeric covariate, replace the "x" slot
of the result by the numeric covariate then take the transpose. Missing values (NA) from the
factor are translated to columns of all 0s.

See also colSums, norm, ... for methods with separate help pages.

Note

In method selection for multiplication operations (i.e. %*% and the two-argument form of crossprod)
the sparseMatrix class takes precedence in the sense that if one operand is a sparse matrix and the
other is any type of dense matrix then the dense matrix is coerced to a dgeMatrix and the appropri-
ate sparse matrix method is used.

See Also

sparseMatrix, and its references, such as xtabs(*, sparse=TRUE), or sparse.model.matrix(),
for constructing sparse matrices.

T2graph for conversion of "graph" objects (package graph) to and from sparse matrices.

Examples

showClass("sparseMatrix") ## and look at the help() of its subclasses
M <- Matrix(0, 10000, 100)
M[1,1] <- M[2,3] <- 3.14
M ## show(.) method suppresses printing of the majority of rows

data(CAex, package = "Matrix")
dim(CAex) # 72 x 72 matrix
determinant(CAex) # works via sparse lu(.)

factor -> t(<sparse design matrix>) :
(fact <- gl(5, 3, 30, labels = LETTERS[1:5]))

sparseQR-class 177

(Xt <- as(fact, "sparseMatrix")) # indicator rows

missing values --> all-0 columns:
f.mis <- fact
i.mis <- c(3:5, 17)
is.na(f.mis) <- i.mis
Xt != (X. <- as(f.mis, "sparseMatrix")) # differ only in columns 3:5,17
stopifnot(all(X.[,i.mis] == 0), all(Xt[,-i.mis] == X.[,-i.mis]))

sparseQR-class Sparse QR Factorizations

Description

sparseQR is the class of sparse, row- and column-pivoted QR factorizations of m×n (m ≥ n) real
matrices, having the general form

P1AP2 = QR =
[
Q1 Q2

] [R1

0

]
= Q1R1

or (equivalently)

A = P ′
1QRP ′

2 = P ′
1

[
Q1 Q2

] [R1

0

]
P ′
2 = P ′

1Q1R1P
′
2

where P1 and P2 are permutation matrices, Q =
∏n

j=1 Hj is an m × m orthogonal matrix (Q1

contains the first n column vectors) equal to the product of n Householder matrices Hj , and R is
an m× n upper trapezoidal matrix (R1 contains the first n row vectors and is upper triangular).

Usage

qrR(qr, complete = FALSE, backPermute = TRUE, row.names = TRUE)

Arguments

qr an object of class sparseQR, almost always the result of a call to generic function
qr with sparse x.

complete a logical indicating if R should be returned instead of R1.

backPermute a logical indicating if R or R1 should be multiplied on the right by P ′
2.

row.names a logical indicating if dimnames(qr)[1] should be propagated unpermuted to
the result. If complete = FALSE, then only the first n names are kept.

178 sparseQR-class

Details

The method for qr.Q does not return Q but rather the (also orthogonal) product P ′
1Q. This behaviour

is algebraically consistent with the base implementation (see qr), which can be seen by noting that
qr.default in base does not pivot rows, constraining P1 to be an identity matrix. It follows that
qr.Q(qr.default(x)) also returns P ′

1Q.

Similarly, the methods for qr.qy and qr.qty multiply on the left by P ′
1Q and Q′P1 rather than Q

and Q′.

It is wrong to expect the values of qr.Q (or qr.R, qr.qy, qr.qty) computed from “equivalent”
sparse and dense factorizations (say, qr(x) and qr(as(x, "matrix")) for x of class dgCMatrix) to
compare equal. The underlying factorization algorithms are quite different, notably as they employ
different pivoting strategies, and in general the factorization is not unique even for fixed P1 and P2.

On the other hand, the values of qr.X, qr.coef, qr.fitted, and qr.resid are well-defined, and
in those cases the sparse and dense computations should compare equal (within some tolerance).

The method for qr.R is a simple wrapper around qrR, but not back-permuting by default and never
giving row names. It did not support backPermute = TRUE until Matrix 1.6-0, hence code needing
the back-permuted result should call qrR if Matrix >= 1.6-0 is not known.

Slots

Dim, Dimnames inherited from virtual class MatrixFactorization.

beta a numeric vector of length Dim[2], used to construct Householder matrices; see V below.

V an object of class dgCMatrix with Dim[2] columns. The number of rows nrow(V) is at least
Dim[1] and at most Dim[1]+Dim[2]. V is lower trapezoidal, and its column vectors gener-
ate the Householder matrices Hj that compose the orthogonal Q factor. Specifically, Hj is
constructed as diag(Dim[1]) - beta[j] * tcrossprod(V[, j]).

R an object of class dgCMatrix with nrow(V) rows and Dim[2] columns. R is the upper trapezoidal
R factor.

p, q 0-based integer vectors of length nrow(V) and Dim[2], respectively, specifying the permuta-
tions applied to the rows and columns of the factorized matrix. q of length 0 is valid and
equivalent to the identity permutation, implying no column pivoting. Using R syntax, the
matrix P1AP2 is precisely A[p+1, q+1] (A[p+1,] when q has length 0).

Extends

Class QR, directly. Class MatrixFactorization, by class QR, distance 2.

Instantiation

Objects can be generated directly by calls of the form new("sparseQR", ...), but they are more
typically obtained as the value of qr(x) for x inheriting from sparseMatrix (often dgCMatrix).

Methods

determinant signature(from = "sparseQR", logarithm = "logical"): computes the determi-
nant of the factorized matrix A or its logarithm.

expand1 signature(x = "sparseQR"): see expand1-methods.

sparseQR-class 179

expand2 signature(x = "sparseQR"): see expand2-methods.

qr.Q signature(qr = "sparseQR"): returns as a dgeMatrix either P ′
1Q or P ′

1Q1, depending on
optional argument complete. The default is FALSE, indicating P ′

1Q1.

qr.R signature(qr = "sparseQR"): qrR returns R, R1, RP2′, or R1P2′, depending on optional
arguments complete and backPermute. The default in both cases is FALSE, indicating R1, for
compatibility with base. The class of the result in that case is dtCMatrix. In the other three
cases, it is dgCMatrix.

qr.X signature(qr = "sparseQR"): returns A as a dgeMatrix, by default. If m > n and op-
tional argument ncol is greater than n, then the result is augmented with P ′

1QJ , where J is
composed of columns (n+ 1) through ncol of the m×m identity matrix.

qr.coef signature(qr = "sparseQR", y = .): returns as a dgeMatrix or vector the result of
multiplying y on the left by P2R

−1
1 Q′

1P1.

qr.fitted signature(qr = "sparseQR", y = .): returns as a dgeMatrix or vector the result of
multiplying y on the left by P ′

1Q1Q
′
1P1.

qr.resid signature(qr = "sparseQR", y = .): returns as a dgeMatrix or vector the result of
multiplying y on the left by P ′

1Q2Q
′
2P1.

qr.qty signature(qr = "sparseQR", y = .): returns as a dgeMatrix or vector the result of mul-
tiplying y on the left by Q′P1.

qr.qy signature(qr = "sparseQR", y = .): returns as a dgeMatrix or vector the result of mul-
tiplying y on the left by P ′

1Q.

solve signature(a = "sparseQR", b = .): see solve-methods.

References

Davis, T. A. (2006). Direct methods for sparse linear systems. Society for Industrial and Applied
Mathematics. doi:10.1137/1.9780898718881

Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). Johns Hopkins University
Press. doi:10.56021/9781421407944

See Also

Class dgCMatrix.

Generic function qr from base, whose default method qr.default “defines” the S3 class qr of
dense QR factorizations.

qr-methods for methods defined in Matrix.

Generic functions expand1 and expand2.

The many auxiliary functions for QR factorizations: qr.Q, qr.R, qr.X, qr.coef, qr.fitted,
qr.resid, qr.qty, qr.qy, and qr.solve.

Examples

showClass("sparseQR")
set.seed(2)

m <- 300L

https://doi.org/10.1137/1.9780898718881
https://doi.org/10.56021/9781421407944

180 sparseQR-class

n <- 60L
A <- rsparsematrix(m, n, 0.05)

With dimnames, to see that they are propagated :
dimnames(A) <- dn <- list(paste0("r", seq_len(m)),

paste0("c", seq_len(n)))

(qr.A <- qr(A))
str(e.qr.A <- expand2(qr.A, complete = FALSE), max.level = 2L)
str(E.qr.A <- expand2(qr.A, complete = TRUE), max.level = 2L)

t(sapply(e.qr.A, dim))
t(sapply(E.qr.A, dim))

Horribly inefficient, but instructive :
slowQ <- function(V, beta) {

d <- dim(V)
Q <- diag(d[1L])
if(d[2L] > 0L) {

for(j in d[2L]:1L) {
cat(j, "\n", sep = "")
Q <- Q - (beta[j] * tcrossprod(V[, j])) %*% Q

}
}
Q

}

ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)

A ~ P1' Q R P2' ~ P1' Q1 R1 P2' in floating point
stopifnot(exprs = {

identical(names(e.qr.A), c("P1.", "Q1", "R1", "P2."))
identical(names(E.qr.A), c("P1.", "Q" , "R" , "P2."))
identical(e.qr.A[["P1."]],

new("pMatrix", Dim = c(m, m), Dimnames = c(dn[1L], list(NULL)),
margin = 1L, perm = invertPerm(qr.A@p, 0L, 1L)))

identical(e.qr.A[["P2."]],
new("pMatrix", Dim = c(n, n), Dimnames = c(list(NULL), dn[2L]),

margin = 2L, perm = invertPerm(qr.A@q, 0L, 1L)))
identical(e.qr.A[["R1"]], triu(E.qr.A[["R"]][seq_len(n),]))
identical(e.qr.A[["Q1"]], E.qr.A[["Q"]][, seq_len(n)])
identical(E.qr.A[["R"]], qr.A@R)

ae1(E.qr.A[["Q"]], slowQ(qr.A@V, qr.A@beta))
ae1(crossprod(E.qr.A[["Q"]]), diag(m))
ae1(A, with(e.qr.A, P1. %*% Q1 %*% R1 %*% P2.))
ae1(A, with(E.qr.A, P1. %*% Q %*% R %*% P2.))
ae2(A.perm <- A[qr.A@p + 1L, qr.A@q + 1L], with(e.qr.A, Q1 %*% R1))
ae2(A.perm , with(E.qr.A, Q %*% R))

})

More identities
b <- rnorm(m)

sparseVector 181

stopifnot(exprs = {
ae1(qrX <- qr.X (qr.A), A)
ae2(qrQ <- qr.Q (qr.A), with(e.qr.A, P1. %*% Q1))
ae2(qr.R (qr.A), with(e.qr.A, R1))
ae2(qrc <- qr.coef (qr.A, b), with(e.qr.A, solve(R1 %*% P2., t(qrQ)) %*% b))
ae2(qrf <- qr.fitted(qr.A, b), with(e.qr.A, tcrossprod(qrQ) %*% b))
ae2(qrr <- qr.resid (qr.A, b), b - qrf)
ae2(qrq <- qr.qy (qr.A, b), with(E.qr.A, P1. %*% Q %*% b))
ae2(qr.qty(qr.A, qrq), b)

})

Sparse and dense computations should agree here
qr.Am <- qr(as(A, "matrix")) # <=> qr.default(A)
stopifnot(exprs = {

ae2(qrX, qr.X (qr.Am))
ae2(qrc, qr.coef (qr.Am, b))
ae2(qrf, qr.fitted(qr.Am, b))
ae2(qrr, qr.resid (qr.Am, b))

})

sparseVector Sparse Vector Construction from Nonzero Entries

Description

User friendly construction of sparse vectors, i.e., objects inheriting from class sparseVector,
from indices and values of its non-zero entries.

Usage

sparseVector(x, i, length)

Arguments

x vector of the non zero entries; may be missing in which case a "nsparseVector"
will be returned.

i integer vector (of the same length as x) specifying the indices of the non-zero
(or non-TRUE) entries of the sparse vector.

length length of the sparse vector.

Details

zero entries in x are dropped automatically, analogously as drop0() acts on sparse matrices.

Value

a sparse vector, i.e., inheriting from class sparseVector.

182 sparseVector-class

Author(s)

Martin Maechler

See Also

sparseMatrix() constructor for sparse matrices; the class sparseVector.

Examples

str(sv <- sparseVector(x = 1:10, i = sample(999, 10), length=1000))

sx <- c(0,0,3, 3.2, 0,0,0,-3:1,0,0,2,0,0,5,0,0)
ss <- as(sx, "sparseVector")
stopifnot(identical(ss,

sparseVector(x = c(2, -1, -2, 3, 1, -3, 5, 3.2),
i = c(15L, 10:9, 3L,12L,8L,18L, 4L), length = 20L)))

(ns <- sparseVector(i= c(7, 3, 2), length = 10))
stopifnot(identical(ns,

new("nsparseVector", length = 10, i = c(2, 3, 7))))

sparseVector-class Sparse Vector Classes

Description

Sparse Vector Classes: The virtual mother class "sparseVector" has the five actual daughter
classes "dsparseVector", "isparseVector", "lsparseVector", "nsparseVector", and "zsparseVector",
where we’ve mainly implemented methods for the d*, l* and n* ones.

Slots

length: class "numeric" - the length of the sparse vector. Note that "numeric" can be consider-
ably larger than the maximal "integer", .Machine$integer.max, on purpose.

i: class "numeric" - the (1-based) indices of the non-zero entries. Must not be NA and strictly
sorted increasingly.
Note that "integer" is “part of” "numeric", and can (and often will) be used for non-huge
sparseVectors.

x: (for all but "nsparseVector"): the non-zero entries. This is of class "numeric" for class
"dsparseVector", "logical" for class "lsparseVector", etc.

Methods

length signature(x = "sparseVector"): simply extracts the length slot.

sparseVector-class 183

show signature(object = "sparseVector"): The show method for sparse vectors prints “struc-
tural” zeroes as "." using the non-exported prSpVector function which allows further cus-
tomization such as replacing "." by " " (blank).

Note that options(max.print) will influence how many entries of large sparse vectors are
printed at all.

as.vector signature(x = "sparseVector", mode = "character") coerces sparse vectors to “reg-
ular”, i.e., atomic vectors. This is the same as as(x, "vector").

as ..: see coerce below

coerce signature(from = "sparseVector", to = "sparseMatrix"), and

coerce signature(from = "sparseMatrix", to = "sparseVector"), etc: coercions to and from
sparse matrices (sparseMatrix) are provided and work analogously as in standard R, i.e., a
vector is coerced to a 1-column matrix.

dim<- signature(x = "sparseVector", value = "integer") coerces a sparse vector to a sparse
Matrix, i.e., an object inheriting from sparseMatrix, of the appropriate dimension.

head signature(x = "sparseVector"): as with R’s (package util) head, head(x,n) (for n >=
1) is equivalent to x[1:n], but here can be much more efficient, see the example.

tail signature(x = "sparseVector"): analogous to head, see above.

toeplitz signature(x = "sparseVector"): as toeplitz(x), produce the n × n Toeplitz matrix
from x, where n = length(x).

rep signature(x = "sparseVector") repeat x, with the same argument list (x, times, length.out,
each,...) as the default method for rep().

which signature(x = "nsparseVector") and

which signature(x = "lsparseVector") return the indices of the non-zero entries (which is triv-
ial for sparse vectors).

Ops signature(e1 = "sparseVector", e2 = "*"): define arithmetic, compare and logic opera-
tions, (see Ops).

Summary signature(x = "sparseVector"): define all the Summary methods.

is.na, is.finite, is.infinite (x = "sparseVector"), and

is.na, is.finite, is.infinite (x = "nsparseVector"): return logical or "nsparseVector" of the
same length as x, indicating if/where x is NA (or NaN), finite or infinite, entirely analogously to
the corresponding base R functions.

zapsmall signature(x = "sparseVectors"): typically used for numeric sparse vector: round()
entries such that (relatively) very small entries become zero exactly.

c.sparseVector() is an S3 method for all "sparseVector"s, but automatic dispatch only happens
for the first argument, so it is useful also as regular R function, see the examples.

See Also

sparseVector() for friendly construction of sparse vectors (apart from as(*, "sparseVector")).

184 sparseVector-class

Examples

getClass("sparseVector")
getClass("dsparseVector")

sx <- c(0,0,3, 3.2, 0,0,0,-3:1,0,0,2,0,0,5,0,0)
(ss <- as(sx, "sparseVector"))

ix <- as.integer(round(sx))
(is <- as(ix, "sparseVector")) ## an "isparseVector" (!)
(ns <- sparseVector(i= c(7, 3, 2), length = 10)) # "nsparseVector"
rep() works too:
(ri <- rep(is, length.out= 25))

Using `dim<-` as in base R :
r <- ss
dim(r) <- c(4,5) # becomes a sparse Matrix:
r
or coercion (as as.matrix() in base R):
as(ss, "Matrix")
stopifnot(all(ss == print(as(ss, "CsparseMatrix"))))

currently has "non-structural" FALSE -- printing as ":"
(lis <- is & FALSE)
(nn <- is[is == 0]) # all "structural" FALSE

NA-case
sN <- sx; sN[4] <- NA
(svN <- as(sN, "sparseVector"))

v <- as(c(0,0,3, 3.2, rep(0,9),-3,0,-1, rep(0,20),5,0),
"sparseVector")

v <- rep(rep(v, 50), 5000)
set.seed(1); v[sample(v@i, 1e6)] <- 0
str(v)
system.time(for(i in 1:4) hv <- head(v, 1e6))
user system elapsed
0.033 0.000 0.032
system.time(for(i in 1:4) h2 <- v[1:1e6])
user system elapsed
1.317 0.000 1.319

stopifnot(identical(hv, h2),
identical(is | FALSE, is != 0),
validObject(svN), validObject(lis), as.logical(is.na(svN[4])),
identical(is^2 > 0, is & TRUE),
all(!lis), !any(lis), length(nn@i) == 0, !any(nn), all(!nn),
sum(lis) == 0, !prod(lis), range(lis) == c(0,0))

create and use the t(.) method:
t(x20 <- sparseVector(c(9,3:1), i=c(1:2,4,7), length=20))
(T20 <- toeplitz(x20))
stopifnot(is(T20, "symmetricMatrix"), is(T20, "sparseMatrix"),

spMatrix 185

identical(unname(as.matrix(T20)),
toeplitz(as.vector(x20))))

c() method for "sparseVector" - also available as regular function
(c1 <- c(x20, 0,0,0, -10*x20))
(c2 <- c(ns, is, FALSE))
(c3 <- c(ns, !ns, TRUE, NA, FALSE))
(c4 <- c(ns, rev(ns)))
here, c() would produce a list {not dispatching to c.sparseVector()}
(c5 <- c.sparseVector(0,0, x20))

checking (consistency)
.v <- as.vector
.s <- function(v) as(v, "sparseVector")
stopifnot(exprs = {

all.equal(c1, .s(c(.v(x20), 0,0,0, -10*.v(x20))), tol = 0)
all.equal(c2, .s(c(.v(ns), .v(is), FALSE)), tol = 0)
all.equal(c3, .s(c(.v(ns), !.v(ns), TRUE, NA, FALSE)), tol = 0)
all.equal(c4, .s(c(.v(ns), rev(.v(ns)))), tol = 0,

check.class = FALSE)
all.equal(c5, .s(c(0,0, .v(x20))), tol = 0)

})

spMatrix Sparse Matrix Constructor From Triplet

Description

User friendly construction of a sparse matrix (inheriting from class TsparseMatrix) from the triplet
representation.

This is much less flexible than sparseMatrix() and hence somewhat deprecated.

Usage

spMatrix(nrow, ncol, i = integer(0L), j = integer(0L), x = double(0L))

Arguments

nrow, ncol integers specifying the desired number of rows and columns.
i, j integer vectors of the same length specifying the locations of the non-zero (or

non-TRUE) entries of the matrix.
x atomic vector of the same length as i and j, specifying the values of the non-

zero entries.

Value

A sparse matrix in triplet form, as an R object inheriting from both TsparseMatrix and generalMatrix.

The matrix M will have M[i[k], j[k]] == x[k], for k = 1, 2, . . . , n, where n = length(i) and
M[i', j'] == 0 for all other pairs (i′, j′).

186 subassign-methods

See Also

Matrix(*, sparse=TRUE) for the more usual constructor of such matrices. Then, sparseMatrix is
more general and flexible than spMatrix() and by default returns a CsparseMatrix which is often
slightly more desirable. Further, bdiag and Diagonal for (block-)diagonal matrix constructors.

Consider TsparseMatrix and similar class definition help files.

Examples

simple example
A <- spMatrix(10,20, i = c(1,3:8),

j = c(2,9,6:10),
x = 7 * (1:7))

A # a "dgTMatrix"
summary(A)
str(A) # note that *internally* 0-based indices (i,j) are used

L <- spMatrix(9, 30, i = rep(1:9, 3), 1:27,
(1:27) %% 4 != 1)

L # an "lgTMatrix"

A simplified predecessor of Matrix' rsparsematrix() function :

rSpMatrix <- function(nrow, ncol, nnz,
rand.x = function(n) round(rnorm(nnz), 2))

{
Purpose: random sparse matrix
--
Arguments: (nrow,ncol): dimension
nnz : number of non-zero entries
rand.x: random number generator for 'x' slot
--
Author: Martin Maechler, Date: 14.-16. May 2007
stopifnot((nnz <- as.integer(nnz)) >= 0,

nrow >= 0, ncol >= 0, nnz <= nrow * ncol)
spMatrix(nrow, ncol,

i = sample(nrow, nnz, replace = TRUE),
j = sample(ncol, nnz, replace = TRUE),
x = rand.x(nnz))

}

M1 <- rSpMatrix(100000, 20, nnz = 200)
summary(M1)

subassign-methods Methods for "[<-" - Assigning to Subsets for ’Matrix’

subassign-methods 187

Description

Methods for "[<-", i.e., extraction or subsetting mostly of matrices, in package Matrix.

Note: Contrary to standard matrix assignment in base R, in x[..] <- val it is typically an er-
ror (see stop) when the type or class of val would require the class of x to be changed, e.g.,
when x is logical, say "lsparseMatrix", and val is numeric. In other cases, e.g., when x is a
"nsparseMatrix" and val is not TRUE or FALSE, a warning is signalled, and val is “interpreted”
as logical, and (logical) NA is interpreted as TRUE.

Methods

There are many many more than these:

x = "Matrix", i = "missing", j = "missing", value= "ANY" is currently a simple fallback method
implementation which ensures “readable” error messages.

x = "Matrix", i = "ANY", j = "ANY", value= "ANY" currently gives an error

x = "denseMatrix", i = "index", j = "missing", value= "numeric" ...

x = "denseMatrix", i = "index", j = "index", value= "numeric" ...

x = "denseMatrix", i = "missing", j = "index", value= "numeric" ...

See Also

[-methods for subsetting "Matrix" objects; the index class; Extract about the standard subset
assignment (and extraction).

Examples

set.seed(101)
(a <- m <- Matrix(round(rnorm(7*4),2), nrow = 7))

a[] <- 2.2 # <<- replaces **every** entry
a
as do these:
a[,] <- 3 ; a[TRUE,] <- 4

m[2, 3] <- 3.14 # simple number
m[3, 3:4]<- 3:4 # simple numeric of length 2

sub matrix assignment:
m[-(4:7), 3:4] <- cbind(1,2:4) #-> upper right corner of 'm'
m[3:5, 2:3] <- 0
m[6:7, 1:2] <- Diagonal(2)
m

rows or columns only:
m[1,] <- 10
m[,2] <- 1:7
m[-(1:6),] <- 3:0 # not the first 6 rows, i.e. only the 7th
as(m, "sparseMatrix")

188 symmetricMatrix-class

subscript-methods Methods for "[": Extraction or Subsetting in Package ’Matrix’

Description

Methods for "[", i.e., extraction or subsetting mostly of matrices, in package Matrix.

Methods

There are more than these:

x = "Matrix", i = "missing", j = "missing", drop= "ANY" ...

x = "Matrix", i = "numeric", j = "missing", drop= "missing" ...

x = "Matrix", i = "missing", j = "numeric", drop= "missing" ...

x = "dsparseMatrix", i = "missing", j = "numeric", drop= "logical" ...

x = "dsparseMatrix", i = "numeric", j = "missing", drop= "logical" ...

x = "dsparseMatrix", i = "numeric", j = "numeric", drop= "logical" ...

See Also

[<--methods for subassignment to "Matrix" objects. Extract about the standard extraction.

Examples

str(m <- Matrix(round(rnorm(7*4),2), nrow = 7))
stopifnot(identical(m, m[]))
m[2, 3] # simple number
m[2, 3:4] # simple numeric of length 2
m[2, 3:4, drop=FALSE] # sub matrix of class 'dgeMatrix'
rows or columns only:
m[1,] # first row, as simple numeric vector
m[,1:2] # sub matrix of first two columns

showMethods("[", inherited = FALSE)

symmetricMatrix-class Virtual Class of Symmetric Matrices in Package Matrix

Description

The virtual class of symmetric matrices, "symmetricMatrix", from the package Matrix contains
numeric and logical, dense and sparse matrices, e.g., see the examples with the “actual” subclasses.

The main use is in methods (and C functions) that can deal with all symmetric matrices, and in
as(*, "symmetricMatrix").

symmetricMatrix-class 189

Slots

Dim, Dimnames inherited from virtual class Matrix. See comments below about symmetry of
Dimnames.

factors a list of MatrixFactorization objects caching factorizations of the matrix. Typically, it
is initialized as an empty list and updated “automagically” whenever a factorization is com-
puted.

uplo a character string, either "U" or "L" indicating that only entries in the upper or lower triangle
are referenced.

Extends

Class "Matrix", directly.

Methods

dimnames signature(object = "symmetricMatrix"): returns symmetric dimnames, even when
the Dimnames slot only has row or column names. This allows to save storage for large (typi-
cally sparse) symmetric matrices.

isSymmetric signature(object = "symmetricMatrix"): returns TRUE trivially.

There’s a C function symmetricMatrix_validate() called by the internal validity checking func-
tions, and also from getValidity(getClass("symmetricMatrix")).

Validity and dimnames

The validity checks do not require a symmetric Dimnames slot, so it can be list(NULL, <character>),
e.g., for efficiency. However, dimnames() and other functions and methods should behave as if the
dimnames were symmetric, i.e., with both list components identical.

See Also

isSymmetric which has efficient methods (isSymmetric-methods) for the Matrix classes. Classes
triangularMatrix, and, e.g., dsyMatrix for numeric dense matrices, or lsCMatrix for a logical
sparse matrix class.

Examples

An example about the symmetric Dimnames:
sy <- sparseMatrix(i= c(2,4,3:5), j= c(4,7:5,5), x = 1:5, dims = c(7,7),

symmetric=TRUE, dimnames = list(NULL, letters[1:7]))
sy # shows symmetrical dimnames
sy@Dimnames # internally only one part is stored
dimnames(sy) # both parts - as sy *is* symmetrical

showClass("symmetricMatrix")

The names of direct subclasses:
scl <- getClass("symmetricMatrix")@subclasses
directly <- sapply(lapply(scl, slot, "by"), length) == 0
names(scl)[directly]

190 symmpart-methods

Methods -- applicaple to all subclasses above:
showMethods(classes = "symmetricMatrix")

symmpart-methods Symmetric Part and Skew(symmetric) Part of a Matrix

Description

symmpart(x) computes the symmetric part (x + t(x))/2 and skewpart(x) the skew symmetric
part (x - t(x))/2 of a square matrix x, more efficiently for specific Matrix classes.

Note that x == symmpart(x) + skewpart(x) for all square matrices – apart from extraneous NA
values in the RHS.

Usage

symmpart(x)
skewpart(x)

Arguments

x a square matrix; either “traditional” of class "matrix", or typically, inheriting
from the Matrix class.

Details

These are generic functions with several methods for different matrix classes, use e.g., showMethods(symmpart)
to see them.

If the row and column names differ, the result will use the column names unless they are (partly)
NULL where the row names are non-NULL (see also the examples).

Value

symmpart(x) returns a symmetric matrix, inheriting from symmetricMatrix or diagonalMatrix
if x inherits from Matrix.

skewpart(x) returns a skew-symmetric matrix, inheriting from generalMatrix, symmetricMatrix
or diagonalMatrix if x inherits from Matrix.

See Also

isSymmetric.

triangularMatrix-class 191

Examples

m <- Matrix(1:4, 2,2)
symmpart(m)
skewpart(m)

stopifnot(all(m == symmpart(m) + skewpart(m)))

dn <- dimnames(m) <- list(row = c("r1", "r2"), col = c("var.1", "var.2"))
stopifnot(all(m == symmpart(m) + skewpart(m)))
colnames(m) <- NULL
stopifnot(all(m == symmpart(m) + skewpart(m)))
dimnames(m) <- unname(dn)
stopifnot(all(m == symmpart(m) + skewpart(m)))

investigate the current methods:
showMethods(skewpart, include = TRUE)

triangularMatrix-class

Virtual Class of Triangular Matrices in Package Matrix

Description

The virtual class of triangular matrices,"triangularMatrix", the package Matrix contains square
(nrow == ncol) numeric and logical, dense and sparse matrices, e.g., see the examples. A main use
of the virtual class is in methods (and C functions) that can deal with all triangular matrices.

Slots

uplo: String (of class "character"). Must be either "U", for upper triangular, and "L", for lower
triangular.

diag: String (of class "character"). Must be either "U", for unit triangular (diagonal is all ones),
or "N" for non-unit. The diagonal elements are not accessed internally when diag is "U". For
denseMatrix classes, they need to be allocated though, such that the length of the x slot does
not depend on diag.

Dim, Dimnames: The dimension (a length-2 "integer") and corresponding names (or NULL), inher-
ited from the Matrix, see there.

Extends

Class "Matrix", directly.

Methods

There’s a C function triangularMatrix_validity() called by the internal validity checking func-
tions.

Currently, Schur, isSymmetric and as() (i.e. coerce) have methods with triangularMatrix in
their signature.

192 TsparseMatrix-class

See Also

isTriangular() for testing any matrix for triangularity; classes symmetricMatrix, and, e.g.,
dtrMatrix for numeric dense matrices, or ltCMatrix for a logical sparse matrix subclass of
"triangularMatrix".

Examples

showClass("triangularMatrix")

The names of direct subclasses:
scl <- getClass("triangularMatrix")@subclasses
directly <- sapply(lapply(scl, slot, "by"), length) == 0
names(scl)[directly]

(m <- matrix(c(5,1,0,3), 2))
as(m, "triangularMatrix")

TsparseMatrix-class Class "TsparseMatrix" of Sparse Matrices in Triplet Form

Description

The "TsparseMatrix" class is the virtual class of all sparse matrices coded in triplet form. Since
it is a virtual class, no objects may be created from it. See showClass("TsparseMatrix") for its
subclasses.

Slots

Dim, Dimnames: from the "Matrix" class,

i: Object of class "integer" - the row indices of non-zero entries in 0-base, i.e., must be in
0:(nrow(.)-1).

j: Object of class "integer" - the column indices of non-zero entries. Must be the same length
as slot i and 0-based as well, i.e., in 0:(ncol(.)-1). For numeric Tsparse matrices, (i,j)
pairs can occur more than once, see dgTMatrix.

Extends

Class "sparseMatrix", directly. Class "Matrix", by class "sparseMatrix".

Methods

Extraction ("[") methods, see [-methods.

unpackedMatrix-class 193

Note

Most operations with sparse matrices are performed using the compressed, column-oriented or
CsparseMatrix representation. The triplet representation is convenient for creating a sparse ma-
trix or for reading and writing such matrices. Once it is created, however, the matrix is generally
coerced to a CsparseMatrix for further operations.

Note that all new(.), spMatrix and sparseMatrix(*, repr="T") constructors for "TsparseMatrix"
classes implicitly add (i.e., “sum up”) xk’s that belong to identical (ik, jk) pairs, see, the example
below, or also "dgTMatrix".

For convenience, methods for some operations such as %*% and crossprod are defined for TsparseMatrix
objects. These methods simply coerce the TsparseMatrix object to a CsparseMatrix object then
perform the operation.

See Also

its superclass, sparseMatrix, and the dgTMatrix class, for the links to other classes.

Examples

showClass("TsparseMatrix")
or just the subclasses' names
names(getClass("TsparseMatrix")@subclasses)

T3 <- spMatrix(3,4, i=c(1,3:1), j=c(2,4:2), x=1:4)
T3 # only 3 non-zero entries, 5 = 1+4 !

unpackedMatrix-class Virtual Class "unpackedMatrix" of Unpacked Dense Matrices

Description

Class "unpackedMatrix" is the virtual class of dense matrices in "unpacked" format, storing
all m*n elements of an m-by-n matrix. It is used to define common methods for efficient sub-
setting, transposing, etc. of its proper subclasses: currently "[dln]geMatrix" (unpacked gen-
eral), "[dln]syMatrix" (unpacked symmetric), "[dln]trMatrix" (unpacked triangular), and sub-
classes of these, such as "dpoMatrix".

Slots

Dim, Dimnames: as all Matrix objects.

Extends

Class "denseMatrix", directly. Class "Matrix", by class "denseMatrix", distance 2.

194 updown-methods

Methods

pack signature(x = "unpackedMatrix"): ...

unpack signature(x = "unpackedMatrix"): ...

isSymmetric signature(object = "unpackedMatrix"): ...

isTriangular signature(object = "unpackedMatrix"): ...

isDiagonal signature(object = "unpackedMatrix"): ...

t signature(x = "unpackedMatrix"): ...

diag signature(x = "unpackedMatrix"): ...

diag<- signature(x = "unpackedMatrix"): ...

Author(s)

Mikael Jagan

See Also

pack and unpack; its virtual "complement" "packedMatrix"; its proper subclasses "dsyMatrix",
"ltrMatrix", etc.

Examples

showClass("unpackedMatrix")
showMethods(classes = "unpackedMatrix")

updown-methods Updating and Downdating Sparse Cholesky Factorizations

Description

Computes a rank-k update or downdate of a sparse Cholesky factorization

P1AP ′
1 = L1DL′

1 = LL′

which for some k-column matrix C is the factorization

P1(A+ sCC ′)P ′
1 = L̃1D̃L̃′

1 = L̃L̃′

Here, s = 1 for an update and s = −1 for a downdate.

Usage

updown(update, C, L)

USCounties 195

Arguments

update a logical (TRUE or FALSE) or character ("+" or "-") indicating if L should be
updated (or otherwise downdated).

C a finite matrix or Matrix such that tcrossprod(C) has the dimensions of L.

L an object of class dCHMsimpl or dCHMsuper specifying a sparse Cholesky fac-
torization.

Value

A sparse Cholesky factorization with dimensions matching L, typically of class dCHMsimpl.

Author(s)

Initial implementation by Nicholas Nagle, University of Tennessee.

References

Davis, T. A., Hager, W. W. (2001). Multiple-rank modifications of a sparse Cholesky factorization.
SIAM Journal on Matrix Analysis and Applications, 22(4), 997-1013. doi:10.1137/S0895479899357346

See Also

Classes dCHMsimpl and dCHMsuper and their methods, notably for generic function update, which
is not equivalent to updown(update = TRUE).

Generic function Cholesky.

Examples

m <- sparseMatrix(i = c(3, 1, 3:2, 2:1), p = c(0:2, 4, 4, 6), x = 1:6,
dimnames = list(LETTERS[1:3], letters[1:5]))

uc0 <- Cholesky(A <- crossprod(m) + Diagonal(5))
uc1 <- updown("+", Diagonal(5, 1), uc0)
uc2 <- updown("-", Diagonal(5, 1), uc1)
stopifnot(all.equal(uc0, uc2))

USCounties Contiguity Matrix of U.S. Counties

Description

This matrix gives the contiguities of 3111 U.S. counties, using the queen criterion of at least one
shared vertex or edge.

Usage

data(USCounties)

https://doi.org/10.1137/S0895479899357346

196 wrld_1deg

Format

A 3111× 3111 sparse, symmetric matrix of class dsCMatrix, with 9101 nonzero entries.

Source

GAL lattice file ‘usc_q.GAL’ (retrieved in 2008 from ‘http://sal.uiuc.edu/weights/zips/usc.zip’
with permission from Luc Anselin for use and distribution) was read into R using function read.gal
from package spdep.

Neighbour lists were augmented with row-standardized (and then symmetrized) spatial weights,
using functions nb2listw and similar.listw from packages spdep and spatialreg. The resulting
listw object was coerced to class dsTMatrix using as_dsTMatrix_listw from spatialreg, and
subsequently to class dsCMatrix.

References

Ord, J. K. (1975). Estimation methods for models of spatial interaction. Journal of the American
Statistical Association, 70(349), 120-126. doi:10.2307/2285387

Examples

data(USCounties, package = "Matrix")
(n <- ncol(USCounties))
I <- .symDiagonal(n)

set.seed(1)
r <- 50L
rho <- 1 / runif(r, 0, 0.5)

system.time(MJ0 <- sapply(rho, function(mult)
determinant(USCounties + mult * I, logarithm = TRUE)$modulus))

Can be done faster by updating the Cholesky factor:

C1 <- Cholesky(USCounties, Imult = 2)
system.time(MJ1 <- sapply(rho, function(mult)

determinant(update(C1, USCounties, mult), sqrt = FALSE)$modulus))
stopifnot(all.equal(MJ0, MJ1))

C2 <- Cholesky(USCounties, super = TRUE, Imult = 2)
system.time(MJ2 <- sapply(rho, function(mult)

determinant(update(C2, USCounties, mult), sqrt = FALSE)$modulus))
stopifnot(all.equal(MJ0, MJ2))

wrld_1deg Contiguity Matrix of World One-Degree Grid Cells

https://CRAN.R-project.org/package=spdep
https://CRAN.R-project.org/package=spdep
https://CRAN.R-project.org/package=spatialreg
https://CRAN.R-project.org/package=spatialreg
https://doi.org/10.2307/2285387

wrld_1deg 197

Description

This matrix gives the contiguities of 15260 one-degree grid cells of world land areas, using a crite-
rion based on the great-circle distance between centers.

Usage

data(wrld_1deg)

Format

A 15260× 15260 sparse, symmetric matrix of class dsCMatrix, with 55973 nonzero entries.

Source

Shoreline data were read into R from the GSHHS database using function Rgshhs from pack-
age maptools. Antarctica was excluded. An approximately one-degree grid was generated using
function Sobj_SpatialGrid, also from maptools. Grid cells with centers on land were identi-
fied using the over method for classes SpatialPolygons and SpatialGrid, defined in package
sp. Neighbours of these were identified by passing the resulting SpatialPixels object to function
dnearneigh from package spdep, using as a cut-off a great-circle distance of sqrt(2) kilometers
between centers.

Neighbour lists were augmented with row-standardized (and then symmetrized) spatial weights,
using functions nb2listw and similar.listw from packages spdep and spatialreg. The resulting
listw object was coerced to class dsTMatrix using as_dsTMatrix_listw from spatialreg, and
subsequently to class dsCMatrix.

References

Ord, J. K. (1975). Estimation methods for models of spatial interaction. Journal of the American
Statistical Association, 70(349), 120-126. doi:10.2307/2285387

Examples

data(wrld_1deg, package = "Matrix")
(n <- ncol(wrld_1deg))
I <- .symDiagonal(n)

doExtras <- interactive() || nzchar(Sys.getenv("R_MATRIX_CHECK_EXTRA"))
set.seed(1)
r <- if(doExtras) 20L else 3L
rho <- 1 / runif(r, 0, 0.5)

system.time(MJ0 <- sapply(rho, function(mult)
determinant(wrld_1deg + mult * I, logarithm = TRUE)$modulus))

Can be done faster by updating the Cholesky factor:

C1 <- Cholesky(wrld_1deg, Imult = 2)
system.time(MJ1 <- sapply(rho, function(mult)

determinant(update(C1, wrld_1deg, mult), sqrt = FALSE)$modulus))

https://CRAN.R-project.org/package=maptools
https://CRAN.R-project.org/package=maptools
https://CRAN.R-project.org/package=sp
https://CRAN.R-project.org/package=spdep
https://CRAN.R-project.org/package=spdep
https://CRAN.R-project.org/package=spatialreg
https://CRAN.R-project.org/package=spatialreg
https://doi.org/10.2307/2285387

198 wrld_1deg

stopifnot(all.equal(MJ0, MJ1))

C2 <- Cholesky(wrld_1deg, super = TRUE, Imult = 2)
system.time(MJ2 <- sapply(rho, function(mult)

determinant(update(C2, wrld_1deg, mult), sqrt = FALSE)$modulus))
stopifnot(all.equal(MJ0, MJ2))

Index

!,Matrix-method (Matrix-class), 124
!,indMatrix-method (indMatrix-class), 97
!,ldenseMatrix-method

(ldenseMatrix-class), 110
!,ldiMatrix-method (ldiMatrix-class),

110
!,lsparseMatrix-method

(lsparseMatrix-class), 112
!,lsparseVector-method

(sparseVector-class), 182
!,ndenseMatrix-method

(ndenseMatrix-class), 128
!,ndiMatrix-method (ldiMatrix-class),

110
!,nsparseMatrix-method

(nsparseMatrix-class), 137
!,nsparseVector-method

(sparseVector-class), 182
!,sparseVector-method

(sparseVector-class), 182
∗ Choleski

Cholesky-methods, 34
∗ NA

is.na-methods, 101
∗ algebra

boolmatmult-methods, 14
BunchKaufman-class, 16
BunchKaufman-methods, 18
CHMfactor-class, 22
chol-methods, 26
chol2inv-methods, 30
Cholesky-class, 31
Cholesky-methods, 34
colSums-methods, 42
condest, 43
denseLU-class, 49
dimScale, 61
dmperm, 63
expand-methods, 79

KhatriRao, 106
kronecker-methods, 109
lu-methods, 116
matmult-methods, 120
MatrixFactorization-class, 127
nearPD, 129
norm-methods, 136
qr-methods, 148
rankMatrix, 151
rcond-methods, 154
Schur-class, 161
Schur-methods, 162
solve-methods, 164
sparseLU-class, 169
sparseQR-class, 177
symmpart-methods, 190
updown-methods, 194

∗ arith
all.equal-methods, 7
colSums-methods, 42
dimScale, 61
facmul-methods, 85
KhatriRao, 106
kronecker-methods, 109
matmult-methods, 120
symmpart-methods, 190

∗ array
asUniqueT, 8
band-methods, 9
bandSparse, 11
bdiag, 12
boolmatmult-methods, 14
BunchKaufman-class, 16
BunchKaufman-methods, 18
cbind2-methods, 21
CHMfactor-class, 22
chol-methods, 26
chol2inv-methods, 30
Cholesky-class, 31

199

200 INDEX

Cholesky-methods, 34
colSums-methods, 42
CsparseMatrix-class, 45
ddenseMatrix-class, 47
ddiMatrix-class, 48
denseLU-class, 49
denseMatrix-class, 51
dgCMatrix-class, 52
dgeMatrix-class, 53
dgRMatrix-class, 54
dgTMatrix-class, 55
Diagonal, 56
diagonalMatrix-class, 58
diagU2N, 59
dimScale, 61
dMatrix-class, 62
dmperm, 63
dpoMatrix-class, 65
drop0, 67
dsCMatrix-class, 68
dsparseMatrix-class, 70
dsRMatrix-class, 70
dsyMatrix-class, 72
dtCMatrix-class, 73
dtpMatrix-class, 75
dtRMatrix-class, 76
dtrMatrix-class, 78
expand-methods, 79
expm-methods, 82
facmul-methods, 85
forceSymmetric-methods, 90
generalMatrix-class, 92
Hilbert, 93
indMatrix-class, 97
is.null.DN, 102
isSymmetric-methods, 103
isTriangular-methods, 105
KhatriRao, 106
kronecker-methods, 109
ldenseMatrix-class, 110
ldiMatrix-class, 110
lgeMatrix-class, 111
lsparseMatrix-class, 112
lsyMatrix-class, 114
ltrMatrix-class, 115
lu-methods, 116
mat2triplet, 118
matmult-methods, 120

Matrix, 122
Matrix-class, 124
Matrix-notyet, 126
MatrixFactorization-class, 127
ndenseMatrix-class, 128
nearPD, 129
ngeMatrix-class, 132
nMatrix-class, 133
nnzero-methods, 134
nsparseMatrix-class, 137
nsyMatrix-class, 139
ntrMatrix-class, 140
pack-methods, 141
packedMatrix-class, 143
pMatrix-class, 144
qr-methods, 148
rsparsematrix, 158
RsparseMatrix-class, 160
Schur-class, 161
Schur-methods, 162
solve-methods, 164
sparse.model.matrix, 167
sparseLU-class, 169
sparseMatrix, 171
sparseMatrix-class, 175
sparseQR-class, 177
spMatrix, 185
subassign-methods, 186
subscript-methods, 188
symmetricMatrix-class, 188
symmpart-methods, 190
triangularMatrix-class, 191
TsparseMatrix-class, 192
unpackedMatrix-class, 193
updown-methods, 194

∗ attribute
diagU2N, 59
is.null.DN, 102

∗ character
formatSparseM, 91
printSpMatrix, 146

∗ classes
abIndex-class, 5
BunchKaufman-class, 16
CHMfactor-class, 22
Cholesky-class, 31
CsparseMatrix-class, 45
ddenseMatrix-class, 47

INDEX 201

ddiMatrix-class, 48
denseLU-class, 49
denseMatrix-class, 51
dgCMatrix-class, 52
dgeMatrix-class, 53
dgRMatrix-class, 54
dgTMatrix-class, 55
diagonalMatrix-class, 58
dMatrix-class, 62
dpoMatrix-class, 65
dsCMatrix-class, 68
dsparseMatrix-class, 70
dsRMatrix-class, 70
dsyMatrix-class, 72
dtCMatrix-class, 73
dtpMatrix-class, 75
dtRMatrix-class, 76
dtrMatrix-class, 78
generalMatrix-class, 92
index-class, 96
indMatrix-class, 97
ldenseMatrix-class, 110
ldiMatrix-class, 110
lgeMatrix-class, 111
lsparseMatrix-class, 112
lsyMatrix-class, 114
ltrMatrix-class, 115
Matrix-class, 124
Matrix-notyet, 126
MatrixFactorization-class, 127
ndenseMatrix-class, 128
ngeMatrix-class, 132
nMatrix-class, 133
nsparseMatrix-class, 137
nsyMatrix-class, 139
ntrMatrix-class, 140
packedMatrix-class, 143
pMatrix-class, 144
rleDiff-class, 157
RsparseMatrix-class, 160
Schur-class, 161
sparseLU-class, 169
sparseMatrix-class, 175
sparseQR-class, 177
sparseVector-class, 182
symmetricMatrix-class, 188
triangularMatrix-class, 191
TsparseMatrix-class, 192

unpackedMatrix-class, 193
∗ connection

externalFormats, 83
∗ datasets

CAex, 20
KNex, 108
USCounties, 195
wrld_1deg, 196

∗ distribution
rsparsematrix, 158

∗ file
externalFormats, 83

∗ hplot
image-methods, 94

∗ logic
all.equal-methods, 7
asUniqueT, 8
boolmatmult-methods, 14
nnzero-methods, 134

∗ manip
abIseq, 6
asUniqueT, 8
cbind2-methods, 21
drop0, 67
rep2abI, 157
sparseVector-class, 182

∗ math
condest, 43
expm-methods, 82
is.na-methods, 101
norm-methods, 136
rcond-methods, 154

∗ methods
all.equal-methods, 7
band-methods, 9
boolmatmult-methods, 14
BunchKaufman-methods, 18
cbind2-methods, 21
chol-methods, 26
chol2inv-methods, 30
Cholesky-methods, 34
coerce-methods-graph, 39
coerce-methods-SparseM, 41
colSums-methods, 42
expand-methods, 79
expm-methods, 82
externalFormats, 83
facmul-methods, 85

202 INDEX

forceSymmetric-methods, 90
image-methods, 94
is.na-methods, 101
isSymmetric-methods, 103
isTriangular-methods, 105
kronecker-methods, 109
lu-methods, 116
nnzero-methods, 134
norm-methods, 136
pack-methods, 141
qr-methods, 148
rcond-methods, 154
Schur-methods, 162
solve-methods, 164
subassign-methods, 186
subscript-methods, 188
symmpart-methods, 190
updown-methods, 194

∗ models
sparse.model.matrix, 167

∗ print
formatSparseM, 91
printSpMatrix, 146

∗ programming
all.equal-methods, 7
CHMfactor-class, 22
is.na-methods, 101
is.null.DN, 102
isSymmetric-methods, 103
isTriangular-methods, 105

∗ utilities
abIseq, 6
asUniqueT, 8
bandSparse, 11
bdiag, 12
CHMfactor-class, 22
coerce-methods-graph, 39
condest, 43
Diagonal, 56
diagU2N, 59
dimScale, 61
dmperm, 63
drop0, 67
externalFormats, 83
fastMisc, 86
formatSparseM, 91
Hilbert, 93
invertPerm, 99

is.null.DN, 102
KhatriRao, 106
mat2triplet, 118
Matrix, 122
MatrixClass, 126
nearPD, 129
printSpMatrix, 146
rankMatrix, 151
rep2abI, 157
rsparsematrix, 158
sparse.model.matrix, 167
sparseMatrix, 171
sparseQR-class, 177
sparseVector, 181
spMatrix, 185

*,Matrix,ddiMatrix-method
(Matrix-class), 124

*,Matrix,ldiMatrix-method
(Matrix-class), 124

*,Matrix,ndiMatrix-method
(Matrix-class), 124

*,ddenseMatrix,ddiMatrix-method
(ddenseMatrix-class), 47

*,ddenseMatrix,ldiMatrix-method
(ddenseMatrix-class), 47

*,ddenseMatrix,ndiMatrix-method
(ddenseMatrix-class), 47

*,ddiMatrix,Matrix-method
(ddiMatrix-class), 48

*,ddiMatrix,ddenseMatrix-method
(ddiMatrix-class), 48

*,ddiMatrix,ldenseMatrix-method
(ddiMatrix-class), 48

*,ddiMatrix,ndenseMatrix-method
(ddiMatrix-class), 48

*,ldenseMatrix,ddiMatrix-method
(ldenseMatrix-class), 110

*,ldenseMatrix,ldiMatrix-method
(ldenseMatrix-class), 110

*,ldenseMatrix,ndiMatrix-method
(ldenseMatrix-class), 110

*,ldiMatrix,Matrix-method
(ldiMatrix-class), 110

*,ldiMatrix,ddenseMatrix-method
(ldiMatrix-class), 110

*,ldiMatrix,ldenseMatrix-method
(ldiMatrix-class), 110

*,ldiMatrix,ndenseMatrix-method

INDEX 203

(ldiMatrix-class), 110
*,ndenseMatrix,ddiMatrix-method

(ndenseMatrix-class), 128
*,ndenseMatrix,ldiMatrix-method

(ndenseMatrix-class), 128
*,ndenseMatrix,ndiMatrix-method

(ndenseMatrix-class), 128
*,ndiMatrix,Matrix-method

(ldiMatrix-class), 110
*,ndiMatrix,ddenseMatrix-method

(ldiMatrix-class), 110
*,ndiMatrix,ldenseMatrix-method

(ldiMatrix-class), 110
*,ndiMatrix,ndenseMatrix-method

(ldiMatrix-class), 110
+,Matrix,missing-method (Matrix-class),

124
+,dgTMatrix,dgTMatrix-method

(dgTMatrix-class), 55
-,Matrix,missing-method (Matrix-class),

124
-,denseMatrix,missing-method

(denseMatrix-class), 51
-,diagonalMatrix,missing-method

(diagonalMatrix-class), 58
-,dsparseVector,missing-method

(sparseVector-class), 182
-,indMatrix,missing-method

(indMatrix-class), 97
-,nsparseMatrix,missing-method

(nsparseMatrix-class), 137
-,sparseMatrix,missing-method

(sparseMatrix-class), 175
.CR2RC (fastMisc), 86
.CR2T (fastMisc), 86
.M2C (fastMisc), 86
.M2R (fastMisc), 86
.M2T (fastMisc), 86
.M2V (fastMisc), 86
.M2diag (fastMisc), 86
.M2gen (fastMisc), 86
.M2kind (fastMisc), 86
.M2m (fastMisc), 86
.M2packed (fastMisc), 86
.M2sym (fastMisc), 86
.M2tri (fastMisc), 86
.M2unpacked (fastMisc), 86
.M2v (fastMisc), 86

.Machine, 152, 182

.T2CR (fastMisc), 86

.bdiag (bdiag), 12

.dense2g (fastMisc), 86

.dense2kind (fastMisc), 86

.dense2m (fastMisc), 86

.dense2sparse (fastMisc), 86

.dense2v (fastMisc), 86

.diag.dsC (fastMisc), 86

.diag2dense (fastMisc), 86

.diag2sparse (fastMisc), 86

.diagN2U (diagU2N), 59

.diagU2N (diagU2N), 59

.formatSparseSimple, 147

.formatSparseSimple (formatSparseM), 91

.ind2dense (fastMisc), 86

.ind2sparse (fastMisc), 86

.m2V (fastMisc), 86

.m2dense (fastMisc), 86

.m2sparse (fastMisc), 86

.selectSuperClasses, 126

.solve.dgC.chol (fastMisc), 86

.solve.dgC.lu (fastMisc), 86

.solve.dgC.qr (fastMisc), 86

.sparse2dense (fastMisc), 86

.sparse2g (fastMisc), 86

.sparse2kind (fastMisc), 86

.sparse2m (fastMisc), 86

.sparse2v (fastMisc), 86

.sparseDiagonal (Diagonal), 56

.symDiagonal (Diagonal), 56

.tCR2RC (fastMisc), 86

.tCRT (fastMisc), 86

.trDiagonal (Diagonal), 56

.updateCHMfactor (fastMisc), 86

.validateCsparse (CsparseMatrix-class),
45

/,ddiMatrix,Matrix-method
(ddiMatrix-class), 48

/,ddiMatrix,ddenseMatrix-method
(ddiMatrix-class), 48

/,ddiMatrix,ldenseMatrix-method
(ddiMatrix-class), 48

/,ddiMatrix,ndenseMatrix-method
(ddiMatrix-class), 48

/,ldiMatrix,Matrix-method
(ldiMatrix-class), 110

/,ldiMatrix,ddenseMatrix-method

204 INDEX

(ldiMatrix-class), 110
/,ldiMatrix,ldenseMatrix-method

(ldiMatrix-class), 110
/,ldiMatrix,ndenseMatrix-method

(ldiMatrix-class), 110
/,ndiMatrix,Matrix-method

(ldiMatrix-class), 110
/,ndiMatrix,ddenseMatrix-method

(ldiMatrix-class), 110
/,ndiMatrix,ldenseMatrix-method

(ldiMatrix-class), 110
/,ndiMatrix,ndenseMatrix-method

(ldiMatrix-class), 110
[, 96
[(subscript-methods), 188
[,Matrix,ANY,NULL,ANY-method

(subscript-methods), 188
[,Matrix,NULL,ANY,ANY-method

(subscript-methods), 188
[,Matrix,NULL,NULL,ANY-method

(subscript-methods), 188
[,Matrix,index,index,logical-method

(subscript-methods), 188
[,Matrix,index,index,missing-method

(subscript-methods), 188
[,Matrix,index,missing,logical-method

(subscript-methods), 188
[,Matrix,index,missing,missing-method

(subscript-methods), 188
[,Matrix,lMatrix,missing,missing-method

(subscript-methods), 188
[,Matrix,matrix,missing,missing-method

(subscript-methods), 188
[,Matrix,missing,index,logical-method

(subscript-methods), 188
[,Matrix,missing,index,missing-method

(subscript-methods), 188
[,Matrix,missing,missing,logical-method

(subscript-methods), 188
[,Matrix,missing,missing,missing-method

(subscript-methods), 188
[,Matrix,nMatrix,missing,missing-method

(subscript-methods), 188
[,abIndex,index,ANY,ANY-method

(subscript-methods), 188
[,sparseVector,NULL,ANY,ANY-method

(subscript-methods), 188
[,sparseVector,index,missing,missing-method

(subscript-methods), 188
[,sparseVector,lsparseVector,missing,missing-method

(subscript-methods), 188
[,sparseVector,missing,missing,missing-method

(subscript-methods), 188
[,sparseVector,nsparseVector,missing,missing-method

(subscript-methods), 188
[-methods (subscript-methods), 188
[<- (subassign-methods), 186
[<-,CsparseMatrix,Matrix,missing,replValue-method

(subassign-methods), 186
[<-,CsparseMatrix,index,index,replValue-method

(subassign-methods), 186
[<-,CsparseMatrix,index,index,sparseVector-method

(subassign-methods), 186
[<-,CsparseMatrix,index,missing,replValue-method

(subassign-methods), 186
[<-,CsparseMatrix,index,missing,sparseVector-method

(subassign-methods), 186
[<-,CsparseMatrix,matrix,missing,replValue-method

(subassign-methods), 186
[<-,CsparseMatrix,missing,index,replValue-method

(subassign-methods), 186
[<-,CsparseMatrix,missing,index,sparseVector-method

(subassign-methods), 186
[<-,Matrix,ANY,ANY,ANY-method

(subassign-methods), 186
[<-,Matrix,ANY,ANY,Matrix-method

(subassign-methods), 186
[<-,Matrix,ANY,ANY,matrix-method

(subassign-methods), 186
[<-,Matrix,ANY,missing,Matrix-method

(subassign-methods), 186
[<-,Matrix,ANY,missing,matrix-method

(subassign-methods), 186
[<-,Matrix,ldenseMatrix,missing,replValue-method

(subassign-methods), 186
[<-,Matrix,lsparseMatrix,missing,replValue-method

(subassign-methods), 186
[<-,Matrix,matrix,missing,replValue-method

(subassign-methods), 186
[<-,Matrix,missing,ANY,Matrix-method

(subassign-methods), 186
[<-,Matrix,missing,ANY,matrix-method

(subassign-methods), 186
[<-,Matrix,ndenseMatrix,missing,replValue-method

(subassign-methods), 186
[<-,Matrix,nsparseMatrix,missing,replValue-method

INDEX 205

(subassign-methods), 186
[<-,RsparseMatrix,index,index,replValue-method

(subassign-methods), 186
[<-,RsparseMatrix,index,index,sparseVector-method

(subassign-methods), 186
[<-,RsparseMatrix,index,missing,replValue-method

(subassign-methods), 186
[<-,RsparseMatrix,index,missing,sparseVector-method

(subassign-methods), 186
[<-,RsparseMatrix,matrix,missing,replValue-method

(subassign-methods), 186
[<-,RsparseMatrix,missing,index,replValue-method

(subassign-methods), 186
[<-,RsparseMatrix,missing,index,sparseVector-method

(subassign-methods), 186
[<-,TsparseMatrix,Matrix,missing,replValue-method

(subassign-methods), 186
[<-,TsparseMatrix,index,index,replValue-method

(subassign-methods), 186
[<-,TsparseMatrix,index,index,sparseVector-method

(subassign-methods), 186
[<-,TsparseMatrix,index,missing,replValue-method

(subassign-methods), 186
[<-,TsparseMatrix,index,missing,sparseVector-method

(subassign-methods), 186
[<-,TsparseMatrix,matrix,missing,replValue-method

(subassign-methods), 186
[<-,TsparseMatrix,missing,index,replValue-method

(subassign-methods), 186
[<-,TsparseMatrix,missing,index,sparseVector-method

(subassign-methods), 186
[<-,denseMatrix,index,index,replValue-method

(subassign-methods), 186
[<-,denseMatrix,index,missing,replValue-method

(subassign-methods), 186
[<-,denseMatrix,matrix,missing,replValue-method

(subassign-methods), 186
[<-,denseMatrix,missing,index,replValue-method

(subassign-methods), 186
[<-,denseMatrix,missing,missing,ANY-method

(subassign-methods), 186
[<-,diagonalMatrix,index,index,replValue-method

(subassign-methods), 186
[<-,diagonalMatrix,index,index,sparseMatrix-method

(subassign-methods), 186
[<-,diagonalMatrix,index,index,sparseVector-method

(subassign-methods), 186
[<-,diagonalMatrix,index,missing,replValue-method

(subassign-methods), 186
[<-,diagonalMatrix,index,missing,sparseMatrix-method

(subassign-methods), 186
[<-,diagonalMatrix,index,missing,sparseVector-method

(subassign-methods), 186
[<-,diagonalMatrix,matrix,missing,replValue-method

(subassign-methods), 186
[<-,diagonalMatrix,missing,index,replValue-method

(subassign-methods), 186
[<-,diagonalMatrix,missing,index,sparseMatrix-method

(subassign-methods), 186
[<-,diagonalMatrix,missing,index,sparseVector-method

(subassign-methods), 186
[<-,diagonalMatrix,missing,missing,ANY-method

(subassign-methods), 186
[<-,indMatrix,index,index,ANY-method

(subassign-methods), 186
[<-,indMatrix,index,missing,ANY-method

(subassign-methods), 186
[<-,indMatrix,missing,index,ANY-method

(subassign-methods), 186
[<-,indMatrix,missing,missing,ANY-method

(subassign-methods), 186
[<-,sparseMatrix,ANY,ANY,sparseMatrix-method

(subassign-methods), 186
[<-,sparseMatrix,ANY,missing,sparseMatrix-method

(subassign-methods), 186
[<-,sparseMatrix,missing,ANY,sparseMatrix-method

(subassign-methods), 186
[<-,sparseMatrix,missing,missing,ANY-method

(subassign-methods), 186
[<-,sparseVector,index,missing,ANY-method

(subassign-methods), 186
[<-,sparseVector,sparseVector,missing,ANY-method

(subassign-methods), 186
[<--methods (subassign-methods), 186
%*% (matmult-methods), 120
%*%,ANY,Matrix-method

(matmult-methods), 120
%*%,ANY,sparseVector-method

(matmult-methods), 120
%*%,CsparseMatrix,CsparseMatrix-method

(matmult-methods), 120
%*%,CsparseMatrix,RsparseMatrix-method

(matmult-methods), 120
%*%,CsparseMatrix,TsparseMatrix-method

(matmult-methods), 120
%*%,CsparseMatrix,denseMatrix-method

206 INDEX

(matmult-methods), 120
%*%,CsparseMatrix,diagonalMatrix-method

(matmult-methods), 120
%*%,CsparseMatrix,matrix-method

(matmult-methods), 120
%*%,CsparseMatrix,vector-method

(matmult-methods), 120
%*%,Matrix,ANY-method

(matmult-methods), 120
%*%,Matrix,indMatrix-method

(matmult-methods), 120
%*%,Matrix,pMatrix-method

(matmult-methods), 120
%*%,Matrix,sparseVector-method

(matmult-methods), 120
%*%,RsparseMatrix,CsparseMatrix-method

(matmult-methods), 120
%*%,RsparseMatrix,RsparseMatrix-method

(matmult-methods), 120
%*%,RsparseMatrix,TsparseMatrix-method

(matmult-methods), 120
%*%,RsparseMatrix,denseMatrix-method

(matmult-methods), 120
%*%,RsparseMatrix,diagonalMatrix-method

(matmult-methods), 120
%*%,RsparseMatrix,matrix-method

(matmult-methods), 120
%*%,RsparseMatrix,vector-method

(matmult-methods), 120
%*%,TsparseMatrix,CsparseMatrix-method

(matmult-methods), 120
%*%,TsparseMatrix,RsparseMatrix-method

(matmult-methods), 120
%*%,TsparseMatrix,TsparseMatrix-method

(matmult-methods), 120
%*%,TsparseMatrix,denseMatrix-method

(matmult-methods), 120
%*%,TsparseMatrix,diagonalMatrix-method

(matmult-methods), 120
%*%,TsparseMatrix,matrix-method

(matmult-methods), 120
%*%,TsparseMatrix,vector-method

(matmult-methods), 120
%*%,denseMatrix,CsparseMatrix-method

(matmult-methods), 120
%*%,denseMatrix,RsparseMatrix-method

(matmult-methods), 120
%*%,denseMatrix,TsparseMatrix-method

(matmult-methods), 120
%*%,denseMatrix,denseMatrix-method

(matmult-methods), 120
%*%,denseMatrix,diagonalMatrix-method

(matmult-methods), 120
%*%,denseMatrix,matrix-method

(matmult-methods), 120
%*%,denseMatrix,vector-method

(matmult-methods), 120
%*%,diagonalMatrix,CsparseMatrix-method

(matmult-methods), 120
%*%,diagonalMatrix,RsparseMatrix-method

(matmult-methods), 120
%*%,diagonalMatrix,TsparseMatrix-method

(matmult-methods), 120
%*%,diagonalMatrix,denseMatrix-method

(matmult-methods), 120
%*%,diagonalMatrix,diagonalMatrix-method

(matmult-methods), 120
%*%,diagonalMatrix,matrix-method

(matmult-methods), 120
%*%,diagonalMatrix,vector-method

(matmult-methods), 120
%*%,indMatrix,Matrix-method

(matmult-methods), 120
%*%,indMatrix,indMatrix-method

(matmult-methods), 120
%*%,indMatrix,matrix-method

(matmult-methods), 120
%*%,indMatrix,pMatrix-method

(matmult-methods), 120
%*%,indMatrix,vector-method

(matmult-methods), 120
%*%,matrix,CsparseMatrix-method

(matmult-methods), 120
%*%,matrix,RsparseMatrix-method

(matmult-methods), 120
%*%,matrix,TsparseMatrix-method

(matmult-methods), 120
%*%,matrix,denseMatrix-method

(matmult-methods), 120
%*%,matrix,diagonalMatrix-method

(matmult-methods), 120
%*%,matrix,indMatrix-method

(matmult-methods), 120
%*%,matrix,pMatrix-method

(matmult-methods), 120
%*%,matrix,sparseVector-method

INDEX 207

(matmult-methods), 120
%*%,pMatrix,Matrix-method

(matmult-methods), 120
%*%,pMatrix,indMatrix-method

(matmult-methods), 120
%*%,pMatrix,matrix-method

(matmult-methods), 120
%*%,pMatrix,pMatrix-method

(matmult-methods), 120
%*%,pMatrix,vector-method

(matmult-methods), 120
%*%,sparseVector,ANY-method

(matmult-methods), 120
%*%,sparseVector,Matrix-method

(matmult-methods), 120
%*%,sparseVector,matrix-method

(matmult-methods), 120
%*%,sparseVector,sparseVector-method

(matmult-methods), 120
%*%,sparseVector,vector-method

(matmult-methods), 120
%*%,vector,CsparseMatrix-method

(matmult-methods), 120
%*%,vector,RsparseMatrix-method

(matmult-methods), 120
%*%,vector,TsparseMatrix-method

(matmult-methods), 120
%*%,vector,denseMatrix-method

(matmult-methods), 120
%*%,vector,diagonalMatrix-method

(matmult-methods), 120
%*%,vector,indMatrix-method

(matmult-methods), 120
%*%,vector,pMatrix-method

(matmult-methods), 120
%*%,vector,sparseVector-method

(matmult-methods), 120
%*%-methods (matmult-methods), 120
%/%,ddiMatrix,Matrix-method

(ddiMatrix-class), 48
%/%,ddiMatrix,ddenseMatrix-method

(ddiMatrix-class), 48
%/%,ddiMatrix,ldenseMatrix-method

(ddiMatrix-class), 48
%/%,ddiMatrix,ndenseMatrix-method

(ddiMatrix-class), 48
%/%,ldiMatrix,Matrix-method

(ldiMatrix-class), 110

%/%,ldiMatrix,ddenseMatrix-method
(ldiMatrix-class), 110

%/%,ldiMatrix,ldenseMatrix-method
(ldiMatrix-class), 110

%/%,ldiMatrix,ndenseMatrix-method
(ldiMatrix-class), 110

%/%,ndiMatrix,Matrix-method
(ldiMatrix-class), 110

%/%,ndiMatrix,ddenseMatrix-method
(ldiMatrix-class), 110

%/%,ndiMatrix,ldenseMatrix-method
(ldiMatrix-class), 110

%/%,ndiMatrix,ndenseMatrix-method
(ldiMatrix-class), 110

%%,ddiMatrix,Matrix-method
(ddiMatrix-class), 48

%%,ddiMatrix,ddenseMatrix-method
(ddiMatrix-class), 48

%%,ddiMatrix,ldenseMatrix-method
(ddiMatrix-class), 48

%%,ddiMatrix,ndenseMatrix-method
(ddiMatrix-class), 48

%%,ldiMatrix,Matrix-method
(ldiMatrix-class), 110

%%,ldiMatrix,ddenseMatrix-method
(ldiMatrix-class), 110

%%,ldiMatrix,ldenseMatrix-method
(ldiMatrix-class), 110

%%,ldiMatrix,ndenseMatrix-method
(ldiMatrix-class), 110

%%,ndiMatrix,Matrix-method
(ldiMatrix-class), 110

%%,ndiMatrix,ddenseMatrix-method
(ldiMatrix-class), 110

%%,ndiMatrix,ldenseMatrix-method
(ldiMatrix-class), 110

%%,ndiMatrix,ndenseMatrix-method
(ldiMatrix-class), 110

%&% (boolmatmult-methods), 14
%&%,ANY,ANY-method

(boolmatmult-methods), 14
%&%,ANY,Matrix-method

(boolmatmult-methods), 14
%&%,ANY,matrix-method

(boolmatmult-methods), 14
%&%,ANY,sparseVector-method

(boolmatmult-methods), 14
%&%,ANY,vector-method

208 INDEX

(boolmatmult-methods), 14
%&%,CsparseMatrix,CsparseMatrix-method

(boolmatmult-methods), 14
%&%,CsparseMatrix,RsparseMatrix-method

(boolmatmult-methods), 14
%&%,CsparseMatrix,TsparseMatrix-method

(boolmatmult-methods), 14
%&%,CsparseMatrix,denseMatrix-method

(boolmatmult-methods), 14
%&%,CsparseMatrix,diagonalMatrix-method

(boolmatmult-methods), 14
%&%,CsparseMatrix,matrix-method

(boolmatmult-methods), 14
%&%,CsparseMatrix,vector-method

(boolmatmult-methods), 14
%&%,Matrix,ANY-method

(boolmatmult-methods), 14
%&%,Matrix,indMatrix-method

(boolmatmult-methods), 14
%&%,Matrix,pMatrix-method

(boolmatmult-methods), 14
%&%,Matrix,sparseVector-method

(boolmatmult-methods), 14
%&%,RsparseMatrix,CsparseMatrix-method

(boolmatmult-methods), 14
%&%,RsparseMatrix,RsparseMatrix-method

(boolmatmult-methods), 14
%&%,RsparseMatrix,TsparseMatrix-method

(boolmatmult-methods), 14
%&%,RsparseMatrix,denseMatrix-method

(boolmatmult-methods), 14
%&%,RsparseMatrix,diagonalMatrix-method

(boolmatmult-methods), 14
%&%,RsparseMatrix,matrix-method

(boolmatmult-methods), 14
%&%,RsparseMatrix,vector-method

(boolmatmult-methods), 14
%&%,TsparseMatrix,CsparseMatrix-method

(boolmatmult-methods), 14
%&%,TsparseMatrix,RsparseMatrix-method

(boolmatmult-methods), 14
%&%,TsparseMatrix,TsparseMatrix-method

(boolmatmult-methods), 14
%&%,TsparseMatrix,denseMatrix-method

(boolmatmult-methods), 14
%&%,TsparseMatrix,diagonalMatrix-method

(boolmatmult-methods), 14
%&%,TsparseMatrix,matrix-method

(boolmatmult-methods), 14
%&%,TsparseMatrix,vector-method

(boolmatmult-methods), 14
%&%,denseMatrix,CsparseMatrix-method

(boolmatmult-methods), 14
%&%,denseMatrix,RsparseMatrix-method

(boolmatmult-methods), 14
%&%,denseMatrix,TsparseMatrix-method

(boolmatmult-methods), 14
%&%,denseMatrix,denseMatrix-method

(boolmatmult-methods), 14
%&%,denseMatrix,diagonalMatrix-method

(boolmatmult-methods), 14
%&%,denseMatrix,matrix-method

(boolmatmult-methods), 14
%&%,denseMatrix,vector-method

(boolmatmult-methods), 14
%&%,diagonalMatrix,CsparseMatrix-method

(boolmatmult-methods), 14
%&%,diagonalMatrix,RsparseMatrix-method

(boolmatmult-methods), 14
%&%,diagonalMatrix,TsparseMatrix-method

(boolmatmult-methods), 14
%&%,diagonalMatrix,denseMatrix-method

(boolmatmult-methods), 14
%&%,diagonalMatrix,diagonalMatrix-method

(boolmatmult-methods), 14
%&%,diagonalMatrix,matrix-method

(boolmatmult-methods), 14
%&%,diagonalMatrix,vector-method

(boolmatmult-methods), 14
%&%,indMatrix,Matrix-method

(boolmatmult-methods), 14
%&%,indMatrix,indMatrix-method

(boolmatmult-methods), 14
%&%,indMatrix,matrix-method

(boolmatmult-methods), 14
%&%,indMatrix,pMatrix-method

(boolmatmult-methods), 14
%&%,indMatrix,vector-method

(boolmatmult-methods), 14
%&%,matrix,ANY-method

(boolmatmult-methods), 14
%&%,matrix,CsparseMatrix-method

(boolmatmult-methods), 14
%&%,matrix,RsparseMatrix-method

(boolmatmult-methods), 14
%&%,matrix,TsparseMatrix-method

INDEX 209

(boolmatmult-methods), 14
%&%,matrix,denseMatrix-method

(boolmatmult-methods), 14
%&%,matrix,diagonalMatrix-method

(boolmatmult-methods), 14
%&%,matrix,indMatrix-method

(boolmatmult-methods), 14
%&%,matrix,matrix-method

(boolmatmult-methods), 14
%&%,matrix,pMatrix-method

(boolmatmult-methods), 14
%&%,matrix,sparseVector-method

(boolmatmult-methods), 14
%&%,matrix,vector-method

(boolmatmult-methods), 14
%&%,pMatrix,Matrix-method

(boolmatmult-methods), 14
%&%,pMatrix,indMatrix-method

(boolmatmult-methods), 14
%&%,pMatrix,matrix-method

(boolmatmult-methods), 14
%&%,pMatrix,pMatrix-method

(boolmatmult-methods), 14
%&%,pMatrix,vector-method

(boolmatmult-methods), 14
%&%,sparseVector,ANY-method

(boolmatmult-methods), 14
%&%,sparseVector,Matrix-method

(boolmatmult-methods), 14
%&%,sparseVector,matrix-method

(boolmatmult-methods), 14
%&%,sparseVector,sparseVector-method

(boolmatmult-methods), 14
%&%,sparseVector,vector-method

(boolmatmult-methods), 14
%&%,vector,ANY-method

(boolmatmult-methods), 14
%&%,vector,CsparseMatrix-method

(boolmatmult-methods), 14
%&%,vector,RsparseMatrix-method

(boolmatmult-methods), 14
%&%,vector,TsparseMatrix-method

(boolmatmult-methods), 14
%&%,vector,denseMatrix-method

(boolmatmult-methods), 14
%&%,vector,diagonalMatrix-method

(boolmatmult-methods), 14
%&%,vector,indMatrix-method

(boolmatmult-methods), 14
%&%,vector,matrix-method

(boolmatmult-methods), 14
%&%,vector,pMatrix-method

(boolmatmult-methods), 14
%&%,vector,sparseVector-method

(boolmatmult-methods), 14
%&%,vector,vector-method

(boolmatmult-methods), 14
%&%-methods (boolmatmult-methods), 14
&,Matrix,ddiMatrix-method

(Matrix-class), 124
&,Matrix,ldiMatrix-method

(Matrix-class), 124
&,Matrix,ndiMatrix-method

(Matrix-class), 124
&,ddenseMatrix,ddiMatrix-method

(ddenseMatrix-class), 47
&,ddenseMatrix,ldiMatrix-method

(ddenseMatrix-class), 47
&,ddenseMatrix,ndiMatrix-method

(ddenseMatrix-class), 47
&,ddiMatrix,Matrix-method

(ddiMatrix-class), 48
&,ddiMatrix,ddenseMatrix-method

(ddiMatrix-class), 48
&,ddiMatrix,ldenseMatrix-method

(ddiMatrix-class), 48
&,ddiMatrix,ndenseMatrix-method

(ddiMatrix-class), 48
&,ldenseMatrix,ddiMatrix-method

(ldenseMatrix-class), 110
&,ldenseMatrix,ldiMatrix-method

(ldenseMatrix-class), 110
&,ldenseMatrix,ndiMatrix-method

(ldenseMatrix-class), 110
&,ldiMatrix,Matrix-method

(ldiMatrix-class), 110
&,ldiMatrix,ddenseMatrix-method

(ldiMatrix-class), 110
&,ldiMatrix,ldenseMatrix-method

(ldiMatrix-class), 110
&,ldiMatrix,ndenseMatrix-method

(ldiMatrix-class), 110
&,ndenseMatrix,ddiMatrix-method

(ndenseMatrix-class), 128
&,ndenseMatrix,ldiMatrix-method

(ndenseMatrix-class), 128

210 INDEX

&,ndenseMatrix,ndiMatrix-method
(ndenseMatrix-class), 128

&,ndiMatrix,Matrix-method
(ldiMatrix-class), 110

&,ndiMatrix,ddenseMatrix-method
(ldiMatrix-class), 110

&,ndiMatrix,ldenseMatrix-method
(ldiMatrix-class), 110

&,ndiMatrix,ndenseMatrix-method
(ldiMatrix-class), 110

%*%, 15, 46, 53, 121
%&%, 120, 121
^,Matrix,ddiMatrix-method

(Matrix-class), 124
^,Matrix,ldiMatrix-method

(Matrix-class), 124
^,Matrix,ndiMatrix-method

(Matrix-class), 124
^,ddenseMatrix,ddiMatrix-method

(ddenseMatrix-class), 47
^,ddenseMatrix,ldiMatrix-method

(ddenseMatrix-class), 47
^,ddenseMatrix,ndiMatrix-method

(ddenseMatrix-class), 47
^,ldenseMatrix,ddiMatrix-method

(ldenseMatrix-class), 110
^,ldenseMatrix,ldiMatrix-method

(ldenseMatrix-class), 110
^,ldenseMatrix,ndiMatrix-method

(ldenseMatrix-class), 110
^,ndenseMatrix,ddiMatrix-method

(ndenseMatrix-class), 128
^,ndenseMatrix,ldiMatrix-method

(ndenseMatrix-class), 128
^,ndenseMatrix,ndiMatrix-method

(ndenseMatrix-class), 128

abbreviate, 147
abIndex, 6, 7, 157, 158
abIndex-class, 5
abIseq, 5, 6, 157
abIseq1 (abIseq), 6
abs, 94
aggregateT (asUniqueT), 8
all, 62
all.equal, 7, 104
all.equal (all.equal-methods), 7
all.equal,abIndex,abIndex-method

(all.equal-methods), 7

all.equal,abIndex,numLike-method
(all.equal-methods), 7

all.equal,Matrix,Matrix-method
(all.equal-methods), 7

all.equal,Matrix,sparseVector-method
(all.equal-methods), 7

all.equal,Matrix,vector-method
(all.equal-methods), 7

all.equal,numLike,abIndex-method
(all.equal-methods), 7

all.equal,sparseVector,Matrix-method
(all.equal-methods), 7

all.equal,sparseVector,sparseVector-method
(all.equal-methods), 7

all.equal,sparseVector,vector-method
(all.equal-methods), 7

all.equal,vector,Matrix-method
(all.equal-methods), 7

all.equal,vector,sparseVector-method
(all.equal-methods), 7

all.equal-methods, 7
all.equal.numeric, 7
any, 62
anyDuplicated, 8
anyDuplicatedT (asUniqueT), 8
anyNA, 101
anyNA (is.na-methods), 101
anyNA,denseMatrix-method

(is.na-methods), 101
anyNA,diagonalMatrix-method

(is.na-methods), 101
anyNA,indMatrix-method (is.na-methods),

101
anyNA,sparseMatrix-method

(is.na-methods), 101
anyNA,sparseVector-method

(is.na-methods), 101
anyNA-methods (is.na-methods), 101
apply, 125
Arith, 53, 62
Arith,abIndex,abIndex-method

(abIndex-class), 5
Arith,abIndex,numLike-method

(abIndex-class), 5
Arith,CsparseMatrix,CsparseMatrix-method

(CsparseMatrix-class), 45
Arith,CsparseMatrix,numeric-method

(CsparseMatrix-class), 45

INDEX 211

Arith,ddenseMatrix,logical-method
(ddenseMatrix-class), 47

Arith,ddenseMatrix,numeric-method
(ddenseMatrix-class), 47

Arith,ddenseMatrix,sparseVector-method
(ddenseMatrix-class), 47

Arith,ddiMatrix,logical-method
(ddiMatrix-class), 48

Arith,ddiMatrix,numeric-method
(ddiMatrix-class), 48

Arith,dgCMatrix,dgCMatrix-method
(dgCMatrix-class), 52

Arith,dgCMatrix,logical-method
(dgCMatrix-class), 52

Arith,dgCMatrix,numeric-method
(dgCMatrix-class), 52

Arith,dgeMatrix,dgeMatrix-method
(dgeMatrix-class), 53

Arith,dgeMatrix,logical-method
(dgeMatrix-class), 53

Arith,dgeMatrix,numeric-method
(dgeMatrix-class), 53

Arith,dgeMatrix,sparseVector-method
(dgeMatrix-class), 53

Arith,dpoMatrix,logical-method
(dpoMatrix-class), 65

Arith,dpoMatrix,numeric-method
(dpoMatrix-class), 65

Arith,dppMatrix,logical-method
(dpoMatrix-class), 65

Arith,dppMatrix,numeric-method
(dpoMatrix-class), 65

Arith,dsCMatrix,dsCMatrix-method
(dsCMatrix-class), 68

Arith,dsparseMatrix,logical-method
(dsparseMatrix-class), 70

Arith,dsparseMatrix,nsparseMatrix-method
(nsparseMatrix-class), 137

Arith,dsparseMatrix,numeric-method
(dsparseMatrix-class), 70

Arith,dsparseVector,dsparseVector-method
(sparseVector-class), 182

Arith,dtCMatrix,dtCMatrix-method
(dtCMatrix-class), 73

Arith,ldiMatrix,logical-method
(ldiMatrix-class), 110

Arith,ldiMatrix,numeric-method
(ldiMatrix-class), 110

Arith,lgCMatrix,lgCMatrix-method
(lsparseMatrix-class), 112

Arith,lgeMatrix,lgeMatrix-method
(lgeMatrix-class), 111

Arith,lgTMatrix,lgTMatrix-method
(lsparseMatrix-class), 112

Arith,lMatrix,logical-method
(dMatrix-class), 62

Arith,lMatrix,numeric-method
(dMatrix-class), 62

Arith,logical,ddenseMatrix-method
(ddenseMatrix-class), 47

Arith,logical,ddiMatrix-method
(ddiMatrix-class), 48

Arith,logical,dgCMatrix-method
(dgCMatrix-class), 52

Arith,logical,dgeMatrix-method
(dgeMatrix-class), 53

Arith,logical,dpoMatrix-method
(dpoMatrix-class), 65

Arith,logical,dppMatrix-method
(dpoMatrix-class), 65

Arith,logical,dsparseMatrix-method
(dsparseMatrix-class), 70

Arith,logical,ldiMatrix-method
(ldiMatrix-class), 110

Arith,logical,lMatrix-method
(dMatrix-class), 62

Arith,logical,nMatrix-method
(nMatrix-class), 133

Arith,lsparseMatrix,Matrix-method
(lsparseMatrix-class), 112

Arith,lsparseMatrix,nsparseMatrix-method
(nsparseMatrix-class), 137

Arith,Matrix,lsparseMatrix-method
(Matrix-class), 124

Arith,Matrix,Matrix-method
(Matrix-class), 124

Arith,Matrix,nsparseMatrix-method
(Matrix-class), 124

Arith,ngeMatrix,ngeMatrix-method
(ngeMatrix-class), 132

Arith,nMatrix,logical-method
(nMatrix-class), 133

Arith,nMatrix,numeric-method
(nMatrix-class), 133

Arith,nsparseMatrix,dsparseMatrix-method
(nsparseMatrix-class), 137

212 INDEX

Arith,nsparseMatrix,lsparseMatrix-method
(nsparseMatrix-class), 137

Arith,nsparseMatrix,Matrix-method
(nsparseMatrix-class), 137

Arith,numeric,CsparseMatrix-method
(CsparseMatrix-class), 45

Arith,numeric,ddenseMatrix-method
(ddenseMatrix-class), 47

Arith,numeric,ddiMatrix-method
(ddiMatrix-class), 48

Arith,numeric,dgCMatrix-method
(dgCMatrix-class), 52

Arith,numeric,dgeMatrix-method
(dgeMatrix-class), 53

Arith,numeric,dpoMatrix-method
(dpoMatrix-class), 65

Arith,numeric,dppMatrix-method
(dpoMatrix-class), 65

Arith,numeric,dsparseMatrix-method
(dsparseMatrix-class), 70

Arith,numeric,ldiMatrix-method
(ldiMatrix-class), 110

Arith,numeric,lMatrix-method
(dMatrix-class), 62

Arith,numeric,nMatrix-method
(nMatrix-class), 133

Arith,numLike,abIndex-method
(abIndex-class), 5

Arith,sparseVector,ddenseMatrix-method
(sparseVector-class), 182

Arith,sparseVector,dgeMatrix-method
(sparseVector-class), 182

Arith,sparseVector,sparseVector-method
(sparseVector-class), 182

Arith,triangularMatrix,diagonalMatrix-method
(triangularMatrix-class), 191

as, 40, 41, 112, 115, 133, 140, 141
as.array, 125
as.array,Matrix-method (Matrix-class),

124
as.array,sparseVector-method

(sparseVector-class), 182
as.complex,Matrix-method

(Matrix-class), 124
as.complex,sparseVector-method

(sparseVector-class), 182
as.integer,abIndex-method

(abIndex-class), 5

as.integer,Matrix-method
(Matrix-class), 124

as.integer,sparseVector-method
(sparseVector-class), 182

as.logical,Matrix-method
(Matrix-class), 124

as.logical,sparseVector-method
(sparseVector-class), 182

as.matrix, 125
as.matrix,Matrix-method (Matrix-class),

124
as.matrix,sparseVector-method

(sparseVector-class), 182
as.numeric,abIndex-method

(abIndex-class), 5
as.numeric,Matrix-method

(Matrix-class), 124
as.numeric,sparseVector-method

(sparseVector-class), 182
as.vector, 7
as.vector,abIndex-method

(abIndex-class), 5
as.vector,Matrix-method (Matrix-class),

124
as.vector,sparseVector-method

(sparseVector-class), 182
asPerm, 49
asPerm (invertPerm), 99
asUniqueT, 8, 55, 112, 119
attribute, 104, 105

band, 11, 12, 57
band (band-methods), 9
band,CsparseMatrix-method

(band-methods), 9
band,denseMatrix-method (band-methods),

9
band,diagonalMatrix-method

(band-methods), 9
band,indMatrix-method (band-methods), 9
band,matrix-method (band-methods), 9
band,RsparseMatrix-method

(band-methods), 9
band,TsparseMatrix-method

(band-methods), 9
band-methods, 9
bandSparse, 10, 11, 13, 57, 123, 173
bdiag, 12, 12, 123, 173, 186
boolmatmult-methods, 14

INDEX 213

BunchKaufman, 16, 17, 19, 36, 66, 80, 81, 118,
128, 149, 163, 166

BunchKaufman (BunchKaufman-methods), 18
BunchKaufman,dspMatrix-method

(BunchKaufman-methods), 18
BunchKaufman,dsyMatrix-method

(BunchKaufman-methods), 18
BunchKaufman,matrix-method

(BunchKaufman-methods), 18
BunchKaufman-class, 16
BunchKaufman-methods, 18
BunchKaufmanFactorization, 16, 19
BunchKaufmanFactorization-class

(MatrixFactorization-class),
127

c, 5
c.abIndex (abIseq), 6
c.Matrix (Matrix-class), 124
c.sparseVector (sparseVector-class), 182
CAex, 20
cbind, 21, 176
cbind2, 21
cbind2 (cbind2-methods), 21
cbind2,Matrix,Matrix-method

(cbind2-methods), 21
cbind2,Matrix,matrix-method

(cbind2-methods), 21
cbind2,matrix,Matrix-method

(cbind2-methods), 21
cbind2,Matrix,missing-method

(cbind2-methods), 21
cbind2,Matrix,NULL-method

(cbind2-methods), 21
cbind2,Matrix,vector-method

(cbind2-methods), 21
cbind2,NULL,Matrix-method

(cbind2-methods), 21
cbind2,vector,Matrix-method

(cbind2-methods), 21
cbind2-methods, 21
character, 5, 11, 56, 58, 62, 96, 126, 133,

168, 172
CHMfactor, 32, 128, 165, 166
CHMfactor-class, 22
CHMsimpl, 80
CHMsimpl-class (CHMfactor-class), 22
CHMsuper-class (CHMfactor-class), 22
chol, 27, 28, 30, 35, 36, 53, 66, 69

chol (chol-methods), 26
chol,ddiMatrix-method (chol-methods), 26
chol,diagonalMatrix-method

(chol-methods), 26
chol,dsCMatrix-method (chol-methods), 26
chol,dspMatrix-method (chol-methods), 26
chol,dsRMatrix-method (chol-methods), 26
chol,dsTMatrix-method (chol-methods), 26
chol,dsyMatrix-method (chol-methods), 26
chol,generalMatrix-method

(chol-methods), 26
chol,symmetricMatrix-method

(chol-methods), 26
chol,triangularMatrix-method

(chol-methods), 26
chol-methods, 26
chol2inv, 30
chol2inv (chol2inv-methods), 30
chol2inv,ANY-method (chol2inv-methods),

30
chol2inv,ddiMatrix-method

(chol2inv-methods), 30
chol2inv,diagonalMatrix-method

(chol2inv-methods), 30
chol2inv,dtCMatrix-method

(chol2inv-methods), 30
chol2inv,dtpMatrix-method

(chol2inv-methods), 30
chol2inv,dtRMatrix-method

(chol2inv-methods), 30
chol2inv,dtrMatrix-method

(chol2inv-methods), 30
chol2inv,dtTMatrix-method

(chol2inv-methods), 30
chol2inv,generalMatrix-method

(chol2inv-methods), 30
chol2inv,symmetricMatrix-method

(chol2inv-methods), 30
chol2inv,triangularMatrix-method

(chol2inv-methods), 30
chol2inv-methods, 30
Cholesky, 19, 22, 24, 25, 27, 28, 32, 36, 66,

69, 80, 81, 87, 88, 118, 128, 149,
163, 166, 176, 195

Cholesky (Cholesky-methods), 34
Cholesky,ddiMatrix-method

(Cholesky-methods), 34
Cholesky,diagonalMatrix-method

214 INDEX

(Cholesky-methods), 34
Cholesky,dsCMatrix-method

(Cholesky-methods), 34
Cholesky,dspMatrix-method

(Cholesky-methods), 34
Cholesky,dsRMatrix-method

(Cholesky-methods), 34
Cholesky,dsTMatrix-method

(Cholesky-methods), 34
Cholesky,dsyMatrix-method

(Cholesky-methods), 34
Cholesky,generalMatrix-method

(Cholesky-methods), 34
Cholesky,matrix-method

(Cholesky-methods), 34
Cholesky,symmetricMatrix-method

(Cholesky-methods), 34
Cholesky,triangularMatrix-method

(Cholesky-methods), 34
Cholesky-class, 31
Cholesky-methods, 34
CholeskyFactorization, 31, 35, 36
CholeskyFactorization-class

(MatrixFactorization-class),
127

class, 5, 11, 21, 59, 60, 102, 103, 105, 126,
130, 153, 157, 171, 181, 187

coerce, 191
coerce,abIndex,integer-method

(abIndex-class), 5
coerce,abIndex,numeric-method

(abIndex-class), 5
coerce,abIndex,seqMat-method

(abIndex-class), 5
coerce,abIndex,vector-method

(abIndex-class), 5
coerce,ANY,denseMatrix-method

(denseMatrix-class), 51
coerce,ANY,Matrix-method

(Matrix-class), 124
coerce,ANY,sparseMatrix-method

(sparseMatrix-class), 175
coerce,ANY,sparseVector-method

(sparseVector-class), 182
coerce,BunchKaufman,dtrMatrix-method

(BunchKaufman-class), 16
coerce,CHMsimpl,dtCMatrix-method

(CHMfactor-class), 22

coerce,CHMsuper,dgCMatrix-method
(CHMfactor-class), 22

coerce,Cholesky,dtrMatrix-method
(Cholesky-class), 31

coerce,copMatrix,corMatrix-method
(dpoMatrix-class), 65

coerce,corMatrix,copMatrix-method
(dpoMatrix-class), 65

coerce,denseLU,dgeMatrix-method
(denseLU-class), 49

coerce,dgCMatrix,matrix.csc-method
(coerce-methods-SparseM), 41

coerce,dgRMatrix,matrix.csr-method
(coerce-methods-SparseM), 41

coerce,dgTMatrix,matrix.coo-method
(coerce-methods-SparseM), 41

coerce,diagonalMatrix,symmetricMatrix-method
(diagonalMatrix-class), 58

coerce,diagonalMatrix,triangularMatrix-method
(diagonalMatrix-class), 58

coerce,dpoMatrix,corMatrix-method
(dpoMatrix-class), 65

coerce,dpoMatrix,dppMatrix-method
(dpoMatrix-class), 65

coerce,dppMatrix,copMatrix-method
(dpoMatrix-class), 65

coerce,dppMatrix,dpoMatrix-method
(dpoMatrix-class), 65

coerce,dspMatrix,copMatrix-method
(dsyMatrix-class), 72

coerce,dspMatrix,dppMatrix-method
(dsyMatrix-class), 72

coerce,dsyMatrix,corMatrix-method
(dsyMatrix-class), 72

coerce,dsyMatrix,dpoMatrix-method
(dsyMatrix-class), 72

coerce,factor,sparseMatrix-method
(sparseMatrix-class), 175

coerce,generalMatrix,packedMatrix-method
(generalMatrix-class), 92

coerce,graph,CsparseMatrix-method
(coerce-methods-graph), 39

coerce,graph,Matrix-method
(coerce-methods-graph), 39

coerce,graph,RsparseMatrix-method
(coerce-methods-graph), 39

coerce,graph,sparseMatrix-method
(coerce-methods-graph), 39

INDEX 215

coerce,graph,TsparseMatrix-method
(coerce-methods-graph), 39

coerce,graphAM,TsparseMatrix-method
(coerce-methods-graph), 39

coerce,graphNEL,TsparseMatrix-method
(coerce-methods-graph), 39

coerce,indMatrix,pMatrix-method
(indMatrix-class), 97

coerce,list,indMatrix-method
(indMatrix-class), 97

coerce,logical,abIndex-method
(abIndex-class), 5

coerce,Matrix,copMatrix-method
(Matrix-class), 124

coerce,matrix,copMatrix-method
(dpoMatrix-class), 65

coerce,Matrix,corMatrix-method
(Matrix-class), 124

coerce,matrix,corMatrix-method
(dpoMatrix-class), 65

coerce,Matrix,CsparseMatrix-method
(Matrix-class), 124

coerce,matrix,CsparseMatrix-method
(CsparseMatrix-class), 45

coerce,Matrix,ddenseMatrix-method
(Matrix-class), 124

coerce,matrix,ddenseMatrix-method
(ddenseMatrix-class), 47

coerce,Matrix,denseMatrix-method
(Matrix-class), 124

coerce,matrix,denseMatrix-method
(denseMatrix-class), 51

coerce,matrix,dgCMatrix-method
(dgCMatrix-class), 52

coerce,Matrix,diagonalMatrix-method
(Matrix-class), 124

coerce,matrix,diagonalMatrix-method
(diagonalMatrix-class), 58

coerce,Matrix,dMatrix-method
(Matrix-class), 124

coerce,matrix,dMatrix-method
(dMatrix-class), 62

coerce,Matrix,dpoMatrix-method
(Matrix-class), 124

coerce,matrix,dpoMatrix-method
(dpoMatrix-class), 65

coerce,Matrix,dppMatrix-method
(Matrix-class), 124

coerce,matrix,dppMatrix-method
(dpoMatrix-class), 65

coerce,Matrix,dsparseMatrix-method
(Matrix-class), 124

coerce,matrix,dsparseMatrix-method
(dsparseMatrix-class), 70

coerce,Matrix,generalMatrix-method
(Matrix-class), 124

coerce,matrix,generalMatrix-method
(generalMatrix-class), 92

coerce,Matrix,graph-method
(coerce-methods-graph), 39

coerce,Matrix,graphNEL-method
(coerce-methods-graph), 39

coerce,Matrix,indMatrix-method
(Matrix-class), 124

coerce,matrix,indMatrix-method
(indMatrix-class), 97

coerce,Matrix,ldenseMatrix-method
(Matrix-class), 124

coerce,matrix,ldenseMatrix-method
(ldenseMatrix-class), 110

coerce,Matrix,lMatrix-method
(Matrix-class), 124

coerce,matrix,lMatrix-method
(dMatrix-class), 62

coerce,Matrix,lsparseMatrix-method
(Matrix-class), 124

coerce,matrix,lsparseMatrix-method
(lsparseMatrix-class), 112

coerce,Matrix,matrix-method
(Matrix-class), 124

coerce,matrix,Matrix-method
(Matrix-class), 124

coerce,Matrix,matrix.coo-method
(coerce-methods-SparseM), 41

coerce,Matrix,matrix.csc-method
(coerce-methods-SparseM), 41

coerce,Matrix,matrix.csr-method
(coerce-methods-SparseM), 41

coerce,Matrix,ndenseMatrix-method
(Matrix-class), 124

coerce,matrix,ndenseMatrix-method
(ndenseMatrix-class), 128

coerce,Matrix,nMatrix-method
(Matrix-class), 124

coerce,matrix,nMatrix-method
(nMatrix-class), 133

216 INDEX

coerce,Matrix,nsparseMatrix-method
(Matrix-class), 124

coerce,matrix,nsparseMatrix-method
(nsparseMatrix-class), 137

coerce,Matrix,packedMatrix-method
(Matrix-class), 124

coerce,matrix,packedMatrix-method
(packedMatrix-class), 143

coerce,Matrix,pMatrix-method
(Matrix-class), 124

coerce,matrix,pMatrix-method
(pMatrix-class), 144

coerce,Matrix,RsparseMatrix-method
(Matrix-class), 124

coerce,matrix,RsparseMatrix-method
(RsparseMatrix-class), 160

coerce,Matrix,sparseMatrix-method
(Matrix-class), 124

coerce,matrix,sparseMatrix-method
(sparseMatrix-class), 175

coerce,Matrix,sparseVector-method
(Matrix-class), 124

coerce,matrix,sparseVector-method
(sparseVector-class), 182

coerce,Matrix,symmetricMatrix-method
(Matrix-class), 124

coerce,matrix,symmetricMatrix-method
(symmetricMatrix-class), 188

coerce,Matrix,triangularMatrix-method
(Matrix-class), 124

coerce,matrix,triangularMatrix-method
(triangularMatrix-class), 191

coerce,Matrix,TsparseMatrix-method
(Matrix-class), 124

coerce,matrix,TsparseMatrix-method
(TsparseMatrix-class), 192

coerce,Matrix,unpackedMatrix-method
(Matrix-class), 124

coerce,matrix,unpackedMatrix-method
(unpackedMatrix-class), 193

coerce,matrix.coo,CsparseMatrix-method
(coerce-methods-SparseM), 41

coerce,matrix.coo,dgCMatrix-method
(coerce-methods-SparseM), 41

coerce,matrix.coo,dgTMatrix-method
(coerce-methods-SparseM), 41

coerce,matrix.coo,Matrix-method
(coerce-methods-SparseM), 41

coerce,matrix.coo,RsparseMatrix-method
(coerce-methods-SparseM), 41

coerce,matrix.coo,sparseMatrix-method
(coerce-methods-SparseM), 41

coerce,matrix.coo,TsparseMatrix-method
(coerce-methods-SparseM), 41

coerce,matrix.csc,CsparseMatrix-method
(coerce-methods-SparseM), 41

coerce,matrix.csc,dgCMatrix-method
(coerce-methods-SparseM), 41

coerce,matrix.csc,Matrix-method
(coerce-methods-SparseM), 41

coerce,matrix.csc,RsparseMatrix-method
(coerce-methods-SparseM), 41

coerce,matrix.csc,sparseMatrix-method
(coerce-methods-SparseM), 41

coerce,matrix.csc,TsparseMatrix-method
(coerce-methods-SparseM), 41

coerce,matrix.csr,CsparseMatrix-method
(coerce-methods-SparseM), 41

coerce,matrix.csr,dgCMatrix-method
(coerce-methods-SparseM), 41

coerce,matrix.csr,dgRMatrix-method
(coerce-methods-SparseM), 41

coerce,matrix.csr,Matrix-method
(coerce-methods-SparseM), 41

coerce,matrix.csr,RsparseMatrix-method
(coerce-methods-SparseM), 41

coerce,matrix.csr,sparseMatrix-method
(coerce-methods-SparseM), 41

coerce,matrix.csr,TsparseMatrix-method
(coerce-methods-SparseM), 41

coerce,nsparseMatrix,indMatrix-method
(nsparseMatrix-class), 137

coerce,nsparseMatrix,pMatrix-method
(nsparseMatrix-class), 137

coerce,numeric,abIndex-method
(abIndex-class), 5

coerce,numeric,indMatrix-method
(indMatrix-class), 97

coerce,numeric,pMatrix-method
(pMatrix-class), 144

coerce,numeric,seqMat-method
(abIndex-class), 5

coerce,pBunchKaufman,dtpMatrix-method
(BunchKaufman-class), 16

coerce,pCholesky,dtpMatrix-method
(Cholesky-class), 31

INDEX 217

coerce,seqMat,abIndex-method
(abIndex-class), 5

coerce,seqMat,numeric-method
(abIndex-class), 5

coerce,sparseVector,CsparseMatrix-method
(sparseVector-class), 182

coerce,sparseVector,denseMatrix-method
(sparseVector-class), 182

coerce,sparseVector,dsparseVector-method
(sparseVector-class), 182

coerce,sparseVector,generalMatrix-method
(sparseVector-class), 182

coerce,sparseVector,isparseVector-method
(sparseVector-class), 182

coerce,sparseVector,lsparseVector-method
(sparseVector-class), 182

coerce,sparseVector,Matrix-method
(sparseVector-class), 182

coerce,sparseVector,nsparseVector-method
(sparseVector-class), 182

coerce,sparseVector,RsparseMatrix-method
(sparseVector-class), 182

coerce,sparseVector,sparseMatrix-method
(sparseVector-class), 182

coerce,sparseVector,TsparseMatrix-method
(sparseVector-class), 182

coerce,sparseVector,unpackedMatrix-method
(sparseVector-class), 182

coerce,sparseVector,zsparseVector-method
(sparseVector-class), 182

coerce,TsparseMatrix,graphNEL-method
(coerce-methods-graph), 39

coerce,vector,CsparseMatrix-method
(CsparseMatrix-class), 45

coerce,vector,ddenseMatrix-method
(ddenseMatrix-class), 47

coerce,vector,denseMatrix-method
(denseMatrix-class), 51

coerce,vector,dMatrix-method
(dMatrix-class), 62

coerce,vector,dsparseMatrix-method
(dsparseMatrix-class), 70

coerce,vector,dsparseVector-method
(sparseVector-class), 182

coerce,vector,generalMatrix-method
(generalMatrix-class), 92

coerce,vector,isparseVector-method
(sparseVector-class), 182

coerce,vector,ldenseMatrix-method
(ldenseMatrix-class), 110

coerce,vector,lMatrix-method
(dMatrix-class), 62

coerce,vector,lsparseMatrix-method
(lsparseMatrix-class), 112

coerce,vector,lsparseVector-method
(sparseVector-class), 182

coerce,vector,Matrix-method
(Matrix-class), 124

coerce,vector,ndenseMatrix-method
(ndenseMatrix-class), 128

coerce,vector,nMatrix-method
(nMatrix-class), 133

coerce,vector,nsparseMatrix-method
(nsparseMatrix-class), 137

coerce,vector,nsparseVector-method
(sparseVector-class), 182

coerce,vector,RsparseMatrix-method
(RsparseMatrix-class), 160

coerce,vector,sparseMatrix-method
(sparseMatrix-class), 175

coerce,vector,sparseVector-method
(sparseVector-class), 182

coerce,vector,TsparseMatrix-method
(TsparseMatrix-class), 192

coerce,vector,unpackedMatrix-method
(unpackedMatrix-class), 193

coerce,vector,zsparseVector-method
(sparseVector-class), 182

coerce-methods-graph, 39
coerce-methods-SparseM, 41
colMeans (colSums-methods), 42
colMeans,CsparseMatrix-method

(colSums-methods), 42
colMeans,denseMatrix-method

(colSums-methods), 42
colMeans,diagonalMatrix-method

(colSums-methods), 42
colMeans,indMatrix-method

(colSums-methods), 42
colMeans,RsparseMatrix-method

(colSums-methods), 42
colMeans,TsparseMatrix-method

(colSums-methods), 42
colMeans-methods (colSums-methods), 42
colScale (dimScale), 61
colSums, 42, 47, 51, 125, 176

218 INDEX

colSums (colSums-methods), 42
colSums,CsparseMatrix-method

(colSums-methods), 42
colSums,denseMatrix-method

(colSums-methods), 42
colSums,diagonalMatrix-method

(colSums-methods), 42
colSums,indMatrix-method

(colSums-methods), 42
colSums,RsparseMatrix-method

(colSums-methods), 42
colSums,TsparseMatrix-method

(colSums-methods), 42
colSums-methods, 42
Compare,CsparseMatrix,CsparseMatrix-method

(CsparseMatrix-class), 45
Compare,dMatrix,logical-method

(dMatrix-class), 62
Compare,dMatrix,numeric-method

(dMatrix-class), 62
Compare,lgeMatrix,lgeMatrix-method

(lgeMatrix-class), 111
Compare,lMatrix,logical-method

(dMatrix-class), 62
Compare,lMatrix,numeric-method

(dMatrix-class), 62
Compare,logical,dMatrix-method

(dMatrix-class), 62
Compare,logical,lMatrix-method

(dMatrix-class), 62
Compare,logical,nMatrix-method

(nMatrix-class), 133
Compare,ngeMatrix,ngeMatrix-method

(ngeMatrix-class), 132
Compare,nMatrix,logical-method

(nMatrix-class), 133
Compare,nMatrix,nMatrix-method

(nMatrix-class), 133
Compare,nMatrix,numeric-method

(nMatrix-class), 133
Compare,numeric,dMatrix-method

(dMatrix-class), 62
Compare,numeric,lMatrix-method

(dMatrix-class), 62
Compare,numeric,nMatrix-method

(nMatrix-class), 133
Compare,triangularMatrix,diagonalMatrix-method

(triangularMatrix-class), 191

complex, 126
condest, 43, 44, 156
contrasts, 167
copMatrix-class (dpoMatrix-class), 65
corMatrix, 73
corMatrix-class (dpoMatrix-class), 65
cov2cor, 61
cov2cor,packedMatrix-method

(packedMatrix-class), 143
cov2cor,sparseMatrix-method

(sparseMatrix-class), 175
cov2cor,unpackedMatrix-method

(unpackedMatrix-class), 193
crossprod, 46, 53, 66, 98, 120, 121, 176
crossprod (matmult-methods), 120
crossprod,ANY,Matrix-method

(matmult-methods), 120
crossprod,ANY,sparseVector-method

(matmult-methods), 120
crossprod,CsparseMatrix,CsparseMatrix-method

(matmult-methods), 120
crossprod,CsparseMatrix,denseMatrix-method

(matmult-methods), 120
crossprod,CsparseMatrix,diagonalMatrix-method

(matmult-methods), 120
crossprod,CsparseMatrix,matrix-method

(matmult-methods), 120
crossprod,CsparseMatrix,missing-method

(matmult-methods), 120
crossprod,CsparseMatrix,RsparseMatrix-method

(matmult-methods), 120
crossprod,CsparseMatrix,TsparseMatrix-method

(matmult-methods), 120
crossprod,CsparseMatrix,vector-method

(matmult-methods), 120
crossprod,denseMatrix,CsparseMatrix-method

(matmult-methods), 120
crossprod,denseMatrix,denseMatrix-method

(matmult-methods), 120
crossprod,denseMatrix,diagonalMatrix-method

(matmult-methods), 120
crossprod,denseMatrix,matrix-method

(matmult-methods), 120
crossprod,denseMatrix,missing-method

(matmult-methods), 120
crossprod,denseMatrix,RsparseMatrix-method

(matmult-methods), 120
crossprod,denseMatrix,TsparseMatrix-method

INDEX 219

(matmult-methods), 120
crossprod,denseMatrix,vector-method

(matmult-methods), 120
crossprod,diagonalMatrix,CsparseMatrix-method

(matmult-methods), 120
crossprod,diagonalMatrix,denseMatrix-method

(matmult-methods), 120
crossprod,diagonalMatrix,diagonalMatrix-method

(matmult-methods), 120
crossprod,diagonalMatrix,matrix-method

(matmult-methods), 120
crossprod,diagonalMatrix,missing-method

(matmult-methods), 120
crossprod,diagonalMatrix,RsparseMatrix-method

(matmult-methods), 120
crossprod,diagonalMatrix,TsparseMatrix-method

(matmult-methods), 120
crossprod,diagonalMatrix,vector-method

(matmult-methods), 120
crossprod,indMatrix,Matrix-method

(matmult-methods), 120
crossprod,indMatrix,matrix-method

(matmult-methods), 120
crossprod,indMatrix,missing-method

(matmult-methods), 120
crossprod,indMatrix,vector-method

(matmult-methods), 120
crossprod,Matrix,ANY-method

(matmult-methods), 120
crossprod,matrix,CsparseMatrix-method

(matmult-methods), 120
crossprod,matrix,denseMatrix-method

(matmult-methods), 120
crossprod,matrix,diagonalMatrix-method

(matmult-methods), 120
crossprod,Matrix,indMatrix-method

(matmult-methods), 120
crossprod,matrix,indMatrix-method

(matmult-methods), 120
crossprod,Matrix,pMatrix-method

(matmult-methods), 120
crossprod,matrix,pMatrix-method

(matmult-methods), 120
crossprod,matrix,RsparseMatrix-method

(matmult-methods), 120
crossprod,Matrix,sparseVector-method

(matmult-methods), 120
crossprod,matrix,sparseVector-method

(matmult-methods), 120
crossprod,matrix,TsparseMatrix-method

(matmult-methods), 120
crossprod,pMatrix,missing-method

(matmult-methods), 120
crossprod,pMatrix,pMatrix-method

(matmult-methods), 120
crossprod,RsparseMatrix,CsparseMatrix-method

(matmult-methods), 120
crossprod,RsparseMatrix,denseMatrix-method

(matmult-methods), 120
crossprod,RsparseMatrix,diagonalMatrix-method

(matmult-methods), 120
crossprod,RsparseMatrix,matrix-method

(matmult-methods), 120
crossprod,RsparseMatrix,missing-method

(matmult-methods), 120
crossprod,RsparseMatrix,RsparseMatrix-method

(matmult-methods), 120
crossprod,RsparseMatrix,TsparseMatrix-method

(matmult-methods), 120
crossprod,RsparseMatrix,vector-method

(matmult-methods), 120
crossprod,sparseVector,ANY-method

(matmult-methods), 120
crossprod,sparseVector,Matrix-method

(matmult-methods), 120
crossprod,sparseVector,matrix-method

(matmult-methods), 120
crossprod,sparseVector,missing-method

(matmult-methods), 120
crossprod,sparseVector,sparseVector-method

(matmult-methods), 120
crossprod,sparseVector,vector-method

(matmult-methods), 120
crossprod,TsparseMatrix,CsparseMatrix-method

(matmult-methods), 120
crossprod,TsparseMatrix,denseMatrix-method

(matmult-methods), 120
crossprod,TsparseMatrix,diagonalMatrix-method

(matmult-methods), 120
crossprod,TsparseMatrix,matrix-method

(matmult-methods), 120
crossprod,TsparseMatrix,missing-method

(matmult-methods), 120
crossprod,TsparseMatrix,RsparseMatrix-method

(matmult-methods), 120
crossprod,TsparseMatrix,TsparseMatrix-method

220 INDEX

(matmult-methods), 120
crossprod,TsparseMatrix,vector-method

(matmult-methods), 120
crossprod,vector,CsparseMatrix-method

(matmult-methods), 120
crossprod,vector,denseMatrix-method

(matmult-methods), 120
crossprod,vector,diagonalMatrix-method

(matmult-methods), 120
crossprod,vector,indMatrix-method

(matmult-methods), 120
crossprod,vector,pMatrix-method

(matmult-methods), 120
crossprod,vector,RsparseMatrix-method

(matmult-methods), 120
crossprod,vector,sparseVector-method

(matmult-methods), 120
crossprod,vector,TsparseMatrix-method

(matmult-methods), 120
crossprod-methods, 52
crossprod-methods (matmult-methods), 120
CsparseMatrix, 11, 13, 52, 56, 57, 67–69, 74,

87, 88, 106, 112, 121, 137, 160, 168,
171–173, 186, 193

CsparseMatrix-class, 45
cumsum, 59

data.frame, 84, 176
dCHMsimpl, 36, 195
dCHMsimpl-class (CHMfactor-class), 22
dCHMsuper, 36, 195
dCHMsuper-class (CHMfactor-class), 22
ddenseMatrix, 51, 78
ddenseMatrix-class, 47
ddiMatrix, 59, 80, 111
ddiMatrix-class, 48
denseLU, 80, 117, 118, 128, 170
denseLU-class, 49
denseMatrix, 21, 26, 34, 49, 60, 67, 87, 88,

110, 116, 128, 143, 148, 153, 165,
191, 193

denseMatrix-class, 51
det, 124
det (Matrix-class), 124
determinant, 66, 76, 176
determinant,BunchKaufman,logical-method

(BunchKaufman-class), 16
determinant,CHMfactor,logical-method

(CHMfactor-class), 22

determinant,Cholesky,logical-method
(Cholesky-class), 31

determinant,denseLU,logical-method
(denseLU-class), 49

determinant,dgCMatrix,logical-method
(dgCMatrix-class), 52

determinant,dgeMatrix,logical-method
(dgeMatrix-class), 53

determinant,dgRMatrix,logical-method
(dgRMatrix-class), 54

determinant,dgTMatrix,logical-method
(dgTMatrix-class), 55

determinant,diagonalMatrix,logical-method
(diagonalMatrix-class), 58

determinant,dpoMatrix,logical-method
(dpoMatrix-class), 65

determinant,dppMatrix,logical-method
(dpoMatrix-class), 65

determinant,dsCMatrix,logical-method
(dsCMatrix-class), 68

determinant,dspMatrix,logical-method
(dsyMatrix-class), 72

determinant,dsRMatrix,logical-method
(dsRMatrix-class), 70

determinant,dsTMatrix,logical-method
(dsCMatrix-class), 68

determinant,dsyMatrix,logical-method
(dsyMatrix-class), 72

determinant,indMatrix,logical-method
(indMatrix-class), 97

determinant,Matrix,logical-method
(Matrix-class), 124

determinant,Matrix,missing-method
(Matrix-class), 124

determinant,MatrixFactorization,missing-method
(MatrixFactorization-class),
127

determinant,pBunchKaufman,logical-method
(BunchKaufman-class), 16

determinant,pCholesky,logical-method
(Cholesky-class), 31

determinant,pMatrix,logical-method
(pMatrix-class), 144

determinant,Schur,logical-method
(Schur-class), 161

determinant,sparseLU,logical-method
(sparseLU-class), 169

determinant,sparseQR,logical-method

INDEX 221

(sparseQR-class), 177
determinant,triangularMatrix,logical-method

(triangularMatrix-class), 191
dgCMatrix, 20, 24, 25, 47, 54, 55, 63, 69–71,

74, 77, 80, 81, 88, 113, 117, 118,
120, 125, 138, 149, 170, 178, 179

dgCMatrix-class, 52
dgeMatrix, 47, 49, 50, 63, 66, 69, 71, 73, 74,

77, 81, 117, 118, 125, 161–163, 179
dgeMatrix-class, 53
dgRMatrix, 70, 160
dgRMatrix-class, 54
dgTMatrix, 40, 69–71, 74, 77, 95, 112, 113,

192, 193
dgTMatrix-class, 55
diag, 12, 57, 97, 129, 130
diag,CHMfactor-method

(CHMfactor-class), 22
diag,Cholesky-method (Cholesky-class),

31
diag,CsparseMatrix-method

(CsparseMatrix-class), 45
diag,denseMatrix-method

(denseMatrix-class), 51
diag,diagonalMatrix-method

(diagonalMatrix-class), 58
diag,indMatrix-method

(indMatrix-class), 97
diag,pCholesky-method (Cholesky-class),

31
diag,RsparseMatrix-method

(RsparseMatrix-class), 160
diag,TsparseMatrix-method

(TsparseMatrix-class), 192
diag<-,CsparseMatrix-method

(CsparseMatrix-class), 45
diag<-,denseMatrix-method

(denseMatrix-class), 51
diag<-,diagonalMatrix-method

(diagonalMatrix-class), 58
diag<-,indMatrix-method

(indMatrix-class), 97
diag<-,RsparseMatrix-method

(RsparseMatrix-class), 160
diag<-,TsparseMatrix-method

(TsparseMatrix-class), 192
diagN2U (diagU2N), 59
Diagonal, 13, 48, 56, 59, 110, 111, 123, 173,

186
diagonalMatrix, 13, 21, 27, 30, 48, 56, 57,

88, 93, 105, 111, 119, 122, 123, 190
diagonalMatrix-class, 58
diagU2N, 59
diff, 124, 157
diff,denseMatrix-method

(denseMatrix-class), 51
diff,sparseMatrix-method

(sparseMatrix-class), 175
diff,sparseVector-method

(sparseVector-class), 182
dim, 124, 147, 158
dim,Matrix-method (Matrix-class), 124
dim,MatrixFactorization-method

(MatrixFactorization-class),
127

dim<-,denseMatrix-method
(denseMatrix-class), 51

dim<-,sparseMatrix-method
(sparseMatrix-class), 175

dim<-,sparseVector-method
(sparseVector-class), 182

dimnames, 42, 48, 58, 62, 84, 92, 102, 103,
106, 111, 122, 124, 172, 189

dimnames,Matrix-method (Matrix-class),
124

dimnames,MatrixFactorization-method
(MatrixFactorization-class),
127

dimnames,symmetricMatrix-method
(symmetricMatrix-class), 188

dimnames<-,generalMatrix,list-method
(generalMatrix-class), 92

dimnames<-,generalMatrix,NULL-method
(generalMatrix-class), 92

dimnames<-,Matrix,list-method
(Matrix-class), 124

dimnames<-,Matrix,NULL-method
(Matrix-class), 124

dimnames<-,MatrixFactorization,list-method
(MatrixFactorization-class),
127

dimnames<-,MatrixFactorization,NULL-method
(MatrixFactorization-class),
127

dimnames<-,symmetricMatrix,list-method
(symmetricMatrix-class), 188

222 INDEX

dimnames<-,symmetricMatrix,NULL-method
(symmetricMatrix-class), 188

dimScale, 61
dMatrix, 15, 47, 48, 61, 82, 124
dMatrix-class, 62
dmperm, 63
double, 158, 168
dpoMatrix, 32, 36, 73, 93, 130, 193
dpoMatrix-class, 65
dppMatrix, 32, 36, 73, 143
dppMatrix-class (dpoMatrix-class), 65
drop,abIndex-method (abIndex-class), 5
drop,Matrix-method (Matrix-class), 124
drop0, 15, 63, 67, 135, 181
dsCMatrix, 24, 25, 36, 52, 81, 88, 196, 197
dsCMatrix-class, 68
dsparseMatrix, 47, 55, 57, 69, 71
dsparseMatrix-class, 70
dsparseVector-class

(sparseVector-class), 182
dspMatrix, 16, 19, 32, 143
dspMatrix-class (dsyMatrix-class), 72
dsRMatrix-class, 70
dsTMatrix, 196, 197
dsTMatrix-class (dsCMatrix-class), 68
dsyMatrix, 16, 17, 19, 32, 54, 66, 189, 194
dsyMatrix-class, 72
dtCMatrix, 24, 52, 60, 63, 80, 81, 170, 179
dtCMatrix-class, 73
dtpMatrix, 17, 32, 78, 80
dtpMatrix-class, 75
dtrMatrix, 17, 32, 54, 74, 76, 80, 81, 192
dtRMatrix-class, 76
dtrMatrix-class, 78
dtTMatrix-class (dtCMatrix-class), 73

eigen, 20, 125
error, 117
expand (expand-methods), 79
expand,CHMfactor-method

(expand-methods), 79
expand,denseLU-method (expand-methods),

79
expand,sparseLU-method

(expand-methods), 79
expand-methods, 79
expand1, 17, 19, 25, 32, 35, 36, 50, 118, 128,

149, 162, 163, 170, 179
expand1 (expand-methods), 79

expand1,BunchKaufman-method
(expand-methods), 79

expand1,CHMsimpl-method
(expand-methods), 79

expand1,CHMsuper-method
(expand-methods), 79

expand1,Cholesky-method
(expand-methods), 79

expand1,denseLU-method
(expand-methods), 79

expand1,pBunchKaufman-method
(expand-methods), 79

expand1,pCholesky-method
(expand-methods), 79

expand1,Schur-method (expand-methods),
79

expand1,sparseLU-method
(expand-methods), 79

expand1,sparseQR-method
(expand-methods), 79

expand1-methods (expand-methods), 79
expand2, 17, 19, 25, 32, 36, 50, 85, 118, 128,

149, 162, 163, 170, 179
expand2 (expand-methods), 79
expand2,BunchKaufman-method

(expand-methods), 79
expand2,CHMsimpl-method

(expand-methods), 79
expand2,CHMsuper-method

(expand-methods), 79
expand2,Cholesky-method

(expand-methods), 79
expand2,denseLU-method

(expand-methods), 79
expand2,pBunchKaufman-method

(expand-methods), 79
expand2,pCholesky-method

(expand-methods), 79
expand2,Schur-method (expand-methods),

79
expand2,sparseLU-method

(expand-methods), 79
expand2,sparseQR-method

(expand-methods), 79
expand2-methods (expand-methods), 79
expm, 62
expm (expm-methods), 82
expm,ddiMatrix-method (expm-methods), 82

INDEX 223

expm,dgeMatrix-method (expm-methods), 82
expm,dMatrix-method (expm-methods), 82
expm,dsparseMatrix-method

(expm-methods), 82
expm,dspMatrix-method (expm-methods), 82
expm,dsyMatrix-method (expm-methods), 82
expm,dtpMatrix-method (expm-methods), 82
expm,dtrMatrix-method (expm-methods), 82
expm,Matrix-method (expm-methods), 82
expm,matrix-method (expm-methods), 82
expm-methods, 82
extends, 122
externalFormats, 83
Extract, 187, 188

fac2Sparse (sparse.model.matrix), 167
fac2sparse, 168
fac2sparse (sparse.model.matrix), 167
facmul (facmul-methods), 85
facmul-methods, 85
factor, 167, 168
FALSE, 102
fastMisc, 86
finite, 19, 27, 34, 35, 117, 149, 163, 165, 195
forceSymmetric, 104
forceSymmetric

(forceSymmetric-methods), 90
forceSymmetric,CsparseMatrix,character-method

(forceSymmetric-methods), 90
forceSymmetric,CsparseMatrix,missing-method

(forceSymmetric-methods), 90
forceSymmetric,denseMatrix,character-method

(forceSymmetric-methods), 90
forceSymmetric,denseMatrix,missing-method

(forceSymmetric-methods), 90
forceSymmetric,diagonalMatrix,character-method

(forceSymmetric-methods), 90
forceSymmetric,diagonalMatrix,missing-method

(forceSymmetric-methods), 90
forceSymmetric,indMatrix,character-method

(forceSymmetric-methods), 90
forceSymmetric,indMatrix,missing-method

(forceSymmetric-methods), 90
forceSymmetric,matrix,character-method

(forceSymmetric-methods), 90
forceSymmetric,matrix,missing-method

(forceSymmetric-methods), 90
forceSymmetric,RsparseMatrix,character-method

(forceSymmetric-methods), 90

forceSymmetric,RsparseMatrix,missing-method
(forceSymmetric-methods), 90

forceSymmetric,TsparseMatrix,character-method
(forceSymmetric-methods), 90

forceSymmetric,TsparseMatrix,missing-method
(forceSymmetric-methods), 90

forceSymmetric-methods, 90
format, 91, 92, 146, 175
format,sparseMatrix-method

(sparseMatrix-class), 175
formatSparseM, 91, 147, 148
formatSpMatrix, 91, 92, 175
formatSpMatrix (printSpMatrix), 146
function, 106, 159

generalMatrix, 57, 87, 88, 98, 117, 173, 185,
190

generalMatrix-class, 92
get.gpar, 95
getClassDef, 146
getOption, 146
getValidity, 66, 189
graph, 40
graph2T (coerce-methods-graph), 39
grey, 94
grid.raster, 94
grid.rect, 95

head, 183
head,Matrix-method (Matrix-class), 124
head,sparseVector-method

(sparseVector-class), 182
Hilbert, 93

identical, 142
identity, 25
image, 94, 124
image (image-methods), 94
image,ANY-method (image-methods), 94
image,CHMfactor-method (image-methods),

94
image,dgTMatrix-method (image-methods),

94
image,Matrix-method (image-methods), 94
image-methods, 94
iMatrix-class (Matrix-notyet), 126
index, 187
index-class, 96
indMatrix, 21, 67, 88, 144, 145

224 INDEX

indMatrix-class, 97
Inf, 102
initialize,Matrix-method

(Matrix-class), 124
initialize,sparseVector-method

(sparseVector-class), 182
integer, 46, 55, 68, 74, 135
invertPerm, 99
invisible, 147
invPerm, 144, 145
invPerm (invertPerm), 99
is, 94
is.finite, 101
is.finite (is.na-methods), 101
is.finite,abIndex-method

(is.na-methods), 101
is.finite,denseMatrix-method

(is.na-methods), 101
is.finite,diagonalMatrix-method

(is.na-methods), 101
is.finite,indMatrix-method

(is.na-methods), 101
is.finite,sparseMatrix-method

(is.na-methods), 101
is.finite,sparseVector-method

(is.na-methods), 101
is.finite-methods (is.na-methods), 101
is.infinite, 101
is.infinite (is.na-methods), 101
is.infinite,abIndex-method

(is.na-methods), 101
is.infinite,denseMatrix-method

(is.na-methods), 101
is.infinite,diagonalMatrix-method

(is.na-methods), 101
is.infinite,indMatrix-method

(is.na-methods), 101
is.infinite,sparseMatrix-method

(is.na-methods), 101
is.infinite,sparseVector-method

(is.na-methods), 101
is.infinite-methods (is.na-methods), 101
is.na, 101
is.na (is.na-methods), 101
is.na,abIndex-method (is.na-methods),

101
is.na,denseMatrix-method

(is.na-methods), 101

is.na,diagonalMatrix-method
(is.na-methods), 101

is.na,indMatrix-method (is.na-methods),
101

is.na,sparseMatrix-method
(is.na-methods), 101

is.na,sparseVector-method
(is.na-methods), 101

is.na-methods, 101
is.nan, 101
is.nan (is.na-methods), 101
is.nan,denseMatrix-method

(is.na-methods), 101
is.nan,diagonalMatrix-method

(is.na-methods), 101
is.nan,indMatrix-method

(is.na-methods), 101
is.nan,sparseMatrix-method

(is.na-methods), 101
is.nan,sparseVector-method

(is.na-methods), 101
is.nan-methods (is.na-methods), 101
is.null, 102, 103
is.null.DN, 102
isDiagonal, 59
isDiagonal (isTriangular-methods), 105
isDiagonal,CsparseMatrix-method

(isTriangular-methods), 105
isDiagonal,denseMatrix-method

(isTriangular-methods), 105
isDiagonal,diagonalMatrix-method

(isTriangular-methods), 105
isDiagonal,indMatrix-method

(isTriangular-methods), 105
isDiagonal,matrix-method

(isTriangular-methods), 105
isDiagonal,RsparseMatrix-method

(isTriangular-methods), 105
isDiagonal,TsparseMatrix-method

(isTriangular-methods), 105
isDiagonal-methods

(isTriangular-methods), 105
isLDL, 166
isLDL (CHMfactor-class), 22
isparseVector-class

(sparseVector-class), 182
isPerm (invertPerm), 99
isSymmetric, 87, 105, 130, 142, 189–191

INDEX 225

isSymmetric (isSymmetric-methods), 103
isSymmetric,CsparseMatrix-method

(isSymmetric-methods), 103
isSymmetric,denseMatrix-method

(isSymmetric-methods), 103
isSymmetric,dgCMatrix-method

(isSymmetric-methods), 103
isSymmetric,dgeMatrix-method

(isSymmetric-methods), 103
isSymmetric,dgRMatrix-method

(isSymmetric-methods), 103
isSymmetric,dgTMatrix-method

(isSymmetric-methods), 103
isSymmetric,diagonalMatrix-method

(isSymmetric-methods), 103
isSymmetric,dtCMatrix-method

(isSymmetric-methods), 103
isSymmetric,dtpMatrix-method

(isSymmetric-methods), 103
isSymmetric,dtRMatrix-method

(isSymmetric-methods), 103
isSymmetric,dtrMatrix-method

(isSymmetric-methods), 103
isSymmetric,dtTMatrix-method

(isSymmetric-methods), 103
isSymmetric,indMatrix-method

(isSymmetric-methods), 103
isSymmetric,RsparseMatrix-method

(isSymmetric-methods), 103
isSymmetric,TsparseMatrix-method

(isSymmetric-methods), 103
isSymmetric-methods, 103, 189
isSymmetric.matrix, 104
isTriangular, 87, 142, 192
isTriangular (isTriangular-methods), 105
isTriangular,CsparseMatrix-method

(isTriangular-methods), 105
isTriangular,denseMatrix-method

(isTriangular-methods), 105
isTriangular,diagonalMatrix-method

(isTriangular-methods), 105
isTriangular,indMatrix-method

(isTriangular-methods), 105
isTriangular,matrix-method

(isTriangular-methods), 105
isTriangular,RsparseMatrix-method

(isTriangular-methods), 105
isTriangular,TsparseMatrix-method

(isTriangular-methods), 105
isTriangular-methods, 105
isUniqueT (asUniqueT), 8

kappa, 125, 156
KhatriRao, 106
KNex, 108
kronecker, 13, 47, 51, 98, 106, 107, 109, 125
kronecker (kronecker-methods), 109
kronecker,CsparseMatrix,CsparseMatrix-method

(kronecker-methods), 109
kronecker,CsparseMatrix,diagonalMatrix-method

(kronecker-methods), 109
kronecker,CsparseMatrix,Matrix-method

(kronecker-methods), 109
kronecker,denseMatrix,denseMatrix-method

(kronecker-methods), 109
kronecker,denseMatrix,Matrix-method

(kronecker-methods), 109
kronecker,diagonalMatrix,CsparseMatrix-method

(kronecker-methods), 109
kronecker,diagonalMatrix,diagonalMatrix-method

(kronecker-methods), 109
kronecker,diagonalMatrix,indMatrix-method

(kronecker-methods), 109
kronecker,diagonalMatrix,Matrix-method

(kronecker-methods), 109
kronecker,diagonalMatrix,RsparseMatrix-method

(kronecker-methods), 109
kronecker,diagonalMatrix,TsparseMatrix-method

(kronecker-methods), 109
kronecker,indMatrix,diagonalMatrix-method

(kronecker-methods), 109
kronecker,indMatrix,indMatrix-method

(kronecker-methods), 109
kronecker,indMatrix,Matrix-method

(kronecker-methods), 109
kronecker,Matrix,matrix-method

(kronecker-methods), 109
kronecker,matrix,Matrix-method

(kronecker-methods), 109
kronecker,Matrix,vector-method

(kronecker-methods), 109
kronecker,RsparseMatrix,diagonalMatrix-method

(kronecker-methods), 109
kronecker,RsparseMatrix,Matrix-method

(kronecker-methods), 109
kronecker,RsparseMatrix,RsparseMatrix-method

(kronecker-methods), 109

226 INDEX

kronecker,TsparseMatrix,diagonalMatrix-method
(kronecker-methods), 109

kronecker,TsparseMatrix,Matrix-method
(kronecker-methods), 109

kronecker,TsparseMatrix,TsparseMatrix-method
(kronecker-methods), 109

kronecker,vector,Matrix-method
(kronecker-methods), 109

kronecker-methods, 109

ldenseMatrix, 51, 114, 115
ldenseMatrix-class, 110
ldiMatrix, 14, 59
ldiMatrix-class, 110
length, 56, 63, 135, 182
length,abIndex-method (abIndex-class), 5
length,Matrix-method (Matrix-class), 124
length,MatrixFactorization-method

(MatrixFactorization-class),
127

length,sparseVector-method
(sparseVector-class), 182

levelplot, 52, 54, 55, 94, 95, 124
lgCMatrix, 112
lgCMatrix-class (lsparseMatrix-class),

112
lgeMatrix, 110, 115, 116
lgeMatrix-class, 111
lgRMatrix-class (lsparseMatrix-class),

112
lgTMatrix-class (lsparseMatrix-class),

112
list, 13, 44, 58, 63, 64, 94, 119, 124, 158, 168
lMatrix, 15, 110, 111, 113, 115, 120, 122,

128, 129, 134, 138
lMatrix-class (dMatrix-class), 62
log,denseMatrix-method

(denseMatrix-class), 51
log,diagonalMatrix-method

(diagonalMatrix-class), 58
log,indMatrix-method (indMatrix-class),

97
log,sparseMatrix-method

(sparseMatrix-class), 175
log,sparseVector-method

(sparseVector-class), 182
Logic,ANY,Matrix-method (Matrix-class),

124

Logic,CsparseMatrix,CsparseMatrix-method
(CsparseMatrix-class), 45

Logic,dMatrix,logical-method
(dMatrix-class), 62

Logic,dMatrix,numeric-method
(dMatrix-class), 62

Logic,dMatrix,sparseVector-method
(dMatrix-class), 62

Logic,ldenseMatrix,lsparseMatrix-method
(ldenseMatrix-class), 110

Logic,lgCMatrix,lgCMatrix-method
(lsparseMatrix-class), 112

Logic,lgeMatrix,lgeMatrix-method
(lgeMatrix-class), 111

Logic,lgTMatrix,lgTMatrix-method
(lsparseMatrix-class), 112

Logic,lMatrix,logical-method
(dMatrix-class), 62

Logic,lMatrix,numeric-method
(dMatrix-class), 62

Logic,lMatrix,sparseVector-method
(dMatrix-class), 62

Logic,logical,dMatrix-method
(dMatrix-class), 62

Logic,logical,lMatrix-method
(dMatrix-class), 62

Logic,logical,nMatrix-method
(nMatrix-class), 133

Logic,lsCMatrix,lsCMatrix-method
(lsparseMatrix-class), 112

Logic,lsparseMatrix,ldenseMatrix-method
(lsparseMatrix-class), 112

Logic,lsparseMatrix,lsparseMatrix-method
(lsparseMatrix-class), 112

Logic,lsparseVector,lsparseVector-method
(sparseVector-class), 182

Logic,ltCMatrix,ltCMatrix-method
(lsparseMatrix-class), 112

Logic,Matrix,ANY-method (Matrix-class),
124

Logic,Matrix,nMatrix-method
(Matrix-class), 124

Logic,ngeMatrix,ngeMatrix-method
(ngeMatrix-class), 132

Logic,nMatrix,logical-method
(nMatrix-class), 133

Logic,nMatrix,Matrix-method
(nMatrix-class), 133

INDEX 227

Logic,nMatrix,nMatrix-method
(nMatrix-class), 133

Logic,nMatrix,numeric-method
(nMatrix-class), 133

Logic,nMatrix,sparseVector-method
(nMatrix-class), 133

Logic,numeric,dMatrix-method
(dMatrix-class), 62

Logic,numeric,lMatrix-method
(dMatrix-class), 62

Logic,numeric,nMatrix-method
(nMatrix-class), 133

Logic,sparseVector,dMatrix-method
(sparseVector-class), 182

Logic,sparseVector,lMatrix-method
(sparseVector-class), 182

Logic,sparseVector,nMatrix-method
(sparseVector-class), 182

Logic,sparseVector,sparseVector-method
(sparseVector-class), 182

Logic,triangularMatrix,diagonalMatrix-method
(triangularMatrix-class), 191

logical, 56, 63, 66, 96–98, 102, 104, 105,
111, 119, 120, 122, 126, 135, 153,
183, 187

lsCMatrix, 189
lsCMatrix-class (lsparseMatrix-class),

112
lsparseMatrix, 57
lsparseMatrix-class, 112
lsparseMatrix-classes

(lsparseMatrix-class), 112
lsparseVector-class

(sparseVector-class), 182
lspMatrix-class (lsyMatrix-class), 114
lsRMatrix-class (lsparseMatrix-class),

112
lsTMatrix-class (lsparseMatrix-class),

112
lsyMatrix, 112
lsyMatrix-class, 114
ltCMatrix, 192
ltCMatrix-class (lsparseMatrix-class),

112
ltpMatrix, 143
ltpMatrix-class (ltrMatrix-class), 115
ltrMatrix, 112, 194
ltRMatrix-class (lsparseMatrix-class),

112
ltrMatrix-class, 115
ltTMatrix-class (lsparseMatrix-class),

112
LU, 49, 117, 170
lu, 19, 36, 44, 49, 50, 52, 81, 128, 149, 163,

166, 170, 176
lu (lu-methods), 116
lu,denseMatrix-method (lu-methods), 116
lu,dgCMatrix-method (lu-methods), 116
lu,dgeMatrix-method (lu-methods), 116
lu,dgRMatrix-method (lu-methods), 116
lu,dgTMatrix-method (lu-methods), 116
lu,diagonalMatrix-method (lu-methods),

116
lu,dsCMatrix-method (lu-methods), 116
lu,dspMatrix-method (lu-methods), 116
lu,dsRMatrix-method (lu-methods), 116
lu,dsTMatrix-method (lu-methods), 116
lu,dsyMatrix-method (lu-methods), 116
lu,dtCMatrix-method (lu-methods), 116
lu,dtpMatrix-method (lu-methods), 116
lu,dtRMatrix-method (lu-methods), 116
lu,dtrMatrix-method (lu-methods), 116
lu,dtTMatrix-method (lu-methods), 116
lu,matrix-method (lu-methods), 116
lu,sparseMatrix-method (lu-methods), 116
LU-class (MatrixFactorization-class),

127
lu-methods, 116

mat2triplet, 118
Math,denseMatrix-method

(denseMatrix-class), 51
Math,diagonalMatrix-method

(diagonalMatrix-class), 58
Math,indMatrix-method

(indMatrix-class), 97
Math,sparseMatrix-method

(sparseMatrix-class), 175
Math,sparseVector-method

(sparseVector-class), 182
Math2,Matrix-method (Matrix-class), 124
Math2,sparseVector-method

(sparseVector-class), 182
matmult-methods, 120
Matrix, 7, 8, 12, 19, 21, 27, 30, 34–36, 42, 47,

48, 51–54, 56–58, 61, 63, 66–68,
70–75, 77, 80, 83, 87, 88, 90, 93, 98,

228 INDEX

101, 103, 105, 109–111, 114–117,
120, 121, 122, 123, 125–128, 130,
133–135, 139–141, 143, 144, 149,
161, 163, 165, 173, 175, 186,
189–193, 195

matrix, 10, 14, 59, 90, 91, 98, 102, 103, 105,
119, 122, 123, 125, 130, 135, 187

Matrix-class, 124
Matrix-notyet, 126
matrix.csr, 41
Matrix.Version (Matrix-class), 124
MatrixClass, 126
MatrixFactorization, 16, 23, 24, 31, 49, 79,

81, 85, 93, 161, 165, 166, 170, 178,
189

MatrixFactorization-class, 127
max, 62
mean,denseMatrix-method

(denseMatrix-class), 51
mean,sparseMatrix-method

(sparseMatrix-class), 175
mean,sparseVector-method

(sparseVector-class), 182
method, 103
min, 62
model.frame, 167, 168
model.matrix, 168

NA, 59, 63, 102, 104, 105, 109, 113, 134, 135,
176, 183, 187, 190

NA_integer_, 153
names, 42, 56
NaN, 102, 153
nCHMsimpl-class (CHMfactor-class), 22
nCHMsuper-class (CHMfactor-class), 22
ncol, 191
ndenseMatrix, 51
ndenseMatrix-class, 128
ndiMatrix-class (ldiMatrix-class), 110
nearcor, 131
nearPD, 129
new, 24, 47, 171
ngCMatrix, 133
ngCMatrix-class (nsparseMatrix-class),

137
ngeMatrix, 129, 140, 141
ngeMatrix-class, 132
ngRMatrix-class (nsparseMatrix-class),

137

ngTMatrix, 40
ngTMatrix-class (nsparseMatrix-class),

137
nMatrix, 11, 14, 63, 87, 98, 102, 118, 120, 133
nMatrix-class, 133
nnzero, 67, 77, 159
nnzero (nnzero-methods), 134
nnzero,ANY-method (nnzero-methods), 134
nnzero,CHMfactor-method

(nnzero-methods), 134
nnzero,denseMatrix-method

(nnzero-methods), 134
nnzero,diagonalMatrix-method

(nnzero-methods), 134
nnzero,indMatrix-method

(nnzero-methods), 134
nnzero,sparseMatrix-method

(nnzero-methods), 134
nnzero,vector-method (nnzero-methods),

134
nnzero-methods, 134
norm, 44, 45, 72, 73, 130, 131, 137, 155, 156,

176
norm (norm-methods), 136
norm,ANY,missing-method (norm-methods),

136
norm,denseMatrix,character-method

(norm-methods), 136
norm,diagonalMatrix,character-method

(norm-methods), 136
norm,indMatrix,character-method

(norm-methods), 136
norm,pMatrix,character-method

(norm-methods), 136
norm,sparseMatrix,character-method

(norm-methods), 136
norm-methods, 136
nrow, 191
nsCMatrix-class (nsparseMatrix-class),

137
nsparseMatrix, 15, 57, 97, 119, 120, 134,

158, 159, 172, 176
nsparseMatrix-class, 137
nsparseMatrix-classes

(nsparseMatrix-class), 137
nsparseVector, 87, 102
nsparseVector-class

(sparseVector-class), 182

INDEX 229

nspMatrix-class (nsyMatrix-class), 139
nsRMatrix-class (nsparseMatrix-class),

137
nsTMatrix, 40
nsTMatrix-class (nsparseMatrix-class),

137
nsyMatrix, 133
nsyMatrix-class, 139
ntCMatrix-class (nsparseMatrix-class),

137
ntpMatrix-class (ntrMatrix-class), 140
ntrMatrix, 133
ntRMatrix-class (nsparseMatrix-class),

137
ntrMatrix-class, 140
ntTMatrix-class (nsparseMatrix-class),

137
NULL, 83, 92, 102, 122, 146, 159, 172
numeric, 5, 6, 42, 55, 65, 70, 96, 108, 135

onenormest, 137
onenormest (condest), 43
Ops, 5, 59, 78, 183
Ops,abIndex,abIndex-method

(abIndex-class), 5
Ops,abIndex,ANY-method (abIndex-class),

5
Ops,ANY,abIndex-method (abIndex-class),

5
Ops,ANY,ddiMatrix-method

(ddiMatrix-class), 48
Ops,ANY,ldiMatrix-method

(ldiMatrix-class), 110
Ops,ANY,Matrix-method (Matrix-class),

124
Ops,ANY,sparseVector-method

(sparseVector-class), 182
Ops,ddiMatrix,ANY-method

(ddiMatrix-class), 48
Ops,ddiMatrix,ddiMatrix-method

(ddiMatrix-class), 48
Ops,ddiMatrix,dMatrix-method

(ddiMatrix-class), 48
Ops,ddiMatrix,ldiMatrix-method

(ddiMatrix-class), 48
Ops,ddiMatrix,logical-method

(ddiMatrix-class), 48
Ops,ddiMatrix,Matrix-method

(ddiMatrix-class), 48

Ops,ddiMatrix,ndiMatrix-method
(ddiMatrix-class), 48

Ops,ddiMatrix,numeric-method
(ddiMatrix-class), 48

Ops,ddiMatrix,sparseMatrix-method
(ddiMatrix-class), 48

Ops,diagonalMatrix,triangularMatrix-method
(diagonalMatrix-class), 58

Ops,dMatrix,ddiMatrix-method
(dMatrix-class), 62

Ops,dMatrix,dMatrix-method
(dMatrix-class), 62

Ops,dMatrix,ldiMatrix-method
(dMatrix-class), 62

Ops,dMatrix,lMatrix-method
(dMatrix-class), 62

Ops,dMatrix,nMatrix-method
(dMatrix-class), 62

Ops,dpoMatrix,logical-method
(dpoMatrix-class), 65

Ops,dpoMatrix,numeric-method
(dpoMatrix-class), 65

Ops,dppMatrix,logical-method
(dpoMatrix-class), 65

Ops,dppMatrix,numeric-method
(dpoMatrix-class), 65

Ops,dsparseMatrix,nsparseMatrix-method
(dsparseMatrix-class), 70

Ops,ldenseMatrix,ldenseMatrix-method
(ldenseMatrix-class), 110

Ops,ldiMatrix,ANY-method
(ldiMatrix-class), 110

Ops,ldiMatrix,ddiMatrix-method
(ldiMatrix-class), 110

Ops,ldiMatrix,dMatrix-method
(ldiMatrix-class), 110

Ops,ldiMatrix,ldiMatrix-method
(ldiMatrix-class), 110

Ops,ldiMatrix,logical-method
(ldiMatrix-class), 110

Ops,ldiMatrix,Matrix-method
(ldiMatrix-class), 110

Ops,ldiMatrix,ndiMatrix-method
(ldiMatrix-class), 110

Ops,ldiMatrix,numeric-method
(ldiMatrix-class), 110

Ops,ldiMatrix,sparseMatrix-method
(ldiMatrix-class), 110

230 INDEX

Ops,lMatrix,dMatrix-method
(dMatrix-class), 62

Ops,lMatrix,lMatrix-method
(dMatrix-class), 62

Ops,lMatrix,nMatrix-method
(dMatrix-class), 62

Ops,lMatrix,numeric-method
(dMatrix-class), 62

Ops,logical,dpoMatrix-method
(dpoMatrix-class), 65

Ops,logical,dppMatrix-method
(dpoMatrix-class), 65

Ops,lsparseMatrix,lsparseMatrix-method
(lsparseMatrix-class), 112

Ops,lsparseMatrix,nsparseMatrix-method
(lsparseMatrix-class), 112

Ops,Matrix,ANY-method (Matrix-class),
124

Ops,Matrix,ddiMatrix-method
(Matrix-class), 124

Ops,Matrix,ldiMatrix-method
(Matrix-class), 124

Ops,Matrix,matrix-method
(Matrix-class), 124

Ops,matrix,Matrix-method
(Matrix-class), 124

Ops,Matrix,NULL-method (Matrix-class),
124

Ops,Matrix,sparseVector-method
(Matrix-class), 124

Ops,ndenseMatrix,ndenseMatrix-method
(ndenseMatrix-class), 128

Ops,ndiMatrix,ddiMatrix-method
(ldiMatrix-class), 110

Ops,ndiMatrix,ldiMatrix-method
(ldiMatrix-class), 110

Ops,ndiMatrix,ndiMatrix-method
(ldiMatrix-class), 110

Ops,nMatrix,dMatrix-method
(nMatrix-class), 133

Ops,nMatrix,lMatrix-method
(nMatrix-class), 133

Ops,nMatrix,nMatrix-method
(nMatrix-class), 133

Ops,nMatrix,numeric-method
(nMatrix-class), 133

Ops,nsparseMatrix,dsparseMatrix-method
(nsparseMatrix-class), 137

Ops,nsparseMatrix,lsparseMatrix-method
(nsparseMatrix-class), 137

Ops,nsparseMatrix,sparseMatrix-method
(nsparseMatrix-class), 137

Ops,NULL,Matrix-method (Matrix-class),
124

Ops,numeric,dpoMatrix-method
(dpoMatrix-class), 65

Ops,numeric,dppMatrix-method
(dpoMatrix-class), 65

Ops,numeric,lMatrix-method
(dMatrix-class), 62

Ops,numeric,nMatrix-method
(nMatrix-class), 133

Ops,numeric,sparseMatrix-method
(sparseMatrix-class), 175

Ops,sparseMatrix,ddiMatrix-method
(sparseMatrix-class), 175

Ops,sparseMatrix,ldiMatrix-method
(sparseMatrix-class), 175

Ops,sparseMatrix,nsparseMatrix-method
(sparseMatrix-class), 175

Ops,sparseMatrix,numeric-method
(sparseMatrix-class), 175

Ops,sparseMatrix,sparseMatrix-method
(sparseMatrix-class), 175

Ops,sparseVector,ANY-method
(sparseVector-class), 182

Ops,sparseVector,Matrix-method
(sparseVector-class), 182

Ops,sparseVector,sparseVector-method
(sparseVector-class), 182

Ops,sparseVector,vector-method
(sparseVector-class), 182

Ops,vector,sparseVector-method
(sparseVector-class), 182

options, 24, 146, 147, 183
order, 100, 119
outer, 125

pack, 72, 78, 143, 194
pack (pack-methods), 141
pack,dgeMatrix-method (pack-methods),

141
pack,lgeMatrix-method (pack-methods),

141
pack,matrix-method (pack-methods), 141
pack,ngeMatrix-method (pack-methods),

141

INDEX 231

pack,packedMatrix-method
(pack-methods), 141

pack,sparseMatrix-method
(pack-methods), 141

pack,unpackedMatrix-method
(pack-methods), 141

pack-methods, 141
packedMatrix, 19, 36, 51, 87, 88, 141, 194
packedMatrix-class, 143
panel.levelplot.raster, 94
paste, 168
pBunchKaufman, 19, 80, 128
pBunchKaufman-class

(BunchKaufman-class), 16
pCholesky, 36, 80, 128
pCholesky-class (Cholesky-class), 31
plot.default, 94
pMatrix, 64, 80, 81, 97, 98, 100
pMatrix-class, 144
posdefify, 130, 131
print, 59, 92, 94, 124, 146, 147, 175, 176
print,diagonalMatrix-method

(diagonalMatrix-class), 58
print,sparseMatrix-method

(sparseMatrix-class), 175
print.default, 91, 146
print.sparseMatrix

(sparseMatrix-class), 175
print.trellis, 95
printSpMatrix, 92, 124, 146, 175
printSpMatrix2 (printSpMatrix), 146
prod, 62

QR, 149, 178
qr, 19, 36, 81, 118, 128, 149, 152, 153, 163,

166, 178, 179
qr (qr-methods), 148
qr,dgCMatrix-method (qr-methods), 148
qr,sparseMatrix-method (qr-methods), 148
QR-class (MatrixFactorization-class),

127
qr-methods, 148
qr.coef, 166, 179
qr.coef,sparseQR,dgeMatrix-method

(sparseQR-class), 177
qr.coef,sparseQR,Matrix-method

(sparseQR-class), 177
qr.coef,sparseQR,matrix-method

(sparseQR-class), 177

qr.coef,sparseQR,vector-method
(sparseQR-class), 177

qr.default, 148
qr.fitted, 179
qr.fitted,sparseQR,dgeMatrix-method

(sparseQR-class), 177
qr.fitted,sparseQR,Matrix-method

(sparseQR-class), 177
qr.fitted,sparseQR,matrix-method

(sparseQR-class), 177
qr.fitted,sparseQR,vector-method

(sparseQR-class), 177
qr.Q, 179
qr.Q,sparseQR-method (sparseQR-class),

177
qr.qty, 179
qr.qty,sparseQR,dgeMatrix-method

(sparseQR-class), 177
qr.qty,sparseQR,Matrix-method

(sparseQR-class), 177
qr.qty,sparseQR,matrix-method

(sparseQR-class), 177
qr.qty,sparseQR,vector-method

(sparseQR-class), 177
qr.qy, 179
qr.qy,sparseQR,dgeMatrix-method

(sparseQR-class), 177
qr.qy,sparseQR,Matrix-method

(sparseQR-class), 177
qr.qy,sparseQR,matrix-method

(sparseQR-class), 177
qr.qy,sparseQR,vector-method

(sparseQR-class), 177
qr.R, 179
qr.R,sparseQR-method (sparseQR-class),

177
qr.resid, 179
qr.resid,sparseQR,dgeMatrix-method

(sparseQR-class), 177
qr.resid,sparseQR,Matrix-method

(sparseQR-class), 177
qr.resid,sparseQR,matrix-method

(sparseQR-class), 177
qr.resid,sparseQR,vector-method

(sparseQR-class), 177
qr.solve, 179
qr.X, 179
qr.X,sparseQR-method (sparseQR-class),

232 INDEX

177
qr2rankMatrix (rankMatrix), 151
qrR (sparseQR-class), 177

range, 62
rankMatrix, 151
rbind, 21, 176
rbind2, 21
rbind2 (cbind2-methods), 21
rbind2,Matrix,Matrix-method

(cbind2-methods), 21
rbind2,Matrix,matrix-method

(cbind2-methods), 21
rbind2,matrix,Matrix-method

(cbind2-methods), 21
rbind2,Matrix,missing-method

(cbind2-methods), 21
rbind2,Matrix,NULL-method

(cbind2-methods), 21
rbind2,Matrix,vector-method

(cbind2-methods), 21
rbind2,NULL,Matrix-method

(cbind2-methods), 21
rbind2,vector,Matrix-method

(cbind2-methods), 21
rbind2-methods (cbind2-methods), 21
rcond, 45, 54, 66, 72, 73, 165
rcond (rcond-methods), 154
rcond,ANY,missing-method

(rcond-methods), 154
rcond,denseMatrix,character-method

(rcond-methods), 154
rcond,diagonalMatrix,character-method

(rcond-methods), 154
rcond,indMatrix,character-method

(rcond-methods), 154
rcond,pMatrix,character-method

(rcond-methods), 154
rcond,sparseMatrix,character-method

(rcond-methods), 154
rcond-methods, 154
readHB (externalFormats), 83
readMM (externalFormats), 83
rep,denseMatrix-method

(denseMatrix-class), 51
rep,sparseMatrix-method

(sparseMatrix-class), 175
rep,sparseVector-method

(sparseVector-class), 182

rep.int, 157
rep2abI, 7, 157
rle, 5–7, 157, 158
rleDiff, 5
rleDiff-class, 157
round, 62, 124, 183
rowMeans, 125
rowMeans (colSums-methods), 42
rowMeans,CsparseMatrix-method

(colSums-methods), 42
rowMeans,denseMatrix-method

(colSums-methods), 42
rowMeans,diagonalMatrix-method

(colSums-methods), 42
rowMeans,indMatrix-method

(colSums-methods), 42
rowMeans,RsparseMatrix-method

(colSums-methods), 42
rowMeans,TsparseMatrix-method

(colSums-methods), 42
rowMeans-methods (colSums-methods), 42
rowScale (dimScale), 61
rowSums (colSums-methods), 42
rowSums,CsparseMatrix-method

(colSums-methods), 42
rowSums,denseMatrix-method

(colSums-methods), 42
rowSums,diagonalMatrix-method

(colSums-methods), 42
rowSums,indMatrix-method

(colSums-methods), 42
rowSums,RsparseMatrix-method

(colSums-methods), 42
rowSums,TsparseMatrix-method

(colSums-methods), 42
rowSums-methods (colSums-methods), 42
RsparseMatrix, 11, 54, 67, 71, 88, 112, 137,

168, 171–173
rsparsematrix, 158, 173
RsparseMatrix-class, 160

sample.int, 159
Schur, 19, 36, 64, 80, 81, 83, 118, 128, 149,

161–163, 166, 191
Schur (Schur-methods), 162
Schur,dgeMatrix-method (Schur-methods),

162
Schur,diagonalMatrix-method

(Schur-methods), 162

INDEX 233

Schur,dsyMatrix-method (Schur-methods),
162

Schur,generalMatrix-method
(Schur-methods), 162

Schur,matrix-method (Schur-methods), 162
Schur,symmetricMatrix-method

(Schur-methods), 162
Schur,triangularMatrix-method

(Schur-methods), 162
Schur-class, 161
Schur-methods, 162
SchurFactorization, 161, 163
SchurFactorization-class

(MatrixFactorization-class),
127

seq, 6
seqMat-class (abIndex-class), 5
set.seed, 44
show, 5, 92, 124, 146, 147, 158, 175, 183
show,abIndex-method (abIndex-class), 5
show,BunchKaufmanFactorization-method

(MatrixFactorization-class),
127

show,CholeskyFactorization-method
(MatrixFactorization-class),
127

show,denseMatrix-method
(denseMatrix-class), 51

show,diagonalMatrix-method
(diagonalMatrix-class), 58

show,LU-method
(MatrixFactorization-class),
127

show,MatrixFactorization-method
(MatrixFactorization-class),
127

show,QR-method
(MatrixFactorization-class),
127

show,rleDiff-method (rleDiff-class), 157
show,SchurFactorization-method

(MatrixFactorization-class),
127

show,sparseMatrix-method
(sparseMatrix-class), 175

show,sparseVector-method
(sparseVector-class), 182

showClass, 48, 72, 114, 115, 139, 140

showMethods, 47, 51, 112, 115, 133, 140, 141,
154, 190

signif, 62
signPerm (invertPerm), 99
skewpart, 104
skewpart (symmpart-methods), 190
skewpart,CsparseMatrix-method

(symmpart-methods), 190
skewpart,denseMatrix-method

(symmpart-methods), 190
skewpart,diagonalMatrix-method

(symmpart-methods), 190
skewpart,indMatrix-method

(symmpart-methods), 190
skewpart,matrix-method

(symmpart-methods), 190
skewpart,RsparseMatrix-method

(symmpart-methods), 190
skewpart,TsparseMatrix-method

(symmpart-methods), 190
skewpart-methods (symmpart-methods), 190
slot, 104
solve, 30, 46, 53, 66, 73, 155, 156, 164, 166
solve (solve-methods), 164
solve,ANY,ANY-method (solve-methods),

164
solve,BunchKaufman,dgeMatrix-method

(solve-methods), 164
solve,BunchKaufman,missing-method

(solve-methods), 164
solve,CHMfactor,dgCMatrix-method

(solve-methods), 164
solve,CHMfactor,dgeMatrix-method

(solve-methods), 164
solve,CHMfactor,missing-method

(solve-methods), 164
solve,Cholesky,dgeMatrix-method

(solve-methods), 164
solve,Cholesky,missing-method

(solve-methods), 164
solve,CsparseMatrix,ANY-method

(solve-methods), 164
solve,ddiMatrix,Matrix-method

(solve-methods), 164
solve,ddiMatrix,matrix-method

(solve-methods), 164
solve,ddiMatrix,missing-method

(solve-methods), 164

234 INDEX

solve,ddiMatrix,vector-method
(solve-methods), 164

solve,denseLU,dgeMatrix-method
(solve-methods), 164

solve,denseLU,missing-method
(solve-methods), 164

solve,denseMatrix,ANY-method
(solve-methods), 164

solve,dgCMatrix,denseMatrix-method
(solve-methods), 164

solve,dgCMatrix,matrix-method
(solve-methods), 164

solve,dgCMatrix,missing-method
(solve-methods), 164

solve,dgCMatrix,sparseMatrix-method
(solve-methods), 164

solve,dgCMatrix,vector-method
(solve-methods), 164

solve,dgeMatrix,ANY-method
(solve-methods), 164

solve,diagonalMatrix,ANY-method
(solve-methods), 164

solve,dpoMatrix,ANY-method
(solve-methods), 164

solve,dppMatrix,ANY-method
(solve-methods), 164

solve,dsCMatrix,denseMatrix-method
(solve-methods), 164

solve,dsCMatrix,matrix-method
(solve-methods), 164

solve,dsCMatrix,missing-method
(solve-methods), 164

solve,dsCMatrix,sparseMatrix-method
(solve-methods), 164

solve,dsCMatrix,vector-method
(solve-methods), 164

solve,dspMatrix,ANY-method
(solve-methods), 164

solve,dsyMatrix,ANY-method
(solve-methods), 164

solve,dtCMatrix,dgCMatrix-method
(solve-methods), 164

solve,dtCMatrix,dgeMatrix-method
(solve-methods), 164

solve,dtCMatrix,missing-method
(solve-methods), 164

solve,dtCMatrix,triangularMatrix-method
(solve-methods), 164

solve,dtpMatrix,dgeMatrix-method
(solve-methods), 164

solve,dtpMatrix,missing-method
(solve-methods), 164

solve,dtpMatrix,triangularMatrix-method
(solve-methods), 164

solve,dtrMatrix,dgeMatrix-method
(solve-methods), 164

solve,dtrMatrix,missing-method
(solve-methods), 164

solve,dtrMatrix,triangularMatrix-method
(solve-methods), 164

solve,indMatrix,ANY-method
(solve-methods), 164

solve,matrix,Matrix-method
(solve-methods), 164

solve,Matrix,sparseVector-method
(solve-methods), 164

solve,matrix,sparseVector-method
(solve-methods), 164

solve,MatrixFactorization,CsparseMatrix-method
(solve-methods), 164

solve,MatrixFactorization,denseMatrix-method
(solve-methods), 164

solve,MatrixFactorization,dgCMatrix-method
(solve-methods), 164

solve,MatrixFactorization,dgeMatrix-method
(solve-methods), 164

solve,MatrixFactorization,diagonalMatrix-method
(solve-methods), 164

solve,MatrixFactorization,indMatrix-method
(solve-methods), 164

solve,MatrixFactorization,matrix-method
(solve-methods), 164

solve,MatrixFactorization,RsparseMatrix-method
(solve-methods), 164

solve,MatrixFactorization,sparseVector-method
(solve-methods), 164

solve,MatrixFactorization,TsparseMatrix-method
(solve-methods), 164

solve,MatrixFactorization,vector-method
(solve-methods), 164

solve,pBunchKaufman,dgeMatrix-method
(solve-methods), 164

solve,pBunchKaufman,missing-method
(solve-methods), 164

solve,pCholesky,dgeMatrix-method
(solve-methods), 164

INDEX 235

solve,pCholesky,missing-method
(solve-methods), 164

solve,pMatrix,Matrix-method
(solve-methods), 164

solve,pMatrix,matrix-method
(solve-methods), 164

solve,pMatrix,missing-method
(solve-methods), 164

solve,pMatrix,vector-method
(solve-methods), 164

solve,RsparseMatrix,ANY-method
(solve-methods), 164

solve,Schur,ANY-method (solve-methods),
164

solve,sparseLU,dgCMatrix-method
(solve-methods), 164

solve,sparseLU,dgeMatrix-method
(solve-methods), 164

solve,sparseLU,missing-method
(solve-methods), 164

solve,sparseQR,dgCMatrix-method
(solve-methods), 164

solve,sparseQR,dgeMatrix-method
(solve-methods), 164

solve,sparseQR,missing-method
(solve-methods), 164

solve,triangularMatrix,CsparseMatrix-method
(solve-methods), 164

solve,triangularMatrix,denseMatrix-method
(solve-methods), 164

solve,triangularMatrix,dgCMatrix-method
(solve-methods), 164

solve,triangularMatrix,dgeMatrix-method
(solve-methods), 164

solve,triangularMatrix,diagonalMatrix-method
(solve-methods), 164

solve,triangularMatrix,indMatrix-method
(solve-methods), 164

solve,triangularMatrix,matrix-method
(solve-methods), 164

solve,triangularMatrix,RsparseMatrix-method
(solve-methods), 164

solve,triangularMatrix,TsparseMatrix-method
(solve-methods), 164

solve,triangularMatrix,vector-method
(solve-methods), 164

solve,TsparseMatrix,ANY-method
(solve-methods), 164

solve-methods, 164
sort,sparseVector-method

(sparseVector-class), 182
sort.list, 100
sparse.model.matrix, 167, 173, 176
sparseLU, 50, 80, 117, 118, 128, 165
sparseLU-class, 169
SparseM.ontology, 41
sparseMatrix, 10, 12, 21, 24, 26, 34, 36, 42,

46–48, 51, 52, 55, 58, 67, 68, 83, 87,
91, 98, 106, 111, 116, 117, 119, 122,
123, 134, 146, 148, 149, 159, 160,
165, 167, 168, 170, 171, 176, 178,
182, 183, 185, 186, 193

sparseMatrix-class, 175
sparseQR, 80, 128, 149, 153, 166, 177
sparseQR-class, 177
sparseVector, 7, 15, 42, 88, 101, 120, 165,

181, 181, 182, 183
sparseVector-class, 182
spMatrix, 55, 119, 148, 185, 193
stop, 187
str, 128
subassign-methods, 186
subscript-methods, 188
substring, 147
sum, 62
Summary, 183
summary, 119
Summary,abIndex-method (abIndex-class),

5
Summary,denseMatrix-method

(denseMatrix-class), 51
Summary,diagonalMatrix-method

(diagonalMatrix-class), 58
summary,diagonalMatrix-method

(diagonalMatrix-class), 58
Summary,indMatrix-method

(indMatrix-class), 97
Summary,sparseMatrix-method

(sparseMatrix-class), 175
summary,sparseMatrix-method

(sparseMatrix-class), 175
Summary,sparseVector-method

(sparseVector-class), 182
svd, 125, 136, 152, 153
symmetricMatrix, 11, 30, 57, 61, 69, 71, 88,

90, 93, 104, 114, 117, 120, 121, 123,

236 INDEX

135, 142, 159, 190, 192
symmetricMatrix-class, 188
symmpart, 90, 104, 129, 130
symmpart (symmpart-methods), 190
symmpart,CsparseMatrix-method

(symmpart-methods), 190
symmpart,denseMatrix-method

(symmpart-methods), 190
symmpart,diagonalMatrix-method

(symmpart-methods), 190
symmpart,indMatrix-method

(symmpart-methods), 190
symmpart,matrix-method

(symmpart-methods), 190
symmpart,RsparseMatrix-method

(symmpart-methods), 190
symmpart,TsparseMatrix-method

(symmpart-methods), 190
symmpart-methods, 190

t, 73, 112, 115, 116, 120, 133, 140, 141, 152,
168

t,CsparseMatrix-method
(CsparseMatrix-class), 45

t,denseMatrix-method
(denseMatrix-class), 51

t,diagonalMatrix-method
(diagonalMatrix-class), 58

t,indMatrix-method (indMatrix-class), 97
t,pMatrix-method (pMatrix-class), 144
t,RsparseMatrix-method

(RsparseMatrix-class), 160
t,sparseVector-method

(sparseVector-class), 182
t,TsparseMatrix-method

(TsparseMatrix-class), 192
T2graph, 176
T2graph (coerce-methods-graph), 39
tail,Matrix-method (Matrix-class), 124
tail,sparseVector-method

(sparseVector-class), 182
tcrossprod, 15, 25, 120, 121, 195
tcrossprod (matmult-methods), 120
tcrossprod,ANY,Matrix-method

(matmult-methods), 120
tcrossprod,ANY,sparseVector-method

(matmult-methods), 120
tcrossprod,CsparseMatrix,CsparseMatrix-method

(matmult-methods), 120

tcrossprod,CsparseMatrix,denseMatrix-method
(matmult-methods), 120

tcrossprod,CsparseMatrix,diagonalMatrix-method
(matmult-methods), 120

tcrossprod,CsparseMatrix,matrix-method
(matmult-methods), 120

tcrossprod,CsparseMatrix,missing-method
(matmult-methods), 120

tcrossprod,CsparseMatrix,RsparseMatrix-method
(matmult-methods), 120

tcrossprod,CsparseMatrix,TsparseMatrix-method
(matmult-methods), 120

tcrossprod,CsparseMatrix,vector-method
(matmult-methods), 120

tcrossprod,denseMatrix,CsparseMatrix-method
(matmult-methods), 120

tcrossprod,denseMatrix,denseMatrix-method
(matmult-methods), 120

tcrossprod,denseMatrix,diagonalMatrix-method
(matmult-methods), 120

tcrossprod,denseMatrix,matrix-method
(matmult-methods), 120

tcrossprod,denseMatrix,missing-method
(matmult-methods), 120

tcrossprod,denseMatrix,RsparseMatrix-method
(matmult-methods), 120

tcrossprod,denseMatrix,TsparseMatrix-method
(matmult-methods), 120

tcrossprod,denseMatrix,vector-method
(matmult-methods), 120

tcrossprod,diagonalMatrix,CsparseMatrix-method
(matmult-methods), 120

tcrossprod,diagonalMatrix,denseMatrix-method
(matmult-methods), 120

tcrossprod,diagonalMatrix,diagonalMatrix-method
(matmult-methods), 120

tcrossprod,diagonalMatrix,matrix-method
(matmult-methods), 120

tcrossprod,diagonalMatrix,missing-method
(matmult-methods), 120

tcrossprod,diagonalMatrix,RsparseMatrix-method
(matmult-methods), 120

tcrossprod,diagonalMatrix,TsparseMatrix-method
(matmult-methods), 120

tcrossprod,diagonalMatrix,vector-method
(matmult-methods), 120

tcrossprod,indMatrix,Matrix-method
(matmult-methods), 120

INDEX 237

tcrossprod,indMatrix,matrix-method
(matmult-methods), 120

tcrossprod,indMatrix,missing-method
(matmult-methods), 120

tcrossprod,indMatrix,vector-method
(matmult-methods), 120

tcrossprod,Matrix,ANY-method
(matmult-methods), 120

tcrossprod,matrix,CsparseMatrix-method
(matmult-methods), 120

tcrossprod,matrix,denseMatrix-method
(matmult-methods), 120

tcrossprod,matrix,diagonalMatrix-method
(matmult-methods), 120

tcrossprod,Matrix,indMatrix-method
(matmult-methods), 120

tcrossprod,matrix,indMatrix-method
(matmult-methods), 120

tcrossprod,matrix,RsparseMatrix-method
(matmult-methods), 120

tcrossprod,Matrix,sparseVector-method
(matmult-methods), 120

tcrossprod,matrix,sparseVector-method
(matmult-methods), 120

tcrossprod,matrix,TsparseMatrix-method
(matmult-methods), 120

tcrossprod,pMatrix,Matrix-method
(matmult-methods), 120

tcrossprod,pMatrix,matrix-method
(matmult-methods), 120

tcrossprod,pMatrix,missing-method
(matmult-methods), 120

tcrossprod,pMatrix,pMatrix-method
(matmult-methods), 120

tcrossprod,pMatrix,vector-method
(matmult-methods), 120

tcrossprod,RsparseMatrix,CsparseMatrix-method
(matmult-methods), 120

tcrossprod,RsparseMatrix,denseMatrix-method
(matmult-methods), 120

tcrossprod,RsparseMatrix,diagonalMatrix-method
(matmult-methods), 120

tcrossprod,RsparseMatrix,matrix-method
(matmult-methods), 120

tcrossprod,RsparseMatrix,missing-method
(matmult-methods), 120

tcrossprod,RsparseMatrix,RsparseMatrix-method
(matmult-methods), 120

tcrossprod,RsparseMatrix,TsparseMatrix-method
(matmult-methods), 120

tcrossprod,RsparseMatrix,vector-method
(matmult-methods), 120

tcrossprod,sparseVector,ANY-method
(matmult-methods), 120

tcrossprod,sparseVector,Matrix-method
(matmult-methods), 120

tcrossprod,sparseVector,matrix-method
(matmult-methods), 120

tcrossprod,sparseVector,missing-method
(matmult-methods), 120

tcrossprod,sparseVector,sparseVector-method
(matmult-methods), 120

tcrossprod,sparseVector,vector-method
(matmult-methods), 120

tcrossprod,TsparseMatrix,CsparseMatrix-method
(matmult-methods), 120

tcrossprod,TsparseMatrix,denseMatrix-method
(matmult-methods), 120

tcrossprod,TsparseMatrix,diagonalMatrix-method
(matmult-methods), 120

tcrossprod,TsparseMatrix,matrix-method
(matmult-methods), 120

tcrossprod,TsparseMatrix,missing-method
(matmult-methods), 120

tcrossprod,TsparseMatrix,RsparseMatrix-method
(matmult-methods), 120

tcrossprod,TsparseMatrix,TsparseMatrix-method
(matmult-methods), 120

tcrossprod,TsparseMatrix,vector-method
(matmult-methods), 120

tcrossprod,vector,CsparseMatrix-method
(matmult-methods), 120

tcrossprod,vector,denseMatrix-method
(matmult-methods), 120

tcrossprod,vector,diagonalMatrix-method
(matmult-methods), 120

tcrossprod,vector,indMatrix-method
(matmult-methods), 120

tcrossprod,vector,RsparseMatrix-method
(matmult-methods), 120

tcrossprod,vector,sparseVector-method
(matmult-methods), 120

tcrossprod,vector,TsparseMatrix-method
(matmult-methods), 120

tcrossprod-methods (matmult-methods),
120

238 INDEX

toeplitz, 183
toeplitz,sparseVector-method

(sparseVector-class), 182
triangularMatrix, 10, 27, 35, 57, 59–61, 74,

75, 77, 78, 88, 90, 93, 105, 115, 121,
123, 140, 142, 189

triangularMatrix-class, 191
tril (band-methods), 9
tril,CsparseMatrix-method

(band-methods), 9
tril,denseMatrix-method (band-methods),

9
tril,diagonalMatrix-method

(band-methods), 9
tril,indMatrix-method (band-methods), 9
tril,matrix-method (band-methods), 9
tril,RsparseMatrix-method

(band-methods), 9
tril,TsparseMatrix-method

(band-methods), 9
tril-methods (band-methods), 9
triu (band-methods), 9
triu,CsparseMatrix-method

(band-methods), 9
triu,denseMatrix-method (band-methods),

9
triu,diagonalMatrix-method

(band-methods), 9
triu,indMatrix-method (band-methods), 9
triu,matrix-method (band-methods), 9
triu,RsparseMatrix-method

(band-methods), 9
triu,TsparseMatrix-method

(band-methods), 9
triu-methods (band-methods), 9
TRUE, 62, 102
tryCatch, 117
TsparseMatrix, 8, 11, 13, 40, 55, 67, 69, 88,

112, 118, 119, 137, 168, 171–173,
185, 186, 193

TsparseMatrix-class, 192
type, 187
typeof, 57

uniqTsparse (asUniqueT), 8
unname,Matrix-method (Matrix-class), 124
unname,MatrixFactorization-method

(MatrixFactorization-class),
127

unpack, 143, 194
unpack (pack-methods), 141
unpack,matrix-method (pack-methods), 141
unpack,packedMatrix-method

(pack-methods), 141
unpack,sparseMatrix-method

(pack-methods), 141
unpack,unpackedMatrix-method

(pack-methods), 141
unpack-methods (pack-methods), 141
unpackedMatrix, 36, 51, 87, 88, 141, 143
unpackedMatrix-class, 193
update, 195
update,CHMfactor-method

(CHMfactor-class), 22
updown, 25
updown (updown-methods), 194
updown,character,ANY,ANY-method

(updown-methods), 194
updown,logical,dgCMatrix,CHMfactor-method

(updown-methods), 194
updown,logical,dsCMatrix,CHMfactor-method

(updown-methods), 194
updown,logical,dtCMatrix,CHMfactor-method

(updown-methods), 194
updown,logical,Matrix,CHMfactor-method

(updown-methods), 194
updown,logical,matrix,CHMfactor-method

(updown-methods), 194
updown-methods, 194
USCounties, 195

validObject, 47

warning, 19, 117
which, 58, 62, 110, 113, 129, 138
which,indMatrix-method

(indMatrix-class), 97
which,ldenseMatrix-method

(ldenseMatrix-class), 110
which,ldiMatrix-method

(ldiMatrix-class), 110
which,lsparseMatrix-method

(lsparseMatrix-class), 112
which,lsparseVector-method

(sparseVector-class), 182
which,ndenseMatrix-method

(ndenseMatrix-class), 128

INDEX 239

which,ndiMatrix-method
(ldiMatrix-class), 110

which,nsparseMatrix-method
(nsparseMatrix-class), 137

which,nsparseVector-method
(sparseVector-class), 182

writeMM, 176
writeMM (externalFormats), 83
writeMM,CsparseMatrix-method

(externalFormats), 83
writeMM,sparseMatrix-method

(externalFormats), 83
wrld_1deg, 196

xtabs, 173, 176

zapsmall, 67, 135
zapsmall,Matrix-method (Matrix-class),

124
zapsmall,sparseVector-method

(sparseVector-class), 182
zMatrix-class (Matrix-notyet), 126
zsparseVector-class

(sparseVector-class), 182

	abIndex-class
	abIseq
	all.equal-methods
	asUniqueT
	band-methods
	bandSparse
	bdiag
	boolmatmult-methods
	BunchKaufman-class
	BunchKaufman-methods
	CAex
	cbind2-methods
	CHMfactor-class
	chol-methods
	chol2inv-methods
	Cholesky-class
	Cholesky-methods
	coerce-methods-graph
	coerce-methods-SparseM
	colSums-methods
	condest
	CsparseMatrix-class
	ddenseMatrix-class
	ddiMatrix-class
	denseLU-class
	denseMatrix-class
	dgCMatrix-class
	dgeMatrix-class
	dgRMatrix-class
	dgTMatrix-class
	Diagonal
	diagonalMatrix-class
	diagU2N
	dimScale
	dMatrix-class
	dmperm
	dpoMatrix-class
	drop0
	dsCMatrix-class
	dsparseMatrix-class
	dsRMatrix-class
	dsyMatrix-class
	dtCMatrix-class
	dtpMatrix-class
	dtRMatrix-class
	dtrMatrix-class
	expand-methods
	expm-methods
	externalFormats
	facmul-methods
	fastMisc
	forceSymmetric-methods
	formatSparseM
	generalMatrix-class
	Hilbert
	image-methods
	index-class
	indMatrix-class
	invertPerm
	is.na-methods
	is.null.DN
	isSymmetric-methods
	isTriangular-methods
	KhatriRao
	KNex
	kronecker-methods
	ldenseMatrix-class
	ldiMatrix-class
	lgeMatrix-class
	lsparseMatrix-class
	lsyMatrix-class
	ltrMatrix-class
	lu-methods
	mat2triplet
	matmult-methods
	Matrix
	Matrix-class
	Matrix-notyet
	MatrixClass
	MatrixFactorization-class
	ndenseMatrix-class
	nearPD
	ngeMatrix-class
	nMatrix-class
	nnzero-methods
	norm-methods
	nsparseMatrix-class
	nsyMatrix-class
	ntrMatrix-class
	pack-methods
	packedMatrix-class
	pMatrix-class
	printSpMatrix
	qr-methods
	rankMatrix
	rcond-methods
	rep2abI
	rleDiff-class
	rsparsematrix
	RsparseMatrix-class
	Schur-class
	Schur-methods
	solve-methods
	sparse.model.matrix
	sparseLU-class
	sparseMatrix
	sparseMatrix-class
	sparseQR-class
	sparseVector
	sparseVector-class
	spMatrix
	subassign-methods
	subscript-methods
	symmetricMatrix-class
	symmpart-methods
	triangularMatrix-class
	TsparseMatrix-class
	unpackedMatrix-class
	updown-methods
	USCounties
	wrld_1deg
	Index

