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Embracing 
Transdisciplinarity  
with GISc
There appears to be a wave 

of departmental consolida-
tions passing through the CSU 
these days. I’m now (since Fall 
2023) a professor in a School 
of the Environment, which 
combined geography, environ-
mental science, environmental 
studies, and earth & climate 

sciences with five undergraduate and four graduate programs; and we are 
not alone in the CSU. Part of the motivation certainly comes from budget 
cuts and low enrollments in some majors, but some of it came from the 
sense that there are many common interests in these areas, so there might 
be some benefit in being together. 

While the internet has made it possible to collaborate with partners all over 
the planet, there are real advantages in working with colleagues, especially 
for field-based research. We’ve been able to take advantage of university 
research support such as vehicles and field research facilities, for instance, 
and that was especially useful during the pandemic—in summer 2020, our 
meadow research team members each had their own bathroom stall and 
sink at our Sierra field station!  

Geospatial methods are especially well positioned to support a broad 
range of disciplines, and I’m sure all of us in our community have accu-
rately used the term “interdisciplinary” or “transdisciplinary” to describe a 
common aspect of our research. Just picture any diagram illustrating Ian 
McHarg’s (1969) overlay concept and you’ll immediately see why: we bring 
together all kinds of things that inherently relate. Just from a biogeophysical 
perspective, plant biology relates to the hydrology through the soils, with 
fluvial geomorphic processes impacting the depth to the water table and 
mobilizing sediments to impact water quality, and organisms exchanging 
carbon compounds with the atmosphere, etc., etc.  Now throw in social 
systems, human health relationships, economic pressures, and landscape 
change from human activity, and we have a massive palimpsest, which 
reminds us that there’s also the time dimension.

So why not have lunch together and share research talks?  That makes it 
sound so simple…    

Jerry Davis, Director, CSU GIS Specialty Center
San Francisco State University
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Using handheld LiDAR scans of Heterobasidion irregulare affected plots 
in Plumas National Forest, CA to determine the effects of disease spread 
on tree structure and competition 

Sonoma & San Luis Obispo

Under anthropogenic climate change and fire exclusion 
policies, California’s forests have reached unprecedent-
ed densities, leaving many economically and ecologi-
cally valuable species vulnerable to biotic disturbances 

(Shaw et al. 2022). In the Sierra Nevada, Heterobasidion spp. 
root pathogens are the most important native root diseases 
(Garbellotto and Gonthier 2013). Specifically, Heterobasidion 
pathogens create persistent disease centers, often associat-
ed with logging activities, which actively kill trees or reduce 
growth (Rizzo et al. 2000; Garbelotto and Gonthier 2013; 
Flores et al. 2023). Once established, these disease centers 

create persistent canopy gaps, reduce timber growth, and 
alter forest structure and composition (Garbelotto and Gon-
thier 2013; Flores et al. 2023). 

Heterobasidion Root Disease (HRD) is caused by at least 
two distinct species in California, H. irregulare, 
a pathogen of pines (Pinus sp) and H. occidentale, a 
pathogen of fir (Abies sp). To document the effects of HRD, 
a plot network was established throughout the Plumas, 
Modoc, Inyo, Lassen, Eldorado, and Stanislaus National 
Forests and Yosemite National Park in 1972 by identifying 
Heterobasidion fruiting bodies on a cut stump in areas 
that had been logged at least 15 years prior. These plots 
were then manually re-measured every 2-3 years for the 
first decade following establishment, and every 6-9 years 
after that period (Slaughter and Parmeter 1995; Rizzo and 
Slaughter 2001). Surprisingly, although over 50 years of 
long-term monitoring data have been collected to date, little 
is known about how the disease gap might alter individual 
tree structure in the surrounding forest. Have HRD gaps 
changed canopy structure in a way that influences tree intra 
specific competition and leads to declining forest health 
and reduced forest value?

continued on next page

Figure 1: Map of Plumas National Forest, True Fir, and Yosemite Valley 
Heterobasidion Monitoring Plots.

Figure 2: HMLS scanning of a plot.
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To address this question, we collected terrestrial LiDAR 
data from the Plumas National Forest, located in eastern 
Plumas County, California (Figure 1). The Plumas National 
Forest is 1,146,000 acres and forms the eastern side of the 
Sierra Nevada mountain range. On the eastern expanse of the 
Plumas National Forest, the most dominant tree species is 
Jeffrey Pine (Pinus jeffreyi). Terrestrial LiDAR scans of 17 plots 
in the Plumas HRD network were collected in July 2023 (Figure 
2). Scans were collected using a GeoSLAM ZEB Horizon 
Handheld Mobile Laser Scanner (HMLS). Unlike other scanning 
methods, this method does not rely on fixed scan positions 
to prevent occlusion. The mobility provided by handheld 
scanning requires walking paths to follow looping patterns 
to scan objects from all angles. Scans were completed in 15 
minutes or less to assure similar point density in all scans. 
Following scanning, post-processing of point clouds was 
performed using GeoSLAM Connect, LiDAR360 (GreenValley 
International, Berkeley, California, version 4.1) and RStudio 
software. Specifically, the spatial location of each tree was 
recorded to determine individual tree metrics as well as size 
of the center HRD-caused light gap (Figure 3). Individual tree 
metrics include a value for the strength of competition, crown 
asymmetry measurements, and live crown ratio. 

Data analyses are currently underway, but preliminary 
results suggest that the HRD gap may not have as large of 
an effect on the individual structure or competition of trees 
outside of the gap as previously hypothesized, perhaps due to 
a relatively open canopy in these particular plots in the Plumas 
National Forest. Nevertheless, understanding the effect of 
disease gaps after 50 years of development can provide 
insight into the current state of gaps as special management 
areas and the role of canopy fuels in driving problematic 
wildfire-disease interactions (Cobb 2022). Importantly, we are 
creating a geospatial workflow that can rapidly analyze the 
effects of forest fragmentation due to biotic disturbances on 
tree growth and architecture. Since these disturbances are 
expected to worsen due to climate change driven increases 
in temperature and drought (Simler-Williamson et al. 2019), 
this is a crucial task that has implications for critical wild-land 
ecosystem resources, economic function, and the resiliency 
of local communities (Millar and Stephenson 2015; Cobb et al. 
2020). 
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Monitoring Using handheld LiDAR scans  continued from page 2

Figure 3: HMLS scan of a plot (top) colorized in red (bottom) to 
show the location of the central Heterobasidion Root Disease Gap.

Figure 4: A top-down view of a HMLS plot scan to indicate how 
the crown shape and spatial location of individual trees can be 
used to determine the effects of disease on tree structure and 
competition.
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Civic Engagement Through 
Little League

Los Angeles

Students in my civic learning class took the opportunity 
to connect with their community through participant 
observation of Little League baseball. This hands-on 
approach aimed to uncover how social organiza-

tions collaborate to reach shared goals. This civic engagement 
activity serves as a platform for applying sociological concepts 
and theories to their communities outside of the classroom, 
immersing students in the shared spaces of public parks and 
recreation centers. By taking the tools of sociology to the fields 
where youth practice and play Little League baseball, students 
not only gained practical experience but also honed their skills 
as civically engaged members of their local community. 

At its core, engaging with Little League through participant 
observation challenged students to discern the intersection 
of sociology-specific knowledge with active participation in 
civic life. Beyond an academic exercise, the approach fostered 
a deeper understanding of the dynamics at play in shared 
spaces. 

Through their involvement with Little League, students were 
exposed to the rich diversity of communities and cultures 
within their city or suburb. This learning activity prompted 
students’ reflection on their own personal attitudes and beliefs, 
drawing comparisons and contrasts with those of other 
cultures and communities, especially the parents participating 
in Little League. Through participant observation in a local 
Little League, students generated direct evidence from their 
civic engagement, shedding light on their evolving civic 
identity and commitment within their local community. 

Observing the volunteers involved in running a Little League 
emphasized the desire for direct experience in leadership 
and civic action. The microcosm of a local Little League 
unveiled the intricate world of civic engagement that millions 
of parents regularly partake in across the United States. The 
activity showcased how, in the pursuit of creating a happy, 
healthy, and safe environment for children, adults set aside 
their differences to ensure a successful season. The objective 
of this learning activity was to enable students to explore how 
individuals collaboratively navigate their community contexts 
and structures to achieve a civic aim. 

This learning activity requires students to identify a Little 
League, establish contact with the league president, and 
engage in observations of the league and/or teams throughout 
the season. To actively participate in their Little League 
community, students followed a local Little League baseball 
team over the months of the season that overlapped with 

the academic semester. They observed the conditions of the 
Little League Park and its facilities, such as lighting, waste 
bins, restrooms, and other areas for visitors. Throughout 
their ethnographic field research, they talked with members 
of the Little League community to identify their reasons for 
participating in Little League baseball. 

In addition to their ethnography, students conducted 
a spatial analysis of their local Little League city and 
neighborhood. Using ArcGIS mapping tools, they examined 
various aspects, including walk-ability around their Little 
League Park, traffic collisions involving pedestrians or 
bicyclists within a twenty-minute walk from the park, and 
instances of vandalism, narcotics, assault, and theft within 
the vicinity of the park. The process equipped students with 
skills in spatial analysis and data visualization, as they learned 
to use geographic information systems (GIS) software to 
analyze data, map patterns, and identify trends to inform 
decision-making and action. 

For their final project, students were tasked with creating a 
policy proposal for their city council, to be presented using the 
StoryMap app in ArcGIS. Their proposal aimed to advocate for 
community improvements focused on the areas surrounding 
their Little League Park. These StoryMaps served as platforms 
to highlight the sociological factors shaping their city, while 
advocating for a policy recommendation to strengthen 
connections between the city and its residents through active 
participation in the Little League community. Each StoryMap 
featured map layers detailing walking-time around their park, 
collisions involving pedestrians and bicyclists, and crimes 
data, supplemented with visual elements such as pictures, 
text, and other informative content to effectively convey the 
sociological characteristics of their community. Throughout 
their project, students were encouraged to consider the 
broader civic context and structures that impact their Little 
League community. ArcGIS mapping allows students to 
uncover insights which might not be directly apparent 
through participant observation alone. By incorporating 
layers depicting incidents collisions and crimes, students 
gained insights into official reports made to service agencies, 
providing a comprehensive understanding of their community’s 
dynamics. 
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Figures 1-4: Walk-time maps around parks in the Los Angeles area 
where Little League teams meet, showing walking time, with black 
dots illustrating collisions involving pedestrian or bicycles and drug 
crimes involving narcotics.

Click on any image displaying this symbol          to enlarge. Click the enlarged version to dismiss.
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Geospatial Applications of Deep 
Learning Across Time, Space and 
Ecosystems

T he recent explosion in the use of Deep Learning in 
research and industry has been widespread across 
disciplines as researchers are finding new ways to 
leverage this technology to answer a wide variety of 

scientific questions. Geospatial science is no exception, and 
the increased availability of remote sensing data, from drones 
to satellites, provides a ripe data source to scour for informa-
tion to better understand environmental and ecological prob-
lems. This research explores three use cases of Convolutional 
Neural Networks (CNNs) or Deep Learning technology applied 
to solve ecological issues at three spatial scales, from local to 
regional spatial scales.

Local Scale - Eelgrass in Morro Bay, CA
The first use case occurs at the local scale, where we use 

Deep Learning to analyze the spatial distribution of eelgrass 
in the Morro Bay Estuary of central California. Eelgrass 
(Zostera marina) is at the base of the trophic food web in West 
Coast estuary environments, and over the past 15 years in 
Morro Bay, experienced a massive decline and regrowth in 
distribution across the estuary and bay. In 2010, there was a 
massive loss in eelgrass resulting in erosion and morphological 
changes (Walter et al., 2020). Human GIS analysts 
meticulously digitized polygons of eelgrass from drone 
imagery, constituting thousands of hours of human labor to 
digitize the polygons so scientists could better understand the 
spatiotemporal distribution of eelgrass population dynamics 
and subsequent ecosystem impacts. Because of this tedious 
human task, the application of convolutional neural networks 
was particularly well-suited to handling mass classifications. 
The study by Tallam et al. (2023) found model recall, precision, 
and the harmonic mean of both were 0.954, 0.723, and 
0.809 respectively, when using human-annotated training 
data and random assessment points (Tallam et al., 2023). 
Future research will focus on scaling our approach to include 
subsequent years and other similar estuary ecosystems. The 
variability of collection conditions present in drone imagery 
provides unique scientific challenges not found at broader 
spatial scales.
Statewide Scale – Urban Tree Detection in California

The second use case occurs at the statewide scale where 
we use Deep Learning to analyze the spatial distribution 
of urban trees in California using aerial 4-band National 
Agriculture Inventory Program (NAIP) imagery. Urban trees 

decrease surrounding temperatures, reduce pollution, increase 
aesthetic value, and provide shade and various human health 
benefits (Giacinto et al., 2021). The State of California intends 
to dramatically increase the urban tree canopy cover in the 
coming decade, though current baseline estimates of urban 
trees are based on sparse inventory data and extrapolations 
may not be reliable for continuous monitoring. We have 
developed a more direct measurement of urban trees to detect 
the presence of urban trees using a convolutional neural 
network, cloud computation and human annotated training 
points. A thorough evaluation of our method was performed, 
supported by a new dataset of over 1,500 images and almost 
100,000 tree annotations, covering eight cities, six climate 
zones, and three image capture years. We trained our model 
on data from Southern California, and achieved a precision of 
73.6% and recall of 73.3% using test data from this region. 
We generally observed similar precision and slightly lower 
recall when extrapolating to other California climate zones and 
image capture dates. We used our method to produce a map 
of trees in the entire urban forest of California and estimated 
the total number of urban trees in California to be about 43.5 
million (Ventura et al., 2022). This estimate is considerably 
lower than previously published estimates of urban tree cover 
in California which were estimated at 173.2 million trees 
(McPherson et al., 2017). Underestimation by our research may 
be due to two main factors: underprediction due to density of 
tree stands and overprediction in previous estimates. A direct 
measurement approach may offer a more comprehensive 
inventory tool. Our ‘Urban Tree Detector’ research results 
can be found at Cal Poly’s Urban Forest Ecosystem Institute 
website: https://ufei.calpoly.edu/. Future research will focus 
on converting our tree points into accurate canopy polygons 
and analyzing errors associated with our estimates to inform 
improved scientific recommendations for policy makers. 
Regional Scale – Agroforestry in the Amazon Rainforest

Our third use case utilizes Deep Learning to classify a 
fused stack of remote sensing imagery to be able to analyze 
the spatiotemporal distribution of agroforestry in the Amazon 
Rainforest. The last decade has been characterized by 
increased anthropogenic impact in the Amazon/Agriculture/
Rangeland interface, with humans encroaching into the 
interior of the Amazon to graze livestock, harvest timber and 
grow crops like Palm Oil, Cacao and Coca.  Our research 
collaborates with local, largely Indigenous farmers in the 
Amazon to provide more transparent supply chains and 
traceability for consumer goods and curb illegal logging in 
the world’s largest rainforest. The work is part of the National 
Aeronautics and Space Administration’s SERVIR (NASA-
SERVIR) program in collaboration with NASA’s Jet Propulsion 
Laboratory (NASA/JPL) to prepare for the next-generation 

Figure 1: (Left) Human-annotated images of Morro Bay eelgrass 
habitats from (a) 2018 and (b) 2019. (Right) The three rows on 
the right highlight three regions of the estuary in 2019 at varying 
levels of zoom, as indicated by each inset. (1) Dense bed toward 
the mouth of estuary that is above water, appearing a light 
gray-green color; (2) partially submerged beds of varying size 
mid-estuary that are darker green and have some red-brown 
coloration and gleam off blades of eelgrass; (3) smaller, younger 
beds that are not submerged and appear lighter green in the 
images (from Tallam et al. 2023).

Figure 2: Model success cases. Human eelgrass annotations 
compared to machine-annotated classifications in the three areas 
of the estuary shown in Figure 1. Column (a,b) show the same area 
of the estuary with human and model annotations, respectively, 
while column (c) shows the two annotations overlapped and 
zoomed in to see differences in annotations more clearly. (1) 
The machine annotation can capture larger beds and accurately 
capture the perimeter on par with human annotations. (2) Smaller, 
patchy beds that the machine annotations more precisely outline 
beds than the human annotations. (3) The model can pick up on 
smaller beds that are missed or deemed too small to annotate in 
human annotations. (Tallam et al. 2023)

San Luis Obispo

continued on next page

Click on any image displaying this symbol          to enlarge. Click the enlarged version to dismiss.
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microwave remote sensing satellite, NISAR.  NISAR and its 
predecessor microwave satellites such as ALOS and Sentinel 
1 provide a way to ‘look’ through cloud coverage and analyze 
the vertical structure of the rainforest. In our study, we ‘stack’ 
a fused product of satellite remote sensing imagery from 
Landsat, MODIS, Sentinel 1 C-band SAR, and ALOS PALSAR 
to produce a product with spectral, structural, and temporally-
relevant information. We then had teams of GIS analysts 
search for agroforestry plots in high resolution Maxar satellite 
imagery with the guidance of our local collaborators who 
provided information of known agroforestry locations in the 
relevant regions of South America (Fricker et al., 2022). We 
use Bayesian models to produce likelihood maps of Palm Oil 
agroforestry in Ucayali Province, Peru.

To better understand the vertical structure of these 
agroforestry plots, we fused our current data products with 
the Global Ecosystem Dynamics Investigation (GEDI), a NASA 
mission to measure how deforestation has contributed to 
atmospheric CO₂ concentrations. GEDI is a waveform LIDAR 
attached to the International Space Station to provide the first 
global, high-resolution observations of forest vertical structure. 
To provide simpler download paths for the public, we have 
created novel point filtering and processing algorithms to 
remove noise (Cooley et al., 2022). Future efforts will focus on 
expanding our research into the State of Para, Brazil and use 
Deep Learning to analyze laser waveform structure across 
agroforestry plots and extrapolate predictions of agroforestry 
across the region.

Our research demonstrates the extensive opportunities 
presented by Deep Learning technology and its applications 
to geospatial data to study ecological systems for students 
and professionals alike. The tools used here are flexible 
across spatial scales and well-suited for time series analysis 
and change detection. Now more than ever, these programs 
are easier to access and hold immense value in applications 
outside the scope of the three ecosystem-focused case 
studies described above. With the addition of the ESRI Deep 
Learning toolkit, quick extraction of information from imagery 
is all the more accessible to the general public. Before, 
Convolutional Neural Networks and Deep Learning technology 
were once exclusively available to skilled programmers, 
but now, students across the state and GIS analysts with 
foundational level skills can access this powerful technology. 
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Geospatial Applications of Deep Learning   continued from page 5

Figure 3: Tree Detection Network Architecture of the deep learning 
model from the input stack of imagery (left) to the output attention 
and confidence maps (right). This model shows the intermediate 
convolutional layers of our model and how they contribute to output 
locations, and also a measure of confidence in the predictions. 

Figure 4: Comparison of a manual tree inventory with our tree 
detection results on three areas from Torrance, CA. Our tree detector 
can find trees on both public and private land, leading to a more 
complete inventory. Figures from (Ventura et al., 2022).

Figure 5: Hand Annotated NAIP image tile in Millbrae, CA. Tile 34/500 
of 2020 imagery. Top Left: Input image. Top Right: Image after hand 
annotation ready for post processing. Bottom Left: False-Color 
Infrared image of Tile 34 (vegetation identified in orange). Bottom 
Right: False-Color Infrared image of Tile 34 after hand annotation.

Figure 7: Diagram of methods. Fused Satellite Imagery Stacks are 
combined with Field Training Points, and Expert Interpretation to 
create a Crop Probability Map, and served up to users via servers 
and Google Earth Engine

Figure 8: False Color Composite Image of fused data stack 
(Sentinel 1 – Red, ALOS PALSAR – Green, Landsat NDVI – Blue), 
highlighting the native palm stands (top), compared to palm oil 
agroforestry (bottom), in Ucayali Province, Peru.

Figure 6: Qualitative results of running our model on aerial imagery 
from Bakersfield, CA. Left: Input image. Right: Predicted canopy 
cover map in yellow overlaid on image.

continued on next page

Click on image below to enlarge.

Click on image below to enlarge.

Click on image below to enlarge.
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Firing up AI: Using AI-based detections of bird species 
to assess the impact of fires in Sonoma County

Sonoma

W ildfires are a beneficial disturbance factor in Med-
iterranean-climate ecosystems. Heterogeneity in 
wildfire severity can profoundly affect bird species 
diversity by creating various stages in vegetative 

succession, which offer an array of niches that diverse bird 
communities occupy (Sitters et al., 2015; Taylor et al., 2012). 
At a broad scale, such as watershed or county, mixed-severity 
fires create patches of diverse habitat, and the ensuing shifts 
in avian biodiversity are thus mediated by diversity of fire se-
verity, known as pyrodiversity (Stillman et al., 2023). Fires have 
increased in size and intensity over the past century in Califor-
nia due to more extensive droughts, rising temperatures, and 
unsuitable forest management, which have led to overgrown, 
fire-susceptible forests (Jones 2020). How might these factors 
affect bird diversity?

Here, we describe an analysis that explores how bird 
species richness responds to mixed-severity fires. Our 
study was based in Sonoma County, which has a range of 
Mediterranean-climate oak woodlands, mixed conifer forests, 
shrublands, and grasslands, as well as temperate conifer 
forests, such as coastal redwoods, and recently experienced 
five large wildfires (Figure 1). We compared changes in avian 
diversity by monitoring bird communities using artificial 
intelligence (AI) applied to audio recordings, a dataset resulting 
from the Soundscapes to Landscapes (S2L) project. This 
project is led by Principal Investigator Dr. Matthew Clark 
(Sonoma State) and involves multiple collaborators from Point 
Blue Conservation Science, Northern Arizona University, 
UC Merced, public agencies, non-profits, land-owners, and 
citizen scientists in Sonoma County (Snyder et al., 2022; 
Clark et al., 2023). The S2L project engaged over 250 citizen 
scientists through the deployment of low-cost AudioMoth 
sound recorders (Figure 2) and the creation of bioacoustic 
reference datasets for building the AI algorithm (Snyder et 
al., 2022; Clark et al., 2023). Project data include AI-based 
detections for 52 species and corresponding species richness 
values for 1,234 audio sample sites. The method entailed 
three ImageNet-based Convolutional Neural Network (CNN) 
architectures (MobileNetv2, ResNet50v2, ResNet100v2), 
which were fine-tuned with our study reference data. The 
trained CNN models functioned as a Mixture of Experts (MoE), 
whereby the model with the best balance of precision and 
recall was chosen for each species along with an optimal 
threshold for detection probabilities. When tested against 
exhaustively annotated, independent recordings of 1-min 
length, we found that our MoE approach had a total precision 
of 84.5% and an average species-level precision of 85.1%. 
The original S2L sampling design did not include fire in the 
design, but sampling of wildfire-impacted areas was added 
after wildfires and included a revisit of existing sites both 
within fire boundaries as well as control areas that did not burn 
(Figure 1). An overview of S2L work and publications can be 
found in this ArcGIS StoryMap https://storymaps.arcgis.com/
stories/402443b576c146f7b2e5fd8c008376a6 

We used ArcGIS Pro to aggregate site locations for 
consecutive years. When multiple consecutive years were 
available for a cluster, we chose the date closest to the fire 
start/stop dates. There were 142 sites with before-after data 
(284 total measurements of richness; 82 in control, and 202 in 
burned areas). A repeated-measures ANOVA was performed 
in R with a mixed-effect linear model to test if there was a 

Figure 1: Map of Sonoma County fires from 2017-2020, including fire 
and control S2L site clusters.

Figure 2: AudioMoth sound recorder (left) and device deployment in 
a burned area (right).

significant difference in mean species richness due to 
fires. In this model, species richness was the response, 
treatment was fire vs. control, and time was pre- and post-
fire conditions, including a treatment and time interaction 
effect. The test indicated that species richness did not 
independently differ between control vs. fire sites (Table 1 
- Treatment) or between pre- or post-fire conditions (Table 
1 - Time). However, there was a highly significant interaction 
effect of treatment and time on species richness, with the 
effect of post-fire conditions in burned areas increasing 
richness on average by four species (Table 1 - Treatment * 
Time). These trends can be seen in Figure 3, which shows 
an increased species richness in burned sites relative to 
pre-fire conditions. These trends align with findings from 
other studies that observed a difference in pre and post-fire 
species richness for related control and fire-treated sites, 
suggesting the possibility that fire plays a role in increasing 
biodiversity after fire occurrence (Sitters et al. 2015).

Table 1: Repeated-measures ANOVA assessing the fixed effects 
of Treatment (0=control, 1=fire) and Time (0=pre-fire, 1=post-fire) 
on bird species richness. A unique cluster identifier was included 
as a random effect to account for repeat measurements. AIC with 
no interaction = 1762.8; AIC with interaction = 1751.6; p = 0.0003. 
Sample sizes are: Control = 41 pre-fire, 41 post-fire; Fire = 101 
pre-fire, 101 post-fire.

continued on next page
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We next assessed the effect of wildfire burn severity on 
the change in bird species richness with a linear regression 
analysis. Fire burn severity data were accessed from the US 
federal Monitoring Trends in Burn Severity (MTBS) program, 
which involves a multi-agency collaboration that maps wildfire 
burn severity throughout the United States using Landsat 
imagery (30-m resolution). We applied an empirically-based 
linear model (Miller and Thode 2007) to translate Landsat-
based RdNBR burn severity to field-based Composite Burn 
Index (CBI), as seen in Figure 4. In our linear model, CBI was 
the predictor variable and post- vs. pre-fire change in bird 
species richness was the response variable. 

Our analysis showed that increasing wildfire burn severity 
(CBI) significantly increased post-fire species richness relative 
to pre-fire conditions, although the model only explained 6% 
of the variance in the response (y = -0.4268 + 0.2414 CBI; s.e. 
= 0.0993;  p = 0.0169; r2 = 0.06). This result indicates that 
many other factors could explain changes in bird richness 
after recent fires. We tested the time since pre- and post-fire 
measurements (in years) in the model, but this addition was 
not significant. Our analysis did not consider changes in bird 
species composition or abundance. For example, there could 
be large shifts in the types of birds present after fire (such as 
woodpeckers due to standing dead trees) without necessarily 
changing overall species richness. Our AI-based bird surveys 
do not allow for accurate estimates of species abundance as 
species vocalizations are not easily distinguished as separate 
individuals. However, future research with our data could 
explore the overlap in richness between pre- and post-fire 
communities without abundance measurements (e.g., with the 
Jaccard Index). 

Firing up AI  continued from page 8

Figure 4: Map of Sonoma County 
fires (Tubbs 2017, Kincade 2019, 
Glass and Walbridge 2020), and 
corresponding Composite Burn 
Index Values (CBI).

Figure 3: Species richness in fire 
perimeters and control areas 
from S2L site clusters (n=82 in 
control; n=202 in fires).

This study benefited from recent advances in bioacoustics, 
including AI-based species detection. Bioacoustics data 
are valuable for long-term biodiversity monitoring at various 
spatial scales, and data collection with low-cost recorders 
is an excellent avenue for citizen science engagement 
(see, for example, Bird Weather, https://www.birdweather. 
com). As shown in our study, bioacoustic monitoring from a 
baseline can provide the basis for scientific analysis of wildfire 
impacts on bird communities in the short term; however, 
continuous monitoring could also provide insight into longer-
term changes, such as those due to the combined effects 
of anthropogenic climate change, urbanization, and habitat 
restoration projects. Though AI-based species detections 
have been used to understand the impact of fires on individual 
species of birds, we are unaware of another study that 
assesses the impact on avian communities using AI-based 
species detections.

The growing impacts of anthropogenic climate change and 
rapid environmental shifts from baseline conditions obligate a 
deeper understanding of how biodiversity responds, such as 
in larger fires in California exacerbated by extreme weather 
(Williams et al. 2016; Goss et al. 2020). Future research should 
continue to explore the relationship between wildfire presence 
and burn severity on bird species richness while prescribing 
forest management (e.g., thinning, prescribed fires) that 
diversifies fire disturbance as a beneficial mode of conserving 
biodiversity. Such studies will benefit from remote sensing, a 
vital geospatial technology for measuring burn severity or 
assessing changes in vegetation structure (e.g., habitat and 
fire fuel loads) at multiple spatial and temporal scales. 
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Figure 1: Red Clover Valley study area showing the extent of multi-spectral drone mapping in late June 2022 
(using the MicaSense Altum camera mounted on a DJI Matrice 100 for 10 cm resolution) and RGB (2 cm) 
+ DSM (2 cm) + DTM (10 cm) + multi-spectral (10 cm) drone mapping along labeled channel corridors in
late June and early August 2023 (using the DJI Mavic3M). Multi-spectral mapping is covered in the Spatial
Quantification of Carbon Sequestration section. The flux tower installed in 2020 is shown as a red triangle
in the center.

A team of geographers, biologists, and other environmental scientists from SFSU, 
UC Davis, CSU Chico, and other universities and agencies have been pursuing 
multidisciplinary restoration efficacy research in Red Clover Valley over a five-
year period as part of a CA Department of Fish & Wildlife Greenhouse Gas Re-

duction Fund grant, in cooperation with The Sierra Fund and ranchers pursuing innova-
tive process-based restoration methods ranging from grade control structures, stream 
diversion, cattle exclosures, and beaver dam analogs (BDAs). The long-term goal of 
process-based restoration projects is to aggrade entrenched channels to the level 
of their historical floodplain or to some other healthy stream condition that promotes 
channel-floodplain connectivity and more structurally complex and resilient fluvial sys-
tems (Cluer & Thorne 2014; Pollock 2014; Wheaton 2019; Lewis 2019). 

Dixie Creek and Red Clover Creek are the largest surface inputs into Red Clover 
Valley, with each draining a watershed of 80 km2 (31 mi2) at their confluence 
(Figure 1). Upper Dixie Creek is home to a small population of beavers, and 
efforts to enhance this habitat with beaver dam analogs and reinforced beaver 
dams is one of the major restoration methods used in this study. For more visuals 
on some of the research, see our story map at: https://storymaps.arcgis.com/
stories/37496b41088047c498b4d7b19493665b

The assessment research conducted by SFSU has included (above- and below-
ground) biomass sampling, plant physiological measurements of stem flow, 
soil moisture monitoring, biogeochemical water quality monitoring, carbon flux 
measurements in chambers and eddy-covariance flux towers, and UAS-to-satellite 
multi-spectral remote sensing of land cover, vegetation phenology, and biogeomorphic 
channel changes (LeBeau 2019, Mousavi 2019, Simonin 2019, Fetherston 2022, Davis 
2023, LeBeau 2023, Martin 2021, O’Brien 2023). While plant and water measurements 
allow us to look at seasonal and short-term effects of the restoration, this article 
focuses on the more long-term biogeomorphic changes along channel corridors from 
UAS-based multi-spectral and color (RGB) imagery; geomorphic processes such as 
stream incision and aggradation are the most significant cause and recovery 
mechanisms for these meadows.   

Given that the project extended over more than five years, as well as the goals of 
the project, it shouldn’t be surprising that we employed multiple UAS solutions. For 
multi-spectral imagery used for land cover and vegetation health assessment, the goal 
was five multi-spectral bands (B, G, R, NIR, RE) at 5.5 cm resolution, accomplished 
with the MicaSense RedEdge camera on 3DR Solo in 2018 (see Davis & Qiu 2018 for 
details on that system) and the MicaSense Altum camera (which also provided thermal) 
on a DJI Matrice 100 in 2019 through 2022; imagery in 2023 employed a DJI Mavic3M 
RTK system, providing four multi-spectral bands (G, R, NIR, RE) as well as RGB on the 
RedEdge-based system used early on. For biogeomorphic assessment of channel 
corridors, while multi-spectral imagery contributed to riparian vegetation detection, we 
primarily made use of RGB imagery, provided by DJI Phantom 4, DJI Mavic 2 Pro, and 
the DJI Mavic3M, each flown at 40 to 60 m above ground level (AGL), providing 1 to 2 
cm resolution digital surface models (DSM) and 5 cm digital terrain models (DTMs).  
GNSS data provided sufficient accuracy to 10 cm for first part of the project, improving 
to 1 cm using the onboard RTK of the Mavic3M connected to the California Real Time 
Network for NTRIP processing in 2023, as long as we were careful to use good targets 
for ground control points (even for the RTK drone) and pay attention to vertical antenna 
offsets and use of height above ellipsoid (HAE) with the local geoid height established.

UAS-based biogeomorphic assessment of a large montane meadow in the northern Sierra Nevada
San Francisco

continued on next page

https://csugis.sfsu.edu
https://storymaps.arcgis.com/stories/37496b41088047c498b4d7b19493665b


11

cs
ug

is
.s

fs
u.

ed
u

See Figure 1 for the scope of multi-spectral and channel corridor surveys. 
Images were processed using Pix4Dmapper employing a Structure from Motion 
(SfM) photogrammetric approach (Christian & Davis 2016) to generate point 
clouds, orthoimages, DSMs and DTMs; the latter were inputs to the ArcMap 
Geomorphic Change Detection (GCD) add-in (Wheaton, 2010, https://gcd.
riverscapes.net/) to facilitate (a) Raw DEM differencing, (b) DEM Error Modeling, 
and (c) DEM differencing with error thresholding (Figures 2-4) 

Many locations along the more incised Dixie Creek provide clear illustrations 
of corridor widening where a BDA forced flow to the bank, increasing channel 
complexity as is a hallmark of the beaver meadow complex (see Figure 2). Here, 
the BDAs and the adjacent inset flood plain illustrate (a) the effect of BDAs in 
channel widening, typical of a beaver-meadow complex, with BDA breaching 
probably resulting from a flood in October 2021; (b) a gravel bar created just 
downstream of a BDA; and (c) the effect of the Dixie Fire that went through here 
in September 2021. By 2023 when the later image was captured (see Figure 3), 
a likely increase in groundwater and minor aggradation on the inset floodplain, 
and openings for herbaceous vegetation on the fan terrace can be seen in 
considerable greening of the landscape. The inset floodplain of Dixie Creek 
provides many examples (clearly visible in drone imagery) of hydric vegetation 
that were protected from the fire sweeping through in late 2021.

continued on next page

UAS-based biogeomorphic assessment continued from page 10

Figure 2: Example of channel widening resulting from BDAs apparent in the image. Effect of fire on right 
bank (left in image) removing sagebrush. 2020 at left, 2023 center, difference in DTM in meters at right.

Figure 4: An intermittent 
diversion channel near the 
flux tower, seen in the lower 
left. The channel exhibits 
areas of ~0.5 m of scour as 
well as the same magnitude 
of fill.  Left: Altum multi-
spectral image from August 
2020. Center: Mavic 3M RGB 
image from August 2023. 
Right: Difference of DTM 
(DoDTM).

Figure 3: Geomorphic change detection in a reach of lower Dixie Creek, using the 
Geomorphic Change Detection Software described by Wheaton et al. (2019).
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UAS-based biogeomorphic assessment continued from page 11

Since channel incision (degradation) and or aggradation 
have a direct influence on meadow groundwater levels, and 
those in turn influence soil moisture, we should also expect a 
signal in vegetation communities on the meadow where this 
has been effective. For the BDAs and grade control structures, 
this signal is likely to follow multi-decadal cycle overall for the 
meadow as a whole and raising the groundwater table with 
hydric vegetation along the active channel floodplain. We 
should also expect the earliest signal in areas influenced by 
channel diversion as this directly influences the soil moisture, 
but we can also see the geomorphic change effects in these 
small intermittent diversion channels (see Figure 4).  

In conclusion, drone imagery played an important role 
in directly assessing channel changes responding to the 
process-based restoration as well as the effects of the fire 
in 2021, as well as in ground truthing satellite imagery that 
could be collected more frequently to assess phenological and 
biogeochemical cycles. For channel changes over a relatively 
short period (1 to 5 years), fine resolution (1 to 2 cm) drone 
imagery is important, but getting good ground control points is 
essential. 

ACKNOWLEDGEMENTS

In addition to the coauthors, many students and faculty 
participated in this five-year multidisciplinary study. Central 
to the “drone team” from the very beginning in 2018 has 
been Kevin Physioc in our MS GISc program, and other 
remote pilots from that program have included Josh von 
Nonn (currently at USGS), Dennis Jongsomjit (currently 
at Point Blue), Ori Hartenstein and Brian Mulhern; other 
remote pilots have been Alex Wong, Professor of Physics at 
the College of San Mateo, and Nick Graham at The Sierra 
Fund. SFSU CoPIs on the overall Red Clover Project have 
included Sara Baguskas (net primary productivity along 
hydrologic gradients), Leonhard Blesius (remote sensing), 
Leora Nanus (biogeochemical water quality), Andrew Oliphant 
(greenhouse gas flux), and Kevin Simonin (plant physiology), 
each associated with graduate and undergraduate students 
pursuing research projects in those areas, including graduate 
theses and professional meeting abstracts cited in this 
paper. The SFSU Sierra Nevada Field Campus provided 
accommodations, and we worked closely with The Sierra Fund 
and Clover Valley Ranch, who are pursuing the restoration 
methods being assessed in our study. 

REFERENCES

Christian P, Davis JD (2016). Hillslope gully photogeomorphology us-
ing structure-from-motion. Zeitschrift für Geomorphologie  60 (2016), 
Suppl. 3, 059–078. Online: DOI: https://www.researchgate.net/publi-
cation/306291927_Hillslope_gully_photogeomorphology_using_struc-
ture-from-motion.

Cluer B, Thorne C (2014). A stream evolution model integrating habitat and 
ecosystem benefits. River Research and Applications 30(2), 135-154.

Davis JD, Qiu HL (2018). Multi-spectral Unpiloted Aircraft System. CSU Geo-
spatial Review 15: 1, 10. https://csugis.sfsu.edu/previous-editions .

Davis JD, LeBeau RL, Von Nonn J, Williams AK (2023). Multi-scale biogeo-
morphic assessment of meadow restoration in northern Sierra Nevada, 
California. American Geophysical Union, Fall Meeting 2023, abstract 
#EP53C-1742.

Fetherston ND (2022). Effects of Restoration on Water Quality in a Sierra 
Nevada Meadow. Thesis, MA Geography Concentration in Resource Man-
agement & Environmental Planning, San Francisco State University,

LeBeau RL (2023). Geomorphic Change Detection in an Incised Montane 
Meadow Stream Channe. Thesis, MS GISc, San Francisco State 
University.

LeBeau RL, Davis JD (2019). Biogeomorphic Effects of Beaver Dams and 
Beaver Dam Analogs on Stream Systems in a Montane Meadow in the 
Northern Sierra Nevada. American Geophysical Union, Fall Meeting 2019, 
abstract #H13N-1941.

Lewis J, Monohan C, Sullivan BW, Bykerk-Kauffman A (2019). The response 
of soil carbon sequestration to meadow restoration in Red Clover Valley, 
Sierra Nevada mountains, CA, USA. American Geophysical Union, Fall 
Meeting 2019, abstract #EP51E-2167.

Martin CS, Simonin K, Oliphant AJ, Baguskas SA (2021). Impacts of Drought 
and Restoration on Montane Meadow Plant Phenology and Productivity. 
AGU Fall Meeting 2021, held in New Orleans, LA, 13-17 December 2021, 
id. B35P-1607.

Mousavi S, Oliphant AJ, Baguskas SA, Simonin KA (2019). Observations of 
Ecosystem CO2 Exchanges in a Montane Meadow in Northern Sierra Ne-
vada, California. American Geophysical Union, Fall Meeting 2019, abstract 
#EP51E-2149.

O’Brien W, Blesius L, Davis JD, Oliphant, AJ (2023). Estimating carbon fluxes 
in montane meadows using remotely sensed vegetation indices. American 
Meteorological Society (AMS) 2023.

Pollock MM, Beechie M, Wheaton JM, Jordan J, Bouwes C, Weber N, Volk C 
(2014). Using beaver dams to restore incised stream ecosystems. BioSci-
ence 64(4), 279-290.

Simonin KA, Baguskas SA, Oliphant AJ, Davis JD, Nanus L, Blesius L, 
Physioc K, LeBeau RL, Mousavi S, Studwell A, Clark Q (2019). Montane 
Meadow Restoration: Quantifying the Impact of Biogeomorphic Change 
on Ecosystem Function. American Geophysical Union, Fall Meeting 2019, 
abstract #EP51E-2145.

Wheaton JM, Brasington J, Darby SE, Sear DA (2010). Accounting for un-
certainty in DEMs from repeat topographic surveys: improved sediment 
budgets. Earth Surface Processes and Landforms 35(2), 136-156.

Wheaton JM, Bennett SN, Bouwes N, Maestas JD, Shahverdian SM (2019). 
Low-Tech Process-Based Restoration of Riverscapes Design Manual. 
Utah State University Restoration Consortium. 288 p.

AUTHORS:

Jerry D. Davis
Professor, School of the Environment
San Francisco State University
jerry@sfscu.edu

Raymond L. LeBeau*
Graduate Student, School of the Environment
San Francisco State University
*currently with USGS Western Geographic Science Center

Aidan K. Williams
Graduate Student, School of the Environment
San Francisco State University

https://csugis.sfsu.edu


13

cs
ug

is
.s

fs
u.

ed
u

Gentrification in Los Angeles

In my urban sociology graduate seminar, students delved 
into the intricate patterns of gentrification across Los Ange-
les. Gentrification can be understood as a large-scale social 
process where a new middle class moves into city centers 

and neighborhoods are transformed to align with the cultural 
preferences of this new demographic. This, unfortunately, 
often results in the displacement of working-class residents 
from their historic communities (Zukin 2016). 

Within urban sociological studies on gentrification, 
two prominent paradigms exist (Brown-Saracino 2007). 
The qualitative paradigm adopts a micro perspective 
exploring changes within specific neighborhoods, detecting 
gentrification in diverse cities such as New York City, Portland, 
and New Orleans. The quantitative paradigm employs a 
macro approach, examining regions rather than individual 
neighborhoods. It highlights the emergence of dual cities 
marked by the disappearance of the middle class, replaced by 
both the affluent and the working poor. 

To bridge this methodological divide, we introduced 
spatial analysis over time. Our objective was to evaluate the 
transformation in neighborhoods surrounding Downtown Los 
Angeles since 2000. Students acquired proficiency in ArcGIS 
to document spatial factors within distinct neighborhoods in 
Los Angeles, including Echo Park, Atwater Village, Mid-City, 
Mid-Wilshire, South Los Angeles, and East Los Angeles. The 
utilization of different data layers in ArcGIS enabled students 
to scrutinize the impact of car-centric versus transit-oriented 

choices on the demographics and geographies of 
neighborhoods, as shown by Scheutz and colleagues in their 
research on 1990s Los Angeles (2018).

The communities that we inhabit within greater Los 
Angeles play a pivotal role in shaping its character. Los 
Angeles, a fragmented space intricately linked to forces of 
global capitalism, unites various cities, neighborhoods, and 

Los Angeles

communities across a vast expanse, spanning from the 
Southern California deserts to the east and north, the 
beaches to the west, and mountains to the south. Through 
spatial data analysis, students created story maps that 
visually depicted the social structure influencing how urban 
residents shape and are shaped by the city’s space. These 
story maps blended text, maps, images, and videos to 

Figure 1:  Reported Crimes in Hollenbeck 2010. Heat map of all crimes 
reported between January 1 through December 31, 2010 in the three 
neighborhoods of Lincoln Heights, Boyle Heights, and El Sereno in 
East Los Angles. The types of crimes reported include assault, theft, 
vandalism, and narcotics. 

Figure 2: Reported Crimes in Hollenbeck 2015. Heat map of all 
crimes reported between January 1 through December 31, 2015 
in the three neighborhoods of Lincoln Heights, Boyle Heights, 
and El Sereno in East Los Angles. The types of crimes reported 
include assault, theft, vandalism, and narcotics.

Figure 3: Demolitions in East Los Angeles, 2013. 
Heat map of demolitions reported in the Lincoln Heights, Boyle 
Heights, and El Sereno neighborhoods of East Los Angeles, 2013.

Figure 4: Demolitions in East Los Angeles, 2019. Heat map of 
demolitions reported in the Lincoln Heights, Boyle Heights, and El 
Sereno neighborhoods of East Los Angeles, 2019.

Figure 5: Foreclosures in East Los Angeles 2020. The reported 
foreclosures for the three neighborhoods of Lincoln Heights, Boyle 
Heights, and El Sereno in East Los Angeles, 2020.

continued on next page
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provide a comprehensive narrative about gentrification in Los 
Angeles.

The story maps crafted by students documented gentrified 
areas in West Los Angeles, gentrifying neighborhoods like Los 
Feliz and Atwater Village near Dodgers Stadium, and the 
working-class neighborhoods in South Los Angeles. Olivia 
Sanchez’s story map analyzed the changing aspects of three 
communities in East Los Angeles: El Sereno, Boyle Heights, and 
Lincoln Heights. The three regions’ historical accounts include 
several sociological components, most notably the relationship 
between race, ethnicity, and socio-economic status. Her story 
map utilizes information from the LA City GeoHub to provide 
detailed reports on the residential profiles of the three 
communities. Precise data from ArcGIS mapping software was 
incorporated into the story map, including information on home 
values, average household income, crime rates, educational 
attainment, and homelessness. Through an examination of the 
effects of gentrification on three traditionally redlined districts, 
the story map illuminates the significant repercussions of urban 
growth on those displaced and those who remain in regions that 
continue to undergo such changes. Moreover, the story map 
furthers the discussion on the driving contributors of 
gentrification, specifically, agents of change that can include 
local business owners and community members. A detailed 
analysis of the effects resulting from the gentrification of these 
communities adds essential context to the body of knowledge 
about the ongoing and observed changes in Los Angeles. This 
investigation strengthens our understanding of the changing 
urban landscape and its effects on the communities impacted 
by these lasting changes.

The first two maps illustrate heat maps of crimes reported to 
the police during two periods: January 1 to December 31, 2010 
(Figure 1), and the same period in 2015 (Figure 2). These maps
show a gradual increase in crimes reported to the police over 
time. This trend corresponds with the idea that newcomers to an 
area, often referred to as gentrifiers, are more inclined to report 
crimes to the police compared to long-term residents, who may 
have a strained relationship with law enforcement. The reported 
crimes encompassed various types, including assault, theft, 
narcotics, and vandalism. 

The next pair of maps (Figure 3 and Figure 4) provide 
a similar visual representation, but this time focusing on 
demolitions in the years 2013 and 2019 in three neighborhoods: 
Lincoln Heights, Boyle Heights, and El Sereno in East Los 
Angeles. In 2013, only 29 demolitions were recorded across 
these neighborhoods, whereas in 2019 the number increased to 
72. The final map (Figure 5) depicts a total of 103 foreclosures in 
2020 within the same East Los Angeles neighborhoods. These   

foreclosures affected both single and multi-family housing 
units, as well as other vacant residential properties. Notably, 
listings on the REDFIN real estate search engine showed 
properties available for sale in 2022 ranging from $600,000 
and $2.4 million, with a median home price at $747,500. 

Taken together, the patterns of residents reporting crimes 
to police, the increase in property demolitions, reported 
foreclosures, and soaring home prices exemplify processes at 
play during gentrification. 
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Plan Integration for Resilience Scorecard™ (PIRS™) for Wildfire: 
Pursuing WUI Fire Resilience through a Spatial Framework for Policy Evaluation

W ildfires, expanding in frequency and intensity be-
cause of climate change, are increasingly impacting 
the natural and built environment. Seven of the ten 
most destructive fires in California have occurred in 

the last five years, and one in four Californians lives in an area 
considered high-risk for wildfires.

However, communities in California and across the United 
States increasingly adopt many different plans in their 
“network of plans”—e.g., General (Comprehensive) Plan, 
Hazard Mitigation Plan, Community Wildfire Protection Plan, 
Climate Action Plan, and various sectoral or area plans. Often 
produced by multiple “siloed” departments or stakeholder 
groups with limited coordination or spatial understanding, 

San Luis Obispo

Figure 1: Schematic that illustrates the PIRS IM for Wildfire process 
from a geospatial perspective, using Atascadero, CA - the pilot 
community in the PIRS™ for Wildfire effort—as an example. 
Planning districts and hazard zones are merged to create district-
hazard zones (DHZs), while municipal policies identified as having a 
mappable component and relevancy to the wildfire hazard are used 
to spatially evaluate plan resilience by DHZ.

Figures 2 & 3: Composite (total) policy 
score versus social vulnerability 
index for Atascadero. Given the 
use of U.S. Census block groups 
as planning district in the analysis, 
plan resilience and demographic 
vulnerability to wildfire can be 
compared side-by-side.

Figure 4: Parcels in Atascadero 
categorized by whether the 
structure was built before or after 
adoption of the 2008 California 
building code. More stringent codes 
were adopted in 2008 for fire-prone 
landscapes - with requirements 
for fire-resistant building materials, 
defensible space, and access and 
egress - increasing the resilience of 
structures built in the years since 
adoption.

Figure 5: Percentage of parcels 
within each district-hazard zone 
with structures built after 2008. 
Presenting parcel-level data 
summarized to the district-hazard 
zone level allows for more direct 
comparison to the PIRS TM policy 
score and social vulnerability 
assessment results.

continued on next page
Click on any image displaying this symbol          
to enlarge. Click the enlarged version to dismiss.

Figures 6, 7 & 8: Canopy fuel density 
summarized by parcels in Atascadero. 
LiDAR Point clouds were processed to 
create 30m resolution raster datasets of 
fuel density for three distinct height ranges 
(surface, ladder, and canopy fuels). These 
layers were used to summarize fuel loads 
within parcels by calculating average 
density within. When this data is mapped 
by DHZ, direct comparison to the PIRS M 
policy score, social vulnerability, and other 
mapping results is enabled.

https://csugis.sfsu.edu
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undertake the analysis. In addition, the team is exploring the 
application of data science to streamline policy selection from 
the network of plans, scoring, and/or revised policy language 
to strengthen wildfire resilience. 
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Plan Integration for Resilience Scorecard continued from page 15

4. Assess other types of vulnerability (optional): Social,
physical, or other types of vulnerabilities can also be
spatially assessed and compared to the spatial plan
evaluation. The location of critical facilities or evacuation
routes may also be considered (Figure 3).

5. Analyze results: Tables and maps of the results help
identify spatial patterns, synergies, conflicts, and gaps in
the community’s network of plans and policies and how
it is likely to affect wildfire risk.

6. Advance plan integration and wildfire resilience:
Guided by the spatial and hazard focused PIRS™
for Wildfire analysis, community plans can then be
improved by adjusting or adding policies (e.g., clustering
development in the WUI) to resolve identified conflicts
and strengthen wildfire resilience.

Primary geospatial objectives of the PIRS™ for Wildfire
effort center around refinement of incorporated fire hazard 
delineations and increasing the tool’s reach by improving 
accessibility. To provide an additional, finer-scale dimension 
to the geospatial assessment of wildfire hazard in PIRS™, 
data products at the parcel level were created. For the 
pilot community of Atascadero, CA, variables relevant to 
the wildfire hazard and community resilience – such as 
emergency response time, vegetation density, and the 
applicable building code based on the year of construction 
– were acquired at the parcel level. The resulting data were
produced at the parcel level and summarized to the district-
hazard zone level, providing planners multiple scales to
assess and address hazards in policy revisions (Figures 4, 5).

A key effort in refining hazard mapping within Atascadero 
was incorporating fine-scale wildfire fuels data. Three-
dimensional LiDAR point clouds of above-ground, terrestrial 
land features in the city were acquired and processed into 
raster layers depicting densities of vegetation at different 
height above the ground: surface fuels (0-1 meters), ladder 
fuels (1-3) meters, and canopy density (above 3 meters) 
(Figures 6-8). These maps, summarized at various spatial 
scales, provide firefighting and planning decision-makers 
with indications of potential wildfire behavior and areas of 
heightened hazard. In future PIRS™ for Wildfire applications 
with other partner municipalities, fuel mapping will be 
incorporated when possible. 

The GIS team is producing comprehensive guidance as 
part of a forthcoming PIRS™ for Wildfire Guidebook that will 
enable any user to carry out the analysis for their respective 
municipality, regardless of their capability with GIS. To further 
accessibility, there are also plans to adapt the PIRS™ GIS 
methodology to free, open-source software like QGIS to 
allow users from municipalities of all sizes and budgets to 

these plans are frequently poorly integrated and may, in 
fact, exacerbate vulnerabilities including the risk of wildfire 
especially in the wildland urban interface (WUI).

Fire suppression has proven inadequate as a mitigation 
strategy, and new approaches are needed. One such approach 
is the Plan Integration for Resilience Scorecard™ (PIRS™) 
for Wildfire, a method and tool currently under development in 
collaboration with several California communities that have high 
fire hazard risk. PIRS™ for Wildfire enables the systematic and 
spatial evaluation of a community’s network of plans to 
strengthen wildfire resilience. It provides an informed way of 
helping the built environment to become fire safe.

By collaborating with several California communities 
(including the cities of Atascadero and Temecula and Santa 
Barbara County), we seek to harmonize the guidance provided 
by their networks of plans, assessing their plans spatially and 
through the lens of wildfire risk to facilitate adjustments that 
improve coordination, and strengthen wildfire resilience in the 
most vulnerable locations.

The PIRS™ method used on this research project was 
originally developed for flooding hazards with funding from the 
Department of Homeland Security Science and Technology 
Directorate. It has since been adopted as a preferred method  
by the American Planning Association (APA).

The PIRS™ for Wildfire Process Steps: 
1. Delineate “district-hazard zones”: To reduce “ecological

fallacy” issues and enable spatial plan and policy
evaluation, the community is first subdivided into relevant
planning districts (e.g., neighborhoods, U.S. Census block
groups) and hazard zones (e.g., Fire Hazard Severity
Zones, WUI zones), which are combined using GIS to form
a layer of mutually exclusive “district-hazard zones”, the
spatial unit of analysis for a PIRS™ for Wildfire analysis.

2. Review the community’s network of plans: The
community’s network of plans (e.g., General Plan, Hazard
Mitigation Plan, CWPP, Climate Action Plan) is then closely
reviewed for actionable policy statements that are likely to
affect wildfire resilience, either positively or negatively, and
that contain some sort of place-specific term that helps
identify where they apply (and where they do not). Relevant
policies are added to the scorecard.

3. Evaluate plans spatially: Each policy is then given a score
of “+1” (increases wildfire resilience), “-1” (decreases
resilience), or “0” (neutral) and assigned to the appropriate
district-hazard zone(s) based on its place-specific term.
This is repeated for all relevant policies across the
community’s entire network of plans. Scores are then
summed for each district-hazard zone (Figure 2).

https://csugis.sfsu.edu
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