
Ecological Modelling, 62 (1992) 149-162 
Elsevier Science Publishers B.V., Amsterdam 

149 

Development of Bayesian Monte Carlo techniques 
for water quality model uncertainty 

David  W.  Di lks  a, R a y m o n d  P. C a n a l e  b a n d  P e t e r  G .  M e i e r  c 

a Limno-Tech, Inc., 2395 Huron Parkway, Ann Arbor, MI 48104, USA 
b Civil Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA 

c School of Public Health, University of Michigan, Ann Arbor, M1 48109, USA 

(Accepted 11 December 1990) 

ABSTRACT 

Dilks, D.W., Canale, R.P. and Meier, P.G., 1992. Development of Bayesian Monte Carlo 
techniques for water quality model uncertainty. Ecol Modelling, 62- 149-162. 

A new technique, Bayesian Monte Carlo (BMC), is used to quantify errors in water 
quality models caused by uncertain parameters. BMC also provides estimates of parameter 
uncertainty as a function of observed data on model state variables. The use of Bayesian 
inference generates uncertainty estimates that combine prior information on parameter 
uncertainty with observed variation in water quality data to provide an improved estimate of 
model parameter and output uncertainty. It Mso combines Monte Carlo analysis with 
Bayesian inference to determine the ability of random selected parameter sets to simulate 
observed data. BMC expands upon previous studies by providing a quantitative estimate of 
parameter acceptabilty using the statistical likelih,'md function. The likelihood of each 
parameter set is employed to generate an n-dimensional hypercube describing a probability 
distribution of each parameter and the covariance among parameters. These distributions 
are utilized to estimate uncertainty in model predictions. Application of BMC to a dissolved 
oxygen model reduced the estimated uncertainty in model output by 72% compared with 
standard Monte Carlo techniques. Sixty percent of this reduction was directly attributed to 
consideration of covariauce between model parameters. A significant benefit of the tech- 
nique is the ability to compare the reduction in total model output uncertainty correspond- 
ing to: (1) collection of more data on model state variables, and (2) laboratory or field 
studies to better define model processes. Limitations of the technique include computa- 
tional requirements and accurate estimation of the joint probability distribution of model 
errors. This analysis was conducted assuming that model error is normally and indepen- 
dently distributed. 
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INTRODUCTION 

D.W. DILKS El" AL. 

Mathematical models of aquatic systems are being used with increasing 
frequency to predict the effect of alternative pollution control strategies. It 
is now recognized that such models can have a large degree of uncertainty 
associated with their projections, and that this uncertainty can significantly 
impact the utility of the model predictions. 

Model uncertainty is caused by a combination of two factors (Burges and 
Lettenmaier, 1975). First~ water quality models are simplistic representa- 
tions of the real world. Error can be introduced by using a model frame- 
work that incompletely describes the true system. The second type of error 
is caused by uncertain or incorrect model parameters. This error arises 
because it is not possible to determine model parameters exactly. 

Considerable research has focused upon quantifying errors caused by 
uncertain model parameters. One of the more popular techniques for 
quantifying this error has been Monte Carlo analysis. With Monte Carlo 
analysis, the uncertainty in model parameters is represented by statistical 
frequency distributions. Models are run for several iterations, with the 
uncertain parameter values for each iteration being randomly selected fiom 
their pre-speeified distributions. Tabulation of model output for each 
iteration allows construction of a frequency distribution for any model 
output variable. The primary limitation of Monte Carlo analysis involves 
the lack of information available for specifying frequency distributions for 
uncertain model parameters. Often, little or no site-specific data are 
available that describe model parameters. The only information typically 
available for many parameters is a range of values obtained from published 
studies. To compound this difficulty, Monte Carlo analysis also requires 
specification of the covariance structure among uncertain model parame- 
ters. 

This paper describes a technique which combines Monte Carlo analysis 
with Bayesian inference to overcome the problems associated with specify- 
ing model input parameter distributions. The technique, termed Bayesian 
Monte Carlo (BMC), uses Monte Carlo analysis to sample from preliminary 
estimates of parameter distributions. The statistical likelihood function i~ 
employed to evaluate the ability of any given set of model parameters to 
describe observed data on model state variables. Preliminary (prior) infor- 
mation on parameter distributions is combined with measurements of state 
variables to provide improved estimates of parameter distributions. This 
technique directly accounts for covariance among uncertain parameters by 
storing the parameter distributions in an n-dimensional hypercube. For the 
purpose of th;s paper, the technique is applied to a dissolved oxygen model 
of the Grand River near Grand Rapids, MI. 
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M E T H O D O L O G Y  D E V E L O P M E N T  

The original concept for the Bayesian Monte Carlo was first described 
by Hornberger and Spear (1980) and Spear and Hornberger (1980), and 
was developed as a technique to identify research needs in the absence of 
extensive data. Spear and Hornberger's approach to the problem defined 
acceptable: ranges for each parameter based upon literature values, and 
then characterized each parameter as a uniform statistical distribution over 
the specified range. Next, they conducted a Monte Carlo-type analysis by 
randomly selecting parameter values from these distributions and perform- 
ing model simulations. The authors qualitatively compared the output of 
each model calculation with the expected response of the system. The 
parameter values fer each simulation were then stored in one of two 
matrices, depending upon whether or not the particular model simulation 
was able to qualitatively describe the behavior of the data. 

Fedra (1980) stated ~hat the matrix of parameter values that satisfacto- 
rily approximates the system behavior serves to define the best understand- 
ing of each parameter. If a wide range of parameter values all led to 
satisfactory simulation of system behavior, this indicated that little informa- 
tion was gained on the true parameter value. Fedra also expanded this 
technique from a method of determining the uncertainty in model inputs to 
a method of predicting the uncertainty in model results. He accomplished 
this by performing a second set of simulations using as inputs only those 
parameter sets that satisfactorily simulated the system behavior. Tabulation 
of these results provided a description of the uncertainty in model projec- 
tions based upon the uncertainty in model inputs. A major advantage of 
this technique is that it automatically accounts for covariance between 
model input parameters by selecting whole parameter sets that satisfacto- 
rily simulated the behavior. 

Statistical basi~ 

Although the above technique is intuitively pleasing, its underlying 
statistical basis had not been addressed. The method follows a Bayesian 
statistical approach for improving preliminary estimates of parameter dis- 
tributions. Bayes Theorem can be used to obtain an improved estimate of 
parameter distributions by mathematically combining previously known 
general information about those parameters with site-specific measured 
field data that describe system behavior. Bayes Theorem can be interpreted 
for a model with a single uncertain parameter as (Benjamin and Cornell, 
1970): 

P(xlO)P(O) 
e(Olx)= e(x) (1) 
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where 0 is the uncertain model parameter, x the observed data on model 
state variables, P(e Ix) the probability of the parameter value being accu- 
rate given the observed data (aka "posterior" distribution), P(O) the 
preliminary estimate for the probability of each parameter value being 
accurate, P(x 10) the probability of data occurring, given that the value of i 
is accurate ("likelihood"), and P(x) the probability of the data occurring. 

Equation (1) provides the probability that any given parameter value, 0, 
is accurate based upon: (i) the likelihood of the data occurring, given that 
parameter value (i.e. how well the parameter allows the model to describe 
the data); and (ii) a prior assessment of the probability of a particular 
parameter value occurring. 

The term P(x) in equation (1) represents the joint likelihood of the data 
and parameter occurring over all values of 0 and will be constant for all 
values of 0. This term is dropped from consideration, because equation (1) 
is being used only to calculate the relative likelihoods for each value of 0. 
This leads to: 

P(Olx)= c* P(xlO) * P(O) 
Posterior (improved) Likelihood of Prior (preliminary) 
estimate of parameter the parameter value estimate of parameter 
probability given the observed data probability 

(2) 

where c is the normalizing constant. 
Equation (2) provides an improved probability estimate for each parame- 

ter value as a function of the observed data and the prior assessment of the 
parameter's probability. 

The technique provides the benefit of Bayesian inference in that infor- 
mation from two separate sources is combined to provide an improved 
estimate of the true parameter value. Information on site-specific observed 
data is combined with prior information on parameter distributions. 
Bayesian theory states that the posterior distribution will contain less 
uncertainty than either of the two sources used in its determination. 
Therefore, high quality field data combined with little prior knowledge of 
parameter distributions will result in posterior distributions based primarily 
on the field data, but improved by whatever prior information was avail- 
able. If strong prior information is combined with poorer field data, the 
posterior distribution will primarily reflect the prior distribution. 

The analysis described in equation (2) is generalized in BMC to simulta- 
neously consider the uncertainty in any number (n) of parameters. Monte 
Carlo analysis is used to repeat this calculation over the entire n-dimen- 
sional range of parameters. Prior probabilities for each joint set of parame- 
ters are not explicitly calculated, but are incorporated using Monte Carlo 
analysis by sampling for all values in direct proportion to their (prior) 
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assumed frequency of occurrence. This allows improved probability distri- 
butions (and cowriance structures) to be generated for all uncertain 
parameters. The resulting matrix can be analyzed to generate improved 
(posterior) marginal distributions for each uncertain parameter, and can 
also be used as input to a second analysis to determine the uncertainty in 
model predictions. 

Calculation o f  the likelihood 

Monte Carlo application of equation (2) provides an improved estimate 
of parameter probability distributions to be obtained from: (1) prior esti- 
mates [P(0)]; and (ii) the likelihood of each parameter value, given the 
observed data [P(xlS)].  The work of Spear and Hornberger (1980) and 
Fedra (1980) both qualitatively estimated the likelihood through criteria 
which determined whether or not a given parameter set was capable of 
describing the observed data; for their application, P ( x  I 0) = 1 or P ( x  10) 
= 0. This qualitative estimate is a potential limitation of their technique for 
more rigorous application, due to the subjective and arbitrary nature in 
which the criteria are determined. 

The term P(x lO)  in equation (2) is called the sample likelihood func- 
tion, L(OIx) .  It provides the likelihood of having observed the data given 
that the parameter values in 0 are correct. The likelihood function can be 
calculated for independent variables as (Benjamin and Cornell, 1970): 

n 

L(OIxI ,X  2 . . . .  Xn) = i~=l fx(Xi 10)  ( 3 )  

where fx(xi lO) is the probability density function of x, given 0. 
The likelihood function can be directly calculated for water quality 

model application, as long as the probability density function of the 
observed data can be defined. To allow application of the technique, the 
assumption is made that the errors in the data are normally and indepen- 
dently distributed with a mean of zero. The error term is defined as; 

ei = xi - ui (4) 

where e i is the model error for data point i, x i the value of data point i, 
and ui the model prediction at data point i. 

The probability density function at each individual data point x~ (error 
value e i) is easily defined, and results in a calculation of the likelihood 
function of: 

1 1 x,  oxp[ ] (5) 
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Fig. 1. Likelihood distribution at different levels of uncertainty in observed data. 
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where n is the number of observed data point, and o- the standard 
deviation f,~r the data error. 

Equation (5) allows the likelihood function to be calculated directly from 
the model output and the observed data. The likelihood is seen to vary not 
only as a function of the data error, but also as a function of the number of 
data values and the standard deviation of the data error. Figure 1 illustates 
the dependence of the likelihood function on the standard deviation of the 
data error. With highly uncertain field data, likelihood values remain 
relatively constant over a wide range of data error. As the standard 
deviation decreases, the likelihood value decreases sharply as the relative 
error becomes non-zero. This is consistent with the benefit of Bayesian 
inference, in that data with greater certainty have a stronger impact on the 
posterior distribution than highly uncertain data. 

Determining error variance 

The term o- in equation (5) represents the expected deviation of the data 
caused by imperfect measurement techniques. This number can be deter- 
mined in one of two fashions. First, the standard deviation may be known a 
priori based upon previous statistical analysis of field sampling and/or  
laboratory measurement error. The standard deviation of the dater error 
can also be estimated during the Monte Carlo analysis using the maximum 
likelihood theory. Using this method, the standard deviation of the data 
error is estimated as the minimum value of the standard deviation across 
all iterations. 

Multiple state variables 

The proposed technique is relatively straightforward for cases where 
only a single state variable is being simulated. This is rarely the case in 
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water quality models, which typically simulate several variables simultane- 
ously. For a model with m state variables, each variable will have its own 
error variance term o). The likelihood function thus becomes: 

i=1  i = l  j = !  

where eij is the error term for the ith prediction of variable j.  
Again, the o~ can be specified or can be estimated as the minimum 

standard deviation for each parameter  across all simulations. This requires 
an additional assumption that errors not be correlated across state vari- 
ables. Correlated errors will require consideration of the covariance be- 
tween variables. This will cause the complexity of the mathematics to 
increase, but the technique will still remain applicable. 

A P P L I C A T I O N  O F  B M C  

The Bayesian Monte Carlo technique was applied to a model developed 
to evaluate the dissolved oxygen impacts of combined sewer overflows on 
the Grand River near Grand Rapids, Michigan (Limno-Tech, Inc., 1982). 
The goal was to determine if combined sewer overflows would lead to 
violation of the local dissolved oxygen standard. The model used is one-di- 
mensional and purely advective and has four state variables: dissolved 
oxygen, two forms of carbonaceous biochemical oxygen demand (CBOD), 
and nitrogenous biochemical oxygen demand (NBOD). Water  quality data 
are available that describe the concentration of these variables at five 
locations in the river. The model begins at the point where the combined 
sewer overflows enter  the river. The available data indicate that combined 
sewer overflows have a significant impact on CBOD and NBOD concentra- 
tions, but are less clear as regarding dissolved oxygen impacts. 

Dissolved oxygen concentrations are modeled as a function of reaera- 
tion, deoxygenation, nitrification, and net community productivity (algae 
and sediments). The differential equation for dissolved oxygen over time 
(or distance) is: 

d [ D O ] / d t  = k a × (CS - [DO]) - k d × [CBOD] - k n × [NBOD] + e (7) 

where [DO] is the dissolved oxygen concentration (mg/l) ,  t the time of 
travel, x /u  (days), x the distance downstream (miles), u the average river 
velocity (miles/day),  k a the reaeration rate (1/day),  CS the saturation 
concentration of dissolved oxygen (rag/l),  k d the CBOD deoxygenation 
rate (1/day),  [CBOD] the total CBOD concentration (mg/l) ,  k n the 
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nitrification rate (1/day), [NBOD] the NBOD concentration (mg/l), and P 
the net community productivity (mg/I/day).  

CBOD was divided into two components for modeling purposes: a 
particulate portion (CBODp) to represent settleable sources of CBOD 
associated with the combined sewer overflows, and a dissolved portion 
(CBOD d) incapable of settling. The differential equation for each type of 
CBOD is: 

d[CaOOp]/dt=(ks+kd)×[caOOp] (8) 

d [CaOOd] /d t  = kd × [CBODd] (9) 

where k s is the particulate settling rate (1/day). 
Field data are available on total CBOD only, so CBOD d and CBODp are 

combined for comparison with data. 
NBOD was defined as 4.57 times the total ammonia concentration. The 

only kinetic process affecting NBOD was first-order loss due to nitrifica- 
tion. The differential equation for NBOD is: 

d [NBOO] /d t  = - k ,  x [NBOD] (10) 

This model requires specification of a total of nine spatially constant 
uncertain parameters and forcing functions. The uncertain parameters and 
forcing functions are upstream concentration of dissolved oxygen, CBODp, 
CBOD d and NBOD; reaeration rate, CBOD deoxygenation rate, nitrifica- 
tion rate, net productivity, and particulate settling rate. 

RESULTS 

BMC was applied to the Grand River dissolved oxygen model to deter- 
mine frequency distributions for the nine uncertain model parameters. 
These parameter distributions were subsequently used to predict the over- 
all uncertainty in model projections. The model output variable used to 
measure this uncertainty was the predicted minimum dissolved oxygen 
concentration. Uniform distributions were employed to initially describe 
each parameter, because little prior information was available. The range 
for each parameter was selected to cover all believable values. 

Insufficient observed data were available to estimate the error variance 
(standard deviation) for any of the model state variables. Values were 
selected based upon past experience. The standard deviations selected 
were 2 mg/ l  for dissolved oxygen, 1.0 mg/ l  for NBOD and 25 mg/ l  for 
CBOD. 

Selected marginal posterior distributions calculated by the Bayesian 
Monte Carlo technique for 100000 iterations are shown in Figs. 2 and 3 
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Fig. 2. Margina l  d is t r ibut ions  for  net  productivity.  
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and are compared with the initial (prior) uniform distributions. Figure 2 
shows the posterior distribution for net productivity. It was found to have a 
slightly negative impact on dissolved oxygen concentrations on the average, 
with a mean posterior value of - 1.0 mg/ l /day.  The posterior distribution 
for the nitrification rate (Fig. 3) was significantly different from the prior 
distribution. The nitrification rate remained within the originally specified 
range of 0-2 day, with a value of 0.9/day three times more probable than 
originally assumed. 

The posterior distributions determined during the first step of the BMC 
procedure were then used to calculate the overall uncertainty in model 
predictions. The Monte Carlo method can provide a frequency distribution 
for every location of model output; however, results are more easily 
examined if a single measure of model output is chosen. Minimum dis- 
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Fig. 3. Marginal distributions for nitrification rate. 
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Fig. 4. Predicted frequency distribution for minimum dissolved oxygen: BMC vs. prior 
distributions. 

solved oxygen is utilized to represent model output in the uncertainty 
calculations, because it is the single most important model result. The 
frequency distribution for minimum dissolved oxygen is shown in Fig. 4, 
having a mean value of 5.1 mg/ l  and a standard deviation of 0.69. 
Application of BMC to the observed data translated into a significant 
reduction in variability from the results predicted by the initial distributions 
alone. Using only the initial distributions for all input parameters resulted 
in the second distribution shown in Fig. 4. This distribution has a mean of 
4.6 mg/ l  and a standard deviation of 2.5 mg/l.  

Conclusions 

Results of this analysis indicate that measured values of the state 
variables, in conjunction with the model, provided sufficient information to 
determine posterior distributions that were significantly different from the 
prior assumptions. This, in turn, indicates that each of the nine parameters 
was significantly correlated to the ability of the model to simulate the 
measured data. 

BMC was able to reduce the uncertainty (as measured by the standard 
deviation) in the predicted minimum dissolved oxygen concentration by 
72%, from 2.5 to 0.69 mg/l.  This three-fold change in model output 
variance clearly demonstrates the advantages of explicitly considering the 
ability of each random Monte Carlo selection to simulate the measur.ed 
data. 
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An interesting sidelight to these results was the large effect that covari- 
ante among input parameters had on model output uncertainty. A separate 
analysis of model output uncertainty was conducted using the marginal 
posterior distributions generated by BMC, but ignoring covariance among 
parameters. The results of this analysis (Fig. 5) indicate a standard devia- 
tion of 1.8 mg/! for the marginal distributions case. The majority (60%) of 
the reduction in model output uncertainty gained from BMC resulted from 
use of covariance between input parameters. Clearly, Monte Carlo analyses 
which ignore the covariance between model parameters may provide esti- 
mates of model uncertainty which are very misleading. 

D I S C U S S I O N  

Application of BMC to the Grand River water quality model provided 
several insights into the practical application of the BMC method, and to 
its applicability for model error analysis. 

Limitations 

The Bayesian Monte Carlo technique, although highly promising, is not 
without limitations. Specifically, the technique can have potentially exten- 
sive computer requirements, and requires several assumptions on the 
behavior of the model and the data. A total of one hundred thousand 
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(100000) iterations were used to generate the output presented herein, 
requiring 200 CPU seconds. A larger number of iterations would be 
required to generate more precise estimates of the frequency distributions. 
The model tested has relatively low computational requirements, and is 
therefore more amenable to Monte Carlo analysis than a more computa- 
tionally intensive model. Ciearly, the technique is limited to models for 
which running thousands of iterations per analysis are feasible. 

The second limitation of BMC pertains to accurate estimation of the 
likelihood function. Halfon (1985) described the likelihood function as one 
potential measure of model goodness of fit, but pointed out that its use 
requires information on the covariance between model errors. This ~pplica- 
tion of BMC assumes that all data error is normally and independently 
distributed, a reasonable first assumption which allows for ready applica- 
tion of the method. Insufficient data were available for the Grand River 
data set to allow for rigorous testing either for independence or normality. 
This assumption was found to be partially violated when BMC was applied 
to a phosphorus model of Green Bay, Lake Michigan (Dilks, 1987), but was 
resolved by stratifying the observed field data by sampling station to 
provide a more independent data set. While BMC can be readily adapted 
to use a more rigorous application of the likelihood function, lack of 
information on the joint probability density function of model errors will be 
a practical limitation in this regard. 

Another assumption of the technique is that there  be no model frame- 
work error. Framework error is difficult to measure, so this assumption 
cannot readily be tested. Future application of this technique must be 
limited to situations where parameter error can safely be assumed to be 
significantly greater than model framework error. 

Use of the sample likelihood function as an estimate of model goodness- 
of-fit has removed much of the potential for subjective bias from the 
technique. There is still a subjective nature to the technique, in the 
specification of prior distributions. Different modelers may assume differ- 
ent prior distributions for the same data set, resulting in different output 
from the technique. The degree of subjectivity introduced will be greatest 
in cases where the observed data error is highly variable, as these are the 
cases where prior assumptions most affect the posterior distributions. The 
potential for subjective prior assumptions is inherent to m~ny applications 
of Bayesian inference (Benjamin and Cornell, 1970), and is not limited to 
the technique developed here. 

Benefits 
BMC has the potential to be a valuable tool in the analysis of water 

quality model uncertainty for several reasons. The most important benefits 
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of the technique are those first described by Fedra (1980). It can provide 
improved estimates for model parameters not easily measured. More 
importantly, the technique also provides an estimate of the uncertainty in 
these parameters, based upon available data and prior assumptions (if any) 
on parameter distributions. These distributions are then directly incorpo- 
rated into a prediction of model output uncertainty. This prediction of 
model uncertainty directly accounts for any covariance between model 
parameters, as the consideration given any projection is directly equivalent 
to the likelihood that the data were adequately described by the entire 
parameter set. 

The technique provides the benefit of Bayesian inference in that infor- 
mation from two separate sources is combined to provide an improved 
estimate of the true system state. The technique will appropriately a,:count 
for the degree of uncertainty in the observed field data. Field data with 
high confidence will lead to posterior distributions most representative of 
this data. Highly uncertain field data will lead to posterior distributions 
more representative of prior assumptions. Similarly, strong prior knowledge 
on parameter distributions will be directly reflected in posterior distribu- 
tions; limited prior knowledge will have a lesser effect. The technique 
therefore provides the desirable ability to predict the amount of informa- 
tion that can be gained on parameter distributions based upon improved 
sampling of field data. 

This research has provided two additional benefits with respect to future 
applicability of the technique. First, the statistical basis of the technique 
has been identified and verified as valid. This will allow any future 
application or modification of the technique to start with a firm theoretical 
basis, as opposed to the intuitive concepts previously provided in the 
literature. The second advantage of this research with respect to future use 
regards the straightforward method in which it can be applied. Previous 
descriptions of technique left specification of the calibration criteria open 
to the user. Results were highly susceptible to subjective interpretation of 
the data, because no rigorous methods were defined for specifying the 
criteria. The Bayesian Monte Carlo technique described herein provides an 
objective and statistically rigorous method of calculating the ability of a 
given set of parameters to simulate observed data, compared to additional 
field or laboratory studies on model parameters (better prior information). 
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