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Abstract

This paper explores why energy-sharing communities need policy support via network
tariff adjustments and how to optimally design that support. Findings from a case
study indicate that, even with high self-consumption, the energy-sharing model may
not ensure participants reach break-even. Counterfactual analyses, using machine-
learning techniques, indicate that capacity-term adjustments alone had minimal im-
pact on peak consumption. Policy recommendations suggest limiting capacity-term
adjustments to communities capable of actively managing peak loads through real-
time data and flexible assets.

1. Introduction

Energy-sharing communities have gained political traction as a mean to engage
citizens in the energy transition. These communities support local energy generation
and self-consumption, potentially helping reduce reliance on the traditional grid. As
these initiatives expand, it becomes important to evaluate the impact of support poli-
cies, like network tariff adjustments, on their economic model and grid impact. This
paper addresses two questions through a case study. First, why should energy-sharing
communities receive support? Second, how can policymakers provide support that
aligns with grid costs? This trade-off highlights the need for policies that provide
support while ensuring energy-sharing communities contribute to the overall energy
transition.

1I thank the Agence de Développement Territorial (IDETA), in particular, Olivier Bontems and
Jean-Christophe Blocqueau for providing me with the data and useful advice. I am grateful to Axel
Gautier, Clément Staner and seminar participants at the Toulouse School of Economics, Florence
School of Regulation at the European University Institute, University of Louvain-la-Neuve and
University of Gent for helpful comments and suggestions. Remaining errors are mine. The research
leading to these results has received funding from the SPF Économie through the Belgian Energy
Transition Fund as part of the DemandFlex research project. The results of this paper do not reflect
the official position of the SPF Économie.
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In 2019, the European Union’s (EU) Clean Energy Package defined the broader
term of energy communities as not-for-profit entities governed by their members, aim-
ing to deliver environmental, social, and economic benefits (European Commission
(2019a)). Across the EU, energy communities are still emerging, engaging in activities
such as electricity generation, energy-sharing, storage, and awareness campaigns.2 As
of January 2024, 69% of these initiatives focus on energy-sharing, emphasizing the use
of locally generated renewable electricity.3 This paper focuses on energy communities
that implement energy-sharing, hereafter referred to as energy-sharing communities.

More specifically, energy-sharing sets up a system where locally generated elec-
tricity is attributed and billed among participants. This allows them to pay a reduced
price for the electricity they consume locally, rather than the standard retail price.
This incentivizes self-consumption and encourages the integration of local renewable
generation units.4 Through this structure, energy-sharing communities have the po-
tential to facilitate grid management. By responding to local production and price
signals, participants can engage in demand-response behaviors, such as peak shedding
(reducing maximum level of consumption) and peak shifting (moving peak consump-
tion to off-peak times), which can ease grid pressure during peak times.

To support energy-sharing communities, several EU member states have intro-
duced favorable network tariff adjustments that reduce charges for community mem-
bers.5 These adjustments aim to provide financial support and incentivize grid-
beneficial demand-response. However, the effectiveness of these incentives and their
cost-reflectivity, meaning whether they accurately align with the actual grid costs
imposed by community participants, remains largely untested. If not cost-reflective,
these adjustments could create advantages for community members while placing a
disproportionate burden on other network users. This issue becomes more pressing as
rising electricity demand, increased peak loads, and declining network load factors put
additional strain on system operators, requiring significant investments in grid infras-
tructure.6 Network tariffs are specifically regulated to ensure fairness, transparency,
and non-discrimination, aiming to reflect the true costs of grid use (European Com-
mission (2019b), ACER (2021)). However, it remains unclear if these adjustments

2The European Commission Energy Communities Repository maps 108 initiatives as of January
2024.

3European Commission Energy Communities Repository database, accessed in January 2024.
Details are presented in Appendix A.

4The self-consumption ratio represents the proportion of locally produced electricity used directly
by participants. The specific method of calculating this ratio depends on the setup of each energy-
sharing system.

5National Regulation Agencies in nine member states (Austria, Belgium (Brussels region), Den-
mark, Finland, France, Greece, Italy, Portugal, and Spain) have implemented such adjustments.

6EU electricity demand is projected to rise by 60% by 2030, necessitating €584 billion in grid
upgrades (European Commission (2023)).
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for energy-sharing communities fully meet the goals of fairness and cost-reflectivity,
leading to questions about whether the benefits align with the communities’ actual
grid impact.

The first part of this case study examines whether network tariff adjustments
are necessary for the energy-sharing community to break even, meaning its revenues
cover its operating costs for each member. Findings indicate that, with high self-
consumption rates and relatively low retail prices, these adjustments were needed
to reach break-even. During high retail price periods, like the energy crisis, the
community could break even without network tariff support. Given the political will
to engage citizens in the energy transition with energy-sharing communities, this
suggests that policy support may be essential: under typical market conditions, the
energy-sharing model alone may not allow communities to cover their costs entirely.

The second part of the case study evaluates whether the network tariff adjust-
ments and energy-sharing had any impact on peak consumption patterns. The results
indicate only weak reductions in both individual and aggregate peak consumption,
alongside minor shifts in peak timing. These modest effects confirm the lack of cost-
reflectivity of the capacity-term adjustment, as they suggest the adjustments did not
effectively incentivize participants to alter their consumption patterns in a way that
would reduce grid strain during peak periods.

The results indicate that network tariff adjustments can be essential for energy-
sharing communities to break even. However, a trade-off exists between supporting
these communities and maintaining cost-reflective, fair policies for all grid users, in-
cluding system operators. Specifically, capacity-term adjustments should be reserved
for situations where participants have the means to effectively manage their peak
consumption, such as through real-time pricing and shiftable loads. In cases where
these conditions are not met, alternative support measures could better sustain the
community’s viability while ensuring fair cost allocation across the grid.

2. Literature review

This paper builds on existing literature regarding energy-sharing communities
and their impact on energy systems. These communities enable participants to move
from passive consumption to active prosumption, engaging in both local energy man-
agement. They are often seen as potential enablers for renewable integration, flexi-
bility, and optimized grid management. Specifically, Koirala et al. (2016) provide an
overview of different energy community structures and highlights their role in local
renewable integration, decentralized management, and grid services. Rossetto (2023)
examines how these communities can optimize grid operations and boost flexibility
across the EU: by bringing together individual prosumers, energy communities can
amplify their benefits through scale, aiding overall grid efficiency. Building on these
perspectives, this paper’s case study investigates how community consumption pat-
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terns, self-consumption rates, and local energy generation affect peak behaviors and
grid dependency.

This paper also contributes to the literature on electricity network tariff design.
The impact of network tariffs on electricity consumers’ behavior is a critical aspect
of the energy transition. For instance, properly structured tariffs can incentivize pro-
sumers to self-consume their generated energy or invest in energy storage systems
(Gautier et al. (2018)). Network tariffs design need to align with broader policy
objectives to ensure the efficient functioning of the energy system. As Schittekatte
et al. (2018) explain, adapting network tariffs to account for increasing distributed
generation is essential to using grid infrastructure efficiently. Similarly, De Villena et
al. (2019) emphasize that cost-reflective tariffs, which ensure consumers pay accord-
ing to their network usage, promote fairness among grid users. Striking a balance
between promoting decentralised energy management and ensuring the financial sta-
bility of system operators through cost-reflectivity of tariff is a complex challenge
(Eid et al. (2014)). However, there is a consensus that flexibility sources such a con-
sumers’ demand-response can delay network expansion (Poudineh & Jamasb (2014),
Neetzow et al. (2019), Nouicer et al. (2023)). This paper builds on these findings by
examining the pilot project’s network tariff adjustments and their role in encouraging
behaviors like peak shedding and shifting, assessing their impact on the grid.

This paper adds to the broader discussion on optimal network tariff adjustments
to enhance cost-reflectivity and fairness, particularly within energy-sharing commu-
nities. As summarized by Passey et al. (2017), cost-reflective tariffs offer advantages
like improved price alignment, smarter energy usage, better utility cost recovery,
and reduced cross-subsidies. As noted in a theoretical model of a non-cooperative
game by Abada et al. (2020), poorly designed network tariffs can lead to an over-
adoption of energy community structures, potentially placing excess strain on the
grid during peak times. Furthermore, Johannsen et al. (2023) highlight that with-
out cost-reflective network tariffs, energy-sharing communities could increase grid
pressure during low-production periods. This paper provides empirical evidence sup-
porting both these concerns, as it examines whether the pilot project’s network tariff
adjustments might disproportionately benefit community members, potentially com-
plicating grid management.

By constructing counterfactual electricity consumption profiles with machine-
learning forecasting methods, following the approach of Fabra et al. (2022), the study
contributes to the growing literature that applies machine learning for energy analysis.
Similar methodologies have been applied to estimate counterfactual consumption and
analyze individual patterns in electricity use (Gonzalez-Briones et al. (2019), Burlig
et al. (2020), Valentini et al. (2022)). This study builds on that work, advancing
the application of machine learning specifically to the context of an energy-sharing
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community.

3. Characteristics of the pilot project

3.1. HospiGREEN: energy-sharing community in Belgium

The HospiGREEN pilot project was implemented in Tournai (Belgium) from
November 2020 to March 2023, involved ten participants, mostly healthcare facilities
like hospitals and retirement homes. This Renewable Energy Community (REC),
the first of its kind in Wallonia following the EU directive (European Commission
(2019b)), aimed to promote local renewable energy generation, demand-response, and
decentralized energy management (CWaPE (2020)). Table 1 outlines the details of
Phases 1 and 2, which ran from November 2020 to October 2021 and November 2021
to February 2023, respectively.

The project did not implement real-time feedback information about local pro-
duction and shiftable assets.7 For production units, Luminus, a project partner but
not a direct participant, contributed a wind turbine, motivated by the incentive of
stable monthly rent and the ability to avoid imbalance costs from surplus production.
Smaller photovoltaic prosumers participated to maximize self-consumption, aligning
with the project’s goal of increasing local renewable energy usage.

The project implemented two different allocation keys to operate the energy-
sharing: static in Phase 1, dynamic in Phase 2. In energy-sharing communities,
allocation keys are used to economically distribute the local electricity production
among the participants based on their overall electricity consumption. In Phase 1,
energy-sharing was operated with a fixed allocation key that assigns a pre-set share of
local renewable electricity supply to each participant for each quarter-hour intervals.8

At each quarter-hour, if a participant’s consumption matched their allocated share
of the production, they were billed at the shared energy tariff.9 Consumption beyond
the allocation was billed at the standard retail price, while any under-consumption
(less than the allocation) was valued for the community at the imbalance price. This
structure incentivizes participants to consume their allocated share to maximize the
benefits of the shared energy electricity price.10

7Shiftable assets include batteries, heat-pumps or large shiftable load can be actively managed
or controlled to regulate the electricity demand.

8Additional details about the fixed allocation key implemented in the pilot project are available
in Appendix B.

9While the energy component of self-consumed electricity is free, the average price per MWh
reflects the community’s operating costs. These costs are distributed among participants in propor-
tion to their consumption, as the energy community operates on a not-for-profit basis. See Section
3.3 for additional details.

10A specific feature of HospiGREEN pilot project is that the community takes responsibility for
the imbalance by selling its surplus electricity to Luminus at the imbalance market price. Addtional
details in Section 3.3.
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In Phase 2, energy-sharing was operated with a dynamic proportional key. With
this allocation rule, for each quarter hour t, in the community of P participants, for
the participant i the allocation share of the local energy supply was defined as cit:

cit =
Consoit∑P
j=1 Consojt

(1)

This mechanism distributed local energy production based on each participant’s
share of the total community consumption at every quarter hour. The dynamic al-
location was introduced in Phase 2 to evaluate its effect on demand-response, as it
was expected to increase individual incentives for self-consumption compared to the
fixed allocation key used in Phase 1.

As summarised in Table 1, during Phase 1, participants benefited from network
tariff adjustment. These adjustments were exclusively applied to distribution net-
work and not to the transmission network charges. Therefore, participants were
invoiced on their residual peak consumption, which is the peak of their electricity
consumption after subtracting self-consumed electricity, on average 6.2% lower than
their overall peak consumption level.11 Additionally, participants located under the
same Medium Voltage (MV) cabin as the production units are partially exempted of
the proportional-term of their network tariff.

3.2. Data: electricity load profiles

The HospiGREEN dataset consists of quarter-hourly electricity consumption data,
both from before the energy community’s launch in 2019 and from post-establishment
periods, including self-consumption and local production allocations on a quarter-
hour basis. These load profiles were confidentially provided by IDETA.12

For the estimation process, I augmented this dataset with additional variables,
specifically weather conditions, regional COVID-19 trends, and Belgian day-ahead
electricity prices, covering the period from January 1, 2019, to December 31, 2019,
and November 1, 2020, to February 28, 2023. A detailed description of each data
source and corresponding descriptive statistics is provided below.13

The main dataset includes quarter-hourly electricity load profiles for participants
and production units during the project period (01/11/2020 to 28/02/2023). For each

11See Table C.10 in Appendix C
12To maintain confidentiality, results are presented in an anonymized or aggregated form.
13The 2019 data serves as the baseline for participants’ electricity usage before the energy com-

munity was established.
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Table 1: Distinctive characteristics of the HospiGREEN pilot project phases

Phase 1 Phase 2

Period 1/11/2020 - 31/10/2021 1/11/2021 - 28/02/2023

Production capacity
Wind power (2.2 MW) Wind power (2.2 MW)

Solar power (120 kWp) Solar power (160 kWp)

Number of participants 6 10

Energy-sharing allocation
key

Static distribution key by
time range (day, night,
week-end)

Dynamic proportional
distribution key (see
equation (1))

Distribution network tariff
adjustments

Capacity-term
(euros/kW/month)
applied on residual
consumption (total
consumption minus
self-consumption)
.
Proportional-term
reduction (euros/kWh)
for participants under the
same MV cabin as local
production units: 30%
reduction for MV network
participants, 85% reduction
for LV network participants

None

Source: Author’s compilation of the final report of the HospiGREEN pilot project and the CWAPE
decision in terms of network tariff adjustment. Note: This table shows the differences in network
tariffs for community members compared to the original tariff applied to other regional users. It
was created by comparing the initial network tariff table to the adjusted table from the energy
regulator (CWAPE)’s decision in terms of network tariff adjustment. For solar power, production
capacity is measured in kilowatt peak (kWp) for the standardised peak output. The capacity-term
in the network tariff charges is based on the highest consumption peak, while the proportional-term
charges based on overall consumption volumes.
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participant, data includes consumption (kWh), allocation share (%), production al-
located (kWh), self-consumption (kWh), and residual consumption (kWh). For each
production unit, it records production (kWh) and surplus (kWh). Figure 1 outlines
the monthly production, self-consumption rate (share of local production consumed
by participants), and coverage rate (proportion of consumption met by local produc-
tion).14 Self-consumption rates remained stable above 80%, and the coverage rate
varied between 30% and 43% during the pilot, with consistent distribution among
participants despite varying residual consumption.

Figure 1: Dynamics of local production, self-consumption rate, and coverage rate in the Hospi-
GREEN project

The detailed electricity load profiles allow for an analysis of levels and timing of
peak consumption. Table 2 how significant variability in daily peak consumption
across participants during 2019, Phase 1, and Phase 2. Daily peaks consumption
generally occur between 7 am and 12 pm, while the aggregate peak for the commu-
nity typically falls between 7 and 8 am. These timings largely overlap with system
peak hours (8-10 am and 6-9 pm on weekdays), suggesting that participants’ peaks
often coincide with broader grid demand.

14More details about consumption and allocation variables by participants for Phase 1 and 2 can
be found in Appendix D, in tables D.11 and D.12.
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Table 2: Daily peak consumption (kWh) per participant per time period

Participants Period Mean Median Min Max Sd Most freq (24h)

Participant 1
2019 55 54 40 82 7 10
Phase 1 53 52 41 71 6 9
Phase 2 53 52 38 74 7 9

Participant 2
2019 436 439 283 573 60 8
Phase 1 456 457 176 605 77 7
Phase 2 439 440 298 576 62 7

Participant 3
2019 461 458 169 702 117 8
Phase 1 432 398 200 711 130 8
Phase 2 475 477 203 738 130 9

Participant 4
2019 1159 1176 847 1760 156 11
Phase 1 1178 1158 793 1816 198 12
Phase 2 1144 1153 822 1715 167 8

Participant 5
2019 31 30 15 49 8 9
Phase 1 37 36 15 68 11 8
Phase 2 32 32 11 64 13 8

Participant 6
2019 40 37 3 84 17 9
Phase 1 51 50 18 95 15 7
Phase 2 51 50 20 98 17 8

Energy community
2019 2100 2154 1452 2843 280 8
Phase 1 2114 2149 1449 2998 297 7
Phase 2 2401 2481 1618 3104 345 8

Source: HospiGREEN quarter-hourly load profiles. Note: The Phase 1 of the project takes place
between the 1/11/2020 and the 31/10/2020. The Phase 2 of the project takes place between the
1/11/2021 and the 28/02/2023. Note: The variable Most freq (24h) denotes the most frequent hour
of the daily peak consumption occurrence in a 24 hour format.
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Additional datasets, described in Appendix E, Appendix F, and Appendix G,
are used to train machine learning models for predicting counterfactual consumption
profiles. These include weather data, regional COVID-19 statistics, and Belgian day-
ahead electricity prices.

Overall, the energy community maintained high levels of self-consumption and
coverage throughout both phases, despite variability in individual consumption and
peak characteristics. The following section explores the revenue sources of the en-
ergy community: self-consumption, surplus sales, and peak adjustments. It analyzes
whether these can generate enough revenues for participants to break even.

3.3. Revenues by activity

To assess whether participants reach break-even, I analyze revenues from three
sources: self-consumption, surplus selling, and peak adjustments. The revenue equa-
tions essentially measure the savings achieved by comparing traditional procurement
costs with those under the energy-sharing community model. This analysis clarifies
the need for policy support by focusing on two key aspects: first, whether network
tariff adjustments provided substantial revenue, and second, whether these adjust-
ments were necessary for the community to break even at observed consumption
levels.

Network tariff adjustments were applied only in the first project phase, while the
allocation key varied across phases (See Table 1). This distinction is crucial for iso-
lating the specific impact of network tariff adjustments from other factors.

Electricity billing consists of three components: energy, network, and taxes. Taxes
are disregarded in this analysis as they remained unchanged throughout the imple-
mentation of the energy community. Therefore, community revenues arise from dif-
ferences in both energy and network billing. Total revenues with (Π̃) and without (Π)
network tariff adjustments are defined as the sum of individual participant revenues:

Π̃ =
∑
i

π̃i and Π =
∑
i

πi (2)

Participant i individual revenues (π̃i and πi) are defined as the sum of revenues
from self-consumption (π̃SC

i and πSC
i ), surplus selling (πX

i ) and peak management
(π̃P

i and πP
i ) both with and without network tariff adjustments.

π̃i = π̃SC
i + πX

i + π̃P
i and πi = πSC

i + πX
i + πP

i (3)

Equation (3) can be written as the sum of revenues from self-consumption, surplus
selling, and peak management for the relevant sub-periods of computation: quarter-
hour t and month m. Self-consumption and surplus selling are calculated for each
quarter-hour, whereas the peak is billed only on a monthly basis.
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π̃i =
∑
t

[
π̃SC
it +i π

X
t

]
+
∑
m

π̃P
im and πi =

∑
t

[
πSC
it + ciπ

X
t

]
+
∑
m

πP
im (4)

Self-consumption revenues. For each quarter hour t, participant i individ-
ual revenues from self-consumption, with (π̃SC

it ) and without (πSC
it ) network tariff

adjustments, are:

π̃SC
it = sitciPowert [(ei − ē) + (nt − ñit)] (5)

πSC
it = sitciPowert [(ei − ē)] (6)

Where sit is the self-consumption rate of participant i for the quarter-hour t,
expressed as a percentage of the allocated production (ciPowert). The allocated
production (kWh) is decomposed by ci and Powert, where ci denotes the allocation
coefficient for participant i from the allocation key, and Powert represents the total
power production within the community at quarter-hour t.15

The self-consumed electricity includes both an energy and a network component.
In the energy-sharing community, the energy component of the self-consumed energy
is free, with ē distributing the community’s operating costs across each MWh self-
consumed, as the energy community operates on a not-for-profit basis 16:

ē =
TotalCosts∑
t

stPowert
where st =

∑
i

sit (7)

In Phase 1 and Phase 2, the average energy-sharing prices were ēP1 = 259,550
5,075

=

51.11 euros/MWh and ēP2 = 361,937
6,927

= 52.25 euros/MWh.

To compute the revenues from self-consumption, I collect the average medium-
voltage retail price for each participant from the Walloon energy regulator (CWAPE),
categorized based on their total yearly electricity consumption17: eP1

i ∈ [51, 57.33] eu-
ros/MWh and eP2

i ∈ [88.35, 85.5] euros/MWh. Therefore, the energy-sharing scheme
incentivizes to maximize self-consumption because each MWh consumed under the
energy-sharing price is cheaper than retail prices.

15The formalization is presented with a fixed allocation key. For Phase 2 revenue characterization,
the allocation coefficient associated with participant i would vary by quarter-hour, as the allocation
key becomes dynamic, denoted as cit instead of ci as depicted in equation (1).

16Management and operating cost figures are sourced from the ’Report on Phase 1 Implementation
of the HospiGREEN Pilot Project: November 2020 to October 2021 ’. Phase 2 costs were estimated
from Phase 1 data, adjusted for the two-month longer duration.

17For additional information on CWAPE medium voltage average electricity prices data, refer to
Appendix H.
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For the network component, revenues from self-consumption arise due to network
tariff adjustments on the proportional-term for the self-consumed volumes. This is
defined as the difference between the initial-optimal proportional network tariff nt

and the adjusted tariff ñit for each quarter t. The adjusted ñit depends on partic-
ipant i.18 As shown in Table 1, in Phase 1, only participants under the same MV
cabin as the local production unit benefit from the network tariff adjustment on the
proportional-term. This further incentivizes to maximize self-consumption since the
proportional tariff on each self-consumed kWh is free.

Surplus selling revenues. When the community’s power production, Powert,
is not entirely consumed by participants at quarter-hour t, the surplus is sold at
the imbalance price. This price reflects the system’s marginal cost of balancing in
real-time and can vary depending on current grid conditions. The community bears
any positive or negative financial impact of this surplus at the imbalance price, di-
rectly linking their costs to the broader grid’s balancing needs. In the pilot project,
participants contracted with Luminus for the purchase of surplus, at a price linked
to the Belgian Transmission System Operator (TSO) Elia’s imbalance prices It. The
revenues affiliated with surplus selling are not linked to network tariff adjustments.
For each quarter hour t, the community’s revenues from surplus are:

πX
t = (1− st)PowertIt (8)

Peak adjustment revenues. The capacity-term adjustment encourages par-
ticipants to lower their residual peak by shifting consumption to periods when self-
consumption is possible, thereby maximizing financial benefits. Consuming more
during self-production hours reduces their residual peak, leading to lower capacity
charges. As shown in Table 1, during Phase 1, the capacity-related network tariff was
applied to the residual peak, rather than the total load peak. Typically, electricity
consumers are billed based on their peak monthly network usage, which reflects the
maximum consumption within a month. Therefore, for each month m, participant
i’s individual revenue from peak adjustments is calculated as:

π̃P
im =

[
max
t∈m

(Consoit)−max
t∈m

(Residualit)
]
n̂im (9)

Where the residual consumption Residualit = Consoit − sitciPowert.

πP
im = max

t∈m
(Consoit)n̂im (10)

18Without the detailed information needed for a full cost-reflectivity analysis, the initial network
tariffs before the energy community are assumed to be optimally cost-reflective. Since the production
units existed before the community, any tariff deviations should be justified by a reduced grid impact
from altered consumption patterns.
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Revenue analysis. The revenue results across each phase are summarized in Ta-
bles 3, 4, and 5. In Phase 1 (Table 3), positive self-consumption revenues π̃SC

i were
clearly reliant on network tariff adjustments. Without these adjustments (Table 4),
revenues would have been negative or close to zero due to the narrow price difference
between the retail price (51 to 57.33 euros/MWh) and the fixed energy-sharing price
(51.14 euros/MWh). Additionally, surplus energy revenues ciπ

X remained consis-
tently negative, showing that surplus energy was not beneficial for system balancing
in Phase 1.19

To assess the impact of the allocation key on the community’s economic viability,
Phase 1 revenues were estimated using a counterfactual dynamic allocation key. Un-
der this scenario, the community still required network tariff adjustments to break
even due to persistent losses from surplus sales.20 This key finding emphasizes that
network tariff adjustments were necessary for sustaining the community in Phase 1,
regardless of allocation strategy.

Table 3: Phase 1 - Participants’ revenues by activity with network tariff adjustments

Participants
π̃SC
i ciπ

X π̃P
i π̃iEnergy Network Total

Participant 1 70 9 596 9 666 -180 180 9 666
Participant 2 -127 36 438 36 311 -1 150 285 35 446
Participant 3 -111 653 542 -1 170 48 -580
Participant 4 -431 31 058 30 627 -3 790 220 27 057
Participant 5 40 492 532 -94 24 462
Participant 6 46 950 996 -117 40 919

Energy community -513 79 187 78 674 -6 501 797 72 970

Source: Author’s computations based on HospiGREEN electricity consumption profile of Phase 1
(1/11/2020 - 31/10/2021), Transmission System Operator (TSO) Elia’s imbalance prices, average
energy-sharing price (ēP1 = 51.14 euros/MWh), average price of energy per MWh of electricity
by consumption class (€/MWh excluding VAT) for December 2020 (varied between 51 and 57.33
euros/MWh), fixed allocation key described in Appendix B, and network tariff provided by the
CWAPE decision relative to ORES network tariff suggestion for HospiGREEN of 13/10/2020. Note:
The values presented in the table are initially calculated for each sub-period (quarter-hour or month)
for each participant. Subsequently, they are aggregated over the entire duration of Phase 1 to provide
the summarized computation.

In Table 5, unlike the revenues of Phase 1, the revenues of Phase 2 were positive
without the implementation of network tariff adjustments. Revenues from surplus

19Notably, Luminus benefited by avoiding the imbalance costs associated with surplus energy, as
these were borne by the energy community.

20Refer to Appendix I for detailed revenues calculations with the counterfactual dynamic alloca-
tion key in Phase 1.
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Table 4: Phase 1 - Participants’ revenues by activity without network tariff adjustments

Participants
πSC
i ciπ

X πP
i πiEnergy Network Total

Participant 1 70 70 -180 -110
Participant 2 -127 -127 -1 150 -1 277
Participant 3 -111 -111 -1 170 -1 281
Participant 4 -431 -431 -3 790 -4 221
Participant 5 40 40 -94 -54
Participant 6 46 46 -117 -71

Energy community -513 -513 -6 501 - 7 014

Source: Author’s computation based on the HospiGREEN electricity consumption profile of Phase
1 (1/11/2020 - 31/10/2021), the Transmission System Operator (TSO) Elia’s imbalance prices,
average energy-sharing price (ēP1 = 51.14 euros/MWh), the average price of energy per MWh
of electricity by consumption class (€/MWh excluding VAT) for December 2020 and the fixed
allocation key described in Appendix B. Note: The values presented in the table are initially
calculated for each sub-period (quarter-hour or month) for each participant. Subsequently, they are
aggregated over the entire duration of Phase 1 to provide the summarized computation.

Table 5: Phase 2 - Participants’ revenues by activity

Participants
πSC
i ciπ

X πP
i πiEnergy Network Total

Participant 1 5 518 5 518 -210 5 308
Participant 2 37 737 37 737 -1 670 36 067
Participant 3 43 004 43 004 -1 887 41 117
Participant 4 129 772 129 772 -5 903 123 869
Participant 5 2 790 2 790 -111 2 679
Participant 6 4 930 4 930 -189 4 741
Participant 7 16 365 16 365 -733 15 632
Participant 8 7 401 7 401 -275 7 126
Participant 9 3 767 3 767 -146 3621
Participant 10 317 317 -21 296

Energy community 251 605 251 605 -11 145 240 460

Source: Author’s computation based on the HospiGREEN electricity consumption profile of Phase
2 (1/11/2021 - 28/02/2023), the Transmission System Operator (TSO) Elia’s imbalance prices
Imbalance prices, average energy-sharing price (ēP2 = 52.25 euros/MWh), the average price of
energy per MWh of electricity by consumption class (€/MWh excluding VAT) for December 2021
(varied between 88,35 and 85.5 euros/MWh) and the dynamic proportional allocation key described
in Appendix H. Note: The values presented in the table are initially calculated for each sub-period
(quarter-hour or month) for each participant. Subsequently, they are aggregated over the entire
duration of Phase 1 to provide the summarized computation.

14



energy sales (ciπ
X) remained negative, but revenues from self-consumption (πSC

i )
were positive for all participants. In fact, in Phase 2, retail prices were higher, rang-
ing between 85.5 and 88.35 euros/MWh, which increased the difference between the
energy-sharing price and the retail price, resulting in higher self-consumption rev-
enues. This difference grew during Phase 2 (from 01/11/2021 to 28/02/2023) due
to the energy crisis triggered by the end of the COVID-19 crisis and the Russian
invasion of Ukraine, lasting until early 2023. During this crisis, wholesale electricity
prices soared, reaching a maximum day-ahead price of 871 euros/MWh.21 To reflect
the impact of the energy crisis on retail prices, I used the average medium-voltage
retail prices from CWaPE for the years 2020, 2021, and 2022 as proxies. However,
since I lacked access to participants’ actual retail contracts, I assumed their contracts
changed every year.

These results indicate that policy support, such as network tariff adjustments,
can be essential for energy-sharing communities. In typical market conditions, these
communities may not achieve break-even on energy-sharing revenues alone to cover
their operational costs. This suggests that the economic model of energy-sharing
communities may often require policy support to remain viable. Network tariff ad-
justments, implemented here as both proportional and capacity-related adjustments,
represent one way to provide that support. However, this support exists within a
larger trade-off where policies must be carefully designed to avoid placing undue
burdens on other users or compromising grid efficiency for system operators. The
next section further analyses the cost-reflectivity of the capacity-based network tariff
adjustments and the incentives of the pilot project.

4. Empirical strategy

I examine the impact of joining the energy community across both phases on peak
consumption. As shown in Table 1, Phase 1 combined network tariff adjustments with
static allocation energy-sharing, while Phase 2 involved only energy-sharing with a
dynamic allocation key and no network tariff adjustments. The simultaneity of mech-
anisms in Phase 1 prevents isolating the separate effects of each incentive. Therefore,
I treat each phase as a distinct incentive change compared to the pre-community
period. In Phase 1, participants received significant capacity-term and proportional-
term tariff reductions alongside a static allocation key. In Phase 2, participant shared
electricity with a dynamic allocation key and did not obtain any network tariff ad-
justments. The effects of the features of each phase are assessed ex post on peak
electricity consumption, as peak values are the primary drivers of network infrastruc-
ture investments and operational costs.

21Additional details about the Belgian electricity day-ahead price are available in Appendix G.
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To assess the impact, I first construct counterfactual electricity consumption pro-
files using a method similar to Fabra et al. (2022) and using machine-learning forecast-
ing algorithms based on pre-community consumption data. Using prediction errors
across the entire period, I estimate the effects of the features of each phase on peak
consumption compared to the pre-community period. The analysis reveals a slight
increase in peaks and a minor shift in peak timing, raising doubts about cost reflec-
tivity of the capacity-term adjustment implemented in Phase 1. Since the production
units were already operational before the community was established, any justified
deviation from the initial network tariff would need to be based on clear, observable
changes in peak consumption patterns. The initial tariff is considered optimal within
the pilot project, meaning it reflects current system costs and usage. Defining a more
precise optimal tariff would require additional, complex data outside the project’s
scope. Without significant shifts in peak behavior, deviations from this standard
tariff would not be justified.

4.1. Counterfactual electricity consumption profiles

I first construct counterfactual profiles in the absence of the energy-sharing com-
munity. I do so because of the limited number of participant load profiles available in
the HospiGREEN dataset and the unavailability of non-member profiles in Belgium.
Consequently, constructing a synthetic control group is not feasible. Additionally,
the participants are predominantly small industrial and healthcare centers, exhibit-
ing distinct load profiles from typical residential electricity consumption patterns.
Therefore, I predict the counterfactual profile for each of the first six participants for
each phase of the project.22

Similarly to Fabra et al. (2022), let Yt(p) represent individual electricity consump-
tion in (kWh) at time t and under potential state p. Where, p = 1 indicates outcomes
influenced by the energy community establishment, while p = 0 signifies outcomes
unaffected by the community establishment. Additionally, I assume the existence of
a covariate vector Xt(p), the realization of which do not dependent on p in this anal-
ysis. Time periods preceding the energy community are denoted by t = pre, while
those during the energy community are represented as t = post. The counterfactual
potential outcome I seek to identify is Ypost(0), unobservable by definition.

I use pre-energy-community data to forecast Ypost(0) based on the covariate vector
Xt(p). The first necessary assumption is that the electricity consumption behaviour
did not change in anticipation of the establishment of the energy community. Hence,
the outcomes observed during periods before the energy community (Ypre) are as-
sumed to align with potential outcomes had the energy-community never occurred.
This can be formally expressed as follows:

22The analysis is limited to the first six participants and excludes the four additional participants
who joined in Phase 2 due to data availability constraints.
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Assumption 1. (No Anticipatory Effects).

Ypre = Ypre(0) (Asm.1)

Another assumption is that the covariates Xt(p) are independent of the energy
community establishment itself:

Assumption 2. (Covariates are Independent of Treatment (Energy Community Par-
ticipation)).

Xt(0) = Xt(1) = Xt (Asm.2)

Assumption 2 holds here as the covariates used are only exogenous: weather and
date/time fixed effects. I define the relationship between covariates and participant
electricity consumption in the absence of the energy community as follows:

Ypre(0) = g(Xpre(0)) + εpre

such that E[Ypre(0)|Xpre(0)] = g(Xpre(0)) (11)

Under Assumption 1 and Assumption 2, equation (11) can be rewritten as equation
(12).

I also assume that the impact of covariates variables on consumption are constant
over time. This assumption is key to identify the effect of the energy-community
establishment. Then, equation (12) can be formalised for post-energy-community
time periods:

Ypre = g(Xpre) + εpre

such that E[Ypre|Xpre] = g(Xpre) (12)

Assumption 3. (Stability of the Counterfactual Function).

Ypost(0) = g(Xpost(0)) + εpost

such that E[Ypost(0)|Xpost(0)] = g(Xpost(0)) (Asm.3)

Assumption 3 indicates that the function g(.) derived from the pre-energy-community
period can be also used to predict the counterfactual electricity consumption in the
post-energy-community period. Building on Assumptions 1 and 2, Assumption 3
implies that E[Ypost(0)|Xpost] = g(Xpost), enabling me to identify the counterfactual
outcome.

As g(.) is unknown in practice, I estimate it. For the outcome variable (Yt), I con-
sider the historical electricity consumption load profiles of the first six participants to
the HospiGREEN project from January 1, 2019, to December 31, 2019, in kWh with
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hourly step.23 To stay consistent with Assumption 2, I collect exogenous covariate
data Xt, including weather variables, date/time dummy variables. For the weather
data, I gather hourly weather data from Lille-Lesquin Airport, located 25 kilometres
away from the community. The weather data includes temperature, humidity, cloud
cover and height, precipitation, wind speed, direction and gust. Lagged variables are
incorporated for temperature and precipitation, representing the same variables from
3, 6, 12, and 24 hours ago, as past weather conditions can also influence electricity
consumption.24 Date/time fixed effects include month, day of the month, week num-
ber, day of the week, week-end day, public and school holidays in the Hainaut region
of Belgium and hour of the day. Including these covariates, I accounted for a total of
25 variables. With these data, I detail below the estimation approach.

• Step 1. Estimate: Ypre = g(Xpre) + εpre , such that Ŷpre = ĝ(Xpre), where pre
denotes the year 2019.

• Step 2. Predict: Ŷpost = ĝ(Xpost), where post starts from the 1st of November
2020.

I use the data from the year 2019 to build participants’ electricity consumption
hourly profiles over the entire period of the energy community. By using only pre-
energy-community data, I argue that Assumption 1 stands for two reasons. First,
the pre-energy-community data cover the year 2019, and the energy community was
established starting from 1st of November 2020. Therefore, it seems very unlikely
that any anticipatory effects influenced the electricity consumption pattern observed
in 2019. Second, considering that participants knew about upcoming energy commu-
nity establishment as early as 2019, they were lacking financial incentives to change
their electricity consumption habits yet (Section 3.3).

Several models are applicable for the predictive task. In a similar fashion to
Fabra et al. (2022), I employ a machine learning algorithm, for which I demonstrate
its high predictive accuracy. Recent studies have indicated that machine learning
techniques enhance predictive precision for energy consumption forecasts by effec-
tively capturing nonlinearities and complex interactions in the relationships between
demand and available covariates (Gonzalez-Briones et al. (2019), Schneider et al.
(2019)). Machine learning is increasingly used in causal frameworks within energy
economics (Burlig et al. (2020); Fabra et al. (2022)), likely because the field typically
fulfills the required assumptions for these estimations, like Assumption 3. Previous

23Using hourly data instead of quarter-hour data, significantly enhances data manipulation effi-
ciency and reduces computation time. To transition from quarter-hourly to hourly data, the kWh
variable for each participant was summed for each hour.

24For additional details about weather data included in the construction of the counterfactual,
see Appendix Appendix E.
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research has demonstrated the ability to accurately forecast energy demand using
solely exogenous covariates, such as weather data (Kim & Kim (2021), Lee & Cho
(2022)). Moreover, concerns regarding indirect effects through prices can be allevi-
ated, as electricity consumption is largely found to be inelastic (Ito (2014); Fabra et
al. (2021)). In this analysis, electricity prices and network tariffs may indeed affect
participants’ electricity consumption behavior, all else being equal. The identification
is specifically designed to quantify this impact of changes in price schedules (both
energy and network components) on electricity consumption. Nonetheless, I argue
that Assumption 3 remains valid, even if it is essentially untestable, as any poten-
tial effect of price is the only variable that could result in a prediction error, thus
measuring the effect of the establishment of the energy community.

4.2. Counterfactual results

To estimate counterfactual electricity consumption, I use the algorithm eXtreme
Gradient Boosting (XGBoost). XGBoost is a machine learning algorithm based on
boosted decision trees. In this approach, multiple trees are trained sequentially, with
each tree aiming to correct the errors made by the previous one. Research sources
such as the original XGBoost paper by Chen & Guestrin (2016) provide details about
the algorithm’s design principles and performance evaluation. I train the XGBoost
algorithm on 2019 data of participants’ consumption profiles, including exogenous
covariates as predictors: weather variables, date/time dummy variables.

To benchmark the performance of XGBoost algorithm, I conduct a regression
analysis using the same predictors as the XGBoost model, including multiple time
fixed effects and weather variables. The linear regression benchmark is specified as
follows:

Yit = β0 +
J∑

j=1

βjTjt +
K∑
k=1

γkWkt + ϵit (13)

Where Yit is the electricity consumption of participant i at hour t. Tjt is the jth
time fixed effect at time t, where j = 1, 2, . . . , J . Time fixed effects include, year,
month, week, week days, week end, holidays, and hour of the day. The relevant co-
efficients are denoted βj, where j = 1, 2, . . . , J . Wkt denote the kth weather variable
at time t, where k = 1, 2, . . . , K. The relevant coefficients are denoted γk. Finally,
ϵit is the error term. This specification is regressed on 2019 data and used to predict
the hourly electricity consumption profiles over the energy community period from
November 2020 to February 2023.

The XGBoost algorithm is the most efficient for each participant. The hyper-
parameters by participant are presented in Appendix J Table J.19. This model,
when trained and optimised on 2019 data for prediction over the energy community
period, on achieved a Mean Average Error (MAE) out-of-sample error of 33.49 kWh
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and a Root Mean Square Error (RMSE) 32.01 kWh across the six participants. In
contrast, the regression specification yielded an average error of 58.77 kWh, 1.7 times
the average error from the XGBoost machine learning approach. The RMSE from
the fixed effects approach is also substantially higher, at 71.90 kWh. For consistency,
two other machine learning prediction algorithms are trained, fine tuned and tested
out-of-sample similarly to compare the predictive accuracy with XGBoost: Random
Forest (RF) and K-Nearest Neighbors (KNN).25 Appendix J Tables J.19 present the
MAE and RMSE from all models considered.

Figure 2 compares realized (in black) and predicted (in blue) average daily total
electricity consumption in 2019 and during the pilot project. A smoothed hourly se-
ries (for real electricity demand) is presented, based on 30-day moving averages. All
predictions are based on the best-performing XGBoost described above. The com-
parison of predicted and realized curves in 2019 serves as an additional check that
the model performs well. While predictions for any given day must be interpreted
with caution, real and predicted seasonality patterns are closely matched.

4.3. Estimation specification: prediction errors

To evaluate the impact of the energy community on participants’ electricity peak
consumption behavior, I follow a two-step methodology. First, I generate counter-
factual as outlined in the above section. I construct participant-specific electricity
consumption denoted Ŷit for each hour t during each relevant phase of the energy
community. Second, I estimate the effect of each phase of the energy community
on participants’ electricity peak consumption behavior by comparing the predicted
counterfactual consumption with the actual electricity usage during the energy com-
munity project.

Identification strategy. The identification strategy assumes that the only
change introduced is the energy community phases, while predictions are based on
participants’ pre-community electricity consumption profiles. Each phase’s incen-
tives, as outlined in Table 1, are assessed by comparing overall electricity consump-
tion, without distinguishing between self-consumed and residual consumption.This
method is used for several reasons. First, self-consumption cannot be estimated prior
to the community’s formation, as it was not an option for participants. Second, the
renewable units already existed before the community, meaning that any relevant
grid impact would depend on changed consumption patterns.

The combined implementation of static energy-sharing and network tariff adjust-
ments in Phase 1 makes it impossible to isolate their individual effects, a limitation

25Random Forest builds many decision trees in parallel and averages their predictions. K-Nearest
Neighbors predicts by averaging the values of the closest data points (neighbors) to each observation.
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rooted in the pilot project’s design. However, analyzing Phase 2, without network
tariff adjustments, provides valuable insights into the impact of dynamic energy-
sharing on peak consumption.

Estimation. In a similar fashion to Burlig et al. (2020), the prediction error
serves as the dependent variable. The objective is to compare machine learning
predictions of electricity consumption with actual electricity use. Controlling for
confounding factors that occurred during the pilot project but were not present in
the 2019 data used for prediction, such as COVID-19 and the energy crisis, I compare
the predicted counterfactual energy consumption with the actual electricity usage.
The difference reflects the causal impact of establishing the energy community, as
formalized in equation (14):

Yit − Ŷit = αit + β1Phase1t + β2Phase2t + γXt + εit (14)

Where Yit is the prediction error of the relevant outcome variable participant i
at date t. The phase implementation indicators, Phase1t and Phase2t, are dummy
variables that signal whether the energy community Phase 1 or 2 was initiated by
date t. Once Phase 2 is implemented, the Phase 1 dummy returns to zero. The coeffi-
cients of interest, β1 and β2, capture the average change of the outcome variable with
the establishment of relevant phase. Participant and time fixed effects, denoted by
αit, are incorporated to control for observable and unobservable characteristics that
vary across participants and time periods. Xt represents the set of control variables
included in the various estimations, encompassing factors such as COVID-19 cases,
periods of lockdown, and Belgian day-ahead electricity market prices. These controls
are added because their variations have been exceptionally pronounced after 2019.
Therefore, they are included to capture the effect of the COVID-19 and the energy
crisis.26 Lastly, εit represents the error term, clustered at the participant level to
allow for within-participant correlations.

Outcome variables. The analysis focuses one two key outcome variables: daily
peak consumption level and hour of occurrence of that peak. Although the capacity-
term adjustment is applied to the residual peak (see Table 1), only peak consumption
is analyzed to assess consumption adjustment.

• Peak shedding. The first outcome variable is the prediction error for daily
peak electricity consumption (kWh), split into participant-level and aggregate
errors. This separation captures the effects of both individual and collective

26The first lockdown in Belgium occurred from March 18, 2020, to June 2, 2020, while the second
lockdown was implemented from November 2, 2020, to December 13, 2020. Data is missing between
December 31, 2019, and November 1, 2020. Consequently, the lockdown control variable used in
the estimation primarily reflects the effects of the second lockdown.
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peak adjustments. Therefore, from equation (14), Yit s the actual daily peak
electricity consumption of participant i on date t, and Ŷit is the estimated daily
peak electricity consumption from the prediction method presented in Section
4.1. This variable shows whether participants reduced their individual and
aggregate peak consumption after each phase, considering the energy-sharing
scheme and capacity tariff adjustments.

• Peak shifting. The second outcome variable is the prediction error in the hour
when actual (Yit) and estimated (Ŷit) daily peak consumption occurs (0-23) to
identify peak shifting. This variable is split into participant-level and aggregate
peak-hour errors.

Controls. Control variables include the number of COVID-19 hospitalizations
and ICU cases in Hainaut province, where the energy community is based. With four
of the six Phase 1 participants being healthcare centers, responsible for 97% of the
community’s electricity use, the pandemic’s impact on their activity is significant.
By controlling for COVID-19 cases, the analysis adjusts for the unusual activity lev-
els caused by the pandemic. Since the prediction models are based on 2019 data,
which predates the pandemic, these controls help isolate the effect of the energy com-
munity’s establishment during Phase 1 from COVID-related shocks. An additional
control variable is the daily maximum Belgian day-ahead electricity price, accounting
for the energy crisis between the end of COVID-19 and early 2023. This period saw
significant disruptions, including rising gas prices, the Russian invasion of Ukraine,
and low nuclear output in France, which affected energy supply. Though retail elec-
tricity prices were pre-agreed and not directly impacted, this variable captures the
the peak of the energy crisis.

5. Results

The results of the estimation are presented in Tables 6 and 7 which present the
impact of each project phase on peak shedding and peak shifting, respectively. Ap-
pendix K presents an event study performed as a robustness check of the main results
presented in this section.

Peak shedding effects. Table 6 shows the estimated peak shedding effects, with
columns (1) to (3) indicating that Phase 1 led to a 13.69 kWh average increase in
participants’ daily peak consumption, even after controlling for COVID-19 and lock-
downs. Columns (4) to (6) reveal a 65.39 kWh increase in the community’s aggregate
peak after Phase 1. However, the impact of Phase 2 on peak loses significance when
controlling for day-ahead electricity prices, implying a potential link to the energy
crisis. Despite these increases, the effects on peak consumption are not only not sig-
nificantly different with (i.e., Phase 1) and without network tariff adjustments (i.e.,
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Phase 2), but also small in relative value. As shown in table 2, the average peak con-
sumption for the six participants in 2019 was 2100 kWh. This suggests no significant
rebound effect.

Table 6: Peak shedding estimation - Impact of Phase 1 and Phase 2 on daily peak electricity
consumption

Dependent variable: Participants Energy community
daily peak consumption daily peak consumption
prediction error (kWh) prediction error (kWh)

Model: (1) (2) (3) (4) (5) (6)
Phase 1 6.69∗∗∗ 16.49∗∗∗ 13.69∗∗∗ 24.32∗ 80.69∗∗∗ 65.39∗∗∗

(1.55) (2.01) (2.09) (9.61) (12.09) (12.51)
Phase 2 2.02 13.16∗∗∗ 4.94 13.19 79.95∗∗∗ 35.06∗

(1.45) (1.95) (2.61) (9.00) (11.70) (15.58)
Hosp. COVID-19 −0.05∗∗∗ −0.05∗∗∗ −0.33∗∗∗ −0.33∗∗∗

(0.01) (0.01) (0.05) (0.05)
Hosp. COVID-19 ICU 0.08 0.10∗ 0.52∗ 0.64∗∗

(0.04) (0.04) (0.24) (0.24)
Lockdown 20.03∗∗∗ 19.14∗∗∗ 121.46∗∗∗ 116.62∗∗∗

(4.74) (4.74) (28.49) (28.31)
Daily Max DAP 0.03∗∗∗ 0.16∗∗∗

(0.01) (0.04)
R2 0.00 0.02 0.02 0.01 0.08 0.09
Adj. R2 0.00 0.01 0.02 0.00 0.07 0.09
Num. obs. 7290 7290 7290 1215 1215 1215

Note: The participant daily peak Consumption prediction error represents the difference between each participant’s
actual daily peak electricity consumption observed and the corresponding predicted daily peak consumption for each
participant. Similarly, the energy community daily peak consumption prediction error reflects the disparity between
the actual synchronized daily peak electricity consumption and its predicted value. The regressors ’Phase 1’ and
’Phase 2’ are dummy variables that activates respectively starting from 01/11/2020 and 01/11/2021. The COVID-19
controls consist of the daily counts of COVID-19 cases hospitalized and in Intensive Care Units (ICU) within the
Hainaut region, where the energy community HospiGREEN is situated. Additionally, the daily maximum of Belgium
day-ahead prices (Daily Max DAP) is incorporated into the control variables to address the impact of the energy
crisis. The prediction is based on 2019 electricity consumption profiles as described in Section 4.1 . Significance levels
are indicated as ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Peak shifting effects. Table 7 shows the estimated peak shifting effects. Phase
1 resulted in an average peak time shift of 0.9 hours (54 minutes) earlier, while
Phase 2 resulted in an average shift of 0.67 hours (40 minutes) relatively to pre-
comunity level. These small shifts remained consistent after controlling for COVID-
19, lockdowns, and the energy crisis. At the community level, similar shifts were
observed with Phase 1 and Phase 2 showing earlier peaks by 0.97 hours (48 minutes)
and 1.1 hours (66 minutes) respectively. However, the shifts are relatively minor and
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do not significantly alter participants’ alignment with system peak hours (See Table
2), questioning whether the capacity-term adjustment is cost-reflective.

Table 7: Peak shifting estimation - Impact of Phase 1 and Phase 2 on daily peak electricity con-
sumption timing

Dependent variable: Participant Energy Community
Daily peak hour Daily peak hour

Prediction error (hours) Prediction error (hours)

Model: (1) (2) (3) (4) (5) (6)
Phase 1 −1.07∗∗∗ −0.94∗∗∗ −0.90∗∗∗ −0.85∗∗∗ −0.90∗∗∗ −0.97∗∗∗

(0.11) (0.15) (0.15) (0.13) (0.16) (0.17)
Phase 2 −0.89∗∗∗ −0.79∗∗∗ −0.67∗∗∗ −0.99∗∗∗ −0.90∗∗∗ −1.10∗∗∗

(0.11) (0.14) (0.19) (0.12) (0.16) (0.21)
Hosp. COVID-19 −0.00 −0.00 −0.00 −0.00

(0.00) (0.00) (0.00) (0.00)
Hosp. COVID-19 ICU −0.00 −0.00 0.00 0.00

(0.00) (0.00) (0.00) (0.00)
Lockdown 0.40 0.41 0.34 0.31

(0.35) (0.35) (0.39) (0.39)
Daily Max DAP −0.00 0.00

(0.00) (0.00)
R2 0.01 0.01 0.01 0.06 0.06 0.06
Adj. R2 0.01 0.01 0.01 0.06 0.06 0.06
Num. obs. 7290 7290 7290 1215 1215 1215

Note: The participant daily peak hour prediction error represents the difference between each participant’s actual
daily peak hour and the corresponding predicted daily peak hour. Similarly, the energy community daily peak
hour prediction error reflects the difference between the synchronized actual daily peak hour and the corresponding
predicted daily peak hour. The regressors ’Phase 1’ and ’Phase 2’ are dummy variables that activates respectively
starting from 01/11/2020 and 01/11/2021. The COVID-19 controls consist of the daily counts of COVID-19 cases
hospitalized and in Intensive Care Units (ICU) within the Hainaut region, where the energy community HospiGREEN
is situated. Additionally, the daily maximum of Belgium day-ahead prices (Daily Max DAP) is incorporated into the
control variables to address the impact of the energy crisis. The prediction is based on 2019 electricity consumption
profiles as described in Section 4.1. Significance levels are indicated as ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

The peak shedding and shifting analysis reveals only minor adjustments in partic-
ipants’ consumption behavior throughout both phases. In Phase 1, there was a slight
increase in peak consumption, and while some peak shifting did occur, it was minimal
and did not significantly change the alignment with system peak hours. Given that
the production units were already in place before the community was established,
a substantial shift in peak patterns would be needed to justify deviations from the
initial network tariff.

These limited changes can be rationalised by two lacking features of the project:
the pilot project did not implement real-time information feedback on local produc-
tion and community consumption, which could help participants adjust their usage
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in response to local conditions; and it did not have identified shiftable loads to effec-
tively achieve potential grid-beneficial adjustments. This context confirms the lack
cost-reflectivity of the capacity-term adjustment in Phase 1, as participants lacked
both the information and tools to modify their behavior in a way that would support
grid management.

6. Conclusion and policy implications

The case study of this energy-sharing community addresses two main policy ques-
tions: the need for policy support, particularly through network tariff adjustments,
and whether these adjustments accurately reflect the community’s impact on the
grid. The results show that policy support, in form of network tariff adjustments,
was crucial for the energy-sharing communities to stay financially viable. In Phase
1 of the case study, even with high self-consumption rates (89% and 94%), energy-
sharing and surplus selling alone could not generate enough revenues, regardless of
the allocation key used. However, in Phase 2, with the spike in retail electricity prices
during the crisis, participants managed to generate positive revenues solely through
energy-sharing and surplus selling, without relying on network tariff adjustments.
This shows that policy support may be essential for the viability of energy-sharing
communities, as their economic model may not sustain positive revenues outside of
extraordinary price hikes.

The findings apply to energy-sharing communities with similar features, such as
pre-existing production units and limited access to information feedback or shiftable
loads. However, the policy implications have broader relevance, showing that while
support for energy-sharing communities is needed, policy makers must ensure that
these communities do contribute to the wider energy transition.

There is a clear trade-off between promoting energy-sharing communities and
ensuring network tariff adjustments remain cost-reflective and fair for other users.
In this pilot, capacity-term adjustments, designed to reduce peak consumption, did
not significantly alter participants’ behavior. Peak consumption levels and timings
largely remained aligned with system peaks, raising concerns about the justification
of such adjustments when energy-sharing communities fail to deliver measurable grid
benefits.

To ensure that network tariff adjustments for energy-sharing communities are
both supporting energy-sharing initiatives and cost-reflective, policymakers should
focus on two key aspects:

1. Self-consumption rate: energy-sharing communities with high self-consumption
rates may qualify for proportional-term adjustments if they demonstrate re-
duced reliance on the grid. National regulatory agencies should assess eligibility
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based on specific criteria such as self-consumption rates, coverage levels, and
grid proximity to ensure the adjustments are justified.

2. Information feedback and shiftable loads: Capacity-term adjustments
should be applied only to energy-sharing communities where participants can
actively manage their peak consumption. This requires access to real-time feed-
back on local production and grid status, along with the use of shiftable assets
like batteries or heat pumps. Without these tools, capacity-term adjustments
fail to significantly impact peak behavior, rendering the network tariff adjust-
ments misaligned with the grid’s needs.

Given the political will to engage citizens in the energy transition through such
initiatives, when this necessary conditions are not met, policymakers might consider
alternative support mechanisms (European Commission (2019a)). In these cases, di-
rect subsidies or targeted financial assistance might be more suitable for communities
that lack the infrastructure or flexibility to effectively adjust their consumption pat-
terns.

These policy recommendations emphasize the importance of aligning financial
support with measurable grid benefits. By ensuring that network tariff adjustments
are cost-reflective and applied only where they lead to actual improvements in grid
management, policymakers can balance the need to support energy-sharing commu-
nities with the principles of fairness and cost-reflectivity. These findings contribute
to the broader discussion on how best to integrate energy-sharing communities into
the energy transition while maintaining the financial and operational integrity of the
grid.

7. Declaration of Generative AI and AI-assisted technologies in the writ-
ing process

During the preparation of this work the author used ChatGPT 3.5 in order to im-
prove readability and language. After using this tool, the author reviewed and edited
the content as needed and takes full responsibility for the content of the publication.
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Appendix A. Energy-sharing communities in European Union

The Energy Communities Repository, launched by the European Commission,
aimed to assist local stakeholders like citizens, authorities, and businesses in devel-
oping clean energy projects in urban areas across Europe. As part of this effort, an
interactive map was created to showcase the diversity of energy community initia-
tives, open for public access.

In January 2024, I used this map to gather information on all initiatives and their
self-reported energy-related activities. I categorized initiatives as energy-sharing com-
munities if they indicated involvement in both self-consumption and energy-sharing.
Self-consumption was included in this characterization because it aligns with the in-
centives of energy-sharing: using electricity when it is plentiful locally. Table A.8
provides a summary of the reported energy-sharing communities by Member State.

Table A.8: Energy-sharing communities reported by member states: January 2024

Member state
Reported Total

Share of totalEnergy-sharing Reported
Communities Communities

Austria 2 2 100%
Belgium 7 13 54%
Bulgaria 1 1 100%
Croatia 1 1 100%
France 2 6 33%
Germany 1 1 100%
Greece 7 8 87%
Hungary 2 1 100%
Ireland 1 1 100%
Italy 5 7 71%
Lithuania 1 1 100%
Luxembourg 3 7 43%
Netherlands 1 10 10%
North Macedonia 2 2 100%
Poland 1 1 100%
Portugal 4 5 80%
Spain 31 35 89%

Total 72 105 69%

Source: Author’s computations based on Energy Communities Repository map consulted in January
2024.
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Appendix B. Fixed allocation key for energy-sharing

Table B.9: Fixed allocation key implemented in HospiGREEN pilot project for energy-sharing from
01/11/2020 to 01/11/2021

REC Participants
Keys used by the DSO

.
Contractual Key

Day
(Monday to Friday,
7 AM to 10 PM )

Night
(Monday to Sunday,
10 PM to 7 AM )

Weekend
(Saturday and Sunday,
7 AM to 10 PM )

Participant 1 3% 2% 2% 2.7%
Participant 2 18.3% 16.3% 17.3% 17.6%
Participant 3 19.5% 12.9% 18.5% 18%
Participant 4 54.9% 66.5% 59.3% 58.3%
Participant 5 1.7% 1.2% 1.2% 1.44%
Participant 6 2.6% 0.9% 1% 1.8%

Source: CWaPE (2020). Note: REC stands for Renewable Energy Community.
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Appendix C. Average monthly peak and residual peak phase 1

Table C.10: Summary of average monthly peak and residual peak phase 1

Participant Average monthly peak (kW) Average monthly residual peak (kW) Difference

Participant 1 70.8 64.9 -8%
Participant 2 580.4 556.4 -4%
Participant 3 642.2 596.5 -7%
Participant 4 1488.1 1385.6 -7%
Participant 5 58.4 55.8 -5%
Participant 6 86.8 81.8 -6%

Source: HospiGREEN dataset quarter-hourly load profiles from the second phase of the project
(1/11/2021 - 28/02/2023).
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Appendix D. Summary tables HospiGREEN phases

Table D.11: HospiGREEN Phase 1 - Summary table
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Participant 1 309 130 150 179 87 49 3
Participant 2 2483 910 985 1573 92 40 17
Participant 3 2435 792 956 1643 83 39 17
Participant 4 8637 3083 3406 5554 91 39 60
Participant 5 215 74 81 141 92 37 1
Participant 6 300 86 95 214 91 31 2
Energy community 14379 5075 5673 9304 89 39

Source: HospiGREEN dataset quarter-hourly load profiles from the first phase of the project
(1/11/2020 - 31/10/2021). Note: Consumption (MWh), Self-consumption (MWh), Production allo-
cated (MWh) and Residual consumption (MWh) represent respectively the participant total volume
of consumption, self-consumption, production allocation and residual consumption over Phase 1 in
MWh. Self-consumption (%), Coverage (%) and Allocation key (%) represent respectively the av-
erage rate of self-consumption, coverage and allocation over Phase 1.
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Table D.12: HospiGREEN Phase 2 - Summary table
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Participant 1 402 132 140 274 94 35 2
Participant 2 3208 1053 1116 2155 94 35 15
Participant 3 3751 1200 1264 2552 95 34 17
Participant 4 11086 3620 3858 7466 94 35 53
Participant 5 216 67 71 150 95 33 1
Participant 6 365 118 125 247 95 34 2
Participant 7 41 13 14 29 95 34 0
Participant 8 1422 457 483 965 95 34 7
Participant 9 516 177 189 339 94 37 2
Participant 10 311 90 93 224 97 30 1
Energy community 21318 6927 7353 14401 94 34

Source: HospiGREEN dataset quarter-hourly load profiles from the second phase of the project
(1/11/2021 - 28/02/2023). Note: Consumption (MWh), Self-consumption (MWh), Production
allocated (MWh) and Residual consumption (MWh) represent respectively the participant total
volume of consumption, self-consumption, production allocation and residual consumption over
Phase 2 in MWh. Self-consumption (%), Coverage (%) and Allocation key (%) represent respectively
the average rate of self-consumption, coverage and allocation over Phase 2.
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Appendix E. Weather data details

I collected weather data from the open-access repository at Lille-Lesquin Airport,
covering hourly records from January 1, 2019, to February 28, 2023. For a detailed
list of variables, please refer to Table E.13. I merge this dataset to the main data.
The weather variables enable me to train machine learning algorithms for generating
counterfactual electricity consumption profiles used in the empirical analysis.

Table E.13: Open access Lille-Lesquin Airport weather hourly data collected from 01/01/2019 to
28/02/2023

Parameter Unit
Temperature ◦C
Minimum temperature in the last 12 hours ◦C
Minimum temperature in the last 24 hours ◦C
Maximum temperature in the last 12 hours ◦C
Maximum temperature in the last 24 hours ◦C
Humidity %
Total cloudiness -
Height of the base of lower-level clouds -
Precipitation in the last hour -
Precipitation in the last 3 hours -
Precipitation in the last 6 hours -
Precipitation in the last 12 hours -
Precipitation in the last 24 hours -
Mean wind direction in the last 10 minutes -
Mean wind speed in the last 10 minutes -
Gusts -
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Appendix F. Regional COVID-19 statistics

Regional COVID-19 data is sourced from the open-access database of the Belgian
Institute for Health. Given that the vast majority of participants in the HospiGREEN
pilot project are healthcare facilities, including hospitals and retirement homes (rep-
resenting 96% of the energy community consumption in both phases 1 and 2), and
considering the project’s duration coincided with the COVID-19 pandemic, I have
integrated regional COVID-19 data related to hospitalized cases and ICU admissions
from the Hainaut region in Belgium. This dataset is merged with the main data.
The COVID-19 statistics variables are utilized as inputs for training machine learn-
ing algorithms to generate counterfactual electricity consumption profiles utilized in
the empirical analysis. Descriptive statistics for each phase of the pilot project are
presented in Table F.14.

Table F.14: Descriptive statistics of Covid cases hospitalised in the Hainaut region - Phases 1 and 2

Phase 1 Phase 2
Total cases Total cases in ICU Total cases Total cases in ICU

Min 46 11 72 1
1st Qu 85 21 133 8
Median 270 57 223 13
Mean 330 74 247 25
3rd Qu 433 112 311 32
Max 1387 262 627 101

Source: Sciensano - Belgian Institute for Health. Note: Phase 1 of the pilot project takes place from
1/11/2020 to 31/10/2021, while Phase 2 takes place from 1/11/2021 to 28/02/2023.
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Appendix G. Day-ahead prices

Table G.15: Descriptive statistics of Belgian hourly day ahead prices (DAP) from 01/01/2019 00:00
to 28/02/2023 00:00

Mean Median Min Max Sd
Belgian hourly DAP (EUR/MWh) 104 63 -500 871 106

Source: ENTSOE Transparency Platform, Belgium Day Ahead Prices from 01/01/2019 00:00 to
28/02/2023 00:00

Figure G.3: Daily maximum day-ahead price (EUR/MWh) in Belgium from January 2019 to Jan-
uary 2024

Source: ENTSO-E Transparency Platform
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Appendix H. Average CWAPE electricity prices across consumption cat-
egories

The following appendix provides a breakdown of average electricity prices as per
consumption categories, sourced from CWAPE (CommissionWallonne pour l’Energie),
offering insights into varying electricity prices based on usage patterns. Table H.16
displays the consumption categories based annual electricity consumption and Table
H.17 displays the average price of energy per MWh of electricity by consumption
class (€/MWh excluding VAT).

Table H.16: Electricity customer segmentation

Category Annual electricity consumption
E1 < 40MWh
E2 40 à 100MWh
E3 100 à 700MWh
E4 700 à 1600MWh
E5 1600 à 6000MWh
E6 6 à 20GWh

Source: Analyse des prix de l’électricité et du gaz naturel en Wallonie (Clients professionels) sur le
période de Janvier 2009 à Décembre 2021)-Table 1

Table H.17: Evolution of the average price of energy per MWh of electricity by consumption category
(€/MWh excluding VAT)

€/MWh
HTVA

E1: <40
MWh

E2: 40
- 100
MWh

E3: 100
- 700
MWh

E4: 700
- 1600
MWh

E5: 1.6 -
6 GWh

E6: 6 - 20
GWh

2009-01 91.35 92.51 83.61 79.64 73.82 72.61
2018-01 50.83 46.91 43.78 42.90 43.22 41.62
2019-01 58.32 52.69 51.82 53.81 54.85 51.19
2020-01 57.43 54.95 53.14 51.98 51.68 50.45
2020-12 57.33 55.32 53.00 51.98 51.68 51.00
2021-01 58.75 56.62 53.70 52.50 50.96 48.89
2021-12 85.50 88.72 76.16 84.06 94.24 88.35
2022-01 118.09 109.11 112.53 111.68 118.08 98.72
2022-12 199.05 171.32 176.40 140.05 150.44 140.64

Source: Analyse des prix de l’électricité et du gaz naturel en Wallonie (Clients pro-
fessionels) sur le période de Janvier 2009 à Décembre 2022)-Table 7. Source link:
https://www.cwape.be/publications/document/5535
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Appendix I. Counterfactual dynamic allocation - Phase 1

This appendix outlines the revenues calculated using a counterfactual dynamic
allocation key for Phase 1. This approach assesses whether changing the allocation
mechanism could improve the energy-sharing community’s financial viability. Unlike
the fixed allocation key originally used, the dynamic key allocates local production
based on individual consumption each quarter-hour.

With the dynamic key, self-consumption revenues increased due to a higher total
of self-consumed energy—5,162 MWh compared to 5,075 MWh with the fixed key.
However, this gain did not offset the ongoing losses from surplus energy sales, which
remained negative.

While the dynamic allocation key raised self-consumption, it acts primarily as an
accounting tool rather than a direct incentive. It altered the classification of self-
consumed energy, affecting the necessary energy-sharing price to cover costs. This
analysis shows that, although dynamic allocation boosts self-consumption revenues,
it does not fully resolve the challenges posed by surplus losses.
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Table I.18: Phase 1 - Participants’ revenues by activity without network tariff adjustments and
counterfactual dynamic allocation key

Participants
πSC
i ciπ

X πP
i πiEnergy Network Total

Participant 1 162 162 -147 15
Participant 2 681 681 -1186 -505
Participant 3 561 561 -1092 -531
Participant 4 2250 2250 -4153 -1903
Participant 5 114 114 -104 10
Participant 6 158 158 -147 11

Energy community 3926 3926 -6535 -2609

Source: Author’s computation based on the HospiGREEN electricity consumption profile of Phase
1 (1/11/2020 - 31/10/2021), the Transmission System Operator (TSO) Elia’s imbalance prices,
average energy-sharing price (ēP1dynamic = 50.28 euros/MWh), the average price of energy per
MWh of electricity by consumption class (€/MWh excluding VAT) for December 2020 and the
counterfactual dynamic allocation key described in equation 1. Note: The values presented in
the table are initially calculated for each sub-period (quarter-hour or month) for each participant.
Subsequently, they are aggregated over the entire duration of Phase 1 to provide the summarized
computation.
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Appendix J. Counterfactual predictions additional details

Appendix J.1. Model selection and tuning

For the machine learning algorithm, I analyse 25 different setups for XGBoost
(Chen & Guestrin (2016)) for each of the 6 participants. In term of hyper-parameters
these configurations involve variations in the maximum depth of the trees (3, 5, or 7),
the minimum number of observations per node (100, 200, or 300), and the learning
rate options (0.01, 0.05, or 0.1).

In addition to the benchmark of Linear Regression, Random Forest (RF), and
k-Nearest Neighbors (KNN), XGBoost is considered for counterfactual predictions.
XGBoost has demonstrated superior performance in terms of out-of-sample error
metrics (Root Mean Squared Error - RMSE, and Mean Absolute Error - MAE), as
shown in Table J.19, consistently outperforming the other models for all participants.

In terms of model selection, I analyzed 25 different setups for XGBoost for each
of the 6 participants. These configurations involved variations in key hyperparame-
ters such as the maximum depth of the trees (3, 5, or 7), the minimum number of
observations per node (100, 200, or 300), and the learning rate options (0.01, 0.05,
or 0.1).

While Random Forest and KNN are considered as alternative machine learning
models with optimized parameters, XGBoost demonstrated the best predictive per-
formance across all participants, making it the most suitable model for this analysis.
Random Forest with 100-200 trees and KNN with 9 neighbors are slower to run, espe-
cially when combined with cross-validation, and did not perform as well as XGBoost.

Based on these results, XGBoost is chosen as the final model for counterfactual
electricity consumption predictions due to its higher predictive accuracy and compu-
tational efficiency in the context of the dataset and cross-validation framework used.

Appendix J.2. Prediction results details
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Table J.19: Out-of-sample error metrics (RMSE and MAE) for Linear Regression, XGBoost, RF,
and KNN

Participant Linear XGBoost RF KNN
Regression (10-fold CV) (3-fold CV) (5-fold CV)

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Participant 1 10.97 9.37 3.26 5.70 5.00 5.76 11.50 9.59
Participant 2 90.28 73.56 27.10 34.64 39.18 34.59 98.18 79.30
Participant 3 138.28 111.63 91.20 77.14 103.86 79.14 160.34 131.91
Participant 4 165.84 137.40 57.94 65.94 82.50 69.94 198.53 161.93
Participant 5 10.25 8.31 4.64 7.43 6.53 7.49 10.55 8.49
Participant 6 15.76 12.38 7.95 10.11 9.72 10.06 17.32 13.43

Average 71.90 58.77 32.01 33.49 41.13 34.83 82.73 67.29

Note: The table compares out-of-sample error metrics (RMSE and MAE) for Linear Regression,
XGBoost (optimized with 10-fold cross-validation), Random Forest (optimized with 3-fold cross-
validation), and KNN (optimized with 5-fold cross-validation). RMSE (Root Mean Square Error)
measures the square root of the average squared differences between predicted and actual values,
which gives more weight to larger errors. MAE (Mean Absolute Error) calculates the average of
absolute differences between predicted and actual values, providing a linear measure of prediction
accuracy.
XGBoost uses a learning rate of 0.05-0.10, 100-200 trees, and max depth of 3-7. It is efficient in terms
of running time, allowing larger cross-validation folds (10-fold in this case), while still optimizing
performance. On the other hand, Random Forest with 100-200 trees and a max depth of 10 is
significantly slower to run, especially when combined with cross-validation. KNN uses 9 neighbors
with uniform weighting.
This table shows model performance across multiple participants predicting counterfactual electricity
consumption between 1/11/2020 - 28/02/2023.
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Figure J.4: Realized and Counterfactual Electricity Consumption by Participant

Note: This figure illustrates the average daily electricity consumption in the HospiGREEN energy
community, both the realized consumption (in black) and predicted consumption (in blue). The
predictions are generated using Gradient Boosted Trees, as detailed in Section 4.1 To mitigate intra-
day and intra-month variations, the presented series are smoothed using 30-day moving averages.
The vertical red line signifies the end of 2019 and the establishment of the energy community, the
vertical orange line signifies the establishment of the Phase 2 of the pilot project. Notably, the
absence of data between 01/10/2020 and 31/10/2020 is omitted, visually hiden at the level of the
red line.

.
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Appendix K. Event study robustness check

In this appendix, I include a robustness check using an event study analysis. This
check validates the main findings by looking directly at the energy community’s actual
consumption profile. It examines how consumption patterns change when each phase
of the energy community starts. This helps confirm the stability and consistency of
the main results from Tables 6 and 7.
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Table K.20: Regression results event study

Dependent variable: Daily peak (kWh) Daily peak hour (h)
Model: (1) (2)

Intercept 1545.62∗∗∗ 10.18∗∗∗

(53.83) (0.61)
Phase 1 192.62∗∗∗ −0.71

(35.02) (0.40)
Phase 2 1.89 −0.99∗∗∗

(25.05) (0.28)
Daily Av. Wind Speed −5.13∗ −0.11∗∗∗

(2.43) (0.03)
Daily Av. Humidity 1.97∗∗∗ −0.02∗∗

(0.54) (0.01)
Daily Av. Precipitation 43.31 −0.27

(22.81) (0.26)
Daily Av. Temperature 16.63∗∗∗ 0.13∗∗∗

(1.45) (0.02)
Daily Max DAP 0.37∗∗∗ −0.00

(0.06) (0.00)
Hops. COVID-19 −0.06 0.00∗

(0.07) (0.00)
Hops. COVID-19 ICU −0.01 −0.01∗∗

(0.35) (0.00)
Year FE Yes Yes
Month-of-year FE Yes Yes
Day-of-week FE Yes Yes
Holidays control Yes Yes
R2 0.76 0.37
Adj. R2 0.76 0.35
Num. obs. 1215 1215

Note: The outcome variables of this table are computed on the actual aggregated electricity consumption profiles
of the energy community. The regressors ’Phase 1’ and ’Phase 2’ are dummy variables that activates respectively
starting from 01/11/2020 and 01/11/2021. The COVID-19 controls consist of the daily counts of COVID-19 cases
hospitalized and in Intensive Care Units (ICU) within the Hainaut region, where the energy community HospiGREEN
is situated. Additionally, the daily maximum of Belgium day-ahead prices (Daily Max DAP) is incorporated into
the control variables to address the impact of the energy crisis. Significance levels are indicated as ∗∗∗p < 0.001;
∗∗p < 0.01; ∗p < 0.05
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