About the Project
6 Exponential, Logarithmic, Sine, and Cosine IntegralsProperties

§6.7 Integral Representations

Contents
  1. §6.7(i) Exponential Integrals
  2. §6.7(ii) Sine and Cosine Integrals
  3. §6.7(iii) Auxiliary Functions
  4. §6.7(iv) Compendia

§6.7(i) Exponential Integrals

6.7.1 0eatt+bdt=0eiatt+ibdt=eabE1(ab),
a>0, b>0,
6.7.2 ex0αext1tdt=Ei(x)Ei((1α)x),
0α<1, x>0.
6.7.3 xeita2+t2dt=i2a(eaE1(aix)eaE1(aix)),
a>0, x>0,
6.7.4 xteita2+t2dt=12(eaE1(aix)+eaE1(aix)),
a>0, x>0.
6.7.5 xeta2+t2dt=12ai(eiaE1(x+ia)eiaE1(xia)),
a>0, x,
6.7.6 xteta2+t2dt=12(eiaE1(x+ia)+eiaE1(xia)),
a>0, x.
6.7.7 01eatsin(bt)tdt=Ein(a+ib),
a,b,
6.7.8 01eat(1cos(bt))tdt=Ein(a+ib)Ein(a),
a,b.

Many integrals with exponentials and rational functions, for example, integrals of the type ezR(z)dz, where R(z) is an arbitrary rational function, can be represented in finite form in terms of the function E1(z) and elementary functions; see Lebedev (1965, p. 42).

§6.7(ii) Sine and Cosine Integrals

When z

6.7.9 si(z)=0π/2ezcostcos(zsint)dt,
6.7.10 Ein(z)Cin(z)=0π/2ezcostsin(zsint)dt,
6.7.11 01(1eat)cos(bt)tdt=Ein(a+ib)Cin(b),
a,b.

§6.7(iii) Auxiliary Functions

6.7.12 g(z)+if(z)=eizzeittdt,
|phz|π.

The path of integration does not cross the negative real axis or pass through the origin.

6.7.13 f(z) =0sintt+zdt=0eztt2+1dt,
6.7.14 g(z) =0costt+zdt=0teztt2+1dt.

The first integrals on the right-hand sides apply when |phz|<π; the second ones when z0 and (in the case of (6.7.14)) z0.

When |phz|<π

6.7.15 f(z) =20K0(2zt)costdt,
6.7.16 g(z) =20K0(2zt)sintdt.

For K0 see §10.25(ii).

§6.7(iv) Compendia

For collections of integral representations see Bierens de Haan (1939, pp. 56–59, 72–73, 82–84, 121, 133–136, 155, 179–181, 223, 225–227, 230, 259–260, 374, 377, 397–398, 408, 416, 424, 431, 438–439, 442–444, 488, 496–500, 567–571, 585, 602, 638, 675–677), Corrington (1961), Erdélyi et al. (1954a, vol. 1, pp. 267–270), Geller and Ng (1969), Nielsen (1906b), Oberhettinger (1974, pp. 244–246), Oberhettinger and Badii (1973, pp. 364–371), and Watrasiewicz (1967).

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy