About the Project
14 Legendre and Related FunctionsReal Arguments

§14.8 Behavior at Singularities

Contents
  1. §14.8(i) x1 or x1+
  2. §14.8(ii) x1+
  3. §14.8(iii) x

§14.8(i) x1 or x1+

As x1,

14.8.1 𝖯νμ(x) 1Γ(1μ)(21x)μ/2,
μ1,2,3,,
14.8.2 𝖯νm(x) (1)m(νm+1)2mm!(1x2)m/2,
m=1,2,3,, νm1,m2,,m,
14.8.3 𝖰ν(x) =12ln(21x)γψ(ν+1)+O((1x)ln(1x)),
ν1,2,3,,

where γ is Euler’s constant (§5.2(ii)). In the next three relations μ>0.

14.8.4 𝖰νμ(x)12cos(μπ)Γ(μ)(21x)μ/2,
μ12,32,52,,
14.8.5 𝖰νμ(x)(1)μ+(1/2)πΓ(ν+μ+1)2Γ(μ+1)Γ(νμ+1)(1x2)μ/2,
μ=12,32,52,, ν±μ1,2,3,,
14.8.6 𝖰νμ(x)Γ(μ)Γ(νμ+1)2Γ(ν+μ+1)(21x)μ/2,
ν±μ1,2,3,.

The behavior of 𝖯νμ(x) and 𝖰νμ(x) as x1+ follows from the above results and the connection formulas (14.9.8) and (14.9.10).

§14.8(ii) x1+

14.8.7 Pνμ(x) 1Γ(1μ)(2x1)μ/2,
μ1,2,3,,
14.8.8 Pνm(x) Γ(ν+m+1)m!Γ(νm+1)(x12)m/2,
m=1,2,3,, ν±m1,2,3,,
14.8.9 𝑸ν(x) =ln(x1)2Γ(ν+1)+12ln2γψ(ν+1)Γ(ν+1)+O((x1)ln(x1)),
ν1,2,3,,
14.8.10 𝑸n(x)(1)n+1(n1)!,
n=1,2,3,,
14.8.11 𝑸νμ(x)Γ(μ)2Γ(ν+μ+1)(2x1)μ/2,
μ>0, ν+μ1,2,3,.

§14.8(iii) x

14.8.12 Pνμ(x) Γ(ν+12)π1/2Γ(νμ+1)(2x)ν,
ν>12, μν1,2,3,,
14.8.13 Pνμ(x) Γ(ν12)π1/2Γ(μν)(2x)ν+1,
ν<12, ν+μ0,1,2,,
14.8.14 P1/2μ(x) 1Γ(12μ)(2πx)1/2lnx,
μ12,32,52,,
14.8.15 𝑸νμ(x)π1/2Γ(ν+32)(2x)ν+1,
ν32,52,72,,
14.8.16 𝑸n(1/2)μ(x)π1/2Γ(μ+n+12)n!Γ(μn+12)(2x)n+(1/2),
n=1,2,3,, μn+120,1,2,.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy